aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2013-05-19 23:55:58 +0000
committerdos-reis <gdr@axiomatics.org>2013-05-19 23:55:58 +0000
commit9f93bd1e41e901891fe77f2a777fd18ead4b94dc (patch)
tree5b81278020fdfc9fea4abc4ad75bb50492fbed90 /src/share/algebra
parent549aab1d993019339d4eef36049e7639c37ca1b6 (diff)
downloadopen-axiom-9f93bd1e41e901891fe77f2a777fd18ead4b94dc.tar.gz
Eradicate attribute shallowlyMutable.
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase2706
-rw-r--r--src/share/algebra/category.daase5792
-rw-r--r--src/share/algebra/compress.daase6
-rw-r--r--src/share/algebra/interp.daase7923
-rw-r--r--src/share/algebra/operation.daase19716
5 files changed, 18062 insertions, 18081 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 8a5e3dbc..587e8e7a 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(1968719 . 3577992038)
+(1968178 . 3577996048)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the shallowly mutable property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-3994 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T))
+((-3993 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T))
NIL
(-30)
((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,10 +56,10 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3094)
+(-32 R -3093)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-951 (-485)))))
+((|HasCategory| |#1| (QUOTE (-950 (-484)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\"")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-40 -3094 UP UPUP -2616)
+(-40 -3093 UP UPUP -2615)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))))
-(-41 R -3094)
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))))
+(-41 R -3093)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -364) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-258))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
+((-3993 |has| |#1| (-495)) (-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))))
+((-3997 . T))
+((OR (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#2|))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| $ (|%list| (QUOTE -1035) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-756)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1035) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))))
+((|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-51)
((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3094)
+(-54 |Base| R -3093)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
@@ -158,28 +158,28 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")))
-((-3998 . T))
+((-3997 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-61 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
((|HasCategory| |#1| (QUOTE (-312))))
(-62 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-63 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -202,11 +202,11 @@ NIL
NIL
(-68)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3999 "*") . T) (-3994 . T) (-3992 . T) (-3991 . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3993 . T) (-3996 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3984 . T))
+(((-3998 "*") . T) (-3993 . T) (-3991 . T) (-3990 . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3987 . T) (-3986 . T) (-3985 . T) (-3984 . T) (-3992 . T) (-3995 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-3983 . T))
NIL
(-69 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-70 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -222,24 +222,24 @@ NIL
NIL
(-73 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
(-74 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3999 "*"))))
+((|HasAttribute| |#1| (QUOTE (-3998 "*"))))
(-75 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")))
NIL
NIL
(-76 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-77)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-78)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -254,11 +254,11 @@ NIL
NIL
(-81)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-3998 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| (-85) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))))
+((-3997 . T))
+((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1013)))) (|HasCategory| (-85) (QUOTE (-553 (-473)))) (|HasCategory| (-85) (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-552 (-772)))) (|HasCategory| (-85) (QUOTE (-1013))) (-12 (|HasCategory| $ (QUOTE (-1035 (-85)))) (|HasCategory| (-85) (QUOTE (-756)))) (|HasCategory| $ (QUOTE (-1035 (-85)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))))
(-82 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
(-83 S)
((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}.")))
@@ -280,22 +280,22 @@ NIL
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-88 -3094 UP)
+(-88 -3093 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-89 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-90 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-89 |#1|) (QUOTE (-822))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-89 |#1|) (QUOTE (-934))) (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-741))) (|HasCategory| (-89 |#1|) (QUOTE (-757)))) (|HasCategory| (-89 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-1067))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-89 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-822)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-89 |#1|) (QUOTE (-821))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-120))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-89 |#1|) (QUOTE (-933))) (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-89 |#1|) (QUOTE (-740))) (|HasCategory| (-89 |#1|) (QUOTE (-756)))) (|HasCategory| (-89 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-1066))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-330)))) (|HasCategory| (-89 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-89 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-89 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-89 |#1|) (QUOTE (-189))) (|HasCategory| (-89 |#1|) (QUOTE (-811 (-1090)))) (|HasCategory| (-89 |#1|) (QUOTE (-190))) (|HasCategory| (-89 |#1|) (QUOTE (-809 (-1090)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -89) (|devaluate| |#1|)) (|%list| (QUOTE -89) (|devaluate| |#1|)))) (|HasCategory| (-89 |#1|) (QUOTE (-258))) (|HasCategory| (-89 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-89 |#1|) (QUOTE (-821)))) (|HasCategory| (-89 |#1|) (QUOTE (-118)))))
(-91 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))))
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#2|))))
(-92 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
(-95 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
NIL
(-96)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-97 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")))
@@ -322,24 +322,24 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-99 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
(-100 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
(-101)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
(-102)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1014))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| $ (QUOTE (-1036 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1036 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))))
+((-3997 . T))
+((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013))))) (|HasCategory| (-101) (QUOTE (-552 (-772)))) (|HasCategory| (-101) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-101) (QUOTE (-756))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1013))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1013)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| $ (QUOTE (-1035 (-101)))) (-12 (|HasCategory| $ (QUOTE (-1035 (-101)))) (|HasCategory| (-101) (QUOTE (-756)))))
(-103)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -358,13 +358,13 @@ NIL
NIL
(-107)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-3999 "*") . T))
+(((-3998 "*") . T))
NIL
-(-108 |minix| -2623 R)
+(-108 |minix| -2622 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")))
NIL
NIL
-(-109 |minix| -2623 S T$)
+(-109 |minix| -2622 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -386,8 +386,8 @@ NIL
NIL
(-114)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-3987 . T) (-3998 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))))
+((-3986 . T) (-3997 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-1013))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))))
(-115 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
@@ -402,7 +402,7 @@ NIL
NIL
(-118)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-119 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
@@ -410,9 +410,9 @@ NIL
NIL
(-120)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-121 -3094 UP UPUP)
+(-121 -3093 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -423,14 +423,14 @@ NIL
(-123 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|))))
+((|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|))))
(-124 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-125 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-3992 . T) (-3991 . T) (-3994 . T))
+((-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-126)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -452,7 +452,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-131 R -3094)
+(-131 R -3093)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -483,10 +483,10 @@ NIL
(-138 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3993)) (|HasAttribute| |#2| (QUOTE -3996)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))))
+((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3992)) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))))
(-139 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-3990 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1376 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-140 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -498,8 +498,8 @@ NIL
NIL
(-142 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-3990 OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3993 |has| |#1| (-6 -3993)) (-3996 |has| |#1| (-6 -3996)) (-1377 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-822))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-1116))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-974))) (-12 (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-1116)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3996)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3989 OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3992 |has| |#1| (-6 -3992)) (-3995 |has| |#1| (-6 -3995)) (-1376 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-821))))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-1115))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-973))) (-12 (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-1115)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-189)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasAttribute| |#1| (QUOTE -3992)) (|HasAttribute| |#1| (QUOTE -3995)) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-143 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -514,7 +514,7 @@ NIL
NIL
(-146)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-147)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -522,7 +522,7 @@ NIL
NIL
(-148 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-3999 "*") . T) (-3990 . T) (-3995 . T) (-3989 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") . T) (-3989 . T) (-3994 . T) (-3988 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-149)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -539,7 +539,7 @@ NIL
(-152 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-858 |#2|) (|%list| (QUOTE -797) (|devaluate| |#1|))))
+((|HasCategory| (-857 |#2|) (|%list| (QUOTE -796) (|devaluate| |#1|))))
(-153 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -576,7 +576,7 @@ NIL
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-162 R -3094)
+(-162 R -3093)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -604,23 +604,23 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-169 -3094 UP UPUP R)
+(-169 -3093 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-170 -3094 FP)
+(-170 -3093 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-171)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-172)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-173 R -3094)
+(-173 R -3093)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -634,19 +634,19 @@ NIL
NIL
(-176 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-177 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-178 R -3094)
+(-178 R -3093)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-179)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-180)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -654,19 +654,19 @@ NIL
NIL
(-181 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))))
(-182 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-183 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-184 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-185 S T$)
((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}.")))
@@ -678,7 +678,7 @@ NIL
NIL
(-187 R)
((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
(-188 S)
((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")))
@@ -690,7 +690,7 @@ NIL
NIL
(-190)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")))
-((-3994 . T))
+((-3993 . T))
NIL
(-191)
((|constructor| (NIL "Dioid is the class of semirings where the addition operation induces a canonical order relation.")))
@@ -702,25 +702,25 @@ NIL
((|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#2|))))
(-193 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-194)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-195 S -2623 R)
+(-195 S -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014))))
-(-196 -2623 R)
+((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasAttribute| |#3| (QUOTE -3993)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013))))
+(-196 -2622 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
+((-3990 |has| |#2| (-961)) (-3991 |has| |#2| (-961)) (-3993 |has| |#2| (-6 -3993)))
NIL
-(-197 -2623 R)
+(-197 -2622 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
-(-198 -2623 A B)
+((-3990 |has| |#2| (-961)) (-3991 |has| |#2| (-961)) (-3993 |has| |#2| (-6 -3993)))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+(-198 -2622 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -734,7 +734,7 @@ NIL
NIL
(-201)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-202 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -742,20 +742,20 @@ NIL
NIL
(-203 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
(-204 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-205 R)
((|constructor| (NIL "Category of modules that extend differential rings. \\blankline")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
(-206 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-495)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-207)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
@@ -770,23 +770,23 @@ NIL
NIL
(-210 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-3994 OR (-2564 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3994)) (-2564 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3991 |has| |#4| (-962)) (-3992 |has| |#4| (-962)))
-((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3994)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))))
+((-3993 OR (-2563 (|has| |#4| (-961)) (|has| |#4| (-190))) (|has| |#4| (-6 -3993)) (-2563 (|has| |#4| (-961)) (|has| |#4| (-809 (-1090))))) (-3990 |has| |#4| (-961)) (-3991 |has| |#4| (-961)))
+((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-717))) (OR (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-756)))) (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-809 (-1090))))) (|HasCategory| |#4| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-756))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-663))) (|HasCategory| |#4| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-961))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#4| (QUOTE (-580 (-484)))) (|HasCategory| |#4| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-950 (-484)))) (|HasCategory| |#4| (QUOTE (-1013)))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-809 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasAttribute| |#4| (QUOTE -3993)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-961))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-811 (-1090)))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))))
(-211 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-3994 OR (-2564 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3994)) (-2564 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))))
+((-3993 OR (-2563 (|has| |#3| (-961)) (|has| |#3| (-190))) (|has| |#3| (-6 -3993)) (-2563 (|has| |#3| (-961)) (|has| |#3| (-809 (-1090))))) (-3990 |has| |#3| (-961)) (-3991 |has| |#3| (-961)))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))))
(-212 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-190))))
(-213 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
(-214 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-215 |Ex|)
((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -827,15 +827,15 @@ NIL
(-224 S R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))))
+((|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))))
(-225 R)
((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}.")))
NIL
NIL
(-226 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#3| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#3| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#3| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#3| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#3| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#3| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#3| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#3| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-227 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -848,11 +848,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-230 R -3094)
+(-230 R -3093)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-231 R -3094)
+(-231 R -3093)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -875,10 +875,10 @@ NIL
(-236 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))))
+((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))))
(-237 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-3998 . T))
+((-3997 . T))
NIL
(-238 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -899,14 +899,14 @@ NIL
(-242 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3998)))
+((|HasAttribute| |#1| (QUOTE -3997)))
(-243 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-244 S R |Mod| -2038 -3520 |exactQuo|)
+(-244 S R |Mod| -2037 -3519 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-245 S)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
@@ -914,7 +914,7 @@ NIL
NIL
(-246)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-3990 . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-247)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -926,16 +926,16 @@ NIL
NIL
(-249 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3991 |has| |#1| (-962)) (-3992 |has| |#1| (-962)))
-((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-664))))
+((-3993 OR (|has| |#1| (-961)) (|has| |#1| (-413))) (-3990 |has| |#1| (-961)) (-3991 |has| |#1| (-961)))
+((|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663)))) (|HasCategory| |#1| (QUOTE (-413))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-254))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-413)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-663))))
(-250 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
(-251 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
(-252)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
@@ -943,16 +943,16 @@ NIL
(-253 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))
+((|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))
(-254)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-255 -3094 S)
+(-255 -3093 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-256 E -3094)
+(-256 E -3093)
((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -962,7 +962,7 @@ NIL
NIL
(-258)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-259 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -972,7 +972,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-261 -3094)
+(-261 -3093)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -986,12 +986,12 @@ NIL
NIL
(-264 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-474)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-934))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757))) (OR (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-741))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-757)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-330)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-797 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-581 (-485)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-812 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-810 (-1091)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-822)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-473)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-756))) (OR (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-740))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-756)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-330)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-796 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-580 (-484)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-189))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-811 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-190))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-809 (-1090)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -260) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -241) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1166) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-258))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-821)))) (|HasCategory| (-1166 |#1| |#2| |#3| |#4|) (QUOTE (-118)))))
(-265 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-3994 OR (-12 (|has| |#1| (-496)) (OR (|has| |#1| (-962)) (|has| |#1| (-413)))) (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) ((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496)))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1026)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
+((-3993 OR (-12 (|has| |#1| (-495)) (OR (|has| |#1| (-961)) (|has| |#1| (-413)))) (|has| |#1| (-961)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-495)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-495)) (-3988 |has| |#1| (-495)))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961))))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-25)))) (OR (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#1| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
(-266 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1000,7 +1000,7 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-268 R -3094)
+(-268 R -3093)
((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1010,8 +1010,8 @@ NIL
NIL
(-270 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
(-271 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1022,8 +1022,8 @@ NIL
NIL
(-273 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-717))))
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| (-484) (QUOTE (-716))))
(-274 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1031,26 +1031,26 @@ NIL
(-275 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-695) (QUOTE (-717))))
+((|HasCategory| (-694) (QUOTE (-716))))
(-276 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
+((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
(-277 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-278 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-279 S -3094)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
+(-279 S -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-320))))
-(-280 -3094)
+(-280 -3093)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-281 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
@@ -1060,7 +1060,7 @@ NIL
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-283 -3094 UP UPUP R)
+(-283 -3093 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1068,33 +1068,33 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-285 S -3094 UP UPUP R)
+(-285 S -3093 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-286 -3094 UP UPUP R)
+(-286 -3093 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
(-287 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))))
(-288 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-289 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
-(-290 S -3094 UP UPUP)
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
+(-290 S -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-312))))
-(-291 -3094 UP UPUP)
+(-291 -3093 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-292 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
@@ -1102,15 +1102,15 @@ NIL
NIL
(-293 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
(-294 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-295 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-296 GF)
((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
@@ -1126,43 +1126,43 @@ NIL
NIL
(-299)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-300 R UP -3094)
+(-300 R UP -3093)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-301 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-818 |#1|) (QUOTE (-118))) (|HasCategory| (-818 |#1|) (QUOTE (-320)))) (|HasCategory| (-818 |#1|) (QUOTE (-120))) (|HasCategory| (-818 |#1|) (QUOTE (-320))) (|HasCategory| (-818 |#1|) (QUOTE (-118))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((OR (|HasCategory| (-817 |#1|) (QUOTE (-118))) (|HasCategory| (-817 |#1|) (QUOTE (-320)))) (|HasCategory| (-817 |#1|) (QUOTE (-120))) (|HasCategory| (-817 |#1|) (QUOTE (-320))) (|HasCategory| (-817 |#1|) (QUOTE (-118))))
(-302 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-303 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-304 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-305 GF)
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-306 -3094 GF)
+(-306 -3093 GF)
((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-307 -3094 FP FPP)
+(-307 -3093 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
(-308 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((OR (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-118))))
(-309 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
@@ -1170,7 +1170,7 @@ NIL
NIL
(-310 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-311 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1178,7 +1178,7 @@ NIL
NIL
(-312)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-313 S)
((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
@@ -1191,10 +1191,10 @@ NIL
(-315 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-496))))
+((|HasCategory| |#2| (QUOTE (-495))))
(-316 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
+((-3993 |has| |#1| (-495)) (-3991 . T) (-3990 . T))
NIL
(-317 A S)
((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}.")))
@@ -1218,12 +1218,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-312))))
(-322 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-323 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))))
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))))
(-324 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
@@ -1234,7 +1234,7 @@ NIL
NIL
(-326 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
NIL
(-327 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1243,14 +1243,14 @@ NIL
(-328 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (QUOTE (-581 (-485)))))
+((|HasCategory| |#2| (QUOTE (-580 (-484)))))
(-329 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
NIL
(-330)
((|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-3980 . T) (-3988 . T) (-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3979 . T) (-3987 . T) (-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-331 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1262,15 +1262,15 @@ NIL
NIL
(-333 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
(-334 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
((|HasCategory| |#1| (QUOTE (-146))))
(-335 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
(-336 S)
((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1279,7 +1279,7 @@ NIL
(-337 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
+((|HasCategory| |#1| (QUOTE (-756))))
(-338)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
@@ -1290,13 +1290,13 @@ NIL
NIL
(-340 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-341 -3094 UP UPUP R)
+(-341 -3093 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-342 -3094 UP)
+(-342 -3093 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1310,28 +1310,28 @@ NIL
NIL
(-345)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-346 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -3980)) (|HasAttribute| |#1| (QUOTE -3988)))
+((|HasAttribute| |#1| (QUOTE -3979)) (|HasAttribute| |#1| (QUOTE -3987)))
(-347)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-3772 . T) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3771 . T) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-348 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-456 (-1091) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-1135))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1135)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-392))))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-455 (-1090) $))) (|HasCategory| |#1| (QUOTE (-260 $))) (|HasCategory| |#1| (QUOTE (-241 $ $))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-1134))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-1134)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-392))))
(-349 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-350 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-3984 -12 (|has| |#1| (-6 -3995)) (|has| |#1| (-392)) (|has| |#1| (-6 -3984))) (-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-484))) (-12 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+((-3983 -12 (|has| |#1| (-6 -3994)) (|has| |#1| (-392)) (|has| |#1| (-6 -3983))) (-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-950 (-1090)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-740))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-483))) (-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392)))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
(-351 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
@@ -1342,28 +1342,28 @@ NIL
NIL
(-353 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-354 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))
+((|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))
(-355 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-356 R -3094 UP A)
+(-356 R -3093 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-357 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-358 R -3094 UP A |ibasis|)
+(-358 R -3093 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (|%list| (QUOTE -951) (|devaluate| |#2|))))
+((|HasCategory| |#4| (|%list| (QUOTE -950) (|devaluate| |#2|))))
(-359 AR R AS S)
((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1374,7 +1374,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-312))))
(-361 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-3994 |has| |#1| (-496)) (-3992 . T) (-3991 . T))
+((-3993 |has| |#1| (-495)) (-3991 . T) (-3990 . T))
NIL
(-362 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
@@ -1383,10 +1383,10 @@ NIL
(-363 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1026))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
+((|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-553 (-473)))))
(-364 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-3994 OR (|has| |#1| (-962)) (|has| |#1| (-413))) (-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) ((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-496)) (-3989 |has| |#1| (-496)))
+((-3993 OR (|has| |#1| (-961)) (|has| |#1| (-413))) (-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) ((-3998 "*") |has| |#1| (-495)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-495)) (-3988 |has| |#1| (-495)))
NIL
(-365 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
@@ -1403,36 +1403,36 @@ NIL
(-368 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
+((|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))))
(-369 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-3987 . T) (-3998 . T))
+((-3986 . T) (-3997 . T))
NIL
(-370 S A R B)
((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-371 R -3094)
+(-371 R -3093)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-372 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-3984 -12 (|has| |#1| (-6 -3984)) (|has| |#2| (-6 -3984))) (-3991 . T) (-3992 . T) (-3994 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -3984)) (|HasAttribute| |#2| (QUOTE -3984))))
-(-373 R -3094)
+((-3983 -12 (|has| |#1| (-6 -3983)) (|has| |#2| (-6 -3983))) (-3990 . T) (-3991 . T) (-3993 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -3983)) (|HasAttribute| |#2| (QUOTE -3983))))
+(-373 R -3093)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-374 R -3094)
+(-374 R -3093)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-375 R -3094)
+(-375 R -3093)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-376 R -3094)
+(-376 R -3093)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1440,10 +1440,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-378 R -3094 UP)
+(-378 R -3093 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (QUOTE (-951 (-48)))))
+((|HasCategory| |#2| (QUOTE (-950 (-48)))))
(-379)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
@@ -1460,7 +1460,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-383 R UP -3094)
+(-383 R UP -3093)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1498,16 +1498,16 @@ NIL
NIL
(-392)
((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-393 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-3994 |has| (-350 (-858 |#1|)) (-496)) (-3992 . T) (-3991 . T))
-((|HasCategory| (-350 (-858 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-350 (-858 |#1|)) (QUOTE (-496))))
+((-3993 |has| (-350 (-857 |#1|)) (-495)) (-3991 . T) (-3990 . T))
+((|HasCategory| (-350 (-857 |#1|)) (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-350 (-857 |#1|)) (QUOTE (-495))))
(-394 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-495)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
(-395 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
@@ -1534,7 +1534,7 @@ NIL
NIL
(-401 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
(-402 E V R P Q)
((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1542,8 +1542,8 @@ NIL
NIL
(-403 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
+((-3997 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
(-404 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1572,7 +1572,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) (|Zero| (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-411 |lv| -3094 R)
+(-411 |lv| -3093 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1582,23 +1582,23 @@ NIL
NIL
(-413)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-3994 . T))
+((-3993 . T))
NIL
(-414 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
(-415 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
(-416 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-3998 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
+((-3997 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
(-417)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
(-418)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1606,29 +1606,29 @@ NIL
NIL
(-419 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
(-420)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-421 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-422 -2623 S)
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-495)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-422 -2622 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+((-3990 |has| |#2| (-961)) (-3991 |has| |#2| (-961)) (-3993 |has| |#2| (-6 -3993)))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
(-423)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-424 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-425 -3094 UP UPUP R)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-425 -3093 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1638,12 +1638,12 @@ NIL
NIL
(-427)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
(-428 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3998)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-553 (-773)))))
+((|HasAttribute| |#1| (QUOTE -3997)) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-552 (-772)))))
(-429 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1664,3113 +1664,3109 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-434 -3094 UP |AlExt| |AlPol|)
+(-434 -3093 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-435)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485)))))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (QUOTE (-950 (-484)))))
(-436 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
(-437 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
(-438 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-439 R UP -3094)
+(-439 R UP -3093)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-440 |mn|)
-((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")))
-((-3998 . T))
-((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| (-85) (QUOTE (-757)))) (|HasCategory| $ (QUOTE (-1036 (-85)))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72)))))
-(-441 K R UP L)
+(-440 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-442)
+(-441)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-443 R Q A B)
+(-442 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-444 -3094 |Expon| |VarSet| |DPoly|)
+(-443 -3093 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (QUOTE (-554 (-1091)))))
-(-445 |vl| |nv|)
+((|HasCategory| |#3| (QUOTE (-553 (-1090)))))
+(-444 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-446 T$)
+(-445 T$)
((|constructor| (NIL "This is the category of all domains that implement idempotent operations.")))
-(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3058 (|f| |x| |x|) |x|))) . T))
+(((|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (-3057 (|f| |x| |x|) |x|))) . T))
NIL
-(-447)
+(-446)
((|constructor| (NIL "This domain provides representation for plain identifiers. It differs from Symbol in that it does not support any form of scripting. It is a plain basic data structure. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-448 A S)
+(-447 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-449 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-448 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-450 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-449 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|IndexedProductTerm| |#1| |#2|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-451 A S)
+(-450 A S)
((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support.")) (|combineWithIf| (($ $ $ (|Mapping| |#1| |#1| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{combineWithIf(u,v,f,p)} returns the result of combining index-wise,{} coefficients of \\spad{u} and \\spad{u} if when satisfy the predicate \\spad{p}. Those pairs of coefficients which fail\\spad{p} are implicitly ignored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-452 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-451 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-453 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-452 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))))
-(-454 A S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))))
+(-453 A S)
((|constructor| (NIL "An indexed product term is a utility domain used in the representation of indexed direct product objects.")) (|coefficient| ((|#1| $) "\\spad{coefficient t} returns the coefficient of the tern \\spad{t}.")) (|index| ((|#2| $) "\\spad{index t} returns the index of the term \\spad{t}.")) (|term| (($ |#2| |#1|) "\\spad{term(s,a)} constructs a term with index \\spad{s} and coefficient \\spad{a}.")))
NIL
NIL
-(-455 S A B)
+(-454 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-456 A B)
+(-455 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-457 S E |un|)
+(-456 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-717))))
-(-458 S |mn|)
+((|HasCategory| |#2| (QUOTE (-716))))
+(-457 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-459)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
+(-458)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-460 |p| |n|)
+(-459 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((OR (|HasCategory| (-518 |#1|) (QUOTE (-118))) (|HasCategory| (-518 |#1|) (QUOTE (-320)))) (|HasCategory| (-518 |#1|) (QUOTE (-120))) (|HasCategory| (-518 |#1|) (QUOTE (-320))) (|HasCategory| (-518 |#1|) (QUOTE (-118))))
-(-461 R |Row| |Col| M)
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((OR (|HasCategory| (-517 |#1|) (QUOTE (-118))) (|HasCategory| (-517 |#1|) (QUOTE (-320)))) (|HasCategory| (-517 |#1|) (QUOTE (-120))) (|HasCategory| (-517 |#1|) (QUOTE (-320))) (|HasCategory| (-517 |#1|) (QUOTE (-118))))
+(-460 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-462 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasCategory| |#3| (|%list| (QUOTE -1035) (|devaluate| |#1|))))
+(-461 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasCategory| |#7| (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-463)
+((|HasCategory| |#7| (|%list| (QUOTE -1035) (|devaluate| |#1|))))
+(-462)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-464)
+(-463)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-465 S)
+(-464 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-466)
+(-465)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-467 GF)
+(-466 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF.")))
NIL
NIL
-(-468)
+(-467)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-469 R)
+(-468 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-470 |Varset|)
+(-469 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-695) (QUOTE (-1014)))))
-(-471 K -3094 |Par|)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-694) (QUOTE (-1013)))))
+(-470 K -3093 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-472)
+(-471)
NIL
NIL
NIL
-(-473)
+(-472)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-474)
+(-473)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) (|One| (($) "\\spad{1} returns the input form corresponding to 1.")) (|Zero| (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-475 R)
+(-474 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-476 |Coef| UTS)
+(-475 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-477 K -3094 |Par|)
+(-476 K -3093 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-478 R BP |pMod| |nextMod|)
+(-477 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-479 OV E R P)
+(-478 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-480 K UP |Coef| UTS)
+(-479 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-481 |Coef| UTS)
+(-480 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-482 R UP)
+(-481 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-483 S)
+(-482 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-484)
+(-483)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-485)
+(-484)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-486)
+(-485)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-487)
+(-486)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-488)
+(-487)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-489)
+(-488)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-490 |Key| |Entry| |addDom|)
+(-489 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
-(-491 R -3094)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+(-490 R -3093)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-492 R0 -3094 UP UPUP R)
+(-491 R0 -3093 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-493)
+(-492)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-494 R)
+(-493 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-3772 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-495 S)
+(-494 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-496)
+(-495)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-497 R -3094)
+(-496 R -3093)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-498 I)
+(-497 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-499 R -3094 L)
+(-498 R -3093 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
-(-500)
+((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
+(-499)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-501 -3094 UP UPUP R)
+(-500 -3093 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-502 -3094 UP)
+(-501 -3093 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-503 R -3094 L)
+(-502 R -3093 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -601) (|devaluate| |#2|))))
-(-504 R -3094)
+((|HasCategory| |#3| (|%list| (QUOTE -600) (|devaluate| |#2|))))
+(-503 R -3093)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-570)))))
-(-505 -3094 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-1053)))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-569)))))
+(-504 -3093 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-506 S)
+(-505 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-507 -3094)
+(-506 -3093)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-508 R)
+(-507 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-3772 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3771 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-509)
+(-508)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-510 R -3094)
+(-509 R -3093)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-570))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-496))))
-(-511 -3094 UP)
+((-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-495))))
+(-510 -3093 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-512 R -3094)
+(-511 R -3093)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-513)
+(-512)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-514)
+(-513)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file.")))
NIL
NIL
-(-515)
+(-514)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|closed| (($) "\\spad{closed} indicates that the IO conduit has been closed.")) (|bothWays| (($) "\\spad{bothWays} indicates that an IO conduit is for both input and output.")) (|output| (($) "\\spad{output} indicates that an IO conduit is for output")) (|input| (($) "\\spad{input} indicates that an IO conduit is for input.")))
NIL
NIL
-(-516)
+(-515)
((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-517 |p| |unBalanced?|)
+(-516 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-518 |p|)
+(-517 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
-(-519)
+(-518)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-520 -3094)
+(-519 -3093)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-951 (-1091)))))
-(-521 E -3094)
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-950 (-1090)))))
+(-520 E -3093)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-522 R -3094)
+(-521 R -3093)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
-(-523)
+(-522)
((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}")))
NIL
NIL
-(-524 I)
+(-523 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-525 GF)
+(-524 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-526 R)
+(-525 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-120))))
-(-527)
+(-526)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-528 R E V P TS)
+(-527 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-529)
+(-528)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-530 E V R P)
+(-529 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-531 |Coef|)
+(-530 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (|HasCategory| (-485) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))))
-(-532 |Coef|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (|HasCategory| (-484) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))))
+(-531 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-(((-3999 "*") |has| |#1| (-496)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-496))))
-(-533)
+(((-3998 "*") |has| |#1| (-495)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-495))))
+(-532)
((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context")))
NIL
NIL
-(-534 A B)
+(-533 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-535 A B C)
+(-534 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-536 R -3094 FG)
+(-535 R -3093 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-537 S)
+(-536 S)
((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-538 S |Index| |Entry|)
+(-537 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3998)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72))))
-(-539 |Index| |Entry|)
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#3|))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -318) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-72))))
+(-538 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-540)
+(-539)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-541 R A)
+(-540 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-3994 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
-(-542)
+((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) (-3991 . T) (-3990 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
+(-541)
((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
NIL
-(-543)
+(-542)
((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
NIL
NIL
-(-544)
+(-543)
((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant.")))
NIL
NIL
-(-545)
+(-544)
((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-546)
+(-545)
((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
-(-547)
+(-546)
((|constructor| (NIL "This is the datatype for the JVM opcodes.")))
NIL
NIL
-(-548 |Entry|)
+(-547 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))))
-(-549 S |Key| |Entry|)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))))
+(-548 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-550 |Key| |Entry|)
+(-549 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-551 S)
+(-550 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))))
-(-552 R S)
+((|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))))
+(-551 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-553 S)
+(-552 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-554 S)
+(-553 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-555 -3094 UP)
+(-554 -3093 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-556 S)
+(-555 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-557)
+(-556)
((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-558 S)
+(-557 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
-(-559 A R S)
+(-558 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-756))))
-(-560 S R)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-755))))
+(-559 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-561 R)
+(-560 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-562 R -3094)
+(-561 R -3093)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-563 R UP)
+(-562 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3990 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
-(-564 R E V P TS ST)
+((-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3989 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))
+(-563 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
NIL
-(-565 OV E Z P)
+(-564 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-566)
+(-565)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-567 |VarSet| R |Order|)
+(-566 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-568 R |ls|)
+(-567 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-569 R -3094)
+(-568 R -3093)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-570)
+(-569)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-571 |lv| -3094)
+(-570 |lv| -3093)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-572)
+(-571)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))))
-(-573 R A)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-51) (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-553 (-473)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1013)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1013))) (|HasCategory| (-51) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-1013))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72)))))
+(-572 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-3994 OR (-2564 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) (-3992 . T) (-3991 . T))
-((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
-(-574 S R)
+((-3993 OR (-2563 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) (-3991 . T) (-3990 . T))
+((OR (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (|%list| (QUOTE -361) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -316) (|devaluate| |#1|))))
+(-573 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-575 R)
+(-574 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
NIL
-(-576 R FE)
+(-575 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-577 R)
+(-576 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-578 |vars|)
+(-577 |vars|)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis.")))
NIL
NIL
-(-579 S R)
+(-578 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2562 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312))))
-(-580 K B)
+((-2561 (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-312))))
+(-579 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
-((-3992 . T) (-3991 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-578 |#2|) (QUOTE (-1014)))))
-(-581 R)
+((-3991 . T) (-3990 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-577 |#2|) (QUOTE (-1013)))))
+(-580 R)
((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}.")))
NIL
NIL
-(-582 K B)
+(-581 K B)
((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}.")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-583 S)
+(-582 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-584 S)
+(-583 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-585 A B)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
+(-584 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-586 A B)
+(-585 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-587 A B C)
+(-586 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-588 T$)
+(-587 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-589 S)
+(-588 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-590 S)
+(-589 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
-(-591 R)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
+(-590 R)
((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-592 S E |un|)
+(-591 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-593 A S)
+(-592 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -3998)))
-(-594 S)
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#2|))))
+(-593 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-595 M R S)
+(-594 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-715))))
-(-596 R -3094 L)
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-714))))
+(-595 R -3093 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-597 A -2494)
+(-596 A -2493)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
-(-598 A)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-597 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
-(-599 A M)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-598 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
-(-600 S A)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-599 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-601 A)
+(-600 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-602 -3094 UP)
+(-601 -3093 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-603 A L)
+(-602 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-604 S)
+(-603 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-605)
+(-604)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-606 R)
+(-605 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-607 |VarSet| R)
+(-606 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-3992 . T) (-3991 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-3991 . T) (-3990 . T))
((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-146))))
-(-608 A S)
+(-607 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-609 S)
+(-608 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-610 -3094 |Row| |Col| M)
+(-609 -3093 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-611 -3094)
+(-610 -3093)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-612 R E OV P)
+(-611 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-613 |n| R)
+(-612 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-3994 . T) (-3991 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-614)
+((-3993 . T) (-3990 . T) (-3991 . T))
+((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-613)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-615 |VarSet|)
+(-614 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-616 A S)
+(-615 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-617 S)
+(-616 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-618)
+(-617)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-619 |VarSet|)
+(-618 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-620 A)
+(-619 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-621 A C)
+(-620 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-622 A B C)
+(-621 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-623)
+(-622)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-624 A)
+(-623 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-625 A C)
+(-624 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-626 A B C)
+(-625 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-627 S R |Row| |Col|)
+(-626 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
NIL
-((|HasAttribute| |#2| (QUOTE (-3999 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))))
-(-628 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-3998 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-495))))
+(-627 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-628 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-630 R |Row| |Col| M)
+(-629 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))))
-(-631 R)
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))))
+(-630 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
-(-632 R)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-495))) (|HasAttribute| |#1| (QUOTE (-3998 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))))
+(-631 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-633 T$)
+(-632 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-634 R Q)
+(-633 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-635 S)
+(-634 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-636 U)
+(-635 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-637)
+(-636)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-638 OV E -3094 PG)
+(-637 OV E -3093 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-639 R)
+(-638 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-640 S D1 D2 I)
+(-639 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-641 S)
+(-640 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-642 S)
+(-641 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-643 S T$)
+(-642 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-644 S -2671 I)
+(-643 S -2670 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-645 E OV R P)
+(-644 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-646 R)
+(-645 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-647 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-646 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-648)
+(-647)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-649 R |Mod| -2038 -3520 |exactQuo|)
+(-648 R |Mod| -2037 -3519 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-650 R P)
+(-649 R P)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-651 IS E |ff|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-650 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-652 R M)
+(-651 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-653 R |Mod| -2038 -3520 |exactQuo|)
+(-652 R |Mod| -2037 -3519 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-654 S R)
+(-653 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-655 R)
+(-654 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-656 -3094)
+(-655 -3093)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-657 S)
+(-656 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-658)
+(-657)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-659 S)
+(-658 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-660)
+(-659)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) (|One| (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-661 S R UP)
+(-660 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-299))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))))
-(-662 R UP)
+(-661 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-3990 |has| |#1| (-312)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-663 S)
+(-662 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-664)
+(-663)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|One| (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-665 T$)
+(-664 T$)
((|constructor| (NIL "This domain implements monoid operations.")) (|monoidOperation| (($ (|Mapping| |#1| |#1| |#1|) |#1|) "\\spad{monoidOperation(f,e)} constructs a operation from the binary mapping \\spad{f} with neutral value \\spad{e}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-666 T$)
+(-665 T$)
((|constructor| (NIL "This is the category of all domains that implement monoid operations")) (|neutralValue| ((|#1| $) "\\spad{neutralValue f} returns the neutral value of the monoid operation \\spad{f}.")))
-(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|)) (SEQ (-3057 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2412 |f|) |x|) |x|))))) . T) ((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-667 -3094 UP)
+(-666 -3093 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-668 |VarSet| E1 E2 R S PR PS)
+(-667 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-669 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-668 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-670 E OV R PPR)
+(-669 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-671 |vl| R)
+(-670 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-672 E OV R PRF)
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-495)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-773 |#1|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-773 |#1|) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-671 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-673 E OV R P)
+(-672 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-674 R S M)
+(-673 R S M)
((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-675 R M)
+(-674 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757))))
-(-676 S)
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-756))))
+(-675 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-3987 . T) (-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
-(-677 S)
+((-3986 . T) (-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
+(-676 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-3987 . T) (-3998 . T))
+((-3986 . T) (-3997 . T))
NIL
-(-678)
+(-677)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-679 S)
+(-678 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-680 |Coef| |Var|)
+(-679 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-681 OV E R P)
+(-680 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-682 E OV R P)
+(-681 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-683 S R)
+(-682 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-684 R)
+(-683 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-685 S)
+(-684 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-686)
+(-685)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-687 S)
+(-686 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-688)
+(-687)
((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-689 |Par|)
+(-688 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-690 -3094)
+(-689 -3093)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-691 P -3094)
+(-690 P -3093)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
-(-692 T$)
+(-691 T$)
NIL
NIL
NIL
-(-693 UP -3094)
+(-692 UP -3093)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-694 R)
+(-693 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-695)
+(-694)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-3999 "*") . T))
+(((-3998 "*") . T))
NIL
-(-696 R -3094)
+(-695 R -3093)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-697)
+(-696)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-698 S)
+(-697 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-699 R |PolR| E |PolE|)
+(-698 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-700 R E V P TS)
+(-699 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-701 -3094 |ExtF| |SUEx| |ExtP| |n|)
+(-700 -3093 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-702 BP E OV R P)
+(-701 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-703 |Par|)
+(-702 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable.")))
NIL
NIL
-(-704 R |VarSet|)
+(-703 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-2562 (|HasCategory| |#1| (QUOTE (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-1091)))) (-2562 (|HasCategory| |#1| (QUOTE (-905 (-485))))))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-705 R)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-2561 (|HasCategory| |#1| (QUOTE (-483))))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-1090)))) (-2561 (|HasCategory| |#1| (QUOTE (-904 (-484))))))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-704 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-706 R S)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-705 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-707 R)
+(-706 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-708 R E V P)
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))
+(-707 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-709 S)
+(-708 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-146))))
-(-710)
+((-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-146))))
+(-709)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-711)
+(-710)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-712)
+(-711)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-713 |Curve|)
+(-712 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-714 S)
+(-713 S)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-715)
+(-714)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}.")))
NIL
NIL
-(-716 S)
+(-715 S)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-717)
+(-716)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}.")))
NIL
NIL
-(-718)
+(-717)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-719)
+(-718)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-720 S R)
+(-719 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))))
-(-721 R)
+((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))))
+(-720 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-722)
+(-721)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-723 R)
+(-722 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485)))))) (OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-910 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))))
-(-724 OR R OS S)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (OR (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-350 (-484)))))) (OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-909 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))))
+(-723 OR R OS S)
((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-725 R -3094 L)
+(-724 R -3093 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-726 R -3094)
+(-725 R -3093)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-727 R -3094)
+(-726 R -3093)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-728 -3094 UP UPUP R)
+(-727 -3093 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-729 -3094 UP L LQ)
+(-728 -3093 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-730 -3094 UP L LQ)
+(-729 -3093 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-731 -3094 UP)
+(-730 -3093 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-732 -3094 L UP A LO)
+(-731 -3093 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-733 -3094 UP)
+(-732 -3093 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-734 -3094 LO)
+(-733 -3093 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-735 -3094 LODO)
+(-734 -3093 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-736 -2623 S |f|)
+(-735 -2622 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)))
-((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
-(-737 R)
+((-3990 |has| |#2| (-961)) (-3991 |has| |#2| (-961)) (-3993 |has| |#2| (-6 -3993)))
+((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (OR (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-961))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1013)))) (-12 (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-1013)))) (|HasAttribute| |#2| (QUOTE -3993)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+(-736 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-739 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-739 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-738 |Kernels| R |var|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-738 (-1090)) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-738 (-1090)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-738 (-1090)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-737 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-3999 "*") |has| |#2| (-312)) (-3990 |has| |#2| (-312)) (-3995 |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 . T) (-3992 . T) (-3991 . T))
+(((-3998 "*") |has| |#2| (-312)) (-3989 |has| |#2| (-312)) (-3994 |has| |#2| (-312)) (-3988 |has| |#2| (-312)) (-3993 . T) (-3991 . T) (-3990 . T))
((|HasCategory| |#2| (QUOTE (-312))))
-(-739 S)
+(-738 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-740 S)
+(-739 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-741)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-740)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-742 P R)
+(-741 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190))))
-(-743 S)
+(-742 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-3987 . T) (-3998 . T))
+((-3986 . T) (-3997 . T))
NIL
-(-744 R)
+(-743 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-3994 |has| |#1| (-756)))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
-(-745 R S)
+((-3993 |has| |#1| (-755)))
+((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
+(-744 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-746 R)
+(-745 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))))
-(-747 A S)
+(-746 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-748 S)
+(-747 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-749)
+(-748)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
-(-750)
+(-749)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
-(-751 R)
+(-750 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-3994 |has| |#1| (-756)))
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-484))))
-(-752 R S)
+((-3993 |has| |#1| (-755)))
+((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-21))) (OR (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-755)))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-483))))
+(-751 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-753)
+(-752)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-754 -2623 S)
+(-753 -2622 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-755)
+(-754)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-756)
+(-755)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-757)
+(-756)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")))
NIL
NIL
-(-758 T$ |f|)
+(-757 T$ |f|)
((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-553 (-773)))))
-(-759 S)
+((|HasCategory| |#1| (QUOTE (-552 (-772)))))
+(-758 S)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-760)
+(-759)
((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain.")))
NIL
NIL
-(-761 S R)
+(-760 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))))
-(-762 R)
+((|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))))
+(-761 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-763 R C)
+(-762 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496))))
-(-764 R |sigma| -3246)
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495))))
+(-763 R |sigma| -3245)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
-(-765 |x| R |sigma| -3246)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-312))))
+(-764 |x| R |sigma| -3245)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312))))
-(-766 R)
+((-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-312))))
+(-765 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-767)
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))
+(-766)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-768)
+(-767)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-769)
+(-768)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-770 S)
+(-769 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-771)
+(-770)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-772)
+(-771)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
-(-773)
+(-772)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-774 |VariableList|)
+(-773 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-775)
+(-774)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-776 R |vl| |wl| |wtlevel|)
+(-775 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
-(-777 R PS UP)
+(-776 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-778 R |x| |pt|)
+(-777 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-779 |p|)
+(-778 |p|)
((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-780 |p|)
+(-779 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-781 |p|)
+(-780 |p|)
((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-779 |#1|) (QUOTE (-822))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-120))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-474)))) (|HasCategory| (-779 |#1|) (QUOTE (-934))) (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757))) (OR (|HasCategory| (-779 |#1|) (QUOTE (-741))) (|HasCategory| (-779 |#1|) (QUOTE (-757)))) (|HasCategory| (-779 |#1|) (QUOTE (-951 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-1067))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-330)))) (|HasCategory| (-779 |#1|) (QUOTE (-797 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-779 |#1|) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-779 |#1|) (QUOTE (-581 (-485)))) (|HasCategory| (-779 |#1|) (QUOTE (-189))) (|HasCategory| (-779 |#1|) (QUOTE (-812 (-1091)))) (|HasCategory| (-779 |#1|) (QUOTE (-190))) (|HasCategory| (-779 |#1|) (QUOTE (-810 (-1091)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -779) (|devaluate| |#1|)) (|%list| (QUOTE -779) (|devaluate| |#1|)))) (|HasCategory| (-779 |#1|) (QUOTE (-258))) (|HasCategory| (-779 |#1|) (QUOTE (-484))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-779 |#1|) (QUOTE (-822)))) (|HasCategory| (-779 |#1|) (QUOTE (-118)))))
-(-782 |p| PADIC)
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-778 |#1|) (QUOTE (-821))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-1090)))) (|HasCategory| (-778 |#1|) (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-120))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-473)))) (|HasCategory| (-778 |#1|) (QUOTE (-933))) (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756))) (OR (|HasCategory| (-778 |#1|) (QUOTE (-740))) (|HasCategory| (-778 |#1|) (QUOTE (-756)))) (|HasCategory| (-778 |#1|) (QUOTE (-950 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-1066))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-330)))) (|HasCategory| (-778 |#1|) (QUOTE (-796 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-778 |#1|) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-778 |#1|) (QUOTE (-580 (-484)))) (|HasCategory| (-778 |#1|) (QUOTE (-189))) (|HasCategory| (-778 |#1|) (QUOTE (-811 (-1090)))) (|HasCategory| (-778 |#1|) (QUOTE (-190))) (|HasCategory| (-778 |#1|) (QUOTE (-809 (-1090)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -260) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (|%list| (QUOTE -241) (|%list| (QUOTE -778) (|devaluate| |#1|)) (|%list| (QUOTE -778) (|devaluate| |#1|)))) (|HasCategory| (-778 |#1|) (QUOTE (-258))) (|HasCategory| (-778 |#1|) (QUOTE (-483))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-778 |#1|) (QUOTE (-821)))) (|HasCategory| (-778 |#1|) (QUOTE (-118)))))
+(-781 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-484))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-783 S T$)
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-950 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (OR (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-483))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-782 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-1014))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))))
-(-784)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-1013))))) (-12 (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))))
+(-783)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
-(-785)
+(-784)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-786)
+(-785)
((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}.")))
NIL
NIL
-(-787 CF1 CF2)
+(-786 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-788 |ComponentFunction|)
+(-787 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-789 CF1 CF2)
+(-788 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-790 |ComponentFunction|)
+(-789 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-791)
+(-790)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-792 CF1 CF2)
+(-791 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-793 |ComponentFunction|)
+(-792 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-794)
+(-793)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
-(-795 R)
+(-794 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-796 R S L)
+(-795 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-797 S)
+(-796 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-798 |Base| |Subject| |Pat|)
+(-797 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2562 (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-2562 (|HasCategory| |#2| (QUOTE (-962))))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (-2562 (|HasCategory| |#2| (QUOTE (-951 (-1091)))))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))))
-(-799 R S)
+((-12 (-2561 (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-2561 (|HasCategory| |#2| (QUOTE (-961))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2561 (|HasCategory| |#2| (QUOTE (-950 (-1090)))))) (|HasCategory| |#2| (QUOTE (-950 (-1090)))))
+(-798 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-800 R A B)
+(-799 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
-(-801 R)
+(-800 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) (|One| (($) "1")) (|Zero| (($) "0")))
NIL
NIL
-(-802 R -2671)
+(-801 R -2670)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-803 R S)
+(-802 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-804 |VarSet|)
+(-803 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) (|One| (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-805 UP R)
+(-804 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-806 A T$ S)
+(-805 A T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-807 T$ S)
+(-806 T$ S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-808 UP -3094)
+(-807 UP -3093)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-809 R S)
+(-808 R S)
((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-810 S)
+(-809 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-811 A S)
+(-810 A S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-812 S)
+(-811 S)
((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.")))
NIL
NIL
-(-813 S)
+(-812 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-814 S)
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
+(-813 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-757))))
-(-815 |n| R)
+((-3993 . T))
+((OR (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-756)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-756))))
+(-814 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-816 S)
+(-815 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-817 S)
+(-816 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-818 |p|)
+(-817 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
((|HasCategory| $ (QUOTE (-120))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| $ (QUOTE (-320))))
-(-819 R E |VarSet| S)
+(-818 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-820 R S)
+(-819 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-821 S)
+(-820 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-118))))
-(-822)
+(-821)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-823 R0 -3094 UP UPUP R)
+(-822 R0 -3093 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-824 UP UPUP R)
+(-823 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-825 UP UPUP)
+(-824 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-826 R)
+(-825 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-827 R)
+(-826 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-828 E OV R P)
+(-827 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-829)
+(-828)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-830 -3094)
+(-829 -3093)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-831)
+(-830)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-3999 "*") . T))
+(((-3998 "*") . T))
NIL
-(-832 R)
+(-831 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-833)
+(-832)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-834 |xx| -3094)
+(-833 |xx| -3093)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-835 -3094 P)
+(-834 -3093 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-836 R |Var| |Expon| GR)
+(-835 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-837)
+(-836)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-838 S)
+(-837 S)
((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-839)
+(-838)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-840)
+(-839)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-841)
+(-840)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-842 R -3094)
+(-841 R -3093)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-843 S A B)
+(-842 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-844 S R -3094)
+(-843 S R -3093)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-845 I)
+(-844 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-846 S E)
+(-845 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-847 S R L)
+(-846 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-848 S E V R P)
+(-847 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (|%list| (QUOTE -797) (|devaluate| |#1|))))
-(-849 -2671)
+((|HasCategory| |#3| (|%list| (QUOTE -796) (|devaluate| |#1|))))
+(-848 -2670)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-850 R -3094 -2671)
+(-849 R -3093 -2670)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-851 S R Q)
+(-850 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-852 S)
+(-851 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-853 S R P)
+(-852 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-854)
+(-853)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-855 R)
+(-854 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-856 |lv| R)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
+(-855 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-857 |TheField| |ThePols|)
+(-856 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-858 R)
+((|HasCategory| |#1| (QUOTE (-755))))
+(-857 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1091) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1091) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1091) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1091) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-859 R S)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-1090) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1090) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1090) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1090) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1090) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-858 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-860 |x| R)
+(-859 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-861 S R E |VarSet|)
+(-860 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| |#4| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#4| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474)))))
-(-862 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-821))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| |#4| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#4| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473)))))
+(-861 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-863 E V R P -3094)
+(-862 E V R P -3093)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-864 E |Vars| R P S)
+(-863 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-865 E V R P -3094)
+(-864 E V R P -3093)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-392))))
-(-866)
+(-865)
((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
-(-867)
+(-866)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-868 R E)
+(-867 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3995)))
-(-869 R L)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994)))
+(-868 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-870 S)
+(-869 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-871 A B)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
+(-870 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-872)
+(-871)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-873 -3094)
+(-872 -3093)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-874 I)
+(-873 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-875)
+(-874)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-876 A B)
+(-875 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-3994 -12 (|has| |#2| (-413)) (|has| |#1| (-413))))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757))))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-718)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664))))) (-12 (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-664)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-757)))))
-(-877)
+((-3993 -12 (|has| |#2| (-413)) (|has| |#1| (-413))))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-413))) (|HasCategory| |#2| (QUOTE (-413)))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663))))) (-12 (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-663)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-104)))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-756)))))
+(-876)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-878 T$)
+(-877 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-879 T$)
+(-878 T$)
((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
-(-880 S T$)
+(-879 S T$)
((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them.")))
NIL
NIL
-(-881)
+(-880)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-882 S)
+(-881 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-883 R |polR|)
+(-882 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-392))))
-(-884)
+(-883)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-885)
+(-884)
((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-886 S |Coef| |Expon| |Var|)
+(-885 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-887 |Coef| |Expon| |Var|)
+(-886 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-888)
+(-887)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-889 S R E |VarSet| P)
+(-888 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-496))))
-(-890 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-495))))
+(-889 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
NIL
-(-891 R E V P)
+(-890 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-392))))
-(-892 K)
+(-891 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-893 |VarSet| E RC P)
+(-892 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-894 R)
+(-893 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-895 R1 R2)
+(-894 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-896 R)
+(-895 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-897 K)
+(-896 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-898 R E OV PPR)
+(-897 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-899 K R UP -3094)
+(-898 K R UP -3093)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-900 R |Var| |Expon| |Dpoly|)
+(-899 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-258)))))
-(-901 |vl| |nv|)
+(-900 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-902 R E V P TS)
+(-901 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-903)
+(-902)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-904 A S)
+(-903 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-951 (-1091)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1067))))
-(-905 S)
+((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-950 (-1090)))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-740))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-1066))))
+(-904 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-906 A B R S)
+(-905 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-907 |n| K)
+(-906 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-908)
+(-907)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-909 S)
+(-908 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-910 R)
+(-909 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-3990 |has| |#1| (-246)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-974))) (|HasCategory| |#1| (QUOTE (-484))))
-(-911 S R)
+((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-246))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -241) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-973))) (|HasCategory| |#1| (QUOTE (-483))))
+(-910 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-974))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-246))))
-(-912 R)
+((|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-973))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-246))))
+(-911 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-3990 |has| |#1| (-246)) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 |has| |#1| (-246)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-913 QR R QS S)
+(-912 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-914 S)
+(-913 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-915 S)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-914 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-916)
+(-915)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-917 -3094 UP UPUP |radicnd| |n|)
+(-916 -3093 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-3990 |has| (-350 |#2|) (-312)) (-3995 |has| (-350 |#2|) (-312)) (-3989 |has| (-350 |#2|) (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091)))))) (|HasCategory| (-350 |#2|) (QUOTE (-581 (-485)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 |#2|) (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-810 (-1091))))))
-(-918 |bb|)
+((-3989 |has| (-350 |#2|) (-312)) (-3994 |has| (-350 |#2|) (-312)) (-3988 |has| (-350 |#2|) (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-350 |#2|) (QUOTE (-118))) (|HasCategory| (-350 |#2|) (QUOTE (-120))) (|HasCategory| (-350 |#2|) (QUOTE (-299))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-320))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (|HasCategory| (-350 |#2|) (QUOTE (-299)))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-299))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090)))))) (|HasCategory| (-350 |#2|) (QUOTE (-580 (-484)))) (OR (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 |#2|) (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-189))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-190))) (|HasCategory| (-350 |#2|) (QUOTE (-312)))) (-12 (|HasCategory| (-350 |#2|) (QUOTE (-312))) (|HasCategory| (-350 |#2|) (QUOTE (-809 (-1090))))))
+(-917 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-485) (QUOTE (-822))) (|HasCategory| (-485) (QUOTE (-951 (-1091)))) (|HasCategory| (-485) (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-120))) (|HasCategory| (-485) (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-934))) (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| (-485) (QUOTE (-741))) (|HasCategory| (-485) (QUOTE (-757)))) (|HasCategory| (-485) (QUOTE (-951 (-485)))) (|HasCategory| (-485) (QUOTE (-1067))) (|HasCategory| (-485) (QUOTE (-797 (-330)))) (|HasCategory| (-485) (QUOTE (-797 (-485)))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-485) (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-485) (QUOTE (-189))) (|HasCategory| (-485) (QUOTE (-812 (-1091)))) (|HasCategory| (-485) (QUOTE (-190))) (|HasCategory| (-485) (QUOTE (-810 (-1091)))) (|HasCategory| (-485) (QUOTE (-456 (-1091) (-485)))) (|HasCategory| (-485) (QUOTE (-260 (-485)))) (|HasCategory| (-485) (QUOTE (-241 (-485) (-485)))) (|HasCategory| (-485) (QUOTE (-258))) (|HasCategory| (-485) (QUOTE (-484))) (|HasCategory| (-485) (QUOTE (-581 (-485)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-485) (QUOTE (-822)))) (|HasCategory| (-485) (QUOTE (-118)))))
-(-919)
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-484) (QUOTE (-821))) (|HasCategory| (-484) (QUOTE (-950 (-1090)))) (|HasCategory| (-484) (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-120))) (|HasCategory| (-484) (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-933))) (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756))) (OR (|HasCategory| (-484) (QUOTE (-740))) (|HasCategory| (-484) (QUOTE (-756)))) (|HasCategory| (-484) (QUOTE (-950 (-484)))) (|HasCategory| (-484) (QUOTE (-1066))) (|HasCategory| (-484) (QUOTE (-796 (-330)))) (|HasCategory| (-484) (QUOTE (-796 (-484)))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-484) (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-484) (QUOTE (-189))) (|HasCategory| (-484) (QUOTE (-811 (-1090)))) (|HasCategory| (-484) (QUOTE (-190))) (|HasCategory| (-484) (QUOTE (-809 (-1090)))) (|HasCategory| (-484) (QUOTE (-455 (-1090) (-484)))) (|HasCategory| (-484) (QUOTE (-260 (-484)))) (|HasCategory| (-484) (QUOTE (-241 (-484) (-484)))) (|HasCategory| (-484) (QUOTE (-258))) (|HasCategory| (-484) (QUOTE (-483))) (|HasCategory| (-484) (QUOTE (-580 (-484)))) (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (OR (-12 (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-484) (QUOTE (-821)))) (|HasCategory| (-484) (QUOTE (-118)))))
+(-918)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-920)
+(-919)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-921 RP)
+(-920 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-922 S)
+(-921 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-923 A S)
+(-922 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72))))
-(-924 S)
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-72))))
+(-923 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-925 S)
+(-924 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-926)
+(-925)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3994 . T))
+((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T))
NIL
-(-927 R -3094)
+(-926 R -3093)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-928 R -3094)
+(-927 R -3093)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-929 -3094 UP)
+(-928 -3093 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-930 -3094 UP)
+(-929 -3093 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-931 S)
+(-930 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-932 F1 UP UPUP R F2)
+(-931 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-933)
+(-932)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-934)
+(-933)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-935 |Pol|)
+(-934 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936 |Pol|)
+(-935 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-937)
+(-936)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-938 |TheField|)
+(-937 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-3990 . T) (-3995 . T) (-3989 . T) (-3992 . T) (-3991 . T) ((-3999 "*") . T) (-3994 . T))
-((OR (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-350 (-485)) (QUOTE (-951 (-485)))))
-(-939 -3094 L)
+((-3989 . T) (-3994 . T) (-3988 . T) (-3991 . T) (-3990 . T) ((-3998 "*") . T) (-3993 . T))
+((OR (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-350 (-484)) (QUOTE (-950 (-484)))))
+(-938 -3093 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-940 S)
+(-939 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(r,s)} reset the reference \\spad{r} to refer to \\spad{s}")) (|deref| ((|#1| $) "\\spad{deref(r)} returns the object referenced by \\spad{r}")) (|ref| (($ |#1|) "\\spad{ref(s)} creates a reference to the object \\spad{s}.")))
NIL
NIL
-(-941 R E V P)
+(-940 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3998 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
-(-942)
+((-3997 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
+(-941)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-943 R)
+(-942 R)
((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-3999 "*"))))
-(-944 R)
+((|HasAttribute| |#1| (QUOTE (-3998 "*"))))
+(-943 R)
((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))))
-(-945 S)
+(-944 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946 S)
+(-945 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-947 S)
+(-946 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-948 -3094 |Expon| |VarSet| |FPol| |LFPol|)
+(-947 -3093 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-949)
+(-948)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-950 A S)
+(-949 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-951 S)
+(-950 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-952 Q R)
+(-951 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-953 R)
+(-952 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-954)
+(-953)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-955 UP)
+(-954 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-956 R)
+(-955 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-957 T$)
+(-956 T$)
((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
-(-958 T$)
+(-957 T$)
((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-959 R |ls|)
+(-958 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-3998 . T))
-((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))))
-(-960)
+((-3997 . T))
+((-12 (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (|HasCategory| (-703 |#1| (-773 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|)))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-553 (-473)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-773 |#2|) (QUOTE (-320))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|))))) (|HasCategory| (-703 |#1| (-773 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -703) (|devaluate| |#1|) (|%list| (QUOTE -773) (|devaluate| |#2|))))))
+(-959)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-961 S)
+(-960 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-962)
+(-961)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-3994 . T))
+((-3993 . T))
NIL
-(-963 |xx| -3094)
+(-962 |xx| -3093)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-964 S)
+(-963 S)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}.")))
NIL
NIL
-(-965 S |m| |n| R |Row| |Col|)
+(-964 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
NIL
-((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146))))
-(-966 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-495))) (|HasCategory| |#4| (QUOTE (-146))))
+(-965 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-967 |m| |n| R)
+(-966 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-3992 . T) (-3991 . T))
-((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773)))))
-(-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-3991 . T) (-3990 . T))
+((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-495))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-552 (-772)))))
+(-967 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-969 R)
+(-968 R)
((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
-(-970 S)
+(-969 S)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-971)
+(-970)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")) (|annihilate?| (((|Boolean|) $ $) "\\spad{annihilate?(x,y)} holds when the product of \\spad{x} and \\spad{y} is \\spad{0}.")))
NIL
NIL
-(-972 S T$)
+(-971 S T$)
((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1014))))
-(-973 S)
+((|HasCategory| |#1| (QUOTE (-1013))))
+(-972 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-974)
+(-973)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-975 |TheField| |ThePolDom|)
+(-974 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-976)
+(-975)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-977 S R E V)
+(-976 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-484))) (|HasCategory| |#2| (QUOTE (-38 (-485)))) (|HasCategory| |#2| (QUOTE (-905 (-485)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-554 (-1091)))))
-(-978 R E V)
+((|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (|HasCategory| |#2| (QUOTE (-483))) (|HasCategory| |#2| (QUOTE (-38 (-484)))) (|HasCategory| |#2| (QUOTE (-904 (-484)))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#4| (QUOTE (-553 (-1090)))))
+(-977 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-979)
+(-978)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-980 S |TheField| |ThePols|)
+(-979 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-981 |TheField| |ThePols|)
+(-980 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-982 R E V P TS)
+(-981 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-983 S R E V P)
+(-982 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-984 R E V P)
+(-983 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-985 R E V P TS)
+(-984 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-986)
+(-985)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-987)
+(-986)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-988 |Base| R -3094)
+(-987 |Base| R -3093)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-989 |f|)
+(-988 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-990 |Base| R -3094)
+(-989 |Base| R -3093)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-991 R |ls|)
+(-990 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-992 R UP M)
+(-991 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-3990 |has| |#1| (-312)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-810 (-1091))))))
-(-993 UP SAE UPA)
+((-3989 |has| |#1| (-312)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-299))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-299)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-320))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-299))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (|HasCategory| |#1| (QUOTE (-299)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-312)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-809 (-1090))))))
+(-992 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-994 UP SAE UPA)
+(-993 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-995)
+(-994)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-996)
+(-995)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-997 S)
+(-996 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-998)
+(-997)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-999 R)
+(-998 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1000 R)
+(-999 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-1001 (-1091)) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1001 S)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-1000 (-1090)) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-190))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1000 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1002 S)
+(-1001 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
-(-1003 R S)
+((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1002 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1004)
+((|HasCategory| |#1| (QUOTE (-755))))
+(-1003)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1005 S)
+(-1004 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")))
NIL
-((|HasCategory| (-1002 |#1|) (QUOTE (-1014))))
-(-1006 R S)
+((|HasCategory| (-1001 |#1|) (QUOTE (-1013))))
+(-1005 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1007 S)
+(-1006 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1008 S L)
+(-1007 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1009)
+(-1008)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1010 S)
+(-1009 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the members function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-3987 . T) (-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
-(-1011 A S)
+((-3986 . T) (-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))
+(-1010 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1012 S)
+(-1011 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-3987 . T))
+((-3986 . T))
NIL
-(-1013 S)
+(-1012 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1014)
+(-1013)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1015 |m| |n|)
+(-1014 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1016)
+(-1015)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1016 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
-(-1018 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1017 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1019 R E V P TS)
+(-1018 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1020 R E V P TS)
+(-1019 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1021 R E V P)
+(-1020 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1022)
+(-1021)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1023 T$)
+(-1022 T$)
((|constructor| (NIL "This domain implements semigroup operations.")) (|semiGroupOperation| (($ (|Mapping| |#1| |#1| |#1|)) "\\spad{semiGroupOperation f} constructs a semigroup operation out of a binary homogeneous mapping known to be associative.")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1024 T$)
+(-1023 T$)
((|constructor| (NIL "This is the category of all domains that implement semigroup operations")))
-(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
+(((|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |#1|) (|:| |y| |#1|) (|:| |z| |#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))) . T))
NIL
-(-1025 S)
+(-1024 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1026)
+(-1025)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1027 |dimtot| |dim1| S)
+(-1026 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3994 |has| |#3| (-6 -3994)))
-((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))))
-(-1028 R |x|)
+((-3990 |has| |#3| (-961)) (-3991 |has| |#3| (-961)) (-3993 |has| |#3| (-6 -3993)))
+((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-552 (-772)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (OR (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756)))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1013)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-809 (-1090))))) (|HasCategory| |#3| (QUOTE (-1013))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-350 (-484)))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-756))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-663))) (|HasCategory| |#3| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-961))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-484) (QUOTE (-756))) (-12 (|HasCategory| |#3| (QUOTE (-580 (-484)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-811 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-484)))) (|HasCategory| |#3| (QUOTE (-1013)))) (-12 (|HasCategory| |#3| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#3| (QUOTE (-1013)))) (|HasAttribute| |#3| (QUOTE -3993)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-809 (-1090)))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1013))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|)))))
+(-1027 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-392))))
-(-1029)
+(-1028)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
-(-1030)
+(-1029)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1031 R -3094)
+(-1030 R -3093)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1032 R)
+(-1031 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1033)
+(-1032)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1034)
+(-1033)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-3985 . T) (-3989 . T) (-3984 . T) (-3995 . T) (-3996 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3984 . T) (-3988 . T) (-3983 . T) (-3994 . T) (-3995 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1035 S)
+(-1034 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1036 S)
+(-1035 S)
((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1037 S |ndim| R |Row| |Col|)
+(-1036 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3999 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
-(-1038 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3998 "*"))) (|HasCategory| |#3| (QUOTE (-146))))
+(-1037 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1039 R |Row| |Col| M)
+(-1038 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1040 R |VarSet|)
+(-1039 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1041 |Coef| |Var| SMP)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1040 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1042 R E V P)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))))
+(-1041 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1043 UP -3094)
+(-1042 UP -3093)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1044 R)
+(-1043 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1045 R)
+(-1044 R)
((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1046 R)
+(-1045 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1047 S A)
+(-1046 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-1048 R)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1047 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1049 R)
+(-1048 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1050)
+(-1049)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1051)
+(-1050)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1052)
+(-1051)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
-(-1053)
+(-1052)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1054)
+(-1053)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1055 V C)
+(-1054 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1056 V C)
+(-1055 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-3998 . T))
-((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))))
-(-1057 |ndim| R)
+((-3997 . T))
+((-12 (|HasCategory| (-1054 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013))) (OR (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-1013)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-552 (-772)))) (|HasCategory| (-1054 |#1| |#2|) (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|%list| (QUOTE -1054) (|devaluate| |#1|) (|devaluate| |#2|)))))
+(-1056 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-3994 . T) (-3986 |has| |#2| (-6 (-3999 "*"))) (-3991 . T) (-3992 . T))
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1058 S)
+((-3993 . T) (-3985 |has| |#2| (-6 (-3998 "*"))) (-3990 . T) (-3991 . T))
+((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3998 #1="*"))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3998 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146))))
+(-1057 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1059)
+(-1058)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1060 R E V P TS)
+(-1059 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1061 R E V P)
+(-1060 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-3998 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
-(-1062)
+((-3997 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
+(-1061)
((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:")))
NIL
NIL
-(-1063 S)
+(-1062 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))))
-(-1064 A S)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))))
+(-1063 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1065 S)
+(-1064 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1066 |Key| |Ent| |dent|)
+(-1065 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
-(-1067)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+(-1066)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1068)
+(-1067)
((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}.")))
NIL
NIL
-(-1069 |Coef|)
+(-1068 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1070 S)
+(-1069 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))))
-(-1071 S)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))))
+(-1070 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1072 A B)
+(-1071 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1073 A B C)
+(-1072 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1074)
+(-1073)
((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
-((-3998 . T))
-((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| $ (QUOTE (-1036 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1036 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))))
-(-1075 |Entry|)
+((-3997 . T))
+((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013))))) (|HasCategory| (-117) (QUOTE (-552 (-772)))) (|HasCategory| (-117) (QUOTE (-553 (-473)))) (OR (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-117) (QUOTE (-756))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1013))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1013)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| $ (QUOTE (-1035 (-117)))) (-12 (|HasCategory| $ (QUOTE (-1035 (-117)))) (|HasCategory| (-117) (QUOTE (-756)))))
+(-1074 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))))
-(-1076 A)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1073) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3861 (-1073))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))))
+(-1075 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-1077 |Coef|)
+((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))
+(-1076 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1078 |Coef|)
+(-1077 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1079 R UP)
+(-1078 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-258))))
-(-1080 |n| R)
+(-1079 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1081 S1 S2)
+(-1080 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
-(-1082)
+(-1081)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1083 |Coef| |var| |cen|)
+(-1082 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3999 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1090) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1090 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1084 R -3094)
+(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-821)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2563 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-821)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1083 R -3093)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1085 R)
+(-1084 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1086 R)
+(-1085 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#1| (QUOTE (-581 (-485)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-822)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-812 (-1091)))) (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3995)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1087 R S)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#1| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#1| (QUOTE (-580 (-484)))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-821)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (|HasCategory| |#1| (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-811 (-1090)))) (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasCategory| |#1| (QUOTE (-189))) (|HasCategory| |#1| (QUOTE (-190))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1086 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1088 E OV R P)
+(-1087 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1089 |Coef| |var| |cen|)
+(-1088 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1090 |Coef| |var| |cen|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1089 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1091)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1090)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1092 R)
+(-1091 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1093 R)
+(-1092 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-6 -3995)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#1| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-951 (-485)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-885) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3995)))
-(-1094)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-6 -3994)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#1| (QUOTE (-950 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-950 (-484)))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-392))) (-12 (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| (-884) (QUOTE (-104)))) (|HasAttribute| |#1| (QUOTE -3994)))
+(-1093)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1095)
+(-1094)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1096)
+(-1095)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1097 N)
+(-1096 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1098 N)
+(-1097 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
-(-1099)
+(-1098)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1100 R)
+(-1099 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1101)
+(-1100)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1102 S)
+(-1101 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1103 |Key| |Entry|)
+(-1102 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-3998 . T))
-((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
-(-1104 S)
+((-3997 . T))
+((-12 (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013)))) (OR (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| |#2| (QUOTE (-552 (-772))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-473)))) (-12 (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1013))) (|HasCategory| |#2| (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-552 (-772)))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-1013))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3861) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#2|))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))))
+(-1103 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1105 S)
+(-1104 S)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}.")))
NIL
NIL
-(-1106 R)
+(-1105 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1107 S |Key| |Entry|)
+(-1106 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
NIL
NIL
-(-1108 |Key| |Entry|)
+(-1107 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1109 |Key| |Entry|)
+(-1108 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1110)
+(-1109)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1111 S)
+(-1110 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1112)
+(-1111)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1113 R)
+(-1112 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1114)
+(-1113)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1115 S)
+(-1114 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1116)
+(-1115)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1117 S)
+(-1116 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))))
-(-1118 S)
+((-3997 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1013))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))))
+(-1117 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1119)
+(-1118)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1120 R -3094)
+(-1119 R -3093)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1121 R |Row| |Col| M)
+(-1120 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1122 R -3094)
+(-1121 R -3093)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -797) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -554) (|%list| (QUOTE -801) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -797) (|devaluate| |#1|)))))
-(-1123 |Coef|)
+((-12 (|HasCategory| |#1| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -796) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -553) (|%list| (QUOTE -800) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -796) (|devaluate| |#1|)))))
+(-1122 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1124 S R E V P)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-312))))
+(-1123 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-320))))
-(-1125 R E V P)
+(-1124 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1126 |Curve|)
+(-1125 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1127)
+(-1126)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1128 S)
+(-1127 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))))
-(-1129 -3094)
+((|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (QUOTE (-552 (-772)))))
+(-1128 -3093)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1130)
+(-1129)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1131)
+(-1130)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1132 S)
+(-1131 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-757))))
-(-1133)
+((|HasCategory| |#1| (QUOTE (-756))))
+(-1132)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1134 S)
+(-1133 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1135)
+(-1134)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1136)
+(-1135)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1137)
+(-1136)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1138)
+(-1137)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1139)
+(-1138)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1140 |Coef| |var| |cen|)
+(-1139 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-3999 "*") OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-146)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3990 OR (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-741))) (|has| |#1| (-496)) (-2564 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-822)))) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (|%list| (QUOTE -456) (QUOTE (-1091)) (|%list| (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-741)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-757)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1170 |#1| |#2| |#3|) (QUOTE (-822)))) (|HasCategory| |#1| (QUOTE (-118)))))
-(-1141 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3998 "*") OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-740))) (|has| |#1| (-146)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-821)))) (-3989 OR (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-740))) (|has| |#1| (-495)) (-2563 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-821)))) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-120)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-756))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -241) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -260) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (|%list| (QUOTE -455) (QUOTE (-1090)) (|%list| (QUOTE -1169) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-258)))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-118))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-740)))) (|HasCategory| |#1| (QUOTE (-146)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-189)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-756)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-120)))) (|HasCategory| |#1| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-118)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| $ (QUOTE (-118))) (|HasCategory| (-1169 |#1| |#2| |#3|) (QUOTE (-821)))) (|HasCategory| |#1| (QUOTE (-118)))))
+(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1142 |Coef|)
+(-1141 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1143 S |Coef| UTS)
+(-1142 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-312))))
-(-1144 |Coef| UTS)
+(-1143 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1145 |Coef| UTS)
+(-1144 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-485) (QUOTE (-1026))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-474))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-934)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -456) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-797 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-485))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-822))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-484)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-485)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-812 (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
-(-1146 ZP)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-809 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190))))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-190)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (|HasCategory| (-484) (QUOTE (-1025))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-312))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-473))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-933)))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-740)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756))))) (OR (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-950 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -241) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -455) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-580 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-796 (-330))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-484))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-756)))) (|HasCategory| |#2| (QUOTE (-821))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-483)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-258)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-118))) (OR (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-484)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-811 (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-189)))) (OR (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-120))))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#1| (QUOTE (-118))) (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-118))))))
+(-1145 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1147 S)
+(-1146 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1014))))
-(-1148 R S)
+((|HasCategory| |#1| (QUOTE (-755))) (|HasCategory| |#1| (QUOTE (-1013))))
+(-1147 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-756))))
-(-1149 |x| R)
+((|HasCategory| |#1| (QUOTE (-755))))
+(-1148 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-3999 "*") |has| |#2| (-146)) (-3990 |has| |#2| (-496)) (-3993 |has| |#2| (-312)) (-3995 |has| |#2| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-995) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-995) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-995) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-995) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
-(-1150 |x| R |y| S)
+(((-3998 "*") |has| |#2| (-146)) (-3989 |has| |#2| (-495)) (-3992 |has| |#2| (-312)) (-3994 |has| |#2| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-495)))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-330)))) (|HasCategory| (-994) (QUOTE (-796 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-796 (-484)))) (|HasCategory| (-994) (QUOTE (-796 (-484))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-330))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-800 (-484))))) (|HasCategory| (-994) (QUOTE (-553 (-800 (-484)))))) (-12 (|HasCategory| |#2| (QUOTE (-553 (-473)))) (|HasCategory| (-994) (QUOTE (-553 (-473))))) (|HasCategory| |#2| (QUOTE (-580 (-484)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-484)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484)))))) (|HasCategory| |#2| (QUOTE (-950 (-350 (-484))))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-821)))) (OR (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-821)))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (QUOTE (-811 (-1090)))) (|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-190))) (|HasAttribute| |#2| (QUOTE -3994)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118)))))
+(-1149 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1151 R Q UP)
+(-1150 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1152 R UP)
+(-1151 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1153 R UP)
+(-1152 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1154 R U)
+(-1153 R U)
((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
-(-1155 S R)
+(-1154 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1067))))
-(-1156 R)
+((|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-495))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1066))))
+(-1155 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3993 |has| |#1| (-312)) (-3995 |has| |#1| (-6 -3995)) (-3992 . T) (-3991 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3992 |has| |#1| (-312)) (-3994 |has| |#1| (-6 -3994)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1157 R PR S PS)
+(-1156 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1158 S |Coef| |Expon|)
+(-1157 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1026))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#2|) (QUOTE (-1091))))))
-(-1159 |Coef| |Expon|)
+((|HasCategory| |#2| (QUOTE (-809 (-1090)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#2|) (QUOTE (-1090))))))
+(-1158 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1160 RC P)
+(-1159 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1161 |Coef| |var| |cen|)
+(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1162 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1163 |Coef|)
+(-1162 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1164 S |Coef| ULS)
+(-1163 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1165 |Coef| ULS)
+(-1164 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1166 |Coef| ULS)
+(-1165 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3995 |has| |#1| (-312)) (-3989 |has| |#1| (-312)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))))
-(-1167 R FE |var| |cen|)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3994 |has| |#1| (-312)) (-3988 |has| |#1| (-312)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-484)) (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-495)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-484)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))))
+(-1166 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-3999 "*") |has| (-1161 |#2| |#3| |#4|) (-146)) (-3990 |has| (-1161 |#2| |#3| |#4|) (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485)))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-350 (-485))))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-951 (-485)))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1161 |#2| |#3| |#4|) (QUOTE (-496))))
-(-1168 A S)
+(((-3998 "*") |has| (-1160 |#2| |#3| |#4|) (-146)) (-3989 |has| (-1160 |#2| |#3| |#4|) (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-118))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-120))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-146))) (OR (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-38 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-350 (-484)))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-350 (-484))))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-950 (-484)))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-312))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-392))) (|HasCategory| (-1160 |#2| |#3| |#4|) (QUOTE (-495))))
+(-1167 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasCategory| |#1| (|%list| (QUOTE -1036) (|devaluate| |#2|))))
-(-1169 S)
+((|HasCategory| |#1| (|%list| (QUOTE -1035) (|devaluate| |#2|))))
+(-1168 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1170 |Coef| |var| |cen|)
+(-1169 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-695)) (|devaluate| |#1|)))) (|HasCategory| (-695) (QUOTE (-1026))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-695))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|)))))))
-(-1171 |Coef1| |Coef2| UTS1 UTS2)
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-495))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-495)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-809 (-1090)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-694)) (|devaluate| |#1|)))) (|HasCategory| (-694) (QUOTE (-1025))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasSignature| |#1| (|%list| (QUOTE -3947) (|%list| (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-694))))) (|HasCategory| |#1| (QUOTE (-312))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#1| (QUOTE (-29 (-484)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-484))))) (|HasSignature| |#1| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(-1170 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1172 S |Coef|)
+(-1171 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (QUOTE (-29 (-485)))) (|HasCategory| |#2| (QUOTE (-872))) (|HasCategory| |#2| (QUOTE (-1116))) (|HasSignature| |#2| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))))
-(-1173 |Coef|)
+((|HasCategory| |#2| (QUOTE (-29 (-484)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1115))) (|HasSignature| |#2| (|%list| (QUOTE -3082) (|%list| (|%list| (QUOTE -583) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3813) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-484))))) (|HasCategory| |#2| (QUOTE (-312))))
+(-1172 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-3999 "*") |has| |#1| (-146)) (-3990 |has| |#1| (-496)) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") |has| |#1| (-146)) (-3989 |has| |#1| (-495)) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1174 |Coef| UTS)
+(-1173 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1175 -3094 UP L UTS)
+(-1174 -3093 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-496))))
-(-1176)
+((|HasCategory| |#1| (QUOTE (-495))))
+(-1175)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1177 |sym|)
+(-1176 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1178 S R)
+(-1177 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1179 R)
+((|HasCategory| |#2| (QUOTE (-915))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-663))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1178 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-3998 . T))
+((-3997 . T))
NIL
-(-1180 R)
+(-1179 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-3998 . T))
-((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| $ (|%list| (QUOTE -1036) (|devaluate| |#1|)))))
-(-1181 A B)
+((-3997 . T))
+((OR (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-552 (-772)))) (|HasCategory| |#1| (QUOTE (-553 (-473)))) (OR (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| |#1| (QUOTE (-756))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-1013)))) (|HasCategory| (-484) (QUOTE (-756))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-663))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-915))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-1013))) (-12 (|HasCategory| |#1| (QUOTE (-1013))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-756))) (|HasCategory| $ (|%list| (QUOTE -1035) (|devaluate| |#1|)))))
+(-1180 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1182)
+(-1181)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1183)
+(-1182)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1184)
+(-1183)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1185)
+(-1184)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1186)
+(-1185)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1187 A S)
+(-1186 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1188 S)
+(-1187 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-3992 . T) (-3991 . T))
+((-3991 . T) (-3990 . T))
NIL
-(-1189 R)
+(-1188 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1190 K R UP -3094)
+(-1189 K R UP -3093)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1191)
+(-1190)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1192)
+(-1191)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1193 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1192 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-3992 |has| |#1| (-146)) (-3991 |has| |#1| (-146)) (-3994 . T))
+((-3991 |has| |#1| (-146)) (-3990 |has| |#1| (-146)) (-3993 . T))
((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))))
-(-1194 R E V P)
+(-1193 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
-((-3998 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
-(-1195 R)
+((-3997 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1013))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-553 (-473)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-495))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-552 (-772)))) (|HasCategory| |#4| (QUOTE (-1013))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))
+(-1194 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
-((-3991 . T) (-3992 . T) (-3994 . T))
+((-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1196 |vl| R)
+(-1195 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-3994 . T) (-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1197 R |VarSet| XPOLY)
+((-3993 . T) (-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1196 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1198 S -3094)
+(-1197 S -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-120))))
-(-1199 -3094)
+(-1198 -3093)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-3989 . T) (-3995 . T) (-3990 . T) ((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+((-3988 . T) (-3994 . T) (-3989 . T) ((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
-(-1200 |vl| R)
+(-1199 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1201 |VarSet| R)
+(-1200 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-655 (-350 (-485))))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1202 R)
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-654 (-350 (-484))))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1201 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3990)))
-(-1203 |vl| R)
+((-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasAttribute| |#1| (QUOTE -3989)))
+(-1202 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
NIL
-(-1204 R E)
+(-1203 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-3994 . T) (-3995 |has| |#1| (-6 -3995)) (-3990 |has| |#1| (-6 -3990)) (-3992 . T) (-3991 . T))
-((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3995)) (|HasAttribute| |#1| (QUOTE -3990)))
-(-1205 |VarSet| R)
+((-3993 . T) (-3994 |has| |#1| (-6 -3994)) (-3989 |has| |#1| (-6 -3989)) (-3991 . T) (-3990 . T))
+((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasAttribute| |#1| (QUOTE -3993)) (|HasAttribute| |#1| (QUOTE -3994)) (|HasAttribute| |#1| (QUOTE -3989)))
+(-1204 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-3990 |has| |#2| (-6 -3990)) (-3992 . T) (-3991 . T) (-3994 . T))
-((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3990)))
-(-1206)
+((-3989 |has| |#2| (-6 -3989)) (-3991 . T) (-3990 . T) (-3993 . T))
+((|HasCategory| |#2| (QUOTE (-146))) (|HasAttribute| |#2| (QUOTE -3989)))
+(-1205)
((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}")))
NIL
NIL
-(-1207 A)
+(-1206 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1208 R |ls| |ls2|)
+(-1207 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1209 R)
+(-1208 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1210 |p|)
+(-1209 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-3999 "*") . T) (-3991 . T) (-3992 . T) (-3994 . T))
+(((-3998 "*") . T) (-3990 . T) (-3991 . T) (-3993 . T))
NIL
NIL
NIL
@@ -4788,4 +4784,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 1968699 1968704 1968709 1968714) (-2 NIL 1968679 1968684 1968689 1968694) (-1 NIL 1968659 1968664 1968669 1968674) (0 NIL 1968639 1968644 1968649 1968654) (-1210 "ZMOD.spad" 1968448 1968461 1968577 1968634) (-1209 "ZLINDEP.spad" 1967546 1967557 1968438 1968443) (-1208 "ZDSOLVE.spad" 1957507 1957529 1967536 1967541) (-1207 "YSTREAM.spad" 1957002 1957013 1957497 1957502) (-1206 "YDIAGRAM.spad" 1956636 1956645 1956992 1956997) (-1205 "XRPOLY.spad" 1955856 1955876 1956492 1956561) (-1204 "XPR.spad" 1953651 1953664 1955574 1955673) (-1203 "XPOLYC.spad" 1952970 1952986 1953577 1953646) (-1202 "XPOLY.spad" 1952525 1952536 1952826 1952895) (-1201 "XPBWPOLY.spad" 1950996 1951016 1952331 1952400) (-1200 "XFALG.spad" 1948044 1948060 1950922 1950991) (-1199 "XF.spad" 1946507 1946522 1947946 1948039) (-1198 "XF.spad" 1944950 1944967 1946391 1946396) (-1197 "XEXPPKG.spad" 1944209 1944235 1944940 1944945) (-1196 "XDPOLY.spad" 1943823 1943839 1944065 1944134) (-1195 "XALG.spad" 1943491 1943502 1943779 1943818) (-1194 "WUTSET.spad" 1939345 1939362 1942976 1942991) (-1193 "WP.spad" 1938552 1938596 1939203 1939270) (-1192 "WHILEAST.spad" 1938350 1938359 1938542 1938547) (-1191 "WHEREAST.spad" 1938021 1938030 1938340 1938345) (-1190 "WFFINTBS.spad" 1935684 1935706 1938011 1938016) (-1189 "WEIER.spad" 1933906 1933917 1935674 1935679) (-1188 "VSPACE.spad" 1933579 1933590 1933874 1933901) (-1187 "VSPACE.spad" 1933272 1933285 1933569 1933574) (-1186 "VOID.spad" 1932949 1932958 1933262 1933267) (-1185 "VIEWDEF.spad" 1928150 1928159 1932939 1932944) (-1184 "VIEW3D.spad" 1912111 1912120 1928140 1928145) (-1183 "VIEW2D.spad" 1900010 1900019 1912101 1912106) (-1182 "VIEW.spad" 1897730 1897739 1900000 1900005) (-1181 "VECTOR2.spad" 1896369 1896382 1897720 1897725) (-1180 "VECTOR.spad" 1894775 1894786 1895026 1895041) (-1179 "VECTCAT.spad" 1892699 1892710 1894755 1894770) (-1178 "VECTCAT.spad" 1890420 1890433 1892478 1892483) (-1177 "VARIABLE.spad" 1890200 1890215 1890410 1890415) (-1176 "UTYPE.spad" 1889844 1889853 1890190 1890195) (-1175 "UTSODETL.spad" 1889139 1889163 1889800 1889805) (-1174 "UTSODE.spad" 1887355 1887375 1889129 1889134) (-1173 "UTSCAT.spad" 1884834 1884850 1887253 1887350) (-1172 "UTSCAT.spad" 1881981 1881999 1884402 1884407) (-1171 "UTS2.spad" 1881576 1881611 1881971 1881976) (-1170 "UTS.spad" 1876588 1876616 1880108 1880205) (-1169 "URAGG.spad" 1871309 1871320 1876578 1876583) (-1168 "URAGG.spad" 1865966 1865979 1871237 1871242) (-1167 "UPXSSING.spad" 1863734 1863760 1865170 1865303) (-1166 "UPXSCONS.spad" 1861552 1861572 1861925 1862074) (-1165 "UPXSCCA.spad" 1860123 1860143 1861398 1861547) (-1164 "UPXSCCA.spad" 1858836 1858858 1860113 1860118) (-1163 "UPXSCAT.spad" 1857425 1857441 1858682 1858831) (-1162 "UPXS2.spad" 1856968 1857021 1857415 1857420) (-1161 "UPXS.spad" 1854323 1854351 1855159 1855308) (-1160 "UPSQFREE.spad" 1852738 1852752 1854313 1854318) (-1159 "UPSCAT.spad" 1850533 1850557 1852636 1852733) (-1158 "UPSCAT.spad" 1848029 1848055 1850134 1850139) (-1157 "UPOLYC2.spad" 1847500 1847519 1848019 1848024) (-1156 "UPOLYC.spad" 1842580 1842591 1847342 1847495) (-1155 "UPOLYC.spad" 1837578 1837591 1842342 1842347) (-1154 "UPMP.spad" 1836510 1836523 1837568 1837573) (-1153 "UPDIVP.spad" 1836075 1836089 1836500 1836505) (-1152 "UPDECOMP.spad" 1834336 1834350 1836065 1836070) (-1151 "UPCDEN.spad" 1833553 1833569 1834326 1834331) (-1150 "UP2.spad" 1832917 1832938 1833543 1833548) (-1149 "UP.spad" 1830387 1830402 1830774 1830927) (-1148 "UNISEG2.spad" 1829884 1829897 1830343 1830348) (-1147 "UNISEG.spad" 1829237 1829248 1829803 1829808) (-1146 "UNIFACT.spad" 1828340 1828352 1829227 1829232) (-1145 "ULSCONS.spad" 1822186 1822206 1822556 1822705) (-1144 "ULSCCAT.spad" 1819923 1819943 1822032 1822181) (-1143 "ULSCCAT.spad" 1817768 1817790 1819879 1819884) (-1142 "ULSCAT.spad" 1816008 1816024 1817614 1817763) (-1141 "ULS2.spad" 1815522 1815575 1815998 1816003) (-1140 "ULS.spad" 1807555 1807583 1808500 1808923) (-1139 "UINT8.spad" 1807432 1807441 1807545 1807550) (-1138 "UINT64.spad" 1807308 1807317 1807422 1807427) (-1137 "UINT32.spad" 1807184 1807193 1807298 1807303) (-1136 "UINT16.spad" 1807060 1807069 1807174 1807179) (-1135 "UFD.spad" 1806125 1806134 1806986 1807055) (-1134 "UFD.spad" 1805252 1805263 1806115 1806120) (-1133 "UDVO.spad" 1804133 1804142 1805242 1805247) (-1132 "UDPO.spad" 1801714 1801725 1804089 1804094) (-1131 "TYPEAST.spad" 1801633 1801642 1801704 1801709) (-1130 "TYPE.spad" 1801565 1801574 1801623 1801628) (-1129 "TWOFACT.spad" 1800217 1800232 1801555 1801560) (-1128 "TUPLE.spad" 1799724 1799735 1800129 1800134) (-1127 "TUBETOOL.spad" 1796591 1796600 1799714 1799719) (-1126 "TUBE.spad" 1795238 1795255 1796581 1796586) (-1125 "TSETCAT.spad" 1783321 1783338 1795218 1795233) (-1124 "TSETCAT.spad" 1771378 1771397 1783277 1783282) (-1123 "TS.spad" 1770006 1770022 1770972 1771069) (-1122 "TRMANIP.spad" 1764370 1764387 1769694 1769699) (-1121 "TRIMAT.spad" 1763333 1763358 1764360 1764365) (-1120 "TRIGMNIP.spad" 1761860 1761877 1763323 1763328) (-1119 "TRIGCAT.spad" 1761372 1761381 1761850 1761855) (-1118 "TRIGCAT.spad" 1760882 1760893 1761362 1761367) (-1117 "TREE.spad" 1759473 1759484 1760505 1760520) (-1116 "TRANFUN.spad" 1759312 1759321 1759463 1759468) (-1115 "TRANFUN.spad" 1759149 1759160 1759302 1759307) (-1114 "TOPSP.spad" 1758823 1758832 1759139 1759144) (-1113 "TOOLSIGN.spad" 1758486 1758497 1758813 1758818) (-1112 "TEXTFILE.spad" 1757047 1757056 1758476 1758481) (-1111 "TEX1.spad" 1756603 1756614 1757037 1757042) (-1110 "TEX.spad" 1753797 1753806 1756593 1756598) (-1109 "TBCMPPK.spad" 1751898 1751921 1753787 1753792) (-1108 "TBAGG.spad" 1751153 1751176 1751878 1751893) (-1107 "TBAGG.spad" 1750416 1750441 1751143 1751148) (-1106 "TANEXP.spad" 1749824 1749835 1750406 1750411) (-1105 "TALGOP.spad" 1749548 1749559 1749814 1749819) (-1104 "TABLEAU.spad" 1749029 1749040 1749538 1749543) (-1103 "TABLE.spad" 1746790 1746813 1747060 1747075) (-1102 "TABLBUMP.spad" 1743569 1743580 1746780 1746785) (-1101 "SYSTEM.spad" 1742797 1742806 1743559 1743564) (-1100 "SYSSOLP.spad" 1740280 1740291 1742787 1742792) (-1099 "SYSPTR.spad" 1740179 1740188 1740270 1740275) (-1098 "SYSNNI.spad" 1739402 1739413 1740169 1740174) (-1097 "SYSINT.spad" 1738806 1738817 1739392 1739397) (-1096 "SYNTAX.spad" 1735140 1735149 1738796 1738801) (-1095 "SYMTAB.spad" 1733208 1733217 1735130 1735135) (-1094 "SYMS.spad" 1729237 1729246 1733198 1733203) (-1093 "SYMPOLY.spad" 1728370 1728381 1728452 1728579) (-1092 "SYMFUNC.spad" 1727871 1727882 1728360 1728365) (-1091 "SYMBOL.spad" 1725366 1725375 1727861 1727866) (-1090 "SUTS.spad" 1722479 1722507 1723898 1723995) (-1089 "SUPXS.spad" 1719821 1719849 1720670 1720819) (-1088 "SUPFRACF.spad" 1718926 1718944 1719811 1719816) (-1087 "SUP2.spad" 1718318 1718331 1718916 1718921) (-1086 "SUP.spad" 1715402 1715413 1716175 1716328) (-1085 "SUMRF.spad" 1714376 1714387 1715392 1715397) (-1084 "SUMFS.spad" 1714005 1714022 1714366 1714371) (-1083 "SULS.spad" 1706025 1706053 1706983 1707406) (-1082 "syntax.spad" 1705794 1705803 1706015 1706020) (-1081 "SUCH.spad" 1705484 1705499 1705784 1705789) (-1080 "SUBSPACE.spad" 1697615 1697630 1705474 1705479) (-1079 "SUBRESP.spad" 1696785 1696799 1697571 1697576) (-1078 "STTFNC.spad" 1693253 1693269 1696775 1696780) (-1077 "STTF.spad" 1689352 1689368 1693243 1693248) (-1076 "STTAYLOR.spad" 1682029 1682040 1689259 1689264) (-1075 "STRTBL.spad" 1679953 1679970 1680102 1680117) (-1074 "STRING.spad" 1678584 1678593 1678969 1678984) (-1073 "STREAM3.spad" 1678157 1678172 1678574 1678579) (-1072 "STREAM2.spad" 1677285 1677298 1678147 1678152) (-1071 "STREAM1.spad" 1676991 1677002 1677275 1677280) (-1070 "STREAM.spad" 1673941 1673952 1676432 1676447) (-1069 "STINPROD.spad" 1672877 1672893 1673931 1673936) (-1068 "STEPAST.spad" 1672111 1672120 1672867 1672872) (-1067 "STEP.spad" 1671428 1671437 1672101 1672106) (-1066 "STBL.spad" 1669292 1669320 1669459 1669474) (-1065 "STAGG.spad" 1667991 1668002 1669282 1669287) (-1064 "STAGG.spad" 1666688 1666701 1667981 1667986) (-1063 "STACK.spad" 1666122 1666133 1666372 1666387) (-1062 "SRING.spad" 1665882 1665891 1666112 1666117) (-1061 "SREGSET.spad" 1663465 1663482 1665367 1665382) (-1060 "SRDCMPK.spad" 1662042 1662062 1663455 1663460) (-1059 "SRAGG.spad" 1657237 1657246 1662022 1662037) (-1058 "SRAGG.spad" 1652440 1652451 1657227 1657232) (-1057 "SQMATRIX.spad" 1650129 1650147 1651045 1651120) (-1056 "SPLTREE.spad" 1644779 1644792 1649575 1649590) (-1055 "SPLNODE.spad" 1641399 1641412 1644769 1644774) (-1054 "SPFCAT.spad" 1640208 1640217 1641389 1641394) (-1053 "SPECOUT.spad" 1638760 1638769 1640198 1640203) (-1052 "SPADXPT.spad" 1630851 1630860 1638750 1638755) (-1051 "spad-parser.spad" 1630316 1630325 1630841 1630846) (-1050 "SPADAST.spad" 1630017 1630026 1630306 1630311) (-1049 "SPACEC.spad" 1614232 1614243 1630007 1630012) (-1048 "SPACE3.spad" 1614008 1614019 1614222 1614227) (-1047 "SORTPAK.spad" 1613557 1613570 1613964 1613969) (-1046 "SOLVETRA.spad" 1611320 1611331 1613547 1613552) (-1045 "SOLVESER.spad" 1609776 1609787 1611310 1611315) (-1044 "SOLVERAD.spad" 1605802 1605813 1609766 1609771) (-1043 "SOLVEFOR.spad" 1604264 1604282 1605792 1605797) (-1042 "SNTSCAT.spad" 1603876 1603893 1604244 1604259) (-1041 "SMTS.spad" 1602193 1602219 1603470 1603567) (-1040 "SMP.spad" 1600001 1600021 1600391 1600518) (-1039 "SMITH.spad" 1598846 1598871 1599991 1599996) (-1038 "SMATCAT.spad" 1596976 1597006 1598802 1598841) (-1037 "SMATCAT.spad" 1595026 1595058 1596854 1596859) (-1036 "aggcat.spad" 1594702 1594713 1595006 1595021) (-1035 "SKAGG.spad" 1593683 1593694 1594682 1594697) (-1034 "SINT.spad" 1592982 1592991 1593549 1593678) (-1033 "SIMPAN.spad" 1592710 1592719 1592972 1592977) (-1032 "SIGNRF.spad" 1591835 1591846 1592700 1592705) (-1031 "SIGNEF.spad" 1591121 1591138 1591825 1591830) (-1030 "syntax.spad" 1590538 1590547 1591111 1591116) (-1029 "SIG.spad" 1589900 1589909 1590528 1590533) (-1028 "SHP.spad" 1587844 1587859 1589856 1589861) (-1027 "SHDP.spad" 1577248 1577275 1577765 1577850) (-1026 "SGROUP.spad" 1576856 1576865 1577238 1577243) (-1025 "SGROUP.spad" 1576462 1576473 1576846 1576851) (-1024 "catdef.spad" 1576172 1576184 1576283 1576457) (-1023 "catdef.spad" 1575728 1575740 1575993 1576167) (-1022 "SGCF.spad" 1568867 1568876 1575718 1575723) (-1021 "SFRTCAT.spad" 1567825 1567842 1568847 1568862) (-1020 "SFRGCD.spad" 1566888 1566908 1567815 1567820) (-1019 "SFQCMPK.spad" 1561701 1561721 1566878 1566883) (-1018 "SEXOF.spad" 1561544 1561584 1561691 1561696) (-1017 "SEXCAT.spad" 1559372 1559412 1561534 1561539) (-1016 "SEX.spad" 1559264 1559273 1559362 1559367) (-1015 "SETMN.spad" 1557724 1557741 1559254 1559259) (-1014 "SETCAT.spad" 1557209 1557218 1557714 1557719) (-1013 "SETCAT.spad" 1556692 1556703 1557199 1557204) (-1012 "SETAGG.spad" 1553241 1553252 1556672 1556687) (-1011 "SETAGG.spad" 1549798 1549811 1553231 1553236) (-1010 "SET.spad" 1547956 1547967 1549055 1549082) (-1009 "syntax.spad" 1547659 1547668 1547946 1547951) (-1008 "SEGXCAT.spad" 1546815 1546828 1547649 1547654) (-1007 "SEGCAT.spad" 1545740 1545751 1546805 1546810) (-1006 "SEGBIND2.spad" 1545438 1545451 1545730 1545735) (-1005 "SEGBIND.spad" 1545196 1545207 1545385 1545390) (-1004 "SEGAST.spad" 1544926 1544935 1545186 1545191) (-1003 "SEG2.spad" 1544361 1544374 1544882 1544887) (-1002 "SEG.spad" 1544174 1544185 1544280 1544285) (-1001 "SDVAR.spad" 1543450 1543461 1544164 1544169) (-1000 "SDPOL.spad" 1541142 1541153 1541433 1541560) (-999 "SCPKG.spad" 1539232 1539242 1541132 1541137) (-998 "SCOPE.spad" 1538410 1538418 1539222 1539227) (-997 "SCACHE.spad" 1537107 1537117 1538400 1538405) (-996 "SASTCAT.spad" 1537017 1537025 1537097 1537102) (-995 "SAOS.spad" 1536890 1536898 1537007 1537012) (-994 "SAERFFC.spad" 1536604 1536623 1536880 1536885) (-993 "SAEFACT.spad" 1536306 1536325 1536594 1536599) (-992 "SAE.spad" 1533957 1533972 1534567 1534702) (-991 "RURPK.spad" 1531617 1531632 1533947 1533952) (-990 "RULESET.spad" 1531071 1531094 1531607 1531612) (-989 "RULECOLD.spad" 1530924 1530936 1531061 1531066) (-988 "RULE.spad" 1529173 1529196 1530914 1530919) (-987 "RTVALUE.spad" 1528909 1528917 1529163 1529168) (-986 "syntax.spad" 1528627 1528635 1528899 1528904) (-985 "RSETGCD.spad" 1525070 1525089 1528617 1528622) (-984 "RSETCAT.spad" 1515051 1515067 1525050 1525065) (-983 "RSETCAT.spad" 1505040 1505058 1515041 1515046) (-982 "RSDCMPK.spad" 1503541 1503560 1505030 1505035) (-981 "RRCC.spad" 1501926 1501955 1503531 1503536) (-980 "RRCC.spad" 1500309 1500340 1501916 1501921) (-979 "RPTAST.spad" 1500012 1500020 1500299 1500304) (-978 "RPOLCAT.spad" 1479517 1479531 1499880 1500007) (-977 "RPOLCAT.spad" 1458815 1458831 1479180 1479185) (-976 "ROMAN.spad" 1458144 1458152 1458681 1458810) (-975 "ROIRC.spad" 1457225 1457256 1458134 1458139) (-974 "RNS.spad" 1456202 1456210 1457127 1457220) (-973 "RNS.spad" 1455265 1455275 1456192 1456197) (-972 "RNGBIND.spad" 1454426 1454439 1455220 1455225) (-971 "RNG.spad" 1454035 1454043 1454416 1454421) (-970 "RNG.spad" 1453642 1453652 1454025 1454030) (-969 "RMODULE.spad" 1453424 1453434 1453632 1453637) (-968 "RMCAT2.spad" 1452845 1452901 1453414 1453419) (-967 "RMATRIX.spad" 1451667 1451685 1452009 1452036) (-966 "RMATCAT.spad" 1447317 1447347 1451635 1451662) (-965 "RMATCAT.spad" 1442845 1442877 1447165 1447170) (-964 "RLINSET.spad" 1442550 1442560 1442835 1442840) (-963 "RINTERP.spad" 1442439 1442458 1442540 1442545) (-962 "RING.spad" 1441910 1441918 1442419 1442434) (-961 "RING.spad" 1441389 1441399 1441900 1441905) (-960 "RIDIST.spad" 1440782 1440790 1441379 1441384) (-959 "RGCHAIN.spad" 1439039 1439054 1439932 1439947) (-958 "RGBCSPC.spad" 1438829 1438840 1439029 1439034) (-957 "RGBCMDL.spad" 1438392 1438403 1438819 1438824) (-956 "RFFACTOR.spad" 1437855 1437865 1438382 1438387) (-955 "RFFACT.spad" 1437591 1437602 1437845 1437850) (-954 "RFDIST.spad" 1436588 1436596 1437581 1437586) (-953 "RF.spad" 1434263 1434273 1436578 1436583) (-952 "RETSOL.spad" 1433683 1433695 1434253 1434258) (-951 "RETRACT.spad" 1433112 1433122 1433673 1433678) (-950 "RETRACT.spad" 1432539 1432551 1433102 1433107) (-949 "RETAST.spad" 1432352 1432360 1432529 1432534) (-948 "RESRING.spad" 1431700 1431746 1432290 1432347) (-947 "RESLATC.spad" 1431025 1431035 1431690 1431695) (-946 "REPSQ.spad" 1430757 1430767 1431015 1431020) (-945 "REPDB.spad" 1430465 1430475 1430747 1430752) (-944 "REP2.spad" 1420180 1420190 1430307 1430312) (-943 "REP1.spad" 1414401 1414411 1420130 1420135) (-942 "REP.spad" 1411956 1411964 1414391 1414396) (-941 "REGSET.spad" 1409633 1409649 1411441 1411456) (-940 "REF.spad" 1409152 1409162 1409623 1409628) (-939 "REDORDER.spad" 1408359 1408375 1409142 1409147) (-938 "RECLOS.spad" 1407256 1407275 1407959 1408052) (-937 "REALSOLV.spad" 1406397 1406405 1407246 1407251) (-936 "REAL0Q.spad" 1403696 1403710 1406387 1406392) (-935 "REAL0.spad" 1400541 1400555 1403686 1403691) (-934 "REAL.spad" 1400414 1400422 1400531 1400536) (-933 "RDUCEAST.spad" 1400136 1400144 1400404 1400409) (-932 "RDIV.spad" 1399792 1399816 1400126 1400131) (-931 "RDIST.spad" 1399360 1399370 1399782 1399787) (-930 "RDETRS.spad" 1398225 1398242 1399350 1399355) (-929 "RDETR.spad" 1396365 1396382 1398215 1398220) (-928 "RDEEFS.spad" 1395465 1395481 1396355 1396360) (-927 "RDEEF.spad" 1394476 1394492 1395455 1395460) (-926 "RCFIELD.spad" 1391695 1391703 1394378 1394471) (-925 "RCFIELD.spad" 1389000 1389010 1391685 1391690) (-924 "RCAGG.spad" 1386937 1386947 1388990 1388995) (-923 "RCAGG.spad" 1384775 1384787 1386830 1386835) (-922 "RATRET.spad" 1384136 1384146 1384765 1384770) (-921 "RATFACT.spad" 1383829 1383840 1384126 1384131) (-920 "RANDSRC.spad" 1383149 1383157 1383819 1383824) (-919 "RADUTIL.spad" 1382906 1382914 1383139 1383144) (-918 "RADIX.spad" 1379951 1379964 1381496 1381589) (-917 "RADFF.spad" 1377868 1377904 1377986 1378142) (-916 "RADCAT.spad" 1377464 1377472 1377858 1377863) (-915 "RADCAT.spad" 1377058 1377068 1377454 1377459) (-914 "QUEUE.spad" 1376484 1376494 1376742 1376757) (-913 "QUATCT2.spad" 1376105 1376123 1376474 1376479) (-912 "QUATCAT.spad" 1374276 1374286 1376035 1376100) (-911 "QUATCAT.spad" 1372212 1372224 1373973 1373978) (-910 "QUAT.spad" 1370819 1370829 1371161 1371226) (-909 "QUAGG.spad" 1369665 1369675 1370799 1370814) (-908 "QQUTAST.spad" 1369434 1369442 1369655 1369660) (-907 "QFORM.spad" 1369053 1369067 1369424 1369429) (-906 "QFCAT2.spad" 1368746 1368762 1369043 1369048) (-905 "QFCAT.spad" 1367449 1367459 1368648 1368741) (-904 "QFCAT.spad" 1365785 1365797 1366986 1366991) (-903 "QEQUAT.spad" 1365344 1365352 1365775 1365780) (-902 "QCMPACK.spad" 1360259 1360278 1365334 1365339) (-901 "QALGSET2.spad" 1358255 1358273 1360249 1360254) (-900 "QALGSET.spad" 1354360 1354392 1358169 1358174) (-899 "PWFFINTB.spad" 1351776 1351797 1354350 1354355) (-898 "PUSHVAR.spad" 1351115 1351134 1351766 1351771) (-897 "PTRANFN.spad" 1347251 1347261 1351105 1351110) (-896 "PTPACK.spad" 1344339 1344349 1347241 1347246) (-895 "PTFUNC2.spad" 1344162 1344176 1344329 1344334) (-894 "PTCAT.spad" 1343429 1343439 1344142 1344157) (-893 "PSQFR.spad" 1342744 1342768 1343419 1343424) (-892 "PSEUDLIN.spad" 1341630 1341640 1342734 1342739) (-891 "PSETPK.spad" 1328335 1328351 1341508 1341513) (-890 "PSETCAT.spad" 1322745 1322768 1328325 1328330) (-889 "PSETCAT.spad" 1317119 1317144 1322701 1322706) (-888 "PSCURVE.spad" 1316118 1316126 1317109 1317114) (-887 "PSCAT.spad" 1314901 1314930 1316016 1316113) (-886 "PSCAT.spad" 1313774 1313805 1314891 1314896) (-885 "PRTITION.spad" 1312472 1312480 1313764 1313769) (-884 "PRTDAST.spad" 1312191 1312199 1312462 1312467) (-883 "PRS.spad" 1301809 1301826 1312147 1312152) (-882 "PRQAGG.spad" 1301256 1301266 1301789 1301804) (-881 "PROPLOG.spad" 1300860 1300868 1301246 1301251) (-880 "PROPFUN2.spad" 1300483 1300496 1300850 1300855) (-879 "PROPFUN1.spad" 1299889 1299900 1300473 1300478) (-878 "PROPFRML.spad" 1298457 1298468 1299879 1299884) (-877 "PROPERTY.spad" 1297953 1297961 1298447 1298452) (-876 "PRODUCT.spad" 1295650 1295662 1295934 1295989) (-875 "PRINT.spad" 1295402 1295410 1295640 1295645) (-874 "PRIMES.spad" 1293663 1293673 1295392 1295397) (-873 "PRIMELT.spad" 1291784 1291798 1293653 1293658) (-872 "PRIMCAT.spad" 1291427 1291435 1291774 1291779) (-871 "PRIMARR2.spad" 1290194 1290206 1291417 1291422) (-870 "PRIMARR.spad" 1288936 1288946 1289106 1289121) (-869 "PREASSOC.spad" 1288318 1288330 1288926 1288931) (-868 "PR.spad" 1286836 1286848 1287535 1287662) (-867 "PPCURVE.spad" 1285973 1285981 1286826 1286831) (-866 "PORTNUM.spad" 1285764 1285772 1285963 1285968) (-865 "POLYROOT.spad" 1284613 1284635 1285720 1285725) (-864 "POLYLIFT.spad" 1283878 1283901 1284603 1284608) (-863 "POLYCATQ.spad" 1282004 1282026 1283868 1283873) (-862 "POLYCAT.spad" 1275506 1275527 1281872 1281999) (-861 "POLYCAT.spad" 1268528 1268551 1274896 1274901) (-860 "POLY2UP.spad" 1267980 1267994 1268518 1268523) (-859 "POLY2.spad" 1267577 1267589 1267970 1267975) (-858 "POLY.spad" 1265245 1265255 1265760 1265887) (-857 "POLUTIL.spad" 1264210 1264239 1265201 1265206) (-856 "POLTOPOL.spad" 1262958 1262973 1264200 1264205) (-855 "POINT.spad" 1261528 1261538 1261615 1261630) (-854 "PNTHEORY.spad" 1258230 1258238 1261518 1261523) (-853 "PMTOOLS.spad" 1257005 1257019 1258220 1258225) (-852 "PMSYM.spad" 1256554 1256564 1256995 1257000) (-851 "PMQFCAT.spad" 1256145 1256159 1256544 1256549) (-850 "PMPREDFS.spad" 1255607 1255629 1256135 1256140) (-849 "PMPRED.spad" 1255094 1255108 1255597 1255602) (-848 "PMPLCAT.spad" 1254171 1254189 1255023 1255028) (-847 "PMLSAGG.spad" 1253756 1253770 1254161 1254166) (-846 "PMKERNEL.spad" 1253335 1253347 1253746 1253751) (-845 "PMINS.spad" 1252915 1252925 1253325 1253330) (-844 "PMFS.spad" 1252492 1252510 1252905 1252910) (-843 "PMDOWN.spad" 1251782 1251796 1252482 1252487) (-842 "PMASSFS.spad" 1250757 1250773 1251772 1251777) (-841 "PMASS.spad" 1249775 1249783 1250747 1250752) (-840 "PLOTTOOL.spad" 1249555 1249563 1249765 1249770) (-839 "PLOT3D.spad" 1246019 1246027 1249545 1249550) (-838 "PLOT1.spad" 1245192 1245202 1246009 1246014) (-837 "PLOT.spad" 1240115 1240123 1245182 1245187) (-836 "PLEQN.spad" 1227517 1227544 1240105 1240110) (-835 "PINTERPA.spad" 1227301 1227317 1227507 1227512) (-834 "PINTERP.spad" 1226923 1226942 1227291 1227296) (-833 "PID.spad" 1225897 1225905 1226849 1226918) (-832 "PICOERCE.spad" 1225554 1225564 1225887 1225892) (-831 "PI.spad" 1225171 1225179 1225528 1225549) (-830 "PGROEB.spad" 1223780 1223794 1225161 1225166) (-829 "PGE.spad" 1215453 1215461 1223770 1223775) (-828 "PGCD.spad" 1214407 1214424 1215443 1215448) (-827 "PFRPAC.spad" 1213556 1213566 1214397 1214402) (-826 "PFR.spad" 1210259 1210269 1213458 1213551) (-825 "PFOTOOLS.spad" 1209517 1209533 1210249 1210254) (-824 "PFOQ.spad" 1208887 1208905 1209507 1209512) (-823 "PFO.spad" 1208306 1208333 1208877 1208882) (-822 "PFECAT.spad" 1206016 1206024 1208232 1208301) (-821 "PFECAT.spad" 1203754 1203764 1205972 1205977) (-820 "PFBRU.spad" 1201642 1201654 1203744 1203749) (-819 "PFBR.spad" 1199202 1199225 1201632 1201637) (-818 "PF.spad" 1198776 1198788 1199007 1199100) (-817 "PERMGRP.spad" 1193546 1193556 1198766 1198771) (-816 "PERMCAT.spad" 1192207 1192217 1193526 1193541) (-815 "PERMAN.spad" 1190763 1190777 1192197 1192202) (-814 "PERM.spad" 1186573 1186583 1190596 1190611) (-813 "PENDTREE.spad" 1185926 1185936 1186206 1186211) (-812 "PDSPC.spad" 1184739 1184749 1185916 1185921) (-811 "PDSPC.spad" 1183550 1183562 1184729 1184734) (-810 "PDRING.spad" 1183392 1183402 1183530 1183545) (-809 "PDMOD.spad" 1183208 1183220 1183360 1183387) (-808 "PDECOMP.spad" 1182678 1182695 1183198 1183203) (-807 "PDDOM.spad" 1182116 1182129 1182668 1182673) (-806 "PDDOM.spad" 1181552 1181567 1182106 1182111) (-805 "PCOMP.spad" 1181405 1181418 1181542 1181547) (-804 "PBWLB.spad" 1180003 1180020 1181395 1181400) (-803 "PATTERN2.spad" 1179741 1179753 1179993 1179998) (-802 "PATTERN1.spad" 1178085 1178101 1179731 1179736) (-801 "PATTERN.spad" 1172660 1172670 1178075 1178080) (-800 "PATRES2.spad" 1172332 1172346 1172650 1172655) (-799 "PATRES.spad" 1169915 1169927 1172322 1172327) (-798 "PATMATCH.spad" 1168156 1168187 1169667 1169672) (-797 "PATMAB.spad" 1167585 1167595 1168146 1168151) (-796 "PATLRES.spad" 1166671 1166685 1167575 1167580) (-795 "PATAB.spad" 1166435 1166445 1166661 1166666) (-794 "PARTPERM.spad" 1164491 1164499 1166425 1166430) (-793 "PARSURF.spad" 1163925 1163953 1164481 1164486) (-792 "PARSU2.spad" 1163722 1163738 1163915 1163920) (-791 "script-parser.spad" 1163242 1163250 1163712 1163717) (-790 "PARSCURV.spad" 1162676 1162704 1163232 1163237) (-789 "PARSC2.spad" 1162467 1162483 1162666 1162671) (-788 "PARPCURV.spad" 1161929 1161957 1162457 1162462) (-787 "PARPC2.spad" 1161720 1161736 1161919 1161924) (-786 "PARAMAST.spad" 1160848 1160856 1161710 1161715) (-785 "PAN2EXPR.spad" 1160260 1160268 1160838 1160843) (-784 "PALETTE.spad" 1159374 1159382 1160250 1160255) (-783 "PAIR.spad" 1158448 1158461 1159017 1159022) (-782 "PADICRC.spad" 1155853 1155871 1157016 1157109) (-781 "PADICRAT.spad" 1153913 1153925 1154126 1154219) (-780 "PADICCT.spad" 1152462 1152474 1153839 1153908) (-779 "PADIC.spad" 1152165 1152177 1152388 1152457) (-778 "PADEPAC.spad" 1150854 1150873 1152155 1152160) (-777 "PADE.spad" 1149606 1149622 1150844 1150849) (-776 "OWP.spad" 1148854 1148884 1149464 1149531) (-775 "OVERSET.spad" 1148427 1148435 1148844 1148849) (-774 "OVAR.spad" 1148208 1148231 1148417 1148422) (-773 "OUTFORM.spad" 1137616 1137624 1148198 1148203) (-772 "OUTBFILE.spad" 1137050 1137058 1137606 1137611) (-771 "OUTBCON.spad" 1136120 1136128 1137040 1137045) (-770 "OUTBCON.spad" 1135188 1135198 1136110 1136115) (-769 "OUT.spad" 1134306 1134314 1135178 1135183) (-768 "OSI.spad" 1133781 1133789 1134296 1134301) (-767 "OSGROUP.spad" 1133699 1133707 1133771 1133776) (-766 "ORTHPOL.spad" 1132210 1132220 1133642 1133647) (-765 "OREUP.spad" 1131704 1131732 1131931 1131970) (-764 "ORESUP.spad" 1131046 1131070 1131425 1131464) (-763 "OREPCTO.spad" 1128935 1128947 1130966 1130971) (-762 "OREPCAT.spad" 1123122 1123132 1128891 1128930) (-761 "OREPCAT.spad" 1117199 1117211 1122970 1122975) (-760 "ORDTYPE.spad" 1116436 1116444 1117189 1117194) (-759 "ORDTYPE.spad" 1115671 1115681 1116426 1116431) (-758 "ORDSTRCT.spad" 1115457 1115472 1115620 1115625) (-757 "ORDSET.spad" 1115157 1115165 1115447 1115452) (-756 "ORDRING.spad" 1114974 1114982 1115137 1115152) (-755 "ORDMON.spad" 1114829 1114837 1114964 1114969) (-754 "ORDFUNS.spad" 1113961 1113977 1114819 1114824) (-753 "ORDFIN.spad" 1113781 1113789 1113951 1113956) (-752 "ORDCOMP2.spad" 1113074 1113086 1113771 1113776) (-751 "ORDCOMP.spad" 1111600 1111610 1112682 1112711) (-750 "OPSIG.spad" 1111262 1111270 1111590 1111595) (-749 "OPQUERY.spad" 1110843 1110851 1111252 1111257) (-748 "OPERCAT.spad" 1110309 1110319 1110833 1110838) (-747 "OPERCAT.spad" 1109773 1109785 1110299 1110304) (-746 "OP.spad" 1109515 1109525 1109595 1109662) (-745 "ONECOMP2.spad" 1108939 1108951 1109505 1109510) (-744 "ONECOMP.spad" 1107745 1107755 1108547 1108576) (-743 "OMSAGG.spad" 1107545 1107555 1107713 1107740) (-742 "OMLO.spad" 1106978 1106990 1107431 1107470) (-741 "OINTDOM.spad" 1106741 1106749 1106904 1106973) (-740 "OFMONOID.spad" 1104880 1104890 1106697 1106702) (-739 "ODVAR.spad" 1104141 1104151 1104870 1104875) (-738 "ODR.spad" 1103785 1103811 1103953 1104102) (-737 "ODPOL.spad" 1101433 1101443 1101773 1101900) (-736 "ODP.spad" 1090981 1091001 1091354 1091439) (-735 "ODETOOLS.spad" 1089630 1089649 1090971 1090976) (-734 "ODESYS.spad" 1087324 1087341 1089620 1089625) (-733 "ODERTRIC.spad" 1083357 1083374 1087281 1087286) (-732 "ODERED.spad" 1082756 1082780 1083347 1083352) (-731 "ODERAT.spad" 1080389 1080406 1082746 1082751) (-730 "ODEPRRIC.spad" 1077482 1077504 1080379 1080384) (-729 "ODEPRIM.spad" 1074880 1074902 1077472 1077477) (-728 "ODEPAL.spad" 1074266 1074290 1074870 1074875) (-727 "ODEINT.spad" 1073701 1073717 1074256 1074261) (-726 "ODEEF.spad" 1069196 1069212 1073691 1073696) (-725 "ODECONST.spad" 1068741 1068759 1069186 1069191) (-724 "OCTCT2.spad" 1068382 1068400 1068731 1068736) (-723 "OCT.spad" 1066697 1066707 1067411 1067450) (-722 "OCAMON.spad" 1066545 1066553 1066687 1066692) (-721 "OC.spad" 1064341 1064351 1066501 1066540) (-720 "OC.spad" 1061876 1061888 1064038 1064043) (-719 "OASGP.spad" 1061691 1061699 1061866 1061871) (-718 "OAMONS.spad" 1061213 1061221 1061681 1061686) (-717 "OAMON.spad" 1060971 1060979 1061203 1061208) (-716 "OAMON.spad" 1060727 1060737 1060961 1060966) (-715 "OAGROUP.spad" 1060265 1060273 1060717 1060722) (-714 "OAGROUP.spad" 1059801 1059811 1060255 1060260) (-713 "NUMTUBE.spad" 1059392 1059408 1059791 1059796) (-712 "NUMQUAD.spad" 1047368 1047376 1059382 1059387) (-711 "NUMODE.spad" 1038720 1038728 1047358 1047363) (-710 "NUMFMT.spad" 1037560 1037568 1038710 1038715) (-709 "NUMERIC.spad" 1029675 1029685 1037366 1037371) (-708 "NTSCAT.spad" 1028195 1028211 1029655 1029670) (-707 "NTPOLFN.spad" 1027772 1027782 1028138 1028143) (-706 "NSUP2.spad" 1027164 1027176 1027762 1027767) (-705 "NSUP.spad" 1020601 1020611 1025021 1025174) (-704 "NSMP.spad" 1017513 1017532 1017805 1017932) (-703 "NREP.spad" 1015915 1015929 1017503 1017508) (-702 "NPCOEF.spad" 1015161 1015181 1015905 1015910) (-701 "NORMRETR.spad" 1014759 1014798 1015151 1015156) (-700 "NORMPK.spad" 1012701 1012720 1014749 1014754) (-699 "NORMMA.spad" 1012389 1012415 1012691 1012696) (-698 "NONE1.spad" 1012065 1012075 1012379 1012384) (-697 "NONE.spad" 1011806 1011814 1012055 1012060) (-696 "NODE1.spad" 1011293 1011309 1011796 1011801) (-695 "NNI.spad" 1010188 1010196 1011267 1011288) (-694 "NLINSOL.spad" 1008814 1008824 1010178 1010183) (-693 "NFINTBAS.spad" 1006374 1006391 1008804 1008809) (-692 "NETCLT.spad" 1006348 1006359 1006364 1006369) (-691 "NCODIV.spad" 1004572 1004588 1006338 1006343) (-690 "NCNTFRAC.spad" 1004214 1004228 1004562 1004567) (-689 "NCEP.spad" 1002380 1002394 1004204 1004209) (-688 "NASRING.spad" 1001984 1001992 1002370 1002375) (-687 "NASRING.spad" 1001586 1001596 1001974 1001979) (-686 "NARNG.spad" 1000986 1000994 1001576 1001581) (-685 "NARNG.spad" 1000384 1000394 1000976 1000981) (-684 "NAALG.spad" 999949 999959 1000352 1000379) (-683 "NAALG.spad" 999534 999546 999939 999944) (-682 "MULTSQFR.spad" 996492 996509 999524 999529) (-681 "MULTFACT.spad" 995875 995892 996482 996487) (-680 "MTSCAT.spad" 993969 993990 995773 995870) (-679 "MTHING.spad" 993628 993638 993959 993964) (-678 "MSYSCMD.spad" 993062 993070 993618 993623) (-677 "MSETAGG.spad" 992907 992917 993030 993057) (-676 "MSET.spad" 990705 990715 992452 992479) (-675 "MRING.spad" 987682 987694 990413 990480) (-674 "MRF2.spad" 987244 987258 987672 987677) (-673 "MRATFAC.spad" 986790 986807 987234 987239) (-672 "MPRFF.spad" 984830 984849 986780 986785) (-671 "MPOLY.spad" 982634 982649 982993 983120) (-670 "MPCPF.spad" 981898 981917 982624 982629) (-669 "MPC3.spad" 981715 981755 981888 981893) (-668 "MPC2.spad" 981369 981402 981705 981710) (-667 "MONOTOOL.spad" 979720 979737 981359 981364) (-666 "catdef.spad" 979153 979164 979374 979715) (-665 "catdef.spad" 978551 978562 978807 979148) (-664 "MONOID.spad" 977872 977880 978541 978546) (-663 "MONOID.spad" 977191 977201 977862 977867) (-662 "MONOGEN.spad" 975939 975952 977051 977186) (-661 "MONOGEN.spad" 974709 974724 975823 975828) (-660 "MONADWU.spad" 972789 972797 974699 974704) (-659 "MONADWU.spad" 970867 970877 972779 972784) (-658 "MONAD.spad" 970027 970035 970857 970862) (-657 "MONAD.spad" 969185 969195 970017 970022) (-656 "MOEBIUS.spad" 967921 967935 969165 969180) (-655 "MODULE.spad" 967791 967801 967889 967916) (-654 "MODULE.spad" 967681 967693 967781 967786) (-653 "MODRING.spad" 967016 967055 967661 967676) (-652 "MODOP.spad" 965673 965685 966838 966905) (-651 "MODMONOM.spad" 965404 965422 965663 965668) (-650 "MODMON.spad" 962474 962486 963189 963342) (-649 "MODFIELD.spad" 961836 961875 962376 962469) (-648 "MMLFORM.spad" 960696 960704 961826 961831) (-647 "MMAP.spad" 960438 960472 960686 960691) (-646 "MLO.spad" 958897 958907 960394 960433) (-645 "MLIFT.spad" 957509 957526 958887 958892) (-644 "MKUCFUNC.spad" 957044 957062 957499 957504) (-643 "MKRECORD.spad" 956632 956645 957034 957039) (-642 "MKFUNC.spad" 956039 956049 956622 956627) (-641 "MKFLCFN.spad" 955007 955017 956029 956034) (-640 "MKBCFUNC.spad" 954502 954520 954997 955002) (-639 "MHROWRED.spad" 953013 953023 954492 954497) (-638 "MFINFACT.spad" 952413 952435 953003 953008) (-637 "MESH.spad" 950208 950216 952403 952408) (-636 "MDDFACT.spad" 948427 948437 950198 950203) (-635 "MDAGG.spad" 947718 947728 948407 948422) (-634 "MCDEN.spad" 946928 946940 947708 947713) (-633 "MAYBE.spad" 946228 946239 946918 946923) (-632 "MATSTOR.spad" 943544 943554 946218 946223) (-631 "MATRIX.spad" 942335 942345 942819 942834) (-630 "MATLIN.spad" 939703 939727 942219 942224) (-629 "MATCAT2.spad" 938985 939033 939693 939698) (-628 "MATCAT.spad" 930693 930715 938965 938980) (-627 "MATCAT.spad" 922261 922285 930535 930540) (-626 "MAPPKG3.spad" 921176 921190 922251 922256) (-625 "MAPPKG2.spad" 920514 920526 921166 921171) (-624 "MAPPKG1.spad" 919342 919352 920504 920509) (-623 "MAPPAST.spad" 918681 918689 919332 919337) (-622 "MAPHACK3.spad" 918493 918507 918671 918676) (-621 "MAPHACK2.spad" 918262 918274 918483 918488) (-620 "MAPHACK1.spad" 917906 917916 918252 918257) (-619 "MAGMA.spad" 915712 915729 917896 917901) (-618 "MACROAST.spad" 915307 915315 915702 915707) (-617 "LZSTAGG.spad" 912561 912571 915297 915302) (-616 "LZSTAGG.spad" 909813 909825 912551 912556) (-615 "LWORD.spad" 906558 906575 909803 909808) (-614 "LSTAST.spad" 906342 906350 906548 906553) (-613 "LSQM.spad" 904632 904646 905026 905065) (-612 "LSPP.spad" 904167 904184 904622 904627) (-611 "LSMP1.spad" 902010 902024 904157 904162) (-610 "LSMP.spad" 900867 900895 902000 902005) (-609 "LSAGG.spad" 900548 900558 900847 900862) (-608 "LSAGG.spad" 900237 900249 900538 900543) (-607 "LPOLY.spad" 899199 899218 900093 900162) (-606 "LPEFRAC.spad" 898470 898480 899189 899194) (-605 "LOGIC.spad" 898072 898080 898460 898465) (-604 "LOGIC.spad" 897672 897682 898062 898067) (-603 "LODOOPS.spad" 896602 896614 897662 897667) (-602 "LODOF.spad" 895648 895665 896559 896564) (-601 "LODOCAT.spad" 894314 894324 895604 895643) (-600 "LODOCAT.spad" 892978 892990 894270 894275) (-599 "LODO2.spad" 892292 892304 892699 892738) (-598 "LODO1.spad" 891733 891743 892013 892052) (-597 "LODO.spad" 891158 891174 891454 891493) (-596 "LODEEF.spad" 889960 889978 891148 891153) (-595 "LO.spad" 889361 889375 889894 889921) (-594 "LNAGG.spad" 885548 885558 889351 889356) (-593 "LNAGG.spad" 881699 881711 885504 885509) (-592 "LMOPS.spad" 878467 878484 881689 881694) (-591 "LMODULE.spad" 878251 878261 878457 878462) (-590 "LMDICT.spad" 877483 877493 877731 877746) (-589 "LLINSET.spad" 877190 877200 877473 877478) (-588 "LITERAL.spad" 877096 877107 877180 877185) (-587 "LIST3.spad" 876407 876421 877086 877091) (-586 "LIST2MAP.spad" 873334 873346 876397 876402) (-585 "LIST2.spad" 872036 872048 873324 873329) (-584 "LIST.spad" 869605 869615 870948 870963) (-583 "LINSET.spad" 869384 869394 869595 869600) (-582 "LINFORM.spad" 868847 868859 869352 869379) (-581 "LINEXP.spad" 867590 867600 868837 868842) (-580 "LINELT.spad" 866961 866973 867473 867500) (-579 "LINDEP.spad" 865810 865822 866873 866878) (-578 "LINBASIS.spad" 865446 865461 865800 865805) (-577 "LIMITRF.spad" 863393 863403 865436 865441) (-576 "LIMITPS.spad" 862303 862316 863383 863388) (-575 "LIECAT.spad" 861787 861797 862229 862298) (-574 "LIECAT.spad" 861299 861311 861743 861748) (-573 "LIE.spad" 859303 859315 860577 860719) (-572 "LIB.spad" 857156 857164 857602 857617) (-571 "LGROBP.spad" 854509 854528 857146 857151) (-570 "LFCAT.spad" 853568 853576 854499 854504) (-569 "LF.spad" 852523 852539 853558 853563) (-568 "LEXTRIPK.spad" 848146 848161 852513 852518) (-567 "LEXP.spad" 846165 846192 848126 848141) (-566 "LETAST.spad" 845864 845872 846155 846160) (-565 "LEADCDET.spad" 844270 844287 845854 845859) (-564 "LAZM3PK.spad" 843014 843036 844260 844265) (-563 "LAUPOL.spad" 841681 841694 842581 842650) (-562 "LAPLACE.spad" 841264 841280 841671 841676) (-561 "LALG.spad" 841040 841050 841244 841259) (-560 "LALG.spad" 840824 840836 841030 841035) (-559 "LA.spad" 840264 840278 840746 840785) (-558 "KVTFROM.spad" 840007 840017 840254 840259) (-557 "KTVLOGIC.spad" 839551 839559 839997 840002) (-556 "KRCFROM.spad" 839297 839307 839541 839546) (-555 "KOVACIC.spad" 838028 838045 839287 839292) (-554 "KONVERT.spad" 837750 837760 838018 838023) (-553 "KOERCE.spad" 837487 837497 837740 837745) (-552 "KERNEL2.spad" 837190 837202 837477 837482) (-551 "KERNEL.spad" 835910 835920 837039 837044) (-550 "KDAGG.spad" 835019 835041 835890 835905) (-549 "KDAGG.spad" 834136 834160 835009 835014) (-548 "KAFILE.spad" 832563 832579 832798 832813) (-547 "JVMOP.spad" 832476 832484 832553 832558) (-546 "JVMMDACC.spad" 831530 831538 832466 832471) (-545 "JVMFDACC.spad" 830846 830854 831520 831525) (-544 "JVMCSTTG.spad" 829575 829583 830836 830841) (-543 "JVMCFACC.spad" 829021 829029 829565 829570) (-542 "JVMBCODE.spad" 828932 828940 829011 829016) (-541 "JORDAN.spad" 826749 826761 828210 828352) (-540 "JOINAST.spad" 826451 826459 826739 826744) (-539 "IXAGG.spad" 824584 824608 826441 826446) (-538 "IXAGG.spad" 822547 822573 824406 824411) (-537 "ITUPLE.spad" 821723 821733 822537 822542) (-536 "ITRIGMNP.spad" 820570 820589 821713 821718) (-535 "ITFUN3.spad" 820076 820090 820560 820565) (-534 "ITFUN2.spad" 819820 819832 820066 820071) (-533 "ITFORM.spad" 819175 819183 819810 819815) (-532 "ITAYLOR.spad" 817169 817184 819039 819136) (-531 "ISUPS.spad" 809618 809633 816155 816252) (-530 "ISUMP.spad" 809119 809135 809608 809613) (-529 "ISAST.spad" 808838 808846 809109 809114) (-528 "IRURPK.spad" 807555 807574 808828 808833) (-527 "IRSN.spad" 805559 805567 807545 807550) (-526 "IRRF2F.spad" 804052 804062 805515 805520) (-525 "IRREDFFX.spad" 803653 803664 804042 804047) (-524 "IROOT.spad" 801992 802002 803643 803648) (-523 "IRFORM.spad" 801316 801324 801982 801987) (-522 "IR2F.spad" 800530 800546 801306 801311) (-521 "IR2.spad" 799558 799574 800520 800525) (-520 "IR.spad" 797394 797408 799440 799467) (-519 "IPRNTPK.spad" 797154 797162 797384 797389) (-518 "IPF.spad" 796719 796731 796959 797052) (-517 "IPADIC.spad" 796488 796514 796645 796714) (-516 "IP4ADDR.spad" 796045 796053 796478 796483) (-515 "IOMODE.spad" 795567 795575 796035 796040) (-514 "IOBFILE.spad" 794952 794960 795557 795562) (-513 "IOBCON.spad" 794817 794825 794942 794947) (-512 "INVLAPLA.spad" 794466 794482 794807 794812) (-511 "INTTR.spad" 787860 787877 794456 794461) (-510 "INTTOOLS.spad" 785668 785684 787487 787492) (-509 "INTSLPE.spad" 784996 785004 785658 785663) (-508 "INTRVL.spad" 784562 784572 784910 784991) (-507 "INTRF.spad" 782994 783008 784552 784557) (-506 "INTRET.spad" 782426 782436 782984 782989) (-505 "INTRAT.spad" 781161 781178 782416 782421) (-504 "INTPM.spad" 779624 779640 780882 780887) (-503 "INTPAF.spad" 777500 777518 779553 779558) (-502 "INTHERTR.spad" 776774 776791 777490 777495) (-501 "INTHERAL.spad" 776444 776468 776764 776769) (-500 "INTHEORY.spad" 772883 772891 776434 776439) (-499 "INTG0.spad" 766647 766665 772812 772817) (-498 "INTFACT.spad" 765714 765724 766637 766642) (-497 "INTEF.spad" 764125 764141 765704 765709) (-496 "INTDOM.spad" 762748 762756 764051 764120) (-495 "INTDOM.spad" 761433 761443 762738 762743) (-494 "INTCAT.spad" 759700 759710 761347 761428) (-493 "INTBIT.spad" 759207 759215 759690 759695) (-492 "INTALG.spad" 758395 758422 759197 759202) (-491 "INTAF.spad" 757895 757911 758385 758390) (-490 "INTABL.spad" 755763 755794 755926 755941) (-489 "INT8.spad" 755643 755651 755753 755758) (-488 "INT64.spad" 755522 755530 755633 755638) (-487 "INT32.spad" 755401 755409 755512 755517) (-486 "INT16.spad" 755280 755288 755391 755396) (-485 "INT.spad" 754806 754814 755146 755275) (-484 "INS.spad" 752309 752317 754708 754801) (-483 "INS.spad" 749898 749908 752299 752304) (-482 "INPSIGN.spad" 749368 749381 749888 749893) (-481 "INPRODPF.spad" 748464 748483 749358 749363) (-480 "INPRODFF.spad" 747552 747576 748454 748459) (-479 "INNMFACT.spad" 746527 746544 747542 747547) (-478 "INMODGCD.spad" 746031 746061 746517 746522) (-477 "INFSP.spad" 744328 744350 746021 746026) (-476 "INFPROD0.spad" 743408 743427 744318 744323) (-475 "INFORM1.spad" 743033 743043 743398 743403) (-474 "INFORM.spad" 740244 740252 743023 743028) (-473 "INFINITY.spad" 739796 739804 740234 740239) (-472 "INETCLTS.spad" 739773 739781 739786 739791) (-471 "INEP.spad" 738319 738341 739763 739768) (-470 "INDE.spad" 737968 737985 738229 738234) (-469 "INCRMAPS.spad" 737405 737415 737958 737963) (-468 "INBFILE.spad" 736501 736509 737395 737400) (-467 "INBFF.spad" 732351 732362 736491 736496) (-466 "INBCON.spad" 730617 730625 732341 732346) (-465 "INBCON.spad" 728881 728891 730607 730612) (-464 "INAST.spad" 728542 728550 728871 728876) (-463 "IMPTAST.spad" 728250 728258 728532 728537) (-462 "IMATQF.spad" 727316 727360 728178 728183) (-461 "IMATLIN.spad" 725909 725933 727244 727249) (-460 "IFF.spad" 725322 725338 725593 725686) (-459 "IFAST.spad" 724936 724944 725312 725317) (-458 "IFARRAY.spad" 722150 722165 723848 723863) (-457 "IFAMON.spad" 722012 722029 722106 722111) (-456 "IEVALAB.spad" 721425 721437 722002 722007) (-455 "IEVALAB.spad" 720836 720850 721415 721420) (-454 "indexedp.spad" 720392 720404 720826 720831) (-453 "IDPOAMS.spad" 720070 720082 720304 720309) (-452 "IDPOAM.spad" 719712 719724 719982 719987) (-451 "IDPO.spad" 719126 719138 719624 719629) (-450 "IDPC.spad" 717841 717853 719116 719121) (-449 "IDPAM.spad" 717508 717520 717753 717758) (-448 "IDPAG.spad" 717177 717189 717420 717425) (-447 "IDENT.spad" 716829 716837 717167 717172) (-446 "catdef.spad" 716600 716611 716712 716824) (-445 "IDECOMP.spad" 713839 713857 716590 716595) (-444 "IDEAL.spad" 708801 708840 713787 713792) (-443 "ICDEN.spad" 708014 708030 708791 708796) (-442 "ICARD.spad" 707407 707415 708004 708009) (-441 "IBPTOOLS.spad" 706014 706031 707397 707402) (-440 "boolean.spad" 705296 705309 705429 705444) (-439 "IBATOOL.spad" 702281 702300 705286 705291) (-438 "IBACHIN.spad" 700788 700803 702271 702276) (-437 "array2.spad" 700285 700307 700472 700487) (-436 "IARRAY1.spad" 699051 699066 699197 699212) (-435 "IAN.spad" 697433 697441 698882 698975) (-434 "IALGFACT.spad" 697044 697077 697423 697428) (-433 "HYPCAT.spad" 696468 696476 697034 697039) (-432 "HYPCAT.spad" 695890 695900 696458 696463) (-431 "HOSTNAME.spad" 695706 695714 695880 695885) (-430 "HOMOTOP.spad" 695449 695459 695696 695701) (-429 "HOAGG.spad" 694685 694695 695439 695444) (-428 "HOAGG.spad" 693707 693719 694463 694468) (-427 "HEXADEC.spad" 691932 691940 692297 692390) (-426 "HEUGCD.spad" 691023 691034 691922 691927) (-425 "HELLFDIV.spad" 690629 690653 691013 691018) (-424 "HEAP.spad" 690098 690108 690313 690328) (-423 "HEADAST.spad" 689639 689647 690088 690093) (-422 "HDP.spad" 679183 679199 679560 679645) (-421 "HDMP.spad" 676730 676745 677346 677473) (-420 "HB.spad" 675005 675013 676720 676725) (-419 "HASHTBL.spad" 672825 672856 673036 673051) (-418 "HASAST.spad" 672541 672549 672815 672820) (-417 "HACKPI.spad" 672032 672040 672443 672536) (-416 "GTSET.spad" 670810 670826 671517 671532) (-415 "GSTBL.spad" 668667 668702 668841 668856) (-414 "GSERIES.spad" 666039 666066 666858 667007) (-413 "GROUP.spad" 665312 665320 666019 666034) (-412 "GROUP.spad" 664593 664603 665302 665307) (-411 "GROEBSOL.spad" 663087 663108 664583 664588) (-410 "GRMOD.spad" 661668 661680 663077 663082) (-409 "GRMOD.spad" 660247 660261 661658 661663) (-408 "GRIMAGE.spad" 653160 653168 660237 660242) (-407 "GRDEF.spad" 651539 651547 653150 653155) (-406 "GRAY.spad" 650010 650018 651529 651534) (-405 "GRALG.spad" 649105 649117 650000 650005) (-404 "GRALG.spad" 648198 648212 649095 649100) (-403 "GPOLSET.spad" 647507 647530 647719 647734) (-402 "GOSPER.spad" 646784 646802 647497 647502) (-401 "GMODPOL.spad" 645932 645959 646752 646779) (-400 "GHENSEL.spad" 645015 645029 645922 645927) (-399 "GENUPS.spad" 641308 641321 645005 645010) (-398 "GENUFACT.spad" 640885 640895 641298 641303) (-397 "GENPGCD.spad" 640487 640504 640875 640880) (-396 "GENMFACT.spad" 639939 639958 640477 640482) (-395 "GENEEZ.spad" 637898 637911 639929 639934) (-394 "GDMP.spad" 635287 635304 636061 636188) (-393 "GCNAALG.spad" 629210 629237 635081 635148) (-392 "GCDDOM.spad" 628402 628410 629136 629205) (-391 "GCDDOM.spad" 627656 627666 628392 628397) (-390 "GBINTERN.spad" 623676 623714 627646 627651) (-389 "GBF.spad" 619459 619497 623666 623671) (-388 "GBEUCLID.spad" 617341 617379 619449 619454) (-387 "GB.spad" 614867 614905 617297 617302) (-386 "GAUSSFAC.spad" 614180 614188 614857 614862) (-385 "GALUTIL.spad" 612506 612516 614136 614141) (-384 "GALPOLYU.spad" 610960 610973 612496 612501) (-383 "GALFACTU.spad" 609173 609192 610950 610955) (-382 "GALFACT.spad" 599386 599397 609163 609168) (-381 "FUNDESC.spad" 599064 599072 599376 599381) (-380 "FUNCTION.spad" 598913 598925 599054 599059) (-379 "FT.spad" 597213 597221 598903 598908) (-378 "FSUPFACT.spad" 596127 596146 597163 597168) (-377 "FST.spad" 594213 594221 596117 596122) (-376 "FSRED.spad" 593693 593709 594203 594208) (-375 "FSPRMELT.spad" 592559 592575 593650 593655) (-374 "FSPECF.spad" 590650 590666 592549 592554) (-373 "FSINT.spad" 590310 590326 590640 590645) (-372 "FSERIES.spad" 589501 589513 590130 590229) (-371 "FSCINT.spad" 588818 588834 589491 589496) (-370 "FSAGG2.spad" 587553 587569 588808 588813) (-369 "FSAGG.spad" 586682 586692 587521 587548) (-368 "FSAGG.spad" 585761 585773 586602 586607) (-367 "FS2UPS.spad" 580276 580310 585751 585756) (-366 "FS2EXPXP.spad" 579417 579440 580266 580271) (-365 "FS2.spad" 579072 579088 579407 579412) (-364 "FS.spad" 573344 573354 578851 579067) (-363 "FS.spad" 567418 567430 572927 572932) (-362 "FRUTIL.spad" 566372 566382 567408 567413) (-361 "FRNAALG.spad" 561649 561659 566314 566367) (-360 "FRNAALG.spad" 556938 556950 561605 561610) (-359 "FRNAAF2.spad" 556386 556404 556928 556933) (-358 "FRMOD.spad" 555794 555824 556315 556320) (-357 "FRIDEAL2.spad" 555398 555430 555784 555789) (-356 "FRIDEAL.spad" 554623 554644 555378 555393) (-355 "FRETRCT.spad" 554142 554152 554613 554618) (-354 "FRETRCT.spad" 553568 553580 554041 554046) (-353 "FRAMALG.spad" 551948 551961 553524 553563) (-352 "FRAMALG.spad" 550360 550375 551938 551943) (-351 "FRAC2.spad" 549965 549977 550350 550355) (-350 "FRAC.spad" 547952 547962 548339 548512) (-349 "FR2.spad" 547288 547300 547942 547947) (-348 "FR.spad" 541076 541086 546349 546418) (-347 "FPS.spad" 537915 537923 540966 541071) (-346 "FPS.spad" 534782 534792 537835 537840) (-345 "FPC.spad" 533828 533836 534684 534777) (-344 "FPC.spad" 532960 532970 533818 533823) (-343 "FPATMAB.spad" 532722 532732 532950 532955) (-342 "FPARFRAC.spad" 531564 531581 532712 532717) (-341 "FORDER.spad" 531255 531279 531554 531559) (-340 "FNLA.spad" 530679 530701 531223 531250) (-339 "FNCAT.spad" 529274 529282 530669 530674) (-338 "FNAME.spad" 529166 529174 529264 529269) (-337 "FMONOID.spad" 528847 528857 529122 529127) (-336 "FMONCAT.spad" 526016 526026 528837 528842) (-335 "FMCAT.spad" 523692 523710 525984 526011) (-334 "FM1.spad" 523057 523069 523626 523653) (-333 "FM.spad" 522672 522684 522911 522938) (-332 "FLOATRP.spad" 520415 520429 522662 522667) (-331 "FLOATCP.spad" 517854 517868 520405 520410) (-330 "FLOAT.spad" 514945 514953 517720 517849) (-329 "FLINEXP.spad" 514667 514677 514935 514940) (-328 "FLINEXP.spad" 514346 514358 514616 514621) (-327 "FLASORT.spad" 513672 513684 514336 514341) (-326 "FLALG.spad" 511342 511361 513598 513667) (-325 "FLAGG2.spad" 510059 510075 511332 511337) (-324 "FLAGG.spad" 507135 507145 510049 510054) (-323 "FLAGG.spad" 504076 504088 506992 506997) (-322 "FINRALG.spad" 502161 502174 504032 504071) (-321 "FINRALG.spad" 500172 500187 502045 502050) (-320 "FINITE.spad" 499324 499332 500162 500167) (-319 "FINITE.spad" 498474 498484 499314 499319) (-318 "aggcat.spad" 495404 495414 498464 498469) (-317 "FINAGG.spad" 492299 492311 495361 495366) (-316 "FINAALG.spad" 481484 481494 492241 492294) (-315 "FINAALG.spad" 470681 470693 481440 481445) (-314 "FILECAT.spad" 469215 469232 470671 470676) (-313 "FILE.spad" 468798 468808 469205 469210) (-312 "FIELD.spad" 468204 468212 468700 468793) (-311 "FIELD.spad" 467696 467706 468194 468199) (-310 "FGROUP.spad" 466359 466369 467676 467691) (-309 "FGLMICPK.spad" 465154 465169 466349 466354) (-308 "FFX.spad" 464540 464555 464873 464966) (-307 "FFSLPE.spad" 464051 464072 464530 464535) (-306 "FFPOLY2.spad" 463111 463128 464041 464046) (-305 "FFPOLY.spad" 454453 454464 463101 463106) (-304 "FFP.spad" 453861 453881 454172 454265) (-303 "FFNBX.spad" 452384 452404 453580 453673) (-302 "FFNBP.spad" 450908 450925 452103 452196) (-301 "FFNB.spad" 449376 449397 450592 450685) (-300 "FFINTBAS.spad" 446890 446909 449366 449371) (-299 "FFIELDC.spad" 444475 444483 446792 446885) (-298 "FFIELDC.spad" 442146 442156 444465 444470) (-297 "FFHOM.spad" 440918 440935 442136 442141) (-296 "FFF.spad" 438361 438372 440908 440913) (-295 "FFCGX.spad" 437219 437239 438080 438173) (-294 "FFCGP.spad" 436119 436139 436938 437031) (-293 "FFCG.spad" 434914 434935 435803 435896) (-292 "FFCAT2.spad" 434661 434701 434904 434909) (-291 "FFCAT.spad" 427826 427848 434500 434656) (-290 "FFCAT.spad" 421070 421094 427746 427751) (-289 "FF.spad" 420521 420537 420754 420847) (-288 "FEVALAB.spad" 420229 420239 420511 420516) (-287 "FEVALAB.spad" 419713 419725 419997 420002) (-286 "FDIVCAT.spad" 417809 417833 419703 419708) (-285 "FDIVCAT.spad" 415903 415929 417799 417804) (-284 "FDIV2.spad" 415559 415599 415893 415898) (-283 "FDIV.spad" 415017 415041 415549 415554) (-282 "FCTRDATA.spad" 414025 414033 415007 415012) (-281 "FCOMP.spad" 413404 413414 414015 414020) (-280 "FAXF.spad" 406439 406453 413306 413399) (-279 "FAXF.spad" 399526 399542 406395 406400) (-278 "FARRAY.spad" 397405 397415 398438 398453) (-277 "FAMR.spad" 395549 395561 397303 397400) (-276 "FAMR.spad" 393677 393691 395433 395438) (-275 "FAMONOID.spad" 393361 393371 393631 393636) (-274 "FAMONC.spad" 391681 391693 393351 393356) (-273 "FAGROUP.spad" 391321 391331 391577 391604) (-272 "FACUTIL.spad" 389533 389550 391311 391316) (-271 "FACTFUNC.spad" 388735 388745 389523 389528) (-270 "EXPUPXS.spad" 385627 385650 386926 387075) (-269 "EXPRTUBE.spad" 382915 382923 385617 385622) (-268 "EXPRODE.spad" 380083 380099 382905 382910) (-267 "EXPR2UPS.spad" 376205 376218 380073 380078) (-266 "EXPR2.spad" 375910 375922 376195 376200) (-265 "EXPR.spad" 371555 371565 372269 372556) (-264 "EXPEXPAN.spad" 368500 368525 369132 369225) (-263 "EXITAST.spad" 368236 368244 368490 368495) (-262 "EXIT.spad" 367907 367915 368226 368231) (-261 "EVALCYC.spad" 367367 367381 367897 367902) (-260 "EVALAB.spad" 366947 366957 367357 367362) (-259 "EVALAB.spad" 366525 366537 366937 366942) (-258 "EUCDOM.spad" 364115 364123 366451 366520) (-257 "EUCDOM.spad" 361767 361777 364105 364110) (-256 "ES2.spad" 361280 361296 361757 361762) (-255 "ES1.spad" 360850 360866 361270 361275) (-254 "ES.spad" 353721 353729 360840 360845) (-253 "ES.spad" 346513 346523 353634 353639) (-252 "ERROR.spad" 343840 343848 346503 346508) (-251 "EQTBL.spad" 341662 341684 341871 341886) (-250 "EQ2.spad" 341380 341392 341652 341657) (-249 "EQ.spad" 336286 336296 339081 339187) (-248 "EP.spad" 332612 332622 336276 336281) (-247 "ENV.spad" 331290 331298 332602 332607) (-246 "ENTIRER.spad" 330958 330966 331234 331285) (-245 "ENTIRER.spad" 330670 330680 330948 330953) (-244 "EMR.spad" 329958 329999 330596 330665) (-243 "ELTAGG.spad" 328212 328231 329948 329953) (-242 "ELTAGG.spad" 326430 326451 328168 328173) (-241 "ELTAB.spad" 325905 325918 326420 326425) (-240 "ELFUTS.spad" 325340 325359 325895 325900) (-239 "ELEMFUN.spad" 325029 325037 325330 325335) (-238 "ELEMFUN.spad" 324716 324726 325019 325024) (-237 "ELAGG.spad" 322687 322697 324696 324711) (-236 "ELAGG.spad" 320597 320609 322608 322613) (-235 "ELABOR.spad" 319943 319951 320587 320592) (-234 "ELABEXPR.spad" 318875 318883 319933 319938) (-233 "EFUPXS.spad" 315651 315681 318831 318836) (-232 "EFULS.spad" 312487 312510 315607 315612) (-231 "EFSTRUC.spad" 310502 310518 312477 312482) (-230 "EF.spad" 305278 305294 310492 310497) (-229 "EAB.spad" 303578 303586 305268 305273) (-228 "DVARCAT.spad" 300584 300594 303568 303573) (-227 "DVARCAT.spad" 297588 297600 300574 300579) (-226 "DSMP.spad" 295321 295335 295626 295753) (-225 "DSEXT.spad" 294623 294633 295311 295316) (-224 "DSEXT.spad" 293845 293857 294535 294540) (-223 "DROPT1.spad" 293510 293520 293835 293840) (-222 "DROPT0.spad" 288375 288383 293500 293505) (-221 "DROPT.spad" 282334 282342 288365 288370) (-220 "DRAWPT.spad" 280507 280515 282324 282329) (-219 "DRAWHACK.spad" 279815 279825 280497 280502) (-218 "DRAWCX.spad" 277293 277301 279805 279810) (-217 "DRAWCURV.spad" 276840 276855 277283 277288) (-216 "DRAWCFUN.spad" 266372 266380 276830 276835) (-215 "DRAW.spad" 259248 259261 266362 266367) (-214 "DQAGG.spad" 257438 257448 259228 259243) (-213 "DPOLCAT.spad" 252795 252811 257306 257433) (-212 "DPOLCAT.spad" 248238 248256 252751 252756) (-211 "DPMO.spad" 240852 240868 240990 241184) (-210 "DPMM.spad" 233479 233497 233604 233798) (-209 "DOMTMPLT.spad" 233250 233258 233469 233474) (-208 "DOMCTOR.spad" 233005 233013 233240 233245) (-207 "DOMAIN.spad" 232116 232124 232995 233000) (-206 "DMP.spad" 229709 229724 230279 230406) (-205 "DMEXT.spad" 229576 229586 229677 229704) (-204 "DLP.spad" 228936 228946 229566 229571) (-203 "DLIST.spad" 227244 227254 227848 227863) (-202 "DLAGG.spad" 225661 225671 227234 227239) (-201 "DIVRING.spad" 225203 225211 225605 225656) (-200 "DIVRING.spad" 224789 224799 225193 225198) (-199 "DISPLAY.spad" 222979 222987 224779 224784) (-198 "DIRPROD2.spad" 221797 221815 222969 222974) (-197 "DIRPROD.spad" 211078 211094 211718 211803) (-196 "DIRPCAT.spad" 210373 210389 210988 211073) (-195 "DIRPCAT.spad" 209282 209300 209899 209904) (-194 "DIOSP.spad" 208107 208115 209272 209277) (-193 "DIOPS.spad" 207103 207113 208087 208102) (-192 "DIOPS.spad" 206046 206058 207032 207037) (-191 "catdef.spad" 205904 205912 206036 206041) (-190 "DIFRING.spad" 205742 205750 205884 205899) (-189 "DIFFSPC.spad" 205321 205329 205732 205737) (-188 "DIFFSPC.spad" 204898 204908 205311 205316) (-187 "DIFFMOD.spad" 204387 204397 204866 204893) (-186 "DIFFDOM.spad" 203552 203563 204377 204382) (-185 "DIFFDOM.spad" 202715 202728 203542 203547) (-184 "DIFEXT.spad" 202534 202544 202695 202710) (-183 "DIAGG.spad" 202164 202174 202514 202529) (-182 "DIAGG.spad" 201802 201814 202154 202159) (-181 "DHMATRIX.spad" 200191 200201 201336 201351) (-180 "DFSFUN.spad" 193831 193839 200181 200186) (-179 "DFLOAT.spad" 190438 190446 193721 193826) (-178 "DFINTTLS.spad" 188669 188685 190428 190433) (-177 "DERHAM.spad" 186583 186615 188649 188664) (-176 "DEQUEUE.spad" 185984 185994 186267 186282) (-175 "DEGRED.spad" 185601 185615 185974 185979) (-174 "DEFINTRF.spad" 183183 183193 185591 185596) (-173 "DEFINTEF.spad" 181721 181737 183173 183178) (-172 "DEFAST.spad" 181105 181113 181711 181716) (-171 "DECIMAL.spad" 179334 179342 179695 179788) (-170 "DDFACT.spad" 177155 177172 179324 179329) (-169 "DBLRESP.spad" 176755 176779 177145 177150) (-168 "DBASIS.spad" 176381 176396 176745 176750) (-167 "DBASE.spad" 175045 175055 176371 176376) (-166 "DATAARY.spad" 174531 174544 175035 175040) (-165 "CYCLOTOM.spad" 174037 174045 174521 174526) (-164 "CYCLES.spad" 170823 170831 174027 174032) (-163 "CVMP.spad" 170240 170250 170813 170818) (-162 "CTRIGMNP.spad" 168740 168756 170230 170235) (-161 "CTORKIND.spad" 168343 168351 168730 168735) (-160 "CTORCAT.spad" 167584 167592 168333 168338) (-159 "CTORCAT.spad" 166823 166833 167574 167579) (-158 "CTORCALL.spad" 166412 166422 166813 166818) (-157 "CTOR.spad" 166103 166111 166402 166407) (-156 "CSTTOOLS.spad" 165348 165361 166093 166098) (-155 "CRFP.spad" 159120 159133 165338 165343) (-154 "CRCEAST.spad" 158840 158848 159110 159115) (-153 "CRAPACK.spad" 157907 157917 158830 158835) (-152 "CPMATCH.spad" 157408 157423 157829 157834) (-151 "CPIMA.spad" 157113 157132 157398 157403) (-150 "COORDSYS.spad" 152122 152132 157103 157108) (-149 "CONTOUR.spad" 151549 151557 152112 152117) (-148 "CONTFRAC.spad" 147299 147309 151451 151544) (-147 "CONDUIT.spad" 147057 147065 147289 147294) (-146 "COMRING.spad" 146731 146739 146995 147052) (-145 "COMPPROP.spad" 146249 146257 146721 146726) (-144 "COMPLPAT.spad" 146016 146031 146239 146244) (-143 "COMPLEX2.spad" 145731 145743 146006 146011) (-142 "COMPLEX.spad" 141437 141447 141681 141939) (-141 "COMPILER.spad" 140986 140994 141427 141432) (-140 "COMPFACT.spad" 140588 140602 140976 140981) (-139 "COMPCAT.spad" 138663 138673 140325 140583) (-138 "COMPCAT.spad" 136479 136491 138143 138148) (-137 "COMMUPC.spad" 136227 136245 136469 136474) (-136 "COMMONOP.spad" 135760 135768 136217 136222) (-135 "COMMAAST.spad" 135523 135531 135750 135755) (-134 "COMM.spad" 135334 135342 135513 135518) (-133 "COMBOPC.spad" 134257 134265 135324 135329) (-132 "COMBINAT.spad" 133024 133034 134247 134252) (-131 "COMBF.spad" 130446 130462 133014 133019) (-130 "COLOR.spad" 129283 129291 130436 130441) (-129 "COLONAST.spad" 128949 128957 129273 129278) (-128 "CMPLXRT.spad" 128660 128677 128939 128944) (-127 "CLLCTAST.spad" 128322 128330 128650 128655) (-126 "CLIP.spad" 124430 124438 128312 128317) (-125 "CLIF.spad" 123085 123101 124386 124425) (-124 "CLAGG.spad" 121077 121087 123075 123080) (-123 "CLAGG.spad" 118928 118940 120928 120933) (-122 "CINTSLPE.spad" 118283 118296 118918 118923) (-121 "CHVAR.spad" 116421 116443 118273 118278) (-120 "CHARZ.spad" 116336 116344 116401 116416) (-119 "CHARPOL.spad" 115862 115872 116326 116331) (-118 "CHARNZ.spad" 115624 115632 115842 115857) (-117 "CHAR.spad" 112992 113000 115614 115619) (-116 "CFCAT.spad" 112320 112328 112982 112987) (-115 "CDEN.spad" 111540 111554 112310 112315) (-114 "CCLASS.spad" 109609 109617 110871 110898) (-113 "CATEGORY.spad" 108683 108691 109599 109604) (-112 "CATCTOR.spad" 108574 108582 108673 108678) (-111 "CATAST.spad" 108200 108208 108564 108569) (-110 "CASEAST.spad" 107914 107922 108190 108195) (-109 "CARTEN2.spad" 107304 107331 107904 107909) (-108 "CARTEN.spad" 103056 103080 107294 107299) (-107 "CARD.spad" 100351 100359 103030 103051) (-106 "CAPSLAST.spad" 100133 100141 100341 100346) (-105 "CACHSET.spad" 99757 99765 100123 100128) (-104 "CABMON.spad" 99312 99320 99747 99752) (-103 "BYTEORD.spad" 98987 98995 99302 99307) (-102 "BYTEBUF.spad" 96797 96805 98003 98018) (-101 "BYTE.spad" 96272 96280 96787 96792) (-100 "BTREE.spad" 95361 95371 95895 95910) (-99 "BTOURN.spad" 94383 94392 94984 94999) (-98 "BTCAT.spad" 93953 93962 94363 94378) (-97 "BTCAT.spad" 93531 93542 93943 93948) (-96 "BTAGG.spad" 93010 93017 93511 93526) (-95 "BTAGG.spad" 92497 92506 93000 93005) (-94 "BSTREE.spad" 91255 91264 92120 92135) (-93 "BRILL.spad" 89461 89471 91245 91250) (-92 "BRAGG.spad" 88418 88427 89451 89456) (-91 "BRAGG.spad" 87311 87322 88346 88351) (-90 "BPADICRT.spad" 85371 85382 85617 85710) (-89 "BPADIC.spad" 85044 85055 85297 85366) (-88 "BOUNDZRO.spad" 84701 84717 85034 85039) (-87 "BOP1.spad" 82160 82169 84691 84696) (-86 "BOP.spad" 77303 77310 82150 82155) (-85 "BOOLEAN.spad" 76852 76859 77293 77298) (-84 "BOOLE.spad" 76503 76510 76842 76847) (-83 "BOOLE.spad" 76152 76161 76493 76498) (-82 "BMODULE.spad" 75865 75876 76120 76147) (-81 "BITS.spad" 75066 75073 75280 75295) (-80 "catdef.spad" 74949 74959 75056 75061) (-79 "catdef.spad" 74700 74710 74939 74944) (-78 "BINDING.spad" 74122 74129 74690 74695) (-77 "BINARY.spad" 72357 72364 72712 72805) (-76 "BGAGG.spad" 71677 71686 72337 72352) (-75 "BGAGG.spad" 71005 71016 71667 71672) (-74 "BEZOUT.spad" 70146 70172 70955 70960) (-73 "BBTREE.spad" 67040 67049 69769 69784) (-72 "BASTYPE.spad" 66540 66547 67030 67035) (-71 "BASTYPE.spad" 66038 66047 66530 66535) (-70 "BALFACT.spad" 65498 65510 66028 66033) (-69 "AUTOMOR.spad" 64949 64958 65478 65493) (-68 "ATTREG.spad" 62081 62088 64725 64944) (-67 "ATTRAST.spad" 61798 61805 62071 62076) (-66 "ATRIG.spad" 61268 61275 61788 61793) (-65 "ATRIG.spad" 60736 60745 61258 61263) (-64 "ASTCAT.spad" 60640 60647 60726 60731) (-63 "ASTCAT.spad" 60542 60551 60630 60635) (-62 "ASTACK.spad" 59958 59967 60226 60241) (-61 "ASSOCEQ.spad" 58792 58803 59914 59919) (-60 "ARRAY2.spad" 58327 58336 58476 58491) (-59 "ARRAY12.spad" 57040 57051 58317 58322) (-58 "ARRAY1.spad" 55606 55615 55952 55967) (-57 "ARR2CAT.spad" 51658 51679 55586 55601) (-56 "ARR2CAT.spad" 47718 47741 51648 51653) (-55 "ARITY.spad" 47090 47097 47708 47713) (-54 "APPRULE.spad" 46374 46396 47080 47085) (-53 "APPLYORE.spad" 45993 46006 46364 46369) (-52 "ANY1.spad" 45064 45073 45983 45988) (-51 "ANY.spad" 43915 43922 45054 45059) (-50 "ANTISYM.spad" 42360 42376 43895 43910) (-49 "ANON.spad" 42069 42076 42350 42355) (-48 "AN.spad" 40537 40544 41900 41993) (-47 "AMR.spad" 38722 38733 40435 40532) (-46 "AMR.spad" 36770 36783 38485 38490) (-45 "ALIST.spad" 33066 33087 33416 33431) (-44 "ALGSC.spad" 32201 32227 32938 32991) (-43 "ALGPKG.spad" 27984 27995 32157 32162) (-42 "ALGMFACT.spad" 27177 27191 27974 27979) (-41 "ALGMANIP.spad" 24678 24693 27021 27026) (-40 "ALGFF.spad" 22496 22523 22713 22869) (-39 "ALGFACT.spad" 21615 21625 22486 22491) (-38 "ALGEBRA.spad" 21448 21457 21571 21610) (-37 "ALGEBRA.spad" 21313 21324 21438 21443) (-36 "ALAGG.spad" 20841 20862 21293 21308) (-35 "AHYP.spad" 20222 20229 20831 20836) (-34 "AGG.spad" 19129 19136 20212 20217) (-33 "AGG.spad" 18034 18043 19119 19124) (-32 "AF.spad" 16479 16494 17983 17988) (-31 "ADDAST.spad" 16165 16172 16469 16474) (-30 "ACPLOT.spad" 15042 15049 16155 16160) (-29 "ACFS.spad" 12899 12908 14944 15037) (-28 "ACFS.spad" 10842 10853 12889 12894) (-27 "ACF.spad" 7596 7603 10744 10837) (-26 "ACF.spad" 4436 4445 7586 7591) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 2944 2951 3506 3511) (-22 "ABELMON.spad" 2370 2379 2934 2939) (-21 "ABELGRP.spad" 2035 2042 2360 2365) (-20 "ABELGRP.spad" 1698 1707 2025 2030) (-19 "A1AGG.spad" 860 869 1678 1693) (-18 "A1AGG.spad" 30 41 850 855)) \ No newline at end of file
+((-3 NIL 1968158 1968163 1968168 1968173) (-2 NIL 1968138 1968143 1968148 1968153) (-1 NIL 1968118 1968123 1968128 1968133) (0 NIL 1968098 1968103 1968108 1968113) (-1209 "ZMOD.spad" 1967907 1967920 1968036 1968093) (-1208 "ZLINDEP.spad" 1967005 1967016 1967897 1967902) (-1207 "ZDSOLVE.spad" 1956966 1956988 1966995 1967000) (-1206 "YSTREAM.spad" 1956461 1956472 1956956 1956961) (-1205 "YDIAGRAM.spad" 1956095 1956104 1956451 1956456) (-1204 "XRPOLY.spad" 1955315 1955335 1955951 1956020) (-1203 "XPR.spad" 1953110 1953123 1955033 1955132) (-1202 "XPOLYC.spad" 1952429 1952445 1953036 1953105) (-1201 "XPOLY.spad" 1951984 1951995 1952285 1952354) (-1200 "XPBWPOLY.spad" 1950455 1950475 1951790 1951859) (-1199 "XFALG.spad" 1947503 1947519 1950381 1950450) (-1198 "XF.spad" 1945966 1945981 1947405 1947498) (-1197 "XF.spad" 1944409 1944426 1945850 1945855) (-1196 "XEXPPKG.spad" 1943668 1943694 1944399 1944404) (-1195 "XDPOLY.spad" 1943282 1943298 1943524 1943593) (-1194 "XALG.spad" 1942950 1942961 1943238 1943277) (-1193 "WUTSET.spad" 1938804 1938821 1942435 1942450) (-1192 "WP.spad" 1938011 1938055 1938662 1938729) (-1191 "WHILEAST.spad" 1937809 1937818 1938001 1938006) (-1190 "WHEREAST.spad" 1937480 1937489 1937799 1937804) (-1189 "WFFINTBS.spad" 1935143 1935165 1937470 1937475) (-1188 "WEIER.spad" 1933365 1933376 1935133 1935138) (-1187 "VSPACE.spad" 1933038 1933049 1933333 1933360) (-1186 "VSPACE.spad" 1932731 1932744 1933028 1933033) (-1185 "VOID.spad" 1932408 1932417 1932721 1932726) (-1184 "VIEWDEF.spad" 1927609 1927618 1932398 1932403) (-1183 "VIEW3D.spad" 1911570 1911579 1927599 1927604) (-1182 "VIEW2D.spad" 1899469 1899478 1911560 1911565) (-1181 "VIEW.spad" 1897189 1897198 1899459 1899464) (-1180 "VECTOR2.spad" 1895828 1895841 1897179 1897184) (-1179 "VECTOR.spad" 1894234 1894245 1894485 1894500) (-1178 "VECTCAT.spad" 1892158 1892169 1894214 1894229) (-1177 "VECTCAT.spad" 1889879 1889892 1891937 1891942) (-1176 "VARIABLE.spad" 1889659 1889674 1889869 1889874) (-1175 "UTYPE.spad" 1889303 1889312 1889649 1889654) (-1174 "UTSODETL.spad" 1888598 1888622 1889259 1889264) (-1173 "UTSODE.spad" 1886814 1886834 1888588 1888593) (-1172 "UTSCAT.spad" 1884293 1884309 1886712 1886809) (-1171 "UTSCAT.spad" 1881440 1881458 1883861 1883866) (-1170 "UTS2.spad" 1881035 1881070 1881430 1881435) (-1169 "UTS.spad" 1876047 1876075 1879567 1879664) (-1168 "URAGG.spad" 1870768 1870779 1876037 1876042) (-1167 "URAGG.spad" 1865425 1865438 1870696 1870701) (-1166 "UPXSSING.spad" 1863193 1863219 1864629 1864762) (-1165 "UPXSCONS.spad" 1861011 1861031 1861384 1861533) (-1164 "UPXSCCA.spad" 1859582 1859602 1860857 1861006) (-1163 "UPXSCCA.spad" 1858295 1858317 1859572 1859577) (-1162 "UPXSCAT.spad" 1856884 1856900 1858141 1858290) (-1161 "UPXS2.spad" 1856427 1856480 1856874 1856879) (-1160 "UPXS.spad" 1853782 1853810 1854618 1854767) (-1159 "UPSQFREE.spad" 1852197 1852211 1853772 1853777) (-1158 "UPSCAT.spad" 1849992 1850016 1852095 1852192) (-1157 "UPSCAT.spad" 1847488 1847514 1849593 1849598) (-1156 "UPOLYC2.spad" 1846959 1846978 1847478 1847483) (-1155 "UPOLYC.spad" 1842039 1842050 1846801 1846954) (-1154 "UPOLYC.spad" 1837037 1837050 1841801 1841806) (-1153 "UPMP.spad" 1835969 1835982 1837027 1837032) (-1152 "UPDIVP.spad" 1835534 1835548 1835959 1835964) (-1151 "UPDECOMP.spad" 1833795 1833809 1835524 1835529) (-1150 "UPCDEN.spad" 1833012 1833028 1833785 1833790) (-1149 "UP2.spad" 1832376 1832397 1833002 1833007) (-1148 "UP.spad" 1829846 1829861 1830233 1830386) (-1147 "UNISEG2.spad" 1829343 1829356 1829802 1829807) (-1146 "UNISEG.spad" 1828696 1828707 1829262 1829267) (-1145 "UNIFACT.spad" 1827799 1827811 1828686 1828691) (-1144 "ULSCONS.spad" 1821645 1821665 1822015 1822164) (-1143 "ULSCCAT.spad" 1819382 1819402 1821491 1821640) (-1142 "ULSCCAT.spad" 1817227 1817249 1819338 1819343) (-1141 "ULSCAT.spad" 1815467 1815483 1817073 1817222) (-1140 "ULS2.spad" 1814981 1815034 1815457 1815462) (-1139 "ULS.spad" 1807014 1807042 1807959 1808382) (-1138 "UINT8.spad" 1806891 1806900 1807004 1807009) (-1137 "UINT64.spad" 1806767 1806776 1806881 1806886) (-1136 "UINT32.spad" 1806643 1806652 1806757 1806762) (-1135 "UINT16.spad" 1806519 1806528 1806633 1806638) (-1134 "UFD.spad" 1805584 1805593 1806445 1806514) (-1133 "UFD.spad" 1804711 1804722 1805574 1805579) (-1132 "UDVO.spad" 1803592 1803601 1804701 1804706) (-1131 "UDPO.spad" 1801173 1801184 1803548 1803553) (-1130 "TYPEAST.spad" 1801092 1801101 1801163 1801168) (-1129 "TYPE.spad" 1801024 1801033 1801082 1801087) (-1128 "TWOFACT.spad" 1799676 1799691 1801014 1801019) (-1127 "TUPLE.spad" 1799183 1799194 1799588 1799593) (-1126 "TUBETOOL.spad" 1796050 1796059 1799173 1799178) (-1125 "TUBE.spad" 1794697 1794714 1796040 1796045) (-1124 "TSETCAT.spad" 1782780 1782797 1794677 1794692) (-1123 "TSETCAT.spad" 1770837 1770856 1782736 1782741) (-1122 "TS.spad" 1769465 1769481 1770431 1770528) (-1121 "TRMANIP.spad" 1763829 1763846 1769153 1769158) (-1120 "TRIMAT.spad" 1762792 1762817 1763819 1763824) (-1119 "TRIGMNIP.spad" 1761319 1761336 1762782 1762787) (-1118 "TRIGCAT.spad" 1760831 1760840 1761309 1761314) (-1117 "TRIGCAT.spad" 1760341 1760352 1760821 1760826) (-1116 "TREE.spad" 1758932 1758943 1759964 1759979) (-1115 "TRANFUN.spad" 1758771 1758780 1758922 1758927) (-1114 "TRANFUN.spad" 1758608 1758619 1758761 1758766) (-1113 "TOPSP.spad" 1758282 1758291 1758598 1758603) (-1112 "TOOLSIGN.spad" 1757945 1757956 1758272 1758277) (-1111 "TEXTFILE.spad" 1756506 1756515 1757935 1757940) (-1110 "TEX1.spad" 1756062 1756073 1756496 1756501) (-1109 "TEX.spad" 1753256 1753265 1756052 1756057) (-1108 "TBCMPPK.spad" 1751357 1751380 1753246 1753251) (-1107 "TBAGG.spad" 1750612 1750635 1751337 1751352) (-1106 "TBAGG.spad" 1749875 1749900 1750602 1750607) (-1105 "TANEXP.spad" 1749283 1749294 1749865 1749870) (-1104 "TALGOP.spad" 1749007 1749018 1749273 1749278) (-1103 "TABLEAU.spad" 1748488 1748499 1748997 1749002) (-1102 "TABLE.spad" 1746188 1746211 1746458 1746473) (-1101 "TABLBUMP.spad" 1742967 1742978 1746178 1746183) (-1100 "SYSTEM.spad" 1742195 1742204 1742957 1742962) (-1099 "SYSSOLP.spad" 1739678 1739689 1742185 1742190) (-1098 "SYSPTR.spad" 1739577 1739586 1739668 1739673) (-1097 "SYSNNI.spad" 1738800 1738811 1739567 1739572) (-1096 "SYSINT.spad" 1738204 1738215 1738790 1738795) (-1095 "SYNTAX.spad" 1734538 1734547 1738194 1738199) (-1094 "SYMTAB.spad" 1732606 1732615 1734528 1734533) (-1093 "SYMS.spad" 1728635 1728644 1732596 1732601) (-1092 "SYMPOLY.spad" 1727768 1727779 1727850 1727977) (-1091 "SYMFUNC.spad" 1727269 1727280 1727758 1727763) (-1090 "SYMBOL.spad" 1724764 1724773 1727259 1727264) (-1089 "SUTS.spad" 1721877 1721905 1723296 1723393) (-1088 "SUPXS.spad" 1719219 1719247 1720068 1720217) (-1087 "SUPFRACF.spad" 1718324 1718342 1719209 1719214) (-1086 "SUP2.spad" 1717716 1717729 1718314 1718319) (-1085 "SUP.spad" 1714800 1714811 1715573 1715726) (-1084 "SUMRF.spad" 1713774 1713785 1714790 1714795) (-1083 "SUMFS.spad" 1713403 1713420 1713764 1713769) (-1082 "SULS.spad" 1705423 1705451 1706381 1706804) (-1081 "syntax.spad" 1705192 1705201 1705413 1705418) (-1080 "SUCH.spad" 1704882 1704897 1705182 1705187) (-1079 "SUBSPACE.spad" 1697013 1697028 1704872 1704877) (-1078 "SUBRESP.spad" 1696183 1696197 1696969 1696974) (-1077 "STTFNC.spad" 1692651 1692667 1696173 1696178) (-1076 "STTF.spad" 1688750 1688766 1692641 1692646) (-1075 "STTAYLOR.spad" 1681427 1681438 1688657 1688662) (-1074 "STRTBL.spad" 1679351 1679368 1679500 1679515) (-1073 "STRING.spad" 1677982 1677991 1678367 1678382) (-1072 "STREAM3.spad" 1677555 1677570 1677972 1677977) (-1071 "STREAM2.spad" 1676683 1676696 1677545 1677550) (-1070 "STREAM1.spad" 1676389 1676400 1676673 1676678) (-1069 "STREAM.spad" 1673339 1673350 1675830 1675845) (-1068 "STINPROD.spad" 1672275 1672291 1673329 1673334) (-1067 "STEPAST.spad" 1671509 1671518 1672265 1672270) (-1066 "STEP.spad" 1670826 1670835 1671499 1671504) (-1065 "STBL.spad" 1668690 1668718 1668857 1668872) (-1064 "STAGG.spad" 1667389 1667400 1668680 1668685) (-1063 "STAGG.spad" 1666086 1666099 1667379 1667384) (-1062 "STACK.spad" 1665520 1665531 1665770 1665785) (-1061 "SRING.spad" 1665280 1665289 1665510 1665515) (-1060 "SREGSET.spad" 1662863 1662880 1664765 1664780) (-1059 "SRDCMPK.spad" 1661440 1661460 1662853 1662858) (-1058 "SRAGG.spad" 1656635 1656644 1661420 1661435) (-1057 "SRAGG.spad" 1651838 1651849 1656625 1656630) (-1056 "SQMATRIX.spad" 1649527 1649545 1650443 1650518) (-1055 "SPLTREE.spad" 1644177 1644190 1648973 1648988) (-1054 "SPLNODE.spad" 1640797 1640810 1644167 1644172) (-1053 "SPFCAT.spad" 1639606 1639615 1640787 1640792) (-1052 "SPECOUT.spad" 1638158 1638167 1639596 1639601) (-1051 "SPADXPT.spad" 1630249 1630258 1638148 1638153) (-1050 "spad-parser.spad" 1629714 1629723 1630239 1630244) (-1049 "SPADAST.spad" 1629415 1629424 1629704 1629709) (-1048 "SPACEC.spad" 1613630 1613641 1629405 1629410) (-1047 "SPACE3.spad" 1613406 1613417 1613620 1613625) (-1046 "SORTPAK.spad" 1612955 1612968 1613362 1613367) (-1045 "SOLVETRA.spad" 1610718 1610729 1612945 1612950) (-1044 "SOLVESER.spad" 1609174 1609185 1610708 1610713) (-1043 "SOLVERAD.spad" 1605200 1605211 1609164 1609169) (-1042 "SOLVEFOR.spad" 1603662 1603680 1605190 1605195) (-1041 "SNTSCAT.spad" 1603274 1603291 1603642 1603657) (-1040 "SMTS.spad" 1601591 1601617 1602868 1602965) (-1039 "SMP.spad" 1599399 1599419 1599789 1599916) (-1038 "SMITH.spad" 1598244 1598269 1599389 1599394) (-1037 "SMATCAT.spad" 1596374 1596404 1598200 1598239) (-1036 "SMATCAT.spad" 1594424 1594456 1596252 1596257) (-1035 "aggcat.spad" 1594100 1594111 1594404 1594419) (-1034 "SKAGG.spad" 1593081 1593092 1594080 1594095) (-1033 "SINT.spad" 1592380 1592389 1592947 1593076) (-1032 "SIMPAN.spad" 1592108 1592117 1592370 1592375) (-1031 "SIGNRF.spad" 1591233 1591244 1592098 1592103) (-1030 "SIGNEF.spad" 1590519 1590536 1591223 1591228) (-1029 "syntax.spad" 1589936 1589945 1590509 1590514) (-1028 "SIG.spad" 1589298 1589307 1589926 1589931) (-1027 "SHP.spad" 1587242 1587257 1589254 1589259) (-1026 "SHDP.spad" 1576646 1576673 1577163 1577248) (-1025 "SGROUP.spad" 1576254 1576263 1576636 1576641) (-1024 "SGROUP.spad" 1575860 1575871 1576244 1576249) (-1023 "catdef.spad" 1575570 1575582 1575681 1575855) (-1022 "catdef.spad" 1575126 1575138 1575391 1575565) (-1021 "SGCF.spad" 1568265 1568274 1575116 1575121) (-1020 "SFRTCAT.spad" 1567223 1567240 1568245 1568260) (-1019 "SFRGCD.spad" 1566286 1566306 1567213 1567218) (-1018 "SFQCMPK.spad" 1561099 1561119 1566276 1566281) (-1017 "SEXOF.spad" 1560942 1560982 1561089 1561094) (-1016 "SEXCAT.spad" 1558770 1558810 1560932 1560937) (-1015 "SEX.spad" 1558662 1558671 1558760 1558765) (-1014 "SETMN.spad" 1557122 1557139 1558652 1558657) (-1013 "SETCAT.spad" 1556607 1556616 1557112 1557117) (-1012 "SETCAT.spad" 1556090 1556101 1556597 1556602) (-1011 "SETAGG.spad" 1552639 1552650 1556070 1556085) (-1010 "SETAGG.spad" 1549196 1549209 1552629 1552634) (-1009 "SET.spad" 1547354 1547365 1548453 1548480) (-1008 "syntax.spad" 1547057 1547066 1547344 1547349) (-1007 "SEGXCAT.spad" 1546213 1546226 1547047 1547052) (-1006 "SEGCAT.spad" 1545138 1545149 1546203 1546208) (-1005 "SEGBIND2.spad" 1544836 1544849 1545128 1545133) (-1004 "SEGBIND.spad" 1544594 1544605 1544783 1544788) (-1003 "SEGAST.spad" 1544324 1544333 1544584 1544589) (-1002 "SEG2.spad" 1543759 1543772 1544280 1544285) (-1001 "SEG.spad" 1543572 1543583 1543678 1543683) (-1000 "SDVAR.spad" 1542848 1542859 1543562 1543567) (-999 "SDPOL.spad" 1540541 1540551 1540831 1540958) (-998 "SCPKG.spad" 1538631 1538641 1540531 1540536) (-997 "SCOPE.spad" 1537809 1537817 1538621 1538626) (-996 "SCACHE.spad" 1536506 1536516 1537799 1537804) (-995 "SASTCAT.spad" 1536416 1536424 1536496 1536501) (-994 "SAOS.spad" 1536289 1536297 1536406 1536411) (-993 "SAERFFC.spad" 1536003 1536022 1536279 1536284) (-992 "SAEFACT.spad" 1535705 1535724 1535993 1535998) (-991 "SAE.spad" 1533356 1533371 1533966 1534101) (-990 "RURPK.spad" 1531016 1531031 1533346 1533351) (-989 "RULESET.spad" 1530470 1530493 1531006 1531011) (-988 "RULECOLD.spad" 1530323 1530335 1530460 1530465) (-987 "RULE.spad" 1528572 1528595 1530313 1530318) (-986 "RTVALUE.spad" 1528308 1528316 1528562 1528567) (-985 "syntax.spad" 1528026 1528034 1528298 1528303) (-984 "RSETGCD.spad" 1524469 1524488 1528016 1528021) (-983 "RSETCAT.spad" 1514450 1514466 1524449 1524464) (-982 "RSETCAT.spad" 1504439 1504457 1514440 1514445) (-981 "RSDCMPK.spad" 1502940 1502959 1504429 1504434) (-980 "RRCC.spad" 1501325 1501354 1502930 1502935) (-979 "RRCC.spad" 1499708 1499739 1501315 1501320) (-978 "RPTAST.spad" 1499411 1499419 1499698 1499703) (-977 "RPOLCAT.spad" 1478916 1478930 1499279 1499406) (-976 "RPOLCAT.spad" 1458214 1458230 1478579 1478584) (-975 "ROMAN.spad" 1457543 1457551 1458080 1458209) (-974 "ROIRC.spad" 1456624 1456655 1457533 1457538) (-973 "RNS.spad" 1455601 1455609 1456526 1456619) (-972 "RNS.spad" 1454664 1454674 1455591 1455596) (-971 "RNGBIND.spad" 1453825 1453838 1454619 1454624) (-970 "RNG.spad" 1453434 1453442 1453815 1453820) (-969 "RNG.spad" 1453041 1453051 1453424 1453429) (-968 "RMODULE.spad" 1452823 1452833 1453031 1453036) (-967 "RMCAT2.spad" 1452244 1452300 1452813 1452818) (-966 "RMATRIX.spad" 1451066 1451084 1451408 1451435) (-965 "RMATCAT.spad" 1446716 1446746 1451034 1451061) (-964 "RMATCAT.spad" 1442244 1442276 1446564 1446569) (-963 "RLINSET.spad" 1441949 1441959 1442234 1442239) (-962 "RINTERP.spad" 1441838 1441857 1441939 1441944) (-961 "RING.spad" 1441309 1441317 1441818 1441833) (-960 "RING.spad" 1440788 1440798 1441299 1441304) (-959 "RIDIST.spad" 1440181 1440189 1440778 1440783) (-958 "RGCHAIN.spad" 1438438 1438453 1439331 1439346) (-957 "RGBCSPC.spad" 1438228 1438239 1438428 1438433) (-956 "RGBCMDL.spad" 1437791 1437802 1438218 1438223) (-955 "RFFACTOR.spad" 1437254 1437264 1437781 1437786) (-954 "RFFACT.spad" 1436990 1437001 1437244 1437249) (-953 "RFDIST.spad" 1435987 1435995 1436980 1436985) (-952 "RF.spad" 1433662 1433672 1435977 1435982) (-951 "RETSOL.spad" 1433082 1433094 1433652 1433657) (-950 "RETRACT.spad" 1432511 1432521 1433072 1433077) (-949 "RETRACT.spad" 1431938 1431950 1432501 1432506) (-948 "RETAST.spad" 1431751 1431759 1431928 1431933) (-947 "RESRING.spad" 1431099 1431145 1431689 1431746) (-946 "RESLATC.spad" 1430424 1430434 1431089 1431094) (-945 "REPSQ.spad" 1430156 1430166 1430414 1430419) (-944 "REPDB.spad" 1429864 1429874 1430146 1430151) (-943 "REP2.spad" 1419579 1419589 1429706 1429711) (-942 "REP1.spad" 1413800 1413810 1419529 1419534) (-941 "REP.spad" 1411355 1411363 1413790 1413795) (-940 "REGSET.spad" 1409032 1409048 1410840 1410855) (-939 "REF.spad" 1408551 1408561 1409022 1409027) (-938 "REDORDER.spad" 1407758 1407774 1408541 1408546) (-937 "RECLOS.spad" 1406655 1406674 1407358 1407451) (-936 "REALSOLV.spad" 1405796 1405804 1406645 1406650) (-935 "REAL0Q.spad" 1403095 1403109 1405786 1405791) (-934 "REAL0.spad" 1399940 1399954 1403085 1403090) (-933 "REAL.spad" 1399813 1399821 1399930 1399935) (-932 "RDUCEAST.spad" 1399535 1399543 1399803 1399808) (-931 "RDIV.spad" 1399191 1399215 1399525 1399530) (-930 "RDIST.spad" 1398759 1398769 1399181 1399186) (-929 "RDETRS.spad" 1397624 1397641 1398749 1398754) (-928 "RDETR.spad" 1395764 1395781 1397614 1397619) (-927 "RDEEFS.spad" 1394864 1394880 1395754 1395759) (-926 "RDEEF.spad" 1393875 1393891 1394854 1394859) (-925 "RCFIELD.spad" 1391094 1391102 1393777 1393870) (-924 "RCFIELD.spad" 1388399 1388409 1391084 1391089) (-923 "RCAGG.spad" 1386336 1386346 1388389 1388394) (-922 "RCAGG.spad" 1384174 1384186 1386229 1386234) (-921 "RATRET.spad" 1383535 1383545 1384164 1384169) (-920 "RATFACT.spad" 1383228 1383239 1383525 1383530) (-919 "RANDSRC.spad" 1382548 1382556 1383218 1383223) (-918 "RADUTIL.spad" 1382305 1382313 1382538 1382543) (-917 "RADIX.spad" 1379350 1379363 1380895 1380988) (-916 "RADFF.spad" 1377267 1377303 1377385 1377541) (-915 "RADCAT.spad" 1376863 1376871 1377257 1377262) (-914 "RADCAT.spad" 1376457 1376467 1376853 1376858) (-913 "QUEUE.spad" 1375883 1375893 1376141 1376156) (-912 "QUATCT2.spad" 1375504 1375522 1375873 1375878) (-911 "QUATCAT.spad" 1373675 1373685 1375434 1375499) (-910 "QUATCAT.spad" 1371611 1371623 1373372 1373377) (-909 "QUAT.spad" 1370218 1370228 1370560 1370625) (-908 "QUAGG.spad" 1369064 1369074 1370198 1370213) (-907 "QQUTAST.spad" 1368833 1368841 1369054 1369059) (-906 "QFORM.spad" 1368452 1368466 1368823 1368828) (-905 "QFCAT2.spad" 1368145 1368161 1368442 1368447) (-904 "QFCAT.spad" 1366848 1366858 1368047 1368140) (-903 "QFCAT.spad" 1365184 1365196 1366385 1366390) (-902 "QEQUAT.spad" 1364743 1364751 1365174 1365179) (-901 "QCMPACK.spad" 1359658 1359677 1364733 1364738) (-900 "QALGSET2.spad" 1357654 1357672 1359648 1359653) (-899 "QALGSET.spad" 1353759 1353791 1357568 1357573) (-898 "PWFFINTB.spad" 1351175 1351196 1353749 1353754) (-897 "PUSHVAR.spad" 1350514 1350533 1351165 1351170) (-896 "PTRANFN.spad" 1346650 1346660 1350504 1350509) (-895 "PTPACK.spad" 1343738 1343748 1346640 1346645) (-894 "PTFUNC2.spad" 1343561 1343575 1343728 1343733) (-893 "PTCAT.spad" 1342828 1342838 1343541 1343556) (-892 "PSQFR.spad" 1342143 1342167 1342818 1342823) (-891 "PSEUDLIN.spad" 1341029 1341039 1342133 1342138) (-890 "PSETPK.spad" 1327734 1327750 1340907 1340912) (-889 "PSETCAT.spad" 1322144 1322167 1327724 1327729) (-888 "PSETCAT.spad" 1316518 1316543 1322100 1322105) (-887 "PSCURVE.spad" 1315517 1315525 1316508 1316513) (-886 "PSCAT.spad" 1314300 1314329 1315415 1315512) (-885 "PSCAT.spad" 1313173 1313204 1314290 1314295) (-884 "PRTITION.spad" 1311871 1311879 1313163 1313168) (-883 "PRTDAST.spad" 1311590 1311598 1311861 1311866) (-882 "PRS.spad" 1301208 1301225 1311546 1311551) (-881 "PRQAGG.spad" 1300655 1300665 1301188 1301203) (-880 "PROPLOG.spad" 1300259 1300267 1300645 1300650) (-879 "PROPFUN2.spad" 1299882 1299895 1300249 1300254) (-878 "PROPFUN1.spad" 1299288 1299299 1299872 1299877) (-877 "PROPFRML.spad" 1297856 1297867 1299278 1299283) (-876 "PROPERTY.spad" 1297352 1297360 1297846 1297851) (-875 "PRODUCT.spad" 1295049 1295061 1295333 1295388) (-874 "PRINT.spad" 1294801 1294809 1295039 1295044) (-873 "PRIMES.spad" 1293062 1293072 1294791 1294796) (-872 "PRIMELT.spad" 1291183 1291197 1293052 1293057) (-871 "PRIMCAT.spad" 1290826 1290834 1291173 1291178) (-870 "PRIMARR2.spad" 1289593 1289605 1290816 1290821) (-869 "PRIMARR.spad" 1288335 1288345 1288505 1288520) (-868 "PREASSOC.spad" 1287717 1287729 1288325 1288330) (-867 "PR.spad" 1286235 1286247 1286934 1287061) (-866 "PPCURVE.spad" 1285372 1285380 1286225 1286230) (-865 "PORTNUM.spad" 1285163 1285171 1285362 1285367) (-864 "POLYROOT.spad" 1284012 1284034 1285119 1285124) (-863 "POLYLIFT.spad" 1283277 1283300 1284002 1284007) (-862 "POLYCATQ.spad" 1281403 1281425 1283267 1283272) (-861 "POLYCAT.spad" 1274905 1274926 1281271 1281398) (-860 "POLYCAT.spad" 1267927 1267950 1274295 1274300) (-859 "POLY2UP.spad" 1267379 1267393 1267917 1267922) (-858 "POLY2.spad" 1266976 1266988 1267369 1267374) (-857 "POLY.spad" 1264644 1264654 1265159 1265286) (-856 "POLUTIL.spad" 1263609 1263638 1264600 1264605) (-855 "POLTOPOL.spad" 1262357 1262372 1263599 1263604) (-854 "POINT.spad" 1260927 1260937 1261014 1261029) (-853 "PNTHEORY.spad" 1257629 1257637 1260917 1260922) (-852 "PMTOOLS.spad" 1256404 1256418 1257619 1257624) (-851 "PMSYM.spad" 1255953 1255963 1256394 1256399) (-850 "PMQFCAT.spad" 1255544 1255558 1255943 1255948) (-849 "PMPREDFS.spad" 1255006 1255028 1255534 1255539) (-848 "PMPRED.spad" 1254493 1254507 1254996 1255001) (-847 "PMPLCAT.spad" 1253570 1253588 1254422 1254427) (-846 "PMLSAGG.spad" 1253155 1253169 1253560 1253565) (-845 "PMKERNEL.spad" 1252734 1252746 1253145 1253150) (-844 "PMINS.spad" 1252314 1252324 1252724 1252729) (-843 "PMFS.spad" 1251891 1251909 1252304 1252309) (-842 "PMDOWN.spad" 1251181 1251195 1251881 1251886) (-841 "PMASSFS.spad" 1250156 1250172 1251171 1251176) (-840 "PMASS.spad" 1249174 1249182 1250146 1250151) (-839 "PLOTTOOL.spad" 1248954 1248962 1249164 1249169) (-838 "PLOT3D.spad" 1245418 1245426 1248944 1248949) (-837 "PLOT1.spad" 1244591 1244601 1245408 1245413) (-836 "PLOT.spad" 1239514 1239522 1244581 1244586) (-835 "PLEQN.spad" 1226916 1226943 1239504 1239509) (-834 "PINTERPA.spad" 1226700 1226716 1226906 1226911) (-833 "PINTERP.spad" 1226322 1226341 1226690 1226695) (-832 "PID.spad" 1225296 1225304 1226248 1226317) (-831 "PICOERCE.spad" 1224953 1224963 1225286 1225291) (-830 "PI.spad" 1224570 1224578 1224927 1224948) (-829 "PGROEB.spad" 1223179 1223193 1224560 1224565) (-828 "PGE.spad" 1214852 1214860 1223169 1223174) (-827 "PGCD.spad" 1213806 1213823 1214842 1214847) (-826 "PFRPAC.spad" 1212955 1212965 1213796 1213801) (-825 "PFR.spad" 1209658 1209668 1212857 1212950) (-824 "PFOTOOLS.spad" 1208916 1208932 1209648 1209653) (-823 "PFOQ.spad" 1208286 1208304 1208906 1208911) (-822 "PFO.spad" 1207705 1207732 1208276 1208281) (-821 "PFECAT.spad" 1205415 1205423 1207631 1207700) (-820 "PFECAT.spad" 1203153 1203163 1205371 1205376) (-819 "PFBRU.spad" 1201041 1201053 1203143 1203148) (-818 "PFBR.spad" 1198601 1198624 1201031 1201036) (-817 "PF.spad" 1198175 1198187 1198406 1198499) (-816 "PERMGRP.spad" 1192945 1192955 1198165 1198170) (-815 "PERMCAT.spad" 1191606 1191616 1192925 1192940) (-814 "PERMAN.spad" 1190162 1190176 1191596 1191601) (-813 "PERM.spad" 1185972 1185982 1189995 1190010) (-812 "PENDTREE.spad" 1185325 1185335 1185605 1185610) (-811 "PDSPC.spad" 1184138 1184148 1185315 1185320) (-810 "PDSPC.spad" 1182949 1182961 1184128 1184133) (-809 "PDRING.spad" 1182791 1182801 1182929 1182944) (-808 "PDMOD.spad" 1182607 1182619 1182759 1182786) (-807 "PDECOMP.spad" 1182077 1182094 1182597 1182602) (-806 "PDDOM.spad" 1181515 1181528 1182067 1182072) (-805 "PDDOM.spad" 1180951 1180966 1181505 1181510) (-804 "PCOMP.spad" 1180804 1180817 1180941 1180946) (-803 "PBWLB.spad" 1179402 1179419 1180794 1180799) (-802 "PATTERN2.spad" 1179140 1179152 1179392 1179397) (-801 "PATTERN1.spad" 1177484 1177500 1179130 1179135) (-800 "PATTERN.spad" 1172059 1172069 1177474 1177479) (-799 "PATRES2.spad" 1171731 1171745 1172049 1172054) (-798 "PATRES.spad" 1169314 1169326 1171721 1171726) (-797 "PATMATCH.spad" 1167555 1167586 1169066 1169071) (-796 "PATMAB.spad" 1166984 1166994 1167545 1167550) (-795 "PATLRES.spad" 1166070 1166084 1166974 1166979) (-794 "PATAB.spad" 1165834 1165844 1166060 1166065) (-793 "PARTPERM.spad" 1163890 1163898 1165824 1165829) (-792 "PARSURF.spad" 1163324 1163352 1163880 1163885) (-791 "PARSU2.spad" 1163121 1163137 1163314 1163319) (-790 "script-parser.spad" 1162641 1162649 1163111 1163116) (-789 "PARSCURV.spad" 1162075 1162103 1162631 1162636) (-788 "PARSC2.spad" 1161866 1161882 1162065 1162070) (-787 "PARPCURV.spad" 1161328 1161356 1161856 1161861) (-786 "PARPC2.spad" 1161119 1161135 1161318 1161323) (-785 "PARAMAST.spad" 1160247 1160255 1161109 1161114) (-784 "PAN2EXPR.spad" 1159659 1159667 1160237 1160242) (-783 "PALETTE.spad" 1158773 1158781 1159649 1159654) (-782 "PAIR.spad" 1157847 1157860 1158416 1158421) (-781 "PADICRC.spad" 1155252 1155270 1156415 1156508) (-780 "PADICRAT.spad" 1153312 1153324 1153525 1153618) (-779 "PADICCT.spad" 1151861 1151873 1153238 1153307) (-778 "PADIC.spad" 1151564 1151576 1151787 1151856) (-777 "PADEPAC.spad" 1150253 1150272 1151554 1151559) (-776 "PADE.spad" 1149005 1149021 1150243 1150248) (-775 "OWP.spad" 1148253 1148283 1148863 1148930) (-774 "OVERSET.spad" 1147826 1147834 1148243 1148248) (-773 "OVAR.spad" 1147607 1147630 1147816 1147821) (-772 "OUTFORM.spad" 1137015 1137023 1147597 1147602) (-771 "OUTBFILE.spad" 1136449 1136457 1137005 1137010) (-770 "OUTBCON.spad" 1135519 1135527 1136439 1136444) (-769 "OUTBCON.spad" 1134587 1134597 1135509 1135514) (-768 "OUT.spad" 1133705 1133713 1134577 1134582) (-767 "OSI.spad" 1133180 1133188 1133695 1133700) (-766 "OSGROUP.spad" 1133098 1133106 1133170 1133175) (-765 "ORTHPOL.spad" 1131609 1131619 1133041 1133046) (-764 "OREUP.spad" 1131103 1131131 1131330 1131369) (-763 "ORESUP.spad" 1130445 1130469 1130824 1130863) (-762 "OREPCTO.spad" 1128334 1128346 1130365 1130370) (-761 "OREPCAT.spad" 1122521 1122531 1128290 1128329) (-760 "OREPCAT.spad" 1116598 1116610 1122369 1122374) (-759 "ORDTYPE.spad" 1115835 1115843 1116588 1116593) (-758 "ORDTYPE.spad" 1115070 1115080 1115825 1115830) (-757 "ORDSTRCT.spad" 1114856 1114871 1115019 1115024) (-756 "ORDSET.spad" 1114556 1114564 1114846 1114851) (-755 "ORDRING.spad" 1114373 1114381 1114536 1114551) (-754 "ORDMON.spad" 1114228 1114236 1114363 1114368) (-753 "ORDFUNS.spad" 1113360 1113376 1114218 1114223) (-752 "ORDFIN.spad" 1113180 1113188 1113350 1113355) (-751 "ORDCOMP2.spad" 1112473 1112485 1113170 1113175) (-750 "ORDCOMP.spad" 1110999 1111009 1112081 1112110) (-749 "OPSIG.spad" 1110661 1110669 1110989 1110994) (-748 "OPQUERY.spad" 1110242 1110250 1110651 1110656) (-747 "OPERCAT.spad" 1109708 1109718 1110232 1110237) (-746 "OPERCAT.spad" 1109172 1109184 1109698 1109703) (-745 "OP.spad" 1108914 1108924 1108994 1109061) (-744 "ONECOMP2.spad" 1108338 1108350 1108904 1108909) (-743 "ONECOMP.spad" 1107144 1107154 1107946 1107975) (-742 "OMSAGG.spad" 1106944 1106954 1107112 1107139) (-741 "OMLO.spad" 1106377 1106389 1106830 1106869) (-740 "OINTDOM.spad" 1106140 1106148 1106303 1106372) (-739 "OFMONOID.spad" 1104279 1104289 1106096 1106101) (-738 "ODVAR.spad" 1103540 1103550 1104269 1104274) (-737 "ODR.spad" 1103184 1103210 1103352 1103501) (-736 "ODPOL.spad" 1100832 1100842 1101172 1101299) (-735 "ODP.spad" 1090380 1090400 1090753 1090838) (-734 "ODETOOLS.spad" 1089029 1089048 1090370 1090375) (-733 "ODESYS.spad" 1086723 1086740 1089019 1089024) (-732 "ODERTRIC.spad" 1082756 1082773 1086680 1086685) (-731 "ODERED.spad" 1082155 1082179 1082746 1082751) (-730 "ODERAT.spad" 1079788 1079805 1082145 1082150) (-729 "ODEPRRIC.spad" 1076881 1076903 1079778 1079783) (-728 "ODEPRIM.spad" 1074279 1074301 1076871 1076876) (-727 "ODEPAL.spad" 1073665 1073689 1074269 1074274) (-726 "ODEINT.spad" 1073100 1073116 1073655 1073660) (-725 "ODEEF.spad" 1068595 1068611 1073090 1073095) (-724 "ODECONST.spad" 1068140 1068158 1068585 1068590) (-723 "OCTCT2.spad" 1067781 1067799 1068130 1068135) (-722 "OCT.spad" 1066096 1066106 1066810 1066849) (-721 "OCAMON.spad" 1065944 1065952 1066086 1066091) (-720 "OC.spad" 1063740 1063750 1065900 1065939) (-719 "OC.spad" 1061275 1061287 1063437 1063442) (-718 "OASGP.spad" 1061090 1061098 1061265 1061270) (-717 "OAMONS.spad" 1060612 1060620 1061080 1061085) (-716 "OAMON.spad" 1060370 1060378 1060602 1060607) (-715 "OAMON.spad" 1060126 1060136 1060360 1060365) (-714 "OAGROUP.spad" 1059664 1059672 1060116 1060121) (-713 "OAGROUP.spad" 1059200 1059210 1059654 1059659) (-712 "NUMTUBE.spad" 1058791 1058807 1059190 1059195) (-711 "NUMQUAD.spad" 1046767 1046775 1058781 1058786) (-710 "NUMODE.spad" 1038119 1038127 1046757 1046762) (-709 "NUMFMT.spad" 1036959 1036967 1038109 1038114) (-708 "NUMERIC.spad" 1029074 1029084 1036765 1036770) (-707 "NTSCAT.spad" 1027594 1027610 1029054 1029069) (-706 "NTPOLFN.spad" 1027171 1027181 1027537 1027542) (-705 "NSUP2.spad" 1026563 1026575 1027161 1027166) (-704 "NSUP.spad" 1020000 1020010 1024420 1024573) (-703 "NSMP.spad" 1016912 1016931 1017204 1017331) (-702 "NREP.spad" 1015314 1015328 1016902 1016907) (-701 "NPCOEF.spad" 1014560 1014580 1015304 1015309) (-700 "NORMRETR.spad" 1014158 1014197 1014550 1014555) (-699 "NORMPK.spad" 1012100 1012119 1014148 1014153) (-698 "NORMMA.spad" 1011788 1011814 1012090 1012095) (-697 "NONE1.spad" 1011464 1011474 1011778 1011783) (-696 "NONE.spad" 1011205 1011213 1011454 1011459) (-695 "NODE1.spad" 1010692 1010708 1011195 1011200) (-694 "NNI.spad" 1009587 1009595 1010666 1010687) (-693 "NLINSOL.spad" 1008213 1008223 1009577 1009582) (-692 "NFINTBAS.spad" 1005773 1005790 1008203 1008208) (-691 "NETCLT.spad" 1005747 1005758 1005763 1005768) (-690 "NCODIV.spad" 1003971 1003987 1005737 1005742) (-689 "NCNTFRAC.spad" 1003613 1003627 1003961 1003966) (-688 "NCEP.spad" 1001779 1001793 1003603 1003608) (-687 "NASRING.spad" 1001383 1001391 1001769 1001774) (-686 "NASRING.spad" 1000985 1000995 1001373 1001378) (-685 "NARNG.spad" 1000385 1000393 1000975 1000980) (-684 "NARNG.spad" 999783 999793 1000375 1000380) (-683 "NAALG.spad" 999348 999358 999751 999778) (-682 "NAALG.spad" 998933 998945 999338 999343) (-681 "MULTSQFR.spad" 995891 995908 998923 998928) (-680 "MULTFACT.spad" 995274 995291 995881 995886) (-679 "MTSCAT.spad" 993368 993389 995172 995269) (-678 "MTHING.spad" 993027 993037 993358 993363) (-677 "MSYSCMD.spad" 992461 992469 993017 993022) (-676 "MSETAGG.spad" 992306 992316 992429 992456) (-675 "MSET.spad" 990104 990114 991851 991878) (-674 "MRING.spad" 987081 987093 989812 989879) (-673 "MRF2.spad" 986643 986657 987071 987076) (-672 "MRATFAC.spad" 986189 986206 986633 986638) (-671 "MPRFF.spad" 984229 984248 986179 986184) (-670 "MPOLY.spad" 982033 982048 982392 982519) (-669 "MPCPF.spad" 981297 981316 982023 982028) (-668 "MPC3.spad" 981114 981154 981287 981292) (-667 "MPC2.spad" 980768 980801 981104 981109) (-666 "MONOTOOL.spad" 979119 979136 980758 980763) (-665 "catdef.spad" 978552 978563 978773 979114) (-664 "catdef.spad" 977950 977961 978206 978547) (-663 "MONOID.spad" 977271 977279 977940 977945) (-662 "MONOID.spad" 976590 976600 977261 977266) (-661 "MONOGEN.spad" 975338 975351 976450 976585) (-660 "MONOGEN.spad" 974108 974123 975222 975227) (-659 "MONADWU.spad" 972188 972196 974098 974103) (-658 "MONADWU.spad" 970266 970276 972178 972183) (-657 "MONAD.spad" 969426 969434 970256 970261) (-656 "MONAD.spad" 968584 968594 969416 969421) (-655 "MOEBIUS.spad" 967320 967334 968564 968579) (-654 "MODULE.spad" 967190 967200 967288 967315) (-653 "MODULE.spad" 967080 967092 967180 967185) (-652 "MODRING.spad" 966415 966454 967060 967075) (-651 "MODOP.spad" 965072 965084 966237 966304) (-650 "MODMONOM.spad" 964803 964821 965062 965067) (-649 "MODMON.spad" 961873 961885 962588 962741) (-648 "MODFIELD.spad" 961235 961274 961775 961868) (-647 "MMLFORM.spad" 960095 960103 961225 961230) (-646 "MMAP.spad" 959837 959871 960085 960090) (-645 "MLO.spad" 958296 958306 959793 959832) (-644 "MLIFT.spad" 956908 956925 958286 958291) (-643 "MKUCFUNC.spad" 956443 956461 956898 956903) (-642 "MKRECORD.spad" 956031 956044 956433 956438) (-641 "MKFUNC.spad" 955438 955448 956021 956026) (-640 "MKFLCFN.spad" 954406 954416 955428 955433) (-639 "MKBCFUNC.spad" 953901 953919 954396 954401) (-638 "MHROWRED.spad" 952412 952422 953891 953896) (-637 "MFINFACT.spad" 951812 951834 952402 952407) (-636 "MESH.spad" 949607 949615 951802 951807) (-635 "MDDFACT.spad" 947826 947836 949597 949602) (-634 "MDAGG.spad" 947117 947127 947806 947821) (-633 "MCDEN.spad" 946327 946339 947107 947112) (-632 "MAYBE.spad" 945627 945638 946317 946322) (-631 "MATSTOR.spad" 942943 942953 945617 945622) (-630 "MATRIX.spad" 941734 941744 942218 942233) (-629 "MATLIN.spad" 939102 939126 941618 941623) (-628 "MATCAT2.spad" 938384 938432 939092 939097) (-627 "MATCAT.spad" 930092 930114 938364 938379) (-626 "MATCAT.spad" 921660 921684 929934 929939) (-625 "MAPPKG3.spad" 920575 920589 921650 921655) (-624 "MAPPKG2.spad" 919913 919925 920565 920570) (-623 "MAPPKG1.spad" 918741 918751 919903 919908) (-622 "MAPPAST.spad" 918080 918088 918731 918736) (-621 "MAPHACK3.spad" 917892 917906 918070 918075) (-620 "MAPHACK2.spad" 917661 917673 917882 917887) (-619 "MAPHACK1.spad" 917305 917315 917651 917656) (-618 "MAGMA.spad" 915111 915128 917295 917300) (-617 "MACROAST.spad" 914706 914714 915101 915106) (-616 "LZSTAGG.spad" 911960 911970 914696 914701) (-615 "LZSTAGG.spad" 909212 909224 911950 911955) (-614 "LWORD.spad" 905957 905974 909202 909207) (-613 "LSTAST.spad" 905741 905749 905947 905952) (-612 "LSQM.spad" 904031 904045 904425 904464) (-611 "LSPP.spad" 903566 903583 904021 904026) (-610 "LSMP1.spad" 901409 901423 903556 903561) (-609 "LSMP.spad" 900266 900294 901399 901404) (-608 "LSAGG.spad" 899947 899957 900246 900261) (-607 "LSAGG.spad" 899636 899648 899937 899942) (-606 "LPOLY.spad" 898598 898617 899492 899561) (-605 "LPEFRAC.spad" 897869 897879 898588 898593) (-604 "LOGIC.spad" 897471 897479 897859 897864) (-603 "LOGIC.spad" 897071 897081 897461 897466) (-602 "LODOOPS.spad" 896001 896013 897061 897066) (-601 "LODOF.spad" 895047 895064 895958 895963) (-600 "LODOCAT.spad" 893713 893723 895003 895042) (-599 "LODOCAT.spad" 892377 892389 893669 893674) (-598 "LODO2.spad" 891691 891703 892098 892137) (-597 "LODO1.spad" 891132 891142 891412 891451) (-596 "LODO.spad" 890557 890573 890853 890892) (-595 "LODEEF.spad" 889359 889377 890547 890552) (-594 "LO.spad" 888760 888774 889293 889320) (-593 "LNAGG.spad" 884947 884957 888750 888755) (-592 "LNAGG.spad" 881070 881082 884875 884880) (-591 "LMOPS.spad" 877838 877855 881060 881065) (-590 "LMODULE.spad" 877622 877632 877828 877833) (-589 "LMDICT.spad" 876854 876864 877102 877117) (-588 "LLINSET.spad" 876561 876571 876844 876849) (-587 "LITERAL.spad" 876467 876478 876551 876556) (-586 "LIST3.spad" 875778 875792 876457 876462) (-585 "LIST2MAP.spad" 872705 872717 875768 875773) (-584 "LIST2.spad" 871407 871419 872695 872700) (-583 "LIST.spad" 868976 868986 870319 870334) (-582 "LINSET.spad" 868755 868765 868966 868971) (-581 "LINFORM.spad" 868218 868230 868723 868750) (-580 "LINEXP.spad" 866961 866971 868208 868213) (-579 "LINELT.spad" 866332 866344 866844 866871) (-578 "LINDEP.spad" 865181 865193 866244 866249) (-577 "LINBASIS.spad" 864817 864832 865171 865176) (-576 "LIMITRF.spad" 862764 862774 864807 864812) (-575 "LIMITPS.spad" 861674 861687 862754 862759) (-574 "LIECAT.spad" 861158 861168 861600 861669) (-573 "LIECAT.spad" 860670 860682 861114 861119) (-572 "LIE.spad" 858674 858686 859948 860090) (-571 "LIB.spad" 856527 856535 856973 856988) (-570 "LGROBP.spad" 853880 853899 856517 856522) (-569 "LFCAT.spad" 852939 852947 853870 853875) (-568 "LF.spad" 851894 851910 852929 852934) (-567 "LEXTRIPK.spad" 847517 847532 851884 851889) (-566 "LEXP.spad" 845536 845563 847497 847512) (-565 "LETAST.spad" 845235 845243 845526 845531) (-564 "LEADCDET.spad" 843641 843658 845225 845230) (-563 "LAZM3PK.spad" 842385 842407 843631 843636) (-562 "LAUPOL.spad" 841052 841065 841952 842021) (-561 "LAPLACE.spad" 840635 840651 841042 841047) (-560 "LALG.spad" 840411 840421 840615 840630) (-559 "LALG.spad" 840195 840207 840401 840406) (-558 "LA.spad" 839635 839649 840117 840156) (-557 "KVTFROM.spad" 839378 839388 839625 839630) (-556 "KTVLOGIC.spad" 838922 838930 839368 839373) (-555 "KRCFROM.spad" 838668 838678 838912 838917) (-554 "KOVACIC.spad" 837399 837416 838658 838663) (-553 "KONVERT.spad" 837121 837131 837389 837394) (-552 "KOERCE.spad" 836858 836868 837111 837116) (-551 "KERNEL2.spad" 836561 836573 836848 836853) (-550 "KERNEL.spad" 835281 835291 836410 836415) (-549 "KDAGG.spad" 834390 834412 835261 835276) (-548 "KDAGG.spad" 833507 833531 834380 834385) (-547 "KAFILE.spad" 831934 831950 832169 832184) (-546 "JVMOP.spad" 831847 831855 831924 831929) (-545 "JVMMDACC.spad" 830901 830909 831837 831842) (-544 "JVMFDACC.spad" 830217 830225 830891 830896) (-543 "JVMCSTTG.spad" 828946 828954 830207 830212) (-542 "JVMCFACC.spad" 828392 828400 828936 828941) (-541 "JVMBCODE.spad" 828303 828311 828382 828387) (-540 "JORDAN.spad" 826120 826132 827581 827723) (-539 "JOINAST.spad" 825822 825830 826110 826115) (-538 "IXAGG.spad" 823955 823979 825812 825817) (-537 "IXAGG.spad" 821890 821916 823749 823754) (-536 "ITUPLE.spad" 821066 821076 821880 821885) (-535 "ITRIGMNP.spad" 819913 819932 821056 821061) (-534 "ITFUN3.spad" 819419 819433 819903 819908) (-533 "ITFUN2.spad" 819163 819175 819409 819414) (-532 "ITFORM.spad" 818518 818526 819153 819158) (-531 "ITAYLOR.spad" 816512 816527 818382 818479) (-530 "ISUPS.spad" 808961 808976 815498 815595) (-529 "ISUMP.spad" 808462 808478 808951 808956) (-528 "ISAST.spad" 808181 808189 808452 808457) (-527 "IRURPK.spad" 806898 806917 808171 808176) (-526 "IRSN.spad" 804902 804910 806888 806893) (-525 "IRRF2F.spad" 803395 803405 804858 804863) (-524 "IRREDFFX.spad" 802996 803007 803385 803390) (-523 "IROOT.spad" 801335 801345 802986 802991) (-522 "IRFORM.spad" 800659 800667 801325 801330) (-521 "IR2F.spad" 799873 799889 800649 800654) (-520 "IR2.spad" 798901 798917 799863 799868) (-519 "IR.spad" 796737 796751 798783 798810) (-518 "IPRNTPK.spad" 796497 796505 796727 796732) (-517 "IPF.spad" 796062 796074 796302 796395) (-516 "IPADIC.spad" 795831 795857 795988 796057) (-515 "IP4ADDR.spad" 795388 795396 795821 795826) (-514 "IOMODE.spad" 794910 794918 795378 795383) (-513 "IOBFILE.spad" 794295 794303 794900 794905) (-512 "IOBCON.spad" 794160 794168 794285 794290) (-511 "INVLAPLA.spad" 793809 793825 794150 794155) (-510 "INTTR.spad" 787203 787220 793799 793804) (-509 "INTTOOLS.spad" 785011 785027 786830 786835) (-508 "INTSLPE.spad" 784339 784347 785001 785006) (-507 "INTRVL.spad" 783905 783915 784253 784334) (-506 "INTRF.spad" 782337 782351 783895 783900) (-505 "INTRET.spad" 781769 781779 782327 782332) (-504 "INTRAT.spad" 780504 780521 781759 781764) (-503 "INTPM.spad" 778967 778983 780225 780230) (-502 "INTPAF.spad" 776843 776861 778896 778901) (-501 "INTHERTR.spad" 776117 776134 776833 776838) (-500 "INTHERAL.spad" 775787 775811 776107 776112) (-499 "INTHEORY.spad" 772226 772234 775777 775782) (-498 "INTG0.spad" 765990 766008 772155 772160) (-497 "INTFACT.spad" 765057 765067 765980 765985) (-496 "INTEF.spad" 763468 763484 765047 765052) (-495 "INTDOM.spad" 762091 762099 763394 763463) (-494 "INTDOM.spad" 760776 760786 762081 762086) (-493 "INTCAT.spad" 759043 759053 760690 760771) (-492 "INTBIT.spad" 758550 758558 759033 759038) (-491 "INTALG.spad" 757738 757765 758540 758545) (-490 "INTAF.spad" 757238 757254 757728 757733) (-489 "INTABL.spad" 755106 755137 755269 755284) (-488 "INT8.spad" 754986 754994 755096 755101) (-487 "INT64.spad" 754865 754873 754976 754981) (-486 "INT32.spad" 754744 754752 754855 754860) (-485 "INT16.spad" 754623 754631 754734 754739) (-484 "INT.spad" 754149 754157 754489 754618) (-483 "INS.spad" 751652 751660 754051 754144) (-482 "INS.spad" 749241 749251 751642 751647) (-481 "INPSIGN.spad" 748711 748724 749231 749236) (-480 "INPRODPF.spad" 747807 747826 748701 748706) (-479 "INPRODFF.spad" 746895 746919 747797 747802) (-478 "INNMFACT.spad" 745870 745887 746885 746890) (-477 "INMODGCD.spad" 745374 745404 745860 745865) (-476 "INFSP.spad" 743671 743693 745364 745369) (-475 "INFPROD0.spad" 742751 742770 743661 743666) (-474 "INFORM1.spad" 742376 742386 742741 742746) (-473 "INFORM.spad" 739587 739595 742366 742371) (-472 "INFINITY.spad" 739139 739147 739577 739582) (-471 "INETCLTS.spad" 739116 739124 739129 739134) (-470 "INEP.spad" 737662 737684 739106 739111) (-469 "INDE.spad" 737311 737328 737572 737577) (-468 "INCRMAPS.spad" 736748 736758 737301 737306) (-467 "INBFILE.spad" 735844 735852 736738 736743) (-466 "INBFF.spad" 731694 731705 735834 735839) (-465 "INBCON.spad" 729960 729968 731684 731689) (-464 "INBCON.spad" 728224 728234 729950 729955) (-463 "INAST.spad" 727885 727893 728214 728219) (-462 "IMPTAST.spad" 727593 727601 727875 727880) (-461 "IMATQF.spad" 726659 726703 727521 727526) (-460 "IMATLIN.spad" 725252 725276 726587 726592) (-459 "IFF.spad" 724665 724681 724936 725029) (-458 "IFAST.spad" 724279 724287 724655 724660) (-457 "IFARRAY.spad" 721493 721508 723191 723206) (-456 "IFAMON.spad" 721355 721372 721449 721454) (-455 "IEVALAB.spad" 720768 720780 721345 721350) (-454 "IEVALAB.spad" 720179 720193 720758 720763) (-453 "indexedp.spad" 719735 719747 720169 720174) (-452 "IDPOAMS.spad" 719413 719425 719647 719652) (-451 "IDPOAM.spad" 719055 719067 719325 719330) (-450 "IDPO.spad" 718469 718481 718967 718972) (-449 "IDPC.spad" 717184 717196 718459 718464) (-448 "IDPAM.spad" 716851 716863 717096 717101) (-447 "IDPAG.spad" 716520 716532 716763 716768) (-446 "IDENT.spad" 716172 716180 716510 716515) (-445 "catdef.spad" 715943 715954 716055 716167) (-444 "IDECOMP.spad" 713182 713200 715933 715938) (-443 "IDEAL.spad" 708144 708183 713130 713135) (-442 "ICDEN.spad" 707357 707373 708134 708139) (-441 "ICARD.spad" 706750 706758 707347 707352) (-440 "IBPTOOLS.spad" 705357 705374 706740 706745) (-439 "IBATOOL.spad" 702342 702361 705347 705352) (-438 "IBACHIN.spad" 700849 700864 702332 702337) (-437 "array2.spad" 700346 700368 700533 700548) (-436 "IARRAY1.spad" 699112 699127 699258 699273) (-435 "IAN.spad" 697494 697502 698943 699036) (-434 "IALGFACT.spad" 697105 697138 697484 697489) (-433 "HYPCAT.spad" 696529 696537 697095 697100) (-432 "HYPCAT.spad" 695951 695961 696519 696524) (-431 "HOSTNAME.spad" 695767 695775 695941 695946) (-430 "HOMOTOP.spad" 695510 695520 695757 695762) (-429 "HOAGG.spad" 694746 694756 695500 695505) (-428 "HOAGG.spad" 693768 693780 694524 694529) (-427 "HEXADEC.spad" 691993 692001 692358 692451) (-426 "HEUGCD.spad" 691084 691095 691983 691988) (-425 "HELLFDIV.spad" 690690 690714 691074 691079) (-424 "HEAP.spad" 690159 690169 690374 690389) (-423 "HEADAST.spad" 689700 689708 690149 690154) (-422 "HDP.spad" 679244 679260 679621 679706) (-421 "HDMP.spad" 676791 676806 677407 677534) (-420 "HB.spad" 675066 675074 676781 676786) (-419 "HASHTBL.spad" 672886 672917 673097 673112) (-418 "HASAST.spad" 672602 672610 672876 672881) (-417 "HACKPI.spad" 672093 672101 672504 672597) (-416 "GTSET.spad" 670871 670887 671578 671593) (-415 "GSTBL.spad" 668728 668763 668902 668917) (-414 "GSERIES.spad" 666100 666127 666919 667068) (-413 "GROUP.spad" 665373 665381 666080 666095) (-412 "GROUP.spad" 664654 664664 665363 665368) (-411 "GROEBSOL.spad" 663148 663169 664644 664649) (-410 "GRMOD.spad" 661729 661741 663138 663143) (-409 "GRMOD.spad" 660308 660322 661719 661724) (-408 "GRIMAGE.spad" 653221 653229 660298 660303) (-407 "GRDEF.spad" 651600 651608 653211 653216) (-406 "GRAY.spad" 650071 650079 651590 651595) (-405 "GRALG.spad" 649166 649178 650061 650066) (-404 "GRALG.spad" 648259 648273 649156 649161) (-403 "GPOLSET.spad" 647568 647591 647780 647795) (-402 "GOSPER.spad" 646845 646863 647558 647563) (-401 "GMODPOL.spad" 645993 646020 646813 646840) (-400 "GHENSEL.spad" 645076 645090 645983 645988) (-399 "GENUPS.spad" 641369 641382 645066 645071) (-398 "GENUFACT.spad" 640946 640956 641359 641364) (-397 "GENPGCD.spad" 640548 640565 640936 640941) (-396 "GENMFACT.spad" 640000 640019 640538 640543) (-395 "GENEEZ.spad" 637959 637972 639990 639995) (-394 "GDMP.spad" 635348 635365 636122 636249) (-393 "GCNAALG.spad" 629271 629298 635142 635209) (-392 "GCDDOM.spad" 628463 628471 629197 629266) (-391 "GCDDOM.spad" 627717 627727 628453 628458) (-390 "GBINTERN.spad" 623737 623775 627707 627712) (-389 "GBF.spad" 619520 619558 623727 623732) (-388 "GBEUCLID.spad" 617402 617440 619510 619515) (-387 "GB.spad" 614928 614966 617358 617363) (-386 "GAUSSFAC.spad" 614241 614249 614918 614923) (-385 "GALUTIL.spad" 612567 612577 614197 614202) (-384 "GALPOLYU.spad" 611021 611034 612557 612562) (-383 "GALFACTU.spad" 609234 609253 611011 611016) (-382 "GALFACT.spad" 599447 599458 609224 609229) (-381 "FUNDESC.spad" 599125 599133 599437 599442) (-380 "FUNCTION.spad" 598974 598986 599115 599120) (-379 "FT.spad" 597274 597282 598964 598969) (-378 "FSUPFACT.spad" 596188 596207 597224 597229) (-377 "FST.spad" 594274 594282 596178 596183) (-376 "FSRED.spad" 593754 593770 594264 594269) (-375 "FSPRMELT.spad" 592620 592636 593711 593716) (-374 "FSPECF.spad" 590711 590727 592610 592615) (-373 "FSINT.spad" 590371 590387 590701 590706) (-372 "FSERIES.spad" 589562 589574 590191 590290) (-371 "FSCINT.spad" 588879 588895 589552 589557) (-370 "FSAGG2.spad" 587614 587630 588869 588874) (-369 "FSAGG.spad" 586743 586753 587582 587609) (-368 "FSAGG.spad" 585822 585834 586663 586668) (-367 "FS2UPS.spad" 580337 580371 585812 585817) (-366 "FS2EXPXP.spad" 579478 579501 580327 580332) (-365 "FS2.spad" 579133 579149 579468 579473) (-364 "FS.spad" 573405 573415 578912 579128) (-363 "FS.spad" 567479 567491 572988 572993) (-362 "FRUTIL.spad" 566433 566443 567469 567474) (-361 "FRNAALG.spad" 561710 561720 566375 566428) (-360 "FRNAALG.spad" 556999 557011 561666 561671) (-359 "FRNAAF2.spad" 556447 556465 556989 556994) (-358 "FRMOD.spad" 555855 555885 556376 556381) (-357 "FRIDEAL2.spad" 555459 555491 555845 555850) (-356 "FRIDEAL.spad" 554684 554705 555439 555454) (-355 "FRETRCT.spad" 554203 554213 554674 554679) (-354 "FRETRCT.spad" 553629 553641 554102 554107) (-353 "FRAMALG.spad" 552009 552022 553585 553624) (-352 "FRAMALG.spad" 550421 550436 551999 552004) (-351 "FRAC2.spad" 550026 550038 550411 550416) (-350 "FRAC.spad" 548013 548023 548400 548573) (-349 "FR2.spad" 547349 547361 548003 548008) (-348 "FR.spad" 541137 541147 546410 546479) (-347 "FPS.spad" 537976 537984 541027 541132) (-346 "FPS.spad" 534843 534853 537896 537901) (-345 "FPC.spad" 533889 533897 534745 534838) (-344 "FPC.spad" 533021 533031 533879 533884) (-343 "FPATMAB.spad" 532783 532793 533011 533016) (-342 "FPARFRAC.spad" 531625 531642 532773 532778) (-341 "FORDER.spad" 531316 531340 531615 531620) (-340 "FNLA.spad" 530740 530762 531284 531311) (-339 "FNCAT.spad" 529335 529343 530730 530735) (-338 "FNAME.spad" 529227 529235 529325 529330) (-337 "FMONOID.spad" 528908 528918 529183 529188) (-336 "FMONCAT.spad" 526077 526087 528898 528903) (-335 "FMCAT.spad" 523753 523771 526045 526072) (-334 "FM1.spad" 523118 523130 523687 523714) (-333 "FM.spad" 522733 522745 522972 522999) (-332 "FLOATRP.spad" 520476 520490 522723 522728) (-331 "FLOATCP.spad" 517915 517929 520466 520471) (-330 "FLOAT.spad" 515006 515014 517781 517910) (-329 "FLINEXP.spad" 514728 514738 514996 515001) (-328 "FLINEXP.spad" 514407 514419 514677 514682) (-327 "FLASORT.spad" 513733 513745 514397 514402) (-326 "FLALG.spad" 511403 511422 513659 513728) (-325 "FLAGG2.spad" 510120 510136 511393 511398) (-324 "FLAGG.spad" 507196 507206 510110 510115) (-323 "FLAGG.spad" 504137 504149 507053 507058) (-322 "FINRALG.spad" 502222 502235 504093 504132) (-321 "FINRALG.spad" 500233 500248 502106 502111) (-320 "FINITE.spad" 499385 499393 500223 500228) (-319 "FINITE.spad" 498535 498545 499375 499380) (-318 "aggcat.spad" 495465 495475 498525 498530) (-317 "FINAGG.spad" 492360 492372 495422 495427) (-316 "FINAALG.spad" 481545 481555 492302 492355) (-315 "FINAALG.spad" 470742 470754 481501 481506) (-314 "FILECAT.spad" 469276 469293 470732 470737) (-313 "FILE.spad" 468859 468869 469266 469271) (-312 "FIELD.spad" 468265 468273 468761 468854) (-311 "FIELD.spad" 467757 467767 468255 468260) (-310 "FGROUP.spad" 466420 466430 467737 467752) (-309 "FGLMICPK.spad" 465215 465230 466410 466415) (-308 "FFX.spad" 464601 464616 464934 465027) (-307 "FFSLPE.spad" 464112 464133 464591 464596) (-306 "FFPOLY2.spad" 463172 463189 464102 464107) (-305 "FFPOLY.spad" 454514 454525 463162 463167) (-304 "FFP.spad" 453922 453942 454233 454326) (-303 "FFNBX.spad" 452445 452465 453641 453734) (-302 "FFNBP.spad" 450969 450986 452164 452257) (-301 "FFNB.spad" 449437 449458 450653 450746) (-300 "FFINTBAS.spad" 446951 446970 449427 449432) (-299 "FFIELDC.spad" 444536 444544 446853 446946) (-298 "FFIELDC.spad" 442207 442217 444526 444531) (-297 "FFHOM.spad" 440979 440996 442197 442202) (-296 "FFF.spad" 438422 438433 440969 440974) (-295 "FFCGX.spad" 437280 437300 438141 438234) (-294 "FFCGP.spad" 436180 436200 436999 437092) (-293 "FFCG.spad" 434975 434996 435864 435957) (-292 "FFCAT2.spad" 434722 434762 434965 434970) (-291 "FFCAT.spad" 427887 427909 434561 434717) (-290 "FFCAT.spad" 421131 421155 427807 427812) (-289 "FF.spad" 420582 420598 420815 420908) (-288 "FEVALAB.spad" 420290 420300 420572 420577) (-287 "FEVALAB.spad" 419774 419786 420058 420063) (-286 "FDIVCAT.spad" 417870 417894 419764 419769) (-285 "FDIVCAT.spad" 415964 415990 417860 417865) (-284 "FDIV2.spad" 415620 415660 415954 415959) (-283 "FDIV.spad" 415078 415102 415610 415615) (-282 "FCTRDATA.spad" 414086 414094 415068 415073) (-281 "FCOMP.spad" 413465 413475 414076 414081) (-280 "FAXF.spad" 406500 406514 413367 413460) (-279 "FAXF.spad" 399587 399603 406456 406461) (-278 "FARRAY.spad" 397466 397476 398499 398514) (-277 "FAMR.spad" 395610 395622 397364 397461) (-276 "FAMR.spad" 393738 393752 395494 395499) (-275 "FAMONOID.spad" 393422 393432 393692 393697) (-274 "FAMONC.spad" 391742 391754 393412 393417) (-273 "FAGROUP.spad" 391382 391392 391638 391665) (-272 "FACUTIL.spad" 389594 389611 391372 391377) (-271 "FACTFUNC.spad" 388796 388806 389584 389589) (-270 "EXPUPXS.spad" 385688 385711 386987 387136) (-269 "EXPRTUBE.spad" 382976 382984 385678 385683) (-268 "EXPRODE.spad" 380144 380160 382966 382971) (-267 "EXPR2UPS.spad" 376266 376279 380134 380139) (-266 "EXPR2.spad" 375971 375983 376256 376261) (-265 "EXPR.spad" 371616 371626 372330 372617) (-264 "EXPEXPAN.spad" 368561 368586 369193 369286) (-263 "EXITAST.spad" 368297 368305 368551 368556) (-262 "EXIT.spad" 367968 367976 368287 368292) (-261 "EVALCYC.spad" 367428 367442 367958 367963) (-260 "EVALAB.spad" 367008 367018 367418 367423) (-259 "EVALAB.spad" 366586 366598 366998 367003) (-258 "EUCDOM.spad" 364176 364184 366512 366581) (-257 "EUCDOM.spad" 361828 361838 364166 364171) (-256 "ES2.spad" 361341 361357 361818 361823) (-255 "ES1.spad" 360911 360927 361331 361336) (-254 "ES.spad" 353782 353790 360901 360906) (-253 "ES.spad" 346574 346584 353695 353700) (-252 "ERROR.spad" 343901 343909 346564 346569) (-251 "EQTBL.spad" 341723 341745 341932 341947) (-250 "EQ2.spad" 341441 341453 341713 341718) (-249 "EQ.spad" 336347 336357 339142 339248) (-248 "EP.spad" 332673 332683 336337 336342) (-247 "ENV.spad" 331351 331359 332663 332668) (-246 "ENTIRER.spad" 331019 331027 331295 331346) (-245 "ENTIRER.spad" 330731 330741 331009 331014) (-244 "EMR.spad" 330019 330060 330657 330726) (-243 "ELTAGG.spad" 328273 328292 330009 330014) (-242 "ELTAGG.spad" 326491 326512 328229 328234) (-241 "ELTAB.spad" 325966 325979 326481 326486) (-240 "ELFUTS.spad" 325401 325420 325956 325961) (-239 "ELEMFUN.spad" 325090 325098 325391 325396) (-238 "ELEMFUN.spad" 324777 324787 325080 325085) (-237 "ELAGG.spad" 322748 322758 324757 324772) (-236 "ELAGG.spad" 320658 320670 322669 322674) (-235 "ELABOR.spad" 320004 320012 320648 320653) (-234 "ELABEXPR.spad" 318936 318944 319994 319999) (-233 "EFUPXS.spad" 315712 315742 318892 318897) (-232 "EFULS.spad" 312548 312571 315668 315673) (-231 "EFSTRUC.spad" 310563 310579 312538 312543) (-230 "EF.spad" 305339 305355 310553 310558) (-229 "EAB.spad" 303639 303647 305329 305334) (-228 "DVARCAT.spad" 300645 300655 303629 303634) (-227 "DVARCAT.spad" 297649 297661 300635 300640) (-226 "DSMP.spad" 295382 295396 295687 295814) (-225 "DSEXT.spad" 294684 294694 295372 295377) (-224 "DSEXT.spad" 293906 293918 294596 294601) (-223 "DROPT1.spad" 293571 293581 293896 293901) (-222 "DROPT0.spad" 288436 288444 293561 293566) (-221 "DROPT.spad" 282395 282403 288426 288431) (-220 "DRAWPT.spad" 280568 280576 282385 282390) (-219 "DRAWHACK.spad" 279876 279886 280558 280563) (-218 "DRAWCX.spad" 277354 277362 279866 279871) (-217 "DRAWCURV.spad" 276901 276916 277344 277349) (-216 "DRAWCFUN.spad" 266433 266441 276891 276896) (-215 "DRAW.spad" 259309 259322 266423 266428) (-214 "DQAGG.spad" 257499 257509 259289 259304) (-213 "DPOLCAT.spad" 252856 252872 257367 257494) (-212 "DPOLCAT.spad" 248299 248317 252812 252817) (-211 "DPMO.spad" 240913 240929 241051 241245) (-210 "DPMM.spad" 233540 233558 233665 233859) (-209 "DOMTMPLT.spad" 233311 233319 233530 233535) (-208 "DOMCTOR.spad" 233066 233074 233301 233306) (-207 "DOMAIN.spad" 232177 232185 233056 233061) (-206 "DMP.spad" 229770 229785 230340 230467) (-205 "DMEXT.spad" 229637 229647 229738 229765) (-204 "DLP.spad" 228997 229007 229627 229632) (-203 "DLIST.spad" 227305 227315 227909 227924) (-202 "DLAGG.spad" 225722 225732 227295 227300) (-201 "DIVRING.spad" 225264 225272 225666 225717) (-200 "DIVRING.spad" 224850 224860 225254 225259) (-199 "DISPLAY.spad" 223040 223048 224840 224845) (-198 "DIRPROD2.spad" 221858 221876 223030 223035) (-197 "DIRPROD.spad" 211139 211155 211779 211864) (-196 "DIRPCAT.spad" 210434 210450 211049 211134) (-195 "DIRPCAT.spad" 209343 209361 209960 209965) (-194 "DIOSP.spad" 208168 208176 209333 209338) (-193 "DIOPS.spad" 207164 207174 208148 208163) (-192 "DIOPS.spad" 206107 206119 207093 207098) (-191 "catdef.spad" 205965 205973 206097 206102) (-190 "DIFRING.spad" 205803 205811 205945 205960) (-189 "DIFFSPC.spad" 205382 205390 205793 205798) (-188 "DIFFSPC.spad" 204959 204969 205372 205377) (-187 "DIFFMOD.spad" 204448 204458 204927 204954) (-186 "DIFFDOM.spad" 203613 203624 204438 204443) (-185 "DIFFDOM.spad" 202776 202789 203603 203608) (-184 "DIFEXT.spad" 202595 202605 202756 202771) (-183 "DIAGG.spad" 202225 202235 202575 202590) (-182 "DIAGG.spad" 201863 201875 202215 202220) (-181 "DHMATRIX.spad" 200252 200262 201397 201412) (-180 "DFSFUN.spad" 193892 193900 200242 200247) (-179 "DFLOAT.spad" 190499 190507 193782 193887) (-178 "DFINTTLS.spad" 188730 188746 190489 190494) (-177 "DERHAM.spad" 186644 186676 188710 188725) (-176 "DEQUEUE.spad" 186045 186055 186328 186343) (-175 "DEGRED.spad" 185662 185676 186035 186040) (-174 "DEFINTRF.spad" 183244 183254 185652 185657) (-173 "DEFINTEF.spad" 181782 181798 183234 183239) (-172 "DEFAST.spad" 181166 181174 181772 181777) (-171 "DECIMAL.spad" 179395 179403 179756 179849) (-170 "DDFACT.spad" 177216 177233 179385 179390) (-169 "DBLRESP.spad" 176816 176840 177206 177211) (-168 "DBASIS.spad" 176442 176457 176806 176811) (-167 "DBASE.spad" 175106 175116 176432 176437) (-166 "DATAARY.spad" 174592 174605 175096 175101) (-165 "CYCLOTOM.spad" 174098 174106 174582 174587) (-164 "CYCLES.spad" 170884 170892 174088 174093) (-163 "CVMP.spad" 170301 170311 170874 170879) (-162 "CTRIGMNP.spad" 168801 168817 170291 170296) (-161 "CTORKIND.spad" 168404 168412 168791 168796) (-160 "CTORCAT.spad" 167645 167653 168394 168399) (-159 "CTORCAT.spad" 166884 166894 167635 167640) (-158 "CTORCALL.spad" 166473 166483 166874 166879) (-157 "CTOR.spad" 166164 166172 166463 166468) (-156 "CSTTOOLS.spad" 165409 165422 166154 166159) (-155 "CRFP.spad" 159181 159194 165399 165404) (-154 "CRCEAST.spad" 158901 158909 159171 159176) (-153 "CRAPACK.spad" 157968 157978 158891 158896) (-152 "CPMATCH.spad" 157469 157484 157890 157895) (-151 "CPIMA.spad" 157174 157193 157459 157464) (-150 "COORDSYS.spad" 152183 152193 157164 157169) (-149 "CONTOUR.spad" 151610 151618 152173 152178) (-148 "CONTFRAC.spad" 147360 147370 151512 151605) (-147 "CONDUIT.spad" 147118 147126 147350 147355) (-146 "COMRING.spad" 146792 146800 147056 147113) (-145 "COMPPROP.spad" 146310 146318 146782 146787) (-144 "COMPLPAT.spad" 146077 146092 146300 146305) (-143 "COMPLEX2.spad" 145792 145804 146067 146072) (-142 "COMPLEX.spad" 141498 141508 141742 142000) (-141 "COMPILER.spad" 141047 141055 141488 141493) (-140 "COMPFACT.spad" 140649 140663 141037 141042) (-139 "COMPCAT.spad" 138724 138734 140386 140644) (-138 "COMPCAT.spad" 136540 136552 138204 138209) (-137 "COMMUPC.spad" 136288 136306 136530 136535) (-136 "COMMONOP.spad" 135821 135829 136278 136283) (-135 "COMMAAST.spad" 135584 135592 135811 135816) (-134 "COMM.spad" 135395 135403 135574 135579) (-133 "COMBOPC.spad" 134318 134326 135385 135390) (-132 "COMBINAT.spad" 133085 133095 134308 134313) (-131 "COMBF.spad" 130507 130523 133075 133080) (-130 "COLOR.spad" 129344 129352 130497 130502) (-129 "COLONAST.spad" 129010 129018 129334 129339) (-128 "CMPLXRT.spad" 128721 128738 129000 129005) (-127 "CLLCTAST.spad" 128383 128391 128711 128716) (-126 "CLIP.spad" 124491 124499 128373 128378) (-125 "CLIF.spad" 123146 123162 124447 124486) (-124 "CLAGG.spad" 121138 121148 123136 123141) (-123 "CLAGG.spad" 118989 119001 120989 120994) (-122 "CINTSLPE.spad" 118344 118357 118979 118984) (-121 "CHVAR.spad" 116482 116504 118334 118339) (-120 "CHARZ.spad" 116397 116405 116462 116477) (-119 "CHARPOL.spad" 115923 115933 116387 116392) (-118 "CHARNZ.spad" 115685 115693 115903 115918) (-117 "CHAR.spad" 113053 113061 115675 115680) (-116 "CFCAT.spad" 112381 112389 113043 113048) (-115 "CDEN.spad" 111601 111615 112371 112376) (-114 "CCLASS.spad" 109670 109678 110932 110959) (-113 "CATEGORY.spad" 108744 108752 109660 109665) (-112 "CATCTOR.spad" 108635 108643 108734 108739) (-111 "CATAST.spad" 108261 108269 108625 108630) (-110 "CASEAST.spad" 107975 107983 108251 108256) (-109 "CARTEN2.spad" 107365 107392 107965 107970) (-108 "CARTEN.spad" 103117 103141 107355 107360) (-107 "CARD.spad" 100412 100420 103091 103112) (-106 "CAPSLAST.spad" 100194 100202 100402 100407) (-105 "CACHSET.spad" 99818 99826 100184 100189) (-104 "CABMON.spad" 99373 99381 99808 99813) (-103 "BYTEORD.spad" 99048 99056 99363 99368) (-102 "BYTEBUF.spad" 96858 96866 98064 98079) (-101 "BYTE.spad" 96333 96341 96848 96853) (-100 "BTREE.spad" 95422 95432 95956 95971) (-99 "BTOURN.spad" 94444 94453 95045 95060) (-98 "BTCAT.spad" 94014 94023 94424 94439) (-97 "BTCAT.spad" 93592 93603 94004 94009) (-96 "BTAGG.spad" 93071 93078 93572 93587) (-95 "BTAGG.spad" 92558 92567 93061 93066) (-94 "BSTREE.spad" 91316 91325 92181 92196) (-93 "BRILL.spad" 89522 89532 91306 91311) (-92 "BRAGG.spad" 88479 88488 89512 89517) (-91 "BRAGG.spad" 87372 87383 88407 88412) (-90 "BPADICRT.spad" 85432 85443 85678 85771) (-89 "BPADIC.spad" 85105 85116 85358 85427) (-88 "BOUNDZRO.spad" 84762 84778 85095 85100) (-87 "BOP1.spad" 82221 82230 84752 84757) (-86 "BOP.spad" 77364 77371 82211 82216) (-85 "BOOLEAN.spad" 76913 76920 77354 77359) (-84 "BOOLE.spad" 76564 76571 76903 76908) (-83 "BOOLE.spad" 76213 76222 76554 76559) (-82 "BMODULE.spad" 75926 75937 76181 76208) (-81 "BITS.spad" 75127 75134 75341 75356) (-80 "catdef.spad" 75010 75020 75117 75122) (-79 "catdef.spad" 74761 74771 75000 75005) (-78 "BINDING.spad" 74183 74190 74751 74756) (-77 "BINARY.spad" 72418 72425 72773 72866) (-76 "BGAGG.spad" 71738 71747 72398 72413) (-75 "BGAGG.spad" 71066 71077 71728 71733) (-74 "BEZOUT.spad" 70207 70233 71016 71021) (-73 "BBTREE.spad" 67101 67110 69830 69845) (-72 "BASTYPE.spad" 66601 66608 67091 67096) (-71 "BASTYPE.spad" 66099 66108 66591 66596) (-70 "BALFACT.spad" 65559 65571 66089 66094) (-69 "AUTOMOR.spad" 65010 65019 65539 65554) (-68 "ATTREG.spad" 62142 62149 64786 65005) (-67 "ATTRAST.spad" 61859 61866 62132 62137) (-66 "ATRIG.spad" 61329 61336 61849 61854) (-65 "ATRIG.spad" 60797 60806 61319 61324) (-64 "ASTCAT.spad" 60701 60708 60787 60792) (-63 "ASTCAT.spad" 60603 60612 60691 60696) (-62 "ASTACK.spad" 60019 60028 60287 60302) (-61 "ASSOCEQ.spad" 58853 58864 59975 59980) (-60 "ARRAY2.spad" 58388 58397 58537 58552) (-59 "ARRAY12.spad" 57101 57112 58378 58383) (-58 "ARRAY1.spad" 55667 55676 56013 56028) (-57 "ARR2CAT.spad" 51719 51740 55647 55662) (-56 "ARR2CAT.spad" 47779 47802 51709 51714) (-55 "ARITY.spad" 47151 47158 47769 47774) (-54 "APPRULE.spad" 46435 46457 47141 47146) (-53 "APPLYORE.spad" 46054 46067 46425 46430) (-52 "ANY1.spad" 45125 45134 46044 46049) (-51 "ANY.spad" 43976 43983 45115 45120) (-50 "ANTISYM.spad" 42421 42437 43956 43971) (-49 "ANON.spad" 42130 42137 42411 42416) (-48 "AN.spad" 40598 40605 41961 42054) (-47 "AMR.spad" 38783 38794 40496 40593) (-46 "AMR.spad" 36831 36844 38546 38551) (-45 "ALIST.spad" 33066 33087 33416 33431) (-44 "ALGSC.spad" 32201 32227 32938 32991) (-43 "ALGPKG.spad" 27984 27995 32157 32162) (-42 "ALGMFACT.spad" 27177 27191 27974 27979) (-41 "ALGMANIP.spad" 24678 24693 27021 27026) (-40 "ALGFF.spad" 22496 22523 22713 22869) (-39 "ALGFACT.spad" 21615 21625 22486 22491) (-38 "ALGEBRA.spad" 21448 21457 21571 21610) (-37 "ALGEBRA.spad" 21313 21324 21438 21443) (-36 "ALAGG.spad" 20841 20862 21293 21308) (-35 "AHYP.spad" 20222 20229 20831 20836) (-34 "AGG.spad" 19129 19136 20212 20217) (-33 "AGG.spad" 18034 18043 19119 19124) (-32 "AF.spad" 16479 16494 17983 17988) (-31 "ADDAST.spad" 16165 16172 16469 16474) (-30 "ACPLOT.spad" 15042 15049 16155 16160) (-29 "ACFS.spad" 12899 12908 14944 15037) (-28 "ACFS.spad" 10842 10853 12889 12894) (-27 "ACF.spad" 7596 7603 10744 10837) (-26 "ACF.spad" 4436 4445 7586 7591) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 2944 2951 3506 3511) (-22 "ABELMON.spad" 2370 2379 2934 2939) (-21 "ABELGRP.spad" 2035 2042 2360 2365) (-20 "ABELGRP.spad" 1698 1707 2025 2030) (-19 "A1AGG.spad" 860 869 1678 1693) (-18 "A1AGG.spad" 30 41 850 855)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 1b8315de..d877b16c 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,299 +1,299 @@
-(200981 . 3577992041)
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+(200729 . 3577996051)
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
((((-350 |#2|) |#3|) . T))
-((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T))
+((((-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) (((-484)) |has| (-350 |#2|) (-950 (-484))) (((-350 |#2|)) . T))
((((-350 |#2|)) . T))
-((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T))
+((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T))
((((-350 |#2|)) . T))
((((-350 |#2|) |#3|) . T))
(|has| (-350 |#2|) (-120))
((((-350 |#2|) |#3|) . T))
(|has| (-350 |#2|) (-118))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
(|has| (-350 |#2|) (-190))
((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))))
(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))
((((-350 |#2|)) . T))
-((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091)))))
-((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091)))))
-((((-1091)) |has| (-350 |#2|) (-810 (-1091))))
+((($ (-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090)))))
+((((-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090)))))
+((((-1090)) |has| (-350 |#2|) (-809 (-1090))))
((((-350 |#2|)) . T))
(((|#3|) . T))
-((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3|) . T))
-((((-485) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1057 |#2| |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-1057 |#2| |#1|)) . T) ((|#1|) . T) (((-485)) . T))
+((((-1056 |#2| |#1|)) . T) ((|#1|) . T))
+((((-772)) . T))
+((((-1056 |#2| |#1|)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) (((-1147 (-485)) $) . T) ((|#1| |#2|) . T))
-((((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) (((-1146 (-484)) $) . T) ((|#1| |#2|) . T))
+((((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((($) . T))
((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
((($) . T))
-((($ $) . T) (((-551 $) $) . T))
-((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
-((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((($ $) . T) (((-550 $) $) . T))
+((((-350 (-484))) . T) (((-484)) . T) (((-550 $)) . T))
+((((-1039 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T) (((-550 $)) . T))
+((((-772)) . T))
+((((-772)) . T))
+(((|#1|) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-695)) . T))
-((((-695)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-772)) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| (-58 |#1|) (-58 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1| |#1|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-918 2)) . T) (((-350 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((-917 2)) . T) (((-350 (-484))) . T) (((-772)) . T))
+((((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
((((-85)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-773)) . T))
+((((-772)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-485) (-85)) . T))
-((((-485) (-85)) . T))
-((((-485) (-85)) . T) (((-1147 (-485)) $) . T))
-((((-474)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T))
+((((-484) (-85)) . T) (((-1146 (-484)) $) . T))
+((((-473)) . T))
((((-85)) . T))
((((-85)) . T))
-((((-474)) . T))
-((((-773)) . T))
-((((-1091)) . T))
-((((-773)) . T))
+((((-473)) . T))
+((((-772)) . T))
+((((-1090)) . T))
+((((-772)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
+((((-484)) . T) (($) . T))
(((|#1|) . T))
-((((-773)) . T))
+((((-772)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-89 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-89 |#1|)) . T) (((-350 (-484))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-89 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-89 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-89 |#1|) (-89 |#1|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
((((-89 |#1|)) . T))
-((((-1091) (-89 |#1|)) |has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
+((((-1090) (-89 |#1|)) |has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) (((-89 |#1|) (-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
((((-89 |#1|)) |has| (-89 |#1|) (-260 (-89 |#1|))))
((((-89 |#1|) $) |has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))))
((((-89 |#1|)) . T))
-((($) . T) (((-89 |#1|)) . T) (((-350 (-485))) . T))
+((($) . T) (((-89 |#1|)) . T) (((-350 (-484))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
-((((-485)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
+((((-484)) . T) (((-89 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
((((-89 |#1|)) . T))
((((-89 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
+((((-772)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-485) (-101)) . T))
-((((-1147 (-485)) $) . T) (((-485) (-101)) . T))
-((((-485) (-101)) . T))
+((((-484) (-101)) . T))
+((((-1146 (-484)) $) . T) (((-484) (-101)) . T))
+((((-484) (-101)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-1074)) . T) (((-870 (-101))) . T) (((-773)) . T))
+((((-1073)) . T) (((-869 (-101))) . T) (((-772)) . T))
((((-101)) . T))
((((-101)) . T))
((((-101)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-695)) . T))
-((((-695)) . T))
-((((-773)) . T))
-((((-485) |#3|) . T))
-((((-485) (-695)) . T) ((|#3| (-695)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-694)) . T))
+((((-694)) . T))
+((((-772)) . T))
+((((-484) |#3|) . T))
+((((-484) (-694)) . T) ((|#3| (-694)) . T))
+((((-772)) . T))
(((|#3|) . T))
-((((-584 $)) . T) (((-584 |#3|)) . T) (((-1057 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
-(((|#3| (-695)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-447)) . T))
-((((-157)) . T) (((-773)) . T))
-((((-773)) . T))
+((((-583 $)) . T) (((-583 |#3|)) . T) (((-1056 |#2| |#3|)) . T) (((-197 |#2| |#3|)) . T) ((|#3|) . T))
+(((|#3| (-694)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-446)) . T))
+((((-157)) . T) (((-772)) . T))
+((((-772)) . T))
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
@@ -303,9 +303,9 @@
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-584 (-117))) . T) (((-1074)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-583 (-117))) . T) (((-1073)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
@@ -313,668 +313,668 @@
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
-(((|#2|) . T) (((-485)) . T))
+(((|#2|) . T) (((-484)) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-772)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-299)))
-((((-773)) . T))
+((((-772)) . T))
(|has| |#1| (-120))
(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
+((((-1090)) |has| |#1| (-809 (-1090))))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189)) (|has| |#1| (-299))))
(OR (|has| |#1| (-190)) (|has| |#1| (-299)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
-(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495)))
(OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
-(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312)) (|has| |#1| (-299)))
+(OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312)) (|has| |#1| (-299)))
(OR (|has| |#1| (-312)) (|has| |#1| (-299)))
(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
-(((|#1|) . T))
-((((-485)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-1086 |#1|)) . T))
-(((|#1| (-1086 |#1|)) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-(((|#1| (-1086 |#1|)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T))
+((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330))))
+(((|#1|) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-1085 |#1|)) . T))
+(((|#1| (-1085 |#1|)) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-258)) (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+(((|#1| (-1085 |#1|)) . T))
(|has| |#1| (-299))
(|has| |#1| (-299))
(|has| |#1| (-299))
(OR (|has| |#1| (-320)) (|has| |#1| (-299)))
(((|#1|) . T))
-((((-142 (-179))) |has| |#1| (-934)) (((-142 (-330))) |has| |#1| (-934)) (((-474)) |has| |#1| (-554 (-474))) (((-1086 |#1|)) . T) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))))
-(-12 (|has| |#1| (-258)) (|has| |#1| (-822)))
-(-12 (|has| |#1| (-916)) (|has| |#1| (-1116)))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(|has| |#1| (-1116))
-(((|#1|) . T))
-((((-773)) . T))
-((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
-((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
-((($) . T) (((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T))
-((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T) (($) . T))
-((((-350 (-485))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-485)) . T))
-((((-350 (-485))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-447)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 |#1|)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-918 10)) . T) (((-350 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((-142 (-179))) |has| |#1| (-933)) (((-142 (-330))) |has| |#1| (-933)) (((-473)) |has| |#1| (-553 (-473))) (((-1085 |#1|)) . T) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))))
+(-12 (|has| |#1| (-258)) (|has| |#1| (-821)))
+(-12 (|has| |#1| (-915)) (|has| |#1| (-1115)))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(|has| |#1| (-1115))
+(((|#1|) . T))
+((((-772)) . T))
+((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-772)) . T))
+((($) . T) (((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((($) . T) (((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T) (((-350 |#1|) (-350 |#1|)) . T) ((|#1| |#1|) . T))
+((((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-484)) . T) (($) . T))
+((((-350 (-484))) . T) (((-350 |#1|)) . T) ((|#1|) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T) (((-484)) . T))
+((((-350 (-484))) . T) (($) . T) (((-350 |#1|)) . T) ((|#1|) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-446)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-583 |#1|)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-917 10)) . T) (((-350 (-484))) . T) (((-772)) . T))
+((((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-265 |#1|)) . T))
-((((-773)) . T))
-((((-265 |#1|)) . T) (((-485)) . T) (($) . T))
+((((-772)) . T))
+((((-265 |#1|)) . T) (((-484)) . T) (($) . T))
((((-265 |#1|)) . T) (($) . T))
-((((-265 |#1|)) . T) (((-485)) . T))
+((((-265 |#1|)) . T) (((-484)) . T))
((((-265 |#1|)) . T))
((($) . T))
-((((-485)) . T) (((-350 (-485))) . T))
+((((-484)) . T) (((-350 (-484))) . T))
((((-330)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-474)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T))
-((((-773)) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T) (((-485)) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-473)) . T) (((-179)) . T) (((-330)) . T) (((-800 (-330))) . T))
+((((-772)) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T) (((-484)) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-961)))
+((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))))
+((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+(((|#2|) |has| |#2| (-961)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
(|has| |#2| (-320))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
+(((|#2|) |has| |#2| (-961)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
-((((-584 |#1|)) . T))
-((((-584 |#1|)) . T))
+((((-583 |#1|)) . T))
+((((-583 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-584 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+((((-583 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
((($) . T))
-(((|#2| (-197 (-3959 |#1|) (-695))) . T))
+(((|#2| (-197 (-3958 |#1|) (-694))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-197 (-3959 |#1|) (-695))) . T))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(((|#2| (-197 (-3958 |#1|) (-694))) . T))
(((|#2|) . T))
-((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-197 (-3959 |#1|) (-695)) (-774 |#1|)) . T))
-((((-773)) . T))
-((((-447)) . T))
-((((-157)) . T) (((-773)) . T))
-((((-695) (-1096)) . T))
-((((-773)) . T))
-(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))))
-((((-773)) . T) (((-1180 |#4|)) . T))
-(((|#4|) |has| |#4| (-962)))
-((((-1091)) -12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))))
-((((-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))))
-(((|#4|) |has| |#4| (-962)))
-(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962))))
-((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(|has| |#4| (-962))
-(((|#3|) . T) ((|#2|) . T) (((-485)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664)) (|has| |#4| (-962))) (($) |has| |#4| (-962)))
-(-12 (|has| |#4| (-190)) (|has| |#4| (-962)))
+((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-821)))
+((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
+((((-773 |#1|)) . T))
+((($ (-773 |#1|)) . T))
+((((-773 |#1|)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
+(((|#2| (-197 (-3958 |#1|) (-694)) (-773 |#1|)) . T))
+((((-772)) . T))
+((((-446)) . T))
+((((-157)) . T) (((-772)) . T))
+((((-694) (-1095)) . T))
+((((-772)) . T))
+(((|#4| |#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))))
+((((-772)) . T) (((-1179 |#4|)) . T))
+(((|#4|) |has| |#4| (-961)))
+((((-1090)) -12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))))
+((((-1090)) OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))))
+(((|#4|) |has| |#4| (-961)))
+(OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961))))
+((($) OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))))
+(|has| |#4| (-961))
+(|has| |#4| (-961))
+(|has| |#4| (-961))
+(|has| |#4| (-961))
+(|has| |#4| (-961))
+(((|#3|) . T) ((|#2|) . T) (((-484)) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663)) (|has| |#4| (-961))) (($) |has| |#4| (-961)))
+(-12 (|has| |#4| (-190)) (|has| |#4| (-961)))
(|has| |#4| (-320))
(((|#4|) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-(((|#4|) |has| |#4| (-962)))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-962))) (($) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
-(((|#4|) |has| |#4| (-962)) (((-485)) -12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))))
-(((|#4|) |has| |#4| (-1014)))
-((((-485)) OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ((|#4|) |has| |#4| (-1014)) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))))
-(((|#4|) |has| |#4| (-1014)) (((-485)) -12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (((-350 (-485))) -12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))))
-((((-485) |#4|) . T))
-((((-485) |#4|) . T))
-((((-485) |#4|) . T))
-(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-664))))
+(((|#4|) |has| |#4| (-961)))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-961))) (($) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))))
+(((|#4|) |has| |#4| (-961)) (((-484)) -12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))))
+(((|#4|) |has| |#4| (-1013)))
+((((-484)) OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ((|#4|) |has| |#4| (-1013)) (((-350 (-484))) -12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))))
+(((|#4|) |has| |#4| (-1013)) (((-484)) -12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (((-350 (-484))) -12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))))
+((((-484) |#4|) . T))
+((((-484) |#4|) . T))
+((((-484) |#4|) . T))
+(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312)) (|has| |#4| (-663))))
(((|#4|) OR (|has| |#4| (-146)) (|has| |#4| (-312))))
-(|has| |#4| (-718))
-(|has| |#4| (-718))
-(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
-(OR (|has| |#4| (-718)) (|has| |#4| (-757)))
-(|has| |#4| (-718))
-(|has| |#4| (-718))
+(|has| |#4| (-717))
+(|has| |#4| (-717))
+(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
+(OR (|has| |#4| (-717)) (|has| |#4| (-756)))
+(|has| |#4| (-717))
+(|has| |#4| (-717))
(((|#4|) |has| |#4| (-312)))
(((|#1| |#4|) . T))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
-((((-773)) . T) (((-1180 |#3|)) . T))
-(((|#3|) |has| |#3| (-962)))
-((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))))
-((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-(((|#3|) |has| |#3| (-962)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(((|#2|) . T) (((-485)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
+((((-772)) . T) (((-1179 |#3|)) . T))
+(((|#3|) |has| |#3| (-961)))
+((((-1090)) -12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))))
+((((-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))))
+(((|#3|) |has| |#3| (-961)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(((|#2|) . T) (((-484)) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
(|has| |#3| (-320))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-962)))
-(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-1014)))
-((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
-(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664))))
+(((|#3|) |has| |#3| (-961)))
+(((|#2|) . T) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
+(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
+(((|#3|) |has| |#3| (-1013)))
+((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))))
+(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
+(|has| |#3| (-717))
+(|has| |#3| (-717))
+(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
+(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
+(|has| |#3| (-717))
+(|has| |#3| (-717))
(((|#3|) |has| |#3| (-312)))
(((|#1| |#3|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-773)) . T))
+((((-772)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-470 |#3|) |#3|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) ((|#3|) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ |#3|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) ((|#3|) . T))
+(((|#1| (-469 |#3|) |#3|) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) (((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) ((|#3|) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ |#3|) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) ((|#3|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-190)) ((|#2| |#1|) |has| |#1| (-190)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-470 |#3|)) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(((|#1| (-469 |#3|)) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 |#3|)) . T))
-((((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))))
-((((-1040 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#2|) . T))
-((((-1040 |#1| |#2|)) . T) (((-485)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#2|) . T))
-(((|#1| |#2| |#3| (-470 |#3|)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+(((|#1| (-469 |#3|)) . T))
+((((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))))
+((((-1039 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#2|) . T))
+((((-1039 |#1| |#2|)) . T) (((-484)) . T) ((|#3|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#2|) . T))
+(((|#1| |#2| |#3| (-469 |#3|)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#2| |#2|) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
-((($) . T) (((-485)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) |has| |#1| (-312)))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((($ (-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) |has| |#1| (-810 (-1091))))
+((((-1090)) |has| |#1| (-809 (-1090))))
+((($ (-1090)) |has| |#1| (-809 (-1090))))
+((((-1090)) |has| |#1| (-809 (-1090))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312))))
(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
-(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))))
-((((-485)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
+(((|#1| |#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))))
+((((-484)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))))
+(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
(|has| |#1| (-413))
-(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
-((((-85)) |has| |#1| (-1014)) (((-773)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-664)) (|has| |#1| (-810 (-1091))) (|has| |#1| (-962)) (|has| |#1| (-1026)) (|has| |#1| (-1014)))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+(OR (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+((((-85)) |has| |#1| (-1013)) (((-772)) OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-413)) (|has| |#1| (-663)) (|has| |#1| (-809 (-1090))) (|has| |#1| (-961)) (|has| |#1| (-1025)) (|has| |#1| (-1013)))
+((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-118))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-120))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1091) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) (((-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|)) |has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|) $) |has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-350 (-485))) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-485)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-496)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-((((-773)) . T))
-(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-496)) (|has| |#1| (-962)) (|has| |#1| (-1026)))
-(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962)))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-118))
+(|has| (-1166 |#1| |#2| |#3| |#4|) (-120))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1090) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) (((-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|)) |has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|) $) |has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((($) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (((-350 (-484))) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-484)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-1166 |#1| |#2| |#3| |#4|)) . T))
+((((-1166 |#1| |#2| |#3| |#4|)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-495)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+((((-772)) . T))
+(OR (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-413)) (|has| |#1| (-495)) (|has| |#1| (-961)) (|has| |#1| (-1025)))
+(OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961)))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-551 $) $) . T) (($ $) . T))
+((((-550 $) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
-((((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)) (((-350 (-485))) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-496)) (($) |has| |#1| (-496)))
-(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-485)) (-350 (-485))) |has| |#1| (-496)) (($ $) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(((|#1|) |has| |#1| (-962)))
-((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-962))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-962))) (((-350 (-485))) |has| |#1| (-496)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
-(((|#1|) |has| |#1| (-962)) (((-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))))
-(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495)))
+((((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) (($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-350 (-484))) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)) (((-350 (-484))) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-495)) (($) |has| |#1| (-495)))
+(((|#1| |#1|) |has| |#1| (-146)) (((-350 (-484)) (-350 (-484))) |has| |#1| (-495)) (($ $) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(((|#1|) |has| |#1| (-961)))
+((($) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-961))) ((|#1|) OR (|has| |#1| (-146)) (|has| |#1| (-961))) (((-350 (-484))) |has| |#1| (-495)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))))
+(((|#1|) |has| |#1| (-961)) (((-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))))
+(((|#1|) . T))
+((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330))))
(((|#1|) . T))
(|has| |#1| (-413))
-((((-1091)) |has| |#1| (-962)))
-((($ (-1091)) |has| |#1| (-962)))
-((((-1091)) |has| |#1| (-962)))
+((((-1090)) |has| |#1| (-961)))
+((($ (-1090)) |has| |#1| (-961)))
+((((-1090)) |has| |#1| (-961)))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))))
-((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-551 $)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T))
-((((-48)) -12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (((-485)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-496)) (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ((|#1|) . T) (((-551 $)) . T) (($) |has| |#1| (-496)) (((-350 (-485))) OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) (((-350 (-858 |#1|))) |has| |#1| (-496)) (((-858 |#1|)) |has| |#1| (-962)) (((-1091)) . T))
+((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))))
+((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-550 $)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-350 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1090)) . T))
+((((-48)) -12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (((-484)) OR (|has| |#1| (-118)) (|has| |#1| (-120)) (|has| |#1| (-146)) (|has| |#1| (-495)) (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ((|#1|) . T) (((-550 $)) . T) (($) |has| |#1| (-495)) (((-350 (-484))) OR (|has| |#1| (-495)) (|has| |#1| (-950 (-350 (-484))))) (((-350 (-857 |#1|))) |has| |#1| (-495)) (((-857 |#1|)) |has| |#1| (-961)) (((-1090)) . T))
(((|#1|) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-((((-773)) . T))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+((((-772)) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-350 (-485))) . T))
-(((|#1| (-350 (-485))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-350 (-484))) . T))
+(((|#1| (-350 (-484))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-350 (-485)) (-995)) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-350 (-485)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-485)) . T))
-((((-485) (-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-773)) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-350 (-484)) (-994)) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-350 (-484)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+(((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-484)) . T))
+((((-484) (-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-772)) . T))
+((((-484)) . T))
+((((-772)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-694)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-484)) . T))
+((((-772)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-818 |#1|)) . T))
+((((-817 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -988,16 +988,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -1006,37 +1006,37 @@
((($) |has| |#1| (-320)))
(|has| |#1| (-320))
(((|#1|) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-818 |#1|) (-818 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-818 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-817 |#1|) (-817 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-817 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-818 |#1|)) . T))
+((((-817 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -1050,16 +1050,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -1073,16 +1073,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -1096,16 +1096,16 @@
(((|#1|) . T))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
(OR (|has| |#1| (-118)) (|has| |#1| (-320)))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| |#1| (-120))
(|has| |#1| (-320))
(|has| |#1| (-320))
@@ -1116,564 +1116,552 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
((((-338) |#1|) . T))
((((-179)) . T))
((($) . T))
-((((-485)) . T) (((-350 (-485))) . T))
+((((-484)) . T) (((-350 (-484))) . T))
((((-330)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-474)) . T) (((-1074)) . T) (((-179)) . T) (((-330)) . T) (((-801 (-330))) . T))
-((((-179)) . T) (((-773)) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-473)) . T) (((-1073)) . T) (((-179)) . T) (((-330)) . T) (((-800 (-330))) . T))
+((((-179)) . T) (((-772)) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-584 (-454 |#1| |#2|))) . T))
+((((-583 (-453 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#1|) . T))
+((((-772)) . T))
+((((-484)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+((((-772)) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1074)) . T))
-((((-1074)) . T))
-((((-1074)) . T) (((-773)) . T))
+((((-1073)) . T))
+((((-1073)) . T))
+((((-1073)) . T) (((-772)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-773)) . T))
-(((|#3|) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#3|) . T) (((-484)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#3| |#3|) . T))
(((|#3|) . T))
((((-350 |#2|)) . T))
((($) . T))
-((((-773)) . T))
-(|has| |#1| (-1135))
-((((-474)) |has| |#1| (-554 (-474))) (((-179)) |has| |#1| (-934)) (((-330)) |has| |#1| (-934)))
-(|has| |#1| (-934))
-(OR (|has| |#1| (-392)) (|has| |#1| (-1135)))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-772)) . T))
+(|has| |#1| (-1134))
+((((-473)) |has| |#1| (-553 (-473))) (((-179)) |has| |#1| (-933)) (((-330)) |has| |#1| (-933)))
+(|has| |#1| (-933))
+(OR (|has| |#1| (-392)) (|has| |#1| (-1134)))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
(((|#1|) . T))
((($ $) |has| |#1| (-241 $ $)) ((|#1| $) |has| |#1| (-241 |#1| |#1|)))
((($) |has| |#1| (-260 $)) ((|#1|) |has| |#1| (-260 |#1|)))
-((((-1091) $) |has| |#1| (-456 (-1091) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)))
+((((-1090) $) |has| |#1| (-455 (-1090) $)) (($ $) |has| |#1| (-260 $)) ((|#1| |#1|) |has| |#1| (-260 |#1|)) (((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)))
(((|#1|) . T))
(|has| |#1| (-190))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
(((|#1|) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((((-1091)) |has| |#1| (-810 (-1091))))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
+((((-1090)) |has| |#1| (-809 (-1090))))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T) (($) . T))
-((((-773)) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T) (($) . T))
+((((-772)) . T))
(|has| |#1| (-118))
-(OR (|has| |#1| (-120)) (|has| |#1| (-741)))
+(OR (|has| |#1| (-120)) (|has| |#1| (-740)))
(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
+((((-1090)) |has| |#1| (-809 (-1090))))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+(((|#1|) . T))
+((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-350 (-485))) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+((($) . T) ((|#1|) . T) (((-350 (-484))) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
(((|#1|) . T))
-((((-485)) |has| |#1| (-797 (-485))) (((-330)) |has| |#1| (-797 (-330))))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
-(OR (|has| |#1| (-741)) (|has| |#1| (-757)))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
-(|has| |#1| (-741))
+((((-484)) |has| |#1| (-796 (-484))) (((-330)) |has| |#1| (-796 (-330))))
+(|has| |#1| (-740))
+(|has| |#1| (-740))
+(|has| |#1| (-740))
+(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-740)) (|has| |#1| (-756)))
+(|has| |#1| (-740))
+(|has| |#1| (-740))
+(|has| |#1| (-740))
(((|#1|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-934))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-330)) |has| |#1| (-934)) (((-179)) |has| |#1| (-934)))
-((((-485)) . T) ((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#1| (-951 (-1091))))
-((((-350 (-485))) |has| |#1| (-951 (-485))) (((-485)) |has| |#1| (-951 (-485))) (((-1091)) |has| |#1| (-951 (-1091))) ((|#1|) . T))
-(|has| |#1| (-1067))
+(|has| |#1| (-821))
+(|has| |#1| (-933))
+((((-473)) |has| |#1| (-553 (-473))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-330)) |has| |#1| (-933)) (((-179)) |has| |#1| (-933)))
+((((-484)) . T) ((|#1|) . T) (($) . T) (((-350 (-484))) . T) (((-1090)) |has| |#1| (-950 (-1090))))
+((((-350 (-484))) |has| |#1| (-950 (-484))) (((-484)) |has| |#1| (-950 (-484))) (((-1090)) |has| |#1| (-950 (-1090))) ((|#1|) . T))
+(|has| |#1| (-1066))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-485) (-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T))
-((((-773)) . T))
-((((-1057 |#2| (-350 (-858 |#1|)))) . T) (((-350 (-858 |#1|))) . T) (((-485)) . T))
-((((-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|)) (-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-350 (-858 |#1|))) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+(((|#1|) . T) (((-484)) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-484) (-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-1056 |#2| (-350 (-857 |#1|)))) . T) (((-350 (-857 |#1|))) . T))
+((((-772)) . T))
+((((-1056 |#2| (-350 (-857 |#1|)))) . T) (((-350 (-857 |#1|))) . T) (((-484)) . T))
+((((-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|)) (-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-350 (-857 |#1|))) . T))
+((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
((($) . T))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
(((|#2| |#3|) . T))
(((|#2|) . T))
-((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| |#3| (-774 |#1|)) . T))
+((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-821)))
+((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
+((((-773 |#1|)) . T))
+((($ (-773 |#1|)) . T))
+((((-773 |#1|)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
+(((|#2| |#3| (-773 |#1|)) . T))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
-((((-773)) . T))
-(((|#2|) . T) (((-485)) . T) ((|#6|) . T))
+((((-772)) . T))
+(((|#2|) . T) (((-484)) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#2|) . T) ((|#6|) . T))
(((|#4|) . T))
(((|#4|) . T))
-((((-584 |#4|)) . T) (((-773)) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+((((-583 |#4|)) . T) (((-772)) . T))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((-473)) |has| |#4| (-553 (-473))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-773)) . T))
+((((-772)) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-((((-773)) . T))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+((((-772)) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-350 (-485))) . T))
-(((|#1| (-350 (-485))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-350 (-484))) . T))
+(((|#1| (-350 (-484))) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1|) . T))
-((((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-350 (-485)) (-995)) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-350 (-485)) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-(((|#1|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1|) . T))
+((((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-350 (-484)) (-994)) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-350 (-484)) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+(((|#1|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((-473)) |has| |#4| (-553 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((-772)) . T) (((-583 |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-474)) . T) (((-350 (-1086 (-485)))) . T) (((-179)) . T) (((-330)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((((-330)) . T) (((-179)) . T) (((-773)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((-473)) . T) (((-350 (-1085 (-484)))) . T) (((-179)) . T) (((-330)) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((((-330)) . T) (((-179)) . T) (((-772)) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
((($) . T))
-(((|#2| (-422 (-3959 |#1|) (-695))) . T))
+(((|#2| (-422 (-3958 |#1|) (-694))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-422 (-3959 |#1|) (-695))) . T))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(((|#2| (-422 (-3958 |#1|) (-694))) . T))
(((|#2|) . T))
-((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-422 (-3959 |#1|) (-695)) (-774 |#1|)) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-821)))
+((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
+((((-773 |#1|)) . T))
+((($ (-773 |#1|)) . T))
+((((-773 |#1|)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
+(((|#2| (-422 (-3958 |#1|) (-694)) (-773 |#1|)) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-961)))
+((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))))
+((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+(((|#2|) |has| |#2| (-961)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
(|has| |#2| (-320))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
+(((|#2|) |has| |#2| (-961)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-485)) . T))
-((((-773)) . T))
+((((-484)) . T))
+((((-772)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-918 16)) . T) (((-350 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((-917 16)) . T) (((-350 (-484))) . T) (((-772)) . T))
+((((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T))
-((((-1074)) . T) (((-773)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T))
+((((-1073)) . T) (((-772)) . T))
((($) . T))
((((-142 (-330))) . T) (((-179)) . T) (((-330)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
((($) . T))
-((($ $) . T) (((-551 $) $) . T))
-((((-350 (-485))) . T) (((-485)) . T) (((-551 $)) . T))
-((((-1040 (-485) (-551 $))) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T) (((-551 $)) . T))
-((((-773)) . T))
+((($ $) . T) (((-550 $) $) . T))
+((((-350 (-484))) . T) (((-484)) . T) (((-550 $)) . T))
+((((-1039 (-484) (-550 $))) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T) (((-550 $)) . T))
+((((-772)) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2| |#3|) . T))
-((((-85)) . T))
-((((-85)) . T))
-((((-85)) . T))
-((((-773)) . T))
-((((-85)) . T))
-((((-85)) . T))
-((((-485) (-85)) . T))
-((((-485) (-85)) . T))
-((((-485) (-85)) . T) (((-1147 (-485)) $) . T))
-((((-474)) . T))
-((((-85)) . T))
-((((-85)) . T))
-((((-1074)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((-1073)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-583 (-453 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((-772)) . T))
+((((-484)) . T))
+((((-583 (-453 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
-(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-((((-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))))
+((((-772)) . T))
+((((-583 (-453 |#1| |#2|))) . T))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((((-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((-583 (-453 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| |#2|))) . T))
+((((-772)) . T))
+((((-583 (-453 |#1| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
-((((-783 |#2| |#1|)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-782 |#2| |#1|)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T))
-((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-518 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-518 |#1|) (-518 |#1|)) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-518 |#1|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-518 |#1|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T))
+((((-517 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-517 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-517 |#1|) (-517 |#1|)) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-517 |#1|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-517 |#1|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(|has| $ (-120))
((($) . T))
-((((-518 |#1|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-584 (-454 (-695) |#1|))) . T))
-((((-695) |#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-516)) . T))
-((((-1016)) . T))
-((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
-((((-1074) (-1091) (-485) (-179) (-773)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-517 |#1|)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((((-583 (-453 (-694) |#1|))) . T))
+((((-694) |#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-515)) . T))
+((((-1015)) . T))
+((((-583 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T))
+((((-484) $) . T) (((-583 (-484)) $) . T))
+((((-772)) . T))
+((((-1073) (-1090) (-484) (-179) (-772)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -1681,201 +1669,201 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-485)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((((-485)) . T) (($) . T))
+((((-772)) . T))
+((((-484)) . T) (($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
+((((-484)) . T) (($) . T))
(((|#1|) . T))
-((((-485)) . T))
+((((-484)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-773)) . T))
+((((-772)) . T))
((($) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T))
-((((-350 (-485))) . T))
-((((-773)) . T))
-((((-485)) . T) (((-350 (-485))) . T))
-((((-350 (-485))) . T))
-((((-350 (-485))) . T))
-((((-350 (-485))) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(|has| |#1| (-15 * (|#1| (-485) |#1|)))
-((((-773)) . T))
-((($) |has| |#1| (-15 * (|#1| (-485) |#1|))))
-(|has| |#1| (-15 * (|#1| (-485) |#1|)))
-((($ $) . T) (((-485) |#1|) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-(((|#1| (-485) (-995)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T))
+((((-350 (-484))) . T))
+((((-772)) . T))
+((((-484)) . T) (((-350 (-484))) . T))
+((((-350 (-484))) . T))
+((((-350 (-484))) . T))
+((((-350 (-484))) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(|has| |#1| (-15 * (|#1| (-484) |#1|)))
+((((-772)) . T))
+((($) |has| |#1| (-15 * (|#1| (-484) |#1|))))
+(|has| |#1| (-15 * (|#1| (-484) |#1|)))
+((($ $) . T) (((-484) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(((|#1| (-484) (-994)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-((($) |has| |#1| (-496)))
-((($) |has| |#1| (-496)))
-((($) |has| |#1| (-496)))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((($) |has| |#1| (-496)) ((|#1|) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T))
-((($ $) |has| |#1| (-496)) ((|#1| |#1|) . T))
-((($) |has| |#1| (-496)) (((-485)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+((($) |has| |#1| (-495)))
+((($) |has| |#1| (-495)))
+((($) |has| |#1| (-495)))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((($) |has| |#1| (-495)) ((|#1|) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T))
+((($ $) |has| |#1| (-495)) ((|#1| |#1|) . T))
+((($) |has| |#1| (-495)) (((-484)) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-1131)) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-485) |#1|) |has| |#2| (-361 |#1|)))
+((((-772)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-772)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-1130)) . T) (((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-484) |#1|) |has| |#2| (-361 |#1|)))
(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|))))
(((|#1|) |has| |#2| (-361 |#1|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+(((|#2|) . T) (((-772)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
((((-101)) . T))
((((-101)) . T))
-((((-101)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-101)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-101)) . T) (((-542)) . T))
-((((-101)) . T) (((-542)) . T))
-((((-101)) . T) (((-542)) . T) (((-773)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-773)) . T))
-((((-338) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
+((((-101)) . T) (((-772)) . T))
+((((-772)) . T))
+((((-101)) . T) (((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-101)) . T) (((-541)) . T))
+((((-101)) . T) (((-541)) . T))
+((((-101)) . T) (((-541)) . T) (((-772)) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-772)) . T))
+((((-338) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-473)) |has| |#1| (-553 (-473))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
+(((|#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
-(((|#2|) . T) (((-485)) . T) (($) . T))
+(((|#2|) . T) (((-484)) . T) (($) . T))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-485)) . T))
+(((|#2|) . T) (((-484)) . T))
(((|#2|) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+(((|#2|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
(((|#1|) . T))
((((-350 |#2|)) . T))
((($) . T))
@@ -1885,68 +1873,68 @@
((($) . T))
((($) . T))
(|has| |#2| (-190))
-(((|#2|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (($) . T) (((-485)) . T))
+(((|#2|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (($) . T) (((-484)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
(((|#2|) . T))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((((-1091)) |has| |#2| (-810 (-1091))))
+((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
+((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
+((((-1090)) |has| |#2| (-809 (-1090))))
(((|#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-773)) . T))
-((((-1074) (-51)) . T))
-((((-1074) (-51)) . T))
-((((-1091) (-51)) . T) (((-1074) (-51)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T) (((-51)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))))
-((((-1074) (-51)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) . T))
-((((-1074) (-51)) . T))
-((((-485) |#1|) |has| |#2| (-361 |#1|)))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-772)) . T))
+((((-1073) (-51)) . T))
+((((-1073) (-51)) . T))
+((((-1090) (-51)) . T) (((-1073) (-51)) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T) (((-51)) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))))
+((((-1073) (-51)) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) . T))
+((((-1073) (-51)) . T))
+((((-484) |#1|) |has| |#2| (-361 |#1|)))
(((|#1|) OR (|has| |#2| (-316 |#1|)) (|has| |#2| (-361 |#1|))))
(((|#1|) |has| |#2| (-361 |#1|)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+(((|#2|) . T) (((-772)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-774 |#1|)) . T))
-((((-773)) . T))
-((((-584 (-454 |#1| (-578 |#2|)))) . T))
-(((|#1| (-578 |#2|)) . T))
-((((-578 |#2|)) . T))
+((((-773 |#1|)) . T))
+((((-772)) . T))
+((((-583 (-453 |#1| (-577 |#2|)))) . T))
+(((|#1| (-577 |#2|)) . T))
+((((-577 |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-580 |#1| |#2|) |#1|) . T))
+((((-579 |#1| |#2|) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
@@ -1954,230 +1942,230 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-(((|#1|) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-1095)) . T))
+(((|#1|) . T) (((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((-473)) |has| |#1| (-553 (-473))))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
-(|has| |#1| (-715))
+((((-772)) . T))
+(|has| |#1| (-714))
+(|has| |#1| (-714))
+(|has| |#1| (-714))
+(|has| |#1| (-714))
+(|has| |#1| (-714))
+(|has| |#1| (-714))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#2|) . T))
+((((-772)) . T))
+((((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
(((|#1|) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((|#1|) . T) (((-485)) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-615 |#1|)) . T))
-((((-615 |#1|)) . T))
-(((|#2| (-615 |#1|)) . T))
+((((-614 |#1|)) . T))
+((((-614 |#1|)) . T))
+(((|#2| (-614 |#1|)) . T))
(((|#2|) . T))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((((-485)) . T) ((|#2|) . T))
+((((-772)) . T))
+((((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-((((-485) |#2|) . T))
+((((-484) |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-6 (-3999 "*"))))
+(((|#2|) |has| |#2| (-6 (-3998 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-631 |#2|)) . T) (((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((-630 |#2|)) . T) (((-772)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((-1090)) |has| |#2| (-809 (-1090))))
+((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
(((|#2|) . T))
-((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+((((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-1131)) . T) (((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1| (-1180 |#1|) (-1180 |#1|)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (((-485)) . T) (($) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-1130)) . T) (((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1| (-1179 |#1|) (-1179 |#1|)) . T))
+((((-772)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (((-484)) . T) (($) . T))
(|has| |#1| (-320))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-773)) . T))
-((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
+((((-772)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-312))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
+(((|#1| (-694) (-994)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-694)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-(((|#2|) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+(((|#2|) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-694)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
+(|has| |#1| (-1066))
(((|#1|) . T))
-((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T))
-((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T))
-((((-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) . T) (((-773)) . T))
+((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T))
+((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T))
+((((-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) . T) (((-772)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2188,51 +2176,51 @@
(|has| |#1| (-120))
(((|#2| |#2|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-485)) . T))
+((((-86)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
-((((-485)) . T))
+((((-772)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
-((((-773)) . T))
-((((-1023 |#1|)) . T) (((-773)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
+((((-772)) . T))
+((((-1022 |#1|)) . T) (((-772)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))))
+((((-473)) |has| |#2| (-553 (-473))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))))
((($) . T))
-(((|#2| (-470 (-774 |#1|))) . T))
+(((|#2| (-469 (-773 |#1|))) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T))
(|has| |#2| (-118))
(|has| |#2| (-120))
-(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-((((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))))
-(((|#2| (-470 (-774 |#1|))) . T))
+(OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (($) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2| |#2|) . T) (($ $) OR (|has| |#2| (-146)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+((((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) |has| |#2| (-146)) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))))
+(((|#2| (-469 (-773 |#1|))) . T))
(((|#2|) . T))
-((($) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(OR (|has| |#2| (-392)) (|has| |#2| (-822)))
-((($ $) . T) (((-774 |#1|) $) . T) (((-774 |#1|) |#2|) . T))
-((((-774 |#1|)) . T))
-((($ (-774 |#1|)) . T))
-((((-774 |#1|)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-350 (-485))) |has| |#2| (-951 (-350 (-485)))) (((-485)) |has| |#2| (-951 (-485))) ((|#2|) . T) (((-774 |#1|)) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-774 |#1|)) . T))
-(((|#2| (-470 (-774 |#1|)) (-774 |#1|)) . T))
+((($) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(OR (|has| |#2| (-392)) (|has| |#2| (-821)))
+((($ $) . T) (((-773 |#1|) $) . T) (((-773 |#1|) |#2|) . T))
+((((-773 |#1|)) . T))
+((($ (-773 |#1|)) . T))
+((((-773 |#1|)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-350 (-484))) |has| |#2| (-950 (-350 (-484)))) (((-484)) |has| |#2| (-950 (-484))) ((|#2|) . T) (((-773 |#1|)) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ((|#2|) . T) (($) OR (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-773 |#1|)) . T))
+(((|#2| (-469 (-773 |#1|)) (-773 |#1|)) . T))
(-12 (|has| |#1| (-320)) (|has| |#2| (-320)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2243,210 +2231,210 @@
(|has| |#1| (-118))
(|has| |#1| (-120))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) ((|#2|) . T) (((-485)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((-473)) |has| |#1| (-553 (-473))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) (((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))))
+((((-772)) . T))
+((((-772)) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) (((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-470 |#2|)) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(((|#1| (-469 |#2|)) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-1040 |#1| |#2|)) . T) (((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-773)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
-((((-1040 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-((((-1040 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-470 |#2|)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-1039 |#1| |#2|)) . T) (((-857 |#1|)) |has| |#2| (-553 (-1090))) (((-772)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T))
+((((-1039 |#1| |#2|)) . T) ((|#2|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+((((-1039 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-469 |#2|)) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
((($) . T))
-((((-858 |#1|)) |has| |#2| (-554 (-1091))) (((-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))))
-(((|#1| (-470 |#2|) |#2|) . T))
+((((-857 |#1|)) |has| |#2| (-553 (-1090))) (((-1073)) -12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1090)))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) (((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))))
+(((|#1| (-469 |#2|) |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-1086 |#1|)) . T) (((-773)) . T))
-((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
+((((-1085 |#1|)) . T) (((-772)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-312))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
+(((|#1| (-694) (-994)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-694)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-1086 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-((((-1086 |#1|)) . T) (((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((((-1085 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+((((-1085 |#1|)) . T) (((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-694)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
+(|has| |#1| (-1066))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-474)) |has| |#1| (-554 (-474))))
+((((-473)) |has| |#1| (-553 (-473))))
(|has| |#1| (-320))
(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
-((((-910 |#1|)) . T) ((|#1|) . T))
-((((-910 |#1|)) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485))))))
-((((-910 |#1|)) . T) ((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-910 |#1|) (-951 (-485)))) (((-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| (-910 |#1|) (-951 (-350 (-485))))))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-718)) (|has| |#2| (-962)))
-(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))))
-((((-773)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-553 (-773))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-664)) (|has| |#2| (-718)) (|has| |#2| (-757)) (|has| |#2| (-962)) (|has| |#2| (-1014))) (((-1180 |#2|)) . T))
-(((|#2|) |has| |#2| (-962)))
-((((-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))))
-((((-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962)))))
-(((|#2|) |has| |#2| (-962)))
-(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962))))
-((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-962))) (-12 (|has| |#2| (-189)) (|has| |#2| (-962)))))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-(|has| |#2| (-962))
-((((-485)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664)) (|has| |#2| (-962))) (($) |has| |#2| (-962)))
-(-12 (|has| |#2| (-190)) (|has| |#2| (-962)))
+((((-909 |#1|)) . T) ((|#1|) . T))
+((((-909 |#1|)) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| (-909 |#1|) (-950 (-350 (-484))))))
+((((-909 |#1|)) . T) ((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-909 |#1|) (-950 (-484)))) (((-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| (-909 |#1|) (-950 (-350 (-484))))))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#1|) . T))
+(OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-72)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(OR (|has| |#2| (-21)) (|has| |#2| (-104)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-717)) (|has| |#2| (-961)))
+(((|#2| |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))))
+((((-772)) OR (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-104)) (|has| |#2| (-552 (-772))) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-320)) (|has| |#2| (-663)) (|has| |#2| (-717)) (|has| |#2| (-756)) (|has| |#2| (-961)) (|has| |#2| (-1013))) (((-1179 |#2|)) . T))
+(((|#2|) |has| |#2| (-961)))
+((((-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))))
+((((-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961)))))
+(((|#2|) |has| |#2| (-961)))
+(OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961))))
+((($) OR (-12 (|has| |#2| (-190)) (|has| |#2| (-961))) (-12 (|has| |#2| (-189)) (|has| |#2| (-961)))))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+(|has| |#2| (-961))
+((((-484)) OR (|has| |#2| (-21)) (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) ((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663)) (|has| |#2| (-961))) (($) |has| |#2| (-961)))
+(-12 (|has| |#2| (-190)) (|has| |#2| (-961)))
(|has| |#2| (-320))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
-(((|#2|) |has| |#2| (-962)))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-962))) (($) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-962)) (((-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))))
-(((|#2|) |has| |#2| (-1014)))
-((((-485)) OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ((|#2|) |has| |#2| (-1014)) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-(((|#2|) |has| |#2| (-1014)) (((-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (((-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-((((-485) |#2|) . T))
-(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-664))))
+(((|#2|) |has| |#2| (-961)))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-961))) (($) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-961)) (((-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))))
+(((|#2|) |has| |#2| (-1013)))
+((((-484)) OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ((|#2|) |has| |#2| (-1013)) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+(((|#2|) |has| |#2| (-1013)) (((-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (((-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+((((-484) |#2|) . T))
+(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-663))))
(((|#2|) OR (|has| |#2| (-146)) (|has| |#2| (-312))))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-718)) (|has| |#2| (-757)))
-(|has| |#2| (-718))
-(|has| |#2| (-718))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(OR (|has| |#2| (-717)) (|has| |#2| (-756)))
+(|has| |#2| (-717))
+(|has| |#2| (-717))
(((|#2|) |has| |#2| (-312)))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-773)) . T))
+((((-772)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-470 (-739 (-1091))) (-739 (-1091))) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-739 (-1091))) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-739 (-1091))) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-739 (-1091))) . T))
-((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-739 (-1091)) |#1|) . T) (((-739 (-1091)) $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 (-739 (-1091)))) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(((|#1| (-469 (-738 (-1090))) (-738 (-1090))) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-738 (-1090))) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-738 (-1090))) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) (((-738 (-1090))) . T))
+((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-738 (-1090)) |#1|) . T) (((-738 (-1090)) $) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-469 (-738 (-1090)))) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 (-739 (-1091)))) . T))
-((((-1040 |#1| (-1091))) . T) (((-739 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T))
-((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-739 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T))
-(((|#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+(((|#1| (-469 (-738 (-1090)))) . T))
+((((-1039 |#1| (-1090))) . T) (((-738 (-1090))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-1090)) . T))
+((((-1039 |#1| (-1090))) . T) (((-484)) . T) (((-738 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-1090)) . T))
+(((|#1| (-1090) (-738 (-1090)) (-469 (-738 (-1090)))) . T))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
-((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
-((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
-((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
+((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)))
(|has| |#2| (-312))
(|has| |#2| (-312))
(|has| |#2| (-312))
@@ -2454,19 +2442,19 @@
(|has| |#2| (-312))
(((|#2|) . T))
((($) . T))
-((((-350 (-485))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-485)) . T))
-((((-350 (-485))) |has| |#2| (-312)) (($) . T))
-(((|#2|) . T) (((-773)) . T))
-((((-350 (-485))) |has| |#2| (-312)) (($) . T) (((-485)) . T))
-((((-350 (-485))) |has| |#2| (-312)) (($) . T))
-((((-350 (-485))) |has| |#2| (-312)) (($) . T))
-((((-350 (-485)) (-350 (-485))) |has| |#2| (-312)) (($ $) . T))
+((((-350 (-484))) |has| |#2| (-312)) (($) |has| |#2| (-312)) ((|#2|) . T) (((-484)) . T))
+((((-350 (-484))) |has| |#2| (-312)) (($) . T))
+(((|#2|) . T) (((-772)) . T))
+((((-350 (-484))) |has| |#2| (-312)) (($) . T) (((-484)) . T))
+((((-350 (-484))) |has| |#2| (-312)) (($) . T))
+((((-350 (-484))) |has| |#2| (-312)) (($) . T))
+((((-350 (-484)) (-350 (-484))) |has| |#2| (-312)) (($ $) . T))
((($) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2477,36 +2465,36 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-485)) . T) ((|#2|) |has| |#2| (-146)))
+((((-484)) . T) ((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
-(|has| |#1| (-756))
-((($) |has| |#1| (-756)))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
+(|has| |#1| (-755))
+((($) |has| |#1| (-755)))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -2517,458 +2505,458 @@
(|has| |#1| (-120))
(((|#1| |#1|) . T))
((((-86)) . T) ((|#1|) . T))
-((((-86)) . T) ((|#1|) . T) (((-485)) . T))
+((((-86)) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-773)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
-((((-773)) . T))
-((((-447)) . T))
-(|has| |#1| (-756))
-((($) |has| |#1| (-756)))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(|has| |#1| (-756))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-((($) |has| |#1| (-756)) (((-485)) OR (|has| |#1| (-21)) (|has| |#1| (-756))))
-(OR (|has| |#1| (-21)) (|has| |#1| (-756)))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-773)) |has| |#1| (-553 (-773))) ((|#1|) . T))
+((((-772)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
+((((-772)) . T))
+((((-446)) . T))
+(|has| |#1| (-755))
+((($) |has| |#1| (-755)))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(|has| |#1| (-755))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+((($) |has| |#1| (-755)) (((-484)) OR (|has| |#1| (-21)) (|has| |#1| (-755))))
+(OR (|has| |#1| (-21)) (|has| |#1| (-755)))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+(((|#1|) . T))
+((((-772)) |has| |#1| (-552 (-772))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#1|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) ((|#1|) . T))
((($) . T) ((|#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-((((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+((((-484)) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
(((|#1|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
-((((-1177 |#1|)) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+((((-1176 |#1|)) . T) (((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
(((|#2|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-801 (-485))) . T) (((-801 (-330))) . T) (((-474)) . T) (((-1091)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-800 (-484))) . T) (((-800 (-330))) . T) (((-473)) . T) (((-1090)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
-((((-858 |#1|)) . T))
-(((|#1|) |has| |#1| (-146)) (((-858 |#1|)) . T) (((-485)) . T))
+((((-857 |#1|)) . T))
+(((|#1|) |has| |#1| (-146)) (((-857 |#1|)) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-((((-858 |#1|)) . T) (((-773)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
+((((-857 |#1|)) . T) (((-772)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
((($) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($ $) . T))
((($) . T))
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T))
-((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-779 |#1|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-779 |#1|) (-779 |#1|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-779 |#1|)) . T))
-((((-1091) (-779 |#1|)) |has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) (((-779 |#1|) (-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|))))
-((((-779 |#1|)) |has| (-779 |#1|) (-260 (-779 |#1|))))
-((((-779 |#1|) $) |has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))))
-((((-779 |#1|)) . T))
-((($) . T) (((-779 |#1|)) . T) (((-350 (-485))) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-485)) . T) (((-779 |#1|)) . T) (($) . T) (((-350 (-485))) . T))
-((((-779 |#1|)) . T))
-((((-779 |#1|)) . T))
-((((-773)) . T))
+((((-484)) . T) (($) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-778 |#1|)) . T))
+((((-778 |#1|)) . T))
+((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-778 |#1|)) . T) (((-350 (-484))) . T))
+((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-778 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-778 |#1|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-778 |#1|) (-778 |#1|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-778 |#1|)) . T))
+((((-1090) (-778 |#1|)) |has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) (((-778 |#1|) (-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|))))
+((((-778 |#1|)) |has| (-778 |#1|) (-260 (-778 |#1|))))
+((((-778 |#1|) $) |has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))))
+((((-778 |#1|)) . T))
+((($) . T) (((-778 |#1|)) . T) (((-350 (-484))) . T))
+((((-778 |#1|)) . T))
+((((-778 |#1|)) . T))
+((((-778 |#1|)) . T))
+((((-484)) . T) (((-778 |#1|)) . T) (($) . T) (((-350 (-484))) . T))
+((((-778 |#1|)) . T))
+((((-778 |#1|)) . T))
+((((-772)) . T))
(|has| |#2| (-118))
-(OR (|has| |#2| (-120)) (|has| |#2| (-741)))
+(OR (|has| |#2| (-120)) (|has| |#2| (-740)))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((-1090)) |has| |#2| (-809 (-1090))))
+((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
-(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T) (((-350 (-485))) . T))
-(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#2|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#2|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#2|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
+(((|#2|) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T) (((-350 (-484))) . T))
+(((|#2|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#2|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#2|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#2|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#2| |#2|) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
(((|#2|) . T))
-((((-1091) |#2|) |has| |#2| (-456 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|)))
+((((-1090) |#2|) |has| |#2| (-455 (-1090) |#2|)) ((|#2| |#2|) |has| |#2| (-260 |#2|)))
(((|#2|) |has| |#2| (-260 |#2|)))
(((|#2| $) |has| |#2| (-241 |#2| |#2|)))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-350 (-485))) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((-350 (-484))) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
(((|#2|) . T))
-((((-485)) |has| |#2| (-797 (-485))) (((-330)) |has| |#2| (-797 (-330))))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
-(OR (|has| |#2| (-741)) (|has| |#2| (-757)))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
-(|has| |#2| (-741))
+((((-484)) |has| |#2| (-796 (-484))) (((-330)) |has| |#2| (-796 (-330))))
+(|has| |#2| (-740))
+(|has| |#2| (-740))
+(|has| |#2| (-740))
+(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
+(OR (|has| |#2| (-740)) (|has| |#2| (-756)))
+(|has| |#2| (-740))
+(|has| |#2| (-740))
+(|has| |#2| (-740))
(((|#2|) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-934))
-((((-474)) |has| |#2| (-554 (-474))) (((-801 (-485))) |has| |#2| (-554 (-801 (-485)))) (((-801 (-330))) |has| |#2| (-554 (-801 (-330)))) (((-330)) |has| |#2| (-934)) (((-179)) |has| |#2| (-934)))
-((((-485)) . T) ((|#2|) . T) (($) . T) (((-350 (-485))) . T) (((-1091)) |has| |#2| (-951 (-1091))))
-((((-350 (-485))) |has| |#2| (-951 (-485))) (((-485)) |has| |#2| (-951 (-485))) (((-1091)) |has| |#2| (-951 (-1091))) ((|#2|) . T))
-(|has| |#2| (-1067))
+(|has| |#2| (-821))
+(|has| |#2| (-933))
+((((-473)) |has| |#2| (-553 (-473))) (((-800 (-484))) |has| |#2| (-553 (-800 (-484)))) (((-800 (-330))) |has| |#2| (-553 (-800 (-330)))) (((-330)) |has| |#2| (-933)) (((-179)) |has| |#2| (-933)))
+((((-484)) . T) ((|#2|) . T) (($) . T) (((-350 (-484))) . T) (((-1090)) |has| |#2| (-950 (-1090))))
+((((-350 (-484))) |has| |#2| (-950 (-484))) (((-484)) |has| |#2| (-950 (-484))) (((-1090)) |has| |#2| (-950 (-1090))) ((|#2|) . T))
+(|has| |#2| (-1066))
(((|#2|) . T))
-(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-(-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))
-((((-773)) OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+(-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))
+((((-772)) OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))))
((((-130)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1091)) . T) ((|#1|) . T))
-((((-1091)) . T) ((|#1|) . T))
-((((-773)) . T))
-((((-615 |#1|)) . T))
-((((-615 |#1|)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-1117 |#1|)) . T) (((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1090)) . T) ((|#1|) . T))
+((((-1090)) . T) ((|#1|) . T))
+((((-772)) . T))
+((((-614 |#1|)) . T))
+((((-614 |#1|)) . T))
+((((-772)) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-1116 |#1|)) . T) (((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
-((((-773)) . T))
-(OR (|has| |#1| (-320)) (|has| |#1| (-757)))
-(OR (|has| |#1| (-320)) (|has| |#1| (-757)))
+((((-772)) . T))
+(OR (|has| |#1| (-320)) (|has| |#1| (-756)))
+(OR (|has| |#1| (-320)) (|has| |#1| (-756)))
(((|#1|) . T))
-((((-773)) . T))
-((((-485)) . T))
+((((-772)) . T))
+((((-484)) . T))
((($) . T))
((($) . T))
((($) . T))
(|has| $ (-120))
((($) . T))
-((((-773)) . T))
+((((-772)) . T))
((($) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($) . T) (((-350 (-485))) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-350 (-485)) (-350 (-485))) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-584 |#1|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))) (((-801 (-330))) |has| |#1| (-554 (-801 (-330)))) (((-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($) . T) (((-350 (-484))) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-350 (-484)) (-350 (-484))) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-583 |#1|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))) (((-800 (-330))) |has| |#1| (-553 (-800 (-330)))) (((-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
((($) . T))
-(((|#1| (-470 (-1091))) . T))
+(((|#1| (-469 (-1090))) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1| (-470 (-1091))) . T))
-(((|#1|) . T))
-((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((($ $) . T) (((-1091) $) . T) (((-1091) |#1|) . T))
-((((-1091)) . T))
-((($ (-1091)) . T))
-((((-1091)) . T))
-((((-330)) |has| |#1| (-797 (-330))) (((-485)) |has| |#1| (-797 (-485))))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) (((-1091)) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-1091)) . T))
-(((|#1| (-470 (-1091)) (-1091)) . T))
-((((-1034)) . T) (((-773)) . T))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+(((|#1| (-469 (-1090))) . T))
+(((|#1|) . T))
+((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
+((($ $) . T) (((-1090) $) . T) (((-1090) |#1|) . T))
+((((-1090)) . T))
+((($ (-1090)) . T))
+((((-1090)) . T))
+((((-330)) |has| |#1| (-796 (-330))) (((-484)) |has| |#1| (-796 (-484))))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) (((-1090)) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-1090)) . T))
+(((|#1| (-469 (-1090)) (-1090)) . T))
+((((-1033)) . T) (((-772)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-773)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-772)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
-(OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757))))
-(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
-(-12 (|has| |#1| (-718)) (|has| |#2| (-718)))
-((((-485)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
+(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
+(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
+(OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756))))
+(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
+(-12 (|has| |#1| (-717)) (|has| |#2| (-717)))
+((((-484)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
(-12 (|has| |#1| (-413)) (|has| |#2| (-413)))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718))))
-(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
-(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717))))
+(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
+(OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))))
(-12 (|has| |#1| (-320)) (|has| |#2| (-320)))
-((((-773)) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-584 (-831))) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-583 (-830))) . T) (((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
((((-197 |#1| |#2|) |#2|) . T))
-((((-773)) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-((((-474)) |has| |#1| (-554 (-474))))
+((((-473)) |has| |#1| (-553 (-473))))
(((|#1|) . T))
-((((-1091)) |has| |#1| (-810 (-1091))))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))))
+((((-1090)) |has| |#1| (-809 (-1090))))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
(|has| |#1| (-190))
(|has| |#1| (-312))
(OR (|has| |#1| (-246)) (|has| |#1| (-312)))
-((((-485)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
-((($) . T) (((-485)) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
-(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312)))
-(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485))) |has| |#1| (-312)))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-485)) (-350 (-485))) |has| |#1| (-312)))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)))
-(((|#1|) . T))
-((((-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
+((((-484)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)))
+((($) . T) (((-484)) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)))
+(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484))) |has| |#1| (-312)))
+(((|#1|) . T) (($) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484))) |has| |#1| (-312)))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-246)) (|has| |#1| (-312))) (((-350 (-484)) (-350 (-484))) |has| |#1| (-312)))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)))
+(((|#1|) . T))
+((((-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-260 |#1|)))
(((|#1|) |has| |#1| (-260 |#1|)))
(((|#1| $) |has| |#1| (-241 |#1| |#1|)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-312)) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+((($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-312)) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-350 |#2|) |#3|) . T))
-((((-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) (((-485)) |has| (-350 |#2|) (-951 (-485))) (((-350 |#2|)) . T))
+((((-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) (((-484)) |has| (-350 |#2|) (-950 (-484))) (((-350 |#2|)) . T))
((((-350 |#2|)) . T))
-((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T))
+((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T))
((((-350 |#2|)) . T))
((((-350 |#2|) |#3|) . T))
(|has| (-350 |#2|) (-120))
((((-350 |#2|) |#3|) . T))
(|has| (-350 |#2|) (-118))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
(|has| (-350 |#2|) (-190))
((($) OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189))))
(OR (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-189)))
((((-350 |#2|)) . T))
-((($ (-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091)))))
-((((-1091)) OR (|has| (-350 |#2|) (-810 (-1091))) (|has| (-350 |#2|) (-812 (-1091)))))
-((((-1091)) |has| (-350 |#2|) (-810 (-1091))))
+((($ (-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090)))))
+((((-1090)) OR (|has| (-350 |#2|) (-809 (-1090))) (|has| (-350 |#2|) (-811 (-1090)))))
+((((-1090)) |has| (-350 |#2|) (-809 (-1090))))
((((-350 |#2|)) . T))
(((|#3|) . T))
-((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-773)) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-((((-485)) |has| (-350 |#2|) (-581 (-485))) (((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T))
-((((-350 |#2|)) . T) (((-350 (-485))) . T) (($) . T) (((-485)) . T))
+((((-350 |#2|) (-350 |#2|)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-772)) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+((((-484)) |has| (-350 |#2|) (-580 (-484))) (((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T))
+((((-350 |#2|)) . T) (((-350 (-484))) . T) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3|) . T))
-((((-350 (-485))) . T) (((-773)) . T))
-((((-485)) . T))
-((((-485)) . T))
+((((-350 (-484))) . T) (((-772)) . T))
+((((-484)) . T))
+((((-484)) . T))
((($) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485)) . T) (((-350 (-485))) . T) (($) . T))
-((((-485) (-485)) . T) (((-350 (-485)) (-350 (-485))) . T) (($ $) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-350 (-485))) . T) (((-485)) . T))
-((((-485)) . T) (($) . T) (((-350 (-485))) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (($) . T) (((-350 (-485))) . T) (((-485)) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) . T) (((-485) (-485)) . T) (($ $) . T))
-(((|#1|) . T) (((-485)) . T) (((-350 (-485))) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) . T))
-(((|#1|) . T) (((-485)) OR (|has| |#1| (-951 (-485))) (|has| (-350 (-485)) (-951 (-485)))) (((-350 (-485))) . T))
-((((-773)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484)) . T) (((-350 (-484))) . T) (($) . T))
+((((-484) (-484)) . T) (((-350 (-484)) (-350 (-484))) . T) (($ $) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-350 (-484))) . T) (((-484)) . T))
+((((-484)) . T) (($) . T) (((-350 (-484))) . T))
+((((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (($) . T) (((-350 (-484))) . T) (((-484)) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) . T) (((-484) (-484)) . T) (($ $) . T))
+(((|#1|) . T) (((-484)) . T) (((-350 (-484))) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) . T))
+(((|#1|) . T) (((-484)) OR (|has| |#1| (-950 (-484))) (|has| (-350 (-484)) (-950 (-484)))) (((-350 (-484))) . T))
+((((-772)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
(((|#4|) . T))
-((((-584 |#4|)) . T) (((-773)) . T))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+((((-583 |#4|)) . T) (((-772)) . T))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((-473)) |has| |#4| (-553 (-473))))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -2978,47 +2966,47 @@
(((|#1| |#1|) . T) (($ $) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (((-485)) . T) (($) . T))
+((((-772)) . T))
+(((|#1|) . T) (((-484)) . T) (($) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-584 (-704 |#1| (-774 |#2|)))) . T) (((-773)) . T))
-((((-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))))
-((((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) |has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))))
-((((-704 |#1| (-774 |#2|))) . T))
-((((-474)) |has| (-704 |#1| (-774 |#2|)) (-554 (-474))))
-((((-704 |#1| (-774 |#2|))) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-(((|#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) . T))
-((((-474)) |has| |#3| (-554 (-474))))
+(((|#1|) . T) (((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
+((((-703 |#1| (-773 |#2|))) . T))
+((((-703 |#1| (-773 |#2|))) . T))
+((((-583 (-703 |#1| (-773 |#2|)))) . T) (((-772)) . T))
+((((-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))))
+((((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) |has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))))
+((((-703 |#1| (-773 |#2|))) . T))
+((((-473)) |has| (-703 |#1| (-773 |#2|)) (-553 (-473))))
+((((-703 |#1| (-773 |#2|))) . T))
+(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
+(((|#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) . T))
+((((-473)) |has| |#3| (-553 (-473))))
(((|#3|) |has| |#3| (-312)))
(((|#3| |#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-((((-631 |#3|)) . T) (((-773)) . T))
-((((-485)) . T) ((|#3|) . T))
+((((-630 |#3|)) . T) (((-772)) . T))
+((((-484)) . T) ((|#3|) . T))
(((|#3|) . T))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
(((|#3|) . T))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
(((|#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) . T))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
-((((-773)) . T))
+(|has| |#1| (-1013))
+((((-772)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
+((((-772)) . T))
(((|#1| |#2|) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-1090)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3026,31 +3014,31 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-485)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
((((-249 |#3|)) . T))
((((-249 |#3|)) . T))
(((|#3| |#3|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#3| |#3|) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#2|) . T))
(((|#1|) |has| |#1| (-312)))
-((((-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091))))))
-((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091))))))
+((((-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090))))))
+((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090))))))
(((|#1|) |has| |#1| (-312)))
(OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299)))
((($) OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))))
@@ -3069,164 +3057,164 @@
(OR (|has| |#1| (-118)) (|has| |#1| (-299)))
(|has| |#1| (-299))
(((|#1| |#2|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($ $) . T) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
-((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($ $) . T) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1| |#1|) . T))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-299))) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299)) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T))
(|has| |#1| (-120))
(((|#1| |#2|) . T))
(((|#1|) . T))
-((($) . T) (((-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
+((($) . T) (((-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-299))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
(((|#1| |#2|) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((((-773)) . T))
+((((-1090)) . T))
+((((-772)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(OR (|has| |#1| (-190)) (|has| |#1| (-189)))
((($) OR (|has| |#1| (-190)) (|has| |#1| (-189))))
-((((-773)) . T))
+((((-772)) . T))
(|has| |#1| (-190))
((($) . T))
-(((|#1| (-470 (-1001 (-1091))) (-1001 (-1091))) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-1001 (-1091))) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-1001 (-1091))) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-1001 (-1091))) . T))
-((($ $) . T) (((-1091) $) |has| |#1| (-190)) (((-1091) |#1|) |has| |#1| (-190)) (((-1001 (-1091)) |#1|) . T) (((-1001 (-1091)) $) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-470 (-1001 (-1091)))) . T))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(((|#1| (-469 (-1000 (-1090))) (-1000 (-1090))) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-1000 (-1090))) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-1000 (-1090))) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) (((-1000 (-1090))) . T))
+((($ $) . T) (((-1090) $) |has| |#1| (-190)) (((-1090) |#1|) |has| |#1| (-190)) (((-1000 (-1090)) |#1|) . T) (((-1000 (-1090)) $) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-469 (-1000 (-1090)))) . T))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-(((|#1| (-470 (-1001 (-1091)))) . T))
-((((-1040 |#1| (-1091))) . T) (((-1001 (-1091))) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-1091)) . T))
-((((-1040 |#1| (-1091))) . T) (((-485)) . T) (((-1001 (-1091))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-1091)) . T))
-(((|#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) . T))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+(((|#1| (-469 (-1000 (-1090)))) . T))
+((((-1039 |#1| (-1090))) . T) (((-1000 (-1090))) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-1090)) . T))
+((((-1039 |#1| (-1090))) . T) (((-484)) . T) (((-1000 (-1090))) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-1090)) . T))
+(((|#1| (-1090) (-1000 (-1090)) (-469 (-1000 (-1090)))) . T))
((($) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-584 |#1|)) |has| |#1| (-756)))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
+(((|#1| (-583 |#1|)) |has| |#1| (-755)))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-772)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-(|has| (-1002 |#1|) (-1014))
-((((-773)) |has| (-1002 |#1|) (-1014)))
-(|has| (-1002 |#1|) (-1014))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+(|has| (-1001 |#1|) (-1013))
+((((-772)) |has| (-1001 |#1|) (-1013)))
+(|has| (-1001 |#1|) (-1013))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
+((((-473)) |has| |#1| (-553 (-473))))
(((|#1|) . T))
(|has| |#1| (-320))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-584 $)) . T) (((-1074)) . T) (((-1091)) . T) (((-485)) . T) (((-179)) . T) (((-773)) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
-((((-1074) (-1091) (-485) (-179) (-773)) . T))
-((((-584 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-((((-485) $) . T) (((-584 (-485)) $) . T))
-((((-773)) . T))
+((((-772)) . T))
+((((-583 $)) . T) (((-1073)) . T) (((-1090)) . T) (((-484)) . T) (((-179)) . T) (((-772)) . T))
+((((-484) $) . T) (((-583 (-484)) $) . T))
+((((-772)) . T))
+((((-1073) (-1090) (-484) (-179) (-772)) . T))
+((((-583 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+((((-484) $) . T) (((-583 (-484)) $) . T))
+((((-772)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
(((|#1| |#1| |#1|) . T))
(((|#1|) . T))
-(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-718)) (|has| |#3| (-962)))
-(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))))
-((((-773)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-553 (-773))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-664)) (|has| |#3| (-718)) (|has| |#3| (-757)) (|has| |#3| (-962)) (|has| |#3| (-1014))) (((-1180 |#3|)) . T))
-(((|#3|) |has| |#3| (-962)))
-((((-1091)) -12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))))
-((((-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-((($ (-1091)) OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))))
-(((|#3|) |has| |#3| (-962)))
-(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962))))
-((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-(|has| |#3| (-962))
-((((-485)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664)) (|has| |#3| (-962))) (($) |has| |#3| (-962)))
-(-12 (|has| |#3| (-190)) (|has| |#3| (-962)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-72)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
+(OR (|has| |#3| (-21)) (|has| |#3| (-104)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-717)) (|has| |#3| (-961)))
+(((|#3| |#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))))
+((((-772)) OR (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-104)) (|has| |#3| (-552 (-772))) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-320)) (|has| |#3| (-663)) (|has| |#3| (-717)) (|has| |#3| (-756)) (|has| |#3| (-961)) (|has| |#3| (-1013))) (((-1179 |#3|)) . T))
+(((|#3|) |has| |#3| (-961)))
+((((-1090)) -12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))))
+((((-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))))
+((($ (-1090)) OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))))
+(((|#3|) |has| |#3| (-961)))
+(OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961))))
+((($) OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+(|has| |#3| (-961))
+((((-484)) OR (|has| |#3| (-21)) (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) ((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663)) (|has| |#3| (-961))) (($) |has| |#3| (-961)))
+(-12 (|has| |#3| (-190)) (|has| |#3| (-961)))
(|has| |#3| (-320))
(((|#3|) . T))
-(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
-(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))))
+(((|#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
+(((|#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))))
(((|#3|) . T))
-(((|#3|) |has| |#3| (-962)))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-962))) (($) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-962)) (((-485)) -12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))))
-(((|#3|) |has| |#3| (-1014)))
-((((-485)) OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ((|#3|) |has| |#3| (-1014)) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
-(((|#3|) |has| |#3| (-1014)) (((-485)) -12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (((-350 (-485))) -12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-((((-485) |#3|) . T))
-(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-664))))
+(((|#3|) |has| |#3| (-961)))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-961))) (($) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
+(((|#3|) |has| |#3| (-961)) (((-484)) -12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))))
+(((|#3|) |has| |#3| (-1013)))
+((((-484)) OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ((|#3|) |has| |#3| (-1013)) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))))
+(((|#3|) |has| |#3| (-1013)) (((-484)) -12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (((-350 (-484))) -12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+((((-484) |#3|) . T))
+(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312)) (|has| |#3| (-663))))
(((|#3|) OR (|has| |#3| (-146)) (|has| |#3| (-312))))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(OR (|has| |#3| (-718)) (|has| |#3| (-757)))
-(|has| |#3| (-718))
-(|has| |#3| (-718))
+(|has| |#3| (-717))
+(|has| |#3| (-717))
+(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
+(OR (|has| |#3| (-717)) (|has| |#3| (-756)))
+(|has| |#3| (-717))
+(|has| |#3| (-717))
(((|#3|) |has| |#3| (-312)))
(((|#1| |#3|) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T))
((($) . T))
((($) . T))
((($ $) . T))
@@ -3234,795 +3222,795 @@
((($) . T))
((($) . T))
((($) . T))
-((((-485)) . T) (($) . T))
-((((-485)) . T))
-((($) . T) (((-485)) . T))
-((((-485)) . T))
-((((-474)) . T) (((-485)) . T) (((-801 (-485))) . T) (((-330)) . T) (((-179)) . T))
-((((-485)) . T))
-((((-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) (((-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))))
+((((-484)) . T) (($) . T))
+((((-484)) . T))
+((($) . T) (((-484)) . T))
+((((-484)) . T))
+((((-473)) . T) (((-484)) . T) (((-800 (-484))) . T) (((-330)) . T) (((-179)) . T))
+((((-484)) . T))
+((((-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) (((-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) (((-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))))
((($) . T))
-(((|#1| (-470 |#2|)) . T))
+(((|#1| (-469 |#2|)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))))
-(((|#1| (-470 |#2|)) . T))
-(((|#1|) . T))
-((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(((|#1|) . T) (((-485)) |has| |#1| (-581 (-485))))
-(OR (|has| |#1| (-392)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))))
+(((|#1| (-469 |#2|)) . T))
+(((|#1|) . T))
+((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(((|#1|) . T) (((-484)) |has| |#1| (-580 (-484))))
+(OR (|has| |#1| (-392)) (|has| |#1| (-821)))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
(((|#2|) . T))
((($ |#2|) . T))
(((|#2|) . T))
-((((-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-350 (-485))) |has| |#1| (-951 (-350 (-485)))) (((-485)) |has| |#1| (-951 (-485))) ((|#1|) . T) ((|#2|) . T))
-((((-485)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#2|) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
+((((-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) (((-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-350 (-484))) |has| |#1| (-950 (-350 (-484)))) (((-484)) |has| |#1| (-950 (-484))) ((|#1|) . T) ((|#2|) . T))
+((((-484)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ((|#1|) . T) (($) OR (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#2|) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
((($) . T))
((($ $) . T) ((|#2| $) . T))
(((|#2|) . T))
-((((-773)) . T))
+((((-772)) . T))
((($ |#2|) . T))
(((|#2|) . T))
-(((|#1| (-470 |#2|) |#2|) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+(((|#1| (-469 |#2|) |#2|) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-(((|#1| (-470 |#2|)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-469 |#2|)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
(((|#1| |#2|) . T))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-1055 |#1| |#2|) (-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))))
-((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))))
-((((-773)) . T))
-((((-1055 |#1| |#2|)) . T))
-((((-474)) |has| |#2| (-554 (-474))))
-(((|#2|) |has| |#2| (-6 (-3999 "*"))))
+((((-772)) . T))
+(((|#1|) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T) (((-772)) . T))
+((((-772)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-1054 |#1| |#2|) (-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))))
+((((-1054 |#1| |#2|)) |has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))))
+((((-772)) . T))
+((((-1054 |#1| |#2|)) . T))
+((((-473)) |has| |#2| (-553 (-473))))
+(((|#2|) |has| |#2| (-6 (-3998 "*"))))
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-631 |#2|)) . T) (((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
-(((|#2|) OR (|has| |#2| (-6 (-3999 "*"))) (|has| |#2| (-146))))
-(((|#2|) OR (|has| |#2| (-6 (-3999 "*"))) (|has| |#2| (-146))))
+((((-630 |#2|)) . T) (((-772)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
+(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146))))
+(((|#2|) OR (|has| |#2| (-6 (-3998 "*"))) (|has| |#2| (-146))))
(((|#2|) . T))
-((((-1091)) |has| |#2| (-810 (-1091))))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))))
+((((-1090)) |has| |#2| (-809 (-1090))))
+((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
+((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))))
(((|#2|) . T))
(OR (|has| |#2| (-190)) (|has| |#2| (-189)))
((($) OR (|has| |#2| (-190)) (|has| |#2| (-189))))
(|has| |#2| (-190))
(((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
-(((|#2|) . T) (((-485)) |has| |#2| (-581 (-485))))
+((($) . T) ((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
+(((|#2|) . T) (((-484)) |has| |#2| (-580 (-484))))
(((|#2|) . T))
-((((-485)) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
-(((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
+((((-484)) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
+(((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
(((|#1| |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+(((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+(((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#2|) . T))
(((|#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((-473)) |has| |#4| (-553 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((-772)) . T) (((-583 |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) . T))
-((((-584 |#1|)) . T))
+((((-583 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(|has| |#1| (-1014))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(|has| |#1| (-1013))
(((|#1|) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-((((-485) |#1|) . T))
-((((-1147 (-485)) $) . T) (((-485) |#1|) . T))
-((((-485) |#1|) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+((((-484) |#1|) . T))
+((((-1146 (-484)) $) . T) (((-484) |#1|) . T))
+((((-484) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-117)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-773)) . T))
+((((-772)) . T))
((((-117)) . T))
((((-117)) . T))
-((((-485) (-117)) . T))
-((((-485) (-117)) . T))
-((((-485) (-117)) . T) (((-1147 (-485)) $) . T))
+((((-484) (-117)) . T))
+((((-484) (-117)) . T))
+((((-484) (-117)) . T) (((-1146 (-484)) $) . T))
((((-117)) . T))
((((-117)) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-773)) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) |has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-1074) |#1|) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) . T))
-((((-1074) |#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1090 |#1| |#2| |#3|)) . T))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|)))))
-((((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|)))) (((-1091) (-1090 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|)))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-772)) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T) ((|#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) |has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-1073) |#1|) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) . T))
+((((-1073) |#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|)))))
+((((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|)))) (((-1090) (-1089 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|)))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-118))))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1090 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1090 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-1090 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-1090 |#1| |#2| |#3|)) . T))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-118))))
+((((-772)) . T))
+(((|#1|) . T))
+((((-1089 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-1089 |#1| |#2| |#3|)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-1089 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
-((((-773)) . T))
-((((-350 $) (-350 $)) |has| |#1| (-496)) (($ $) . T) ((|#1| |#1|) . T))
+((((-772)) . T))
+((((-350 $) (-350 $)) |has| |#1| (-495)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821)))
(|has| |#1| (-312))
-(((|#1| (-695) (-995)) . T))
-(|has| |#1| (-822))
-(|has| |#1| (-822))
-((((-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#1| (-810 (-1091))) (|has| |#1| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#1| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1| (-695)) . T))
+(((|#1| (-694) (-994)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+((((-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (((-994)) . T))
+((($ (-1090)) OR (|has| |#1| (-809 (-1090))) (|has| |#1| (-811 (-1090)))) (($ (-994)) . T))
+((((-1090)) |has| |#1| (-809 (-1090))) (((-994)) . T))
+((((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1| (-694)) . T))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) (((-995)) . T) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#1| (-581 (-485))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-496)) (|has| |#1| (-822))) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-((((-995)) . T) ((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-695)) . T))
-((((-995) |#1|) . T) (((-995) $) . T) (($ $) . T))
+((((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) (((-994)) . T) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#1| (-580 (-484))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-312)) (|has| |#1| (-392)) (|has| |#1| (-495)) (|has| |#1| (-821))) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+((((-994)) . T) ((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-694)) . T))
+((((-994) |#1|) . T) (((-994) $) . T) (($ $) . T))
((($) . T))
-(|has| |#1| (-1067))
-(((|#1|) . T))
-((((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($ $) . T) (((-350 (-485)) |#1|) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-(((|#1| (-350 (-485)) (-995)) . T))
+(|has| |#1| (-1066))
+(((|#1|) . T))
+((((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($ $) . T) (((-350 (-484)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+(((|#1| (-350 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-350 (-485))) . T))
-(((|#1| (-350 (-485))) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-350 (-484))) . T))
+(((|#1| (-350 (-484))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+((((-772)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-((((-1177 |#2|)) . T) (((-1090 |#1| |#2| |#3|)) . T) (((-1083 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+((((-1176 |#2|)) . T) (((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1| (-1083 |#1| |#2| |#3|)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-695)) . T))
-(((|#1| (-695)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+(((|#1| (-1082 |#1| |#2| |#3|)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-694)) . T))
+(((|#1| (-694)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1| (-695) (-995)) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((((-695) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-695) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T))
-(|has| |#1| (-15 * (|#1| (-695) |#1|)))
-(((|#1|) . T))
-((((-330)) . T) (((-485)) . T))
-((((-447)) . T))
-((((-447)) . T) (((-1074)) . T))
-((((-801 (-330))) . T) (((-801 (-485))) . T) (((-1091)) . T) (((-474)) . T))
-((((-773)) . T))
-(((|#1| (-885)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1| (-694) (-994)) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((((-694) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-694) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T))
+(|has| |#1| (-15 * (|#1| (-694) |#1|)))
+(((|#1|) . T))
+((((-330)) . T) (((-484)) . T))
+((((-446)) . T))
+((((-446)) . T) (((-1073)) . T))
+((((-800 (-330))) . T) (((-800 (-484))) . T) (((-1090)) . T) (((-473)) . T))
+((((-772)) . T))
+(((|#1| (-884)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((((-773)) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) (((-485)) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1|) . T))
-(((|#1|) . T) (((-485)) |has| |#1| (-951 (-485))) (((-350 (-485))) |has| |#1| (-951 (-350 (-485)))))
-(((|#1| (-885)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T))
-((((-1074)) . T) (((-447)) . T) (((-179)) . T) (((-485)) . T))
-((((-474)) . T) (((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-773)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((((-772)) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) (((-484)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1|) . T))
+(((|#1|) . T) (((-484)) |has| |#1| (-950 (-484))) (((-350 (-484))) |has| |#1| (-950 (-350 (-484)))))
+(((|#1| (-884)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1073)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T))
+((((-1073)) . T) (((-446)) . T) (((-179)) . T) (((-484)) . T))
+((((-473)) . T) (((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-772)) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ((|#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))))
(((|#1| |#2|) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((((-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((((-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
(((|#1| |#2|) . T))
-((((-773)) . T))
+((((-772)) . T))
(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-338) (-1074)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-338) (-1073)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1014))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-72)) (|has| |#1| (-1014)))
+(|has| |#1| (-1013))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-72)) (|has| |#1| (-1013)))
(((|#1|) . T))
((($) . T))
-((($ $) . T) (((-1091) $) . T))
-((((-1091)) . T))
-((((-773)) . T))
-((($ (-1091)) . T))
-((((-1091)) . T))
-(((|#1| (-470 (-1091)) (-1091)) . T))
-((($) . T) (((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
-((($) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T))
+((($ $) . T) (((-1090) $) . T))
+((((-1090)) . T))
+((((-772)) . T))
+((($ (-1090)) . T))
+((((-1090)) . T))
+(((|#1| (-469 (-1090)) (-1090)) . T))
+((($) . T) (((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
+((($) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-((((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-((((-485)) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-((((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-496)))
-(((|#1| (-470 (-1091))) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-1091)) . T))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-870 |#1|)) . T))
-((((-773)) |has| |#1| (-553 (-773))) (((-870 |#1|)) . T))
-((((-870 |#1|)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1170 |#1| |#2| |#3|)) . T))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((((-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|)))))
-((((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|)))) (((-1091) (-1170 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|)))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+((((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+((((-484)) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+((((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((|#1|) |has| |#1| (-146)) (($) |has| |#1| (-495)))
+(((|#1| (-469 (-1090))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-1090)) . T))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-869 |#1|)) . T))
+((((-772)) |has| |#1| (-552 (-772))) (((-869 |#1|)) . T))
+((((-869 |#1|)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) . T))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((((-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|)))))
+((((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|)))) (((-1090) (-1169 |#1| |#2| |#3|)) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|)))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-((($ (-1177 |#2|)) . T) (($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-120))))
-(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-118))))
-((((-773)) . T))
-(((|#1|) . T))
-((((-1170 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-1170 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-1170 |#1| |#2| |#3|)) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-1170 |#1| |#2| |#3|)) . T))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-190))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+((($ (-1176 |#2|)) . T) (($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-120))))
+(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-118))))
+((((-772)) . T))
+(((|#1|) . T))
+((((-1169 |#1| |#2| |#3|) $) -12 (|has| |#1| (-312)) (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-1169 |#1| |#2| |#3|)) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-1169 |#1| |#2| |#3|)) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-1169 |#1| |#2| |#3|)) . T))
(((|#2|) |has| |#1| (-312)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-1067)))
-(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) (((-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-934)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-822)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-1066)))
+(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) (((-350 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-933)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-821)))
(((|#2|) |has| |#1| (-312)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757))))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-757))))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-(-12 (|has| |#1| (-312)) (|has| |#2| (-741)))
-((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) (((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-756))))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+(-12 (|has| |#1| (-312)) (|has| |#2| (-740)))
+((((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) (((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))))
(((|#2|) |has| |#1| (-312)))
-((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((|#2|) |has| |#1| (-312)))
+((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((|#2|) |has| |#1| (-312)))
(((|#2|) |has| |#1| (-312)))
(((|#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))))
-(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) (((-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))))
(((|#2|) |has| |#1| (-312)))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
-((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))))
-(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
+((($) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))))
+(OR (-12 (|has| |#1| (-312)) (|has| |#2| (-190))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))
(((|#2|) |has| |#1| (-312)))
-((($ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
-((((-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091)))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))))
+((($ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
+((((-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090)))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))))
(((|#2|) |has| |#1| (-312)))
-((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) (((-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) (((-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) (((-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))))
-(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741))))
+((((-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) (((-800 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) (((-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) (((-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))))
+(OR (|has| |#1| (-120)) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740))))
(OR (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118))))
-((((-773)) . T))
-(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-485) |#1|) . T))
-(((|#1| (-485) (-995)) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-485)) . T) (($) . T) ((|#1|) . T))
-((((-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-((((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
-(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))) (((-485)) . T) ((|#1|) |has| |#1| (-146)))
-(((|#1| (-485)) . T))
-(((|#1| (-485)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
+((((-772)) . T))
+(((|#1|) . T))
+(((|#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) (($ $) . T) (((-484) |#1|) . T))
+(((|#1| (-484) (-994)) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2| |#2|) |has| |#1| (-312)) ((|#1| |#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (((-484)) . T) (($) . T) ((|#1|) . T))
+((((-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) ((|#2|) |has| |#1| (-312)) (($) . T) ((|#1|) . T))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+((((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) ((|#2|) |has| |#1| (-312)) ((|#1|) |has| |#1| (-146)))
+(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))) (((-484)) . T) ((|#1|) |has| |#1| (-146)))
+(((|#1| (-484)) . T))
+(((|#1| (-484)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
(((|#1| |#2|) . T))
-(((|#1| (-1070 |#1|)) |has| |#1| (-756)))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-(|has| |#1| (-1014))
-((((-773)) |has| |#1| (-1014)))
-(|has| |#1| (-1014))
+(((|#1| (-1069 |#1|)) |has| |#1| (-755)))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+(|has| |#1| (-1013))
+((((-772)) |has| |#1| (-1013)))
+(|has| |#1| (-1013))
(((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
((($) . T))
-((((-773)) . T))
-((((-350 $) (-350 $)) |has| |#2| (-496)) (($ $) . T) ((|#2| |#2|) . T))
+((((-772)) . T))
+((((-350 $) (-350 $)) |has| |#2| (-495)) (($ $) . T) ((|#2| |#2|) . T))
(|has| |#2| (-312))
-(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
-(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
+(OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821)))
(|has| |#2| (-312))
-(((|#2| (-695) (-995)) . T))
-(|has| |#2| (-822))
-(|has| |#2| (-822))
-((((-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (((-995)) . T))
-((($ (-1091)) OR (|has| |#2| (-810 (-1091))) (|has| |#2| (-812 (-1091)))) (($ (-995)) . T))
-((((-1091)) |has| |#2| (-810 (-1091))) (((-995)) . T))
-((((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T))
+(((|#2| (-694) (-994)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))) (((-994)) . T))
+((($ (-1090)) OR (|has| |#2| (-809 (-1090))) (|has| |#2| (-811 (-1090)))) (($ (-994)) . T))
+((((-1090)) |has| |#2| (-809 (-1090))) (((-994)) . T))
+((((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T))
(((|#2|) . T))
-(((|#2| (-695)) . T))
+(((|#2| (-694)) . T))
(|has| |#2| (-120))
(|has| |#2| (-118))
-((((-1177 |#1|)) . T) (((-485)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) (((-995)) . T) ((|#2|) . T) (((-350 (-485))) OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($) . T) (((-485)) |has| |#2| (-581 (-485))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((((-485)) . T) (($) . T) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) . T) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2| |#2|) . T) (((-350 (-485)) (-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
-((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-496)) (|has| |#2| (-822))) ((|#2|) |has| |#2| (-146)) (((-350 (-485))) |has| |#2| (-38 (-350 (-485)))))
+((((-1176 |#1|)) . T) (((-484)) . T) (($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) (((-994)) . T) ((|#2|) . T) (((-350 (-484))) OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($) . T) (((-484)) |has| |#2| (-580 (-484))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((((-484)) . T) (($) . T) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) . T) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#2| (-146)) (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2| |#2|) . T) (((-350 (-484)) (-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
+((($) OR (|has| |#2| (-312)) (|has| |#2| (-392)) (|has| |#2| (-495)) (|has| |#2| (-821))) ((|#2|) |has| |#2| (-146)) (((-350 (-484))) |has| |#2| (-38 (-350 (-484)))))
(((|#2|) . T))
-((((-995)) . T) ((|#2|) . T) (((-485)) |has| |#2| (-951 (-485))) (((-350 (-485))) |has| |#2| (-951 (-350 (-485)))))
-(((|#2| (-695)) . T))
-((((-995) |#2|) . T) (((-995) $) . T) (($ $) . T))
+((((-994)) . T) ((|#2|) . T) (((-484)) |has| |#2| (-950 (-484))) (((-350 (-484))) |has| |#2| (-950 (-350 (-484)))))
+(((|#2| (-694)) . T))
+((((-994) |#2|) . T) (((-994) $) . T) (($ $) . T))
((($) . T))
-(|has| |#2| (-1067))
+(|has| |#2| (-1066))
(((|#2|) . T))
-((((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($ $) . T) (((-350 (-485)) |#1|) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-(((|#1| (-350 (-485)) (-995)) . T))
+((((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($ $) . T) (((-350 (-484)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+(((|#1| (-350 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-350 (-485))) . T))
-(((|#1| (-350 (-485))) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-350 (-484))) . T))
+(((|#1| (-350 (-484))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+((((-772)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-((((-1177 |#2|)) . T) (((-1170 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+((((-1176 |#2|)) . T) (((-1169 |#1| |#2| |#3|)) . T) (((-1139 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1| (-1140 |#1| |#2| |#3|)) . T))
+(((|#1| (-1139 |#1| |#2| |#3|)) . T))
(((|#2|) . T))
(((|#1|) . T))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))))
-(|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))
-((($ $) . T) (((-350 (-485)) |#1|) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))))
-(((|#1| (-350 (-485)) (-995)) . T))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))))
+(|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))
+((($ $) . T) (((-350 (-484)) |#1|) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))))
+(((|#1| (-350 (-484)) (-994)) . T))
(|has| |#1| (-118))
(|has| |#1| (-120))
-(((|#1| (-350 (-485))) . T))
-(((|#1| (-350 (-485))) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
+(((|#1| (-350 (-484))) . T))
+(((|#1| (-350 (-484))) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
(|has| |#1| (-312))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
-((((-773)) . T))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496))) (((-350 (-485)) (-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) . T))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
+((((-772)) . T))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (($) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1| |#1|) . T) (($ $) OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495))) (((-350 (-484)) (-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) . T))
(|has| |#1| (-312))
(|has| |#1| (-312))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-312))) (((-485)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-496))))
-(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-496)))
-(OR (|has| |#1| (-312)) (|has| |#1| (-496)))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(((|#2|) . T) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-312))) (((-484)) . T) (($) OR (|has| |#1| (-312)) (|has| |#1| (-495))))
+(OR (|has| |#1| (-146)) (|has| |#1| (-312)) (|has| |#1| (-495)))
+(OR (|has| |#1| (-312)) (|has| |#1| (-495)))
(|has| |#1| (-312))
(|has| |#1| (-312))
(|has| |#1| (-312))
(((|#1| |#2|) . T))
-((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
-(|has| (-1161 |#2| |#3| |#4|) (-120))
-(|has| (-1161 |#2| |#3| |#4|) (-118))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((((-773)) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((($ $) . T) (((-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) . T) (((-350 (-485)) (-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-((((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (($) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) . T) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) (((-485)) . T))
-((($) . T) (((-1161 |#2| |#3| |#4|)) |has| (-1161 |#2| |#3| |#4|) (-146)) (((-350 (-485))) |has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))))
-((((-1161 |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|)) . T))
-((((-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(|has| |#1| (-38 (-350 (-485))))
-(((|#1| (-695)) . T))
-(((|#1| (-695)) . T))
-(|has| |#1| (-496))
-(|has| |#1| (-496))
-(OR (|has| |#1| (-146)) (|has| |#1| (-496)))
+((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
+(|has| (-1160 |#2| |#3| |#4|) (-120))
+(|has| (-1160 |#2| |#3| |#4|) (-118))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((((-772)) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((($ $) . T) (((-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) . T) (((-350 (-484)) (-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+((((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (($) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) . T) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) (((-484)) . T))
+((($) . T) (((-1160 |#2| |#3| |#4|)) |has| (-1160 |#2| |#3| |#4|) (-146)) (((-350 (-484))) |has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|)) . T))
+((((-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) . T))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(|has| |#1| (-38 (-350 (-484))))
+(((|#1| (-694)) . T))
+(((|#1| (-694)) . T))
+(|has| |#1| (-495))
+(|has| |#1| (-495))
+(OR (|has| |#1| (-146)) (|has| |#1| (-495)))
(|has| |#1| (-120))
(|has| |#1| (-118))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-496))) ((|#1| |#1|) . T) (((-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))))
-(((|#1| (-695) (-995)) . T))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((($ (-1177 |#2|)) . T) (($ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((((-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))))
-((((-695) |#1|) . T) (($ $) . T))
-(|has| |#1| (-15 * (|#1| (-695) |#1|)))
-((($) |has| |#1| (-15 * (|#1| (-695) |#1|))))
-((((-773)) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T) (($) . T))
-(((|#1|) . T) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (($) . T))
-((($) |has| |#1| (-496)) ((|#1|) |has| |#1| (-146)) (((-350 (-485))) |has| |#1| (-38 (-350 (-485)))) (((-485)) . T))
-(|has| |#1| (-15 * (|#1| (-695) |#1|)))
-(((|#1|) . T))
-((((-1091)) . T) (((-773)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(OR (|has| |#1| (-72)) (|has| |#1| (-757)) (|has| |#1| (-1014)))
-((((-773)) OR (|has| |#1| (-553 (-773))) (|has| |#1| (-757)) (|has| |#1| (-1014))))
-(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))))
-(OR (|has| |#1| (-757)) (|has| |#1| (-1014)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-485) |#1|) . T))
-((((-485) |#1|) . T))
-((((-485) |#1|) . T) (((-1147 (-485)) $) . T))
-((((-474)) |has| |#1| (-554 (-474))))
-(((|#1|) . T))
-(|has| |#1| (-757))
-(|has| |#1| (-757))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-773)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
-((((-1096)) . T))
-((((-773)) . T) (((-1096)) . T))
-((((-1096)) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($ $) OR (|has| |#1| (-146)) (|has| |#1| (-495))) ((|#1| |#1|) . T) (((-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))))
+(((|#1| (-694) (-994)) . T))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((($ (-1176 |#2|)) . T) (($ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((((-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))))
+((((-694) |#1|) . T) (($ $) . T))
+(|has| |#1| (-15 * (|#1| (-694) |#1|)))
+((($) |has| |#1| (-15 * (|#1| (-694) |#1|))))
+((((-772)) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T) (($) . T))
+(((|#1|) . T) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (($) . T))
+((($) |has| |#1| (-495)) ((|#1|) |has| |#1| (-146)) (((-350 (-484))) |has| |#1| (-38 (-350 (-484)))) (((-484)) . T))
+(|has| |#1| (-15 * (|#1| (-694) |#1|)))
+(((|#1|) . T))
+((((-1090)) . T) (((-772)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(OR (|has| |#1| (-72)) (|has| |#1| (-756)) (|has| |#1| (-1013)))
+((((-772)) OR (|has| |#1| (-552 (-772))) (|has| |#1| (-756)) (|has| |#1| (-1013))))
+(((|#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(((|#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))))
+(OR (|has| |#1| (-756)) (|has| |#1| (-1013)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T))
+((((-484) |#1|) . T) (((-1146 (-484)) $) . T))
+((((-473)) |has| |#1| (-553 (-473))))
+(((|#1|) . T))
+(|has| |#1| (-756))
+(|has| |#1| (-756))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-772)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
+((((-1095)) . T))
+((((-772)) . T) (((-1095)) . T))
+((((-1095)) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
@@ -4030,18 +4018,18 @@
(((|#1| |#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#4|) . T))
-(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-485)) . T))
+(((|#1|) |has| |#1| (-146)) ((|#4|) . T) (((-484)) . T))
(((|#1|) |has| |#1| (-146)) (($) . T))
-(((|#4|) . T) (((-773)) . T))
-(((|#1|) |has| |#1| (-146)) (($) . T) (((-485)) . T))
+(((|#4|) . T) (((-772)) . T))
+(((|#1|) |has| |#1| (-146)) (($) . T) (((-484)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#4|) . T))
-((((-474)) |has| |#4| (-554 (-474))))
+((((-473)) |has| |#4| (-553 (-473))))
(((|#4|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
-(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))))
+(((|#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
+(((|#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))))
(((|#4|) . T))
-((((-773)) . T) (((-584 |#4|)) . T))
+((((-772)) . T) (((-583 |#4|)) . T))
(((|#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
@@ -4051,15 +4039,15 @@
(((|#2| |#2|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-773)) . T))
-((($) . T) (((-485)) . T) ((|#2|) . T))
+((((-772)) . T))
+((($) . T) (((-484)) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2|) |has| |#2| (-146)))
-((((-740 |#1|)) . T))
-(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-(((|#2| (-740 |#1|)) . T))
-(((|#2| (-804 |#1|)) . T))
+((((-739 |#1|)) . T))
+(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
+(((|#2| (-739 |#1|)) . T))
+(((|#2| (-803 |#1|)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -4069,12 +4057,12 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-((((-804 |#1|)) . T) ((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-((((-804 |#1|)) . T) (((-740 |#1|)) . T))
+((((-772)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+((((-803 |#1|)) . T) ((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
+((((-803 |#1|)) . T) (((-739 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1091) |#1|) . T))
+((((-1090) |#1|) . T))
(((|#1|) |has| |#1| (-146)))
(((|#1| |#1|) . T))
(((|#1|) . T))
@@ -4083,11 +4071,11 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
-(((|#1|) . T) (((-485)) . T) (((-740 (-1091))) . T))
-((((-740 (-1091))) . T))
-((((-1091) |#1|) . T))
+((((-772)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
+(((|#1|) . T) (((-484)) . T) (((-739 (-1090))) . T))
+((((-739 (-1090))) . T))
+((((-1090) |#1|) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-146)))
@@ -4097,10 +4085,10 @@
(((|#1|) |has| |#1| (-146)))
(((|#1|) |has| |#1| (-146)))
(((|#1|) . T))
-(((|#2|) . T) ((|#1|) . T) (((-485)) . T))
+(((|#2|) . T) ((|#1|) . T) (((-484)) . T))
(((|#1|) . T) (($) . T))
-((((-773)) . T))
-(((|#1|) . T) (($) . T) (((-485)) . T))
+((((-772)) . T))
+(((|#1|) . T) (($) . T) (((-484)) . T))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-146)))
(((|#2| |#2|) . T))
@@ -4110,20 +4098,20 @@
(((|#2|) |has| |#2| (-146)))
(((|#2|) . T))
(((|#2|) . T) (($) . T))
-((((-773)) . T))
-(((|#2|) . T) (($) . T) (((-485)) . T))
-(((|#2|) . T) (((-485)) . T) (((-740 |#1|)) . T))
-((((-740 |#1|)) . T))
+((((-772)) . T))
+(((|#2|) . T) (($) . T) (((-484)) . T))
+(((|#2|) . T) (((-484)) . T) (((-739 |#1|)) . T))
+((((-739 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-885)) . T))
-((((-885)) . T))
-((((-885)) . T) (((-773)) . T))
-((((-485)) . T))
+((((-884)) . T))
+((((-884)) . T))
+((((-884)) . T) (((-772)) . T))
+((((-484)) . T))
((($ $) . T))
((($) . T))
((($) . T))
-((((-773)) . T))
-((((-485)) . T) (($) . T))
+((((-772)) . T))
+((((-484)) . T) (($) . T))
((($) . T))
-((((-485)) . T))
-(((-1210 . -146) T) ((-1210 . -556) 200963) ((-1210 . -971) T) ((-1210 . -1026) T) ((-1210 . -1062) T) ((-1210 . -664) T) ((-1210 . -962) T) ((-1210 . -591) 200950) ((-1210 . -589) 200922) ((-1210 . -104) T) ((-1210 . -25) T) ((-1210 . -72) T) ((-1210 . -13) T) ((-1210 . -1130) T) ((-1210 . -553) 200904) ((-1210 . -1014) T) ((-1210 . -23) T) ((-1210 . -21) T) ((-1210 . -969) 200891) ((-1210 . -964) 200878) ((-1210 . -82) 200863) ((-1210 . -320) T) ((-1210 . -554) 200845) ((-1210 . -1067) T) ((-1206 . -1014) T) ((-1206 . -553) 200812) ((-1206 . -1130) T) ((-1206 . -13) T) ((-1206 . -72) T) ((-1206 . -430) 200794) ((-1206 . -556) 200776) ((-1205 . -1203) 200755) ((-1205 . -951) 200732) ((-1205 . -556) 200681) ((-1205 . -962) T) ((-1205 . -664) T) ((-1205 . -1062) T) ((-1205 . -1026) T) ((-1205 . -971) T) ((-1205 . -21) T) ((-1205 . -589) 200640) ((-1205 . -23) T) ((-1205 . -1014) T) ((-1205 . -553) 200622) ((-1205 . -1130) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -25) T) ((-1205 . -104) T) ((-1205 . -591) 200596) ((-1205 . -1195) 200580) ((-1205 . -655) 200550) ((-1205 . -583) 200520) ((-1205 . -969) 200504) ((-1205 . -964) 200488) ((-1205 . -82) 200467) ((-1205 . -38) 200437) ((-1205 . -1200) 200416) ((-1204 . -962) T) ((-1204 . -664) T) ((-1204 . -1062) T) ((-1204 . -1026) T) ((-1204 . -971) T) ((-1204 . -21) T) ((-1204 . -589) 200375) ((-1204 . -23) T) ((-1204 . -1014) T) ((-1204 . -553) 200357) ((-1204 . -1130) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -591) 200331) ((-1204 . -556) 200287) ((-1204 . -1195) 200271) ((-1204 . -655) 200241) ((-1204 . -583) 200211) ((-1204 . -969) 200195) ((-1204 . -964) 200179) ((-1204 . -82) 200158) ((-1204 . -38) 200128) ((-1204 . -335) 200107) ((-1204 . -951) 200091) ((-1202 . -1203) 200067) ((-1202 . -951) 200041) ((-1202 . -556) 199987) ((-1202 . -962) T) ((-1202 . -664) T) ((-1202 . -1062) T) ((-1202 . -1026) T) ((-1202 . -971) T) ((-1202 . -21) T) ((-1202 . -589) 199946) ((-1202 . -23) T) ((-1202 . -1014) T) ((-1202 . -553) 199928) ((-1202 . -1130) T) ((-1202 . -13) T) ((-1202 . -72) T) ((-1202 . -25) T) ((-1202 . -104) T) ((-1202 . -591) 199902) ((-1202 . -1195) 199886) ((-1202 . -655) 199856) ((-1202 . -583) 199826) ((-1202 . -969) 199810) ((-1202 . -964) 199794) ((-1202 . -82) 199773) ((-1202 . -38) 199743) ((-1202 . -1200) 199719) ((-1201 . -1203) 199698) ((-1201 . -951) 199655) ((-1201 . -556) 199584) ((-1201 . -962) T) ((-1201 . -664) T) ((-1201 . -1062) T) ((-1201 . -1026) T) ((-1201 . -971) T) ((-1201 . -21) T) ((-1201 . -589) 199543) ((-1201 . -23) T) ((-1201 . -1014) T) ((-1201 . -553) 199525) ((-1201 . -1130) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -591) 199499) ((-1201 . -1195) 199483) ((-1201 . -655) 199453) ((-1201 . -583) 199423) ((-1201 . -969) 199407) ((-1201 . -964) 199391) ((-1201 . -82) 199370) ((-1201 . -38) 199340) ((-1201 . -1200) 199319) ((-1201 . -335) 199291) ((-1196 . -335) 199263) ((-1196 . -556) 199212) ((-1196 . -951) 199189) ((-1196 . -583) 199159) ((-1196 . -655) 199129) ((-1196 . -591) 199103) ((-1196 . -589) 199062) ((-1196 . -104) T) ((-1196 . -25) T) ((-1196 . -72) T) ((-1196 . -13) T) ((-1196 . -1130) T) ((-1196 . -553) 199044) ((-1196 . -1014) T) ((-1196 . -23) T) ((-1196 . -21) T) ((-1196 . -969) 199028) ((-1196 . -964) 199012) ((-1196 . -82) 198991) ((-1196 . -1203) 198970) ((-1196 . -962) T) ((-1196 . -664) T) ((-1196 . -1062) T) ((-1196 . -1026) T) ((-1196 . -971) T) ((-1196 . -1195) 198954) ((-1196 . -38) 198924) ((-1196 . -1200) 198903) ((-1194 . -1125) 198872) ((-1194 . -1036) 198856) ((-1194 . -553) 198818) ((-1194 . -124) 198802) ((-1194 . -34) T) ((-1194 . -13) T) ((-1194 . -1130) T) ((-1194 . -72) T) ((-1194 . -260) 198740) ((-1194 . -456) 198673) ((-1194 . -1014) T) ((-1194 . -429) 198657) ((-1194 . -554) 198618) ((-1194 . -318) 198602) ((-1194 . -890) 198571) ((-1193 . -962) T) ((-1193 . -664) T) ((-1193 . -1062) T) ((-1193 . -1026) T) ((-1193 . -971) T) ((-1193 . -21) T) ((-1193 . -589) 198516) ((-1193 . -23) T) ((-1193 . -1014) T) ((-1193 . -553) 198485) ((-1193 . -1130) T) ((-1193 . -13) T) ((-1193 . -72) T) ((-1193 . -25) T) ((-1193 . -104) T) ((-1193 . -591) 198445) ((-1193 . -556) 198387) ((-1193 . -430) 198371) ((-1193 . -38) 198341) ((-1193 . -82) 198306) ((-1193 . -964) 198276) ((-1193 . -969) 198246) ((-1193 . -583) 198216) ((-1193 . -655) 198186) ((-1192 . -996) T) ((-1192 . -430) 198167) ((-1192 . -553) 198133) ((-1192 . -556) 198114) ((-1192 . -1014) T) ((-1192 . -1130) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -64) T) ((-1191 . -996) T) ((-1191 . -430) 198095) ((-1191 . -553) 198061) ((-1191 . -556) 198042) ((-1191 . -1014) T) ((-1191 . -1130) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1186 . -553) 198024) ((-1184 . -1014) T) ((-1184 . -553) 198006) ((-1184 . -1130) T) ((-1184 . -13) T) ((-1184 . -72) T) ((-1183 . -1014) T) ((-1183 . -553) 197988) ((-1183 . -1130) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1180 . -1179) 197972) ((-1180 . -324) 197956) ((-1180 . -760) 197935) ((-1180 . -757) 197914) ((-1180 . -124) 197898) ((-1180 . -554) 197859) ((-1180 . -241) 197811) ((-1180 . -539) 197788) ((-1180 . -243) 197765) ((-1180 . -594) 197749) ((-1180 . -429) 197733) ((-1180 . -1014) 197686) ((-1180 . -456) 197619) ((-1180 . -260) 197557) ((-1180 . -553) 197472) ((-1180 . -72) 197406) ((-1180 . -1130) T) ((-1180 . -13) T) ((-1180 . -34) T) ((-1180 . -318) 197390) ((-1180 . -1036) 197374) ((-1180 . -19) 197358) ((-1177 . -1014) T) ((-1177 . -553) 197324) ((-1177 . -1130) T) ((-1177 . -13) T) ((-1177 . -72) T) ((-1170 . -1173) 197308) ((-1170 . -190) 197267) ((-1170 . -556) 197149) ((-1170 . -591) 197074) ((-1170 . -589) 196984) ((-1170 . -104) T) ((-1170 . -25) T) ((-1170 . -72) T) ((-1170 . -553) 196966) ((-1170 . -1014) T) ((-1170 . -23) T) ((-1170 . -21) T) ((-1170 . -971) T) ((-1170 . -1026) T) ((-1170 . -1062) T) ((-1170 . -664) T) ((-1170 . -962) T) ((-1170 . -186) 196919) ((-1170 . -13) T) ((-1170 . -1130) T) ((-1170 . -189) 196878) ((-1170 . -241) 196843) ((-1170 . -810) 196756) ((-1170 . -807) 196644) ((-1170 . -812) 196557) ((-1170 . -887) 196527) ((-1170 . -38) 196424) ((-1170 . -82) 196289) ((-1170 . -964) 196175) ((-1170 . -969) 196061) ((-1170 . -583) 195958) ((-1170 . -655) 195855) ((-1170 . -118) 195834) ((-1170 . -120) 195813) ((-1170 . -146) 195767) ((-1170 . -496) 195746) ((-1170 . -246) 195725) ((-1170 . -47) 195702) ((-1170 . -1159) 195679) ((-1170 . -35) 195645) ((-1170 . -66) 195611) ((-1170 . -239) 195577) ((-1170 . -433) 195543) ((-1170 . -1119) 195509) ((-1170 . -1116) 195475) ((-1170 . -916) 195441) ((-1167 . -277) 195385) ((-1167 . -951) 195351) ((-1167 . -355) 195317) ((-1167 . -38) 195174) ((-1167 . -556) 195048) ((-1167 . -591) 194937) ((-1167 . -589) 194811) ((-1167 . -971) T) ((-1167 . -1026) T) ((-1167 . -1062) T) ((-1167 . -664) T) ((-1167 . -962) T) ((-1167 . -82) 194661) ((-1167 . -964) 194550) ((-1167 . -969) 194439) ((-1167 . -21) T) ((-1167 . -23) T) ((-1167 . -1014) T) ((-1167 . -553) 194421) ((-1167 . -1130) T) ((-1167 . -13) T) ((-1167 . -72) T) ((-1167 . -25) T) ((-1167 . -104) T) ((-1167 . -583) 194278) ((-1167 . -655) 194135) ((-1167 . -118) 194096) ((-1167 . -120) 194057) ((-1167 . -146) T) ((-1167 . -496) T) ((-1167 . -246) T) ((-1167 . -47) 194001) ((-1166 . -1165) 193980) ((-1166 . -312) 193959) ((-1166 . -1135) 193938) ((-1166 . -833) 193917) ((-1166 . -496) 193871) ((-1166 . -146) 193805) ((-1166 . -556) 193624) ((-1166 . -655) 193471) ((-1166 . -583) 193318) ((-1166 . -38) 193165) ((-1166 . -392) 193144) ((-1166 . -258) 193123) ((-1166 . -591) 193023) ((-1166 . -589) 192908) ((-1166 . -971) T) ((-1166 . -1026) T) ((-1166 . -1062) T) ((-1166 . -664) T) ((-1166 . -962) T) ((-1166 . -82) 192728) ((-1166 . -964) 192569) ((-1166 . -969) 192410) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1014) T) ((-1166 . -553) 192392) ((-1166 . -1130) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -246) 192346) ((-1166 . -201) 192325) ((-1166 . -916) 192291) ((-1166 . -1116) 192257) ((-1166 . -1119) 192223) ((-1166 . -433) 192189) ((-1166 . -239) 192155) ((-1166 . -66) 192121) ((-1166 . -35) 192087) ((-1166 . -1159) 192057) ((-1166 . -47) 192027) ((-1166 . -120) 192006) ((-1166 . -118) 191985) ((-1166 . -887) 191948) ((-1166 . -812) 191854) ((-1166 . -807) 191758) ((-1166 . -810) 191664) ((-1166 . -241) 191622) ((-1166 . -189) 191574) ((-1166 . -186) 191520) ((-1166 . -190) 191472) ((-1166 . -1163) 191456) ((-1166 . -951) 191440) ((-1161 . -1165) 191401) ((-1161 . -312) 191380) ((-1161 . -1135) 191359) ((-1161 . -833) 191338) ((-1161 . -496) 191292) ((-1161 . -146) 191226) ((-1161 . -556) 190975) ((-1161 . -655) 190822) ((-1161 . -583) 190669) ((-1161 . -38) 190516) ((-1161 . -392) 190495) ((-1161 . -258) 190474) ((-1161 . -591) 190374) ((-1161 . -589) 190259) ((-1161 . -971) T) ((-1161 . -1026) T) ((-1161 . -1062) T) ((-1161 . -664) T) ((-1161 . -962) T) ((-1161 . -82) 190079) ((-1161 . -964) 189920) ((-1161 . -969) 189761) ((-1161 . -21) T) ((-1161 . -23) T) ((-1161 . -1014) T) ((-1161 . -553) 189743) ((-1161 . -1130) T) ((-1161 . -13) T) ((-1161 . -72) T) ((-1161 . -25) T) ((-1161 . -104) T) ((-1161 . -246) 189697) ((-1161 . -201) 189676) ((-1161 . -916) 189642) ((-1161 . -1116) 189608) ((-1161 . -1119) 189574) ((-1161 . -433) 189540) ((-1161 . -239) 189506) ((-1161 . -66) 189472) ((-1161 . -35) 189438) ((-1161 . -1159) 189408) ((-1161 . -47) 189378) ((-1161 . -120) 189357) ((-1161 . -118) 189336) ((-1161 . -887) 189299) ((-1161 . -812) 189205) ((-1161 . -807) 189086) ((-1161 . -810) 188992) ((-1161 . -241) 188950) ((-1161 . -189) 188902) ((-1161 . -186) 188848) ((-1161 . -190) 188800) ((-1161 . -1163) 188784) ((-1161 . -951) 188719) ((-1149 . -1156) 188703) ((-1149 . -1067) 188681) ((-1149 . -554) NIL) ((-1149 . -260) 188668) ((-1149 . -456) 188616) ((-1149 . -277) 188593) ((-1149 . -951) 188476) ((-1149 . -355) 188460) ((-1149 . -38) 188292) ((-1149 . -82) 188097) ((-1149 . -964) 187923) ((-1149 . -969) 187749) ((-1149 . -589) 187659) ((-1149 . -591) 187548) ((-1149 . -583) 187380) ((-1149 . -655) 187212) ((-1149 . -556) 186968) ((-1149 . -118) 186947) ((-1149 . -120) 186926) ((-1149 . -47) 186903) ((-1149 . -329) 186887) ((-1149 . -581) 186835) ((-1149 . -810) 186779) ((-1149 . -807) 186686) ((-1149 . -812) 186597) ((-1149 . -797) NIL) ((-1149 . -822) 186576) ((-1149 . -1135) 186555) ((-1149 . -862) 186525) ((-1149 . -833) 186504) ((-1149 . -496) 186418) ((-1149 . -246) 186332) ((-1149 . -146) 186226) ((-1149 . -392) 186160) ((-1149 . -258) 186139) ((-1149 . -241) 186066) ((-1149 . -190) T) ((-1149 . -104) T) ((-1149 . -25) T) ((-1149 . -72) T) ((-1149 . -553) 186048) ((-1149 . -1014) T) ((-1149 . -23) T) ((-1149 . -21) T) ((-1149 . -971) T) ((-1149 . -1026) T) ((-1149 . -1062) T) ((-1149 . -664) T) ((-1149 . -962) T) ((-1149 . -186) 186035) ((-1149 . -13) T) ((-1149 . -1130) T) ((-1149 . -189) T) ((-1149 . -225) 186019) ((-1149 . -184) 186003) ((-1147 . -1007) 185987) ((-1147 . -558) 185971) ((-1147 . -1014) 185949) ((-1147 . -553) 185916) ((-1147 . -1130) 185894) ((-1147 . -13) 185872) ((-1147 . -72) 185850) ((-1147 . -1008) 185807) ((-1145 . -1144) 185786) ((-1145 . -916) 185752) ((-1145 . -1116) 185718) ((-1145 . -1119) 185684) ((-1145 . -433) 185650) ((-1145 . -239) 185616) ((-1145 . -66) 185582) ((-1145 . -35) 185548) ((-1145 . -1159) 185525) ((-1145 . -47) 185502) ((-1145 . -556) 185257) ((-1145 . -655) 185077) ((-1145 . -583) 184897) ((-1145 . -591) 184708) ((-1145 . -589) 184566) ((-1145 . -969) 184380) ((-1145 . -964) 184194) ((-1145 . -82) 183982) ((-1145 . -38) 183802) ((-1145 . -887) 183772) ((-1145 . -241) 183672) ((-1145 . -1142) 183656) ((-1145 . -971) T) ((-1145 . -1026) T) ((-1145 . -1062) T) ((-1145 . -664) T) ((-1145 . -962) T) ((-1145 . -21) T) ((-1145 . -23) T) ((-1145 . -1014) T) ((-1145 . -553) 183638) ((-1145 . -1130) T) ((-1145 . -13) T) ((-1145 . -72) T) ((-1145 . -25) T) ((-1145 . -104) T) ((-1145 . -118) 183566) ((-1145 . -120) 183448) ((-1145 . -554) 183121) ((-1145 . -184) 183091) ((-1145 . -810) 182945) ((-1145 . -812) 182745) ((-1145 . -807) 182543) ((-1145 . -225) 182513) ((-1145 . -189) 182375) ((-1145 . -186) 182231) ((-1145 . -190) 182139) ((-1145 . -312) 182118) ((-1145 . -1135) 182097) ((-1145 . -833) 182076) ((-1145 . -496) 182030) ((-1145 . -146) 181964) ((-1145 . -392) 181943) ((-1145 . -258) 181922) ((-1145 . -246) 181876) ((-1145 . -201) 181855) ((-1145 . -288) 181825) ((-1145 . -456) 181685) ((-1145 . -260) 181624) ((-1145 . -329) 181594) ((-1145 . -581) 181502) ((-1145 . -343) 181472) ((-1145 . -797) 181345) ((-1145 . -741) 181298) ((-1145 . -715) 181251) ((-1145 . -717) 181204) ((-1145 . -757) 181106) ((-1145 . -760) 181008) ((-1145 . -719) 180961) ((-1145 . -722) 180914) ((-1145 . -756) 180867) ((-1145 . -795) 180837) ((-1145 . -822) 180790) ((-1145 . -934) 180743) ((-1145 . -951) 180532) ((-1145 . -1067) 180484) ((-1145 . -905) 180454) ((-1140 . -1144) 180415) ((-1140 . -916) 180381) ((-1140 . -1116) 180347) ((-1140 . -1119) 180313) ((-1140 . -433) 180279) ((-1140 . -239) 180245) ((-1140 . -66) 180211) ((-1140 . -35) 180177) ((-1140 . -1159) 180154) ((-1140 . -47) 180131) ((-1140 . -556) 179932) ((-1140 . -655) 179734) ((-1140 . -583) 179536) ((-1140 . -591) 179391) ((-1140 . -589) 179231) ((-1140 . -969) 179027) ((-1140 . -964) 178823) ((-1140 . -82) 178575) ((-1140 . -38) 178377) ((-1140 . -887) 178347) ((-1140 . -241) 178175) ((-1140 . -1142) 178159) ((-1140 . -971) T) ((-1140 . -1026) T) ((-1140 . -1062) T) ((-1140 . -664) T) ((-1140 . -962) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1014) T) ((-1140 . -553) 178141) ((-1140 . -1130) T) ((-1140 . -13) T) ((-1140 . -72) T) ((-1140 . -25) T) ((-1140 . -104) T) ((-1140 . -118) 178051) ((-1140 . -120) 177961) ((-1140 . -554) NIL) ((-1140 . -184) 177913) ((-1140 . -810) 177749) ((-1140 . -812) 177513) ((-1140 . -807) 177252) ((-1140 . -225) 177204) ((-1140 . -189) 177030) ((-1140 . -186) 176850) ((-1140 . -190) 176740) ((-1140 . -312) 176719) ((-1140 . -1135) 176698) ((-1140 . -833) 176677) ((-1140 . -496) 176631) ((-1140 . -146) 176565) ((-1140 . -392) 176544) ((-1140 . -258) 176523) ((-1140 . -246) 176477) ((-1140 . -201) 176456) ((-1140 . -288) 176408) ((-1140 . -456) 176142) ((-1140 . -260) 176027) ((-1140 . -329) 175979) ((-1140 . -581) 175931) ((-1140 . -343) 175883) ((-1140 . -797) NIL) ((-1140 . -741) NIL) ((-1140 . -715) NIL) ((-1140 . -717) NIL) ((-1140 . -757) NIL) ((-1140 . -760) NIL) ((-1140 . -719) NIL) ((-1140 . -722) NIL) ((-1140 . -756) NIL) ((-1140 . -795) 175835) ((-1140 . -822) NIL) ((-1140 . -934) NIL) ((-1140 . -951) 175801) ((-1140 . -1067) NIL) ((-1140 . -905) 175753) ((-1139 . -753) T) ((-1139 . -760) T) ((-1139 . -757) T) ((-1139 . -1014) T) ((-1139 . -553) 175735) ((-1139 . -1130) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -320) T) ((-1139 . -605) T) ((-1138 . -753) T) ((-1138 . -760) T) ((-1138 . -757) T) ((-1138 . -1014) T) ((-1138 . -553) 175717) ((-1138 . -1130) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -605) T) ((-1137 . -753) T) ((-1137 . -760) T) ((-1137 . -757) T) ((-1137 . -1014) T) ((-1137 . -553) 175699) ((-1137 . -1130) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -605) T) ((-1136 . -753) T) ((-1136 . -760) T) ((-1136 . -757) T) ((-1136 . -1014) T) ((-1136 . -553) 175681) ((-1136 . -1130) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -605) T) ((-1131 . -996) T) ((-1131 . -430) 175662) ((-1131 . -553) 175628) ((-1131 . -556) 175609) ((-1131 . -1014) T) ((-1131 . -1130) T) ((-1131 . -13) T) ((-1131 . -72) T) ((-1131 . -64) T) ((-1128 . -430) 175586) ((-1128 . -553) 175527) ((-1128 . -556) 175504) ((-1128 . -1014) 175482) ((-1128 . -1130) 175460) ((-1128 . -13) 175438) ((-1128 . -72) 175416) ((-1123 . -680) 175392) ((-1123 . -35) 175358) ((-1123 . -66) 175324) ((-1123 . -239) 175290) ((-1123 . -433) 175256) ((-1123 . -1119) 175222) ((-1123 . -1116) 175188) ((-1123 . -916) 175154) ((-1123 . -47) 175123) ((-1123 . -38) 175020) ((-1123 . -583) 174917) ((-1123 . -655) 174814) ((-1123 . -556) 174696) ((-1123 . -246) 174675) ((-1123 . -496) 174654) ((-1123 . -82) 174519) ((-1123 . -964) 174405) ((-1123 . -969) 174291) ((-1123 . -146) 174245) ((-1123 . -120) 174224) ((-1123 . -118) 174203) ((-1123 . -591) 174128) ((-1123 . -589) 174038) ((-1123 . -887) 173999) ((-1123 . -812) 173980) ((-1123 . -1130) T) ((-1123 . -13) T) ((-1123 . -807) 173959) ((-1123 . -962) T) ((-1123 . -664) T) ((-1123 . -1062) T) ((-1123 . -1026) T) ((-1123 . -971) T) ((-1123 . -21) T) ((-1123 . -23) T) ((-1123 . -1014) T) ((-1123 . -553) 173941) ((-1123 . -72) T) ((-1123 . -25) T) ((-1123 . -104) T) ((-1123 . -810) 173922) ((-1123 . -456) 173889) ((-1123 . -260) 173876) ((-1117 . -924) 173860) ((-1117 . -34) T) ((-1117 . -13) T) ((-1117 . -1130) T) ((-1117 . -72) 173814) ((-1117 . -553) 173749) ((-1117 . -260) 173687) ((-1117 . -456) 173620) ((-1117 . -1014) 173598) ((-1117 . -429) 173582) ((-1117 . -318) 173566) ((-1117 . -1036) 173550) ((-1112 . -314) 173524) ((-1112 . -72) T) ((-1112 . -13) T) ((-1112 . -1130) T) ((-1112 . -553) 173506) ((-1112 . -1014) T) ((-1110 . -1014) T) ((-1110 . -553) 173488) ((-1110 . -1130) T) ((-1110 . -13) T) ((-1110 . -72) T) ((-1110 . -556) 173470) ((-1105 . -748) 173454) ((-1105 . -72) T) ((-1105 . -13) T) ((-1105 . -1130) T) ((-1105 . -553) 173436) ((-1105 . -1014) T) ((-1103 . -1108) 173415) ((-1103 . -183) 173363) ((-1103 . -76) 173311) ((-1103 . -1036) 173259) ((-1103 . -124) 173207) ((-1103 . -554) NIL) ((-1103 . -193) 173155) ((-1103 . -539) 173134) ((-1103 . -260) 172932) ((-1103 . -456) 172684) ((-1103 . -429) 172619) ((-1103 . -241) 172598) ((-1103 . -243) 172577) ((-1103 . -550) 172556) ((-1103 . -1014) T) ((-1103 . -553) 172538) ((-1103 . -72) T) ((-1103 . -1130) T) ((-1103 . -13) T) ((-1103 . -34) T) ((-1103 . -318) 172486) ((-1099 . -1014) T) ((-1099 . -553) 172468) ((-1099 . -1130) T) ((-1099 . -13) T) ((-1099 . -72) T) ((-1098 . -753) T) ((-1098 . -760) T) ((-1098 . -757) T) ((-1098 . -1014) T) ((-1098 . -553) 172450) ((-1098 . -1130) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1098 . -320) T) ((-1098 . -605) T) ((-1097 . -753) T) ((-1097 . -760) T) ((-1097 . -757) T) ((-1097 . -1014) T) ((-1097 . -553) 172432) ((-1097 . -1130) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1096 . -1176) T) ((-1096 . -1014) T) ((-1096 . -553) 172399) ((-1096 . -1130) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -951) 172335) ((-1096 . -556) 172271) ((-1095 . -553) 172253) ((-1094 . -553) 172235) ((-1093 . -277) 172212) ((-1093 . -951) 172110) ((-1093 . -355) 172094) ((-1093 . -38) 171991) ((-1093 . -556) 171848) ((-1093 . -591) 171773) ((-1093 . -589) 171683) ((-1093 . -971) T) ((-1093 . -1026) T) ((-1093 . -1062) T) ((-1093 . -664) T) ((-1093 . -962) T) ((-1093 . -82) 171548) ((-1093 . -964) 171434) ((-1093 . -969) 171320) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1014) T) ((-1093 . -553) 171302) ((-1093 . -1130) T) ((-1093 . -13) T) ((-1093 . -72) T) ((-1093 . -25) T) ((-1093 . -104) T) ((-1093 . -583) 171199) ((-1093 . -655) 171096) ((-1093 . -118) 171075) ((-1093 . -120) 171054) ((-1093 . -146) 171008) ((-1093 . -496) 170987) ((-1093 . -246) 170966) ((-1093 . -47) 170943) ((-1091 . -757) T) ((-1091 . -553) 170925) ((-1091 . -1014) T) ((-1091 . -72) T) ((-1091 . -13) T) ((-1091 . -1130) T) ((-1091 . -760) T) ((-1091 . -554) 170847) ((-1091 . -556) 170813) ((-1091 . -951) 170795) ((-1091 . -797) 170762) ((-1090 . -1173) 170746) ((-1090 . -190) 170705) ((-1090 . -556) 170587) ((-1090 . -591) 170512) ((-1090 . -589) 170422) ((-1090 . -104) T) ((-1090 . -25) T) ((-1090 . -72) T) ((-1090 . -553) 170404) ((-1090 . -1014) T) ((-1090 . -23) T) ((-1090 . -21) T) ((-1090 . -971) T) ((-1090 . -1026) T) ((-1090 . -1062) T) ((-1090 . -664) T) ((-1090 . -962) T) ((-1090 . -186) 170357) ((-1090 . -13) T) ((-1090 . -1130) T) ((-1090 . -189) 170316) ((-1090 . -241) 170281) ((-1090 . -810) 170194) ((-1090 . -807) 170082) ((-1090 . -812) 169995) ((-1090 . -887) 169965) ((-1090 . -38) 169862) ((-1090 . -82) 169727) ((-1090 . -964) 169613) ((-1090 . -969) 169499) ((-1090 . -583) 169396) ((-1090 . -655) 169293) ((-1090 . -118) 169272) ((-1090 . -120) 169251) ((-1090 . -146) 169205) ((-1090 . -496) 169184) ((-1090 . -246) 169163) ((-1090 . -47) 169140) ((-1090 . -1159) 169117) ((-1090 . -35) 169083) ((-1090 . -66) 169049) ((-1090 . -239) 169015) ((-1090 . -433) 168981) ((-1090 . -1119) 168947) ((-1090 . -1116) 168913) ((-1090 . -916) 168879) ((-1089 . -1165) 168840) ((-1089 . -312) 168819) ((-1089 . -1135) 168798) ((-1089 . -833) 168777) ((-1089 . -496) 168731) ((-1089 . -146) 168665) ((-1089 . -556) 168414) ((-1089 . -655) 168261) ((-1089 . -583) 168108) ((-1089 . -38) 167955) ((-1089 . -392) 167934) ((-1089 . -258) 167913) ((-1089 . -591) 167813) ((-1089 . -589) 167698) ((-1089 . -971) T) ((-1089 . -1026) T) ((-1089 . -1062) T) ((-1089 . -664) T) ((-1089 . -962) T) ((-1089 . -82) 167518) ((-1089 . -964) 167359) ((-1089 . -969) 167200) ((-1089 . -21) T) ((-1089 . -23) T) ((-1089 . -1014) T) ((-1089 . -553) 167182) ((-1089 . -1130) T) ((-1089 . -13) T) ((-1089 . -72) T) ((-1089 . -25) T) ((-1089 . -104) T) ((-1089 . -246) 167136) ((-1089 . -201) 167115) ((-1089 . -916) 167081) ((-1089 . -1116) 167047) ((-1089 . -1119) 167013) ((-1089 . -433) 166979) ((-1089 . -239) 166945) ((-1089 . -66) 166911) ((-1089 . -35) 166877) ((-1089 . -1159) 166847) ((-1089 . -47) 166817) ((-1089 . -120) 166796) ((-1089 . -118) 166775) ((-1089 . -887) 166738) ((-1089 . -812) 166644) ((-1089 . -807) 166525) ((-1089 . -810) 166431) ((-1089 . -241) 166389) ((-1089 . -189) 166341) ((-1089 . -186) 166287) ((-1089 . -190) 166239) ((-1089 . -1163) 166223) ((-1089 . -951) 166158) ((-1086 . -1156) 166142) ((-1086 . -1067) 166120) ((-1086 . -554) NIL) ((-1086 . -260) 166107) ((-1086 . -456) 166055) ((-1086 . -277) 166032) ((-1086 . -951) 165915) ((-1086 . -355) 165899) ((-1086 . -38) 165731) ((-1086 . -82) 165536) ((-1086 . -964) 165362) ((-1086 . -969) 165188) ((-1086 . -589) 165098) ((-1086 . -591) 164987) ((-1086 . -583) 164819) ((-1086 . -655) 164651) ((-1086 . -556) 164428) ((-1086 . -118) 164407) ((-1086 . -120) 164386) ((-1086 . -47) 164363) ((-1086 . -329) 164347) ((-1086 . -581) 164295) ((-1086 . -810) 164239) ((-1086 . -807) 164146) ((-1086 . -812) 164057) ((-1086 . -797) NIL) ((-1086 . -822) 164036) ((-1086 . -1135) 164015) ((-1086 . -862) 163985) ((-1086 . -833) 163964) ((-1086 . -496) 163878) ((-1086 . -246) 163792) ((-1086 . -146) 163686) ((-1086 . -392) 163620) ((-1086 . -258) 163599) ((-1086 . -241) 163526) ((-1086 . -190) T) ((-1086 . -104) T) ((-1086 . -25) T) ((-1086 . -72) T) ((-1086 . -553) 163508) ((-1086 . -1014) T) ((-1086 . -23) T) ((-1086 . -21) T) ((-1086 . -971) T) ((-1086 . -1026) T) ((-1086 . -1062) T) ((-1086 . -664) T) ((-1086 . -962) T) ((-1086 . -186) 163495) ((-1086 . -13) T) ((-1086 . -1130) T) ((-1086 . -189) T) ((-1086 . -225) 163479) ((-1086 . -184) 163463) ((-1083 . -1144) 163424) ((-1083 . -916) 163390) ((-1083 . -1116) 163356) ((-1083 . -1119) 163322) ((-1083 . -433) 163288) ((-1083 . -239) 163254) ((-1083 . -66) 163220) ((-1083 . -35) 163186) ((-1083 . -1159) 163163) ((-1083 . -47) 163140) ((-1083 . -556) 162941) ((-1083 . -655) 162743) ((-1083 . -583) 162545) ((-1083 . -591) 162400) ((-1083 . -589) 162240) ((-1083 . -969) 162036) ((-1083 . -964) 161832) ((-1083 . -82) 161584) ((-1083 . -38) 161386) ((-1083 . -887) 161356) ((-1083 . -241) 161184) ((-1083 . -1142) 161168) ((-1083 . -971) T) ((-1083 . -1026) T) ((-1083 . -1062) T) ((-1083 . -664) T) ((-1083 . -962) T) ((-1083 . -21) T) ((-1083 . -23) T) ((-1083 . -1014) T) ((-1083 . -553) 161150) ((-1083 . -1130) T) ((-1083 . -13) T) ((-1083 . -72) T) ((-1083 . -25) T) ((-1083 . -104) T) ((-1083 . -118) 161060) ((-1083 . -120) 160970) ((-1083 . -554) NIL) ((-1083 . -184) 160922) ((-1083 . -810) 160758) ((-1083 . -812) 160522) ((-1083 . -807) 160261) ((-1083 . -225) 160213) ((-1083 . -189) 160039) ((-1083 . -186) 159859) ((-1083 . -190) 159749) ((-1083 . -312) 159728) ((-1083 . -1135) 159707) ((-1083 . -833) 159686) ((-1083 . -496) 159640) ((-1083 . -146) 159574) ((-1083 . -392) 159553) ((-1083 . -258) 159532) ((-1083 . -246) 159486) ((-1083 . -201) 159465) ((-1083 . -288) 159417) ((-1083 . -456) 159151) ((-1083 . -260) 159036) ((-1083 . -329) 158988) ((-1083 . -581) 158940) ((-1083 . -343) 158892) ((-1083 . -797) NIL) ((-1083 . -741) NIL) ((-1083 . -715) NIL) ((-1083 . -717) NIL) ((-1083 . -757) NIL) ((-1083 . -760) NIL) ((-1083 . -719) NIL) ((-1083 . -722) NIL) ((-1083 . -756) NIL) ((-1083 . -795) 158844) ((-1083 . -822) NIL) ((-1083 . -934) NIL) ((-1083 . -951) 158810) ((-1083 . -1067) NIL) ((-1083 . -905) 158762) ((-1082 . -996) T) ((-1082 . -430) 158743) ((-1082 . -553) 158709) ((-1082 . -556) 158690) ((-1082 . -1014) T) ((-1082 . -1130) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -64) T) ((-1081 . -1014) T) ((-1081 . -553) 158672) ((-1081 . -1130) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1080 . -1014) T) ((-1080 . -553) 158654) ((-1080 . -1130) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1075 . -1108) 158630) ((-1075 . -183) 158575) ((-1075 . -76) 158520) ((-1075 . -1036) 158465) ((-1075 . -124) 158410) ((-1075 . -554) NIL) ((-1075 . -193) 158355) ((-1075 . -539) 158331) ((-1075 . -260) 158120) ((-1075 . -456) 157860) ((-1075 . -429) 157792) ((-1075 . -241) 157768) ((-1075 . -243) 157744) ((-1075 . -550) 157720) ((-1075 . -1014) T) ((-1075 . -553) 157702) ((-1075 . -72) T) ((-1075 . -1130) T) ((-1075 . -13) T) ((-1075 . -34) T) ((-1075 . -318) 157647) ((-1074 . -1059) T) ((-1074 . -324) 157629) ((-1074 . -760) T) ((-1074 . -757) T) ((-1074 . -124) 157611) ((-1074 . -554) NIL) ((-1074 . -241) 157561) ((-1074 . -539) 157536) ((-1074 . -243) 157511) ((-1074 . -594) 157493) ((-1074 . -429) 157475) ((-1074 . -1014) T) ((-1074 . -456) NIL) ((-1074 . -260) NIL) ((-1074 . -553) 157457) ((-1074 . -72) T) ((-1074 . -1130) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 157439) ((-1074 . -1036) 157421) ((-1074 . -19) 157403) ((-1070 . -617) 157387) ((-1070 . -594) 157371) ((-1070 . -243) 157348) ((-1070 . -241) 157300) ((-1070 . -539) 157277) ((-1070 . -554) 157238) ((-1070 . -429) 157222) ((-1070 . -1014) 157200) ((-1070 . -456) 157133) ((-1070 . -260) 157071) ((-1070 . -553) 157006) ((-1070 . -72) 156960) ((-1070 . -1130) T) ((-1070 . -13) T) ((-1070 . -34) T) ((-1070 . -124) 156944) ((-1070 . -1169) 156928) ((-1070 . -924) 156912) ((-1070 . -1065) 156896) ((-1070 . -556) 156873) ((-1070 . -1036) 156857) ((-1068 . -996) T) ((-1068 . -430) 156838) ((-1068 . -553) 156804) ((-1068 . -556) 156785) ((-1068 . -1014) T) ((-1068 . -1130) T) ((-1068 . -13) T) ((-1068 . -72) T) ((-1068 . -64) T) ((-1066 . -1108) 156764) ((-1066 . -183) 156712) ((-1066 . -76) 156660) ((-1066 . -1036) 156608) ((-1066 . -124) 156556) ((-1066 . -554) NIL) ((-1066 . -193) 156504) ((-1066 . -539) 156483) ((-1066 . -260) 156281) ((-1066 . -456) 156033) ((-1066 . -429) 155968) ((-1066 . -241) 155947) ((-1066 . -243) 155926) ((-1066 . -550) 155905) ((-1066 . -1014) T) ((-1066 . -553) 155887) ((-1066 . -72) T) ((-1066 . -1130) T) ((-1066 . -13) T) ((-1066 . -34) T) ((-1066 . -318) 155835) ((-1063 . -1035) 155819) ((-1063 . -318) 155803) ((-1063 . -1036) 155787) ((-1063 . -34) T) ((-1063 . -13) T) ((-1063 . -1130) T) ((-1063 . -72) 155741) ((-1063 . -553) 155676) ((-1063 . -260) 155614) ((-1063 . -456) 155547) ((-1063 . -1014) 155525) ((-1063 . -429) 155509) ((-1063 . -76) 155493) ((-1061 . -1021) 155462) ((-1061 . -1125) 155431) ((-1061 . -1036) 155415) ((-1061 . -553) 155377) ((-1061 . -124) 155361) ((-1061 . -34) T) ((-1061 . -13) T) ((-1061 . -1130) T) ((-1061 . -72) T) ((-1061 . -260) 155299) ((-1061 . -456) 155232) ((-1061 . -1014) T) ((-1061 . -429) 155216) ((-1061 . -554) 155177) ((-1061 . -318) 155161) ((-1061 . -890) 155130) ((-1061 . -984) 155099) ((-1057 . -1038) 155044) ((-1057 . -318) 155028) ((-1057 . -34) T) ((-1057 . -260) 154966) ((-1057 . -456) 154899) ((-1057 . -429) 154883) ((-1057 . -966) 154823) ((-1057 . -951) 154721) ((-1057 . -556) 154640) ((-1057 . -355) 154624) ((-1057 . -581) 154572) ((-1057 . -591) 154510) ((-1057 . -329) 154494) ((-1057 . -190) 154473) ((-1057 . -186) 154421) ((-1057 . -189) 154375) ((-1057 . -225) 154359) ((-1057 . -807) 154283) ((-1057 . -812) 154209) ((-1057 . -810) 154168) ((-1057 . -184) 154152) ((-1057 . -655) 154087) ((-1057 . -583) 154022) ((-1057 . -589) 153981) ((-1057 . -104) T) ((-1057 . -25) T) ((-1057 . -72) T) ((-1057 . -13) T) ((-1057 . -1130) T) ((-1057 . -553) 153943) ((-1057 . -1014) T) ((-1057 . -23) T) ((-1057 . -21) T) ((-1057 . -969) 153927) ((-1057 . -964) 153911) ((-1057 . -82) 153890) ((-1057 . -962) T) ((-1057 . -664) T) ((-1057 . -1062) T) ((-1057 . -1026) T) ((-1057 . -971) T) ((-1057 . -38) 153850) ((-1057 . -554) 153811) ((-1056 . -924) 153782) ((-1056 . -34) T) ((-1056 . -13) T) ((-1056 . -1130) T) ((-1056 . -72) T) ((-1056 . -553) 153764) ((-1056 . -260) 153690) ((-1056 . -456) 153598) ((-1056 . -1014) T) ((-1056 . -429) 153569) ((-1056 . -318) 153540) ((-1056 . -1036) 153511) ((-1055 . -1014) T) ((-1055 . -553) 153493) ((-1055 . -1130) T) ((-1055 . -13) T) ((-1055 . -72) T) ((-1050 . -1052) T) ((-1050 . -1176) T) ((-1050 . -64) T) ((-1050 . -72) T) ((-1050 . -13) T) ((-1050 . -1130) T) ((-1050 . -553) 153459) ((-1050 . -1014) T) ((-1050 . -556) 153440) ((-1050 . -430) 153421) ((-1050 . -996) T) ((-1048 . -1049) 153405) ((-1048 . -72) T) ((-1048 . -13) T) ((-1048 . -1130) T) ((-1048 . -553) 153387) ((-1048 . -1014) T) ((-1041 . -680) 153366) ((-1041 . -35) 153332) ((-1041 . -66) 153298) ((-1041 . -239) 153264) ((-1041 . -433) 153230) ((-1041 . -1119) 153196) ((-1041 . -1116) 153162) ((-1041 . -916) 153128) ((-1041 . -47) 153100) ((-1041 . -38) 152997) ((-1041 . -583) 152894) ((-1041 . -655) 152791) ((-1041 . -556) 152673) ((-1041 . -246) 152652) ((-1041 . -496) 152631) ((-1041 . -82) 152496) ((-1041 . -964) 152382) ((-1041 . -969) 152268) ((-1041 . -146) 152222) ((-1041 . -120) 152201) ((-1041 . -118) 152180) ((-1041 . -591) 152105) ((-1041 . -589) 152015) ((-1041 . -887) 151982) ((-1041 . -812) 151966) ((-1041 . -1130) T) ((-1041 . -13) T) ((-1041 . -807) 151948) ((-1041 . -962) T) ((-1041 . -664) T) ((-1041 . -1062) T) ((-1041 . -1026) T) ((-1041 . -971) T) ((-1041 . -21) T) ((-1041 . -23) T) ((-1041 . -1014) T) ((-1041 . -553) 151930) ((-1041 . -72) T) ((-1041 . -25) T) ((-1041 . -104) T) ((-1041 . -810) 151914) ((-1041 . -456) 151884) ((-1041 . -260) 151871) ((-1040 . -862) 151838) ((-1040 . -556) 151637) ((-1040 . -951) 151522) ((-1040 . -1135) 151501) ((-1040 . -822) 151480) ((-1040 . -797) 151339) ((-1040 . -812) 151323) ((-1040 . -807) 151305) ((-1040 . -810) 151289) ((-1040 . -456) 151241) ((-1040 . -392) 151195) ((-1040 . -581) 151143) ((-1040 . -591) 151032) ((-1040 . -329) 151016) ((-1040 . -47) 150988) ((-1040 . -38) 150840) ((-1040 . -583) 150692) ((-1040 . -655) 150544) ((-1040 . -246) 150478) ((-1040 . -496) 150412) ((-1040 . -82) 150237) ((-1040 . -964) 150083) ((-1040 . -969) 149929) ((-1040 . -146) 149843) ((-1040 . -120) 149822) ((-1040 . -118) 149801) ((-1040 . -589) 149711) ((-1040 . -104) T) ((-1040 . -25) T) ((-1040 . -72) T) ((-1040 . -13) T) ((-1040 . -1130) T) ((-1040 . -553) 149693) ((-1040 . -1014) T) ((-1040 . -23) T) ((-1040 . -21) T) ((-1040 . -962) T) ((-1040 . -664) T) ((-1040 . -1062) T) ((-1040 . -1026) T) ((-1040 . -971) T) ((-1040 . -355) 149677) ((-1040 . -277) 149649) ((-1040 . -260) 149636) ((-1040 . -554) 149384) ((-1034 . -484) T) ((-1034 . -1135) T) ((-1034 . -1067) T) ((-1034 . -951) 149366) ((-1034 . -554) 149281) ((-1034 . -934) T) ((-1034 . -797) 149263) ((-1034 . -756) T) ((-1034 . -722) T) ((-1034 . -719) T) ((-1034 . -760) T) ((-1034 . -757) T) ((-1034 . -717) T) ((-1034 . -715) T) ((-1034 . -741) T) ((-1034 . -591) 149235) ((-1034 . -581) 149217) ((-1034 . -833) T) ((-1034 . -496) T) ((-1034 . -246) T) ((-1034 . -146) T) ((-1034 . -556) 149189) ((-1034 . -655) 149176) ((-1034 . -583) 149163) ((-1034 . -969) 149150) ((-1034 . -964) 149137) ((-1034 . -82) 149122) ((-1034 . -38) 149109) ((-1034 . -392) T) ((-1034 . -258) T) ((-1034 . -189) T) ((-1034 . -186) 149096) ((-1034 . -190) T) ((-1034 . -116) T) ((-1034 . -962) T) ((-1034 . -664) T) ((-1034 . -1062) T) ((-1034 . -1026) T) ((-1034 . -971) T) ((-1034 . -21) T) ((-1034 . -589) 149068) ((-1034 . -23) T) ((-1034 . -1014) T) ((-1034 . -553) 149050) ((-1034 . -1130) T) ((-1034 . -13) T) ((-1034 . -72) T) ((-1034 . -25) T) ((-1034 . -104) T) ((-1034 . -120) T) ((-1034 . -753) T) ((-1034 . -320) T) ((-1034 . -84) T) ((-1034 . -605) T) ((-1030 . -996) T) ((-1030 . -430) 149031) ((-1030 . -553) 148997) ((-1030 . -556) 148978) ((-1030 . -1014) T) ((-1030 . -1130) T) ((-1030 . -13) T) ((-1030 . -72) T) ((-1030 . -64) T) ((-1029 . -1014) T) ((-1029 . -553) 148960) ((-1029 . -1130) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1027 . -196) 148939) ((-1027 . -1188) 148909) ((-1027 . -722) 148888) ((-1027 . -719) 148867) ((-1027 . -760) 148821) ((-1027 . -757) 148775) ((-1027 . -717) 148754) ((-1027 . -718) 148733) ((-1027 . -655) 148678) ((-1027 . -583) 148603) ((-1027 . -243) 148580) ((-1027 . -241) 148557) ((-1027 . -539) 148534) ((-1027 . -951) 148363) ((-1027 . -556) 148167) ((-1027 . -355) 148136) ((-1027 . -581) 148044) ((-1027 . -591) 147883) ((-1027 . -329) 147853) ((-1027 . -429) 147837) ((-1027 . -456) 147770) ((-1027 . -260) 147708) ((-1027 . -34) T) ((-1027 . -318) 147692) ((-1027 . -320) 147671) ((-1027 . -190) 147624) ((-1027 . -589) 147412) ((-1027 . -971) 147391) ((-1027 . -1026) 147370) ((-1027 . -1062) 147349) ((-1027 . -664) 147328) ((-1027 . -962) 147307) ((-1027 . -186) 147203) ((-1027 . -189) 147105) ((-1027 . -225) 147075) ((-1027 . -807) 146947) ((-1027 . -812) 146821) ((-1027 . -810) 146754) ((-1027 . -184) 146724) ((-1027 . -553) 146421) ((-1027 . -969) 146346) ((-1027 . -964) 146251) ((-1027 . -82) 146171) ((-1027 . -104) 146046) ((-1027 . -25) 145883) ((-1027 . -72) 145620) ((-1027 . -13) T) ((-1027 . -1130) T) ((-1027 . -1014) 145376) ((-1027 . -23) 145232) ((-1027 . -21) 145147) ((-1023 . -1024) 145131) ((-1023 . |MappingCategory|) 145105) ((-1023 . -1130) T) ((-1023 . -80) 145089) ((-1023 . -1014) T) ((-1023 . -553) 145071) ((-1023 . -13) T) ((-1023 . -72) T) ((-1018 . -1017) 145035) ((-1018 . -72) T) ((-1018 . -553) 145017) ((-1018 . -1014) T) ((-1018 . -241) 144973) ((-1018 . -1130) T) ((-1018 . -13) T) ((-1018 . -558) 144888) ((-1016 . -1017) 144840) ((-1016 . -72) T) ((-1016 . -553) 144822) ((-1016 . -1014) T) ((-1016 . -241) 144778) ((-1016 . -1130) T) ((-1016 . -13) T) ((-1016 . -558) 144681) ((-1015 . -320) T) ((-1015 . -72) T) ((-1015 . -13) T) ((-1015 . -1130) T) ((-1015 . -553) 144663) ((-1015 . -1014) T) ((-1010 . -369) 144647) ((-1010 . -1012) 144631) ((-1010 . -318) 144615) ((-1010 . -320) 144594) ((-1010 . -193) 144578) ((-1010 . -554) 144539) ((-1010 . -124) 144523) ((-1010 . -1036) 144507) ((-1010 . -34) T) ((-1010 . -13) T) ((-1010 . -1130) T) ((-1010 . -72) T) ((-1010 . -553) 144489) ((-1010 . -260) 144427) ((-1010 . -456) 144360) ((-1010 . -1014) T) ((-1010 . -429) 144344) ((-1010 . -76) 144328) ((-1010 . -183) 144312) ((-1009 . -996) T) ((-1009 . -430) 144293) ((-1009 . -553) 144259) ((-1009 . -556) 144240) ((-1009 . -1014) T) ((-1009 . -1130) T) ((-1009 . -13) T) ((-1009 . -72) T) ((-1009 . -64) T) ((-1005 . -1130) T) ((-1005 . -13) T) ((-1005 . -1014) 144210) ((-1005 . -553) 144169) ((-1005 . -72) 144139) ((-1004 . -996) T) ((-1004 . -430) 144120) ((-1004 . -553) 144086) ((-1004 . -556) 144067) ((-1004 . -1014) T) ((-1004 . -1130) T) ((-1004 . -13) T) ((-1004 . -72) T) ((-1004 . -64) T) ((-1002 . -1007) 144051) ((-1002 . -558) 144035) ((-1002 . -1014) 144013) ((-1002 . -553) 143980) ((-1002 . -1130) 143958) ((-1002 . -13) 143936) ((-1002 . -72) 143914) ((-1002 . -1008) 143872) ((-1001 . -228) 143856) ((-1001 . -556) 143840) ((-1001 . -951) 143824) ((-1001 . -760) T) ((-1001 . -72) T) ((-1001 . -1014) T) ((-1001 . -553) 143806) ((-1001 . -757) T) ((-1001 . -186) 143793) ((-1001 . -13) T) ((-1001 . -1130) T) ((-1001 . -189) T) ((-1000 . -213) 143730) ((-1000 . -556) 143473) ((-1000 . -951) 143302) ((-1000 . -554) NIL) ((-1000 . -277) 143263) ((-1000 . -355) 143247) ((-1000 . -38) 143099) ((-1000 . -82) 142924) ((-1000 . -964) 142770) ((-1000 . -969) 142616) ((-1000 . -589) 142526) ((-1000 . -591) 142415) ((-1000 . -583) 142267) ((-1000 . -655) 142119) ((-1000 . -118) 142098) ((-1000 . -120) 142077) ((-1000 . -146) 141991) ((-1000 . -496) 141925) ((-1000 . -246) 141859) ((-1000 . -47) 141820) ((-1000 . -329) 141804) ((-1000 . -581) 141752) ((-1000 . -392) 141706) ((-1000 . -456) 141569) ((-1000 . -810) 141504) ((-1000 . -807) 141402) ((-1000 . -812) 141304) ((-1000 . -797) NIL) ((-1000 . -822) 141283) ((-1000 . -1135) 141262) ((-1000 . -862) 141207) ((-1000 . -260) 141194) ((-1000 . -190) 141173) ((-1000 . -104) T) ((-1000 . -25) T) ((-1000 . -72) T) ((-1000 . -553) 141155) ((-1000 . -1014) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -971) T) ((-1000 . -1026) T) ((-1000 . -1062) T) ((-1000 . -664) T) ((-1000 . -962) T) ((-1000 . -186) 141103) ((-1000 . -13) T) ((-1000 . -1130) T) ((-1000 . -189) 141057) ((-1000 . -225) 141041) ((-1000 . -184) 141025) ((-998 . -553) 141007) ((-995 . -757) T) ((-995 . -553) 140989) ((-995 . -1014) T) ((-995 . -72) T) ((-995 . -13) T) ((-995 . -1130) T) ((-995 . -760) T) ((-995 . -554) 140970) ((-992 . -662) 140949) ((-992 . -951) 140847) ((-992 . -355) 140831) ((-992 . -581) 140779) ((-992 . -591) 140656) ((-992 . -329) 140640) ((-992 . -322) 140619) ((-992 . -120) 140598) ((-992 . -556) 140423) ((-992 . -655) 140297) ((-992 . -583) 140171) ((-992 . -589) 140069) ((-992 . -969) 139982) ((-992 . -964) 139895) ((-992 . -82) 139787) ((-992 . -38) 139661) ((-992 . -353) 139640) ((-992 . -345) 139619) ((-992 . -118) 139573) ((-992 . -1067) 139552) ((-992 . -299) 139531) ((-992 . -320) 139485) ((-992 . -201) 139439) ((-992 . -246) 139393) ((-992 . -258) 139347) ((-992 . -392) 139301) ((-992 . -496) 139255) ((-992 . -833) 139209) ((-992 . -1135) 139163) ((-992 . -312) 139117) ((-992 . -190) 139045) ((-992 . -186) 138921) ((-992 . -189) 138803) ((-992 . -225) 138773) ((-992 . -807) 138645) ((-992 . -812) 138519) ((-992 . -810) 138452) ((-992 . -184) 138422) ((-992 . -554) 138406) ((-992 . -21) T) ((-992 . -23) T) ((-992 . -1014) T) ((-992 . -553) 138388) ((-992 . -1130) T) ((-992 . -13) T) ((-992 . -72) T) ((-992 . -25) T) ((-992 . -104) T) ((-992 . -962) T) ((-992 . -664) T) ((-992 . -1062) T) ((-992 . -1026) T) ((-992 . -971) T) ((-992 . -146) T) ((-990 . -1014) T) ((-990 . -553) 138370) ((-990 . -1130) T) ((-990 . -13) T) ((-990 . -72) T) ((-990 . -241) 138349) ((-989 . -1014) T) ((-989 . -553) 138331) ((-989 . -1130) T) ((-989 . -13) T) ((-989 . -72) T) ((-988 . -1014) T) ((-988 . -553) 138313) ((-988 . -1130) T) ((-988 . -13) T) ((-988 . -72) T) ((-988 . -241) 138292) ((-988 . -951) 138269) ((-988 . -556) 138246) ((-987 . -1130) T) ((-987 . -13) T) ((-986 . -996) T) ((-986 . -430) 138227) ((-986 . -553) 138193) ((-986 . -556) 138174) ((-986 . -1014) T) ((-986 . -1130) T) ((-986 . -13) T) ((-986 . -72) T) ((-986 . -64) T) ((-979 . -996) T) ((-979 . -430) 138155) ((-979 . -553) 138121) ((-979 . -556) 138102) ((-979 . -1014) T) ((-979 . -1130) T) ((-979 . -13) T) ((-979 . -72) T) ((-979 . -64) T) ((-976 . -484) T) ((-976 . -1135) T) ((-976 . -1067) T) ((-976 . -951) 138084) ((-976 . -554) 137999) ((-976 . -934) T) ((-976 . -797) 137981) ((-976 . -756) T) ((-976 . -722) T) ((-976 . -719) T) ((-976 . -760) T) ((-976 . -757) T) ((-976 . -717) T) ((-976 . -715) T) ((-976 . -741) T) ((-976 . -591) 137953) ((-976 . -581) 137935) ((-976 . -833) T) ((-976 . -496) T) ((-976 . -246) T) ((-976 . -146) T) ((-976 . -556) 137907) ((-976 . -655) 137894) ((-976 . -583) 137881) ((-976 . -969) 137868) ((-976 . -964) 137855) ((-976 . -82) 137840) ((-976 . -38) 137827) ((-976 . -392) T) ((-976 . -258) T) ((-976 . -189) T) ((-976 . -186) 137814) ((-976 . -190) T) ((-976 . -116) T) ((-976 . -962) T) ((-976 . -664) T) ((-976 . -1062) T) ((-976 . -1026) T) ((-976 . -971) T) ((-976 . -21) T) ((-976 . -589) 137786) ((-976 . -23) T) ((-976 . -1014) T) ((-976 . -553) 137768) ((-976 . -1130) T) ((-976 . -13) T) ((-976 . -72) T) ((-976 . -25) T) ((-976 . -104) T) ((-976 . -120) T) ((-976 . -558) 137749) ((-975 . -981) 137728) ((-975 . -72) T) ((-975 . -13) T) ((-975 . -1130) T) ((-975 . -553) 137710) ((-975 . -1014) T) ((-972 . -1130) T) ((-972 . -13) T) ((-972 . -1014) 137688) ((-972 . -553) 137655) ((-972 . -72) 137633) ((-967 . -966) 137573) ((-967 . -583) 137518) ((-967 . -655) 137463) ((-967 . -429) 137447) ((-967 . -456) 137380) ((-967 . -260) 137318) ((-967 . -34) T) ((-967 . -318) 137302) ((-967 . -591) 137286) ((-967 . -589) 137255) ((-967 . -104) T) ((-967 . -25) T) ((-967 . -72) T) ((-967 . -13) T) ((-967 . -1130) T) ((-967 . -553) 137217) ((-967 . -1014) T) ((-967 . -23) T) ((-967 . -21) T) ((-967 . -969) 137201) ((-967 . -964) 137185) ((-967 . -82) 137164) ((-967 . -1188) 137134) ((-967 . -554) 137095) ((-959 . -984) 137024) ((-959 . -890) 136953) ((-959 . -318) 136918) ((-959 . -554) 136860) ((-959 . -429) 136825) ((-959 . -1014) T) ((-959 . -456) 136709) ((-959 . -260) 136617) ((-959 . -553) 136560) ((-959 . -72) T) ((-959 . -1130) T) ((-959 . -13) T) ((-959 . -34) T) ((-959 . -124) 136525) ((-959 . -1036) 136490) ((-959 . -1125) 136419) ((-949 . -996) T) ((-949 . -430) 136400) ((-949 . -553) 136366) ((-949 . -556) 136347) ((-949 . -1014) T) ((-949 . -1130) T) ((-949 . -13) T) ((-949 . -72) T) ((-949 . -64) T) ((-948 . -146) T) ((-948 . -556) 136316) ((-948 . -971) T) ((-948 . -1026) T) ((-948 . -1062) T) ((-948 . -664) T) ((-948 . -962) T) ((-948 . -591) 136290) ((-948 . -589) 136249) ((-948 . -104) T) ((-948 . -25) T) ((-948 . -72) T) ((-948 . -13) T) ((-948 . -1130) T) ((-948 . -553) 136231) ((-948 . -1014) T) ((-948 . -23) T) ((-948 . -21) T) ((-948 . -969) 136205) ((-948 . -964) 136179) ((-948 . -82) 136146) ((-948 . -38) 136130) ((-948 . -583) 136114) ((-948 . -655) 136098) ((-941 . -984) 136067) ((-941 . -890) 136036) ((-941 . -318) 136020) ((-941 . -554) 135981) ((-941 . -429) 135965) ((-941 . -1014) T) ((-941 . -456) 135898) ((-941 . -260) 135836) ((-941 . -553) 135798) ((-941 . -72) T) ((-941 . -1130) T) ((-941 . -13) T) ((-941 . -34) T) ((-941 . -124) 135782) ((-941 . -1036) 135766) ((-941 . -1125) 135735) ((-940 . -1014) T) ((-940 . -553) 135717) ((-940 . -1130) T) ((-940 . -13) T) ((-940 . -72) T) ((-938 . -926) T) ((-938 . -916) T) ((-938 . -715) T) ((-938 . -717) T) ((-938 . -757) T) ((-938 . -760) T) ((-938 . -719) T) ((-938 . -722) T) ((-938 . -756) T) ((-938 . -951) 135602) ((-938 . -355) 135564) ((-938 . -201) T) ((-938 . -246) T) ((-938 . -258) T) ((-938 . -392) T) ((-938 . -38) 135501) ((-938 . -583) 135438) ((-938 . -655) 135375) ((-938 . -556) 135312) ((-938 . -496) T) ((-938 . -833) T) ((-938 . -1135) T) ((-938 . -312) T) ((-938 . -82) 135221) ((-938 . -964) 135158) ((-938 . -969) 135095) ((-938 . -146) T) ((-938 . -120) T) ((-938 . -591) 135032) ((-938 . -589) 134969) ((-938 . -104) T) ((-938 . -25) T) ((-938 . -72) T) ((-938 . -13) T) ((-938 . -1130) T) ((-938 . -553) 134951) ((-938 . -1014) T) ((-938 . -23) T) ((-938 . -21) T) ((-938 . -962) T) ((-938 . -664) T) ((-938 . -1062) T) ((-938 . -1026) T) ((-938 . -971) T) ((-933 . -996) T) ((-933 . -430) 134932) ((-933 . -553) 134898) ((-933 . -556) 134879) ((-933 . -1014) T) ((-933 . -1130) T) ((-933 . -13) T) ((-933 . -72) T) ((-933 . -64) T) ((-918 . -905) 134861) ((-918 . -1067) T) ((-918 . -556) 134811) ((-918 . -951) 134771) ((-918 . -554) 134701) ((-918 . -934) T) ((-918 . -822) NIL) ((-918 . -795) 134683) ((-918 . -756) T) ((-918 . -722) T) ((-918 . -719) T) ((-918 . -760) T) ((-918 . -757) T) ((-918 . -717) T) ((-918 . -715) T) ((-918 . -741) T) ((-918 . -797) 134665) ((-918 . -343) 134647) ((-918 . -581) 134629) ((-918 . -329) 134611) ((-918 . -241) NIL) ((-918 . -260) NIL) ((-918 . -456) NIL) ((-918 . -288) 134593) ((-918 . -201) T) ((-918 . -82) 134520) ((-918 . -964) 134470) ((-918 . -969) 134420) ((-918 . -246) T) ((-918 . -655) 134370) ((-918 . -583) 134320) ((-918 . -591) 134270) ((-918 . -589) 134220) ((-918 . -38) 134170) ((-918 . -258) T) ((-918 . -392) T) ((-918 . -146) T) ((-918 . -496) T) ((-918 . -833) T) ((-918 . -1135) T) ((-918 . -312) T) ((-918 . -190) T) ((-918 . -186) 134157) ((-918 . -189) T) ((-918 . -225) 134139) ((-918 . -807) NIL) ((-918 . -812) NIL) ((-918 . -810) NIL) ((-918 . -184) 134121) ((-918 . -120) T) ((-918 . -118) NIL) ((-918 . -104) T) ((-918 . -25) T) ((-918 . -72) T) ((-918 . -13) T) ((-918 . -1130) T) ((-918 . -553) 134081) ((-918 . -1014) T) ((-918 . -23) T) ((-918 . -21) T) ((-918 . -962) T) ((-918 . -664) T) ((-918 . -1062) T) ((-918 . -1026) T) ((-918 . -971) T) ((-917 . -291) 134055) ((-917 . -146) T) ((-917 . -556) 133985) ((-917 . -971) T) ((-917 . -1026) T) ((-917 . -1062) T) ((-917 . -664) T) ((-917 . -962) T) ((-917 . -591) 133887) ((-917 . -589) 133817) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1130) T) ((-917 . -553) 133799) ((-917 . -1014) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -969) 133744) ((-917 . -964) 133689) ((-917 . -82) 133606) ((-917 . -554) 133590) ((-917 . -184) 133567) ((-917 . -810) 133519) ((-917 . -812) 133431) ((-917 . -807) 133341) ((-917 . -225) 133318) ((-917 . -189) 133258) ((-917 . -186) 133192) ((-917 . -190) 133164) ((-917 . -312) T) ((-917 . -1135) T) ((-917 . -833) T) ((-917 . -496) T) ((-917 . -655) 133109) ((-917 . -583) 133054) ((-917 . -38) 132999) ((-917 . -392) T) ((-917 . -258) T) ((-917 . -246) T) ((-917 . -201) T) ((-917 . -320) NIL) ((-917 . -299) NIL) ((-917 . -1067) NIL) ((-917 . -118) 132971) ((-917 . -345) NIL) ((-917 . -353) 132943) ((-917 . -120) 132915) ((-917 . -322) 132887) ((-917 . -329) 132864) ((-917 . -581) 132798) ((-917 . -355) 132775) ((-917 . -951) 132652) ((-917 . -662) 132624) ((-914 . -909) 132608) ((-914 . -318) 132592) ((-914 . -1036) 132576) ((-914 . -34) T) ((-914 . -13) T) ((-914 . -1130) T) ((-914 . -72) 132530) ((-914 . -553) 132465) ((-914 . -260) 132403) ((-914 . -456) 132336) ((-914 . -1014) 132314) ((-914 . -429) 132298) ((-914 . -76) 132282) ((-910 . -912) 132266) ((-910 . -760) 132245) ((-910 . -757) 132224) ((-910 . -951) 132122) ((-910 . -355) 132106) ((-910 . -581) 132054) ((-910 . -591) 131956) ((-910 . -329) 131940) ((-910 . -241) 131898) ((-910 . -260) 131863) ((-910 . -456) 131775) ((-910 . -288) 131759) ((-910 . -38) 131707) ((-910 . -82) 131585) ((-910 . -964) 131484) ((-910 . -969) 131383) ((-910 . -589) 131306) ((-910 . -583) 131254) ((-910 . -655) 131202) ((-910 . -556) 131096) ((-910 . -246) 131050) ((-910 . -201) 131029) ((-910 . -190) 131008) ((-910 . -186) 130956) ((-910 . -189) 130910) ((-910 . -225) 130894) ((-910 . -807) 130818) ((-910 . -812) 130744) ((-910 . -810) 130703) ((-910 . -184) 130687) ((-910 . -554) 130648) ((-910 . -120) 130627) ((-910 . -118) 130606) ((-910 . -104) T) ((-910 . -25) T) ((-910 . -72) T) ((-910 . -13) T) ((-910 . -1130) T) ((-910 . -553) 130588) ((-910 . -1014) T) ((-910 . -23) T) ((-910 . -21) T) ((-910 . -962) T) ((-910 . -664) T) ((-910 . -1062) T) ((-910 . -1026) T) ((-910 . -971) T) ((-908 . -996) T) ((-908 . -430) 130569) ((-908 . -553) 130535) ((-908 . -556) 130516) ((-908 . -1014) T) ((-908 . -1130) T) ((-908 . -13) T) ((-908 . -72) T) ((-908 . -64) T) ((-907 . -21) T) ((-907 . -589) 130498) ((-907 . -23) T) ((-907 . -1014) T) ((-907 . -553) 130480) ((-907 . -1130) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -25) T) ((-907 . -104) T) ((-907 . -241) 130447) ((-903 . -553) 130429) ((-900 . -1014) T) ((-900 . -553) 130411) ((-900 . -1130) T) ((-900 . -13) T) ((-900 . -72) T) ((-885 . -722) T) ((-885 . -719) T) ((-885 . -760) T) ((-885 . -757) T) ((-885 . -717) T) ((-885 . -23) T) ((-885 . -1014) T) ((-885 . -553) 130371) ((-885 . -1130) T) ((-885 . -13) T) ((-885 . -72) T) ((-885 . -25) T) ((-885 . -104) T) ((-884 . -996) T) ((-884 . -430) 130352) ((-884 . -553) 130318) ((-884 . -556) 130299) ((-884 . -1014) T) ((-884 . -1130) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -64) T) ((-878 . -881) T) ((-878 . -72) T) ((-878 . -553) 130281) ((-878 . -1014) T) ((-878 . -605) T) ((-878 . -13) T) ((-878 . -1130) T) ((-878 . -84) T) ((-878 . -556) 130265) ((-877 . -553) 130247) ((-876 . -1014) T) ((-876 . -553) 130229) ((-876 . -1130) T) ((-876 . -13) T) ((-876 . -72) T) ((-876 . -320) 130182) ((-876 . -664) 130084) ((-876 . -1026) 129986) ((-876 . -23) 129800) ((-876 . -25) 129614) ((-876 . -104) 129472) ((-876 . -413) 129425) ((-876 . -21) 129380) ((-876 . -589) 129324) ((-876 . -718) 129277) ((-876 . -717) 129230) ((-876 . -757) 129132) ((-876 . -760) 129034) ((-876 . -719) 128987) ((-876 . -722) 128940) ((-870 . -19) 128924) ((-870 . -1036) 128908) ((-870 . -318) 128892) ((-870 . -34) T) ((-870 . -13) T) ((-870 . -1130) T) ((-870 . -72) 128826) ((-870 . -553) 128741) ((-870 . -260) 128679) ((-870 . -456) 128612) ((-870 . -1014) 128565) ((-870 . -429) 128549) ((-870 . -594) 128533) ((-870 . -243) 128510) ((-870 . -241) 128462) ((-870 . -539) 128439) ((-870 . -554) 128400) ((-870 . -124) 128384) ((-870 . -757) 128363) ((-870 . -760) 128342) ((-870 . -324) 128326) ((-868 . -277) 128305) ((-868 . -951) 128203) ((-868 . -355) 128187) ((-868 . -38) 128084) ((-868 . -556) 127941) ((-868 . -591) 127866) ((-868 . -589) 127776) ((-868 . -971) T) ((-868 . -1026) T) ((-868 . -1062) T) ((-868 . -664) T) ((-868 . -962) T) ((-868 . -82) 127641) ((-868 . -964) 127527) ((-868 . -969) 127413) ((-868 . -21) T) ((-868 . -23) T) ((-868 . -1014) T) ((-868 . -553) 127395) ((-868 . -1130) T) ((-868 . -13) T) ((-868 . -72) T) ((-868 . -25) T) ((-868 . -104) T) ((-868 . -583) 127292) ((-868 . -655) 127189) ((-868 . -118) 127168) ((-868 . -120) 127147) ((-868 . -146) 127101) ((-868 . -496) 127080) ((-868 . -246) 127059) ((-868 . -47) 127038) ((-866 . -1014) T) ((-866 . -553) 127004) ((-866 . -1130) T) ((-866 . -13) T) ((-866 . -72) T) ((-858 . -862) 126965) ((-858 . -556) 126761) ((-858 . -951) 126643) ((-858 . -1135) 126622) ((-858 . -822) 126601) ((-858 . -797) 126526) ((-858 . -812) 126507) ((-858 . -807) 126486) ((-858 . -810) 126467) ((-858 . -456) 126413) ((-858 . -392) 126367) ((-858 . -581) 126315) ((-858 . -591) 126204) ((-858 . -329) 126188) ((-858 . -47) 126157) ((-858 . -38) 126009) ((-858 . -583) 125861) ((-858 . -655) 125713) ((-858 . -246) 125647) ((-858 . -496) 125581) ((-858 . -82) 125406) ((-858 . -964) 125252) ((-858 . -969) 125098) ((-858 . -146) 125012) ((-858 . -120) 124991) ((-858 . -118) 124970) ((-858 . -589) 124880) ((-858 . -104) T) ((-858 . -25) T) ((-858 . -72) T) ((-858 . -13) T) ((-858 . -1130) T) ((-858 . -553) 124862) ((-858 . -1014) T) ((-858 . -23) T) ((-858 . -21) T) ((-858 . -962) T) ((-858 . -664) T) ((-858 . -1062) T) ((-858 . -1026) T) ((-858 . -971) T) ((-858 . -355) 124846) ((-858 . -277) 124815) ((-858 . -260) 124802) ((-858 . -554) 124663) ((-855 . -894) 124647) ((-855 . -19) 124631) ((-855 . -1036) 124615) ((-855 . -318) 124599) ((-855 . -34) T) ((-855 . -13) T) ((-855 . -1130) T) ((-855 . -72) 124533) ((-855 . -553) 124448) ((-855 . -260) 124386) ((-855 . -456) 124319) ((-855 . -1014) 124272) ((-855 . -429) 124256) ((-855 . -594) 124240) ((-855 . -243) 124217) ((-855 . -241) 124169) ((-855 . -539) 124146) ((-855 . -554) 124107) ((-855 . -124) 124091) ((-855 . -757) 124070) ((-855 . -760) 124049) ((-855 . -324) 124033) ((-855 . -1179) 124017) ((-855 . -558) 123994) ((-839 . -888) T) ((-839 . -553) 123976) ((-837 . -867) T) ((-837 . -553) 123958) ((-831 . -719) T) ((-831 . -760) T) ((-831 . -757) T) ((-831 . -1014) T) ((-831 . -553) 123940) ((-831 . -1130) T) ((-831 . -13) T) ((-831 . -72) T) ((-831 . -25) T) ((-831 . -664) T) ((-831 . -1026) T) ((-826 . -312) T) ((-826 . -1135) T) ((-826 . -833) T) ((-826 . -496) T) ((-826 . -146) T) ((-826 . -556) 123877) ((-826 . -655) 123829) ((-826 . -583) 123781) ((-826 . -38) 123733) ((-826 . -392) T) ((-826 . -258) T) ((-826 . -591) 123685) ((-826 . -589) 123622) ((-826 . -971) T) ((-826 . -1026) T) ((-826 . -1062) T) ((-826 . -664) T) ((-826 . -962) T) ((-826 . -82) 123553) ((-826 . -964) 123505) ((-826 . -969) 123457) ((-826 . -21) T) ((-826 . -23) T) ((-826 . -1014) T) ((-826 . -553) 123439) ((-826 . -1130) T) ((-826 . -13) T) ((-826 . -72) T) ((-826 . -25) T) ((-826 . -104) T) ((-826 . -246) T) ((-826 . -201) T) ((-818 . -299) T) ((-818 . -1067) T) ((-818 . -320) T) ((-818 . -118) T) ((-818 . -312) T) ((-818 . -1135) T) ((-818 . -833) T) ((-818 . -496) T) ((-818 . -146) T) ((-818 . -556) 123389) ((-818 . -655) 123354) ((-818 . -583) 123319) ((-818 . -38) 123284) ((-818 . -392) T) ((-818 . -258) T) ((-818 . -82) 123233) ((-818 . -964) 123198) ((-818 . -969) 123163) ((-818 . -589) 123113) ((-818 . -591) 123078) ((-818 . -246) T) ((-818 . -201) T) ((-818 . -345) T) ((-818 . -189) T) ((-818 . -1130) T) ((-818 . -13) T) ((-818 . -186) 123065) ((-818 . -962) T) ((-818 . -664) T) ((-818 . -1062) T) ((-818 . -1026) T) ((-818 . -971) T) ((-818 . -21) T) ((-818 . -23) T) ((-818 . -1014) T) ((-818 . -553) 123047) ((-818 . -72) T) ((-818 . -25) T) ((-818 . -104) T) ((-818 . -190) T) ((-818 . -280) 123034) ((-818 . -120) 123016) ((-818 . -951) 123003) ((-818 . -1188) 122990) ((-818 . -1199) 122977) ((-818 . -554) 122959) ((-817 . -1014) T) ((-817 . -553) 122941) ((-817 . -1130) T) ((-817 . -13) T) ((-817 . -72) T) ((-814 . -816) 122925) ((-814 . -760) 122879) ((-814 . -757) 122833) ((-814 . -664) T) ((-814 . -1014) T) ((-814 . -553) 122815) ((-814 . -72) T) ((-814 . -1026) T) ((-814 . -413) T) ((-814 . -1130) T) ((-814 . -13) T) ((-814 . -241) 122794) ((-813 . -92) 122778) ((-813 . -429) 122762) ((-813 . -1014) 122740) ((-813 . -456) 122673) ((-813 . -260) 122611) ((-813 . -553) 122525) ((-813 . -72) 122479) ((-813 . -1130) T) ((-813 . -13) T) ((-813 . -34) T) ((-813 . -924) 122463) ((-804 . -757) T) ((-804 . -553) 122445) ((-804 . -1014) T) ((-804 . -72) T) ((-804 . -13) T) ((-804 . -1130) T) ((-804 . -760) T) ((-804 . -951) 122422) ((-804 . -556) 122399) ((-801 . -1014) T) ((-801 . -553) 122381) ((-801 . -1130) T) ((-801 . -13) T) ((-801 . -72) T) ((-801 . -951) 122349) ((-801 . -556) 122317) ((-799 . -1014) T) ((-799 . -553) 122299) ((-799 . -1130) T) ((-799 . -13) T) ((-799 . -72) T) ((-796 . -1014) T) ((-796 . -553) 122281) ((-796 . -1130) T) ((-796 . -13) T) ((-796 . -72) T) ((-786 . -996) T) ((-786 . -430) 122262) ((-786 . -553) 122228) ((-786 . -556) 122209) ((-786 . -1014) T) ((-786 . -1130) T) ((-786 . -13) T) ((-786 . -72) T) ((-786 . -64) T) ((-786 . -1176) T) ((-784 . -1014) T) ((-784 . -553) 122191) ((-784 . -1130) T) ((-784 . -13) T) ((-784 . -72) T) ((-784 . -556) 122173) ((-783 . -1130) T) ((-783 . -13) T) ((-783 . -553) 122048) ((-783 . -1014) 121999) ((-783 . -72) 121950) ((-782 . -905) 121934) ((-782 . -1067) 121912) ((-782 . -951) 121779) ((-782 . -556) 121678) ((-782 . -554) 121481) ((-782 . -934) 121460) ((-782 . -822) 121439) ((-782 . -795) 121423) ((-782 . -756) 121402) ((-782 . -722) 121381) ((-782 . -719) 121360) ((-782 . -760) 121314) ((-782 . -757) 121268) ((-782 . -717) 121247) ((-782 . -715) 121226) ((-782 . -741) 121205) ((-782 . -797) 121130) ((-782 . -343) 121114) ((-782 . -581) 121062) ((-782 . -591) 120978) ((-782 . -329) 120962) ((-782 . -241) 120920) ((-782 . -260) 120885) ((-782 . -456) 120797) ((-782 . -288) 120781) ((-782 . -201) T) ((-782 . -82) 120712) ((-782 . -964) 120664) ((-782 . -969) 120616) ((-782 . -246) T) ((-782 . -655) 120568) ((-782 . -583) 120520) ((-782 . -589) 120457) ((-782 . -38) 120409) ((-782 . -258) T) ((-782 . -392) T) ((-782 . -146) T) ((-782 . -496) T) ((-782 . -833) T) ((-782 . -1135) T) ((-782 . -312) T) ((-782 . -190) 120388) ((-782 . -186) 120336) ((-782 . -189) 120290) ((-782 . -225) 120274) ((-782 . -807) 120198) ((-782 . -812) 120124) ((-782 . -810) 120083) ((-782 . -184) 120067) ((-782 . -120) 120021) ((-782 . -118) 120000) ((-782 . -104) T) ((-782 . -25) T) ((-782 . -72) T) ((-782 . -13) T) ((-782 . -1130) T) ((-782 . -553) 119982) ((-782 . -1014) T) ((-782 . -23) T) ((-782 . -21) T) ((-782 . -962) T) ((-782 . -664) T) ((-782 . -1062) T) ((-782 . -1026) T) ((-782 . -971) T) ((-781 . -905) 119959) ((-781 . -1067) NIL) ((-781 . -951) 119936) ((-781 . -556) 119866) ((-781 . -554) NIL) ((-781 . -934) NIL) ((-781 . -822) NIL) ((-781 . -795) 119843) ((-781 . -756) NIL) ((-781 . -722) NIL) ((-781 . -719) NIL) ((-781 . -760) NIL) ((-781 . -757) NIL) ((-781 . -717) NIL) ((-781 . -715) NIL) ((-781 . -741) NIL) ((-781 . -797) NIL) ((-781 . -343) 119820) ((-781 . -581) 119797) ((-781 . -591) 119742) ((-781 . -329) 119719) ((-781 . -241) 119649) ((-781 . -260) 119593) ((-781 . -456) 119456) ((-781 . -288) 119433) ((-781 . -201) T) ((-781 . -82) 119350) ((-781 . -964) 119295) ((-781 . -969) 119240) ((-781 . -246) T) ((-781 . -655) 119185) ((-781 . -583) 119130) ((-781 . -589) 119060) ((-781 . -38) 119005) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -496) T) ((-781 . -833) T) ((-781 . -1135) T) ((-781 . -312) T) ((-781 . -190) NIL) ((-781 . -186) NIL) ((-781 . -189) NIL) ((-781 . -225) 118982) ((-781 . -807) NIL) ((-781 . -812) NIL) ((-781 . -810) NIL) ((-781 . -184) 118959) ((-781 . -120) T) ((-781 . -118) NIL) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1130) T) ((-781 . -553) 118941) ((-781 . -1014) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -962) T) ((-781 . -664) T) ((-781 . -1062) T) ((-781 . -1026) T) ((-781 . -971) T) ((-779 . -780) 118925) ((-779 . -833) T) ((-779 . -496) T) ((-779 . -246) T) ((-779 . -146) T) ((-779 . -556) 118897) ((-779 . -655) 118884) ((-779 . -583) 118871) ((-779 . -969) 118858) ((-779 . -964) 118845) ((-779 . -82) 118830) ((-779 . -38) 118817) ((-779 . -392) T) ((-779 . -258) T) ((-779 . -962) T) ((-779 . -664) T) ((-779 . -1062) T) ((-779 . -1026) T) ((-779 . -971) T) ((-779 . -21) T) ((-779 . -589) 118789) ((-779 . -23) T) ((-779 . -1014) T) ((-779 . -553) 118771) ((-779 . -1130) T) ((-779 . -13) T) ((-779 . -72) T) ((-779 . -25) T) ((-779 . -104) T) ((-779 . -591) 118758) ((-779 . -120) T) ((-776 . -962) T) ((-776 . -664) T) ((-776 . -1062) T) ((-776 . -1026) T) ((-776 . -971) T) ((-776 . -21) T) ((-776 . -589) 118703) ((-776 . -23) T) ((-776 . -1014) T) ((-776 . -553) 118665) ((-776 . -1130) T) ((-776 . -13) T) ((-776 . -72) T) ((-776 . -25) T) ((-776 . -104) T) ((-776 . -591) 118625) ((-776 . -556) 118560) ((-776 . -430) 118537) ((-776 . -38) 118507) ((-776 . -82) 118472) ((-776 . -964) 118442) ((-776 . -969) 118412) ((-776 . -583) 118382) ((-776 . -655) 118352) ((-775 . -1014) T) ((-775 . -553) 118334) ((-775 . -1130) T) ((-775 . -13) T) ((-775 . -72) T) ((-774 . -753) T) ((-774 . -760) T) ((-774 . -757) T) ((-774 . -1014) T) ((-774 . -553) 118316) ((-774 . -1130) T) ((-774 . -13) T) ((-774 . -72) T) ((-774 . -320) T) ((-774 . -554) 118238) ((-773 . -1014) T) ((-773 . -553) 118220) ((-773 . -1130) T) ((-773 . -13) T) ((-773 . -72) T) ((-772 . -771) T) ((-772 . -147) T) ((-772 . -553) 118202) ((-768 . -757) T) ((-768 . -553) 118184) ((-768 . -1014) T) ((-768 . -72) T) ((-768 . -13) T) ((-768 . -1130) T) ((-768 . -760) T) ((-765 . -762) 118168) ((-765 . -951) 118066) ((-765 . -556) 117964) ((-765 . -355) 117948) ((-765 . -655) 117918) ((-765 . -583) 117888) ((-765 . -591) 117862) ((-765 . -589) 117821) ((-765 . -104) T) ((-765 . -25) T) ((-765 . -72) T) ((-765 . -13) T) ((-765 . -1130) T) ((-765 . -553) 117803) ((-765 . -1014) T) ((-765 . -23) T) ((-765 . -21) T) ((-765 . -969) 117787) ((-765 . -964) 117771) ((-765 . -82) 117750) ((-765 . -962) T) ((-765 . -664) T) ((-765 . -1062) T) ((-765 . -1026) T) ((-765 . -971) T) ((-765 . -38) 117720) ((-764 . -762) 117704) ((-764 . -951) 117602) ((-764 . -556) 117521) ((-764 . -355) 117505) ((-764 . -655) 117475) ((-764 . -583) 117445) ((-764 . -591) 117419) ((-764 . -589) 117378) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1130) T) ((-764 . -553) 117360) ((-764 . -1014) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -969) 117344) ((-764 . -964) 117328) ((-764 . -82) 117307) ((-764 . -962) T) ((-764 . -664) T) ((-764 . -1062) T) ((-764 . -1026) T) ((-764 . -971) T) ((-764 . -38) 117277) ((-758 . -760) T) ((-758 . -1130) T) ((-758 . -13) T) ((-758 . -72) T) ((-758 . -430) 117261) ((-758 . -553) 117209) ((-758 . -556) 117193) ((-751 . -1014) T) ((-751 . -553) 117175) ((-751 . -1130) T) ((-751 . -13) T) ((-751 . -72) T) ((-751 . -355) 117159) ((-751 . -556) 117032) ((-751 . -951) 116930) ((-751 . -21) 116885) ((-751 . -589) 116805) ((-751 . -23) 116760) ((-751 . -25) 116715) ((-751 . -104) 116670) ((-751 . -756) 116649) ((-751 . -722) 116628) ((-751 . -719) 116607) ((-751 . -760) 116586) ((-751 . -757) 116565) ((-751 . -717) 116544) ((-751 . -715) 116523) ((-751 . -962) 116502) ((-751 . -664) 116481) ((-751 . -1062) 116460) ((-751 . -1026) 116439) ((-751 . -971) 116418) ((-751 . -591) 116391) ((-751 . -120) 116370) ((-750 . -748) 116352) ((-750 . -72) T) ((-750 . -13) T) ((-750 . -1130) T) ((-750 . -553) 116334) ((-750 . -1014) T) ((-746 . -962) T) ((-746 . -664) T) ((-746 . -1062) T) ((-746 . -1026) T) ((-746 . -971) T) ((-746 . -21) T) ((-746 . -589) 116279) ((-746 . -23) T) ((-746 . -1014) T) ((-746 . -553) 116261) ((-746 . -1130) T) ((-746 . -13) T) ((-746 . -72) T) ((-746 . -25) T) ((-746 . -104) T) ((-746 . -591) 116221) ((-746 . -556) 116176) ((-746 . -951) 116146) ((-746 . -241) 116125) ((-746 . -120) 116104) ((-746 . -118) 116083) ((-746 . -38) 116053) ((-746 . -82) 116018) ((-746 . -964) 115988) ((-746 . -969) 115958) ((-746 . -583) 115928) ((-746 . -655) 115898) ((-744 . -1014) T) ((-744 . -553) 115880) ((-744 . -1130) T) ((-744 . -13) T) ((-744 . -72) T) ((-744 . -355) 115864) ((-744 . -556) 115737) ((-744 . -951) 115635) ((-744 . -21) 115590) ((-744 . -589) 115510) ((-744 . -23) 115465) ((-744 . -25) 115420) ((-744 . -104) 115375) ((-744 . -756) 115354) ((-744 . -722) 115333) ((-744 . -719) 115312) ((-744 . -760) 115291) ((-744 . -757) 115270) ((-744 . -717) 115249) ((-744 . -715) 115228) ((-744 . -962) 115207) ((-744 . -664) 115186) ((-744 . -1062) 115165) ((-744 . -1026) 115144) ((-744 . -971) 115123) ((-744 . -591) 115096) ((-744 . -120) 115075) ((-742 . -646) 115059) ((-742 . -556) 115014) ((-742 . -655) 114984) ((-742 . -583) 114954) ((-742 . -591) 114928) ((-742 . -589) 114887) ((-742 . -104) T) ((-742 . -25) T) ((-742 . -72) T) ((-742 . -13) T) ((-742 . -1130) T) ((-742 . -553) 114869) ((-742 . -1014) T) ((-742 . -23) T) ((-742 . -21) T) ((-742 . -969) 114853) ((-742 . -964) 114837) ((-742 . -82) 114816) ((-742 . -962) T) ((-742 . -664) T) ((-742 . -1062) T) ((-742 . -1026) T) ((-742 . -971) T) ((-742 . -38) 114786) ((-742 . -190) 114765) ((-742 . -186) 114738) ((-742 . -189) 114717) ((-740 . -336) 114701) ((-740 . -556) 114685) ((-740 . -951) 114669) ((-740 . -760) T) ((-740 . -757) T) ((-740 . -1026) T) ((-740 . -72) T) ((-740 . -13) T) ((-740 . -1130) T) ((-740 . -553) 114651) ((-740 . -1014) T) ((-740 . -664) T) ((-740 . -755) T) ((-740 . -767) T) ((-739 . -228) 114635) ((-739 . -556) 114619) ((-739 . -951) 114603) ((-739 . -760) T) ((-739 . -72) T) ((-739 . -1014) T) ((-739 . -553) 114585) ((-739 . -757) T) ((-739 . -186) 114572) ((-739 . -13) T) ((-739 . -1130) T) ((-739 . -189) T) ((-738 . -82) 114507) ((-738 . -964) 114458) ((-738 . -969) 114409) ((-738 . -21) T) ((-738 . -589) 114345) ((-738 . -23) T) ((-738 . -1014) T) ((-738 . -553) 114314) ((-738 . -1130) T) ((-738 . -13) T) ((-738 . -72) T) ((-738 . -25) T) ((-738 . -104) T) ((-738 . -591) 114265) ((-738 . -190) T) ((-738 . -556) 114174) ((-738 . -971) T) ((-738 . -1026) T) ((-738 . -1062) T) ((-738 . -664) T) ((-738 . -962) T) ((-738 . -186) 114161) ((-738 . -189) T) ((-738 . -430) 114145) ((-738 . -312) 114124) ((-738 . -1135) 114103) ((-738 . -833) 114082) ((-738 . -496) 114061) ((-738 . -146) 114040) ((-738 . -655) 113977) ((-738 . -583) 113914) ((-738 . -38) 113851) ((-738 . -392) 113830) ((-738 . -258) 113809) ((-738 . -246) 113788) ((-738 . -201) 113767) ((-737 . -213) 113706) ((-737 . -556) 113450) ((-737 . -951) 113280) ((-737 . -554) NIL) ((-737 . -277) 113242) ((-737 . -355) 113226) ((-737 . -38) 113078) ((-737 . -82) 112903) ((-737 . -964) 112749) ((-737 . -969) 112595) ((-737 . -589) 112505) ((-737 . -591) 112394) ((-737 . -583) 112246) ((-737 . -655) 112098) ((-737 . -118) 112077) ((-737 . -120) 112056) ((-737 . -146) 111970) ((-737 . -496) 111904) ((-737 . -246) 111838) ((-737 . -47) 111800) ((-737 . -329) 111784) ((-737 . -581) 111732) ((-737 . -392) 111686) ((-737 . -456) 111551) ((-737 . -810) 111487) ((-737 . -807) 111386) ((-737 . -812) 111289) ((-737 . -797) NIL) ((-737 . -822) 111268) ((-737 . -1135) 111247) ((-737 . -862) 111194) ((-737 . -260) 111181) ((-737 . -190) 111160) ((-737 . -104) T) ((-737 . -25) T) ((-737 . -72) T) ((-737 . -553) 111142) ((-737 . -1014) T) ((-737 . -23) T) ((-737 . -21) T) ((-737 . -971) T) ((-737 . -1026) T) ((-737 . -1062) T) ((-737 . -664) T) ((-737 . -962) T) ((-737 . -186) 111090) ((-737 . -13) T) ((-737 . -1130) T) ((-737 . -189) 111044) ((-737 . -225) 111028) ((-737 . -184) 111012) ((-736 . -196) 110991) ((-736 . -1188) 110961) ((-736 . -722) 110940) ((-736 . -719) 110919) ((-736 . -760) 110873) ((-736 . -757) 110827) ((-736 . -717) 110806) ((-736 . -718) 110785) ((-736 . -655) 110730) ((-736 . -583) 110655) ((-736 . -243) 110632) ((-736 . -241) 110609) ((-736 . -539) 110586) ((-736 . -951) 110415) ((-736 . -556) 110219) ((-736 . -355) 110188) ((-736 . -581) 110096) ((-736 . -591) 109935) ((-736 . -329) 109905) ((-736 . -429) 109889) ((-736 . -456) 109822) ((-736 . -260) 109760) ((-736 . -34) T) ((-736 . -318) 109744) ((-736 . -320) 109723) ((-736 . -190) 109676) ((-736 . -589) 109464) ((-736 . -971) 109443) ((-736 . -1026) 109422) ((-736 . -1062) 109401) ((-736 . -664) 109380) ((-736 . -962) 109359) ((-736 . -186) 109255) ((-736 . -189) 109157) ((-736 . -225) 109127) ((-736 . -807) 108999) ((-736 . -812) 108873) ((-736 . -810) 108806) ((-736 . -184) 108776) ((-736 . -553) 108473) ((-736 . -969) 108398) ((-736 . -964) 108303) ((-736 . -82) 108223) ((-736 . -104) 108098) ((-736 . -25) 107935) ((-736 . -72) 107672) ((-736 . -13) T) ((-736 . -1130) T) ((-736 . -1014) 107428) ((-736 . -23) 107284) ((-736 . -21) 107199) ((-723 . -721) 107183) ((-723 . -760) 107162) ((-723 . -757) 107141) ((-723 . -951) 106934) ((-723 . -556) 106787) ((-723 . -355) 106751) ((-723 . -241) 106709) ((-723 . -260) 106674) ((-723 . -456) 106586) ((-723 . -288) 106570) ((-723 . -320) 106549) ((-723 . -554) 106510) ((-723 . -120) 106489) ((-723 . -118) 106468) ((-723 . -655) 106452) ((-723 . -583) 106436) ((-723 . -591) 106410) ((-723 . -589) 106369) ((-723 . -104) T) ((-723 . -25) T) ((-723 . -72) T) ((-723 . -13) T) ((-723 . -1130) T) ((-723 . -553) 106351) ((-723 . -1014) T) ((-723 . -23) T) ((-723 . -21) T) ((-723 . -969) 106335) ((-723 . -964) 106319) ((-723 . -82) 106298) ((-723 . -962) T) ((-723 . -664) T) ((-723 . -1062) T) ((-723 . -1026) T) ((-723 . -971) T) ((-723 . -38) 106282) ((-705 . -1156) 106266) ((-705 . -1067) 106244) ((-705 . -554) NIL) ((-705 . -260) 106231) ((-705 . -456) 106179) ((-705 . -277) 106156) ((-705 . -951) 106018) ((-705 . -355) 106002) ((-705 . -38) 105834) ((-705 . -82) 105639) ((-705 . -964) 105465) ((-705 . -969) 105291) ((-705 . -589) 105201) ((-705 . -591) 105090) ((-705 . -583) 104922) ((-705 . -655) 104754) ((-705 . -556) 104510) ((-705 . -118) 104489) ((-705 . -120) 104468) ((-705 . -47) 104445) ((-705 . -329) 104429) ((-705 . -581) 104377) ((-705 . -810) 104321) ((-705 . -807) 104228) ((-705 . -812) 104139) ((-705 . -797) NIL) ((-705 . -822) 104118) ((-705 . -1135) 104097) ((-705 . -862) 104067) ((-705 . -833) 104046) ((-705 . -496) 103960) ((-705 . -246) 103874) ((-705 . -146) 103768) ((-705 . -392) 103702) ((-705 . -258) 103681) ((-705 . -241) 103608) ((-705 . -190) T) ((-705 . -104) T) ((-705 . -25) T) ((-705 . -72) T) ((-705 . -553) 103569) ((-705 . -1014) T) ((-705 . -23) T) ((-705 . -21) T) ((-705 . -971) T) ((-705 . -1026) T) ((-705 . -1062) T) ((-705 . -664) T) ((-705 . -962) T) ((-705 . -186) 103556) ((-705 . -13) T) ((-705 . -1130) T) ((-705 . -189) T) ((-705 . -225) 103540) ((-705 . -184) 103524) ((-704 . -978) 103491) ((-704 . -554) 103126) ((-704 . -260) 103113) ((-704 . -456) 103065) ((-704 . -277) 103037) ((-704 . -951) 102896) ((-704 . -355) 102880) ((-704 . -38) 102732) ((-704 . -556) 102505) ((-704 . -591) 102394) ((-704 . -589) 102304) ((-704 . -971) T) ((-704 . -1026) T) ((-704 . -1062) T) ((-704 . -664) T) ((-704 . -962) T) ((-704 . -82) 102129) ((-704 . -964) 101975) ((-704 . -969) 101821) ((-704 . -21) T) ((-704 . -23) T) ((-704 . -1014) T) ((-704 . -553) 101735) ((-704 . -1130) T) ((-704 . -13) T) ((-704 . -72) T) ((-704 . -25) T) ((-704 . -104) T) ((-704 . -583) 101587) ((-704 . -655) 101439) ((-704 . -118) 101418) ((-704 . -120) 101397) ((-704 . -146) 101311) ((-704 . -496) 101245) ((-704 . -246) 101179) ((-704 . -47) 101151) ((-704 . -329) 101135) ((-704 . -581) 101083) ((-704 . -392) 101037) ((-704 . -810) 101021) ((-704 . -807) 101003) ((-704 . -812) 100987) ((-704 . -797) 100846) ((-704 . -822) 100825) ((-704 . -1135) 100804) ((-704 . -862) 100771) ((-697 . -1014) T) ((-697 . -553) 100753) ((-697 . -1130) T) ((-697 . -13) T) ((-697 . -72) T) ((-695 . -718) T) ((-695 . -104) T) ((-695 . -25) T) ((-695 . -72) T) ((-695 . -13) T) ((-695 . -1130) T) ((-695 . -553) 100735) ((-695 . -1014) T) ((-695 . -23) T) ((-695 . -717) T) ((-695 . -757) T) ((-695 . -760) T) ((-695 . -719) T) ((-695 . -722) T) ((-695 . -664) T) ((-695 . -1026) T) ((-676 . -677) 100719) ((-676 . -1012) 100703) ((-676 . -193) 100687) ((-676 . -554) 100648) ((-676 . -124) 100632) ((-676 . -1036) 100616) ((-676 . -34) T) ((-676 . -13) T) ((-676 . -1130) T) ((-676 . -72) T) ((-676 . -553) 100598) ((-676 . -260) 100536) ((-676 . -456) 100469) ((-676 . -1014) T) ((-676 . -429) 100453) ((-676 . -76) 100437) ((-676 . -635) 100421) ((-676 . -318) 100405) ((-675 . -962) T) ((-675 . -664) T) ((-675 . -1062) T) ((-675 . -1026) T) ((-675 . -971) T) ((-675 . -21) T) ((-675 . -589) 100350) ((-675 . -23) T) ((-675 . -1014) T) ((-675 . -553) 100332) ((-675 . -1130) T) ((-675 . -13) T) ((-675 . -72) T) ((-675 . -25) T) ((-675 . -104) T) ((-675 . -591) 100292) ((-675 . -556) 100248) ((-675 . -951) 100219) ((-675 . -120) 100198) ((-675 . -118) 100177) ((-675 . -38) 100147) ((-675 . -82) 100112) ((-675 . -964) 100082) ((-675 . -969) 100052) ((-675 . -583) 100022) ((-675 . -655) 99992) ((-675 . -320) 99945) ((-671 . -862) 99898) ((-671 . -556) 99690) ((-671 . -951) 99568) ((-671 . -1135) 99547) ((-671 . -822) 99526) ((-671 . -797) NIL) ((-671 . -812) 99503) ((-671 . -807) 99478) ((-671 . -810) 99455) ((-671 . -456) 99393) ((-671 . -392) 99347) ((-671 . -581) 99295) ((-671 . -591) 99184) ((-671 . -329) 99168) ((-671 . -47) 99133) ((-671 . -38) 98985) ((-671 . -583) 98837) ((-671 . -655) 98689) ((-671 . -246) 98623) ((-671 . -496) 98557) ((-671 . -82) 98382) ((-671 . -964) 98228) ((-671 . -969) 98074) ((-671 . -146) 97988) ((-671 . -120) 97967) ((-671 . -118) 97946) ((-671 . -589) 97856) ((-671 . -104) T) ((-671 . -25) T) ((-671 . -72) T) ((-671 . -13) T) ((-671 . -1130) T) ((-671 . -553) 97838) ((-671 . -1014) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -962) T) ((-671 . -664) T) ((-671 . -1062) T) ((-671 . -1026) T) ((-671 . -971) T) ((-671 . -355) 97822) ((-671 . -277) 97787) ((-671 . -260) 97774) ((-671 . -554) 97635) ((-665 . -666) 97619) ((-665 . -80) 97603) ((-665 . -1130) T) ((-665 . |MappingCategory|) 97577) ((-665 . -1024) 97561) ((-665 . -1014) T) ((-665 . -553) 97522) ((-665 . -13) T) ((-665 . -72) T) ((-656 . -413) T) ((-656 . -1026) T) ((-656 . -72) T) ((-656 . -13) T) ((-656 . -1130) T) ((-656 . -553) 97504) ((-656 . -1014) T) ((-656 . -664) T) ((-653 . -962) T) ((-653 . -664) T) ((-653 . -1062) T) ((-653 . -1026) T) ((-653 . -971) T) ((-653 . -21) T) ((-653 . -589) 97476) ((-653 . -23) T) ((-653 . -1014) T) ((-653 . -553) 97458) ((-653 . -1130) T) ((-653 . -13) T) ((-653 . -72) T) ((-653 . -25) T) ((-653 . -104) T) ((-653 . -591) 97445) ((-653 . -556) 97427) ((-652 . -962) T) ((-652 . -664) T) ((-652 . -1062) T) ((-652 . -1026) T) ((-652 . -971) T) ((-652 . -21) T) ((-652 . -589) 97372) ((-652 . -23) T) ((-652 . -1014) T) ((-652 . -553) 97354) ((-652 . -1130) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -591) 97314) ((-652 . -556) 97269) ((-652 . -951) 97239) ((-652 . -241) 97218) ((-652 . -120) 97197) ((-652 . -118) 97176) ((-652 . -38) 97146) ((-652 . -82) 97111) ((-652 . -964) 97081) ((-652 . -969) 97051) ((-652 . -583) 97021) ((-652 . -655) 96991) ((-651 . -757) T) ((-651 . -553) 96926) ((-651 . -1014) T) ((-651 . -72) T) ((-651 . -13) T) ((-651 . -1130) T) ((-651 . -760) T) ((-651 . -430) 96876) ((-651 . -556) 96826) ((-650 . -1156) 96810) ((-650 . -1067) 96788) ((-650 . -554) NIL) ((-650 . -260) 96775) ((-650 . -456) 96723) ((-650 . -277) 96700) ((-650 . -951) 96583) ((-650 . -355) 96567) ((-650 . -38) 96399) ((-650 . -82) 96204) ((-650 . -964) 96030) ((-650 . -969) 95856) ((-650 . -589) 95766) ((-650 . -591) 95655) ((-650 . -583) 95487) ((-650 . -655) 95319) ((-650 . -556) 95083) ((-650 . -118) 95062) ((-650 . -120) 95041) ((-650 . -47) 95018) ((-650 . -329) 95002) ((-650 . -581) 94950) ((-650 . -810) 94894) ((-650 . -807) 94801) ((-650 . -812) 94712) ((-650 . -797) NIL) ((-650 . -822) 94691) ((-650 . -1135) 94670) ((-650 . -862) 94640) ((-650 . -833) 94619) ((-650 . -496) 94533) ((-650 . -246) 94447) ((-650 . -146) 94341) ((-650 . -392) 94275) ((-650 . -258) 94254) ((-650 . -241) 94181) ((-650 . -190) T) ((-650 . -104) T) ((-650 . -25) T) ((-650 . -72) T) ((-650 . -553) 94163) ((-650 . -1014) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -971) T) ((-650 . -1026) T) ((-650 . -1062) T) ((-650 . -664) T) ((-650 . -962) T) ((-650 . -186) 94150) ((-650 . -13) T) ((-650 . -1130) T) ((-650 . -189) T) ((-650 . -225) 94134) ((-650 . -184) 94118) ((-650 . -320) 94097) ((-649 . -312) T) ((-649 . -1135) T) ((-649 . -833) T) ((-649 . -496) T) ((-649 . -146) T) ((-649 . -556) 94047) ((-649 . -655) 94012) ((-649 . -583) 93977) ((-649 . -38) 93942) ((-649 . -392) T) ((-649 . -258) T) ((-649 . -591) 93907) ((-649 . -589) 93857) ((-649 . -971) T) ((-649 . -1026) T) ((-649 . -1062) T) ((-649 . -664) T) ((-649 . -962) T) ((-649 . -82) 93806) ((-649 . -964) 93771) ((-649 . -969) 93736) ((-649 . -21) T) ((-649 . -23) T) ((-649 . -1014) T) ((-649 . -553) 93718) ((-649 . -1130) T) ((-649 . -13) T) ((-649 . -72) T) ((-649 . -25) T) ((-649 . -104) T) ((-649 . -246) T) ((-649 . -201) T) ((-648 . -1014) T) ((-648 . -553) 93700) ((-648 . -1130) T) ((-648 . -13) T) ((-648 . -72) T) ((-633 . -1176) T) ((-633 . -951) 93684) ((-633 . -556) 93668) ((-633 . -553) 93650) ((-631 . -628) 93608) ((-631 . -318) 93592) ((-631 . -34) T) ((-631 . -13) T) ((-631 . -1130) T) ((-631 . -72) 93546) ((-631 . -553) 93481) ((-631 . -260) 93419) ((-631 . -456) 93352) ((-631 . -1014) 93330) ((-631 . -429) 93314) ((-631 . -1036) 93298) ((-631 . -57) 93256) ((-631 . -554) 93217) ((-623 . -996) T) ((-623 . -430) 93198) ((-623 . -553) 93148) ((-623 . -556) 93129) ((-623 . -1014) T) ((-623 . -1130) T) ((-623 . -13) T) ((-623 . -72) T) ((-623 . -64) T) ((-619 . -757) T) ((-619 . -553) 93111) ((-619 . -1014) T) ((-619 . -72) T) ((-619 . -13) T) ((-619 . -1130) T) ((-619 . -760) T) ((-619 . -951) 93095) ((-619 . -556) 93079) ((-618 . -996) T) ((-618 . -430) 93060) ((-618 . -553) 93026) ((-618 . -556) 93007) ((-618 . -1014) T) ((-618 . -1130) T) ((-618 . -13) T) ((-618 . -72) T) ((-618 . -64) T) ((-615 . -757) T) ((-615 . -553) 92989) ((-615 . -1014) T) ((-615 . -72) T) ((-615 . -13) T) ((-615 . -1130) T) ((-615 . -760) T) ((-615 . -951) 92973) ((-615 . -556) 92957) ((-614 . -996) T) ((-614 . -430) 92938) ((-614 . -553) 92904) ((-614 . -556) 92885) ((-614 . -1014) T) ((-614 . -1130) T) ((-614 . -13) T) ((-614 . -72) T) ((-614 . -64) T) ((-613 . -1038) 92830) ((-613 . -318) 92814) ((-613 . -34) T) ((-613 . -260) 92752) ((-613 . -456) 92685) ((-613 . -429) 92669) ((-613 . -966) 92609) ((-613 . -951) 92507) ((-613 . -556) 92426) ((-613 . -355) 92410) ((-613 . -581) 92358) ((-613 . -591) 92296) ((-613 . -329) 92280) ((-613 . -190) 92259) ((-613 . -186) 92207) ((-613 . -189) 92161) ((-613 . -225) 92145) ((-613 . -807) 92069) ((-613 . -812) 91995) ((-613 . -810) 91954) ((-613 . -184) 91938) ((-613 . -655) 91922) ((-613 . -583) 91906) ((-613 . -589) 91865) ((-613 . -104) T) ((-613 . -25) T) ((-613 . -72) T) ((-613 . -13) T) ((-613 . -1130) T) ((-613 . -553) 91827) ((-613 . -1014) T) ((-613 . -23) T) ((-613 . -21) T) ((-613 . -969) 91811) ((-613 . -964) 91795) ((-613 . -82) 91774) ((-613 . -962) T) ((-613 . -664) T) ((-613 . -1062) T) ((-613 . -1026) T) ((-613 . -971) T) ((-613 . -38) 91734) ((-613 . -361) 91718) ((-613 . -684) 91702) ((-613 . -658) T) ((-613 . -686) T) ((-613 . -316) 91686) ((-613 . -241) 91663) ((-607 . -326) 91642) ((-607 . -655) 91626) ((-607 . -583) 91610) ((-607 . -591) 91594) ((-607 . -589) 91563) ((-607 . -104) T) ((-607 . -25) T) ((-607 . -72) T) ((-607 . -13) T) ((-607 . -1130) T) ((-607 . -553) 91545) ((-607 . -1014) T) ((-607 . -23) T) ((-607 . -21) T) ((-607 . -969) 91529) ((-607 . -964) 91513) ((-607 . -82) 91492) ((-607 . -575) 91476) ((-607 . -335) 91448) ((-607 . -556) 91425) ((-607 . -951) 91402) ((-599 . -601) 91386) ((-599 . -38) 91356) ((-599 . -556) 91275) ((-599 . -591) 91249) ((-599 . -589) 91208) ((-599 . -971) T) ((-599 . -1026) T) ((-599 . -1062) T) ((-599 . -664) T) ((-599 . -962) T) ((-599 . -82) 91187) ((-599 . -964) 91171) ((-599 . -969) 91155) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1014) T) ((-599 . -553) 91137) ((-599 . -72) T) ((-599 . -25) T) ((-599 . -104) T) ((-599 . -583) 91107) ((-599 . -655) 91077) ((-599 . -355) 91061) ((-599 . -951) 90959) ((-599 . -762) 90943) ((-599 . -1130) T) ((-599 . -13) T) ((-599 . -241) 90904) ((-598 . -601) 90888) ((-598 . -38) 90858) ((-598 . -556) 90777) ((-598 . -591) 90751) ((-598 . -589) 90710) ((-598 . -971) T) ((-598 . -1026) T) ((-598 . -1062) T) ((-598 . -664) T) ((-598 . -962) T) ((-598 . -82) 90689) ((-598 . -964) 90673) ((-598 . -969) 90657) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1014) T) ((-598 . -553) 90639) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -583) 90609) ((-598 . -655) 90579) ((-598 . -355) 90563) ((-598 . -951) 90461) ((-598 . -762) 90445) ((-598 . -1130) T) ((-598 . -13) T) ((-598 . -241) 90424) ((-597 . -601) 90408) ((-597 . -38) 90378) ((-597 . -556) 90297) ((-597 . -591) 90271) ((-597 . -589) 90230) ((-597 . -971) T) ((-597 . -1026) T) ((-597 . -1062) T) ((-597 . -664) T) ((-597 . -962) T) ((-597 . -82) 90209) ((-597 . -964) 90193) ((-597 . -969) 90177) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1014) T) ((-597 . -553) 90159) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -583) 90129) ((-597 . -655) 90099) ((-597 . -355) 90083) ((-597 . -951) 89981) ((-597 . -762) 89965) ((-597 . -1130) T) ((-597 . -13) T) ((-597 . -241) 89944) ((-595 . -655) 89928) ((-595 . -583) 89912) ((-595 . -591) 89896) ((-595 . -589) 89865) ((-595 . -104) T) ((-595 . -25) T) ((-595 . -72) T) ((-595 . -13) T) ((-595 . -1130) T) ((-595 . -553) 89847) ((-595 . -1014) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -969) 89831) ((-595 . -964) 89815) ((-595 . -82) 89794) ((-595 . -715) 89773) ((-595 . -717) 89752) ((-595 . -757) 89731) ((-595 . -760) 89710) ((-595 . -719) 89689) ((-595 . -722) 89668) ((-592 . -1014) T) ((-592 . -553) 89650) ((-592 . -1130) T) ((-592 . -13) T) ((-592 . -72) T) ((-592 . -951) 89634) ((-592 . -556) 89618) ((-590 . -635) 89602) ((-590 . -76) 89586) ((-590 . -429) 89570) ((-590 . -1014) 89548) ((-590 . -456) 89481) ((-590 . -260) 89419) ((-590 . -553) 89354) ((-590 . -72) 89308) ((-590 . -1130) T) ((-590 . -13) T) ((-590 . -34) T) ((-590 . -1036) 89292) ((-590 . -124) 89276) ((-590 . -554) 89237) ((-590 . -193) 89221) ((-590 . -318) 89205) ((-588 . -996) T) ((-588 . -430) 89186) ((-588 . -553) 89139) ((-588 . -556) 89120) ((-588 . -1014) T) ((-588 . -1130) T) ((-588 . -13) T) ((-588 . -72) T) ((-588 . -64) T) ((-584 . -609) 89104) ((-584 . -1169) 89088) ((-584 . -924) 89072) ((-584 . -1065) 89056) ((-584 . -318) 89040) ((-584 . -757) 89019) ((-584 . -760) 88998) ((-584 . -324) 88982) ((-584 . -594) 88966) ((-584 . -243) 88943) ((-584 . -241) 88895) ((-584 . -539) 88872) ((-584 . -554) 88833) ((-584 . -429) 88817) ((-584 . -1014) 88770) ((-584 . -456) 88703) ((-584 . -260) 88641) ((-584 . -553) 88556) ((-584 . -72) 88490) ((-584 . -1130) T) ((-584 . -13) T) ((-584 . -34) T) ((-584 . -124) 88474) ((-584 . -1036) 88458) ((-584 . -237) 88442) ((-582 . -1188) 88426) ((-582 . -82) 88405) ((-582 . -964) 88389) ((-582 . -969) 88373) ((-582 . -21) T) ((-582 . -589) 88342) ((-582 . -23) T) ((-582 . -1014) T) ((-582 . -553) 88324) ((-582 . -1130) T) ((-582 . -13) T) ((-582 . -72) T) ((-582 . -25) T) ((-582 . -104) T) ((-582 . -591) 88308) ((-582 . -583) 88292) ((-582 . -655) 88276) ((-582 . -241) 88243) ((-580 . -1188) 88227) ((-580 . -82) 88206) ((-580 . -964) 88190) ((-580 . -969) 88174) ((-580 . -21) T) ((-580 . -589) 88143) ((-580 . -23) T) ((-580 . -1014) T) ((-580 . -553) 88125) ((-580 . -1130) T) ((-580 . -13) T) ((-580 . -72) T) ((-580 . -25) T) ((-580 . -104) T) ((-580 . -591) 88109) ((-580 . -583) 88093) ((-580 . -655) 88077) ((-580 . -556) 88054) ((-580 . -450) 88026) ((-580 . -558) 87984) ((-578 . -753) T) ((-578 . -760) T) ((-578 . -757) T) ((-578 . -1014) T) ((-578 . -553) 87966) ((-578 . -1130) T) ((-578 . -13) T) ((-578 . -72) T) ((-578 . -320) T) ((-578 . -556) 87943) ((-573 . -684) 87927) ((-573 . -658) T) ((-573 . -686) T) ((-573 . -82) 87906) ((-573 . -964) 87890) ((-573 . -969) 87874) ((-573 . -21) T) ((-573 . -589) 87843) ((-573 . -23) T) ((-573 . -1014) T) ((-573 . -553) 87812) ((-573 . -1130) T) ((-573 . -13) T) ((-573 . -72) T) ((-573 . -25) T) ((-573 . -104) T) ((-573 . -591) 87796) ((-573 . -583) 87780) ((-573 . -655) 87764) ((-573 . -361) 87729) ((-573 . -316) 87664) ((-573 . -241) 87622) ((-572 . -1108) 87597) ((-572 . -183) 87541) ((-572 . -76) 87485) ((-572 . -1036) 87429) ((-572 . -124) 87373) ((-572 . -554) NIL) ((-572 . -193) 87317) ((-572 . -539) 87292) ((-572 . -260) 87137) ((-572 . -456) 86937) ((-572 . -429) 86867) ((-572 . -241) 86820) ((-572 . -243) 86795) ((-572 . -550) 86770) ((-572 . -1014) T) ((-572 . -553) 86752) ((-572 . -72) T) ((-572 . -1130) T) ((-572 . -13) T) ((-572 . -34) T) ((-572 . -318) 86696) ((-567 . -413) T) ((-567 . -1026) T) ((-567 . -72) T) ((-567 . -13) T) ((-567 . -1130) T) ((-567 . -553) 86678) ((-567 . -1014) T) ((-567 . -664) T) ((-566 . -996) T) ((-566 . -430) 86659) ((-566 . -553) 86625) ((-566 . -556) 86606) ((-566 . -1014) T) ((-566 . -1130) T) ((-566 . -13) T) ((-566 . -72) T) ((-566 . -64) T) ((-563 . -184) 86590) ((-563 . -810) 86549) ((-563 . -812) 86475) ((-563 . -807) 86399) ((-563 . -225) 86383) ((-563 . -189) 86337) ((-563 . -1130) T) ((-563 . -13) T) ((-563 . -186) 86285) ((-563 . -962) T) ((-563 . -664) T) ((-563 . -1062) T) ((-563 . -1026) T) ((-563 . -971) T) ((-563 . -21) T) ((-563 . -589) 86257) ((-563 . -23) T) ((-563 . -1014) T) ((-563 . -553) 86239) ((-563 . -72) T) ((-563 . -25) T) ((-563 . -104) T) ((-563 . -591) 86226) ((-563 . -556) 86122) ((-563 . -190) 86101) ((-563 . -496) T) ((-563 . -246) T) ((-563 . -146) T) ((-563 . -655) 86088) ((-563 . -583) 86075) ((-563 . -969) 86062) ((-563 . -964) 86049) ((-563 . -82) 86034) ((-563 . -38) 86021) ((-563 . -554) 85998) ((-563 . -355) 85982) ((-563 . -951) 85867) ((-563 . -120) 85846) ((-563 . -118) 85825) ((-563 . -258) 85804) ((-563 . -392) 85783) ((-563 . -833) 85762) ((-559 . -38) 85746) ((-559 . -556) 85715) ((-559 . -591) 85689) ((-559 . -589) 85648) ((-559 . -971) T) ((-559 . -1026) T) ((-559 . -1062) T) ((-559 . -664) T) ((-559 . -962) T) ((-559 . -82) 85627) ((-559 . -964) 85611) ((-559 . -969) 85595) ((-559 . -21) T) ((-559 . -23) T) ((-559 . -1014) T) ((-559 . -553) 85577) ((-559 . -1130) T) ((-559 . -13) T) ((-559 . -72) T) ((-559 . -25) T) ((-559 . -104) T) ((-559 . -583) 85561) ((-559 . -655) 85545) ((-559 . -756) 85524) ((-559 . -722) 85503) ((-559 . -719) 85482) ((-559 . -760) 85461) ((-559 . -757) 85440) ((-559 . -717) 85419) ((-559 . -715) 85398) ((-559 . -120) 85377) ((-557 . -881) T) ((-557 . -72) T) ((-557 . -553) 85359) ((-557 . -1014) T) ((-557 . -605) T) ((-557 . -13) T) ((-557 . -1130) T) ((-557 . -84) T) ((-557 . -320) T) ((-551 . -105) T) ((-551 . -72) T) ((-551 . -13) T) ((-551 . -1130) T) ((-551 . -553) 85341) ((-551 . -1014) T) ((-551 . -757) T) ((-551 . -760) T) ((-551 . -795) 85325) ((-551 . -554) 85186) ((-548 . -314) 85124) ((-548 . -72) T) ((-548 . -13) T) ((-548 . -1130) T) ((-548 . -553) 85106) ((-548 . -1014) T) ((-548 . -1108) 85082) ((-548 . -183) 85027) ((-548 . -76) 84972) ((-548 . -1036) 84917) ((-548 . -124) 84862) ((-548 . -554) NIL) ((-548 . -193) 84807) ((-548 . -539) 84783) ((-548 . -260) 84572) ((-548 . -456) 84312) ((-548 . -429) 84244) ((-548 . -241) 84220) ((-548 . -243) 84196) ((-548 . -550) 84172) ((-548 . -34) T) ((-548 . -318) 84117) ((-547 . -1014) T) ((-547 . -553) 84069) ((-547 . -1130) T) ((-547 . -13) T) ((-547 . -72) T) ((-547 . -430) 84036) ((-547 . -556) 84003) ((-546 . -1014) T) ((-546 . -553) 83985) ((-546 . -1130) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -605) T) ((-545 . -1014) T) ((-545 . -553) 83967) ((-545 . -1130) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -605) T) ((-544 . -1014) T) ((-544 . -553) 83934) ((-544 . -1130) T) ((-544 . -13) T) ((-544 . -72) T) ((-543 . -1014) T) ((-543 . -553) 83916) ((-543 . -1130) T) ((-543 . -13) T) ((-543 . -72) T) ((-543 . -605) T) ((-542 . -1014) T) ((-542 . -553) 83883) ((-542 . -1130) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -430) 83865) ((-542 . -556) 83847) ((-541 . -684) 83831) ((-541 . -658) T) ((-541 . -686) T) ((-541 . -82) 83810) ((-541 . -964) 83794) ((-541 . -969) 83778) ((-541 . -21) T) ((-541 . -589) 83747) ((-541 . -23) T) ((-541 . -1014) T) ((-541 . -553) 83716) ((-541 . -1130) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -25) T) ((-541 . -104) T) ((-541 . -591) 83700) ((-541 . -583) 83684) ((-541 . -655) 83668) ((-541 . -361) 83633) ((-541 . -316) 83568) ((-541 . -241) 83526) ((-540 . -996) T) ((-540 . -430) 83507) ((-540 . -553) 83457) ((-540 . -556) 83438) ((-540 . -1014) T) ((-540 . -1130) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -64) T) ((-537 . -553) 83420) ((-533 . -1014) T) ((-533 . -553) 83386) ((-533 . -1130) T) ((-533 . -13) T) ((-533 . -72) T) ((-533 . -430) 83367) ((-533 . -556) 83348) ((-532 . -962) T) ((-532 . -664) T) ((-532 . -1062) T) ((-532 . -1026) T) ((-532 . -971) T) ((-532 . -21) T) ((-532 . -589) 83307) ((-532 . -23) T) ((-532 . -1014) T) ((-532 . -553) 83289) ((-532 . -1130) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -25) T) ((-532 . -104) T) ((-532 . -591) 83263) ((-532 . -556) 83221) ((-532 . -82) 83174) ((-532 . -964) 83134) ((-532 . -969) 83094) ((-532 . -496) 83073) ((-532 . -246) 83052) ((-532 . -146) 83031) ((-532 . -655) 83004) ((-532 . -583) 82977) ((-532 . -38) 82950) ((-531 . -1159) 82927) ((-531 . -47) 82904) ((-531 . -38) 82801) ((-531 . -583) 82698) ((-531 . -655) 82595) ((-531 . -556) 82477) ((-531 . -246) 82456) ((-531 . -496) 82435) ((-531 . -82) 82300) ((-531 . -964) 82186) ((-531 . -969) 82072) ((-531 . -146) 82026) ((-531 . -120) 82005) ((-531 . -118) 81984) ((-531 . -591) 81909) ((-531 . -589) 81819) ((-531 . -887) 81789) ((-531 . -812) 81702) ((-531 . -807) 81613) ((-531 . -810) 81526) ((-531 . -241) 81491) ((-531 . -189) 81450) ((-531 . -1130) T) ((-531 . -13) T) ((-531 . -186) 81403) ((-531 . -962) T) ((-531 . -664) T) ((-531 . -1062) T) ((-531 . -1026) T) ((-531 . -971) T) ((-531 . -21) T) ((-531 . -23) T) ((-531 . -1014) T) ((-531 . -553) 81385) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -190) 81344) ((-529 . -996) T) ((-529 . -430) 81325) ((-529 . -553) 81291) ((-529 . -556) 81272) ((-529 . -1014) T) ((-529 . -1130) T) ((-529 . -13) T) ((-529 . -72) T) ((-529 . -64) T) ((-523 . -1014) T) ((-523 . -553) 81238) ((-523 . -1130) T) ((-523 . -13) T) ((-523 . -72) T) ((-523 . -430) 81219) ((-523 . -556) 81200) ((-520 . -655) 81175) ((-520 . -583) 81150) ((-520 . -591) 81125) ((-520 . -589) 81085) ((-520 . -104) T) ((-520 . -25) T) ((-520 . -72) T) ((-520 . -13) T) ((-520 . -1130) T) ((-520 . -553) 81067) ((-520 . -1014) T) ((-520 . -23) T) ((-520 . -21) T) ((-520 . -969) 81042) ((-520 . -964) 81017) ((-520 . -82) 80978) ((-520 . -951) 80962) ((-520 . -556) 80946) ((-518 . -299) T) ((-518 . -1067) T) ((-518 . -320) T) ((-518 . -118) T) ((-518 . -312) T) ((-518 . -1135) T) ((-518 . -833) T) ((-518 . -496) T) ((-518 . -146) T) ((-518 . -556) 80896) ((-518 . -655) 80861) ((-518 . -583) 80826) ((-518 . -38) 80791) ((-518 . -392) T) ((-518 . -258) T) ((-518 . -82) 80740) ((-518 . -964) 80705) ((-518 . -969) 80670) ((-518 . -589) 80620) ((-518 . -591) 80585) ((-518 . -246) T) ((-518 . -201) T) ((-518 . -345) T) ((-518 . -189) T) ((-518 . -1130) T) ((-518 . -13) T) ((-518 . -186) 80572) ((-518 . -962) T) ((-518 . -664) T) ((-518 . -1062) T) ((-518 . -1026) T) ((-518 . -971) T) ((-518 . -21) T) ((-518 . -23) T) ((-518 . -1014) T) ((-518 . -553) 80554) ((-518 . -72) T) ((-518 . -25) T) ((-518 . -104) T) ((-518 . -190) T) ((-518 . -280) 80541) ((-518 . -120) 80523) ((-518 . -951) 80510) ((-518 . -1188) 80497) ((-518 . -1199) 80484) ((-518 . -554) 80466) ((-517 . -780) 80450) ((-517 . -833) T) ((-517 . -496) T) ((-517 . -246) T) ((-517 . -146) T) ((-517 . -556) 80422) ((-517 . -655) 80409) ((-517 . -583) 80396) ((-517 . -969) 80383) ((-517 . -964) 80370) ((-517 . -82) 80355) ((-517 . -38) 80342) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -962) T) ((-517 . -664) T) ((-517 . -1062) T) ((-517 . -1026) T) ((-517 . -971) T) ((-517 . -21) T) ((-517 . -589) 80314) ((-517 . -23) T) ((-517 . -1014) T) ((-517 . -553) 80296) ((-517 . -1130) T) ((-517 . -13) T) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -591) 80283) ((-517 . -120) T) ((-516 . -1014) T) ((-516 . -553) 80265) ((-516 . -1130) T) ((-516 . -13) T) ((-516 . -72) T) ((-515 . -1014) T) ((-515 . -553) 80247) ((-515 . -1130) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -513) T) ((-514 . -771) T) ((-514 . -147) T) ((-514 . -466) T) ((-514 . -553) 80229) ((-508 . -494) 80213) ((-508 . -35) T) ((-508 . -66) T) ((-508 . -239) T) ((-508 . -433) T) ((-508 . -1119) T) ((-508 . -1116) T) ((-508 . -951) 80195) ((-508 . -916) T) ((-508 . -760) T) ((-508 . -757) T) ((-508 . -496) T) ((-508 . -246) T) ((-508 . -146) T) ((-508 . -556) 80167) ((-508 . -655) 80154) ((-508 . -583) 80141) ((-508 . -591) 80128) ((-508 . -589) 80100) ((-508 . -104) T) ((-508 . -25) T) ((-508 . -72) T) ((-508 . -13) T) ((-508 . -1130) T) ((-508 . -553) 80082) ((-508 . -1014) T) ((-508 . -23) T) ((-508 . -21) T) ((-508 . -969) 80069) ((-508 . -964) 80056) ((-508 . -82) 80041) ((-508 . -962) T) ((-508 . -664) T) ((-508 . -1062) T) ((-508 . -1026) T) ((-508 . -971) T) ((-508 . -38) 80028) ((-508 . -392) T) ((-490 . -1108) 80007) ((-490 . -183) 79955) ((-490 . -76) 79903) ((-490 . -1036) 79851) ((-490 . -124) 79799) ((-490 . -554) NIL) ((-490 . -193) 79747) ((-490 . -539) 79726) ((-490 . -260) 79524) ((-490 . -456) 79276) ((-490 . -429) 79211) ((-490 . -241) 79190) ((-490 . -243) 79169) ((-490 . -550) 79148) ((-490 . -1014) T) ((-490 . -553) 79130) ((-490 . -72) T) ((-490 . -1130) T) ((-490 . -13) T) ((-490 . -34) T) ((-490 . -318) 79078) ((-489 . -753) T) ((-489 . -760) T) ((-489 . -757) T) ((-489 . -1014) T) ((-489 . -553) 79060) ((-489 . -1130) T) ((-489 . -13) T) ((-489 . -72) T) ((-489 . -320) T) ((-488 . -753) T) ((-488 . -760) T) ((-488 . -757) T) ((-488 . -1014) T) ((-488 . -553) 79042) ((-488 . -1130) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -753) T) ((-487 . -760) T) ((-487 . -757) T) ((-487 . -1014) T) ((-487 . -553) 79024) ((-487 . -1130) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -753) T) ((-486 . -760) T) ((-486 . -757) T) ((-486 . -1014) T) ((-486 . -553) 79006) ((-486 . -1130) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -484) T) ((-485 . -1135) T) ((-485 . -1067) T) ((-485 . -951) 78988) ((-485 . -554) 78903) ((-485 . -934) T) ((-485 . -797) 78885) ((-485 . -756) T) ((-485 . -722) T) ((-485 . -719) T) ((-485 . -760) T) ((-485 . -757) T) ((-485 . -717) T) ((-485 . -715) T) ((-485 . -741) T) ((-485 . -591) 78857) ((-485 . -581) 78839) ((-485 . -833) T) ((-485 . -496) T) ((-485 . -246) T) ((-485 . -146) T) ((-485 . -556) 78811) ((-485 . -655) 78798) ((-485 . -583) 78785) ((-485 . -969) 78772) ((-485 . -964) 78759) ((-485 . -82) 78744) ((-485 . -38) 78731) ((-485 . -392) T) ((-485 . -258) T) ((-485 . -189) T) ((-485 . -186) 78718) ((-485 . -190) T) ((-485 . -116) T) ((-485 . -962) T) ((-485 . -664) T) ((-485 . -1062) T) ((-485 . -1026) T) ((-485 . -971) T) ((-485 . -21) T) ((-485 . -589) 78690) ((-485 . -23) T) ((-485 . -1014) T) ((-485 . -553) 78672) ((-485 . -1130) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -25) T) ((-485 . -104) T) ((-485 . -120) T) ((-474 . -1017) 78624) ((-474 . -72) T) ((-474 . -553) 78606) ((-474 . -1014) T) ((-474 . -241) 78562) ((-474 . -1130) T) ((-474 . -13) T) ((-474 . -558) 78465) ((-474 . -554) 78446) ((-472 . -692) 78428) ((-472 . -466) T) ((-472 . -147) T) ((-472 . -771) T) ((-472 . -513) T) ((-472 . -553) 78410) ((-470 . -718) T) ((-470 . -104) T) ((-470 . -25) T) ((-470 . -72) T) ((-470 . -13) T) ((-470 . -1130) T) ((-470 . -553) 78392) ((-470 . -1014) T) ((-470 . -23) T) ((-470 . -717) T) ((-470 . -757) T) ((-470 . -760) T) ((-470 . -719) T) ((-470 . -722) T) ((-470 . -450) 78369) ((-470 . -558) 78332) ((-468 . -466) T) ((-468 . -147) T) ((-468 . -553) 78314) ((-464 . -996) T) ((-464 . -430) 78295) ((-464 . -553) 78261) ((-464 . -556) 78242) ((-464 . -1014) T) ((-464 . -1130) T) ((-464 . -13) T) ((-464 . -72) T) ((-464 . -64) T) ((-463 . -996) T) ((-463 . -430) 78223) ((-463 . -553) 78189) ((-463 . -556) 78170) ((-463 . -1014) T) ((-463 . -1130) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-460 . -280) 78147) ((-460 . -190) T) ((-460 . -186) 78134) ((-460 . -189) T) ((-460 . -320) T) ((-460 . -1067) T) ((-460 . -299) T) ((-460 . -120) 78116) ((-460 . -556) 78046) ((-460 . -591) 77991) ((-460 . -589) 77921) ((-460 . -104) T) ((-460 . -25) T) ((-460 . -72) T) ((-460 . -13) T) ((-460 . -1130) T) ((-460 . -553) 77903) ((-460 . -1014) T) ((-460 . -23) T) ((-460 . -21) T) ((-460 . -971) T) ((-460 . -1026) T) ((-460 . -1062) T) ((-460 . -664) T) ((-460 . -962) T) ((-460 . -312) T) ((-460 . -1135) T) ((-460 . -833) T) ((-460 . -496) T) ((-460 . -146) T) ((-460 . -655) 77848) ((-460 . -583) 77793) ((-460 . -38) 77758) ((-460 . -392) T) ((-460 . -258) T) ((-460 . -82) 77675) ((-460 . -964) 77620) ((-460 . -969) 77565) ((-460 . -246) T) ((-460 . -201) T) ((-460 . -345) T) ((-460 . -118) T) ((-460 . -951) 77542) ((-460 . -1188) 77519) ((-460 . -1199) 77496) ((-459 . -996) T) ((-459 . -430) 77477) ((-459 . -553) 77443) ((-459 . -556) 77424) ((-459 . -1014) T) ((-459 . -1130) T) ((-459 . -13) T) ((-459 . -72) T) ((-459 . -64) T) ((-458 . -19) 77408) ((-458 . -1036) 77392) ((-458 . -318) 77376) ((-458 . -34) T) ((-458 . -13) T) ((-458 . -1130) T) ((-458 . -72) 77310) ((-458 . -553) 77225) ((-458 . -260) 77163) ((-458 . -456) 77096) ((-458 . -1014) 77049) ((-458 . -429) 77033) ((-458 . -594) 77017) ((-458 . -243) 76994) ((-458 . -241) 76946) ((-458 . -539) 76923) ((-458 . -554) 76884) ((-458 . -124) 76868) ((-458 . -757) 76847) ((-458 . -760) 76826) ((-458 . -324) 76810) ((-458 . -237) 76794) ((-457 . -274) 76773) ((-457 . -556) 76757) ((-457 . -951) 76741) ((-457 . -23) T) ((-457 . -1014) T) ((-457 . -553) 76723) ((-457 . -1130) T) ((-457 . -13) T) ((-457 . -72) T) ((-457 . -25) T) ((-457 . -104) T) ((-454 . -72) T) ((-454 . -13) T) ((-454 . -1130) T) ((-454 . -553) 76695) ((-453 . -718) T) ((-453 . -104) T) ((-453 . -25) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1130) T) ((-453 . -553) 76677) ((-453 . -1014) T) ((-453 . -23) T) ((-453 . -717) T) ((-453 . -757) T) ((-453 . -760) T) ((-453 . -719) T) ((-453 . -722) T) ((-453 . -450) 76656) ((-453 . -558) 76621) ((-452 . -717) T) ((-452 . -757) T) ((-452 . -760) T) ((-452 . -719) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1130) T) ((-452 . -553) 76603) ((-452 . -1014) T) ((-452 . -23) T) ((-452 . -450) 76582) ((-452 . -558) 76547) ((-451 . -450) 76526) ((-451 . -553) 76466) ((-451 . -1014) 76417) ((-451 . -558) 76382) ((-451 . -1130) T) ((-451 . -13) T) ((-451 . -72) T) ((-449 . -23) T) ((-449 . -1014) T) ((-449 . -553) 76364) ((-449 . -1130) T) ((-449 . -13) T) ((-449 . -72) T) ((-449 . -25) T) ((-449 . -450) 76343) ((-449 . -558) 76308) ((-448 . -21) T) ((-448 . -589) 76290) ((-448 . -23) T) ((-448 . -1014) T) ((-448 . -553) 76272) ((-448 . -1130) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -104) T) ((-448 . -450) 76251) ((-448 . -558) 76216) ((-447 . -1014) T) ((-447 . -553) 76198) ((-447 . -1130) T) ((-447 . -13) T) ((-447 . -72) T) ((-444 . -1014) T) ((-444 . -553) 76180) ((-444 . -1130) T) ((-444 . -13) T) ((-444 . -72) T) ((-442 . -757) T) ((-442 . -553) 76162) ((-442 . -1014) T) ((-442 . -72) T) ((-442 . -13) T) ((-442 . -1130) T) ((-442 . -760) T) ((-442 . -556) 76143) ((-440 . -96) T) ((-440 . -324) 76126) ((-440 . -760) T) ((-440 . -757) T) ((-440 . -124) 76109) ((-440 . -554) 76091) ((-440 . -241) 76042) ((-440 . -539) 76018) ((-440 . -243) 75994) ((-440 . -594) 75977) ((-440 . -429) 75960) ((-440 . -1014) T) ((-440 . -456) NIL) ((-440 . -260) NIL) ((-440 . -553) 75942) ((-440 . -72) T) ((-440 . -34) T) ((-440 . -318) 75925) ((-440 . -1036) 75908) ((-440 . -19) 75891) ((-440 . -605) T) ((-440 . -13) T) ((-440 . -1130) T) ((-440 . -84) T) ((-437 . -57) 75865) ((-437 . -1036) 75849) ((-437 . -429) 75833) ((-437 . -1014) 75811) ((-437 . -456) 75744) ((-437 . -260) 75682) ((-437 . -553) 75617) ((-437 . -72) 75571) ((-437 . -1130) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75555) ((-436 . -19) 75539) ((-436 . -1036) 75523) ((-436 . -318) 75507) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1130) T) ((-436 . -72) 75441) ((-436 . -553) 75356) ((-436 . -260) 75294) ((-436 . -456) 75227) ((-436 . -1014) 75180) ((-436 . -429) 75164) ((-436 . -594) 75148) ((-436 . -243) 75125) ((-436 . -241) 75077) ((-436 . -539) 75054) ((-436 . -554) 75015) ((-436 . -124) 74999) ((-436 . -757) 74978) ((-436 . -760) 74957) ((-436 . -324) 74941) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1130) T) ((-435 . -553) 74923) ((-435 . -1014) T) ((-435 . -556) 74824) ((-435 . -951) 74767) ((-435 . -456) 74733) ((-435 . -260) 74720) ((-435 . -27) T) ((-435 . -916) T) ((-435 . -201) T) ((-435 . -82) 74669) ((-435 . -964) 74634) ((-435 . -969) 74599) ((-435 . -246) T) ((-435 . -655) 74564) ((-435 . -583) 74529) ((-435 . -591) 74479) ((-435 . -589) 74429) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -962) T) ((-435 . -664) T) ((-435 . -1062) T) ((-435 . -1026) T) ((-435 . -971) T) ((-435 . -38) 74394) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -496) T) ((-435 . -833) T) ((-435 . -1135) T) ((-435 . -312) T) ((-435 . -581) 74354) ((-435 . -934) T) ((-435 . -554) 74299) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 74286) ((-435 . -189) T) ((-431 . -1014) T) ((-431 . -553) 74252) ((-431 . -1130) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -905) 74234) ((-427 . -1067) T) ((-427 . -556) 74184) ((-427 . -951) 74144) ((-427 . -554) 74074) ((-427 . -934) T) ((-427 . -822) NIL) ((-427 . -795) 74056) ((-427 . -756) T) ((-427 . -722) T) ((-427 . -719) T) ((-427 . -760) T) ((-427 . -757) T) ((-427 . -717) T) ((-427 . -715) T) ((-427 . -741) T) ((-427 . -797) 74038) ((-427 . -343) 74020) ((-427 . -581) 74002) ((-427 . -329) 73984) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -456) NIL) ((-427 . -288) 73966) ((-427 . -201) T) ((-427 . -82) 73893) ((-427 . -964) 73843) ((-427 . -969) 73793) ((-427 . -246) T) ((-427 . -655) 73743) ((-427 . -583) 73693) ((-427 . -591) 73643) ((-427 . -589) 73593) ((-427 . -38) 73543) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -496) T) ((-427 . -833) T) ((-427 . -1135) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73530) ((-427 . -189) T) ((-427 . -225) 73512) ((-427 . -807) NIL) ((-427 . -812) NIL) ((-427 . -810) NIL) ((-427 . -184) 73494) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1130) T) ((-427 . -553) 73436) ((-427 . -1014) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -962) T) ((-427 . -664) T) ((-427 . -1062) T) ((-427 . -1026) T) ((-427 . -971) T) ((-425 . -286) 73405) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1130) T) ((-425 . -553) 73387) ((-425 . -1014) T) ((-425 . -23) T) ((-425 . -589) 73369) ((-425 . -21) T) ((-424 . -882) 73353) ((-424 . -318) 73337) ((-424 . -1036) 73321) ((-424 . -34) T) ((-424 . -13) T) ((-424 . -1130) T) ((-424 . -72) 73275) ((-424 . -553) 73210) ((-424 . -260) 73148) ((-424 . -456) 73081) ((-424 . -1014) 73059) ((-424 . -429) 73043) ((-424 . -76) 73027) ((-423 . -996) T) ((-423 . -430) 73008) ((-423 . -553) 72974) ((-423 . -556) 72955) ((-423 . -1014) T) ((-423 . -1130) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72934) ((-422 . -1188) 72904) ((-422 . -722) 72883) ((-422 . -719) 72862) ((-422 . -760) 72816) ((-422 . -757) 72770) ((-422 . -717) 72749) ((-422 . -718) 72728) ((-422 . -655) 72673) ((-422 . -583) 72598) ((-422 . -243) 72575) ((-422 . -241) 72552) ((-422 . -539) 72529) ((-422 . -951) 72358) ((-422 . -556) 72162) ((-422 . -355) 72131) ((-422 . -581) 72039) ((-422 . -591) 71878) ((-422 . -329) 71848) ((-422 . -429) 71832) ((-422 . -456) 71765) ((-422 . -260) 71703) ((-422 . -34) T) ((-422 . -318) 71687) ((-422 . -320) 71666) ((-422 . -190) 71619) ((-422 . -589) 71407) ((-422 . -971) 71386) ((-422 . -1026) 71365) ((-422 . -1062) 71344) ((-422 . -664) 71323) ((-422 . -962) 71302) ((-422 . -186) 71198) ((-422 . -189) 71100) ((-422 . -225) 71070) ((-422 . -807) 70942) ((-422 . -812) 70816) ((-422 . -810) 70749) ((-422 . -184) 70719) ((-422 . -553) 70416) ((-422 . -969) 70341) ((-422 . -964) 70246) ((-422 . -82) 70166) ((-422 . -104) 70041) ((-422 . -25) 69878) ((-422 . -72) 69615) ((-422 . -13) T) ((-422 . -1130) T) ((-422 . -1014) 69371) ((-422 . -23) 69227) ((-422 . -21) 69142) ((-421 . -862) 69087) ((-421 . -556) 68879) ((-421 . -951) 68757) ((-421 . -1135) 68736) ((-421 . -822) 68715) ((-421 . -797) NIL) ((-421 . -812) 68692) ((-421 . -807) 68667) ((-421 . -810) 68644) ((-421 . -456) 68582) ((-421 . -392) 68536) ((-421 . -581) 68484) ((-421 . -591) 68373) ((-421 . -329) 68357) ((-421 . -47) 68314) ((-421 . -38) 68166) ((-421 . -583) 68018) ((-421 . -655) 67870) ((-421 . -246) 67804) ((-421 . -496) 67738) ((-421 . -82) 67563) ((-421 . -964) 67409) ((-421 . -969) 67255) ((-421 . -146) 67169) ((-421 . -120) 67148) ((-421 . -118) 67127) ((-421 . -589) 67037) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1130) T) ((-421 . -553) 67019) ((-421 . -1014) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -962) T) ((-421 . -664) T) ((-421 . -1062) T) ((-421 . -1026) T) ((-421 . -971) T) ((-421 . -355) 67003) ((-421 . -277) 66960) ((-421 . -260) 66947) ((-421 . -554) 66808) ((-419 . -1108) 66787) ((-419 . -183) 66735) ((-419 . -76) 66683) ((-419 . -1036) 66631) ((-419 . -124) 66579) ((-419 . -554) NIL) ((-419 . -193) 66527) ((-419 . -539) 66506) ((-419 . -260) 66304) ((-419 . -456) 66056) ((-419 . -429) 65991) ((-419 . -241) 65970) ((-419 . -243) 65949) ((-419 . -550) 65928) ((-419 . -1014) T) ((-419 . -553) 65910) ((-419 . -72) T) ((-419 . -1130) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65858) ((-418 . -996) T) ((-418 . -430) 65839) ((-418 . -553) 65805) ((-418 . -556) 65786) ((-418 . -1014) T) ((-418 . -1130) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1135) T) ((-417 . -833) T) ((-417 . -496) T) ((-417 . -146) T) ((-417 . -556) 65736) ((-417 . -655) 65701) ((-417 . -583) 65666) ((-417 . -38) 65631) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -591) 65596) ((-417 . -589) 65546) ((-417 . -971) T) ((-417 . -1026) T) ((-417 . -1062) T) ((-417 . -664) T) ((-417 . -962) T) ((-417 . -82) 65495) ((-417 . -964) 65460) ((-417 . -969) 65425) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1014) T) ((-417 . -553) 65377) ((-417 . -1130) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -951) 65337) ((-417 . -934) T) ((-417 . -554) 65259) ((-416 . -1125) 65228) ((-416 . -1036) 65212) ((-416 . -553) 65174) ((-416 . -124) 65158) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1130) T) ((-416 . -72) T) ((-416 . -260) 65096) ((-416 . -456) 65029) ((-416 . -1014) T) ((-416 . -429) 65013) ((-416 . -554) 64974) ((-416 . -318) 64958) ((-416 . -890) 64927) ((-415 . -1108) 64906) ((-415 . -183) 64854) ((-415 . -76) 64802) ((-415 . -1036) 64750) ((-415 . -124) 64698) ((-415 . -554) NIL) ((-415 . -193) 64646) ((-415 . -539) 64625) ((-415 . -260) 64423) ((-415 . -456) 64175) ((-415 . -429) 64110) ((-415 . -241) 64089) ((-415 . -243) 64068) ((-415 . -550) 64047) ((-415 . -1014) T) ((-415 . -553) 64029) ((-415 . -72) T) ((-415 . -1130) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 63977) ((-414 . -1163) 63961) ((-414 . -190) 63913) ((-414 . -186) 63859) ((-414 . -189) 63811) ((-414 . -241) 63769) ((-414 . -810) 63675) ((-414 . -807) 63556) ((-414 . -812) 63462) ((-414 . -887) 63425) ((-414 . -38) 63272) ((-414 . -82) 63092) ((-414 . -964) 62933) ((-414 . -969) 62774) ((-414 . -589) 62659) ((-414 . -591) 62559) ((-414 . -583) 62406) ((-414 . -655) 62253) ((-414 . -556) 62085) ((-414 . -118) 62064) ((-414 . -120) 62043) ((-414 . -47) 62013) ((-414 . -1159) 61983) ((-414 . -35) 61949) ((-414 . -66) 61915) ((-414 . -239) 61881) ((-414 . -433) 61847) ((-414 . -1119) 61813) ((-414 . -1116) 61779) ((-414 . -916) 61745) ((-414 . -201) 61724) ((-414 . -246) 61678) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1130) T) ((-414 . -553) 61660) ((-414 . -1014) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -962) T) ((-414 . -664) T) ((-414 . -1062) T) ((-414 . -1026) T) ((-414 . -971) T) ((-414 . -258) 61639) ((-414 . -392) 61618) ((-414 . -146) 61552) ((-414 . -496) 61506) ((-414 . -833) 61485) ((-414 . -1135) 61464) ((-414 . -312) 61443) ((-408 . -1014) T) ((-408 . -553) 61425) ((-408 . -1130) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -890) 61394) ((-403 . -318) 61378) ((-403 . -554) 61339) ((-403 . -429) 61323) ((-403 . -1014) T) ((-403 . -456) 61256) ((-403 . -260) 61194) ((-403 . -553) 61156) ((-403 . -72) T) ((-403 . -1130) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 61140) ((-403 . -1036) 61124) ((-401 . -655) 61095) ((-401 . -583) 61066) ((-401 . -591) 61037) ((-401 . -589) 60993) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1130) T) ((-401 . -553) 60975) ((-401 . -1014) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -969) 60946) ((-401 . -964) 60917) ((-401 . -82) 60878) ((-394 . -862) 60845) ((-394 . -556) 60637) ((-394 . -951) 60515) ((-394 . -1135) 60494) ((-394 . -822) 60473) ((-394 . -797) NIL) ((-394 . -812) 60450) ((-394 . -807) 60425) ((-394 . -810) 60402) ((-394 . -456) 60340) ((-394 . -392) 60294) ((-394 . -581) 60242) ((-394 . -591) 60131) ((-394 . -329) 60115) ((-394 . -47) 60094) ((-394 . -38) 59946) ((-394 . -583) 59798) ((-394 . -655) 59650) ((-394 . -246) 59584) ((-394 . -496) 59518) ((-394 . -82) 59343) ((-394 . -964) 59189) ((-394 . -969) 59035) ((-394 . -146) 58949) ((-394 . -120) 58928) ((-394 . -118) 58907) ((-394 . -589) 58817) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1130) T) ((-394 . -553) 58799) ((-394 . -1014) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -962) T) ((-394 . -664) T) ((-394 . -1062) T) ((-394 . -1026) T) ((-394 . -971) T) ((-394 . -355) 58783) ((-394 . -277) 58762) ((-394 . -260) 58749) ((-394 . -554) 58610) ((-393 . -361) 58580) ((-393 . -684) 58550) ((-393 . -658) T) ((-393 . -686) T) ((-393 . -82) 58501) ((-393 . -964) 58471) ((-393 . -969) 58441) ((-393 . -21) T) ((-393 . -589) 58356) ((-393 . -23) T) ((-393 . -1014) T) ((-393 . -553) 58338) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -591) 58268) ((-393 . -583) 58238) ((-393 . -655) 58208) ((-393 . -316) 58178) ((-393 . -1130) T) ((-393 . -13) T) ((-393 . -241) 58141) ((-381 . -1014) T) ((-381 . -553) 58123) ((-381 . -1130) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1014) T) ((-380 . -553) 58105) ((-380 . -1130) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1014) T) ((-379 . -553) 58087) ((-379 . -1130) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -553) 58069) ((-372 . -38) 58053) ((-372 . -556) 58022) ((-372 . -591) 57996) ((-372 . -589) 57955) ((-372 . -971) T) ((-372 . -1026) T) ((-372 . -1062) T) ((-372 . -664) T) ((-372 . -962) T) ((-372 . -82) 57934) ((-372 . -964) 57918) ((-372 . -969) 57902) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1014) T) ((-372 . -553) 57884) ((-372 . -1130) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -583) 57868) ((-372 . -655) 57852) ((-358 . -664) T) ((-358 . -1014) T) ((-358 . -553) 57834) ((-358 . -1130) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1026) T) ((-356 . -413) T) ((-356 . -1026) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1130) T) ((-356 . -553) 57816) ((-356 . -1014) T) ((-356 . -664) T) ((-350 . -905) 57800) ((-350 . -1067) 57778) ((-350 . -951) 57645) ((-350 . -556) 57544) ((-350 . -554) 57347) ((-350 . -934) 57326) ((-350 . -822) 57305) ((-350 . -795) 57289) ((-350 . -756) 57268) ((-350 . -722) 57247) ((-350 . -719) 57226) ((-350 . -760) 57180) ((-350 . -757) 57134) ((-350 . -717) 57113) ((-350 . -715) 57092) ((-350 . -741) 57071) ((-350 . -797) 56996) ((-350 . -343) 56980) ((-350 . -581) 56928) ((-350 . -591) 56844) ((-350 . -329) 56828) ((-350 . -241) 56786) ((-350 . -260) 56751) ((-350 . -456) 56663) ((-350 . -288) 56647) ((-350 . -201) T) ((-350 . -82) 56578) ((-350 . -964) 56530) ((-350 . -969) 56482) ((-350 . -246) T) ((-350 . -655) 56434) ((-350 . -583) 56386) ((-350 . -589) 56323) ((-350 . -38) 56275) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -496) T) ((-350 . -833) T) ((-350 . -1135) T) ((-350 . -312) T) ((-350 . -190) 56254) ((-350 . -186) 56202) ((-350 . -189) 56156) ((-350 . -225) 56140) ((-350 . -807) 56064) ((-350 . -812) 55990) ((-350 . -810) 55949) ((-350 . -184) 55933) ((-350 . -120) 55887) ((-350 . -118) 55866) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1130) T) ((-350 . -553) 55848) ((-350 . -1014) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -962) T) ((-350 . -664) T) ((-350 . -1062) T) ((-350 . -1026) T) ((-350 . -971) T) ((-348 . -496) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -556) 55757) ((-348 . -655) 55731) ((-348 . -583) 55705) ((-348 . -591) 55679) ((-348 . -589) 55638) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1130) T) ((-348 . -553) 55620) ((-348 . -1014) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -969) 55594) ((-348 . -964) 55568) ((-348 . -82) 55535) ((-348 . -962) T) ((-348 . -664) T) ((-348 . -1062) T) ((-348 . -1026) T) ((-348 . -971) T) ((-348 . -38) 55509) ((-348 . -184) 55493) ((-348 . -810) 55452) ((-348 . -812) 55378) ((-348 . -807) 55302) ((-348 . -225) 55286) ((-348 . -189) 55240) ((-348 . -186) 55188) ((-348 . -190) 55167) ((-348 . -288) 55151) ((-348 . -456) 54993) ((-348 . -260) 54932) ((-348 . -241) 54860) ((-348 . -355) 54844) ((-348 . -951) 54742) ((-348 . -392) 54695) ((-348 . -934) 54674) ((-348 . -554) 54577) ((-348 . -1135) 54555) ((-342 . -1014) T) ((-342 . -553) 54537) ((-342 . -1130) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54524) ((-342 . -554) 54501) ((-340 . -684) 54485) ((-340 . -658) T) ((-340 . -686) T) ((-340 . -82) 54464) ((-340 . -964) 54448) ((-340 . -969) 54432) ((-340 . -21) T) ((-340 . -589) 54401) ((-340 . -23) T) ((-340 . -1014) T) ((-340 . -553) 54383) ((-340 . -1130) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -591) 54367) ((-340 . -583) 54351) ((-340 . -655) 54335) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1130) T) ((-338 . -553) 54301) ((-338 . -1014) T) ((-338 . -556) 54282) ((-338 . -430) 54263) ((-337 . -336) 54247) ((-337 . -556) 54231) ((-337 . -951) 54215) ((-337 . -760) 54194) ((-337 . -757) 54173) ((-337 . -1026) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1130) T) ((-337 . -553) 54155) ((-337 . -1014) T) ((-337 . -664) T) ((-334 . -335) 54134) ((-334 . -556) 54118) ((-334 . -951) 54102) ((-334 . -583) 54072) ((-334 . -655) 54042) ((-334 . -591) 54026) ((-334 . -589) 53995) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1130) T) ((-334 . -553) 53977) ((-334 . -1014) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -969) 53961) ((-334 . -964) 53945) ((-334 . -82) 53924) ((-333 . -82) 53903) ((-333 . -964) 53887) ((-333 . -969) 53871) ((-333 . -21) T) ((-333 . -589) 53840) ((-333 . -23) T) ((-333 . -1014) T) ((-333 . -553) 53822) ((-333 . -1130) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -591) 53806) ((-333 . -450) 53785) ((-333 . -558) 53750) ((-333 . -655) 53720) ((-333 . -583) 53690) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -556) 53640) ((-330 . -591) 53605) ((-330 . -589) 53555) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1130) T) ((-330 . -553) 53522) ((-330 . -1014) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -971) T) ((-330 . -1026) T) ((-330 . -1062) T) ((-330 . -664) T) ((-330 . -962) T) ((-330 . -554) 53436) ((-330 . -312) T) ((-330 . -1135) T) ((-330 . -833) T) ((-330 . -496) T) ((-330 . -146) T) ((-330 . -655) 53401) ((-330 . -583) 53366) ((-330 . -38) 53331) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 53280) ((-330 . -964) 53245) ((-330 . -969) 53210) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -756) T) ((-330 . -722) T) ((-330 . -719) T) ((-330 . -760) T) ((-330 . -757) T) ((-330 . -717) T) ((-330 . -715) T) ((-330 . -797) 53192) ((-330 . -916) T) ((-330 . -934) T) ((-330 . -951) 53152) ((-330 . -974) T) ((-330 . -190) T) ((-330 . -186) 53139) ((-330 . -189) T) ((-330 . -1116) T) ((-330 . -1119) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -558) 53121) ((-313 . -314) 53098) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1130) T) ((-313 . -553) 53080) ((-313 . -1014) T) ((-310 . -413) T) ((-310 . -1026) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1130) T) ((-310 . -553) 53062) ((-310 . -1014) T) ((-310 . -664) T) ((-310 . -951) 53046) ((-310 . -556) 53030) ((-308 . -280) 53014) ((-308 . -190) 52993) ((-308 . -186) 52966) ((-308 . -189) 52945) ((-308 . -320) 52924) ((-308 . -1067) 52903) ((-308 . -299) 52882) ((-308 . -120) 52861) ((-308 . -556) 52798) ((-308 . -591) 52750) ((-308 . -589) 52687) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1130) T) ((-308 . -553) 52669) ((-308 . -1014) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -971) T) ((-308 . -1026) T) ((-308 . -1062) T) ((-308 . -664) T) ((-308 . -962) T) ((-308 . -312) T) ((-308 . -1135) T) ((-308 . -833) T) ((-308 . -496) T) ((-308 . -146) T) ((-308 . -655) 52621) ((-308 . -583) 52573) ((-308 . -38) 52538) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52469) ((-308 . -964) 52421) ((-308 . -969) 52373) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52327) ((-308 . -118) 52281) ((-308 . -951) 52265) ((-308 . -1188) 52249) ((-308 . -1199) 52233) ((-304 . -280) 52217) ((-304 . -190) 52196) ((-304 . -186) 52169) ((-304 . -189) 52148) ((-304 . -320) 52127) ((-304 . -1067) 52106) ((-304 . -299) 52085) ((-304 . -120) 52064) ((-304 . -556) 52001) ((-304 . -591) 51953) ((-304 . -589) 51890) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1130) T) ((-304 . -553) 51872) ((-304 . -1014) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -971) T) ((-304 . -1026) T) ((-304 . -1062) T) ((-304 . -664) T) ((-304 . -962) T) ((-304 . -312) T) ((-304 . -1135) T) ((-304 . -833) T) ((-304 . -496) T) ((-304 . -146) T) ((-304 . -655) 51824) ((-304 . -583) 51776) ((-304 . -38) 51741) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51672) ((-304 . -964) 51624) ((-304 . -969) 51576) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51530) ((-304 . -118) 51484) ((-304 . -951) 51468) ((-304 . -1188) 51452) ((-304 . -1199) 51436) ((-303 . -280) 51420) ((-303 . -190) 51399) ((-303 . -186) 51372) ((-303 . -189) 51351) ((-303 . -320) 51330) ((-303 . -1067) 51309) ((-303 . -299) 51288) ((-303 . -120) 51267) ((-303 . -556) 51204) ((-303 . -591) 51156) ((-303 . -589) 51093) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1130) T) ((-303 . -553) 51075) ((-303 . -1014) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -971) T) ((-303 . -1026) T) ((-303 . -1062) T) ((-303 . -664) T) ((-303 . -962) T) ((-303 . -312) T) ((-303 . -1135) T) ((-303 . -833) T) ((-303 . -496) T) ((-303 . -146) T) ((-303 . -655) 51027) ((-303 . -583) 50979) ((-303 . -38) 50944) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50875) ((-303 . -964) 50827) ((-303 . -969) 50779) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50733) ((-303 . -118) 50687) ((-303 . -951) 50671) ((-303 . -1188) 50655) ((-303 . -1199) 50639) ((-302 . -280) 50623) ((-302 . -190) 50602) ((-302 . -186) 50575) ((-302 . -189) 50554) ((-302 . -320) 50533) ((-302 . -1067) 50512) ((-302 . -299) 50491) ((-302 . -120) 50470) ((-302 . -556) 50407) ((-302 . -591) 50359) ((-302 . -589) 50296) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1130) T) ((-302 . -553) 50278) ((-302 . -1014) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -971) T) ((-302 . -1026) T) ((-302 . -1062) T) ((-302 . -664) T) ((-302 . -962) T) ((-302 . -312) T) ((-302 . -1135) T) ((-302 . -833) T) ((-302 . -496) T) ((-302 . -146) T) ((-302 . -655) 50230) ((-302 . -583) 50182) ((-302 . -38) 50147) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 50078) ((-302 . -964) 50030) ((-302 . -969) 49982) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49936) ((-302 . -118) 49890) ((-302 . -951) 49874) ((-302 . -1188) 49858) ((-302 . -1199) 49842) ((-301 . -280) 49819) ((-301 . -190) T) ((-301 . -186) 49806) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1067) T) ((-301 . -299) T) ((-301 . -120) 49788) ((-301 . -556) 49718) ((-301 . -591) 49663) ((-301 . -589) 49593) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1130) T) ((-301 . -553) 49575) ((-301 . -1014) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -971) T) ((-301 . -1026) T) ((-301 . -1062) T) ((-301 . -664) T) ((-301 . -962) T) ((-301 . -312) T) ((-301 . -1135) T) ((-301 . -833) T) ((-301 . -496) T) ((-301 . -146) T) ((-301 . -655) 49520) ((-301 . -583) 49465) ((-301 . -38) 49430) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49347) ((-301 . -964) 49292) ((-301 . -969) 49237) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -951) 49214) ((-301 . -1188) 49191) ((-301 . -1199) 49168) ((-295 . -280) 49152) ((-295 . -190) 49131) ((-295 . -186) 49104) ((-295 . -189) 49083) ((-295 . -320) 49062) ((-295 . -1067) 49041) ((-295 . -299) 49020) ((-295 . -120) 48999) ((-295 . -556) 48936) ((-295 . -591) 48888) ((-295 . -589) 48825) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1130) T) ((-295 . -553) 48807) ((-295 . -1014) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -971) T) ((-295 . -1026) T) ((-295 . -1062) T) ((-295 . -664) T) ((-295 . -962) T) ((-295 . -312) T) ((-295 . -1135) T) ((-295 . -833) T) ((-295 . -496) T) ((-295 . -146) T) ((-295 . -655) 48759) ((-295 . -583) 48711) ((-295 . -38) 48676) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48607) ((-295 . -964) 48559) ((-295 . -969) 48511) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48465) ((-295 . -118) 48419) ((-295 . -951) 48403) ((-295 . -1188) 48387) ((-295 . -1199) 48371) ((-294 . -280) 48355) ((-294 . -190) 48334) ((-294 . -186) 48307) ((-294 . -189) 48286) ((-294 . -320) 48265) ((-294 . -1067) 48244) ((-294 . -299) 48223) ((-294 . -120) 48202) ((-294 . -556) 48139) ((-294 . -591) 48091) ((-294 . -589) 48028) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1130) T) ((-294 . -553) 48010) ((-294 . -1014) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -971) T) ((-294 . -1026) T) ((-294 . -1062) T) ((-294 . -664) T) ((-294 . -962) T) ((-294 . -312) T) ((-294 . -1135) T) ((-294 . -833) T) ((-294 . -496) T) ((-294 . -146) T) ((-294 . -655) 47962) ((-294 . -583) 47914) ((-294 . -38) 47879) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47810) ((-294 . -964) 47762) ((-294 . -969) 47714) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47668) ((-294 . -118) 47622) ((-294 . -951) 47606) ((-294 . -1188) 47590) ((-294 . -1199) 47574) ((-293 . -280) 47551) ((-293 . -190) T) ((-293 . -186) 47538) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1067) T) ((-293 . -299) T) ((-293 . -120) 47520) ((-293 . -556) 47450) ((-293 . -591) 47395) ((-293 . -589) 47325) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1130) T) ((-293 . -553) 47307) ((-293 . -1014) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -971) T) ((-293 . -1026) T) ((-293 . -1062) T) ((-293 . -664) T) ((-293 . -962) T) ((-293 . -312) T) ((-293 . -1135) T) ((-293 . -833) T) ((-293 . -496) T) ((-293 . -146) T) ((-293 . -655) 47252) ((-293 . -583) 47197) ((-293 . -38) 47162) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 47079) ((-293 . -964) 47024) ((-293 . -969) 46969) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -951) 46946) ((-293 . -1188) 46923) ((-293 . -1199) 46900) ((-289 . -280) 46877) ((-289 . -190) T) ((-289 . -186) 46864) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1067) T) ((-289 . -299) T) ((-289 . -120) 46846) ((-289 . -556) 46776) ((-289 . -591) 46721) ((-289 . -589) 46651) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1130) T) ((-289 . -553) 46633) ((-289 . -1014) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -971) T) ((-289 . -1026) T) ((-289 . -1062) T) ((-289 . -664) T) ((-289 . -962) T) ((-289 . -312) T) ((-289 . -1135) T) ((-289 . -833) T) ((-289 . -496) T) ((-289 . -146) T) ((-289 . -655) 46578) ((-289 . -583) 46523) ((-289 . -38) 46488) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46405) ((-289 . -964) 46350) ((-289 . -969) 46295) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -951) 46272) ((-289 . -1188) 46249) ((-289 . -1199) 46226) ((-283 . -286) 46195) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1130) T) ((-283 . -553) 46177) ((-283 . -1014) T) ((-283 . -23) T) ((-283 . -589) 46159) ((-283 . -21) T) ((-282 . -1014) T) ((-282 . -553) 46141) ((-282 . -1130) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -757) T) ((-281 . -553) 46123) ((-281 . -1014) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1130) T) ((-281 . -760) T) ((-278 . -19) 46107) ((-278 . -1036) 46091) ((-278 . -318) 46075) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1130) T) ((-278 . -72) 46009) ((-278 . -553) 45924) ((-278 . -260) 45862) ((-278 . -456) 45795) ((-278 . -1014) 45748) ((-278 . -429) 45732) ((-278 . -594) 45716) ((-278 . -243) 45693) ((-278 . -241) 45645) ((-278 . -539) 45622) ((-278 . -554) 45583) ((-278 . -124) 45567) ((-278 . -757) 45546) ((-278 . -760) 45525) ((-278 . -324) 45509) ((-278 . -237) 45493) ((-275 . -274) 45470) ((-275 . -556) 45454) ((-275 . -951) 45438) ((-275 . -23) T) ((-275 . -1014) T) ((-275 . -553) 45420) ((-275 . -1130) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -589) 45402) ((-273 . -23) T) ((-273 . -1014) T) ((-273 . -553) 45384) ((-273 . -1130) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -655) 45366) ((-273 . -583) 45348) ((-273 . -591) 45330) ((-273 . -969) 45312) ((-273 . -964) 45294) ((-273 . -82) 45269) ((-273 . -274) 45246) ((-273 . -556) 45230) ((-273 . -951) 45214) ((-273 . -757) 45193) ((-273 . -760) 45172) ((-270 . -1163) 45156) ((-270 . -190) 45108) ((-270 . -186) 45054) ((-270 . -189) 45006) ((-270 . -241) 44964) ((-270 . -810) 44870) ((-270 . -807) 44774) ((-270 . -812) 44680) ((-270 . -887) 44643) ((-270 . -38) 44490) ((-270 . -82) 44310) ((-270 . -964) 44151) ((-270 . -969) 43992) ((-270 . -589) 43877) ((-270 . -591) 43777) ((-270 . -583) 43624) ((-270 . -655) 43471) ((-270 . -556) 43303) ((-270 . -118) 43282) ((-270 . -120) 43261) ((-270 . -47) 43231) ((-270 . -1159) 43201) ((-270 . -35) 43167) ((-270 . -66) 43133) ((-270 . -239) 43099) ((-270 . -433) 43065) ((-270 . -1119) 43031) ((-270 . -1116) 42997) ((-270 . -916) 42963) ((-270 . -201) 42942) ((-270 . -246) 42896) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1130) T) ((-270 . -553) 42878) ((-270 . -1014) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -962) T) ((-270 . -664) T) ((-270 . -1062) T) ((-270 . -1026) T) ((-270 . -971) T) ((-270 . -258) 42857) ((-270 . -392) 42836) ((-270 . -146) 42770) ((-270 . -496) 42724) ((-270 . -833) 42703) ((-270 . -1135) 42682) ((-270 . -312) 42661) ((-270 . -717) T) ((-270 . -757) T) ((-270 . -760) T) ((-270 . -719) T) ((-265 . -364) 42645) ((-265 . -556) 42220) ((-265 . -951) 41891) ((-265 . -554) 41752) ((-265 . -795) 41736) ((-265 . -812) 41703) ((-265 . -807) 41668) ((-265 . -810) 41635) ((-265 . -413) 41614) ((-265 . -355) 41598) ((-265 . -797) 41523) ((-265 . -343) 41507) ((-265 . -581) 41415) ((-265 . -591) 41153) ((-265 . -329) 41123) ((-265 . -201) 41102) ((-265 . -82) 40991) ((-265 . -964) 40901) ((-265 . -969) 40811) ((-265 . -246) 40790) ((-265 . -655) 40700) ((-265 . -583) 40610) ((-265 . -589) 40277) ((-265 . -38) 40187) ((-265 . -258) 40166) ((-265 . -392) 40145) ((-265 . -146) 40124) ((-265 . -496) 40103) ((-265 . -833) 40082) ((-265 . -1135) 40061) ((-265 . -312) 40040) ((-265 . -260) 40027) ((-265 . -456) 39993) ((-265 . -254) T) ((-265 . -120) 39972) ((-265 . -118) 39951) ((-265 . -962) 39845) ((-265 . -664) 39698) ((-265 . -1062) 39592) ((-265 . -1026) 39445) ((-265 . -971) 39339) ((-265 . -104) 39214) ((-265 . -25) 39070) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1130) T) ((-265 . -553) 39052) ((-265 . -1014) T) ((-265 . -23) 38908) ((-265 . -21) 38783) ((-265 . -29) 38753) ((-265 . -916) 38732) ((-265 . -27) 38711) ((-265 . -1116) 38690) ((-265 . -1119) 38669) ((-265 . -433) 38648) ((-265 . -239) 38627) ((-265 . -66) 38606) ((-265 . -35) 38585) ((-265 . -133) 38564) ((-265 . -116) 38543) ((-265 . -570) 38522) ((-265 . -872) 38501) ((-265 . -1054) 38480) ((-264 . -905) 38441) ((-264 . -1067) NIL) ((-264 . -951) 38371) ((-264 . -556) 38254) ((-264 . -554) NIL) ((-264 . -934) NIL) ((-264 . -822) NIL) ((-264 . -795) 38215) ((-264 . -756) NIL) ((-264 . -722) NIL) ((-264 . -719) NIL) ((-264 . -760) NIL) ((-264 . -757) NIL) ((-264 . -717) NIL) ((-264 . -715) NIL) ((-264 . -741) NIL) ((-264 . -797) NIL) ((-264 . -343) 38176) ((-264 . -581) 38137) ((-264 . -591) 38066) ((-264 . -329) 38027) ((-264 . -241) 37893) ((-264 . -260) 37789) ((-264 . -456) 37540) ((-264 . -288) 37501) ((-264 . -201) T) ((-264 . -82) 37386) ((-264 . -964) 37315) ((-264 . -969) 37244) ((-264 . -246) T) ((-264 . -655) 37173) ((-264 . -583) 37102) ((-264 . -589) 37016) ((-264 . -38) 36945) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -496) T) ((-264 . -833) T) ((-264 . -1135) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36906) ((-264 . -807) NIL) ((-264 . -812) NIL) ((-264 . -810) NIL) ((-264 . -184) 36867) ((-264 . -120) 36823) ((-264 . -118) 36779) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1130) T) ((-264 . -553) 36761) ((-264 . -1014) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -962) T) ((-264 . -664) T) ((-264 . -1062) T) ((-264 . -1026) T) ((-264 . -971) T) ((-263 . -996) T) ((-263 . -430) 36742) ((-263 . -553) 36708) ((-263 . -556) 36689) ((-263 . -1014) T) ((-263 . -1130) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1014) T) ((-262 . -553) 36671) ((-262 . -1130) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1108) 36650) ((-251 . -183) 36598) ((-251 . -76) 36546) ((-251 . -1036) 36494) ((-251 . -124) 36442) ((-251 . -554) NIL) ((-251 . -193) 36390) ((-251 . -539) 36369) ((-251 . -260) 36167) ((-251 . -456) 35919) ((-251 . -429) 35854) ((-251 . -241) 35833) ((-251 . -243) 35812) ((-251 . -550) 35791) ((-251 . -1014) T) ((-251 . -553) 35773) ((-251 . -72) T) ((-251 . -1130) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35721) ((-249 . -1130) T) ((-249 . -13) T) ((-249 . -456) 35670) ((-249 . -1014) 35456) ((-249 . -553) 35202) ((-249 . -72) 34988) ((-249 . -25) 34856) ((-249 . -21) 34743) ((-249 . -589) 34490) ((-249 . -23) 34377) ((-249 . -104) 34264) ((-249 . -1026) 34149) ((-249 . -664) 34055) ((-249 . -413) 34034) ((-249 . -962) 33980) ((-249 . -1062) 33926) ((-249 . -971) 33872) ((-249 . -591) 33740) ((-249 . -556) 33675) ((-249 . -82) 33595) ((-249 . -964) 33520) ((-249 . -969) 33445) ((-249 . -655) 33390) ((-249 . -583) 33335) ((-249 . -810) 33294) ((-249 . -807) 33251) ((-249 . -812) 33210) ((-249 . -1188) 33180) ((-247 . -553) 33162) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 33149) ((-244 . -556) 33121) ((-244 . -971) T) ((-244 . -1026) T) ((-244 . -1062) T) ((-244 . -664) T) ((-244 . -962) T) ((-244 . -82) 33106) ((-244 . -964) 33093) ((-244 . -969) 33080) ((-244 . -21) T) ((-244 . -589) 33052) ((-244 . -23) T) ((-244 . -1014) T) ((-244 . -553) 33034) ((-244 . -1130) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -591) 33021) ((-244 . -583) 33008) ((-244 . -655) 32995) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -496) T) ((-244 . -833) T) ((-244 . -241) 32974) ((-235 . -553) 32956) ((-234 . -553) 32938) ((-229 . -757) T) ((-229 . -553) 32920) ((-229 . -1014) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1130) T) ((-229 . -760) T) ((-226 . -213) 32882) ((-226 . -556) 32642) ((-226 . -951) 32488) ((-226 . -554) 32236) ((-226 . -277) 32208) ((-226 . -355) 32192) ((-226 . -38) 32044) ((-226 . -82) 31869) ((-226 . -964) 31715) ((-226 . -969) 31561) ((-226 . -589) 31471) ((-226 . -591) 31360) ((-226 . -583) 31212) ((-226 . -655) 31064) ((-226 . -118) 31043) ((-226 . -120) 31022) ((-226 . -146) 30936) ((-226 . -496) 30870) ((-226 . -246) 30804) ((-226 . -47) 30776) ((-226 . -329) 30760) ((-226 . -581) 30708) ((-226 . -392) 30662) ((-226 . -456) 30553) ((-226 . -810) 30499) ((-226 . -807) 30408) ((-226 . -812) 30321) ((-226 . -797) 30180) ((-226 . -822) 30159) ((-226 . -1135) 30138) ((-226 . -862) 30105) ((-226 . -260) 30092) ((-226 . -190) 30071) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -553) 30053) ((-226 . -1014) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -971) T) ((-226 . -1026) T) ((-226 . -1062) T) ((-226 . -664) T) ((-226 . -962) T) ((-226 . -186) 30001) ((-226 . -13) T) ((-226 . -1130) T) ((-226 . -189) 29955) ((-226 . -225) 29939) ((-226 . -184) 29923) ((-221 . -1014) T) ((-221 . -553) 29905) ((-221 . -1130) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29884) ((-211 . -1188) 29854) ((-211 . -722) 29833) ((-211 . -719) 29812) ((-211 . -760) 29766) ((-211 . -757) 29720) ((-211 . -717) 29699) ((-211 . -718) 29678) ((-211 . -655) 29623) ((-211 . -583) 29548) ((-211 . -243) 29525) ((-211 . -241) 29502) ((-211 . -539) 29479) ((-211 . -951) 29308) ((-211 . -556) 29112) ((-211 . -355) 29081) ((-211 . -581) 28989) ((-211 . -591) 28815) ((-211 . -329) 28785) ((-211 . -429) 28769) ((-211 . -456) 28702) ((-211 . -260) 28640) ((-211 . -34) T) ((-211 . -318) 28624) ((-211 . -320) 28603) ((-211 . -190) 28556) ((-211 . -589) 28409) ((-211 . -971) 28388) ((-211 . -1026) 28367) ((-211 . -1062) 28346) ((-211 . -664) 28325) ((-211 . -962) 28304) ((-211 . -186) 28200) ((-211 . -189) 28102) ((-211 . -225) 28072) ((-211 . -807) 27944) ((-211 . -812) 27818) ((-211 . -810) 27751) ((-211 . -184) 27721) ((-211 . -553) 27682) ((-211 . -969) 27607) ((-211 . -964) 27512) ((-211 . -82) 27432) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1130) T) ((-211 . -1014) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27411) ((-210 . -1188) 27381) ((-210 . -722) 27360) ((-210 . -719) 27339) ((-210 . -760) 27293) ((-210 . -757) 27247) ((-210 . -717) 27226) ((-210 . -718) 27205) ((-210 . -655) 27150) ((-210 . -583) 27075) ((-210 . -243) 27052) ((-210 . -241) 27029) ((-210 . -539) 27006) ((-210 . -951) 26835) ((-210 . -556) 26639) ((-210 . -355) 26608) ((-210 . -581) 26516) ((-210 . -591) 26329) ((-210 . -329) 26299) ((-210 . -429) 26283) ((-210 . -456) 26216) ((-210 . -260) 26154) ((-210 . -34) T) ((-210 . -318) 26138) ((-210 . -320) 26117) ((-210 . -190) 26070) ((-210 . -589) 25910) ((-210 . -971) 25889) ((-210 . -1026) 25868) ((-210 . -1062) 25847) ((-210 . -664) 25826) ((-210 . -962) 25805) ((-210 . -186) 25701) ((-210 . -189) 25603) ((-210 . -225) 25573) ((-210 . -807) 25445) ((-210 . -812) 25319) ((-210 . -810) 25252) ((-210 . -184) 25222) ((-210 . -553) 25183) ((-210 . -969) 25108) ((-210 . -964) 25013) ((-210 . -82) 24933) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1130) T) ((-210 . -1014) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1014) T) ((-209 . -553) 24915) ((-209 . -1130) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24889) ((-208 . -160) T) ((-208 . -1014) T) ((-208 . -553) 24856) ((-208 . -1130) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -748) 24838) ((-207 . -1014) T) ((-207 . -553) 24820) ((-207 . -1130) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -862) 24765) ((-206 . -556) 24557) ((-206 . -951) 24435) ((-206 . -1135) 24414) ((-206 . -822) 24393) ((-206 . -797) NIL) ((-206 . -812) 24370) ((-206 . -807) 24345) ((-206 . -810) 24322) ((-206 . -456) 24260) ((-206 . -392) 24214) ((-206 . -581) 24162) ((-206 . -591) 24051) ((-206 . -329) 24035) ((-206 . -47) 23992) ((-206 . -38) 23844) ((-206 . -583) 23696) ((-206 . -655) 23548) ((-206 . -246) 23482) ((-206 . -496) 23416) ((-206 . -82) 23241) ((-206 . -964) 23087) ((-206 . -969) 22933) ((-206 . -146) 22847) ((-206 . -120) 22826) ((-206 . -118) 22805) ((-206 . -589) 22715) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1130) T) ((-206 . -553) 22697) ((-206 . -1014) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -962) T) ((-206 . -664) T) ((-206 . -1062) T) ((-206 . -1026) T) ((-206 . -971) T) ((-206 . -355) 22681) ((-206 . -277) 22638) ((-206 . -260) 22625) ((-206 . -554) 22486) ((-203 . -609) 22470) ((-203 . -1169) 22454) ((-203 . -924) 22438) ((-203 . -1065) 22422) ((-203 . -318) 22406) ((-203 . -757) 22385) ((-203 . -760) 22364) ((-203 . -324) 22348) ((-203 . -594) 22332) ((-203 . -243) 22309) ((-203 . -241) 22261) ((-203 . -539) 22238) ((-203 . -554) 22199) ((-203 . -429) 22183) ((-203 . -1014) 22136) ((-203 . -456) 22069) ((-203 . -260) 22007) ((-203 . -553) 21902) ((-203 . -72) 21836) ((-203 . -1130) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21820) ((-203 . -1036) 21804) ((-203 . -237) 21788) ((-203 . -430) 21765) ((-203 . -556) 21742) ((-197 . -196) 21721) ((-197 . -1188) 21691) ((-197 . -722) 21670) ((-197 . -719) 21649) ((-197 . -760) 21603) ((-197 . -757) 21557) ((-197 . -717) 21536) ((-197 . -718) 21515) ((-197 . -655) 21460) ((-197 . -583) 21385) ((-197 . -243) 21362) ((-197 . -241) 21339) ((-197 . -539) 21316) ((-197 . -951) 21145) ((-197 . -556) 20949) ((-197 . -355) 20918) ((-197 . -581) 20826) ((-197 . -591) 20665) ((-197 . -329) 20635) ((-197 . -429) 20619) ((-197 . -456) 20552) ((-197 . -260) 20490) ((-197 . -34) T) ((-197 . -318) 20474) ((-197 . -320) 20453) ((-197 . -190) 20406) ((-197 . -589) 20194) ((-197 . -971) 20173) ((-197 . -1026) 20152) ((-197 . -1062) 20131) ((-197 . -664) 20110) ((-197 . -962) 20089) ((-197 . -186) 19985) ((-197 . -189) 19887) ((-197 . -225) 19857) ((-197 . -807) 19729) ((-197 . -812) 19603) ((-197 . -810) 19536) ((-197 . -184) 19506) ((-197 . -553) 19203) ((-197 . -969) 19128) ((-197 . -964) 19033) ((-197 . -82) 18953) ((-197 . -104) 18828) ((-197 . -25) 18665) ((-197 . -72) 18402) ((-197 . -13) T) ((-197 . -1130) T) ((-197 . -1014) 18158) ((-197 . -23) 18014) ((-197 . -21) 17929) ((-181 . -628) 17887) ((-181 . -318) 17871) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1130) T) ((-181 . -72) 17825) ((-181 . -553) 17760) ((-181 . -260) 17698) ((-181 . -456) 17631) ((-181 . -1014) 17609) ((-181 . -429) 17593) ((-181 . -1036) 17577) ((-181 . -57) 17535) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -556) 17485) ((-179 . -591) 17450) ((-179 . -589) 17400) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1130) T) ((-179 . -553) 17382) ((-179 . -1014) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -971) T) ((-179 . -1026) T) ((-179 . -1062) T) ((-179 . -664) T) ((-179 . -962) T) ((-179 . -554) 17312) ((-179 . -312) T) ((-179 . -1135) T) ((-179 . -833) T) ((-179 . -496) T) ((-179 . -146) T) ((-179 . -655) 17277) ((-179 . -583) 17242) ((-179 . -38) 17207) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 17156) ((-179 . -964) 17121) ((-179 . -969) 17086) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -756) T) ((-179 . -722) T) ((-179 . -719) T) ((-179 . -760) T) ((-179 . -757) T) ((-179 . -717) T) ((-179 . -715) T) ((-179 . -797) 17068) ((-179 . -916) T) ((-179 . -934) T) ((-179 . -951) 17028) ((-179 . -974) T) ((-179 . -190) T) ((-179 . -186) 17015) ((-179 . -189) T) ((-179 . -1116) T) ((-179 . -1119) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -561) 16992) ((-177 . -556) 16954) ((-177 . -591) 16921) ((-177 . -589) 16873) ((-177 . -971) T) ((-177 . -1026) T) ((-177 . -1062) T) ((-177 . -664) T) ((-177 . -962) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1014) T) ((-177 . -553) 16855) ((-177 . -1130) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -951) 16832) ((-176 . -214) 16816) ((-176 . -1035) 16800) ((-176 . -76) 16784) ((-176 . -429) 16768) ((-176 . -1014) 16746) ((-176 . -456) 16679) ((-176 . -260) 16617) ((-176 . -553) 16552) ((-176 . -72) 16506) ((-176 . -1130) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1036) 16490) ((-176 . -318) 16474) ((-176 . -909) 16458) ((-172 . -996) T) ((-172 . -430) 16439) ((-172 . -553) 16405) ((-172 . -556) 16386) ((-172 . -1014) T) ((-172 . -1130) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -905) 16368) ((-171 . -1067) T) ((-171 . -556) 16318) ((-171 . -951) 16278) ((-171 . -554) 16208) ((-171 . -934) T) ((-171 . -822) NIL) ((-171 . -795) 16190) ((-171 . -756) T) ((-171 . -722) T) ((-171 . -719) T) ((-171 . -760) T) ((-171 . -757) T) ((-171 . -717) T) ((-171 . -715) T) ((-171 . -741) T) ((-171 . -797) 16172) ((-171 . -343) 16154) ((-171 . -581) 16136) ((-171 . -329) 16118) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -456) NIL) ((-171 . -288) 16100) ((-171 . -201) T) ((-171 . -82) 16027) ((-171 . -964) 15977) ((-171 . -969) 15927) ((-171 . -246) T) ((-171 . -655) 15877) ((-171 . -583) 15827) ((-171 . -591) 15777) ((-171 . -589) 15727) ((-171 . -38) 15677) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -496) T) ((-171 . -833) T) ((-171 . -1135) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15664) ((-171 . -189) T) ((-171 . -225) 15646) ((-171 . -807) NIL) ((-171 . -812) NIL) ((-171 . -810) NIL) ((-171 . -184) 15628) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1130) T) ((-171 . -553) 15570) ((-171 . -1014) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -962) T) ((-171 . -664) T) ((-171 . -1062) T) ((-171 . -1026) T) ((-171 . -971) T) ((-168 . -753) T) ((-168 . -760) T) ((-168 . -757) T) ((-168 . -1014) T) ((-168 . -553) 15552) ((-168 . -1130) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1014) T) ((-167 . -553) 15534) ((-167 . -1130) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -556) 15511) ((-166 . -1014) T) ((-166 . -553) 15493) ((-166 . -1130) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1014) T) ((-161 . -553) 15475) ((-161 . -1130) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1014) T) ((-158 . -553) 15457) ((-158 . -1130) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1014) T) ((-157 . -553) 15439) ((-157 . -1130) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -748) 15421) ((-154 . -996) T) ((-154 . -430) 15402) ((-154 . -553) 15368) ((-154 . -556) 15349) ((-154 . -1014) T) ((-154 . -1130) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -553) 15331) ((-148 . -38) 15263) ((-148 . -556) 15180) ((-148 . -591) 15112) ((-148 . -589) 15029) ((-148 . -971) T) ((-148 . -1026) T) ((-148 . -1062) T) ((-148 . -664) T) ((-148 . -962) T) ((-148 . -82) 14928) ((-148 . -964) 14860) ((-148 . -969) 14792) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1014) T) ((-148 . -553) 14774) ((-148 . -1130) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -583) 14706) ((-148 . -655) 14638) ((-148 . -312) T) ((-148 . -1135) T) ((-148 . -833) T) ((-148 . -496) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1014) T) ((-145 . -553) 14620) ((-145 . -1130) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14604) ((-142 . -35) 14582) ((-142 . -66) 14560) ((-142 . -239) 14538) ((-142 . -433) 14516) ((-142 . -1119) 14494) ((-142 . -1116) 14472) ((-142 . -916) 14424) ((-142 . -822) 14377) ((-142 . -554) 14145) ((-142 . -795) 14129) ((-142 . -320) 14083) ((-142 . -299) 14062) ((-142 . -1067) 14041) ((-142 . -345) 14020) ((-142 . -353) 13991) ((-142 . -38) 13825) ((-142 . -82) 13717) ((-142 . -964) 13630) ((-142 . -969) 13543) ((-142 . -583) 13377) ((-142 . -655) 13211) ((-142 . -322) 13182) ((-142 . -662) 13153) ((-142 . -951) 13051) ((-142 . -556) 12836) ((-142 . -355) 12820) ((-142 . -797) 12745) ((-142 . -343) 12729) ((-142 . -581) 12677) ((-142 . -591) 12554) ((-142 . -589) 12452) ((-142 . -329) 12436) ((-142 . -241) 12394) ((-142 . -260) 12359) ((-142 . -456) 12271) ((-142 . -288) 12255) ((-142 . -201) 12209) ((-142 . -1135) 12117) ((-142 . -312) 12071) ((-142 . -833) 12005) ((-142 . -496) 11919) ((-142 . -246) 11833) ((-142 . -392) 11767) ((-142 . -258) 11701) ((-142 . -190) 11655) ((-142 . -186) 11583) ((-142 . -189) 11517) ((-142 . -225) 11501) ((-142 . -807) 11425) ((-142 . -812) 11351) ((-142 . -810) 11310) ((-142 . -184) 11294) ((-142 . -146) T) ((-142 . -120) 11273) ((-142 . -962) T) ((-142 . -664) T) ((-142 . -1062) T) ((-142 . -1026) T) ((-142 . -971) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1014) T) ((-142 . -553) 11255) ((-142 . -1130) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11209) ((-135 . -996) T) ((-135 . -430) 11190) ((-135 . -553) 11156) ((-135 . -556) 11137) ((-135 . -1014) T) ((-135 . -1130) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1014) T) ((-134 . -553) 11119) ((-134 . -1130) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1130) T) ((-130 . -553) 11101) ((-130 . -1014) T) ((-129 . -996) T) ((-129 . -430) 11082) ((-129 . -553) 11048) ((-129 . -556) 11029) ((-129 . -1014) T) ((-129 . -1130) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -996) T) ((-127 . -430) 11010) ((-127 . -553) 10976) ((-127 . -556) 10957) ((-127 . -1014) T) ((-127 . -1130) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -962) T) ((-125 . -664) T) ((-125 . -1062) T) ((-125 . -1026) T) ((-125 . -971) T) ((-125 . -21) T) ((-125 . -589) 10916) ((-125 . -23) T) ((-125 . -1014) T) ((-125 . -553) 10898) ((-125 . -1130) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -591) 10872) ((-125 . -556) 10841) ((-125 . -38) 10825) ((-125 . -82) 10804) ((-125 . -964) 10788) ((-125 . -969) 10772) ((-125 . -583) 10756) ((-125 . -655) 10740) ((-125 . -1188) 10724) ((-117 . -753) T) ((-117 . -760) T) ((-117 . -757) T) ((-117 . -1014) T) ((-117 . -553) 10706) ((-117 . -1130) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1014) T) ((-114 . -553) 10688) ((-114 . -1130) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -554) 10647) ((-114 . -369) 10629) ((-114 . -1012) 10611) ((-114 . -318) 10593) ((-114 . -320) T) ((-114 . -193) 10575) ((-114 . -124) 10557) ((-114 . -1036) 10539) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -456) NIL) ((-114 . -429) 10521) ((-114 . -76) 10503) ((-114 . -183) 10485) ((-113 . -553) 10467) ((-112 . -160) T) ((-112 . -1014) T) ((-112 . -553) 10434) ((-112 . -1130) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -748) 10416) ((-111 . -996) T) ((-111 . -430) 10397) ((-111 . -553) 10363) ((-111 . -556) 10344) ((-111 . -1014) T) ((-111 . -1130) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -996) T) ((-110 . -430) 10325) ((-110 . -553) 10291) ((-110 . -556) 10272) ((-110 . -1014) T) ((-110 . -1130) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10249) ((-108 . -556) 10145) ((-108 . -951) 10129) ((-108 . -1014) T) ((-108 . -553) 10111) ((-108 . -1130) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 10066) ((-108 . -241) 10043) ((-107 . -757) T) ((-107 . -553) 10025) ((-107 . -1014) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1130) T) ((-107 . -760) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -664) T) ((-107 . -1026) T) ((-107 . -951) 10007) ((-107 . -556) 9989) ((-106 . -996) T) ((-106 . -430) 9970) ((-106 . -553) 9936) ((-106 . -556) 9917) ((-106 . -1014) T) ((-106 . -1130) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1014) T) ((-103 . -553) 9899) ((-103 . -1130) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9881) ((-102 . -1036) 9863) ((-102 . -318) 9845) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1130) T) ((-102 . -72) T) ((-102 . -553) 9789) ((-102 . -260) NIL) ((-102 . -456) NIL) ((-102 . -1014) T) ((-102 . -429) 9771) ((-102 . -594) 9753) ((-102 . -243) 9728) ((-102 . -241) 9678) ((-102 . -539) 9653) ((-102 . -554) NIL) ((-102 . -124) 9635) ((-102 . -757) T) ((-102 . -760) T) ((-102 . -324) 9617) ((-101 . -753) T) ((-101 . -760) T) ((-101 . -757) T) ((-101 . -1014) T) ((-101 . -553) 9599) ((-101 . -1130) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -605) T) ((-100 . -98) 9583) ((-100 . -1036) 9567) ((-100 . -318) 9551) ((-100 . -924) 9535) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1130) T) ((-100 . -72) 9489) ((-100 . -553) 9424) ((-100 . -260) 9362) ((-100 . -456) 9295) ((-100 . -1014) 9273) ((-100 . -429) 9257) ((-100 . -92) 9241) ((-99 . -98) 9225) ((-99 . -1036) 9209) ((-99 . -318) 9193) ((-99 . -924) 9177) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1130) T) ((-99 . -72) 9131) ((-99 . -553) 9066) ((-99 . -260) 9004) ((-99 . -456) 8937) ((-99 . -1014) 8915) ((-99 . -429) 8899) ((-99 . -92) 8883) ((-94 . -98) 8867) ((-94 . -1036) 8851) ((-94 . -318) 8835) ((-94 . -924) 8819) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1130) T) ((-94 . -72) 8773) ((-94 . -553) 8708) ((-94 . -260) 8646) ((-94 . -456) 8579) ((-94 . -1014) 8557) ((-94 . -429) 8541) ((-94 . -92) 8525) ((-90 . -905) 8503) ((-90 . -1067) NIL) ((-90 . -951) 8481) ((-90 . -556) 8412) ((-90 . -554) NIL) ((-90 . -934) NIL) ((-90 . -822) NIL) ((-90 . -795) 8390) ((-90 . -756) NIL) ((-90 . -722) NIL) ((-90 . -719) NIL) ((-90 . -760) NIL) ((-90 . -757) NIL) ((-90 . -717) NIL) ((-90 . -715) NIL) ((-90 . -741) NIL) ((-90 . -797) NIL) ((-90 . -343) 8368) ((-90 . -581) 8346) ((-90 . -591) 8292) ((-90 . -329) 8270) ((-90 . -241) 8204) ((-90 . -260) 8151) ((-90 . -456) 8021) ((-90 . -288) 7999) ((-90 . -201) T) ((-90 . -82) 7918) ((-90 . -964) 7864) ((-90 . -969) 7810) ((-90 . -246) T) ((-90 . -655) 7756) ((-90 . -583) 7702) ((-90 . -589) 7633) ((-90 . -38) 7579) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -496) T) ((-90 . -833) T) ((-90 . -1135) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7557) ((-90 . -807) NIL) ((-90 . -812) NIL) ((-90 . -810) NIL) ((-90 . -184) 7535) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1130) T) ((-90 . -553) 7517) ((-90 . -1014) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -962) T) ((-90 . -664) T) ((-90 . -1062) T) ((-90 . -1026) T) ((-90 . -971) T) ((-89 . -780) 7501) ((-89 . -833) T) ((-89 . -496) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -556) 7473) ((-89 . -655) 7460) ((-89 . -583) 7447) ((-89 . -969) 7434) ((-89 . -964) 7421) ((-89 . -82) 7406) ((-89 . -38) 7393) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -962) T) ((-89 . -664) T) ((-89 . -1062) T) ((-89 . -1026) T) ((-89 . -971) T) ((-89 . -21) T) ((-89 . -589) 7365) ((-89 . -23) T) ((-89 . -1014) T) ((-89 . -553) 7347) ((-89 . -1130) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -591) 7334) ((-89 . -120) T) ((-86 . -757) T) ((-86 . -553) 7316) ((-86 . -1014) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1130) T) ((-86 . -760) T) ((-86 . -748) 7297) ((-85 . -753) T) ((-85 . -760) T) ((-85 . -757) T) ((-85 . -1014) T) ((-85 . -553) 7279) ((-85 . -1130) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -881) T) ((-85 . -605) T) ((-85 . -84) T) ((-85 . -554) 7261) ((-81 . -96) T) ((-81 . -324) 7244) ((-81 . -760) T) ((-81 . -757) T) ((-81 . -124) 7227) ((-81 . -554) 7209) ((-81 . -241) 7160) ((-81 . -539) 7136) ((-81 . -243) 7112) ((-81 . -594) 7095) ((-81 . -429) 7078) ((-81 . -1014) T) ((-81 . -456) NIL) ((-81 . -260) NIL) ((-81 . -553) 7060) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7043) ((-81 . -1036) 7026) ((-81 . -19) 7009) ((-81 . -605) T) ((-81 . -13) T) ((-81 . -1130) T) ((-81 . -84) T) ((-79 . -80) 6993) ((-79 . -1130) T) ((-79 . |MappingCategory|) 6967) ((-79 . -1014) T) ((-79 . -553) 6949) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -553) 6931) ((-77 . -905) 6913) ((-77 . -1067) T) ((-77 . -556) 6863) ((-77 . -951) 6823) ((-77 . -554) 6753) ((-77 . -934) T) ((-77 . -822) NIL) ((-77 . -795) 6735) ((-77 . -756) T) ((-77 . -722) T) ((-77 . -719) T) ((-77 . -760) T) ((-77 . -757) T) ((-77 . -717) T) ((-77 . -715) T) ((-77 . -741) T) ((-77 . -797) 6717) ((-77 . -343) 6699) ((-77 . -581) 6681) ((-77 . -329) 6663) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -456) NIL) ((-77 . -288) 6645) ((-77 . -201) T) ((-77 . -82) 6572) ((-77 . -964) 6522) ((-77 . -969) 6472) ((-77 . -246) T) ((-77 . -655) 6422) ((-77 . -583) 6372) ((-77 . -591) 6322) ((-77 . -589) 6272) ((-77 . -38) 6222) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -496) T) ((-77 . -833) T) ((-77 . -1135) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6209) ((-77 . -189) T) ((-77 . -225) 6191) ((-77 . -807) NIL) ((-77 . -812) NIL) ((-77 . -810) NIL) ((-77 . -184) 6173) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1130) T) ((-77 . -553) 6116) ((-77 . -1014) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -962) T) ((-77 . -664) T) ((-77 . -1062) T) ((-77 . -1026) T) ((-77 . -971) T) ((-73 . -98) 6100) ((-73 . -1036) 6084) ((-73 . -318) 6068) ((-73 . -924) 6052) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1130) T) ((-73 . -72) 6006) ((-73 . -553) 5941) ((-73 . -260) 5879) ((-73 . -456) 5812) ((-73 . -1014) 5790) ((-73 . -429) 5774) ((-73 . -92) 5758) ((-69 . -413) T) ((-69 . -1026) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1130) T) ((-69 . -553) 5740) ((-69 . -1014) T) ((-69 . -664) T) ((-69 . -241) 5719) ((-67 . -996) T) ((-67 . -430) 5700) ((-67 . -553) 5666) ((-67 . -556) 5647) ((-67 . -1014) T) ((-67 . -1130) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1035) 5631) ((-62 . -318) 5615) ((-62 . -1036) 5599) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1130) T) ((-62 . -72) 5553) ((-62 . -553) 5488) ((-62 . -260) 5426) ((-62 . -456) 5359) ((-62 . -1014) 5337) ((-62 . -429) 5321) ((-62 . -76) 5305) ((-60 . -57) 5267) ((-60 . -1036) 5251) ((-60 . -429) 5235) ((-60 . -1014) 5213) ((-60 . -456) 5146) ((-60 . -260) 5084) ((-60 . -553) 5019) ((-60 . -72) 4973) ((-60 . -1130) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4957) ((-58 . -19) 4941) ((-58 . -1036) 4925) ((-58 . -318) 4909) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1130) T) ((-58 . -72) 4843) ((-58 . -553) 4758) ((-58 . -260) 4696) ((-58 . -456) 4629) ((-58 . -1014) 4582) ((-58 . -429) 4566) ((-58 . -594) 4550) ((-58 . -243) 4527) ((-58 . -241) 4479) ((-58 . -539) 4456) ((-58 . -554) 4417) ((-58 . -124) 4401) ((-58 . -757) 4380) ((-58 . -760) 4359) ((-58 . -324) 4343) ((-55 . -1014) T) ((-55 . -553) 4325) ((-55 . -1130) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -951) 4307) ((-55 . -556) 4289) ((-51 . -1014) T) ((-51 . -553) 4271) ((-51 . -1130) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -561) 4255) ((-50 . -556) 4224) ((-50 . -591) 4198) ((-50 . -589) 4157) ((-50 . -971) T) ((-50 . -1026) T) ((-50 . -1062) T) ((-50 . -664) T) ((-50 . -962) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1014) T) ((-50 . -553) 4139) ((-50 . -1130) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -951) 4123) ((-49 . -1014) T) ((-49 . -553) 4105) ((-49 . -1130) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1130) T) ((-48 . -553) 4087) ((-48 . -1014) T) ((-48 . -556) 3988) ((-48 . -951) 3931) ((-48 . -456) 3897) ((-48 . -260) 3884) ((-48 . -27) T) ((-48 . -916) T) ((-48 . -201) T) ((-48 . -82) 3833) ((-48 . -964) 3798) ((-48 . -969) 3763) ((-48 . -246) T) ((-48 . -655) 3728) ((-48 . -583) 3693) ((-48 . -591) 3643) ((-48 . -589) 3593) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -962) T) ((-48 . -664) T) ((-48 . -1062) T) ((-48 . -1026) T) ((-48 . -971) T) ((-48 . -38) 3558) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -496) T) ((-48 . -833) T) ((-48 . -1135) T) ((-48 . -312) T) ((-48 . -581) 3518) ((-48 . -934) T) ((-48 . -554) 3463) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3450) ((-48 . -189) T) ((-45 . -36) 3429) ((-45 . -550) 3408) ((-45 . -243) 3331) ((-45 . -241) 3229) ((-45 . -429) 3164) ((-45 . -456) 2916) ((-45 . -260) 2714) ((-45 . -539) 2637) ((-45 . -193) 2585) ((-45 . -76) 2533) ((-45 . -183) 2481) ((-45 . -1108) 2460) ((-45 . -237) 2408) ((-45 . -1036) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1130) T) ((-45 . -72) T) ((-45 . -553) 2286) ((-45 . -1014) T) ((-45 . -554) NIL) ((-45 . -594) 2234) ((-45 . -324) 2182) ((-45 . -760) NIL) ((-45 . -757) NIL) ((-45 . -318) 2130) ((-45 . -1065) 2078) ((-45 . -924) 2026) ((-45 . -1169) 1974) ((-45 . -609) 1922) ((-44 . -361) 1906) ((-44 . -684) 1890) ((-44 . -658) T) ((-44 . -686) T) ((-44 . -82) 1869) ((-44 . -964) 1853) ((-44 . -969) 1837) ((-44 . -21) T) ((-44 . -589) 1780) ((-44 . -23) T) ((-44 . -1014) T) ((-44 . -553) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -591) 1720) ((-44 . -583) 1704) ((-44 . -655) 1688) ((-44 . -316) 1672) ((-44 . -1130) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -556) 1553) ((-40 . -971) T) ((-40 . -1026) T) ((-40 . -1062) T) ((-40 . -664) T) ((-40 . -962) T) ((-40 . -591) 1455) ((-40 . -589) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1130) T) ((-40 . -553) 1367) ((-40 . -1014) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -969) 1312) ((-40 . -964) 1257) ((-40 . -82) 1174) ((-40 . -554) 1158) ((-40 . -184) 1135) ((-40 . -810) 1087) ((-40 . -812) 999) ((-40 . -807) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1135) T) ((-40 . -833) T) ((-40 . -496) T) ((-40 . -655) 677) ((-40 . -583) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1067) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -581) 366) ((-40 . -355) 343) ((-40 . -951) 220) ((-40 . -662) 192) ((-31 . -996) T) ((-31 . -430) 173) ((-31 . -553) 139) ((-31 . -556) 120) ((-31 . -1014) T) ((-31 . -1130) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -867) T) ((-30 . -553) 102) ((0 . |EnumerationCategory|) T) ((0 . -553) 84) ((0 . -1014) T) ((0 . -72) T) ((0 . -1130) T) ((-2 . |RecordCategory|) T) ((-2 . -553) 66) ((-2 . -1014) T) ((-2 . -72) T) ((-2 . -1130) T) ((-3 . |UnionCategory|) T) ((-3 . -553) 48) ((-3 . -1014) T) ((-3 . -72) T) ((-3 . -1130) T) ((-1 . -1014) T) ((-1 . -553) 30) ((-1 . -1130) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
+((((-484)) . T))
+(((-1209 . -146) T) ((-1209 . -555) 200711) ((-1209 . -970) T) ((-1209 . -1025) T) ((-1209 . -1061) T) ((-1209 . -663) T) ((-1209 . -961) T) ((-1209 . -590) 200698) ((-1209 . -588) 200670) ((-1209 . -104) T) ((-1209 . -25) T) ((-1209 . -72) T) ((-1209 . -13) T) ((-1209 . -1129) T) ((-1209 . -552) 200652) ((-1209 . -1013) T) ((-1209 . -23) T) ((-1209 . -21) T) ((-1209 . -968) 200639) ((-1209 . -963) 200626) ((-1209 . -82) 200611) ((-1209 . -320) T) ((-1209 . -553) 200593) ((-1209 . -1066) T) ((-1205 . -1013) T) ((-1205 . -552) 200560) ((-1205 . -1129) T) ((-1205 . -13) T) ((-1205 . -72) T) ((-1205 . -430) 200542) ((-1205 . -555) 200524) ((-1204 . -1202) 200503) ((-1204 . -950) 200480) ((-1204 . -555) 200429) ((-1204 . -961) T) ((-1204 . -663) T) ((-1204 . -1061) T) ((-1204 . -1025) T) ((-1204 . -970) T) ((-1204 . -21) T) ((-1204 . -588) 200388) ((-1204 . -23) T) ((-1204 . -1013) T) ((-1204 . -552) 200370) ((-1204 . -1129) T) ((-1204 . -13) T) ((-1204 . -72) T) ((-1204 . -25) T) ((-1204 . -104) T) ((-1204 . -590) 200344) ((-1204 . -1194) 200328) ((-1204 . -654) 200298) ((-1204 . -582) 200268) ((-1204 . -968) 200252) ((-1204 . -963) 200236) ((-1204 . -82) 200215) ((-1204 . -38) 200185) ((-1204 . -1199) 200164) ((-1203 . -961) T) ((-1203 . -663) T) ((-1203 . -1061) T) ((-1203 . -1025) T) ((-1203 . -970) T) ((-1203 . -21) T) ((-1203 . -588) 200123) ((-1203 . -23) T) ((-1203 . -1013) T) ((-1203 . -552) 200105) ((-1203 . -1129) T) ((-1203 . -13) T) ((-1203 . -72) T) ((-1203 . -25) T) ((-1203 . -104) T) ((-1203 . -590) 200079) ((-1203 . -555) 200035) ((-1203 . -1194) 200019) ((-1203 . -654) 199989) ((-1203 . -582) 199959) ((-1203 . -968) 199943) ((-1203 . -963) 199927) ((-1203 . -82) 199906) ((-1203 . -38) 199876) ((-1203 . -335) 199855) ((-1203 . -950) 199839) ((-1201 . -1202) 199815) ((-1201 . -950) 199789) ((-1201 . -555) 199735) ((-1201 . -961) T) ((-1201 . -663) T) ((-1201 . -1061) T) ((-1201 . -1025) T) ((-1201 . -970) T) ((-1201 . -21) T) ((-1201 . -588) 199694) ((-1201 . -23) T) ((-1201 . -1013) T) ((-1201 . -552) 199676) ((-1201 . -1129) T) ((-1201 . -13) T) ((-1201 . -72) T) ((-1201 . -25) T) ((-1201 . -104) T) ((-1201 . -590) 199650) ((-1201 . -1194) 199634) ((-1201 . -654) 199604) ((-1201 . -582) 199574) ((-1201 . -968) 199558) ((-1201 . -963) 199542) ((-1201 . -82) 199521) ((-1201 . -38) 199491) ((-1201 . -1199) 199467) ((-1200 . -1202) 199446) ((-1200 . -950) 199403) ((-1200 . -555) 199332) ((-1200 . -961) T) ((-1200 . -663) T) ((-1200 . -1061) T) ((-1200 . -1025) T) ((-1200 . -970) T) ((-1200 . -21) T) ((-1200 . -588) 199291) ((-1200 . -23) T) ((-1200 . -1013) T) ((-1200 . -552) 199273) ((-1200 . -1129) T) ((-1200 . -13) T) ((-1200 . -72) T) ((-1200 . -25) T) ((-1200 . -104) T) ((-1200 . -590) 199247) ((-1200 . -1194) 199231) ((-1200 . -654) 199201) ((-1200 . -582) 199171) ((-1200 . -968) 199155) ((-1200 . -963) 199139) ((-1200 . -82) 199118) ((-1200 . -38) 199088) ((-1200 . -1199) 199067) ((-1200 . -335) 199039) ((-1195 . -335) 199011) ((-1195 . -555) 198960) ((-1195 . -950) 198937) ((-1195 . -582) 198907) ((-1195 . -654) 198877) ((-1195 . -590) 198851) ((-1195 . -588) 198810) ((-1195 . -104) T) ((-1195 . -25) T) ((-1195 . -72) T) ((-1195 . -13) T) ((-1195 . -1129) T) ((-1195 . -552) 198792) ((-1195 . -1013) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -968) 198776) ((-1195 . -963) 198760) ((-1195 . -82) 198739) ((-1195 . -1202) 198718) ((-1195 . -961) T) ((-1195 . -663) T) ((-1195 . -1061) T) ((-1195 . -1025) T) ((-1195 . -970) T) ((-1195 . -1194) 198702) ((-1195 . -38) 198672) ((-1195 . -1199) 198651) ((-1193 . -1124) 198620) ((-1193 . -1035) 198604) ((-1193 . -552) 198566) ((-1193 . -124) 198550) ((-1193 . -34) T) ((-1193 . -13) T) ((-1193 . -1129) T) ((-1193 . -72) T) ((-1193 . -260) 198488) ((-1193 . -455) 198421) ((-1193 . -1013) T) ((-1193 . -429) 198405) ((-1193 . -553) 198366) ((-1193 . -318) 198350) ((-1193 . -889) 198319) ((-1192 . -961) T) ((-1192 . -663) T) ((-1192 . -1061) T) ((-1192 . -1025) T) ((-1192 . -970) T) ((-1192 . -21) T) ((-1192 . -588) 198264) ((-1192 . -23) T) ((-1192 . -1013) T) ((-1192 . -552) 198233) ((-1192 . -1129) T) ((-1192 . -13) T) ((-1192 . -72) T) ((-1192 . -25) T) ((-1192 . -104) T) ((-1192 . -590) 198193) ((-1192 . -555) 198135) ((-1192 . -430) 198119) ((-1192 . -38) 198089) ((-1192 . -82) 198054) ((-1192 . -963) 198024) ((-1192 . -968) 197994) ((-1192 . -582) 197964) ((-1192 . -654) 197934) ((-1191 . -995) T) ((-1191 . -430) 197915) ((-1191 . -552) 197881) ((-1191 . -555) 197862) ((-1191 . -1013) T) ((-1191 . -1129) T) ((-1191 . -13) T) ((-1191 . -72) T) ((-1191 . -64) T) ((-1190 . -995) T) ((-1190 . -430) 197843) ((-1190 . -552) 197809) ((-1190 . -555) 197790) ((-1190 . -1013) T) ((-1190 . -1129) T) ((-1190 . -13) T) ((-1190 . -72) T) ((-1190 . -64) T) ((-1185 . -552) 197772) ((-1183 . -1013) T) ((-1183 . -552) 197754) ((-1183 . -1129) T) ((-1183 . -13) T) ((-1183 . -72) T) ((-1182 . -1013) T) ((-1182 . -552) 197736) ((-1182 . -1129) T) ((-1182 . -13) T) ((-1182 . -72) T) ((-1179 . -1178) 197720) ((-1179 . -324) 197704) ((-1179 . -759) 197683) ((-1179 . -756) 197662) ((-1179 . -124) 197646) ((-1179 . -553) 197607) ((-1179 . -241) 197559) ((-1179 . -538) 197536) ((-1179 . -243) 197513) ((-1179 . -593) 197497) ((-1179 . -429) 197481) ((-1179 . -1013) 197434) ((-1179 . -455) 197367) ((-1179 . -260) 197305) ((-1179 . -552) 197220) ((-1179 . -72) 197154) ((-1179 . -1129) T) ((-1179 . -13) T) ((-1179 . -34) T) ((-1179 . -318) 197138) ((-1179 . -1035) 197122) ((-1179 . -19) 197106) ((-1176 . -1013) T) ((-1176 . -552) 197072) ((-1176 . -1129) T) ((-1176 . -13) T) ((-1176 . -72) T) ((-1169 . -1172) 197056) ((-1169 . -190) 197015) ((-1169 . -555) 196897) ((-1169 . -590) 196822) ((-1169 . -588) 196732) ((-1169 . -104) T) ((-1169 . -25) T) ((-1169 . -72) T) ((-1169 . -552) 196714) ((-1169 . -1013) T) ((-1169 . -23) T) ((-1169 . -21) T) ((-1169 . -970) T) ((-1169 . -1025) T) ((-1169 . -1061) T) ((-1169 . -663) T) ((-1169 . -961) T) ((-1169 . -186) 196667) ((-1169 . -13) T) ((-1169 . -1129) T) ((-1169 . -189) 196626) ((-1169 . -241) 196591) ((-1169 . -809) 196504) ((-1169 . -806) 196392) ((-1169 . -811) 196305) ((-1169 . -886) 196275) ((-1169 . -38) 196172) ((-1169 . -82) 196037) ((-1169 . -963) 195923) ((-1169 . -968) 195809) ((-1169 . -582) 195706) ((-1169 . -654) 195603) ((-1169 . -118) 195582) ((-1169 . -120) 195561) ((-1169 . -146) 195515) ((-1169 . -495) 195494) ((-1169 . -246) 195473) ((-1169 . -47) 195450) ((-1169 . -1158) 195427) ((-1169 . -35) 195393) ((-1169 . -66) 195359) ((-1169 . -239) 195325) ((-1169 . -433) 195291) ((-1169 . -1118) 195257) ((-1169 . -1115) 195223) ((-1169 . -915) 195189) ((-1166 . -277) 195133) ((-1166 . -950) 195099) ((-1166 . -355) 195065) ((-1166 . -38) 194922) ((-1166 . -555) 194796) ((-1166 . -590) 194685) ((-1166 . -588) 194559) ((-1166 . -970) T) ((-1166 . -1025) T) ((-1166 . -1061) T) ((-1166 . -663) T) ((-1166 . -961) T) ((-1166 . -82) 194409) ((-1166 . -963) 194298) ((-1166 . -968) 194187) ((-1166 . -21) T) ((-1166 . -23) T) ((-1166 . -1013) T) ((-1166 . -552) 194169) ((-1166 . -1129) T) ((-1166 . -13) T) ((-1166 . -72) T) ((-1166 . -25) T) ((-1166 . -104) T) ((-1166 . -582) 194026) ((-1166 . -654) 193883) ((-1166 . -118) 193844) ((-1166 . -120) 193805) ((-1166 . -146) T) ((-1166 . -495) T) ((-1166 . -246) T) ((-1166 . -47) 193749) ((-1165 . -1164) 193728) ((-1165 . -312) 193707) ((-1165 . -1134) 193686) ((-1165 . -832) 193665) ((-1165 . -495) 193619) ((-1165 . -146) 193553) ((-1165 . -555) 193372) ((-1165 . -654) 193219) ((-1165 . -582) 193066) ((-1165 . -38) 192913) ((-1165 . -392) 192892) ((-1165 . -258) 192871) ((-1165 . -590) 192771) ((-1165 . -588) 192656) ((-1165 . -970) T) ((-1165 . -1025) T) ((-1165 . -1061) T) ((-1165 . -663) T) ((-1165 . -961) T) ((-1165 . -82) 192476) ((-1165 . -963) 192317) ((-1165 . -968) 192158) ((-1165 . -21) T) ((-1165 . -23) T) ((-1165 . -1013) T) ((-1165 . -552) 192140) ((-1165 . -1129) T) ((-1165 . -13) T) ((-1165 . -72) T) ((-1165 . -25) T) ((-1165 . -104) T) ((-1165 . -246) 192094) ((-1165 . -201) 192073) ((-1165 . -915) 192039) ((-1165 . -1115) 192005) ((-1165 . -1118) 191971) ((-1165 . -433) 191937) ((-1165 . -239) 191903) ((-1165 . -66) 191869) ((-1165 . -35) 191835) ((-1165 . -1158) 191805) ((-1165 . -47) 191775) ((-1165 . -120) 191754) ((-1165 . -118) 191733) ((-1165 . -886) 191696) ((-1165 . -811) 191602) ((-1165 . -806) 191506) ((-1165 . -809) 191412) ((-1165 . -241) 191370) ((-1165 . -189) 191322) ((-1165 . -186) 191268) ((-1165 . -190) 191220) ((-1165 . -1162) 191204) ((-1165 . -950) 191188) ((-1160 . -1164) 191149) ((-1160 . -312) 191128) ((-1160 . -1134) 191107) ((-1160 . -832) 191086) ((-1160 . -495) 191040) ((-1160 . -146) 190974) ((-1160 . -555) 190723) ((-1160 . -654) 190570) ((-1160 . -582) 190417) ((-1160 . -38) 190264) ((-1160 . -392) 190243) ((-1160 . -258) 190222) ((-1160 . -590) 190122) ((-1160 . -588) 190007) ((-1160 . -970) T) ((-1160 . -1025) T) ((-1160 . -1061) T) ((-1160 . -663) T) ((-1160 . -961) T) ((-1160 . -82) 189827) ((-1160 . -963) 189668) ((-1160 . -968) 189509) ((-1160 . -21) T) ((-1160 . -23) T) ((-1160 . -1013) T) ((-1160 . -552) 189491) ((-1160 . -1129) T) ((-1160 . -13) T) ((-1160 . -72) T) ((-1160 . -25) T) ((-1160 . -104) T) ((-1160 . -246) 189445) ((-1160 . -201) 189424) ((-1160 . -915) 189390) ((-1160 . -1115) 189356) ((-1160 . -1118) 189322) ((-1160 . -433) 189288) ((-1160 . -239) 189254) ((-1160 . -66) 189220) ((-1160 . -35) 189186) ((-1160 . -1158) 189156) ((-1160 . -47) 189126) ((-1160 . -120) 189105) ((-1160 . -118) 189084) ((-1160 . -886) 189047) ((-1160 . -811) 188953) ((-1160 . -806) 188834) ((-1160 . -809) 188740) ((-1160 . -241) 188698) ((-1160 . -189) 188650) ((-1160 . -186) 188596) ((-1160 . -190) 188548) ((-1160 . -1162) 188532) ((-1160 . -950) 188467) ((-1148 . -1155) 188451) ((-1148 . -1066) 188429) ((-1148 . -553) NIL) ((-1148 . -260) 188416) ((-1148 . -455) 188364) ((-1148 . -277) 188341) ((-1148 . -950) 188224) ((-1148 . -355) 188208) ((-1148 . -38) 188040) ((-1148 . -82) 187845) ((-1148 . -963) 187671) ((-1148 . -968) 187497) ((-1148 . -588) 187407) ((-1148 . -590) 187296) ((-1148 . -582) 187128) ((-1148 . -654) 186960) ((-1148 . -555) 186716) ((-1148 . -118) 186695) ((-1148 . -120) 186674) ((-1148 . -47) 186651) ((-1148 . -329) 186635) ((-1148 . -580) 186583) ((-1148 . -809) 186527) ((-1148 . -806) 186434) ((-1148 . -811) 186345) ((-1148 . -796) NIL) ((-1148 . -821) 186324) ((-1148 . -1134) 186303) ((-1148 . -861) 186273) ((-1148 . -832) 186252) ((-1148 . -495) 186166) ((-1148 . -246) 186080) ((-1148 . -146) 185974) ((-1148 . -392) 185908) ((-1148 . -258) 185887) ((-1148 . -241) 185814) ((-1148 . -190) T) ((-1148 . -104) T) ((-1148 . -25) T) ((-1148 . -72) T) ((-1148 . -552) 185796) ((-1148 . -1013) T) ((-1148 . -23) T) ((-1148 . -21) T) ((-1148 . -970) T) ((-1148 . -1025) T) ((-1148 . -1061) T) ((-1148 . -663) T) ((-1148 . -961) T) ((-1148 . -186) 185783) ((-1148 . -13) T) ((-1148 . -1129) T) ((-1148 . -189) T) ((-1148 . -225) 185767) ((-1148 . -184) 185751) ((-1146 . -1006) 185735) ((-1146 . -557) 185719) ((-1146 . -1013) 185697) ((-1146 . -552) 185664) ((-1146 . -1129) 185642) ((-1146 . -13) 185620) ((-1146 . -72) 185598) ((-1146 . -1007) 185555) ((-1144 . -1143) 185534) ((-1144 . -915) 185500) ((-1144 . -1115) 185466) ((-1144 . -1118) 185432) ((-1144 . -433) 185398) ((-1144 . -239) 185364) ((-1144 . -66) 185330) ((-1144 . -35) 185296) ((-1144 . -1158) 185273) ((-1144 . -47) 185250) ((-1144 . -555) 185005) ((-1144 . -654) 184825) ((-1144 . -582) 184645) ((-1144 . -590) 184456) ((-1144 . -588) 184314) ((-1144 . -968) 184128) ((-1144 . -963) 183942) ((-1144 . -82) 183730) ((-1144 . -38) 183550) ((-1144 . -886) 183520) ((-1144 . -241) 183420) ((-1144 . -1141) 183404) ((-1144 . -970) T) ((-1144 . -1025) T) ((-1144 . -1061) T) ((-1144 . -663) T) ((-1144 . -961) T) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1013) T) ((-1144 . -552) 183386) ((-1144 . -1129) T) ((-1144 . -13) T) ((-1144 . -72) T) ((-1144 . -25) T) ((-1144 . -104) T) ((-1144 . -118) 183314) ((-1144 . -120) 183196) ((-1144 . -553) 182869) ((-1144 . -184) 182839) ((-1144 . -809) 182693) ((-1144 . -811) 182493) ((-1144 . -806) 182291) ((-1144 . -225) 182261) ((-1144 . -189) 182123) ((-1144 . -186) 181979) ((-1144 . -190) 181887) ((-1144 . -312) 181866) ((-1144 . -1134) 181845) ((-1144 . -832) 181824) ((-1144 . -495) 181778) ((-1144 . -146) 181712) ((-1144 . -392) 181691) ((-1144 . -258) 181670) ((-1144 . -246) 181624) ((-1144 . -201) 181603) ((-1144 . -288) 181573) ((-1144 . -455) 181433) ((-1144 . -260) 181372) ((-1144 . -329) 181342) ((-1144 . -580) 181250) ((-1144 . -343) 181220) ((-1144 . -796) 181093) ((-1144 . -740) 181046) ((-1144 . -714) 180999) ((-1144 . -716) 180952) ((-1144 . -756) 180854) ((-1144 . -759) 180756) ((-1144 . -718) 180709) ((-1144 . -721) 180662) ((-1144 . -755) 180615) ((-1144 . -794) 180585) ((-1144 . -821) 180538) ((-1144 . -933) 180491) ((-1144 . -950) 180280) ((-1144 . -1066) 180232) ((-1144 . -904) 180202) ((-1139 . -1143) 180163) ((-1139 . -915) 180129) ((-1139 . -1115) 180095) ((-1139 . -1118) 180061) ((-1139 . -433) 180027) ((-1139 . -239) 179993) ((-1139 . -66) 179959) ((-1139 . -35) 179925) ((-1139 . -1158) 179902) ((-1139 . -47) 179879) ((-1139 . -555) 179680) ((-1139 . -654) 179482) ((-1139 . -582) 179284) ((-1139 . -590) 179139) ((-1139 . -588) 178979) ((-1139 . -968) 178775) ((-1139 . -963) 178571) ((-1139 . -82) 178323) ((-1139 . -38) 178125) ((-1139 . -886) 178095) ((-1139 . -241) 177923) ((-1139 . -1141) 177907) ((-1139 . -970) T) ((-1139 . -1025) T) ((-1139 . -1061) T) ((-1139 . -663) T) ((-1139 . -961) T) ((-1139 . -21) T) ((-1139 . -23) T) ((-1139 . -1013) T) ((-1139 . -552) 177889) ((-1139 . -1129) T) ((-1139 . -13) T) ((-1139 . -72) T) ((-1139 . -25) T) ((-1139 . -104) T) ((-1139 . -118) 177799) ((-1139 . -120) 177709) ((-1139 . -553) NIL) ((-1139 . -184) 177661) ((-1139 . -809) 177497) ((-1139 . -811) 177261) ((-1139 . -806) 177000) ((-1139 . -225) 176952) ((-1139 . -189) 176778) ((-1139 . -186) 176598) ((-1139 . -190) 176488) ((-1139 . -312) 176467) ((-1139 . -1134) 176446) ((-1139 . -832) 176425) ((-1139 . -495) 176379) ((-1139 . -146) 176313) ((-1139 . -392) 176292) ((-1139 . -258) 176271) ((-1139 . -246) 176225) ((-1139 . -201) 176204) ((-1139 . -288) 176156) ((-1139 . -455) 175890) ((-1139 . -260) 175775) ((-1139 . -329) 175727) ((-1139 . -580) 175679) ((-1139 . -343) 175631) ((-1139 . -796) NIL) ((-1139 . -740) NIL) ((-1139 . -714) NIL) ((-1139 . -716) NIL) ((-1139 . -756) NIL) ((-1139 . -759) NIL) ((-1139 . -718) NIL) ((-1139 . -721) NIL) ((-1139 . -755) NIL) ((-1139 . -794) 175583) ((-1139 . -821) NIL) ((-1139 . -933) NIL) ((-1139 . -950) 175549) ((-1139 . -1066) NIL) ((-1139 . -904) 175501) ((-1138 . -752) T) ((-1138 . -759) T) ((-1138 . -756) T) ((-1138 . -1013) T) ((-1138 . -552) 175483) ((-1138 . -1129) T) ((-1138 . -13) T) ((-1138 . -72) T) ((-1138 . -320) T) ((-1138 . -604) T) ((-1137 . -752) T) ((-1137 . -759) T) ((-1137 . -756) T) ((-1137 . -1013) T) ((-1137 . -552) 175465) ((-1137 . -1129) T) ((-1137 . -13) T) ((-1137 . -72) T) ((-1137 . -320) T) ((-1137 . -604) T) ((-1136 . -752) T) ((-1136 . -759) T) ((-1136 . -756) T) ((-1136 . -1013) T) ((-1136 . -552) 175447) ((-1136 . -1129) T) ((-1136 . -13) T) ((-1136 . -72) T) ((-1136 . -320) T) ((-1136 . -604) T) ((-1135 . -752) T) ((-1135 . -759) T) ((-1135 . -756) T) ((-1135 . -1013) T) ((-1135 . -552) 175429) ((-1135 . -1129) T) ((-1135 . -13) T) ((-1135 . -72) T) ((-1135 . -320) T) ((-1135 . -604) T) ((-1130 . -995) T) ((-1130 . -430) 175410) ((-1130 . -552) 175376) ((-1130 . -555) 175357) ((-1130 . -1013) T) ((-1130 . -1129) T) ((-1130 . -13) T) ((-1130 . -72) T) ((-1130 . -64) T) ((-1127 . -430) 175334) ((-1127 . -552) 175275) ((-1127 . -555) 175252) ((-1127 . -1013) 175230) ((-1127 . -1129) 175208) ((-1127 . -13) 175186) ((-1127 . -72) 175164) ((-1122 . -679) 175140) ((-1122 . -35) 175106) ((-1122 . -66) 175072) ((-1122 . -239) 175038) ((-1122 . -433) 175004) ((-1122 . -1118) 174970) ((-1122 . -1115) 174936) ((-1122 . -915) 174902) ((-1122 . -47) 174871) ((-1122 . -38) 174768) ((-1122 . -582) 174665) ((-1122 . -654) 174562) ((-1122 . -555) 174444) ((-1122 . -246) 174423) ((-1122 . -495) 174402) ((-1122 . -82) 174267) ((-1122 . -963) 174153) ((-1122 . -968) 174039) ((-1122 . -146) 173993) ((-1122 . -120) 173972) ((-1122 . -118) 173951) ((-1122 . -590) 173876) ((-1122 . -588) 173786) ((-1122 . -886) 173747) ((-1122 . -811) 173728) ((-1122 . -1129) T) ((-1122 . -13) T) ((-1122 . -806) 173707) ((-1122 . -961) T) ((-1122 . -663) T) ((-1122 . -1061) T) ((-1122 . -1025) T) ((-1122 . -970) T) ((-1122 . -21) T) ((-1122 . -23) T) ((-1122 . -1013) T) ((-1122 . -552) 173689) ((-1122 . -72) T) ((-1122 . -25) T) ((-1122 . -104) T) ((-1122 . -809) 173670) ((-1122 . -455) 173637) ((-1122 . -260) 173624) ((-1116 . -923) 173608) ((-1116 . -34) T) ((-1116 . -13) T) ((-1116 . -1129) T) ((-1116 . -72) 173562) ((-1116 . -552) 173497) ((-1116 . -260) 173435) ((-1116 . -455) 173368) ((-1116 . -1013) 173346) ((-1116 . -429) 173330) ((-1116 . -318) 173314) ((-1116 . -1035) 173298) ((-1111 . -314) 173272) ((-1111 . -72) T) ((-1111 . -13) T) ((-1111 . -1129) T) ((-1111 . -552) 173254) ((-1111 . -1013) T) ((-1109 . -1013) T) ((-1109 . -552) 173236) ((-1109 . -1129) T) ((-1109 . -13) T) ((-1109 . -72) T) ((-1109 . -555) 173218) ((-1104 . -747) 173202) ((-1104 . -72) T) ((-1104 . -13) T) ((-1104 . -1129) T) ((-1104 . -552) 173184) ((-1104 . -1013) T) ((-1102 . -1107) 173163) ((-1102 . -183) 173111) ((-1102 . -76) 173059) ((-1102 . -1035) 173007) ((-1102 . -124) 172955) ((-1102 . -553) NIL) ((-1102 . -193) 172903) ((-1102 . -538) 172882) ((-1102 . -260) 172680) ((-1102 . -455) 172432) ((-1102 . -429) 172367) ((-1102 . -241) 172346) ((-1102 . -243) 172325) ((-1102 . -549) 172304) ((-1102 . -1013) T) ((-1102 . -552) 172286) ((-1102 . -72) T) ((-1102 . -1129) T) ((-1102 . -13) T) ((-1102 . -34) T) ((-1102 . -318) 172234) ((-1098 . -1013) T) ((-1098 . -552) 172216) ((-1098 . -1129) T) ((-1098 . -13) T) ((-1098 . -72) T) ((-1097 . -752) T) ((-1097 . -759) T) ((-1097 . -756) T) ((-1097 . -1013) T) ((-1097 . -552) 172198) ((-1097 . -1129) T) ((-1097 . -13) T) ((-1097 . -72) T) ((-1097 . -320) T) ((-1097 . -604) T) ((-1096 . -752) T) ((-1096 . -759) T) ((-1096 . -756) T) ((-1096 . -1013) T) ((-1096 . -552) 172180) ((-1096 . -1129) T) ((-1096 . -13) T) ((-1096 . -72) T) ((-1096 . -320) T) ((-1095 . -1175) T) ((-1095 . -1013) T) ((-1095 . -552) 172147) ((-1095 . -1129) T) ((-1095 . -13) T) ((-1095 . -72) T) ((-1095 . -950) 172083) ((-1095 . -555) 172019) ((-1094 . -552) 172001) ((-1093 . -552) 171983) ((-1092 . -277) 171960) ((-1092 . -950) 171858) ((-1092 . -355) 171842) ((-1092 . -38) 171739) ((-1092 . -555) 171596) ((-1092 . -590) 171521) ((-1092 . -588) 171431) ((-1092 . -970) T) ((-1092 . -1025) T) ((-1092 . -1061) T) ((-1092 . -663) T) ((-1092 . -961) T) ((-1092 . -82) 171296) ((-1092 . -963) 171182) ((-1092 . -968) 171068) ((-1092 . -21) T) ((-1092 . -23) T) ((-1092 . -1013) T) ((-1092 . -552) 171050) ((-1092 . -1129) T) ((-1092 . -13) T) ((-1092 . -72) T) ((-1092 . -25) T) ((-1092 . -104) T) ((-1092 . -582) 170947) ((-1092 . -654) 170844) ((-1092 . -118) 170823) ((-1092 . -120) 170802) ((-1092 . -146) 170756) ((-1092 . -495) 170735) ((-1092 . -246) 170714) ((-1092 . -47) 170691) ((-1090 . -756) T) ((-1090 . -552) 170673) ((-1090 . -1013) T) ((-1090 . -72) T) ((-1090 . -13) T) ((-1090 . -1129) T) ((-1090 . -759) T) ((-1090 . -553) 170595) ((-1090 . -555) 170561) ((-1090 . -950) 170543) ((-1090 . -796) 170510) ((-1089 . -1172) 170494) ((-1089 . -190) 170453) ((-1089 . -555) 170335) ((-1089 . -590) 170260) ((-1089 . -588) 170170) ((-1089 . -104) T) ((-1089 . -25) T) ((-1089 . -72) T) ((-1089 . -552) 170152) ((-1089 . -1013) T) ((-1089 . -23) T) ((-1089 . -21) T) ((-1089 . -970) T) ((-1089 . -1025) T) ((-1089 . -1061) T) ((-1089 . -663) T) ((-1089 . -961) T) ((-1089 . -186) 170105) ((-1089 . -13) T) ((-1089 . -1129) T) ((-1089 . -189) 170064) ((-1089 . -241) 170029) ((-1089 . -809) 169942) ((-1089 . -806) 169830) ((-1089 . -811) 169743) ((-1089 . -886) 169713) ((-1089 . -38) 169610) ((-1089 . -82) 169475) ((-1089 . -963) 169361) ((-1089 . -968) 169247) ((-1089 . -582) 169144) ((-1089 . -654) 169041) ((-1089 . -118) 169020) ((-1089 . -120) 168999) ((-1089 . -146) 168953) ((-1089 . -495) 168932) ((-1089 . -246) 168911) ((-1089 . -47) 168888) ((-1089 . -1158) 168865) ((-1089 . -35) 168831) ((-1089 . -66) 168797) ((-1089 . -239) 168763) ((-1089 . -433) 168729) ((-1089 . -1118) 168695) ((-1089 . -1115) 168661) ((-1089 . -915) 168627) ((-1088 . -1164) 168588) ((-1088 . -312) 168567) ((-1088 . -1134) 168546) ((-1088 . -832) 168525) ((-1088 . -495) 168479) ((-1088 . -146) 168413) ((-1088 . -555) 168162) ((-1088 . -654) 168009) ((-1088 . -582) 167856) ((-1088 . -38) 167703) ((-1088 . -392) 167682) ((-1088 . -258) 167661) ((-1088 . -590) 167561) ((-1088 . -588) 167446) ((-1088 . -970) T) ((-1088 . -1025) T) ((-1088 . -1061) T) ((-1088 . -663) T) ((-1088 . -961) T) ((-1088 . -82) 167266) ((-1088 . -963) 167107) ((-1088 . -968) 166948) ((-1088 . -21) T) ((-1088 . -23) T) ((-1088 . -1013) T) ((-1088 . -552) 166930) ((-1088 . -1129) T) ((-1088 . -13) T) ((-1088 . -72) T) ((-1088 . -25) T) ((-1088 . -104) T) ((-1088 . -246) 166884) ((-1088 . -201) 166863) ((-1088 . -915) 166829) ((-1088 . -1115) 166795) ((-1088 . -1118) 166761) ((-1088 . -433) 166727) ((-1088 . -239) 166693) ((-1088 . -66) 166659) ((-1088 . -35) 166625) ((-1088 . -1158) 166595) ((-1088 . -47) 166565) ((-1088 . -120) 166544) ((-1088 . -118) 166523) ((-1088 . -886) 166486) ((-1088 . -811) 166392) ((-1088 . -806) 166273) ((-1088 . -809) 166179) ((-1088 . -241) 166137) ((-1088 . -189) 166089) ((-1088 . -186) 166035) ((-1088 . -190) 165987) ((-1088 . -1162) 165971) ((-1088 . -950) 165906) ((-1085 . -1155) 165890) ((-1085 . -1066) 165868) ((-1085 . -553) NIL) ((-1085 . -260) 165855) ((-1085 . -455) 165803) ((-1085 . -277) 165780) ((-1085 . -950) 165663) ((-1085 . -355) 165647) ((-1085 . -38) 165479) ((-1085 . -82) 165284) ((-1085 . -963) 165110) ((-1085 . -968) 164936) ((-1085 . -588) 164846) ((-1085 . -590) 164735) ((-1085 . -582) 164567) ((-1085 . -654) 164399) ((-1085 . -555) 164176) ((-1085 . -118) 164155) ((-1085 . -120) 164134) ((-1085 . -47) 164111) ((-1085 . -329) 164095) ((-1085 . -580) 164043) ((-1085 . -809) 163987) ((-1085 . -806) 163894) ((-1085 . -811) 163805) ((-1085 . -796) NIL) ((-1085 . -821) 163784) ((-1085 . -1134) 163763) ((-1085 . -861) 163733) ((-1085 . -832) 163712) ((-1085 . -495) 163626) ((-1085 . -246) 163540) ((-1085 . -146) 163434) ((-1085 . -392) 163368) ((-1085 . -258) 163347) ((-1085 . -241) 163274) ((-1085 . -190) T) ((-1085 . -104) T) ((-1085 . -25) T) ((-1085 . -72) T) ((-1085 . -552) 163256) ((-1085 . -1013) T) ((-1085 . -23) T) ((-1085 . -21) T) ((-1085 . -970) T) ((-1085 . -1025) T) ((-1085 . -1061) T) ((-1085 . -663) T) ((-1085 . -961) T) ((-1085 . -186) 163243) ((-1085 . -13) T) ((-1085 . -1129) T) ((-1085 . -189) T) ((-1085 . -225) 163227) ((-1085 . -184) 163211) ((-1082 . -1143) 163172) ((-1082 . -915) 163138) ((-1082 . -1115) 163104) ((-1082 . -1118) 163070) ((-1082 . -433) 163036) ((-1082 . -239) 163002) ((-1082 . -66) 162968) ((-1082 . -35) 162934) ((-1082 . -1158) 162911) ((-1082 . -47) 162888) ((-1082 . -555) 162689) ((-1082 . -654) 162491) ((-1082 . -582) 162293) ((-1082 . -590) 162148) ((-1082 . -588) 161988) ((-1082 . -968) 161784) ((-1082 . -963) 161580) ((-1082 . -82) 161332) ((-1082 . -38) 161134) ((-1082 . -886) 161104) ((-1082 . -241) 160932) ((-1082 . -1141) 160916) ((-1082 . -970) T) ((-1082 . -1025) T) ((-1082 . -1061) T) ((-1082 . -663) T) ((-1082 . -961) T) ((-1082 . -21) T) ((-1082 . -23) T) ((-1082 . -1013) T) ((-1082 . -552) 160898) ((-1082 . -1129) T) ((-1082 . -13) T) ((-1082 . -72) T) ((-1082 . -25) T) ((-1082 . -104) T) ((-1082 . -118) 160808) ((-1082 . -120) 160718) ((-1082 . -553) NIL) ((-1082 . -184) 160670) ((-1082 . -809) 160506) ((-1082 . -811) 160270) ((-1082 . -806) 160009) ((-1082 . -225) 159961) ((-1082 . -189) 159787) ((-1082 . -186) 159607) ((-1082 . -190) 159497) ((-1082 . -312) 159476) ((-1082 . -1134) 159455) ((-1082 . -832) 159434) ((-1082 . -495) 159388) ((-1082 . -146) 159322) ((-1082 . -392) 159301) ((-1082 . -258) 159280) ((-1082 . -246) 159234) ((-1082 . -201) 159213) ((-1082 . -288) 159165) ((-1082 . -455) 158899) ((-1082 . -260) 158784) ((-1082 . -329) 158736) ((-1082 . -580) 158688) ((-1082 . -343) 158640) ((-1082 . -796) NIL) ((-1082 . -740) NIL) ((-1082 . -714) NIL) ((-1082 . -716) NIL) ((-1082 . -756) NIL) ((-1082 . -759) NIL) ((-1082 . -718) NIL) ((-1082 . -721) NIL) ((-1082 . -755) NIL) ((-1082 . -794) 158592) ((-1082 . -821) NIL) ((-1082 . -933) NIL) ((-1082 . -950) 158558) ((-1082 . -1066) NIL) ((-1082 . -904) 158510) ((-1081 . -995) T) ((-1081 . -430) 158491) ((-1081 . -552) 158457) ((-1081 . -555) 158438) ((-1081 . -1013) T) ((-1081 . -1129) T) ((-1081 . -13) T) ((-1081 . -72) T) ((-1081 . -64) T) ((-1080 . -1013) T) ((-1080 . -552) 158420) ((-1080 . -1129) T) ((-1080 . -13) T) ((-1080 . -72) T) ((-1079 . -1013) T) ((-1079 . -552) 158402) ((-1079 . -1129) T) ((-1079 . -13) T) ((-1079 . -72) T) ((-1074 . -1107) 158378) ((-1074 . -183) 158323) ((-1074 . -76) 158268) ((-1074 . -1035) 158213) ((-1074 . -124) 158158) ((-1074 . -553) NIL) ((-1074 . -193) 158103) ((-1074 . -538) 158079) ((-1074 . -260) 157868) ((-1074 . -455) 157608) ((-1074 . -429) 157540) ((-1074 . -241) 157516) ((-1074 . -243) 157492) ((-1074 . -549) 157468) ((-1074 . -1013) T) ((-1074 . -552) 157450) ((-1074 . -72) T) ((-1074 . -1129) T) ((-1074 . -13) T) ((-1074 . -34) T) ((-1074 . -318) 157395) ((-1073 . -1058) T) ((-1073 . -324) 157377) ((-1073 . -759) T) ((-1073 . -756) T) ((-1073 . -124) 157359) ((-1073 . -553) NIL) ((-1073 . -241) 157309) ((-1073 . -538) 157284) ((-1073 . -243) 157259) ((-1073 . -593) 157241) ((-1073 . -429) 157223) ((-1073 . -1013) T) ((-1073 . -455) NIL) ((-1073 . -260) NIL) ((-1073 . -552) 157205) ((-1073 . -72) T) ((-1073 . -1129) T) ((-1073 . -13) T) ((-1073 . -34) T) ((-1073 . -318) 157187) ((-1073 . -1035) 157169) ((-1073 . -19) 157151) ((-1069 . -616) 157135) ((-1069 . -593) 157119) ((-1069 . -243) 157096) ((-1069 . -241) 157048) ((-1069 . -538) 157025) ((-1069 . -553) 156986) ((-1069 . -429) 156970) ((-1069 . -1013) 156948) ((-1069 . -455) 156881) ((-1069 . -260) 156819) ((-1069 . -552) 156754) ((-1069 . -72) 156708) ((-1069 . -1129) T) ((-1069 . -13) T) ((-1069 . -34) T) ((-1069 . -124) 156692) ((-1069 . -1168) 156676) ((-1069 . -923) 156660) ((-1069 . -1064) 156644) ((-1069 . -555) 156621) ((-1069 . -1035) 156605) ((-1067 . -995) T) ((-1067 . -430) 156586) ((-1067 . -552) 156552) ((-1067 . -555) 156533) ((-1067 . -1013) T) ((-1067 . -1129) T) ((-1067 . -13) T) ((-1067 . -72) T) ((-1067 . -64) T) ((-1065 . -1107) 156512) ((-1065 . -183) 156460) ((-1065 . -76) 156408) ((-1065 . -1035) 156356) ((-1065 . -124) 156304) ((-1065 . -553) NIL) ((-1065 . -193) 156252) ((-1065 . -538) 156231) ((-1065 . -260) 156029) ((-1065 . -455) 155781) ((-1065 . -429) 155716) ((-1065 . -241) 155695) ((-1065 . -243) 155674) ((-1065 . -549) 155653) ((-1065 . -1013) T) ((-1065 . -552) 155635) ((-1065 . -72) T) ((-1065 . -1129) T) ((-1065 . -13) T) ((-1065 . -34) T) ((-1065 . -318) 155583) ((-1062 . -1034) 155567) ((-1062 . -318) 155551) ((-1062 . -1035) 155535) ((-1062 . -34) T) ((-1062 . -13) T) ((-1062 . -1129) T) ((-1062 . -72) 155489) ((-1062 . -552) 155424) ((-1062 . -260) 155362) ((-1062 . -455) 155295) ((-1062 . -1013) 155273) ((-1062 . -429) 155257) ((-1062 . -76) 155241) ((-1060 . -1020) 155210) ((-1060 . -1124) 155179) ((-1060 . -1035) 155163) ((-1060 . -552) 155125) ((-1060 . -124) 155109) ((-1060 . -34) T) ((-1060 . -13) T) ((-1060 . -1129) T) ((-1060 . -72) T) ((-1060 . -260) 155047) ((-1060 . -455) 154980) ((-1060 . -1013) T) ((-1060 . -429) 154964) ((-1060 . -553) 154925) ((-1060 . -318) 154909) ((-1060 . -889) 154878) ((-1060 . -983) 154847) ((-1056 . -1037) 154792) ((-1056 . -318) 154776) ((-1056 . -34) T) ((-1056 . -260) 154714) ((-1056 . -455) 154647) ((-1056 . -429) 154631) ((-1056 . -965) 154571) ((-1056 . -950) 154469) ((-1056 . -555) 154388) ((-1056 . -355) 154372) ((-1056 . -580) 154320) ((-1056 . -590) 154258) ((-1056 . -329) 154242) ((-1056 . -190) 154221) ((-1056 . -186) 154169) ((-1056 . -189) 154123) ((-1056 . -225) 154107) ((-1056 . -806) 154031) ((-1056 . -811) 153957) ((-1056 . -809) 153916) ((-1056 . -184) 153900) ((-1056 . -654) 153835) ((-1056 . -582) 153770) ((-1056 . -588) 153729) ((-1056 . -104) T) ((-1056 . -25) T) ((-1056 . -72) T) ((-1056 . -13) T) ((-1056 . -1129) T) ((-1056 . -552) 153691) ((-1056 . -1013) T) ((-1056 . -23) T) ((-1056 . -21) T) ((-1056 . -968) 153675) ((-1056 . -963) 153659) ((-1056 . -82) 153638) ((-1056 . -961) T) ((-1056 . -663) T) ((-1056 . -1061) T) ((-1056 . -1025) T) ((-1056 . -970) T) ((-1056 . -38) 153598) ((-1056 . -553) 153559) ((-1055 . -923) 153530) ((-1055 . -34) T) ((-1055 . -13) T) ((-1055 . -1129) T) ((-1055 . -72) T) ((-1055 . -552) 153512) ((-1055 . -260) 153438) ((-1055 . -455) 153346) ((-1055 . -1013) T) ((-1055 . -429) 153317) ((-1055 . -318) 153288) ((-1055 . -1035) 153259) ((-1054 . -1013) T) ((-1054 . -552) 153241) ((-1054 . -1129) T) ((-1054 . -13) T) ((-1054 . -72) T) ((-1049 . -1051) T) ((-1049 . -1175) T) ((-1049 . -64) T) ((-1049 . -72) T) ((-1049 . -13) T) ((-1049 . -1129) T) ((-1049 . -552) 153207) ((-1049 . -1013) T) ((-1049 . -555) 153188) ((-1049 . -430) 153169) ((-1049 . -995) T) ((-1047 . -1048) 153153) ((-1047 . -72) T) ((-1047 . -13) T) ((-1047 . -1129) T) ((-1047 . -552) 153135) ((-1047 . -1013) T) ((-1040 . -679) 153114) ((-1040 . -35) 153080) ((-1040 . -66) 153046) ((-1040 . -239) 153012) ((-1040 . -433) 152978) ((-1040 . -1118) 152944) ((-1040 . -1115) 152910) ((-1040 . -915) 152876) ((-1040 . -47) 152848) ((-1040 . -38) 152745) ((-1040 . -582) 152642) ((-1040 . -654) 152539) ((-1040 . -555) 152421) ((-1040 . -246) 152400) ((-1040 . -495) 152379) ((-1040 . -82) 152244) ((-1040 . -963) 152130) ((-1040 . -968) 152016) ((-1040 . -146) 151970) ((-1040 . -120) 151949) ((-1040 . -118) 151928) ((-1040 . -590) 151853) ((-1040 . -588) 151763) ((-1040 . -886) 151730) ((-1040 . -811) 151714) ((-1040 . -1129) T) ((-1040 . -13) T) ((-1040 . -806) 151696) ((-1040 . -961) T) ((-1040 . -663) T) ((-1040 . -1061) T) ((-1040 . -1025) T) ((-1040 . -970) T) ((-1040 . -21) T) ((-1040 . -23) T) ((-1040 . -1013) T) ((-1040 . -552) 151678) ((-1040 . -72) T) ((-1040 . -25) T) ((-1040 . -104) T) ((-1040 . -809) 151662) ((-1040 . -455) 151632) ((-1040 . -260) 151619) ((-1039 . -861) 151586) ((-1039 . -555) 151385) ((-1039 . -950) 151270) ((-1039 . -1134) 151249) ((-1039 . -821) 151228) ((-1039 . -796) 151087) ((-1039 . -811) 151071) ((-1039 . -806) 151053) ((-1039 . -809) 151037) ((-1039 . -455) 150989) ((-1039 . -392) 150943) ((-1039 . -580) 150891) ((-1039 . -590) 150780) ((-1039 . -329) 150764) ((-1039 . -47) 150736) ((-1039 . -38) 150588) ((-1039 . -582) 150440) ((-1039 . -654) 150292) ((-1039 . -246) 150226) ((-1039 . -495) 150160) ((-1039 . -82) 149985) ((-1039 . -963) 149831) ((-1039 . -968) 149677) ((-1039 . -146) 149591) ((-1039 . -120) 149570) ((-1039 . -118) 149549) ((-1039 . -588) 149459) ((-1039 . -104) T) ((-1039 . -25) T) ((-1039 . -72) T) ((-1039 . -13) T) ((-1039 . -1129) T) ((-1039 . -552) 149441) ((-1039 . -1013) T) ((-1039 . -23) T) ((-1039 . -21) T) ((-1039 . -961) T) ((-1039 . -663) T) ((-1039 . -1061) T) ((-1039 . -1025) T) ((-1039 . -970) T) ((-1039 . -355) 149425) ((-1039 . -277) 149397) ((-1039 . -260) 149384) ((-1039 . -553) 149132) ((-1033 . -483) T) ((-1033 . -1134) T) ((-1033 . -1066) T) ((-1033 . -950) 149114) ((-1033 . -553) 149029) ((-1033 . -933) T) ((-1033 . -796) 149011) ((-1033 . -755) T) ((-1033 . -721) T) ((-1033 . -718) T) ((-1033 . -759) T) ((-1033 . -756) T) ((-1033 . -716) T) ((-1033 . -714) T) ((-1033 . -740) T) ((-1033 . -590) 148983) ((-1033 . -580) 148965) ((-1033 . -832) T) ((-1033 . -495) T) ((-1033 . -246) T) ((-1033 . -146) T) ((-1033 . -555) 148937) ((-1033 . -654) 148924) ((-1033 . -582) 148911) ((-1033 . -968) 148898) ((-1033 . -963) 148885) ((-1033 . -82) 148870) ((-1033 . -38) 148857) ((-1033 . -392) T) ((-1033 . -258) T) ((-1033 . -189) T) ((-1033 . -186) 148844) ((-1033 . -190) T) ((-1033 . -116) T) ((-1033 . -961) T) ((-1033 . -663) T) ((-1033 . -1061) T) ((-1033 . -1025) T) ((-1033 . -970) T) ((-1033 . -21) T) ((-1033 . -588) 148816) ((-1033 . -23) T) ((-1033 . -1013) T) ((-1033 . -552) 148798) ((-1033 . -1129) T) ((-1033 . -13) T) ((-1033 . -72) T) ((-1033 . -25) T) ((-1033 . -104) T) ((-1033 . -120) T) ((-1033 . -752) T) ((-1033 . -320) T) ((-1033 . -84) T) ((-1033 . -604) T) ((-1029 . -995) T) ((-1029 . -430) 148779) ((-1029 . -552) 148745) ((-1029 . -555) 148726) ((-1029 . -1013) T) ((-1029 . -1129) T) ((-1029 . -13) T) ((-1029 . -72) T) ((-1029 . -64) T) ((-1028 . -1013) T) ((-1028 . -552) 148708) ((-1028 . -1129) T) ((-1028 . -13) T) ((-1028 . -72) T) ((-1026 . -196) 148687) ((-1026 . -1187) 148657) ((-1026 . -721) 148636) ((-1026 . -718) 148615) ((-1026 . -759) 148569) ((-1026 . -756) 148523) ((-1026 . -716) 148502) ((-1026 . -717) 148481) ((-1026 . -654) 148426) ((-1026 . -582) 148351) ((-1026 . -243) 148328) ((-1026 . -241) 148305) ((-1026 . -538) 148282) ((-1026 . -950) 148111) ((-1026 . -555) 147915) ((-1026 . -355) 147884) ((-1026 . -580) 147792) ((-1026 . -590) 147631) ((-1026 . -329) 147601) ((-1026 . -429) 147585) ((-1026 . -455) 147518) ((-1026 . -260) 147456) ((-1026 . -34) T) ((-1026 . -318) 147440) ((-1026 . -320) 147419) ((-1026 . -190) 147372) ((-1026 . -588) 147160) ((-1026 . -970) 147139) ((-1026 . -1025) 147118) ((-1026 . -1061) 147097) ((-1026 . -663) 147076) ((-1026 . -961) 147055) ((-1026 . -186) 146951) ((-1026 . -189) 146853) ((-1026 . -225) 146823) ((-1026 . -806) 146695) ((-1026 . -811) 146569) ((-1026 . -809) 146502) ((-1026 . -184) 146472) ((-1026 . -552) 146169) ((-1026 . -968) 146094) ((-1026 . -963) 145999) ((-1026 . -82) 145919) ((-1026 . -104) 145794) ((-1026 . -25) 145631) ((-1026 . -72) 145368) ((-1026 . -13) T) ((-1026 . -1129) T) ((-1026 . -1013) 145124) ((-1026 . -23) 144980) ((-1026 . -21) 144895) ((-1022 . -1023) 144879) ((-1022 . |MappingCategory|) 144853) ((-1022 . -1129) T) ((-1022 . -80) 144837) ((-1022 . -1013) T) ((-1022 . -552) 144819) ((-1022 . -13) T) ((-1022 . -72) T) ((-1017 . -1016) 144783) ((-1017 . -72) T) ((-1017 . -552) 144765) ((-1017 . -1013) T) ((-1017 . -241) 144721) ((-1017 . -1129) T) ((-1017 . -13) T) ((-1017 . -557) 144636) ((-1015 . -1016) 144588) ((-1015 . -72) T) ((-1015 . -552) 144570) ((-1015 . -1013) T) ((-1015 . -241) 144526) ((-1015 . -1129) T) ((-1015 . -13) T) ((-1015 . -557) 144429) ((-1014 . -320) T) ((-1014 . -72) T) ((-1014 . -13) T) ((-1014 . -1129) T) ((-1014 . -552) 144411) ((-1014 . -1013) T) ((-1009 . -369) 144395) ((-1009 . -1011) 144379) ((-1009 . -318) 144363) ((-1009 . -320) 144342) ((-1009 . -193) 144326) ((-1009 . -553) 144287) ((-1009 . -124) 144271) ((-1009 . -1035) 144255) ((-1009 . -34) T) ((-1009 . -13) T) ((-1009 . -1129) T) ((-1009 . -72) T) ((-1009 . -552) 144237) ((-1009 . -260) 144175) ((-1009 . -455) 144108) ((-1009 . -1013) T) ((-1009 . -429) 144092) ((-1009 . -76) 144076) ((-1009 . -183) 144060) ((-1008 . -995) T) ((-1008 . -430) 144041) ((-1008 . -552) 144007) ((-1008 . -555) 143988) ((-1008 . -1013) T) ((-1008 . -1129) T) ((-1008 . -13) T) ((-1008 . -72) T) ((-1008 . -64) T) ((-1004 . -1129) T) ((-1004 . -13) T) ((-1004 . -1013) 143958) ((-1004 . -552) 143917) ((-1004 . -72) 143887) ((-1003 . -995) T) ((-1003 . -430) 143868) ((-1003 . -552) 143834) ((-1003 . -555) 143815) ((-1003 . -1013) T) ((-1003 . -1129) T) ((-1003 . -13) T) ((-1003 . -72) T) ((-1003 . -64) T) ((-1001 . -1006) 143799) ((-1001 . -557) 143783) ((-1001 . -1013) 143761) ((-1001 . -552) 143728) ((-1001 . -1129) 143706) ((-1001 . -13) 143684) ((-1001 . -72) 143662) ((-1001 . -1007) 143620) ((-1000 . -228) 143604) ((-1000 . -555) 143588) ((-1000 . -950) 143572) ((-1000 . -759) T) ((-1000 . -72) T) ((-1000 . -1013) T) ((-1000 . -552) 143554) ((-1000 . -756) T) ((-1000 . -186) 143541) ((-1000 . -13) T) ((-1000 . -1129) T) ((-1000 . -189) T) ((-999 . -213) 143478) ((-999 . -555) 143221) ((-999 . -950) 143050) ((-999 . -553) NIL) ((-999 . -277) 143011) ((-999 . -355) 142995) ((-999 . -38) 142847) ((-999 . -82) 142672) ((-999 . -963) 142518) ((-999 . -968) 142364) ((-999 . -588) 142274) ((-999 . -590) 142163) ((-999 . -582) 142015) ((-999 . -654) 141867) ((-999 . -118) 141846) ((-999 . -120) 141825) ((-999 . -146) 141739) ((-999 . -495) 141673) ((-999 . -246) 141607) ((-999 . -47) 141568) ((-999 . -329) 141552) ((-999 . -580) 141500) ((-999 . -392) 141454) ((-999 . -455) 141317) ((-999 . -809) 141252) ((-999 . -806) 141150) ((-999 . -811) 141052) ((-999 . -796) NIL) ((-999 . -821) 141031) ((-999 . -1134) 141010) ((-999 . -861) 140955) ((-999 . -260) 140942) ((-999 . -190) 140921) ((-999 . -104) T) ((-999 . -25) T) ((-999 . -72) T) ((-999 . -552) 140903) ((-999 . -1013) T) ((-999 . -23) T) ((-999 . -21) T) ((-999 . -970) T) ((-999 . -1025) T) ((-999 . -1061) T) ((-999 . -663) T) ((-999 . -961) T) ((-999 . -186) 140851) ((-999 . -13) T) ((-999 . -1129) T) ((-999 . -189) 140805) ((-999 . -225) 140789) ((-999 . -184) 140773) ((-997 . -552) 140755) ((-994 . -756) T) ((-994 . -552) 140737) ((-994 . -1013) T) ((-994 . -72) T) ((-994 . -13) T) ((-994 . -1129) T) ((-994 . -759) T) ((-994 . -553) 140718) ((-991 . -661) 140697) ((-991 . -950) 140595) ((-991 . -355) 140579) ((-991 . -580) 140527) ((-991 . -590) 140404) ((-991 . -329) 140388) ((-991 . -322) 140367) ((-991 . -120) 140346) ((-991 . -555) 140171) ((-991 . -654) 140045) ((-991 . -582) 139919) ((-991 . -588) 139817) ((-991 . -968) 139730) ((-991 . -963) 139643) ((-991 . -82) 139535) ((-991 . -38) 139409) ((-991 . -353) 139388) ((-991 . -345) 139367) ((-991 . -118) 139321) ((-991 . -1066) 139300) ((-991 . -299) 139279) ((-991 . -320) 139233) ((-991 . -201) 139187) ((-991 . -246) 139141) ((-991 . -258) 139095) ((-991 . -392) 139049) ((-991 . -495) 139003) ((-991 . -832) 138957) ((-991 . -1134) 138911) ((-991 . -312) 138865) ((-991 . -190) 138793) ((-991 . -186) 138669) ((-991 . -189) 138551) ((-991 . -225) 138521) ((-991 . -806) 138393) ((-991 . -811) 138267) ((-991 . -809) 138200) ((-991 . -184) 138170) ((-991 . -553) 138154) ((-991 . -21) T) ((-991 . -23) T) ((-991 . -1013) T) ((-991 . -552) 138136) ((-991 . -1129) T) ((-991 . -13) T) ((-991 . -72) T) ((-991 . -25) T) ((-991 . -104) T) ((-991 . -961) T) ((-991 . -663) T) ((-991 . -1061) T) ((-991 . -1025) T) ((-991 . -970) T) ((-991 . -146) T) ((-989 . -1013) T) ((-989 . -552) 138118) ((-989 . -1129) T) ((-989 . -13) T) ((-989 . -72) T) ((-989 . -241) 138097) ((-988 . -1013) T) ((-988 . -552) 138079) ((-988 . -1129) T) ((-988 . -13) T) ((-988 . -72) T) ((-987 . -1013) T) ((-987 . -552) 138061) ((-987 . -1129) T) ((-987 . -13) T) ((-987 . -72) T) ((-987 . -241) 138040) ((-987 . -950) 138017) ((-987 . -555) 137994) ((-986 . -1129) T) ((-986 . -13) T) ((-985 . -995) T) ((-985 . -430) 137975) ((-985 . -552) 137941) ((-985 . -555) 137922) ((-985 . -1013) T) ((-985 . -1129) T) ((-985 . -13) T) ((-985 . -72) T) ((-985 . -64) T) ((-978 . -995) T) ((-978 . -430) 137903) ((-978 . -552) 137869) ((-978 . -555) 137850) ((-978 . -1013) T) ((-978 . -1129) T) ((-978 . -13) T) ((-978 . -72) T) ((-978 . -64) T) ((-975 . -483) T) ((-975 . -1134) T) ((-975 . -1066) T) ((-975 . -950) 137832) ((-975 . -553) 137747) ((-975 . -933) T) ((-975 . -796) 137729) ((-975 . -755) T) ((-975 . -721) T) ((-975 . -718) T) ((-975 . -759) T) ((-975 . -756) T) ((-975 . -716) T) ((-975 . -714) T) ((-975 . -740) T) ((-975 . -590) 137701) ((-975 . -580) 137683) ((-975 . -832) T) ((-975 . -495) T) ((-975 . -246) T) ((-975 . -146) T) ((-975 . -555) 137655) ((-975 . -654) 137642) ((-975 . -582) 137629) ((-975 . -968) 137616) ((-975 . -963) 137603) ((-975 . -82) 137588) ((-975 . -38) 137575) ((-975 . -392) T) ((-975 . -258) T) ((-975 . -189) T) ((-975 . -186) 137562) ((-975 . -190) T) ((-975 . -116) T) ((-975 . -961) T) ((-975 . -663) T) ((-975 . -1061) T) ((-975 . -1025) T) ((-975 . -970) T) ((-975 . -21) T) ((-975 . -588) 137534) ((-975 . -23) T) ((-975 . -1013) T) ((-975 . -552) 137516) ((-975 . -1129) T) ((-975 . -13) T) ((-975 . -72) T) ((-975 . -25) T) ((-975 . -104) T) ((-975 . -120) T) ((-975 . -557) 137497) ((-974 . -980) 137476) ((-974 . -72) T) ((-974 . -13) T) ((-974 . -1129) T) ((-974 . -552) 137458) ((-974 . -1013) T) ((-971 . -1129) T) ((-971 . -13) T) ((-971 . -1013) 137436) ((-971 . -552) 137403) ((-971 . -72) 137381) ((-966 . -965) 137321) ((-966 . -582) 137266) ((-966 . -654) 137211) ((-966 . -429) 137195) ((-966 . -455) 137128) ((-966 . -260) 137066) ((-966 . -34) T) ((-966 . -318) 137050) ((-966 . -590) 137034) ((-966 . -588) 137003) ((-966 . -104) T) ((-966 . -25) T) ((-966 . -72) T) ((-966 . -13) T) ((-966 . -1129) T) ((-966 . -552) 136965) ((-966 . -1013) T) ((-966 . -23) T) ((-966 . -21) T) ((-966 . -968) 136949) ((-966 . -963) 136933) ((-966 . -82) 136912) ((-966 . -1187) 136882) ((-966 . -553) 136843) ((-958 . -983) 136772) ((-958 . -889) 136701) ((-958 . -318) 136666) ((-958 . -553) 136608) ((-958 . -429) 136573) ((-958 . -1013) T) ((-958 . -455) 136457) ((-958 . -260) 136365) ((-958 . -552) 136308) ((-958 . -72) T) ((-958 . -1129) T) ((-958 . -13) T) ((-958 . -34) T) ((-958 . -124) 136273) ((-958 . -1035) 136238) ((-958 . -1124) 136167) ((-948 . -995) T) ((-948 . -430) 136148) ((-948 . -552) 136114) ((-948 . -555) 136095) ((-948 . -1013) T) ((-948 . -1129) T) ((-948 . -13) T) ((-948 . -72) T) ((-948 . -64) T) ((-947 . -146) T) ((-947 . -555) 136064) ((-947 . -970) T) ((-947 . -1025) T) ((-947 . -1061) T) ((-947 . -663) T) ((-947 . -961) T) ((-947 . -590) 136038) ((-947 . -588) 135997) ((-947 . -104) T) ((-947 . -25) T) ((-947 . -72) T) ((-947 . -13) T) ((-947 . -1129) T) ((-947 . -552) 135979) ((-947 . -1013) T) ((-947 . -23) T) ((-947 . -21) T) ((-947 . -968) 135953) ((-947 . -963) 135927) ((-947 . -82) 135894) ((-947 . -38) 135878) ((-947 . -582) 135862) ((-947 . -654) 135846) ((-940 . -983) 135815) ((-940 . -889) 135784) ((-940 . -318) 135768) ((-940 . -553) 135729) ((-940 . -429) 135713) ((-940 . -1013) T) ((-940 . -455) 135646) ((-940 . -260) 135584) ((-940 . -552) 135546) ((-940 . -72) T) ((-940 . -1129) T) ((-940 . -13) T) ((-940 . -34) T) ((-940 . -124) 135530) ((-940 . -1035) 135514) ((-940 . -1124) 135483) ((-939 . -1013) T) ((-939 . -552) 135465) ((-939 . -1129) T) ((-939 . -13) T) ((-939 . -72) T) ((-937 . -925) T) ((-937 . -915) T) ((-937 . -714) T) ((-937 . -716) T) ((-937 . -756) T) ((-937 . -759) T) ((-937 . -718) T) ((-937 . -721) T) ((-937 . -755) T) ((-937 . -950) 135350) ((-937 . -355) 135312) ((-937 . -201) T) ((-937 . -246) T) ((-937 . -258) T) ((-937 . -392) T) ((-937 . -38) 135249) ((-937 . -582) 135186) ((-937 . -654) 135123) ((-937 . -555) 135060) ((-937 . -495) T) ((-937 . -832) T) ((-937 . -1134) T) ((-937 . -312) T) ((-937 . -82) 134969) ((-937 . -963) 134906) ((-937 . -968) 134843) ((-937 . -146) T) ((-937 . -120) T) ((-937 . -590) 134780) ((-937 . -588) 134717) ((-937 . -104) T) ((-937 . -25) T) ((-937 . -72) T) ((-937 . -13) T) ((-937 . -1129) T) ((-937 . -552) 134699) ((-937 . -1013) T) ((-937 . -23) T) ((-937 . -21) T) ((-937 . -961) T) ((-937 . -663) T) ((-937 . -1061) T) ((-937 . -1025) T) ((-937 . -970) T) ((-932 . -995) T) ((-932 . -430) 134680) ((-932 . -552) 134646) ((-932 . -555) 134627) ((-932 . -1013) T) ((-932 . -1129) T) ((-932 . -13) T) ((-932 . -72) T) ((-932 . -64) T) ((-917 . -904) 134609) ((-917 . -1066) T) ((-917 . -555) 134559) ((-917 . -950) 134519) ((-917 . -553) 134449) ((-917 . -933) T) ((-917 . -821) NIL) ((-917 . -794) 134431) ((-917 . -755) T) ((-917 . -721) T) ((-917 . -718) T) ((-917 . -759) T) ((-917 . -756) T) ((-917 . -716) T) ((-917 . -714) T) ((-917 . -740) T) ((-917 . -796) 134413) ((-917 . -343) 134395) ((-917 . -580) 134377) ((-917 . -329) 134359) ((-917 . -241) NIL) ((-917 . -260) NIL) ((-917 . -455) NIL) ((-917 . -288) 134341) ((-917 . -201) T) ((-917 . -82) 134268) ((-917 . -963) 134218) ((-917 . -968) 134168) ((-917 . -246) T) ((-917 . -654) 134118) ((-917 . -582) 134068) ((-917 . -590) 134018) ((-917 . -588) 133968) ((-917 . -38) 133918) ((-917 . -258) T) ((-917 . -392) T) ((-917 . -146) T) ((-917 . -495) T) ((-917 . -832) T) ((-917 . -1134) T) ((-917 . -312) T) ((-917 . -190) T) ((-917 . -186) 133905) ((-917 . -189) T) ((-917 . -225) 133887) ((-917 . -806) NIL) ((-917 . -811) NIL) ((-917 . -809) NIL) ((-917 . -184) 133869) ((-917 . -120) T) ((-917 . -118) NIL) ((-917 . -104) T) ((-917 . -25) T) ((-917 . -72) T) ((-917 . -13) T) ((-917 . -1129) T) ((-917 . -552) 133829) ((-917 . -1013) T) ((-917 . -23) T) ((-917 . -21) T) ((-917 . -961) T) ((-917 . -663) T) ((-917 . -1061) T) ((-917 . -1025) T) ((-917 . -970) T) ((-916 . -291) 133803) ((-916 . -146) T) ((-916 . -555) 133733) ((-916 . -970) T) ((-916 . -1025) T) ((-916 . -1061) T) ((-916 . -663) T) ((-916 . -961) T) ((-916 . -590) 133635) ((-916 . -588) 133565) ((-916 . -104) T) ((-916 . -25) T) ((-916 . -72) T) ((-916 . -13) T) ((-916 . -1129) T) ((-916 . -552) 133547) ((-916 . -1013) T) ((-916 . -23) T) ((-916 . -21) T) ((-916 . -968) 133492) ((-916 . -963) 133437) ((-916 . -82) 133354) ((-916 . -553) 133338) ((-916 . -184) 133315) ((-916 . -809) 133267) ((-916 . -811) 133179) ((-916 . -806) 133089) ((-916 . -225) 133066) ((-916 . -189) 133006) ((-916 . -186) 132940) ((-916 . -190) 132912) ((-916 . -312) T) ((-916 . -1134) T) ((-916 . -832) T) ((-916 . -495) T) ((-916 . -654) 132857) ((-916 . -582) 132802) ((-916 . -38) 132747) ((-916 . -392) T) ((-916 . -258) T) ((-916 . -246) T) ((-916 . -201) T) ((-916 . -320) NIL) ((-916 . -299) NIL) ((-916 . -1066) NIL) ((-916 . -118) 132719) ((-916 . -345) NIL) ((-916 . -353) 132691) ((-916 . -120) 132663) ((-916 . -322) 132635) ((-916 . -329) 132612) ((-916 . -580) 132546) ((-916 . -355) 132523) ((-916 . -950) 132400) ((-916 . -661) 132372) ((-913 . -908) 132356) ((-913 . -318) 132340) ((-913 . -1035) 132324) ((-913 . -34) T) ((-913 . -13) T) ((-913 . -1129) T) ((-913 . -72) 132278) ((-913 . -552) 132213) ((-913 . -260) 132151) ((-913 . -455) 132084) ((-913 . -1013) 132062) ((-913 . -429) 132046) ((-913 . -76) 132030) ((-909 . -911) 132014) ((-909 . -759) 131993) ((-909 . -756) 131972) ((-909 . -950) 131870) ((-909 . -355) 131854) ((-909 . -580) 131802) ((-909 . -590) 131704) ((-909 . -329) 131688) ((-909 . -241) 131646) ((-909 . -260) 131611) ((-909 . -455) 131523) ((-909 . -288) 131507) ((-909 . -38) 131455) ((-909 . -82) 131333) ((-909 . -963) 131232) ((-909 . -968) 131131) ((-909 . -588) 131054) ((-909 . -582) 131002) ((-909 . -654) 130950) ((-909 . -555) 130844) ((-909 . -246) 130798) ((-909 . -201) 130777) ((-909 . -190) 130756) ((-909 . -186) 130704) ((-909 . -189) 130658) ((-909 . -225) 130642) ((-909 . -806) 130566) ((-909 . -811) 130492) ((-909 . -809) 130451) ((-909 . -184) 130435) ((-909 . -553) 130396) ((-909 . -120) 130375) ((-909 . -118) 130354) ((-909 . -104) T) ((-909 . -25) T) ((-909 . -72) T) ((-909 . -13) T) ((-909 . -1129) T) ((-909 . -552) 130336) ((-909 . -1013) T) ((-909 . -23) T) ((-909 . -21) T) ((-909 . -961) T) ((-909 . -663) T) ((-909 . -1061) T) ((-909 . -1025) T) ((-909 . -970) T) ((-907 . -995) T) ((-907 . -430) 130317) ((-907 . -552) 130283) ((-907 . -555) 130264) ((-907 . -1013) T) ((-907 . -1129) T) ((-907 . -13) T) ((-907 . -72) T) ((-907 . -64) T) ((-906 . -21) T) ((-906 . -588) 130246) ((-906 . -23) T) ((-906 . -1013) T) ((-906 . -552) 130228) ((-906 . -1129) T) ((-906 . -13) T) ((-906 . -72) T) ((-906 . -25) T) ((-906 . -104) T) ((-906 . -241) 130195) ((-902 . -552) 130177) ((-899 . -1013) T) ((-899 . -552) 130159) ((-899 . -1129) T) ((-899 . -13) T) ((-899 . -72) T) ((-884 . -721) T) ((-884 . -718) T) ((-884 . -759) T) ((-884 . -756) T) ((-884 . -716) T) ((-884 . -23) T) ((-884 . -1013) T) ((-884 . -552) 130119) ((-884 . -1129) T) ((-884 . -13) T) ((-884 . -72) T) ((-884 . -25) T) ((-884 . -104) T) ((-883 . -995) T) ((-883 . -430) 130100) ((-883 . -552) 130066) ((-883 . -555) 130047) ((-883 . -1013) T) ((-883 . -1129) T) ((-883 . -13) T) ((-883 . -72) T) ((-883 . -64) T) ((-877 . -880) T) ((-877 . -72) T) ((-877 . -552) 130029) ((-877 . -1013) T) ((-877 . -604) T) ((-877 . -13) T) ((-877 . -1129) T) ((-877 . -84) T) ((-877 . -555) 130013) ((-876 . -552) 129995) ((-875 . -1013) T) ((-875 . -552) 129977) ((-875 . -1129) T) ((-875 . -13) T) ((-875 . -72) T) ((-875 . -320) 129930) ((-875 . -663) 129832) ((-875 . -1025) 129734) ((-875 . -23) 129548) ((-875 . -25) 129362) ((-875 . -104) 129220) ((-875 . -413) 129173) ((-875 . -21) 129128) ((-875 . -588) 129072) ((-875 . -717) 129025) ((-875 . -716) 128978) ((-875 . -756) 128880) ((-875 . -759) 128782) ((-875 . -718) 128735) ((-875 . -721) 128688) ((-869 . -19) 128672) ((-869 . -1035) 128656) ((-869 . -318) 128640) ((-869 . -34) T) ((-869 . -13) T) ((-869 . -1129) T) ((-869 . -72) 128574) ((-869 . -552) 128489) ((-869 . -260) 128427) ((-869 . -455) 128360) ((-869 . -1013) 128313) ((-869 . -429) 128297) ((-869 . -593) 128281) ((-869 . -243) 128258) ((-869 . -241) 128210) ((-869 . -538) 128187) ((-869 . -553) 128148) ((-869 . -124) 128132) ((-869 . -756) 128111) ((-869 . -759) 128090) ((-869 . -324) 128074) ((-867 . -277) 128053) ((-867 . -950) 127951) ((-867 . -355) 127935) ((-867 . -38) 127832) ((-867 . -555) 127689) ((-867 . -590) 127614) ((-867 . -588) 127524) ((-867 . -970) T) ((-867 . -1025) T) ((-867 . -1061) T) ((-867 . -663) T) ((-867 . -961) T) ((-867 . -82) 127389) ((-867 . -963) 127275) ((-867 . -968) 127161) ((-867 . -21) T) ((-867 . -23) T) ((-867 . -1013) T) ((-867 . -552) 127143) ((-867 . -1129) T) ((-867 . -13) T) ((-867 . -72) T) ((-867 . -25) T) ((-867 . -104) T) ((-867 . -582) 127040) ((-867 . -654) 126937) ((-867 . -118) 126916) ((-867 . -120) 126895) ((-867 . -146) 126849) ((-867 . -495) 126828) ((-867 . -246) 126807) ((-867 . -47) 126786) ((-865 . -1013) T) ((-865 . -552) 126752) ((-865 . -1129) T) ((-865 . -13) T) ((-865 . -72) T) ((-857 . -861) 126713) ((-857 . -555) 126509) ((-857 . -950) 126391) ((-857 . -1134) 126370) ((-857 . -821) 126349) ((-857 . -796) 126274) ((-857 . -811) 126255) ((-857 . -806) 126234) ((-857 . -809) 126215) ((-857 . -455) 126161) ((-857 . -392) 126115) ((-857 . -580) 126063) ((-857 . -590) 125952) ((-857 . -329) 125936) ((-857 . -47) 125905) ((-857 . -38) 125757) ((-857 . -582) 125609) ((-857 . -654) 125461) ((-857 . -246) 125395) ((-857 . -495) 125329) ((-857 . -82) 125154) ((-857 . -963) 125000) ((-857 . -968) 124846) ((-857 . -146) 124760) ((-857 . -120) 124739) ((-857 . -118) 124718) ((-857 . -588) 124628) ((-857 . -104) T) ((-857 . -25) T) ((-857 . -72) T) ((-857 . -13) T) ((-857 . -1129) T) ((-857 . -552) 124610) ((-857 . -1013) T) ((-857 . -23) T) ((-857 . -21) T) ((-857 . -961) T) ((-857 . -663) T) ((-857 . -1061) T) ((-857 . -1025) T) ((-857 . -970) T) ((-857 . -355) 124594) ((-857 . -277) 124563) ((-857 . -260) 124550) ((-857 . -553) 124411) ((-854 . -893) 124395) ((-854 . -19) 124379) ((-854 . -1035) 124363) ((-854 . -318) 124347) ((-854 . -34) T) ((-854 . -13) T) ((-854 . -1129) T) ((-854 . -72) 124281) ((-854 . -552) 124196) ((-854 . -260) 124134) ((-854 . -455) 124067) ((-854 . -1013) 124020) ((-854 . -429) 124004) ((-854 . -593) 123988) ((-854 . -243) 123965) ((-854 . -241) 123917) ((-854 . -538) 123894) ((-854 . -553) 123855) ((-854 . -124) 123839) ((-854 . -756) 123818) ((-854 . -759) 123797) ((-854 . -324) 123781) ((-854 . -1178) 123765) ((-854 . -557) 123742) ((-838 . -887) T) ((-838 . -552) 123724) ((-836 . -866) T) ((-836 . -552) 123706) ((-830 . -718) T) ((-830 . -759) T) ((-830 . -756) T) ((-830 . -1013) T) ((-830 . -552) 123688) ((-830 . -1129) T) ((-830 . -13) T) ((-830 . -72) T) ((-830 . -25) T) ((-830 . -663) T) ((-830 . -1025) T) ((-825 . -312) T) ((-825 . -1134) T) ((-825 . -832) T) ((-825 . -495) T) ((-825 . -146) T) ((-825 . -555) 123625) ((-825 . -654) 123577) ((-825 . -582) 123529) ((-825 . -38) 123481) ((-825 . -392) T) ((-825 . -258) T) ((-825 . -590) 123433) ((-825 . -588) 123370) ((-825 . -970) T) ((-825 . -1025) T) ((-825 . -1061) T) ((-825 . -663) T) ((-825 . -961) T) ((-825 . -82) 123301) ((-825 . -963) 123253) ((-825 . -968) 123205) ((-825 . -21) T) ((-825 . -23) T) ((-825 . -1013) T) ((-825 . -552) 123187) ((-825 . -1129) T) ((-825 . -13) T) ((-825 . -72) T) ((-825 . -25) T) ((-825 . -104) T) ((-825 . -246) T) ((-825 . -201) T) ((-817 . -299) T) ((-817 . -1066) T) ((-817 . -320) T) ((-817 . -118) T) ((-817 . -312) T) ((-817 . -1134) T) ((-817 . -832) T) ((-817 . -495) T) ((-817 . -146) T) ((-817 . -555) 123137) ((-817 . -654) 123102) ((-817 . -582) 123067) ((-817 . -38) 123032) ((-817 . -392) T) ((-817 . -258) T) ((-817 . -82) 122981) ((-817 . -963) 122946) ((-817 . -968) 122911) ((-817 . -588) 122861) ((-817 . -590) 122826) ((-817 . -246) T) ((-817 . -201) T) ((-817 . -345) T) ((-817 . -189) T) ((-817 . -1129) T) ((-817 . -13) T) ((-817 . -186) 122813) ((-817 . -961) T) ((-817 . -663) T) ((-817 . -1061) T) ((-817 . -1025) T) ((-817 . -970) T) ((-817 . -21) T) ((-817 . -23) T) ((-817 . -1013) T) ((-817 . -552) 122795) ((-817 . -72) T) ((-817 . -25) T) ((-817 . -104) T) ((-817 . -190) T) ((-817 . -280) 122782) ((-817 . -120) 122764) ((-817 . -950) 122751) ((-817 . -1187) 122738) ((-817 . -1198) 122725) ((-817 . -553) 122707) ((-816 . -1013) T) ((-816 . -552) 122689) ((-816 . -1129) T) ((-816 . -13) T) ((-816 . -72) T) ((-813 . -815) 122673) ((-813 . -759) 122627) ((-813 . -756) 122581) ((-813 . -663) T) ((-813 . -1013) T) ((-813 . -552) 122563) ((-813 . -72) T) ((-813 . -1025) T) ((-813 . -413) T) ((-813 . -1129) T) ((-813 . -13) T) ((-813 . -241) 122542) ((-812 . -92) 122526) ((-812 . -429) 122510) ((-812 . -1013) 122488) ((-812 . -455) 122421) ((-812 . -260) 122359) ((-812 . -552) 122273) ((-812 . -72) 122227) ((-812 . -1129) T) ((-812 . -13) T) ((-812 . -34) T) ((-812 . -923) 122211) ((-803 . -756) T) ((-803 . -552) 122193) ((-803 . -1013) T) ((-803 . -72) T) ((-803 . -13) T) ((-803 . -1129) T) ((-803 . -759) T) ((-803 . -950) 122170) ((-803 . -555) 122147) ((-800 . -1013) T) ((-800 . -552) 122129) ((-800 . -1129) T) ((-800 . -13) T) ((-800 . -72) T) ((-800 . -950) 122097) ((-800 . -555) 122065) ((-798 . -1013) T) ((-798 . -552) 122047) ((-798 . -1129) T) ((-798 . -13) T) ((-798 . -72) T) ((-795 . -1013) T) ((-795 . -552) 122029) ((-795 . -1129) T) ((-795 . -13) T) ((-795 . -72) T) ((-785 . -995) T) ((-785 . -430) 122010) ((-785 . -552) 121976) ((-785 . -555) 121957) ((-785 . -1013) T) ((-785 . -1129) T) ((-785 . -13) T) ((-785 . -72) T) ((-785 . -64) T) ((-785 . -1175) T) ((-783 . -1013) T) ((-783 . -552) 121939) ((-783 . -1129) T) ((-783 . -13) T) ((-783 . -72) T) ((-783 . -555) 121921) ((-782 . -1129) T) ((-782 . -13) T) ((-782 . -552) 121796) ((-782 . -1013) 121747) ((-782 . -72) 121698) ((-781 . -904) 121682) ((-781 . -1066) 121660) ((-781 . -950) 121527) ((-781 . -555) 121426) ((-781 . -553) 121229) ((-781 . -933) 121208) ((-781 . -821) 121187) ((-781 . -794) 121171) ((-781 . -755) 121150) ((-781 . -721) 121129) ((-781 . -718) 121108) ((-781 . -759) 121062) ((-781 . -756) 121016) ((-781 . -716) 120995) ((-781 . -714) 120974) ((-781 . -740) 120953) ((-781 . -796) 120878) ((-781 . -343) 120862) ((-781 . -580) 120810) ((-781 . -590) 120726) ((-781 . -329) 120710) ((-781 . -241) 120668) ((-781 . -260) 120633) ((-781 . -455) 120545) ((-781 . -288) 120529) ((-781 . -201) T) ((-781 . -82) 120460) ((-781 . -963) 120412) ((-781 . -968) 120364) ((-781 . -246) T) ((-781 . -654) 120316) ((-781 . -582) 120268) ((-781 . -588) 120205) ((-781 . -38) 120157) ((-781 . -258) T) ((-781 . -392) T) ((-781 . -146) T) ((-781 . -495) T) ((-781 . -832) T) ((-781 . -1134) T) ((-781 . -312) T) ((-781 . -190) 120136) ((-781 . -186) 120084) ((-781 . -189) 120038) ((-781 . -225) 120022) ((-781 . -806) 119946) ((-781 . -811) 119872) ((-781 . -809) 119831) ((-781 . -184) 119815) ((-781 . -120) 119769) ((-781 . -118) 119748) ((-781 . -104) T) ((-781 . -25) T) ((-781 . -72) T) ((-781 . -13) T) ((-781 . -1129) T) ((-781 . -552) 119730) ((-781 . -1013) T) ((-781 . -23) T) ((-781 . -21) T) ((-781 . -961) T) ((-781 . -663) T) ((-781 . -1061) T) ((-781 . -1025) T) ((-781 . -970) T) ((-780 . -904) 119707) ((-780 . -1066) NIL) ((-780 . -950) 119684) ((-780 . -555) 119614) ((-780 . -553) NIL) ((-780 . -933) NIL) ((-780 . -821) NIL) ((-780 . -794) 119591) ((-780 . -755) NIL) ((-780 . -721) NIL) ((-780 . -718) NIL) ((-780 . -759) NIL) ((-780 . -756) NIL) ((-780 . -716) NIL) ((-780 . -714) NIL) ((-780 . -740) NIL) ((-780 . -796) NIL) ((-780 . -343) 119568) ((-780 . -580) 119545) ((-780 . -590) 119490) ((-780 . -329) 119467) ((-780 . -241) 119397) ((-780 . -260) 119341) ((-780 . -455) 119204) ((-780 . -288) 119181) ((-780 . -201) T) ((-780 . -82) 119098) ((-780 . -963) 119043) ((-780 . -968) 118988) ((-780 . -246) T) ((-780 . -654) 118933) ((-780 . -582) 118878) ((-780 . -588) 118808) ((-780 . -38) 118753) ((-780 . -258) T) ((-780 . -392) T) ((-780 . -146) T) ((-780 . -495) T) ((-780 . -832) T) ((-780 . -1134) T) ((-780 . -312) T) ((-780 . -190) NIL) ((-780 . -186) NIL) ((-780 . -189) NIL) ((-780 . -225) 118730) ((-780 . -806) NIL) ((-780 . -811) NIL) ((-780 . -809) NIL) ((-780 . -184) 118707) ((-780 . -120) T) ((-780 . -118) NIL) ((-780 . -104) T) ((-780 . -25) T) ((-780 . -72) T) ((-780 . -13) T) ((-780 . -1129) T) ((-780 . -552) 118689) ((-780 . -1013) T) ((-780 . -23) T) ((-780 . -21) T) ((-780 . -961) T) ((-780 . -663) T) ((-780 . -1061) T) ((-780 . -1025) T) ((-780 . -970) T) ((-778 . -779) 118673) ((-778 . -832) T) ((-778 . -495) T) ((-778 . -246) T) ((-778 . -146) T) ((-778 . -555) 118645) ((-778 . -654) 118632) ((-778 . -582) 118619) ((-778 . -968) 118606) ((-778 . -963) 118593) ((-778 . -82) 118578) ((-778 . -38) 118565) ((-778 . -392) T) ((-778 . -258) T) ((-778 . -961) T) ((-778 . -663) T) ((-778 . -1061) T) ((-778 . -1025) T) ((-778 . -970) T) ((-778 . -21) T) ((-778 . -588) 118537) ((-778 . -23) T) ((-778 . -1013) T) ((-778 . -552) 118519) ((-778 . -1129) T) ((-778 . -13) T) ((-778 . -72) T) ((-778 . -25) T) ((-778 . -104) T) ((-778 . -590) 118506) ((-778 . -120) T) ((-775 . -961) T) ((-775 . -663) T) ((-775 . -1061) T) ((-775 . -1025) T) ((-775 . -970) T) ((-775 . -21) T) ((-775 . -588) 118451) ((-775 . -23) T) ((-775 . -1013) T) ((-775 . -552) 118413) ((-775 . -1129) T) ((-775 . -13) T) ((-775 . -72) T) ((-775 . -25) T) ((-775 . -104) T) ((-775 . -590) 118373) ((-775 . -555) 118308) ((-775 . -430) 118285) ((-775 . -38) 118255) ((-775 . -82) 118220) ((-775 . -963) 118190) ((-775 . -968) 118160) ((-775 . -582) 118130) ((-775 . -654) 118100) ((-774 . -1013) T) ((-774 . -552) 118082) ((-774 . -1129) T) ((-774 . -13) T) ((-774 . -72) T) ((-773 . -752) T) ((-773 . -759) T) ((-773 . -756) T) ((-773 . -1013) T) ((-773 . -552) 118064) ((-773 . -1129) T) ((-773 . -13) T) ((-773 . -72) T) ((-773 . -320) T) ((-773 . -553) 117986) ((-772 . -1013) T) ((-772 . -552) 117968) ((-772 . -1129) T) ((-772 . -13) T) ((-772 . -72) T) ((-771 . -770) T) ((-771 . -147) T) ((-771 . -552) 117950) ((-767 . -756) T) ((-767 . -552) 117932) ((-767 . -1013) T) ((-767 . -72) T) ((-767 . -13) T) ((-767 . -1129) T) ((-767 . -759) T) ((-764 . -761) 117916) ((-764 . -950) 117814) ((-764 . -555) 117712) ((-764 . -355) 117696) ((-764 . -654) 117666) ((-764 . -582) 117636) ((-764 . -590) 117610) ((-764 . -588) 117569) ((-764 . -104) T) ((-764 . -25) T) ((-764 . -72) T) ((-764 . -13) T) ((-764 . -1129) T) ((-764 . -552) 117551) ((-764 . -1013) T) ((-764 . -23) T) ((-764 . -21) T) ((-764 . -968) 117535) ((-764 . -963) 117519) ((-764 . -82) 117498) ((-764 . -961) T) ((-764 . -663) T) ((-764 . -1061) T) ((-764 . -1025) T) ((-764 . -970) T) ((-764 . -38) 117468) ((-763 . -761) 117452) ((-763 . -950) 117350) ((-763 . -555) 117269) ((-763 . -355) 117253) ((-763 . -654) 117223) ((-763 . -582) 117193) ((-763 . -590) 117167) ((-763 . -588) 117126) ((-763 . -104) T) ((-763 . -25) T) ((-763 . -72) T) ((-763 . -13) T) ((-763 . -1129) T) ((-763 . -552) 117108) ((-763 . -1013) T) ((-763 . -23) T) ((-763 . -21) T) ((-763 . -968) 117092) ((-763 . -963) 117076) ((-763 . -82) 117055) ((-763 . -961) T) ((-763 . -663) T) ((-763 . -1061) T) ((-763 . -1025) T) ((-763 . -970) T) ((-763 . -38) 117025) ((-757 . -759) T) ((-757 . -1129) T) ((-757 . -13) T) ((-757 . -72) T) ((-757 . -430) 117009) ((-757 . -552) 116957) ((-757 . -555) 116941) ((-750 . -1013) T) ((-750 . -552) 116923) ((-750 . -1129) T) ((-750 . -13) T) ((-750 . -72) T) ((-750 . -355) 116907) ((-750 . -555) 116780) ((-750 . -950) 116678) ((-750 . -21) 116633) ((-750 . -588) 116553) ((-750 . -23) 116508) ((-750 . -25) 116463) ((-750 . -104) 116418) ((-750 . -755) 116397) ((-750 . -721) 116376) ((-750 . -718) 116355) ((-750 . -759) 116334) ((-750 . -756) 116313) ((-750 . -716) 116292) ((-750 . -714) 116271) ((-750 . -961) 116250) ((-750 . -663) 116229) ((-750 . -1061) 116208) ((-750 . -1025) 116187) ((-750 . -970) 116166) ((-750 . -590) 116139) ((-750 . -120) 116118) ((-749 . -747) 116100) ((-749 . -72) T) ((-749 . -13) T) ((-749 . -1129) T) ((-749 . -552) 116082) ((-749 . -1013) T) ((-745 . -961) T) ((-745 . -663) T) ((-745 . -1061) T) ((-745 . -1025) T) ((-745 . -970) T) ((-745 . -21) T) ((-745 . -588) 116027) ((-745 . -23) T) ((-745 . -1013) T) ((-745 . -552) 116009) ((-745 . -1129) T) ((-745 . -13) T) ((-745 . -72) T) ((-745 . -25) T) ((-745 . -104) T) ((-745 . -590) 115969) ((-745 . -555) 115924) ((-745 . -950) 115894) ((-745 . -241) 115873) ((-745 . -120) 115852) ((-745 . -118) 115831) ((-745 . -38) 115801) ((-745 . -82) 115766) ((-745 . -963) 115736) ((-745 . -968) 115706) ((-745 . -582) 115676) ((-745 . -654) 115646) ((-743 . -1013) T) ((-743 . -552) 115628) ((-743 . -1129) T) ((-743 . -13) T) ((-743 . -72) T) ((-743 . -355) 115612) ((-743 . -555) 115485) ((-743 . -950) 115383) ((-743 . -21) 115338) ((-743 . -588) 115258) ((-743 . -23) 115213) ((-743 . -25) 115168) ((-743 . -104) 115123) ((-743 . -755) 115102) ((-743 . -721) 115081) ((-743 . -718) 115060) ((-743 . -759) 115039) ((-743 . -756) 115018) ((-743 . -716) 114997) ((-743 . -714) 114976) ((-743 . -961) 114955) ((-743 . -663) 114934) ((-743 . -1061) 114913) ((-743 . -1025) 114892) ((-743 . -970) 114871) ((-743 . -590) 114844) ((-743 . -120) 114823) ((-741 . -645) 114807) ((-741 . -555) 114762) ((-741 . -654) 114732) ((-741 . -582) 114702) ((-741 . -590) 114676) ((-741 . -588) 114635) ((-741 . -104) T) ((-741 . -25) T) ((-741 . -72) T) ((-741 . -13) T) ((-741 . -1129) T) ((-741 . -552) 114617) ((-741 . -1013) T) ((-741 . -23) T) ((-741 . -21) T) ((-741 . -968) 114601) ((-741 . -963) 114585) ((-741 . -82) 114564) ((-741 . -961) T) ((-741 . -663) T) ((-741 . -1061) T) ((-741 . -1025) T) ((-741 . -970) T) ((-741 . -38) 114534) ((-741 . -190) 114513) ((-741 . -186) 114486) ((-741 . -189) 114465) ((-739 . -336) 114449) ((-739 . -555) 114433) ((-739 . -950) 114417) ((-739 . -759) T) ((-739 . -756) T) ((-739 . -1025) T) ((-739 . -72) T) ((-739 . -13) T) ((-739 . -1129) T) ((-739 . -552) 114399) ((-739 . -1013) T) ((-739 . -663) T) ((-739 . -754) T) ((-739 . -766) T) ((-738 . -228) 114383) ((-738 . -555) 114367) ((-738 . -950) 114351) ((-738 . -759) T) ((-738 . -72) T) ((-738 . -1013) T) ((-738 . -552) 114333) ((-738 . -756) T) ((-738 . -186) 114320) ((-738 . -13) T) ((-738 . -1129) T) ((-738 . -189) T) ((-737 . -82) 114255) ((-737 . -963) 114206) ((-737 . -968) 114157) ((-737 . -21) T) ((-737 . -588) 114093) ((-737 . -23) T) ((-737 . -1013) T) ((-737 . -552) 114062) ((-737 . -1129) T) ((-737 . -13) T) ((-737 . -72) T) ((-737 . -25) T) ((-737 . -104) T) ((-737 . -590) 114013) ((-737 . -190) T) ((-737 . -555) 113922) ((-737 . -970) T) ((-737 . -1025) T) ((-737 . -1061) T) ((-737 . -663) T) ((-737 . -961) T) ((-737 . -186) 113909) ((-737 . -189) T) ((-737 . -430) 113893) ((-737 . -312) 113872) ((-737 . -1134) 113851) ((-737 . -832) 113830) ((-737 . -495) 113809) ((-737 . -146) 113788) ((-737 . -654) 113725) ((-737 . -582) 113662) ((-737 . -38) 113599) ((-737 . -392) 113578) ((-737 . -258) 113557) ((-737 . -246) 113536) ((-737 . -201) 113515) ((-736 . -213) 113454) ((-736 . -555) 113198) ((-736 . -950) 113028) ((-736 . -553) NIL) ((-736 . -277) 112990) ((-736 . -355) 112974) ((-736 . -38) 112826) ((-736 . -82) 112651) ((-736 . -963) 112497) ((-736 . -968) 112343) ((-736 . -588) 112253) ((-736 . -590) 112142) ((-736 . -582) 111994) ((-736 . -654) 111846) ((-736 . -118) 111825) ((-736 . -120) 111804) ((-736 . -146) 111718) ((-736 . -495) 111652) ((-736 . -246) 111586) ((-736 . -47) 111548) ((-736 . -329) 111532) ((-736 . -580) 111480) ((-736 . -392) 111434) ((-736 . -455) 111299) ((-736 . -809) 111235) ((-736 . -806) 111134) ((-736 . -811) 111037) ((-736 . -796) NIL) ((-736 . -821) 111016) ((-736 . -1134) 110995) ((-736 . -861) 110942) ((-736 . -260) 110929) ((-736 . -190) 110908) ((-736 . -104) T) ((-736 . -25) T) ((-736 . -72) T) ((-736 . -552) 110890) ((-736 . -1013) T) ((-736 . -23) T) ((-736 . -21) T) ((-736 . -970) T) ((-736 . -1025) T) ((-736 . -1061) T) ((-736 . -663) T) ((-736 . -961) T) ((-736 . -186) 110838) ((-736 . -13) T) ((-736 . -1129) T) ((-736 . -189) 110792) ((-736 . -225) 110776) ((-736 . -184) 110760) ((-735 . -196) 110739) ((-735 . -1187) 110709) ((-735 . -721) 110688) ((-735 . -718) 110667) ((-735 . -759) 110621) ((-735 . -756) 110575) ((-735 . -716) 110554) ((-735 . -717) 110533) ((-735 . -654) 110478) ((-735 . -582) 110403) ((-735 . -243) 110380) ((-735 . -241) 110357) ((-735 . -538) 110334) ((-735 . -950) 110163) ((-735 . -555) 109967) ((-735 . -355) 109936) ((-735 . -580) 109844) ((-735 . -590) 109683) ((-735 . -329) 109653) ((-735 . -429) 109637) ((-735 . -455) 109570) ((-735 . -260) 109508) ((-735 . -34) T) ((-735 . -318) 109492) ((-735 . -320) 109471) ((-735 . -190) 109424) ((-735 . -588) 109212) ((-735 . -970) 109191) ((-735 . -1025) 109170) ((-735 . -1061) 109149) ((-735 . -663) 109128) ((-735 . -961) 109107) ((-735 . -186) 109003) ((-735 . -189) 108905) ((-735 . -225) 108875) ((-735 . -806) 108747) ((-735 . -811) 108621) ((-735 . -809) 108554) ((-735 . -184) 108524) ((-735 . -552) 108221) ((-735 . -968) 108146) ((-735 . -963) 108051) ((-735 . -82) 107971) ((-735 . -104) 107846) ((-735 . -25) 107683) ((-735 . -72) 107420) ((-735 . -13) T) ((-735 . -1129) T) ((-735 . -1013) 107176) ((-735 . -23) 107032) ((-735 . -21) 106947) ((-722 . -720) 106931) ((-722 . -759) 106910) ((-722 . -756) 106889) ((-722 . -950) 106682) ((-722 . -555) 106535) ((-722 . -355) 106499) ((-722 . -241) 106457) ((-722 . -260) 106422) ((-722 . -455) 106334) ((-722 . -288) 106318) ((-722 . -320) 106297) ((-722 . -553) 106258) ((-722 . -120) 106237) ((-722 . -118) 106216) ((-722 . -654) 106200) ((-722 . -582) 106184) ((-722 . -590) 106158) ((-722 . -588) 106117) ((-722 . -104) T) ((-722 . -25) T) ((-722 . -72) T) ((-722 . -13) T) ((-722 . -1129) T) ((-722 . -552) 106099) ((-722 . -1013) T) ((-722 . -23) T) ((-722 . -21) T) ((-722 . -968) 106083) ((-722 . -963) 106067) ((-722 . -82) 106046) ((-722 . -961) T) ((-722 . -663) T) ((-722 . -1061) T) ((-722 . -1025) T) ((-722 . -970) T) ((-722 . -38) 106030) ((-704 . -1155) 106014) ((-704 . -1066) 105992) ((-704 . -553) NIL) ((-704 . -260) 105979) ((-704 . -455) 105927) ((-704 . -277) 105904) ((-704 . -950) 105766) ((-704 . -355) 105750) ((-704 . -38) 105582) ((-704 . -82) 105387) ((-704 . -963) 105213) ((-704 . -968) 105039) ((-704 . -588) 104949) ((-704 . -590) 104838) ((-704 . -582) 104670) ((-704 . -654) 104502) ((-704 . -555) 104258) ((-704 . -118) 104237) ((-704 . -120) 104216) ((-704 . -47) 104193) ((-704 . -329) 104177) ((-704 . -580) 104125) ((-704 . -809) 104069) ((-704 . -806) 103976) ((-704 . -811) 103887) ((-704 . -796) NIL) ((-704 . -821) 103866) ((-704 . -1134) 103845) ((-704 . -861) 103815) ((-704 . -832) 103794) ((-704 . -495) 103708) ((-704 . -246) 103622) ((-704 . -146) 103516) ((-704 . -392) 103450) ((-704 . -258) 103429) ((-704 . -241) 103356) ((-704 . -190) T) ((-704 . -104) T) ((-704 . -25) T) ((-704 . -72) T) ((-704 . -552) 103317) ((-704 . -1013) T) ((-704 . -23) T) ((-704 . -21) T) ((-704 . -970) T) ((-704 . -1025) T) ((-704 . -1061) T) ((-704 . -663) T) ((-704 . -961) T) ((-704 . -186) 103304) ((-704 . -13) T) ((-704 . -1129) T) ((-704 . -189) T) ((-704 . -225) 103288) ((-704 . -184) 103272) ((-703 . -977) 103239) ((-703 . -553) 102874) ((-703 . -260) 102861) ((-703 . -455) 102813) ((-703 . -277) 102785) ((-703 . -950) 102644) ((-703 . -355) 102628) ((-703 . -38) 102480) ((-703 . -555) 102253) ((-703 . -590) 102142) ((-703 . -588) 102052) ((-703 . -970) T) ((-703 . -1025) T) ((-703 . -1061) T) ((-703 . -663) T) ((-703 . -961) T) ((-703 . -82) 101877) ((-703 . -963) 101723) ((-703 . -968) 101569) ((-703 . -21) T) ((-703 . -23) T) ((-703 . -1013) T) ((-703 . -552) 101483) ((-703 . -1129) T) ((-703 . -13) T) ((-703 . -72) T) ((-703 . -25) T) ((-703 . -104) T) ((-703 . -582) 101335) ((-703 . -654) 101187) ((-703 . -118) 101166) ((-703 . -120) 101145) ((-703 . -146) 101059) ((-703 . -495) 100993) ((-703 . -246) 100927) ((-703 . -47) 100899) ((-703 . -329) 100883) ((-703 . -580) 100831) ((-703 . -392) 100785) ((-703 . -809) 100769) ((-703 . -806) 100751) ((-703 . -811) 100735) ((-703 . -796) 100594) ((-703 . -821) 100573) ((-703 . -1134) 100552) ((-703 . -861) 100519) ((-696 . -1013) T) ((-696 . -552) 100501) ((-696 . -1129) T) ((-696 . -13) T) ((-696 . -72) T) ((-694 . -717) T) ((-694 . -104) T) ((-694 . -25) T) ((-694 . -72) T) ((-694 . -13) T) ((-694 . -1129) T) ((-694 . -552) 100483) ((-694 . -1013) T) ((-694 . -23) T) ((-694 . -716) T) ((-694 . -756) T) ((-694 . -759) T) ((-694 . -718) T) ((-694 . -721) T) ((-694 . -663) T) ((-694 . -1025) T) ((-675 . -676) 100467) ((-675 . -1011) 100451) ((-675 . -193) 100435) ((-675 . -553) 100396) ((-675 . -124) 100380) ((-675 . -1035) 100364) ((-675 . -34) T) ((-675 . -13) T) ((-675 . -1129) T) ((-675 . -72) T) ((-675 . -552) 100346) ((-675 . -260) 100284) ((-675 . -455) 100217) ((-675 . -1013) T) ((-675 . -429) 100201) ((-675 . -76) 100185) ((-675 . -634) 100169) ((-675 . -318) 100153) ((-674 . -961) T) ((-674 . -663) T) ((-674 . -1061) T) ((-674 . -1025) T) ((-674 . -970) T) ((-674 . -21) T) ((-674 . -588) 100098) ((-674 . -23) T) ((-674 . -1013) T) ((-674 . -552) 100080) ((-674 . -1129) T) ((-674 . -13) T) ((-674 . -72) T) ((-674 . -25) T) ((-674 . -104) T) ((-674 . -590) 100040) ((-674 . -555) 99996) ((-674 . -950) 99967) ((-674 . -120) 99946) ((-674 . -118) 99925) ((-674 . -38) 99895) ((-674 . -82) 99860) ((-674 . -963) 99830) ((-674 . -968) 99800) ((-674 . -582) 99770) ((-674 . -654) 99740) ((-674 . -320) 99693) ((-670 . -861) 99646) ((-670 . -555) 99438) ((-670 . -950) 99316) ((-670 . -1134) 99295) ((-670 . -821) 99274) ((-670 . -796) NIL) ((-670 . -811) 99251) ((-670 . -806) 99226) ((-670 . -809) 99203) ((-670 . -455) 99141) ((-670 . -392) 99095) ((-670 . -580) 99043) ((-670 . -590) 98932) ((-670 . -329) 98916) ((-670 . -47) 98881) ((-670 . -38) 98733) ((-670 . -582) 98585) ((-670 . -654) 98437) ((-670 . -246) 98371) ((-670 . -495) 98305) ((-670 . -82) 98130) ((-670 . -963) 97976) ((-670 . -968) 97822) ((-670 . -146) 97736) ((-670 . -120) 97715) ((-670 . -118) 97694) ((-670 . -588) 97604) ((-670 . -104) T) ((-670 . -25) T) ((-670 . -72) T) ((-670 . -13) T) ((-670 . -1129) T) ((-670 . -552) 97586) ((-670 . -1013) T) ((-670 . -23) T) ((-670 . -21) T) ((-670 . -961) T) ((-670 . -663) T) ((-670 . -1061) T) ((-670 . -1025) T) ((-670 . -970) T) ((-670 . -355) 97570) ((-670 . -277) 97535) ((-670 . -260) 97522) ((-670 . -553) 97383) ((-664 . -665) 97367) ((-664 . -80) 97351) ((-664 . -1129) T) ((-664 . |MappingCategory|) 97325) ((-664 . -1023) 97309) ((-664 . -1013) T) ((-664 . -552) 97270) ((-664 . -13) T) ((-664 . -72) T) ((-655 . -413) T) ((-655 . -1025) T) ((-655 . -72) T) ((-655 . -13) T) ((-655 . -1129) T) ((-655 . -552) 97252) ((-655 . -1013) T) ((-655 . -663) T) ((-652 . -961) T) ((-652 . -663) T) ((-652 . -1061) T) ((-652 . -1025) T) ((-652 . -970) T) ((-652 . -21) T) ((-652 . -588) 97224) ((-652 . -23) T) ((-652 . -1013) T) ((-652 . -552) 97206) ((-652 . -1129) T) ((-652 . -13) T) ((-652 . -72) T) ((-652 . -25) T) ((-652 . -104) T) ((-652 . -590) 97193) ((-652 . -555) 97175) ((-651 . -961) T) ((-651 . -663) T) ((-651 . -1061) T) ((-651 . -1025) T) ((-651 . -970) T) ((-651 . -21) T) ((-651 . -588) 97120) ((-651 . -23) T) ((-651 . -1013) T) ((-651 . -552) 97102) ((-651 . -1129) T) ((-651 . -13) T) ((-651 . -72) T) ((-651 . -25) T) ((-651 . -104) T) ((-651 . -590) 97062) ((-651 . -555) 97017) ((-651 . -950) 96987) ((-651 . -241) 96966) ((-651 . -120) 96945) ((-651 . -118) 96924) ((-651 . -38) 96894) ((-651 . -82) 96859) ((-651 . -963) 96829) ((-651 . -968) 96799) ((-651 . -582) 96769) ((-651 . -654) 96739) ((-650 . -756) T) ((-650 . -552) 96674) ((-650 . -1013) T) ((-650 . -72) T) ((-650 . -13) T) ((-650 . -1129) T) ((-650 . -759) T) ((-650 . -430) 96624) ((-650 . -555) 96574) ((-649 . -1155) 96558) ((-649 . -1066) 96536) ((-649 . -553) NIL) ((-649 . -260) 96523) ((-649 . -455) 96471) ((-649 . -277) 96448) ((-649 . -950) 96331) ((-649 . -355) 96315) ((-649 . -38) 96147) ((-649 . -82) 95952) ((-649 . -963) 95778) ((-649 . -968) 95604) ((-649 . -588) 95514) ((-649 . -590) 95403) ((-649 . -582) 95235) ((-649 . -654) 95067) ((-649 . -555) 94831) ((-649 . -118) 94810) ((-649 . -120) 94789) ((-649 . -47) 94766) ((-649 . -329) 94750) ((-649 . -580) 94698) ((-649 . -809) 94642) ((-649 . -806) 94549) ((-649 . -811) 94460) ((-649 . -796) NIL) ((-649 . -821) 94439) ((-649 . -1134) 94418) ((-649 . -861) 94388) ((-649 . -832) 94367) ((-649 . -495) 94281) ((-649 . -246) 94195) ((-649 . -146) 94089) ((-649 . -392) 94023) ((-649 . -258) 94002) ((-649 . -241) 93929) ((-649 . -190) T) ((-649 . -104) T) ((-649 . -25) T) ((-649 . -72) T) ((-649 . -552) 93911) ((-649 . -1013) T) ((-649 . -23) T) ((-649 . -21) T) ((-649 . -970) T) ((-649 . -1025) T) ((-649 . -1061) T) ((-649 . -663) T) ((-649 . -961) T) ((-649 . -186) 93898) ((-649 . -13) T) ((-649 . -1129) T) ((-649 . -189) T) ((-649 . -225) 93882) ((-649 . -184) 93866) ((-649 . -320) 93845) ((-648 . -312) T) ((-648 . -1134) T) ((-648 . -832) T) ((-648 . -495) T) ((-648 . -146) T) ((-648 . -555) 93795) ((-648 . -654) 93760) ((-648 . -582) 93725) ((-648 . -38) 93690) ((-648 . -392) T) ((-648 . -258) T) ((-648 . -590) 93655) ((-648 . -588) 93605) ((-648 . -970) T) ((-648 . -1025) T) ((-648 . -1061) T) ((-648 . -663) T) ((-648 . -961) T) ((-648 . -82) 93554) ((-648 . -963) 93519) ((-648 . -968) 93484) ((-648 . -21) T) ((-648 . -23) T) ((-648 . -1013) T) ((-648 . -552) 93466) ((-648 . -1129) T) ((-648 . -13) T) ((-648 . -72) T) ((-648 . -25) T) ((-648 . -104) T) ((-648 . -246) T) ((-648 . -201) T) ((-647 . -1013) T) ((-647 . -552) 93448) ((-647 . -1129) T) ((-647 . -13) T) ((-647 . -72) T) ((-632 . -1175) T) ((-632 . -950) 93432) ((-632 . -555) 93416) ((-632 . -552) 93398) ((-630 . -627) 93356) ((-630 . -318) 93340) ((-630 . -34) T) ((-630 . -13) T) ((-630 . -1129) T) ((-630 . -72) 93294) ((-630 . -552) 93229) ((-630 . -260) 93167) ((-630 . -455) 93100) ((-630 . -1013) 93078) ((-630 . -429) 93062) ((-630 . -1035) 93046) ((-630 . -57) 93004) ((-630 . -553) 92965) ((-622 . -995) T) ((-622 . -430) 92946) ((-622 . -552) 92896) ((-622 . -555) 92877) ((-622 . -1013) T) ((-622 . -1129) T) ((-622 . -13) T) ((-622 . -72) T) ((-622 . -64) T) ((-618 . -756) T) ((-618 . -552) 92859) ((-618 . -1013) T) ((-618 . -72) T) ((-618 . -13) T) ((-618 . -1129) T) ((-618 . -759) T) ((-618 . -950) 92843) ((-618 . -555) 92827) ((-617 . -995) T) ((-617 . -430) 92808) ((-617 . -552) 92774) ((-617 . -555) 92755) ((-617 . -1013) T) ((-617 . -1129) T) ((-617 . -13) T) ((-617 . -72) T) ((-617 . -64) T) ((-614 . -756) T) ((-614 . -552) 92737) ((-614 . -1013) T) ((-614 . -72) T) ((-614 . -13) T) ((-614 . -1129) T) ((-614 . -759) T) ((-614 . -950) 92721) ((-614 . -555) 92705) ((-613 . -995) T) ((-613 . -430) 92686) ((-613 . -552) 92652) ((-613 . -555) 92633) ((-613 . -1013) T) ((-613 . -1129) T) ((-613 . -13) T) ((-613 . -72) T) ((-613 . -64) T) ((-612 . -1037) 92578) ((-612 . -318) 92562) ((-612 . -34) T) ((-612 . -260) 92500) ((-612 . -455) 92433) ((-612 . -429) 92417) ((-612 . -965) 92357) ((-612 . -950) 92255) ((-612 . -555) 92174) ((-612 . -355) 92158) ((-612 . -580) 92106) ((-612 . -590) 92044) ((-612 . -329) 92028) ((-612 . -190) 92007) ((-612 . -186) 91955) ((-612 . -189) 91909) ((-612 . -225) 91893) ((-612 . -806) 91817) ((-612 . -811) 91743) ((-612 . -809) 91702) ((-612 . -184) 91686) ((-612 . -654) 91670) ((-612 . -582) 91654) ((-612 . -588) 91613) ((-612 . -104) T) ((-612 . -25) T) ((-612 . -72) T) ((-612 . -13) T) ((-612 . -1129) T) ((-612 . -552) 91575) ((-612 . -1013) T) ((-612 . -23) T) ((-612 . -21) T) ((-612 . -968) 91559) ((-612 . -963) 91543) ((-612 . -82) 91522) ((-612 . -961) T) ((-612 . -663) T) ((-612 . -1061) T) ((-612 . -1025) T) ((-612 . -970) T) ((-612 . -38) 91482) ((-612 . -361) 91466) ((-612 . -683) 91450) ((-612 . -657) T) ((-612 . -685) T) ((-612 . -316) 91434) ((-612 . -241) 91411) ((-606 . -326) 91390) ((-606 . -654) 91374) ((-606 . -582) 91358) ((-606 . -590) 91342) ((-606 . -588) 91311) ((-606 . -104) T) ((-606 . -25) T) ((-606 . -72) T) ((-606 . -13) T) ((-606 . -1129) T) ((-606 . -552) 91293) ((-606 . -1013) T) ((-606 . -23) T) ((-606 . -21) T) ((-606 . -968) 91277) ((-606 . -963) 91261) ((-606 . -82) 91240) ((-606 . -574) 91224) ((-606 . -335) 91196) ((-606 . -555) 91173) ((-606 . -950) 91150) ((-598 . -600) 91134) ((-598 . -38) 91104) ((-598 . -555) 91023) ((-598 . -590) 90997) ((-598 . -588) 90956) ((-598 . -970) T) ((-598 . -1025) T) ((-598 . -1061) T) ((-598 . -663) T) ((-598 . -961) T) ((-598 . -82) 90935) ((-598 . -963) 90919) ((-598 . -968) 90903) ((-598 . -21) T) ((-598 . -23) T) ((-598 . -1013) T) ((-598 . -552) 90885) ((-598 . -72) T) ((-598 . -25) T) ((-598 . -104) T) ((-598 . -582) 90855) ((-598 . -654) 90825) ((-598 . -355) 90809) ((-598 . -950) 90707) ((-598 . -761) 90691) ((-598 . -1129) T) ((-598 . -13) T) ((-598 . -241) 90652) ((-597 . -600) 90636) ((-597 . -38) 90606) ((-597 . -555) 90525) ((-597 . -590) 90499) ((-597 . -588) 90458) ((-597 . -970) T) ((-597 . -1025) T) ((-597 . -1061) T) ((-597 . -663) T) ((-597 . -961) T) ((-597 . -82) 90437) ((-597 . -963) 90421) ((-597 . -968) 90405) ((-597 . -21) T) ((-597 . -23) T) ((-597 . -1013) T) ((-597 . -552) 90387) ((-597 . -72) T) ((-597 . -25) T) ((-597 . -104) T) ((-597 . -582) 90357) ((-597 . -654) 90327) ((-597 . -355) 90311) ((-597 . -950) 90209) ((-597 . -761) 90193) ((-597 . -1129) T) ((-597 . -13) T) ((-597 . -241) 90172) ((-596 . -600) 90156) ((-596 . -38) 90126) ((-596 . -555) 90045) ((-596 . -590) 90019) ((-596 . -588) 89978) ((-596 . -970) T) ((-596 . -1025) T) ((-596 . -1061) T) ((-596 . -663) T) ((-596 . -961) T) ((-596 . -82) 89957) ((-596 . -963) 89941) ((-596 . -968) 89925) ((-596 . -21) T) ((-596 . -23) T) ((-596 . -1013) T) ((-596 . -552) 89907) ((-596 . -72) T) ((-596 . -25) T) ((-596 . -104) T) ((-596 . -582) 89877) ((-596 . -654) 89847) ((-596 . -355) 89831) ((-596 . -950) 89729) ((-596 . -761) 89713) ((-596 . -1129) T) ((-596 . -13) T) ((-596 . -241) 89692) ((-594 . -654) 89676) ((-594 . -582) 89660) ((-594 . -590) 89644) ((-594 . -588) 89613) ((-594 . -104) T) ((-594 . -25) T) ((-594 . -72) T) ((-594 . -13) T) ((-594 . -1129) T) ((-594 . -552) 89595) ((-594 . -1013) T) ((-594 . -23) T) ((-594 . -21) T) ((-594 . -968) 89579) ((-594 . -963) 89563) ((-594 . -82) 89542) ((-594 . -714) 89521) ((-594 . -716) 89500) ((-594 . -756) 89479) ((-594 . -759) 89458) ((-594 . -718) 89437) ((-594 . -721) 89416) ((-591 . -1013) T) ((-591 . -552) 89398) ((-591 . -1129) T) ((-591 . -13) T) ((-591 . -72) T) ((-591 . -950) 89382) ((-591 . -555) 89366) ((-589 . -634) 89350) ((-589 . -76) 89334) ((-589 . -429) 89318) ((-589 . -1013) 89296) ((-589 . -455) 89229) ((-589 . -260) 89167) ((-589 . -552) 89102) ((-589 . -72) 89056) ((-589 . -1129) T) ((-589 . -13) T) ((-589 . -34) T) ((-589 . -1035) 89040) ((-589 . -124) 89024) ((-589 . -553) 88985) ((-589 . -193) 88969) ((-589 . -318) 88953) ((-587 . -995) T) ((-587 . -430) 88934) ((-587 . -552) 88887) ((-587 . -555) 88868) ((-587 . -1013) T) ((-587 . -1129) T) ((-587 . -13) T) ((-587 . -72) T) ((-587 . -64) T) ((-583 . -608) 88852) ((-583 . -1168) 88836) ((-583 . -923) 88820) ((-583 . -1064) 88804) ((-583 . -318) 88788) ((-583 . -756) 88767) ((-583 . -759) 88746) ((-583 . -324) 88730) ((-583 . -593) 88714) ((-583 . -243) 88691) ((-583 . -241) 88643) ((-583 . -538) 88620) ((-583 . -553) 88581) ((-583 . -429) 88565) ((-583 . -1013) 88518) ((-583 . -455) 88451) ((-583 . -260) 88389) ((-583 . -552) 88304) ((-583 . -72) 88238) ((-583 . -1129) T) ((-583 . -13) T) ((-583 . -34) T) ((-583 . -124) 88222) ((-583 . -1035) 88206) ((-583 . -237) 88190) ((-581 . -1187) 88174) ((-581 . -82) 88153) ((-581 . -963) 88137) ((-581 . -968) 88121) ((-581 . -21) T) ((-581 . -588) 88090) ((-581 . -23) T) ((-581 . -1013) T) ((-581 . -552) 88072) ((-581 . -1129) T) ((-581 . -13) T) ((-581 . -72) T) ((-581 . -25) T) ((-581 . -104) T) ((-581 . -590) 88056) ((-581 . -582) 88040) ((-581 . -654) 88024) ((-581 . -241) 87991) ((-579 . -1187) 87975) ((-579 . -82) 87954) ((-579 . -963) 87938) ((-579 . -968) 87922) ((-579 . -21) T) ((-579 . -588) 87891) ((-579 . -23) T) ((-579 . -1013) T) ((-579 . -552) 87873) ((-579 . -1129) T) ((-579 . -13) T) ((-579 . -72) T) ((-579 . -25) T) ((-579 . -104) T) ((-579 . -590) 87857) ((-579 . -582) 87841) ((-579 . -654) 87825) ((-579 . -555) 87802) ((-579 . -449) 87774) ((-579 . -557) 87732) ((-577 . -752) T) ((-577 . -759) T) ((-577 . -756) T) ((-577 . -1013) T) ((-577 . -552) 87714) ((-577 . -1129) T) ((-577 . -13) T) ((-577 . -72) T) ((-577 . -320) T) ((-577 . -555) 87691) ((-572 . -683) 87675) ((-572 . -657) T) ((-572 . -685) T) ((-572 . -82) 87654) ((-572 . -963) 87638) ((-572 . -968) 87622) ((-572 . -21) T) ((-572 . -588) 87591) ((-572 . -23) T) ((-572 . -1013) T) ((-572 . -552) 87560) ((-572 . -1129) T) ((-572 . -13) T) ((-572 . -72) T) ((-572 . -25) T) ((-572 . -104) T) ((-572 . -590) 87544) ((-572 . -582) 87528) ((-572 . -654) 87512) ((-572 . -361) 87477) ((-572 . -316) 87412) ((-572 . -241) 87370) ((-571 . -1107) 87345) ((-571 . -183) 87289) ((-571 . -76) 87233) ((-571 . -1035) 87177) ((-571 . -124) 87121) ((-571 . -553) NIL) ((-571 . -193) 87065) ((-571 . -538) 87040) ((-571 . -260) 86885) ((-571 . -455) 86685) ((-571 . -429) 86615) ((-571 . -241) 86568) ((-571 . -243) 86543) ((-571 . -549) 86518) ((-571 . -1013) T) ((-571 . -552) 86500) ((-571 . -72) T) ((-571 . -1129) T) ((-571 . -13) T) ((-571 . -34) T) ((-571 . -318) 86444) ((-566 . -413) T) ((-566 . -1025) T) ((-566 . -72) T) ((-566 . -13) T) ((-566 . -1129) T) ((-566 . -552) 86426) ((-566 . -1013) T) ((-566 . -663) T) ((-565 . -995) T) ((-565 . -430) 86407) ((-565 . -552) 86373) ((-565 . -555) 86354) ((-565 . -1013) T) ((-565 . -1129) T) ((-565 . -13) T) ((-565 . -72) T) ((-565 . -64) T) ((-562 . -184) 86338) ((-562 . -809) 86297) ((-562 . -811) 86223) ((-562 . -806) 86147) ((-562 . -225) 86131) ((-562 . -189) 86085) ((-562 . -1129) T) ((-562 . -13) T) ((-562 . -186) 86033) ((-562 . -961) T) ((-562 . -663) T) ((-562 . -1061) T) ((-562 . -1025) T) ((-562 . -970) T) ((-562 . -21) T) ((-562 . -588) 86005) ((-562 . -23) T) ((-562 . -1013) T) ((-562 . -552) 85987) ((-562 . -72) T) ((-562 . -25) T) ((-562 . -104) T) ((-562 . -590) 85974) ((-562 . -555) 85870) ((-562 . -190) 85849) ((-562 . -495) T) ((-562 . -246) T) ((-562 . -146) T) ((-562 . -654) 85836) ((-562 . -582) 85823) ((-562 . -968) 85810) ((-562 . -963) 85797) ((-562 . -82) 85782) ((-562 . -38) 85769) ((-562 . -553) 85746) ((-562 . -355) 85730) ((-562 . -950) 85615) ((-562 . -120) 85594) ((-562 . -118) 85573) ((-562 . -258) 85552) ((-562 . -392) 85531) ((-562 . -832) 85510) ((-558 . -38) 85494) ((-558 . -555) 85463) ((-558 . -590) 85437) ((-558 . -588) 85396) ((-558 . -970) T) ((-558 . -1025) T) ((-558 . -1061) T) ((-558 . -663) T) ((-558 . -961) T) ((-558 . -82) 85375) ((-558 . -963) 85359) ((-558 . -968) 85343) ((-558 . -21) T) ((-558 . -23) T) ((-558 . -1013) T) ((-558 . -552) 85325) ((-558 . -1129) T) ((-558 . -13) T) ((-558 . -72) T) ((-558 . -25) T) ((-558 . -104) T) ((-558 . -582) 85309) ((-558 . -654) 85293) ((-558 . -755) 85272) ((-558 . -721) 85251) ((-558 . -718) 85230) ((-558 . -759) 85209) ((-558 . -756) 85188) ((-558 . -716) 85167) ((-558 . -714) 85146) ((-558 . -120) 85125) ((-556 . -880) T) ((-556 . -72) T) ((-556 . -552) 85107) ((-556 . -1013) T) ((-556 . -604) T) ((-556 . -13) T) ((-556 . -1129) T) ((-556 . -84) T) ((-556 . -320) T) ((-550 . -105) T) ((-550 . -72) T) ((-550 . -13) T) ((-550 . -1129) T) ((-550 . -552) 85089) ((-550 . -1013) T) ((-550 . -756) T) ((-550 . -759) T) ((-550 . -794) 85073) ((-550 . -553) 84934) ((-547 . -314) 84872) ((-547 . -72) T) ((-547 . -13) T) ((-547 . -1129) T) ((-547 . -552) 84854) ((-547 . -1013) T) ((-547 . -1107) 84830) ((-547 . -183) 84775) ((-547 . -76) 84720) ((-547 . -1035) 84665) ((-547 . -124) 84610) ((-547 . -553) NIL) ((-547 . -193) 84555) ((-547 . -538) 84531) ((-547 . -260) 84320) ((-547 . -455) 84060) ((-547 . -429) 83992) ((-547 . -241) 83968) ((-547 . -243) 83944) ((-547 . -549) 83920) ((-547 . -34) T) ((-547 . -318) 83865) ((-546 . -1013) T) ((-546 . -552) 83817) ((-546 . -1129) T) ((-546 . -13) T) ((-546 . -72) T) ((-546 . -430) 83784) ((-546 . -555) 83751) ((-545 . -1013) T) ((-545 . -552) 83733) ((-545 . -1129) T) ((-545 . -13) T) ((-545 . -72) T) ((-545 . -604) T) ((-544 . -1013) T) ((-544 . -552) 83715) ((-544 . -1129) T) ((-544 . -13) T) ((-544 . -72) T) ((-544 . -604) T) ((-543 . -1013) T) ((-543 . -552) 83682) ((-543 . -1129) T) ((-543 . -13) T) ((-543 . -72) T) ((-542 . -1013) T) ((-542 . -552) 83664) ((-542 . -1129) T) ((-542 . -13) T) ((-542 . -72) T) ((-542 . -604) T) ((-541 . -1013) T) ((-541 . -552) 83631) ((-541 . -1129) T) ((-541 . -13) T) ((-541 . -72) T) ((-541 . -430) 83613) ((-541 . -555) 83595) ((-540 . -683) 83579) ((-540 . -657) T) ((-540 . -685) T) ((-540 . -82) 83558) ((-540 . -963) 83542) ((-540 . -968) 83526) ((-540 . -21) T) ((-540 . -588) 83495) ((-540 . -23) T) ((-540 . -1013) T) ((-540 . -552) 83464) ((-540 . -1129) T) ((-540 . -13) T) ((-540 . -72) T) ((-540 . -25) T) ((-540 . -104) T) ((-540 . -590) 83448) ((-540 . -582) 83432) ((-540 . -654) 83416) ((-540 . -361) 83381) ((-540 . -316) 83316) ((-540 . -241) 83274) ((-539 . -995) T) ((-539 . -430) 83255) ((-539 . -552) 83205) ((-539 . -555) 83186) ((-539 . -1013) T) ((-539 . -1129) T) ((-539 . -13) T) ((-539 . -72) T) ((-539 . -64) T) ((-536 . -552) 83168) ((-532 . -1013) T) ((-532 . -552) 83134) ((-532 . -1129) T) ((-532 . -13) T) ((-532 . -72) T) ((-532 . -430) 83115) ((-532 . -555) 83096) ((-531 . -961) T) ((-531 . -663) T) ((-531 . -1061) T) ((-531 . -1025) T) ((-531 . -970) T) ((-531 . -21) T) ((-531 . -588) 83055) ((-531 . -23) T) ((-531 . -1013) T) ((-531 . -552) 83037) ((-531 . -1129) T) ((-531 . -13) T) ((-531 . -72) T) ((-531 . -25) T) ((-531 . -104) T) ((-531 . -590) 83011) ((-531 . -555) 82969) ((-531 . -82) 82922) ((-531 . -963) 82882) ((-531 . -968) 82842) ((-531 . -495) 82821) ((-531 . -246) 82800) ((-531 . -146) 82779) ((-531 . -654) 82752) ((-531 . -582) 82725) ((-531 . -38) 82698) ((-530 . -1158) 82675) ((-530 . -47) 82652) ((-530 . -38) 82549) ((-530 . -582) 82446) ((-530 . -654) 82343) ((-530 . -555) 82225) ((-530 . -246) 82204) ((-530 . -495) 82183) ((-530 . -82) 82048) ((-530 . -963) 81934) ((-530 . -968) 81820) ((-530 . -146) 81774) ((-530 . -120) 81753) ((-530 . -118) 81732) ((-530 . -590) 81657) ((-530 . -588) 81567) ((-530 . -886) 81537) ((-530 . -811) 81450) ((-530 . -806) 81361) ((-530 . -809) 81274) ((-530 . -241) 81239) ((-530 . -189) 81198) ((-530 . -1129) T) ((-530 . -13) T) ((-530 . -186) 81151) ((-530 . -961) T) ((-530 . -663) T) ((-530 . -1061) T) ((-530 . -1025) T) ((-530 . -970) T) ((-530 . -21) T) ((-530 . -23) T) ((-530 . -1013) T) ((-530 . -552) 81133) ((-530 . -72) T) ((-530 . -25) T) ((-530 . -104) T) ((-530 . -190) 81092) ((-528 . -995) T) ((-528 . -430) 81073) ((-528 . -552) 81039) ((-528 . -555) 81020) ((-528 . -1013) T) ((-528 . -1129) T) ((-528 . -13) T) ((-528 . -72) T) ((-528 . -64) T) ((-522 . -1013) T) ((-522 . -552) 80986) ((-522 . -1129) T) ((-522 . -13) T) ((-522 . -72) T) ((-522 . -430) 80967) ((-522 . -555) 80948) ((-519 . -654) 80923) ((-519 . -582) 80898) ((-519 . -590) 80873) ((-519 . -588) 80833) ((-519 . -104) T) ((-519 . -25) T) ((-519 . -72) T) ((-519 . -13) T) ((-519 . -1129) T) ((-519 . -552) 80815) ((-519 . -1013) T) ((-519 . -23) T) ((-519 . -21) T) ((-519 . -968) 80790) ((-519 . -963) 80765) ((-519 . -82) 80726) ((-519 . -950) 80710) ((-519 . -555) 80694) ((-517 . -299) T) ((-517 . -1066) T) ((-517 . -320) T) ((-517 . -118) T) ((-517 . -312) T) ((-517 . -1134) T) ((-517 . -832) T) ((-517 . -495) T) ((-517 . -146) T) ((-517 . -555) 80644) ((-517 . -654) 80609) ((-517 . -582) 80574) ((-517 . -38) 80539) ((-517 . -392) T) ((-517 . -258) T) ((-517 . -82) 80488) ((-517 . -963) 80453) ((-517 . -968) 80418) ((-517 . -588) 80368) ((-517 . -590) 80333) ((-517 . -246) T) ((-517 . -201) T) ((-517 . -345) T) ((-517 . -189) T) ((-517 . -1129) T) ((-517 . -13) T) ((-517 . -186) 80320) ((-517 . -961) T) ((-517 . -663) T) ((-517 . -1061) T) ((-517 . -1025) T) ((-517 . -970) T) ((-517 . -21) T) ((-517 . -23) T) ((-517 . -1013) T) ((-517 . -552) 80302) ((-517 . -72) T) ((-517 . -25) T) ((-517 . -104) T) ((-517 . -190) T) ((-517 . -280) 80289) ((-517 . -120) 80271) ((-517 . -950) 80258) ((-517 . -1187) 80245) ((-517 . -1198) 80232) ((-517 . -553) 80214) ((-516 . -779) 80198) ((-516 . -832) T) ((-516 . -495) T) ((-516 . -246) T) ((-516 . -146) T) ((-516 . -555) 80170) ((-516 . -654) 80157) ((-516 . -582) 80144) ((-516 . -968) 80131) ((-516 . -963) 80118) ((-516 . -82) 80103) ((-516 . -38) 80090) ((-516 . -392) T) ((-516 . -258) T) ((-516 . -961) T) ((-516 . -663) T) ((-516 . -1061) T) ((-516 . -1025) T) ((-516 . -970) T) ((-516 . -21) T) ((-516 . -588) 80062) ((-516 . -23) T) ((-516 . -1013) T) ((-516 . -552) 80044) ((-516 . -1129) T) ((-516 . -13) T) ((-516 . -72) T) ((-516 . -25) T) ((-516 . -104) T) ((-516 . -590) 80031) ((-516 . -120) T) ((-515 . -1013) T) ((-515 . -552) 80013) ((-515 . -1129) T) ((-515 . -13) T) ((-515 . -72) T) ((-514 . -1013) T) ((-514 . -552) 79995) ((-514 . -1129) T) ((-514 . -13) T) ((-514 . -72) T) ((-513 . -512) T) ((-513 . -770) T) ((-513 . -147) T) ((-513 . -465) T) ((-513 . -552) 79977) ((-507 . -493) 79961) ((-507 . -35) T) ((-507 . -66) T) ((-507 . -239) T) ((-507 . -433) T) ((-507 . -1118) T) ((-507 . -1115) T) ((-507 . -950) 79943) ((-507 . -915) T) ((-507 . -759) T) ((-507 . -756) T) ((-507 . -495) T) ((-507 . -246) T) ((-507 . -146) T) ((-507 . -555) 79915) ((-507 . -654) 79902) ((-507 . -582) 79889) ((-507 . -590) 79876) ((-507 . -588) 79848) ((-507 . -104) T) ((-507 . -25) T) ((-507 . -72) T) ((-507 . -13) T) ((-507 . -1129) T) ((-507 . -552) 79830) ((-507 . -1013) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -968) 79817) ((-507 . -963) 79804) ((-507 . -82) 79789) ((-507 . -961) T) ((-507 . -663) T) ((-507 . -1061) T) ((-507 . -1025) T) ((-507 . -970) T) ((-507 . -38) 79776) ((-507 . -392) T) ((-489 . -1107) 79755) ((-489 . -183) 79703) ((-489 . -76) 79651) ((-489 . -1035) 79599) ((-489 . -124) 79547) ((-489 . -553) NIL) ((-489 . -193) 79495) ((-489 . -538) 79474) ((-489 . -260) 79272) ((-489 . -455) 79024) ((-489 . -429) 78959) ((-489 . -241) 78938) ((-489 . -243) 78917) ((-489 . -549) 78896) ((-489 . -1013) T) ((-489 . -552) 78878) ((-489 . -72) T) ((-489 . -1129) T) ((-489 . -13) T) ((-489 . -34) T) ((-489 . -318) 78826) ((-488 . -752) T) ((-488 . -759) T) ((-488 . -756) T) ((-488 . -1013) T) ((-488 . -552) 78808) ((-488 . -1129) T) ((-488 . -13) T) ((-488 . -72) T) ((-488 . -320) T) ((-487 . -752) T) ((-487 . -759) T) ((-487 . -756) T) ((-487 . -1013) T) ((-487 . -552) 78790) ((-487 . -1129) T) ((-487 . -13) T) ((-487 . -72) T) ((-487 . -320) T) ((-486 . -752) T) ((-486 . -759) T) ((-486 . -756) T) ((-486 . -1013) T) ((-486 . -552) 78772) ((-486 . -1129) T) ((-486 . -13) T) ((-486 . -72) T) ((-486 . -320) T) ((-485 . -752) T) ((-485 . -759) T) ((-485 . -756) T) ((-485 . -1013) T) ((-485 . -552) 78754) ((-485 . -1129) T) ((-485 . -13) T) ((-485 . -72) T) ((-485 . -320) T) ((-484 . -483) T) ((-484 . -1134) T) ((-484 . -1066) T) ((-484 . -950) 78736) ((-484 . -553) 78651) ((-484 . -933) T) ((-484 . -796) 78633) ((-484 . -755) T) ((-484 . -721) T) ((-484 . -718) T) ((-484 . -759) T) ((-484 . -756) T) ((-484 . -716) T) ((-484 . -714) T) ((-484 . -740) T) ((-484 . -590) 78605) ((-484 . -580) 78587) ((-484 . -832) T) ((-484 . -495) T) ((-484 . -246) T) ((-484 . -146) T) ((-484 . -555) 78559) ((-484 . -654) 78546) ((-484 . -582) 78533) ((-484 . -968) 78520) ((-484 . -963) 78507) ((-484 . -82) 78492) ((-484 . -38) 78479) ((-484 . -392) T) ((-484 . -258) T) ((-484 . -189) T) ((-484 . -186) 78466) ((-484 . -190) T) ((-484 . -116) T) ((-484 . -961) T) ((-484 . -663) T) ((-484 . -1061) T) ((-484 . -1025) T) ((-484 . -970) T) ((-484 . -21) T) ((-484 . -588) 78438) ((-484 . -23) T) ((-484 . -1013) T) ((-484 . -552) 78420) ((-484 . -1129) T) ((-484 . -13) T) ((-484 . -72) T) ((-484 . -25) T) ((-484 . -104) T) ((-484 . -120) T) ((-473 . -1016) 78372) ((-473 . -72) T) ((-473 . -552) 78354) ((-473 . -1013) T) ((-473 . -241) 78310) ((-473 . -1129) T) ((-473 . -13) T) ((-473 . -557) 78213) ((-473 . -553) 78194) ((-471 . -691) 78176) ((-471 . -465) T) ((-471 . -147) T) ((-471 . -770) T) ((-471 . -512) T) ((-471 . -552) 78158) ((-469 . -717) T) ((-469 . -104) T) ((-469 . -25) T) ((-469 . -72) T) ((-469 . -13) T) ((-469 . -1129) T) ((-469 . -552) 78140) ((-469 . -1013) T) ((-469 . -23) T) ((-469 . -716) T) ((-469 . -756) T) ((-469 . -759) T) ((-469 . -718) T) ((-469 . -721) T) ((-469 . -449) 78117) ((-469 . -557) 78080) ((-467 . -465) T) ((-467 . -147) T) ((-467 . -552) 78062) ((-463 . -995) T) ((-463 . -430) 78043) ((-463 . -552) 78009) ((-463 . -555) 77990) ((-463 . -1013) T) ((-463 . -1129) T) ((-463 . -13) T) ((-463 . -72) T) ((-463 . -64) T) ((-462 . -995) T) ((-462 . -430) 77971) ((-462 . -552) 77937) ((-462 . -555) 77918) ((-462 . -1013) T) ((-462 . -1129) T) ((-462 . -13) T) ((-462 . -72) T) ((-462 . -64) T) ((-459 . -280) 77895) ((-459 . -190) T) ((-459 . -186) 77882) ((-459 . -189) T) ((-459 . -320) T) ((-459 . -1066) T) ((-459 . -299) T) ((-459 . -120) 77864) ((-459 . -555) 77794) ((-459 . -590) 77739) ((-459 . -588) 77669) ((-459 . -104) T) ((-459 . -25) T) ((-459 . -72) T) ((-459 . -13) T) ((-459 . -1129) T) ((-459 . -552) 77651) ((-459 . -1013) T) ((-459 . -23) T) ((-459 . -21) T) ((-459 . -970) T) ((-459 . -1025) T) ((-459 . -1061) T) ((-459 . -663) T) ((-459 . -961) T) ((-459 . -312) T) ((-459 . -1134) T) ((-459 . -832) T) ((-459 . -495) T) ((-459 . -146) T) ((-459 . -654) 77596) ((-459 . -582) 77541) ((-459 . -38) 77506) ((-459 . -392) T) ((-459 . -258) T) ((-459 . -82) 77423) ((-459 . -963) 77368) ((-459 . -968) 77313) ((-459 . -246) T) ((-459 . -201) T) ((-459 . -345) T) ((-459 . -118) T) ((-459 . -950) 77290) ((-459 . -1187) 77267) ((-459 . -1198) 77244) ((-458 . -995) T) ((-458 . -430) 77225) ((-458 . -552) 77191) ((-458 . -555) 77172) ((-458 . -1013) T) ((-458 . -1129) T) ((-458 . -13) T) ((-458 . -72) T) ((-458 . -64) T) ((-457 . -19) 77156) ((-457 . -1035) 77140) ((-457 . -318) 77124) ((-457 . -34) T) ((-457 . -13) T) ((-457 . -1129) T) ((-457 . -72) 77058) ((-457 . -552) 76973) ((-457 . -260) 76911) ((-457 . -455) 76844) ((-457 . -1013) 76797) ((-457 . -429) 76781) ((-457 . -593) 76765) ((-457 . -243) 76742) ((-457 . -241) 76694) ((-457 . -538) 76671) ((-457 . -553) 76632) ((-457 . -124) 76616) ((-457 . -756) 76595) ((-457 . -759) 76574) ((-457 . -324) 76558) ((-457 . -237) 76542) ((-456 . -274) 76521) ((-456 . -555) 76505) ((-456 . -950) 76489) ((-456 . -23) T) ((-456 . -1013) T) ((-456 . -552) 76471) ((-456 . -1129) T) ((-456 . -13) T) ((-456 . -72) T) ((-456 . -25) T) ((-456 . -104) T) ((-453 . -72) T) ((-453 . -13) T) ((-453 . -1129) T) ((-453 . -552) 76443) ((-452 . -717) T) ((-452 . -104) T) ((-452 . -25) T) ((-452 . -72) T) ((-452 . -13) T) ((-452 . -1129) T) ((-452 . -552) 76425) ((-452 . -1013) T) ((-452 . -23) T) ((-452 . -716) T) ((-452 . -756) T) ((-452 . -759) T) ((-452 . -718) T) ((-452 . -721) T) ((-452 . -449) 76404) ((-452 . -557) 76369) ((-451 . -716) T) ((-451 . -756) T) ((-451 . -759) T) ((-451 . -718) T) ((-451 . -25) T) ((-451 . -72) T) ((-451 . -13) T) ((-451 . -1129) T) ((-451 . -552) 76351) ((-451 . -1013) T) ((-451 . -23) T) ((-451 . -449) 76330) ((-451 . -557) 76295) ((-450 . -449) 76274) ((-450 . -552) 76214) ((-450 . -1013) 76165) ((-450 . -557) 76130) ((-450 . -1129) T) ((-450 . -13) T) ((-450 . -72) T) ((-448 . -23) T) ((-448 . -1013) T) ((-448 . -552) 76112) ((-448 . -1129) T) ((-448 . -13) T) ((-448 . -72) T) ((-448 . -25) T) ((-448 . -449) 76091) ((-448 . -557) 76056) ((-447 . -21) T) ((-447 . -588) 76038) ((-447 . -23) T) ((-447 . -1013) T) ((-447 . -552) 76020) ((-447 . -1129) T) ((-447 . -13) T) ((-447 . -72) T) ((-447 . -25) T) ((-447 . -104) T) ((-447 . -449) 75999) ((-447 . -557) 75964) ((-446 . -1013) T) ((-446 . -552) 75946) ((-446 . -1129) T) ((-446 . -13) T) ((-446 . -72) T) ((-443 . -1013) T) ((-443 . -552) 75928) ((-443 . -1129) T) ((-443 . -13) T) ((-443 . -72) T) ((-441 . -756) T) ((-441 . -552) 75910) ((-441 . -1013) T) ((-441 . -72) T) ((-441 . -13) T) ((-441 . -1129) T) ((-441 . -759) T) ((-441 . -555) 75891) ((-437 . -57) 75865) ((-437 . -1035) 75849) ((-437 . -429) 75833) ((-437 . -1013) 75811) ((-437 . -455) 75744) ((-437 . -260) 75682) ((-437 . -552) 75617) ((-437 . -72) 75571) ((-437 . -1129) T) ((-437 . -13) T) ((-437 . -34) T) ((-437 . -318) 75555) ((-436 . -19) 75539) ((-436 . -1035) 75523) ((-436 . -318) 75507) ((-436 . -34) T) ((-436 . -13) T) ((-436 . -1129) T) ((-436 . -72) 75441) ((-436 . -552) 75356) ((-436 . -260) 75294) ((-436 . -455) 75227) ((-436 . -1013) 75180) ((-436 . -429) 75164) ((-436 . -593) 75148) ((-436 . -243) 75125) ((-436 . -241) 75077) ((-436 . -538) 75054) ((-436 . -553) 75015) ((-436 . -124) 74999) ((-436 . -756) 74978) ((-436 . -759) 74957) ((-436 . -324) 74941) ((-435 . -254) T) ((-435 . -72) T) ((-435 . -13) T) ((-435 . -1129) T) ((-435 . -552) 74923) ((-435 . -1013) T) ((-435 . -555) 74824) ((-435 . -950) 74767) ((-435 . -455) 74733) ((-435 . -260) 74720) ((-435 . -27) T) ((-435 . -915) T) ((-435 . -201) T) ((-435 . -82) 74669) ((-435 . -963) 74634) ((-435 . -968) 74599) ((-435 . -246) T) ((-435 . -654) 74564) ((-435 . -582) 74529) ((-435 . -590) 74479) ((-435 . -588) 74429) ((-435 . -104) T) ((-435 . -25) T) ((-435 . -23) T) ((-435 . -21) T) ((-435 . -961) T) ((-435 . -663) T) ((-435 . -1061) T) ((-435 . -1025) T) ((-435 . -970) T) ((-435 . -38) 74394) ((-435 . -258) T) ((-435 . -392) T) ((-435 . -146) T) ((-435 . -495) T) ((-435 . -832) T) ((-435 . -1134) T) ((-435 . -312) T) ((-435 . -580) 74354) ((-435 . -933) T) ((-435 . -553) 74299) ((-435 . -120) T) ((-435 . -190) T) ((-435 . -186) 74286) ((-435 . -189) T) ((-431 . -1013) T) ((-431 . -552) 74252) ((-431 . -1129) T) ((-431 . -13) T) ((-431 . -72) T) ((-427 . -904) 74234) ((-427 . -1066) T) ((-427 . -555) 74184) ((-427 . -950) 74144) ((-427 . -553) 74074) ((-427 . -933) T) ((-427 . -821) NIL) ((-427 . -794) 74056) ((-427 . -755) T) ((-427 . -721) T) ((-427 . -718) T) ((-427 . -759) T) ((-427 . -756) T) ((-427 . -716) T) ((-427 . -714) T) ((-427 . -740) T) ((-427 . -796) 74038) ((-427 . -343) 74020) ((-427 . -580) 74002) ((-427 . -329) 73984) ((-427 . -241) NIL) ((-427 . -260) NIL) ((-427 . -455) NIL) ((-427 . -288) 73966) ((-427 . -201) T) ((-427 . -82) 73893) ((-427 . -963) 73843) ((-427 . -968) 73793) ((-427 . -246) T) ((-427 . -654) 73743) ((-427 . -582) 73693) ((-427 . -590) 73643) ((-427 . -588) 73593) ((-427 . -38) 73543) ((-427 . -258) T) ((-427 . -392) T) ((-427 . -146) T) ((-427 . -495) T) ((-427 . -832) T) ((-427 . -1134) T) ((-427 . -312) T) ((-427 . -190) T) ((-427 . -186) 73530) ((-427 . -189) T) ((-427 . -225) 73512) ((-427 . -806) NIL) ((-427 . -811) NIL) ((-427 . -809) NIL) ((-427 . -184) 73494) ((-427 . -120) T) ((-427 . -118) NIL) ((-427 . -104) T) ((-427 . -25) T) ((-427 . -72) T) ((-427 . -13) T) ((-427 . -1129) T) ((-427 . -552) 73436) ((-427 . -1013) T) ((-427 . -23) T) ((-427 . -21) T) ((-427 . -961) T) ((-427 . -663) T) ((-427 . -1061) T) ((-427 . -1025) T) ((-427 . -970) T) ((-425 . -286) 73405) ((-425 . -104) T) ((-425 . -25) T) ((-425 . -72) T) ((-425 . -13) T) ((-425 . -1129) T) ((-425 . -552) 73387) ((-425 . -1013) T) ((-425 . -23) T) ((-425 . -588) 73369) ((-425 . -21) T) ((-424 . -881) 73353) ((-424 . -318) 73337) ((-424 . -1035) 73321) ((-424 . -34) T) ((-424 . -13) T) ((-424 . -1129) T) ((-424 . -72) 73275) ((-424 . -552) 73210) ((-424 . -260) 73148) ((-424 . -455) 73081) ((-424 . -1013) 73059) ((-424 . -429) 73043) ((-424 . -76) 73027) ((-423 . -995) T) ((-423 . -430) 73008) ((-423 . -552) 72974) ((-423 . -555) 72955) ((-423 . -1013) T) ((-423 . -1129) T) ((-423 . -13) T) ((-423 . -72) T) ((-423 . -64) T) ((-422 . -196) 72934) ((-422 . -1187) 72904) ((-422 . -721) 72883) ((-422 . -718) 72862) ((-422 . -759) 72816) ((-422 . -756) 72770) ((-422 . -716) 72749) ((-422 . -717) 72728) ((-422 . -654) 72673) ((-422 . -582) 72598) ((-422 . -243) 72575) ((-422 . -241) 72552) ((-422 . -538) 72529) ((-422 . -950) 72358) ((-422 . -555) 72162) ((-422 . -355) 72131) ((-422 . -580) 72039) ((-422 . -590) 71878) ((-422 . -329) 71848) ((-422 . -429) 71832) ((-422 . -455) 71765) ((-422 . -260) 71703) ((-422 . -34) T) ((-422 . -318) 71687) ((-422 . -320) 71666) ((-422 . -190) 71619) ((-422 . -588) 71407) ((-422 . -970) 71386) ((-422 . -1025) 71365) ((-422 . -1061) 71344) ((-422 . -663) 71323) ((-422 . -961) 71302) ((-422 . -186) 71198) ((-422 . -189) 71100) ((-422 . -225) 71070) ((-422 . -806) 70942) ((-422 . -811) 70816) ((-422 . -809) 70749) ((-422 . -184) 70719) ((-422 . -552) 70416) ((-422 . -968) 70341) ((-422 . -963) 70246) ((-422 . -82) 70166) ((-422 . -104) 70041) ((-422 . -25) 69878) ((-422 . -72) 69615) ((-422 . -13) T) ((-422 . -1129) T) ((-422 . -1013) 69371) ((-422 . -23) 69227) ((-422 . -21) 69142) ((-421 . -861) 69087) ((-421 . -555) 68879) ((-421 . -950) 68757) ((-421 . -1134) 68736) ((-421 . -821) 68715) ((-421 . -796) NIL) ((-421 . -811) 68692) ((-421 . -806) 68667) ((-421 . -809) 68644) ((-421 . -455) 68582) ((-421 . -392) 68536) ((-421 . -580) 68484) ((-421 . -590) 68373) ((-421 . -329) 68357) ((-421 . -47) 68314) ((-421 . -38) 68166) ((-421 . -582) 68018) ((-421 . -654) 67870) ((-421 . -246) 67804) ((-421 . -495) 67738) ((-421 . -82) 67563) ((-421 . -963) 67409) ((-421 . -968) 67255) ((-421 . -146) 67169) ((-421 . -120) 67148) ((-421 . -118) 67127) ((-421 . -588) 67037) ((-421 . -104) T) ((-421 . -25) T) ((-421 . -72) T) ((-421 . -13) T) ((-421 . -1129) T) ((-421 . -552) 67019) ((-421 . -1013) T) ((-421 . -23) T) ((-421 . -21) T) ((-421 . -961) T) ((-421 . -663) T) ((-421 . -1061) T) ((-421 . -1025) T) ((-421 . -970) T) ((-421 . -355) 67003) ((-421 . -277) 66960) ((-421 . -260) 66947) ((-421 . -553) 66808) ((-419 . -1107) 66787) ((-419 . -183) 66735) ((-419 . -76) 66683) ((-419 . -1035) 66631) ((-419 . -124) 66579) ((-419 . -553) NIL) ((-419 . -193) 66527) ((-419 . -538) 66506) ((-419 . -260) 66304) ((-419 . -455) 66056) ((-419 . -429) 65991) ((-419 . -241) 65970) ((-419 . -243) 65949) ((-419 . -549) 65928) ((-419 . -1013) T) ((-419 . -552) 65910) ((-419 . -72) T) ((-419 . -1129) T) ((-419 . -13) T) ((-419 . -34) T) ((-419 . -318) 65858) ((-418 . -995) T) ((-418 . -430) 65839) ((-418 . -552) 65805) ((-418 . -555) 65786) ((-418 . -1013) T) ((-418 . -1129) T) ((-418 . -13) T) ((-418 . -72) T) ((-418 . -64) T) ((-417 . -312) T) ((-417 . -1134) T) ((-417 . -832) T) ((-417 . -495) T) ((-417 . -146) T) ((-417 . -555) 65736) ((-417 . -654) 65701) ((-417 . -582) 65666) ((-417 . -38) 65631) ((-417 . -392) T) ((-417 . -258) T) ((-417 . -590) 65596) ((-417 . -588) 65546) ((-417 . -970) T) ((-417 . -1025) T) ((-417 . -1061) T) ((-417 . -663) T) ((-417 . -961) T) ((-417 . -82) 65495) ((-417 . -963) 65460) ((-417 . -968) 65425) ((-417 . -21) T) ((-417 . -23) T) ((-417 . -1013) T) ((-417 . -552) 65377) ((-417 . -1129) T) ((-417 . -13) T) ((-417 . -72) T) ((-417 . -25) T) ((-417 . -104) T) ((-417 . -246) T) ((-417 . -201) T) ((-417 . -120) T) ((-417 . -950) 65337) ((-417 . -933) T) ((-417 . -553) 65259) ((-416 . -1124) 65228) ((-416 . -1035) 65212) ((-416 . -552) 65174) ((-416 . -124) 65158) ((-416 . -34) T) ((-416 . -13) T) ((-416 . -1129) T) ((-416 . -72) T) ((-416 . -260) 65096) ((-416 . -455) 65029) ((-416 . -1013) T) ((-416 . -429) 65013) ((-416 . -553) 64974) ((-416 . -318) 64958) ((-416 . -889) 64927) ((-415 . -1107) 64906) ((-415 . -183) 64854) ((-415 . -76) 64802) ((-415 . -1035) 64750) ((-415 . -124) 64698) ((-415 . -553) NIL) ((-415 . -193) 64646) ((-415 . -538) 64625) ((-415 . -260) 64423) ((-415 . -455) 64175) ((-415 . -429) 64110) ((-415 . -241) 64089) ((-415 . -243) 64068) ((-415 . -549) 64047) ((-415 . -1013) T) ((-415 . -552) 64029) ((-415 . -72) T) ((-415 . -1129) T) ((-415 . -13) T) ((-415 . -34) T) ((-415 . -318) 63977) ((-414 . -1162) 63961) ((-414 . -190) 63913) ((-414 . -186) 63859) ((-414 . -189) 63811) ((-414 . -241) 63769) ((-414 . -809) 63675) ((-414 . -806) 63556) ((-414 . -811) 63462) ((-414 . -886) 63425) ((-414 . -38) 63272) ((-414 . -82) 63092) ((-414 . -963) 62933) ((-414 . -968) 62774) ((-414 . -588) 62659) ((-414 . -590) 62559) ((-414 . -582) 62406) ((-414 . -654) 62253) ((-414 . -555) 62085) ((-414 . -118) 62064) ((-414 . -120) 62043) ((-414 . -47) 62013) ((-414 . -1158) 61983) ((-414 . -35) 61949) ((-414 . -66) 61915) ((-414 . -239) 61881) ((-414 . -433) 61847) ((-414 . -1118) 61813) ((-414 . -1115) 61779) ((-414 . -915) 61745) ((-414 . -201) 61724) ((-414 . -246) 61678) ((-414 . -104) T) ((-414 . -25) T) ((-414 . -72) T) ((-414 . -13) T) ((-414 . -1129) T) ((-414 . -552) 61660) ((-414 . -1013) T) ((-414 . -23) T) ((-414 . -21) T) ((-414 . -961) T) ((-414 . -663) T) ((-414 . -1061) T) ((-414 . -1025) T) ((-414 . -970) T) ((-414 . -258) 61639) ((-414 . -392) 61618) ((-414 . -146) 61552) ((-414 . -495) 61506) ((-414 . -832) 61485) ((-414 . -1134) 61464) ((-414 . -312) 61443) ((-408 . -1013) T) ((-408 . -552) 61425) ((-408 . -1129) T) ((-408 . -13) T) ((-408 . -72) T) ((-403 . -889) 61394) ((-403 . -318) 61378) ((-403 . -553) 61339) ((-403 . -429) 61323) ((-403 . -1013) T) ((-403 . -455) 61256) ((-403 . -260) 61194) ((-403 . -552) 61156) ((-403 . -72) T) ((-403 . -1129) T) ((-403 . -13) T) ((-403 . -34) T) ((-403 . -124) 61140) ((-403 . -1035) 61124) ((-401 . -654) 61095) ((-401 . -582) 61066) ((-401 . -590) 61037) ((-401 . -588) 60993) ((-401 . -104) T) ((-401 . -25) T) ((-401 . -72) T) ((-401 . -13) T) ((-401 . -1129) T) ((-401 . -552) 60975) ((-401 . -1013) T) ((-401 . -23) T) ((-401 . -21) T) ((-401 . -968) 60946) ((-401 . -963) 60917) ((-401 . -82) 60878) ((-394 . -861) 60845) ((-394 . -555) 60637) ((-394 . -950) 60515) ((-394 . -1134) 60494) ((-394 . -821) 60473) ((-394 . -796) NIL) ((-394 . -811) 60450) ((-394 . -806) 60425) ((-394 . -809) 60402) ((-394 . -455) 60340) ((-394 . -392) 60294) ((-394 . -580) 60242) ((-394 . -590) 60131) ((-394 . -329) 60115) ((-394 . -47) 60094) ((-394 . -38) 59946) ((-394 . -582) 59798) ((-394 . -654) 59650) ((-394 . -246) 59584) ((-394 . -495) 59518) ((-394 . -82) 59343) ((-394 . -963) 59189) ((-394 . -968) 59035) ((-394 . -146) 58949) ((-394 . -120) 58928) ((-394 . -118) 58907) ((-394 . -588) 58817) ((-394 . -104) T) ((-394 . -25) T) ((-394 . -72) T) ((-394 . -13) T) ((-394 . -1129) T) ((-394 . -552) 58799) ((-394 . -1013) T) ((-394 . -23) T) ((-394 . -21) T) ((-394 . -961) T) ((-394 . -663) T) ((-394 . -1061) T) ((-394 . -1025) T) ((-394 . -970) T) ((-394 . -355) 58783) ((-394 . -277) 58762) ((-394 . -260) 58749) ((-394 . -553) 58610) ((-393 . -361) 58580) ((-393 . -683) 58550) ((-393 . -657) T) ((-393 . -685) T) ((-393 . -82) 58501) ((-393 . -963) 58471) ((-393 . -968) 58441) ((-393 . -21) T) ((-393 . -588) 58356) ((-393 . -23) T) ((-393 . -1013) T) ((-393 . -552) 58338) ((-393 . -72) T) ((-393 . -25) T) ((-393 . -104) T) ((-393 . -590) 58268) ((-393 . -582) 58238) ((-393 . -654) 58208) ((-393 . -316) 58178) ((-393 . -1129) T) ((-393 . -13) T) ((-393 . -241) 58141) ((-381 . -1013) T) ((-381 . -552) 58123) ((-381 . -1129) T) ((-381 . -13) T) ((-381 . -72) T) ((-380 . -1013) T) ((-380 . -552) 58105) ((-380 . -1129) T) ((-380 . -13) T) ((-380 . -72) T) ((-379 . -1013) T) ((-379 . -552) 58087) ((-379 . -1129) T) ((-379 . -13) T) ((-379 . -72) T) ((-377 . -552) 58069) ((-372 . -38) 58053) ((-372 . -555) 58022) ((-372 . -590) 57996) ((-372 . -588) 57955) ((-372 . -970) T) ((-372 . -1025) T) ((-372 . -1061) T) ((-372 . -663) T) ((-372 . -961) T) ((-372 . -82) 57934) ((-372 . -963) 57918) ((-372 . -968) 57902) ((-372 . -21) T) ((-372 . -23) T) ((-372 . -1013) T) ((-372 . -552) 57884) ((-372 . -1129) T) ((-372 . -13) T) ((-372 . -72) T) ((-372 . -25) T) ((-372 . -104) T) ((-372 . -582) 57868) ((-372 . -654) 57852) ((-358 . -663) T) ((-358 . -1013) T) ((-358 . -552) 57834) ((-358 . -1129) T) ((-358 . -13) T) ((-358 . -72) T) ((-358 . -1025) T) ((-356 . -413) T) ((-356 . -1025) T) ((-356 . -72) T) ((-356 . -13) T) ((-356 . -1129) T) ((-356 . -552) 57816) ((-356 . -1013) T) ((-356 . -663) T) ((-350 . -904) 57800) ((-350 . -1066) 57778) ((-350 . -950) 57645) ((-350 . -555) 57544) ((-350 . -553) 57347) ((-350 . -933) 57326) ((-350 . -821) 57305) ((-350 . -794) 57289) ((-350 . -755) 57268) ((-350 . -721) 57247) ((-350 . -718) 57226) ((-350 . -759) 57180) ((-350 . -756) 57134) ((-350 . -716) 57113) ((-350 . -714) 57092) ((-350 . -740) 57071) ((-350 . -796) 56996) ((-350 . -343) 56980) ((-350 . -580) 56928) ((-350 . -590) 56844) ((-350 . -329) 56828) ((-350 . -241) 56786) ((-350 . -260) 56751) ((-350 . -455) 56663) ((-350 . -288) 56647) ((-350 . -201) T) ((-350 . -82) 56578) ((-350 . -963) 56530) ((-350 . -968) 56482) ((-350 . -246) T) ((-350 . -654) 56434) ((-350 . -582) 56386) ((-350 . -588) 56323) ((-350 . -38) 56275) ((-350 . -258) T) ((-350 . -392) T) ((-350 . -146) T) ((-350 . -495) T) ((-350 . -832) T) ((-350 . -1134) T) ((-350 . -312) T) ((-350 . -190) 56254) ((-350 . -186) 56202) ((-350 . -189) 56156) ((-350 . -225) 56140) ((-350 . -806) 56064) ((-350 . -811) 55990) ((-350 . -809) 55949) ((-350 . -184) 55933) ((-350 . -120) 55887) ((-350 . -118) 55866) ((-350 . -104) T) ((-350 . -25) T) ((-350 . -72) T) ((-350 . -13) T) ((-350 . -1129) T) ((-350 . -552) 55848) ((-350 . -1013) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -961) T) ((-350 . -663) T) ((-350 . -1061) T) ((-350 . -1025) T) ((-350 . -970) T) ((-348 . -495) T) ((-348 . -246) T) ((-348 . -146) T) ((-348 . -555) 55757) ((-348 . -654) 55731) ((-348 . -582) 55705) ((-348 . -590) 55679) ((-348 . -588) 55638) ((-348 . -104) T) ((-348 . -25) T) ((-348 . -72) T) ((-348 . -13) T) ((-348 . -1129) T) ((-348 . -552) 55620) ((-348 . -1013) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -968) 55594) ((-348 . -963) 55568) ((-348 . -82) 55535) ((-348 . -961) T) ((-348 . -663) T) ((-348 . -1061) T) ((-348 . -1025) T) ((-348 . -970) T) ((-348 . -38) 55509) ((-348 . -184) 55493) ((-348 . -809) 55452) ((-348 . -811) 55378) ((-348 . -806) 55302) ((-348 . -225) 55286) ((-348 . -189) 55240) ((-348 . -186) 55188) ((-348 . -190) 55167) ((-348 . -288) 55151) ((-348 . -455) 54993) ((-348 . -260) 54932) ((-348 . -241) 54860) ((-348 . -355) 54844) ((-348 . -950) 54742) ((-348 . -392) 54695) ((-348 . -933) 54674) ((-348 . -553) 54577) ((-348 . -1134) 54555) ((-342 . -1013) T) ((-342 . -552) 54537) ((-342 . -1129) T) ((-342 . -13) T) ((-342 . -72) T) ((-342 . -189) T) ((-342 . -186) 54524) ((-342 . -553) 54501) ((-340 . -683) 54485) ((-340 . -657) T) ((-340 . -685) T) ((-340 . -82) 54464) ((-340 . -963) 54448) ((-340 . -968) 54432) ((-340 . -21) T) ((-340 . -588) 54401) ((-340 . -23) T) ((-340 . -1013) T) ((-340 . -552) 54383) ((-340 . -1129) T) ((-340 . -13) T) ((-340 . -72) T) ((-340 . -25) T) ((-340 . -104) T) ((-340 . -590) 54367) ((-340 . -582) 54351) ((-340 . -654) 54335) ((-338 . -339) T) ((-338 . -72) T) ((-338 . -13) T) ((-338 . -1129) T) ((-338 . -552) 54301) ((-338 . -1013) T) ((-338 . -555) 54282) ((-338 . -430) 54263) ((-337 . -336) 54247) ((-337 . -555) 54231) ((-337 . -950) 54215) ((-337 . -759) 54194) ((-337 . -756) 54173) ((-337 . -1025) T) ((-337 . -72) T) ((-337 . -13) T) ((-337 . -1129) T) ((-337 . -552) 54155) ((-337 . -1013) T) ((-337 . -663) T) ((-334 . -335) 54134) ((-334 . -555) 54118) ((-334 . -950) 54102) ((-334 . -582) 54072) ((-334 . -654) 54042) ((-334 . -590) 54026) ((-334 . -588) 53995) ((-334 . -104) T) ((-334 . -25) T) ((-334 . -72) T) ((-334 . -13) T) ((-334 . -1129) T) ((-334 . -552) 53977) ((-334 . -1013) T) ((-334 . -23) T) ((-334 . -21) T) ((-334 . -968) 53961) ((-334 . -963) 53945) ((-334 . -82) 53924) ((-333 . -82) 53903) ((-333 . -963) 53887) ((-333 . -968) 53871) ((-333 . -21) T) ((-333 . -588) 53840) ((-333 . -23) T) ((-333 . -1013) T) ((-333 . -552) 53822) ((-333 . -1129) T) ((-333 . -13) T) ((-333 . -72) T) ((-333 . -25) T) ((-333 . -104) T) ((-333 . -590) 53806) ((-333 . -449) 53785) ((-333 . -557) 53750) ((-333 . -654) 53720) ((-333 . -582) 53690) ((-330 . -347) T) ((-330 . -120) T) ((-330 . -555) 53640) ((-330 . -590) 53605) ((-330 . -588) 53555) ((-330 . -104) T) ((-330 . -25) T) ((-330 . -72) T) ((-330 . -13) T) ((-330 . -1129) T) ((-330 . -552) 53522) ((-330 . -1013) T) ((-330 . -23) T) ((-330 . -21) T) ((-330 . -970) T) ((-330 . -1025) T) ((-330 . -1061) T) ((-330 . -663) T) ((-330 . -961) T) ((-330 . -553) 53436) ((-330 . -312) T) ((-330 . -1134) T) ((-330 . -832) T) ((-330 . -495) T) ((-330 . -146) T) ((-330 . -654) 53401) ((-330 . -582) 53366) ((-330 . -38) 53331) ((-330 . -392) T) ((-330 . -258) T) ((-330 . -82) 53280) ((-330 . -963) 53245) ((-330 . -968) 53210) ((-330 . -246) T) ((-330 . -201) T) ((-330 . -755) T) ((-330 . -721) T) ((-330 . -718) T) ((-330 . -759) T) ((-330 . -756) T) ((-330 . -716) T) ((-330 . -714) T) ((-330 . -796) 53192) ((-330 . -915) T) ((-330 . -933) T) ((-330 . -950) 53152) ((-330 . -973) T) ((-330 . -190) T) ((-330 . -186) 53139) ((-330 . -189) T) ((-330 . -1115) T) ((-330 . -1118) T) ((-330 . -433) T) ((-330 . -239) T) ((-330 . -66) T) ((-330 . -35) T) ((-330 . -557) 53121) ((-313 . -314) 53098) ((-313 . -72) T) ((-313 . -13) T) ((-313 . -1129) T) ((-313 . -552) 53080) ((-313 . -1013) T) ((-310 . -413) T) ((-310 . -1025) T) ((-310 . -72) T) ((-310 . -13) T) ((-310 . -1129) T) ((-310 . -552) 53062) ((-310 . -1013) T) ((-310 . -663) T) ((-310 . -950) 53046) ((-310 . -555) 53030) ((-308 . -280) 53014) ((-308 . -190) 52993) ((-308 . -186) 52966) ((-308 . -189) 52945) ((-308 . -320) 52924) ((-308 . -1066) 52903) ((-308 . -299) 52882) ((-308 . -120) 52861) ((-308 . -555) 52798) ((-308 . -590) 52750) ((-308 . -588) 52687) ((-308 . -104) T) ((-308 . -25) T) ((-308 . -72) T) ((-308 . -13) T) ((-308 . -1129) T) ((-308 . -552) 52669) ((-308 . -1013) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -970) T) ((-308 . -1025) T) ((-308 . -1061) T) ((-308 . -663) T) ((-308 . -961) T) ((-308 . -312) T) ((-308 . -1134) T) ((-308 . -832) T) ((-308 . -495) T) ((-308 . -146) T) ((-308 . -654) 52621) ((-308 . -582) 52573) ((-308 . -38) 52538) ((-308 . -392) T) ((-308 . -258) T) ((-308 . -82) 52469) ((-308 . -963) 52421) ((-308 . -968) 52373) ((-308 . -246) T) ((-308 . -201) T) ((-308 . -345) 52327) ((-308 . -118) 52281) ((-308 . -950) 52265) ((-308 . -1187) 52249) ((-308 . -1198) 52233) ((-304 . -280) 52217) ((-304 . -190) 52196) ((-304 . -186) 52169) ((-304 . -189) 52148) ((-304 . -320) 52127) ((-304 . -1066) 52106) ((-304 . -299) 52085) ((-304 . -120) 52064) ((-304 . -555) 52001) ((-304 . -590) 51953) ((-304 . -588) 51890) ((-304 . -104) T) ((-304 . -25) T) ((-304 . -72) T) ((-304 . -13) T) ((-304 . -1129) T) ((-304 . -552) 51872) ((-304 . -1013) T) ((-304 . -23) T) ((-304 . -21) T) ((-304 . -970) T) ((-304 . -1025) T) ((-304 . -1061) T) ((-304 . -663) T) ((-304 . -961) T) ((-304 . -312) T) ((-304 . -1134) T) ((-304 . -832) T) ((-304 . -495) T) ((-304 . -146) T) ((-304 . -654) 51824) ((-304 . -582) 51776) ((-304 . -38) 51741) ((-304 . -392) T) ((-304 . -258) T) ((-304 . -82) 51672) ((-304 . -963) 51624) ((-304 . -968) 51576) ((-304 . -246) T) ((-304 . -201) T) ((-304 . -345) 51530) ((-304 . -118) 51484) ((-304 . -950) 51468) ((-304 . -1187) 51452) ((-304 . -1198) 51436) ((-303 . -280) 51420) ((-303 . -190) 51399) ((-303 . -186) 51372) ((-303 . -189) 51351) ((-303 . -320) 51330) ((-303 . -1066) 51309) ((-303 . -299) 51288) ((-303 . -120) 51267) ((-303 . -555) 51204) ((-303 . -590) 51156) ((-303 . -588) 51093) ((-303 . -104) T) ((-303 . -25) T) ((-303 . -72) T) ((-303 . -13) T) ((-303 . -1129) T) ((-303 . -552) 51075) ((-303 . -1013) T) ((-303 . -23) T) ((-303 . -21) T) ((-303 . -970) T) ((-303 . -1025) T) ((-303 . -1061) T) ((-303 . -663) T) ((-303 . -961) T) ((-303 . -312) T) ((-303 . -1134) T) ((-303 . -832) T) ((-303 . -495) T) ((-303 . -146) T) ((-303 . -654) 51027) ((-303 . -582) 50979) ((-303 . -38) 50944) ((-303 . -392) T) ((-303 . -258) T) ((-303 . -82) 50875) ((-303 . -963) 50827) ((-303 . -968) 50779) ((-303 . -246) T) ((-303 . -201) T) ((-303 . -345) 50733) ((-303 . -118) 50687) ((-303 . -950) 50671) ((-303 . -1187) 50655) ((-303 . -1198) 50639) ((-302 . -280) 50623) ((-302 . -190) 50602) ((-302 . -186) 50575) ((-302 . -189) 50554) ((-302 . -320) 50533) ((-302 . -1066) 50512) ((-302 . -299) 50491) ((-302 . -120) 50470) ((-302 . -555) 50407) ((-302 . -590) 50359) ((-302 . -588) 50296) ((-302 . -104) T) ((-302 . -25) T) ((-302 . -72) T) ((-302 . -13) T) ((-302 . -1129) T) ((-302 . -552) 50278) ((-302 . -1013) T) ((-302 . -23) T) ((-302 . -21) T) ((-302 . -970) T) ((-302 . -1025) T) ((-302 . -1061) T) ((-302 . -663) T) ((-302 . -961) T) ((-302 . -312) T) ((-302 . -1134) T) ((-302 . -832) T) ((-302 . -495) T) ((-302 . -146) T) ((-302 . -654) 50230) ((-302 . -582) 50182) ((-302 . -38) 50147) ((-302 . -392) T) ((-302 . -258) T) ((-302 . -82) 50078) ((-302 . -963) 50030) ((-302 . -968) 49982) ((-302 . -246) T) ((-302 . -201) T) ((-302 . -345) 49936) ((-302 . -118) 49890) ((-302 . -950) 49874) ((-302 . -1187) 49858) ((-302 . -1198) 49842) ((-301 . -280) 49819) ((-301 . -190) T) ((-301 . -186) 49806) ((-301 . -189) T) ((-301 . -320) T) ((-301 . -1066) T) ((-301 . -299) T) ((-301 . -120) 49788) ((-301 . -555) 49718) ((-301 . -590) 49663) ((-301 . -588) 49593) ((-301 . -104) T) ((-301 . -25) T) ((-301 . -72) T) ((-301 . -13) T) ((-301 . -1129) T) ((-301 . -552) 49575) ((-301 . -1013) T) ((-301 . -23) T) ((-301 . -21) T) ((-301 . -970) T) ((-301 . -1025) T) ((-301 . -1061) T) ((-301 . -663) T) ((-301 . -961) T) ((-301 . -312) T) ((-301 . -1134) T) ((-301 . -832) T) ((-301 . -495) T) ((-301 . -146) T) ((-301 . -654) 49520) ((-301 . -582) 49465) ((-301 . -38) 49430) ((-301 . -392) T) ((-301 . -258) T) ((-301 . -82) 49347) ((-301 . -963) 49292) ((-301 . -968) 49237) ((-301 . -246) T) ((-301 . -201) T) ((-301 . -345) T) ((-301 . -118) T) ((-301 . -950) 49214) ((-301 . -1187) 49191) ((-301 . -1198) 49168) ((-295 . -280) 49152) ((-295 . -190) 49131) ((-295 . -186) 49104) ((-295 . -189) 49083) ((-295 . -320) 49062) ((-295 . -1066) 49041) ((-295 . -299) 49020) ((-295 . -120) 48999) ((-295 . -555) 48936) ((-295 . -590) 48888) ((-295 . -588) 48825) ((-295 . -104) T) ((-295 . -25) T) ((-295 . -72) T) ((-295 . -13) T) ((-295 . -1129) T) ((-295 . -552) 48807) ((-295 . -1013) T) ((-295 . -23) T) ((-295 . -21) T) ((-295 . -970) T) ((-295 . -1025) T) ((-295 . -1061) T) ((-295 . -663) T) ((-295 . -961) T) ((-295 . -312) T) ((-295 . -1134) T) ((-295 . -832) T) ((-295 . -495) T) ((-295 . -146) T) ((-295 . -654) 48759) ((-295 . -582) 48711) ((-295 . -38) 48676) ((-295 . -392) T) ((-295 . -258) T) ((-295 . -82) 48607) ((-295 . -963) 48559) ((-295 . -968) 48511) ((-295 . -246) T) ((-295 . -201) T) ((-295 . -345) 48465) ((-295 . -118) 48419) ((-295 . -950) 48403) ((-295 . -1187) 48387) ((-295 . -1198) 48371) ((-294 . -280) 48355) ((-294 . -190) 48334) ((-294 . -186) 48307) ((-294 . -189) 48286) ((-294 . -320) 48265) ((-294 . -1066) 48244) ((-294 . -299) 48223) ((-294 . -120) 48202) ((-294 . -555) 48139) ((-294 . -590) 48091) ((-294 . -588) 48028) ((-294 . -104) T) ((-294 . -25) T) ((-294 . -72) T) ((-294 . -13) T) ((-294 . -1129) T) ((-294 . -552) 48010) ((-294 . -1013) T) ((-294 . -23) T) ((-294 . -21) T) ((-294 . -970) T) ((-294 . -1025) T) ((-294 . -1061) T) ((-294 . -663) T) ((-294 . -961) T) ((-294 . -312) T) ((-294 . -1134) T) ((-294 . -832) T) ((-294 . -495) T) ((-294 . -146) T) ((-294 . -654) 47962) ((-294 . -582) 47914) ((-294 . -38) 47879) ((-294 . -392) T) ((-294 . -258) T) ((-294 . -82) 47810) ((-294 . -963) 47762) ((-294 . -968) 47714) ((-294 . -246) T) ((-294 . -201) T) ((-294 . -345) 47668) ((-294 . -118) 47622) ((-294 . -950) 47606) ((-294 . -1187) 47590) ((-294 . -1198) 47574) ((-293 . -280) 47551) ((-293 . -190) T) ((-293 . -186) 47538) ((-293 . -189) T) ((-293 . -320) T) ((-293 . -1066) T) ((-293 . -299) T) ((-293 . -120) 47520) ((-293 . -555) 47450) ((-293 . -590) 47395) ((-293 . -588) 47325) ((-293 . -104) T) ((-293 . -25) T) ((-293 . -72) T) ((-293 . -13) T) ((-293 . -1129) T) ((-293 . -552) 47307) ((-293 . -1013) T) ((-293 . -23) T) ((-293 . -21) T) ((-293 . -970) T) ((-293 . -1025) T) ((-293 . -1061) T) ((-293 . -663) T) ((-293 . -961) T) ((-293 . -312) T) ((-293 . -1134) T) ((-293 . -832) T) ((-293 . -495) T) ((-293 . -146) T) ((-293 . -654) 47252) ((-293 . -582) 47197) ((-293 . -38) 47162) ((-293 . -392) T) ((-293 . -258) T) ((-293 . -82) 47079) ((-293 . -963) 47024) ((-293 . -968) 46969) ((-293 . -246) T) ((-293 . -201) T) ((-293 . -345) T) ((-293 . -118) T) ((-293 . -950) 46946) ((-293 . -1187) 46923) ((-293 . -1198) 46900) ((-289 . -280) 46877) ((-289 . -190) T) ((-289 . -186) 46864) ((-289 . -189) T) ((-289 . -320) T) ((-289 . -1066) T) ((-289 . -299) T) ((-289 . -120) 46846) ((-289 . -555) 46776) ((-289 . -590) 46721) ((-289 . -588) 46651) ((-289 . -104) T) ((-289 . -25) T) ((-289 . -72) T) ((-289 . -13) T) ((-289 . -1129) T) ((-289 . -552) 46633) ((-289 . -1013) T) ((-289 . -23) T) ((-289 . -21) T) ((-289 . -970) T) ((-289 . -1025) T) ((-289 . -1061) T) ((-289 . -663) T) ((-289 . -961) T) ((-289 . -312) T) ((-289 . -1134) T) ((-289 . -832) T) ((-289 . -495) T) ((-289 . -146) T) ((-289 . -654) 46578) ((-289 . -582) 46523) ((-289 . -38) 46488) ((-289 . -392) T) ((-289 . -258) T) ((-289 . -82) 46405) ((-289 . -963) 46350) ((-289 . -968) 46295) ((-289 . -246) T) ((-289 . -201) T) ((-289 . -345) T) ((-289 . -118) T) ((-289 . -950) 46272) ((-289 . -1187) 46249) ((-289 . -1198) 46226) ((-283 . -286) 46195) ((-283 . -104) T) ((-283 . -25) T) ((-283 . -72) T) ((-283 . -13) T) ((-283 . -1129) T) ((-283 . -552) 46177) ((-283 . -1013) T) ((-283 . -23) T) ((-283 . -588) 46159) ((-283 . -21) T) ((-282 . -1013) T) ((-282 . -552) 46141) ((-282 . -1129) T) ((-282 . -13) T) ((-282 . -72) T) ((-281 . -756) T) ((-281 . -552) 46123) ((-281 . -1013) T) ((-281 . -72) T) ((-281 . -13) T) ((-281 . -1129) T) ((-281 . -759) T) ((-278 . -19) 46107) ((-278 . -1035) 46091) ((-278 . -318) 46075) ((-278 . -34) T) ((-278 . -13) T) ((-278 . -1129) T) ((-278 . -72) 46009) ((-278 . -552) 45924) ((-278 . -260) 45862) ((-278 . -455) 45795) ((-278 . -1013) 45748) ((-278 . -429) 45732) ((-278 . -593) 45716) ((-278 . -243) 45693) ((-278 . -241) 45645) ((-278 . -538) 45622) ((-278 . -553) 45583) ((-278 . -124) 45567) ((-278 . -756) 45546) ((-278 . -759) 45525) ((-278 . -324) 45509) ((-278 . -237) 45493) ((-275 . -274) 45470) ((-275 . -555) 45454) ((-275 . -950) 45438) ((-275 . -23) T) ((-275 . -1013) T) ((-275 . -552) 45420) ((-275 . -1129) T) ((-275 . -13) T) ((-275 . -72) T) ((-275 . -25) T) ((-275 . -104) T) ((-273 . -21) T) ((-273 . -588) 45402) ((-273 . -23) T) ((-273 . -1013) T) ((-273 . -552) 45384) ((-273 . -1129) T) ((-273 . -13) T) ((-273 . -72) T) ((-273 . -25) T) ((-273 . -104) T) ((-273 . -654) 45366) ((-273 . -582) 45348) ((-273 . -590) 45330) ((-273 . -968) 45312) ((-273 . -963) 45294) ((-273 . -82) 45269) ((-273 . -274) 45246) ((-273 . -555) 45230) ((-273 . -950) 45214) ((-273 . -756) 45193) ((-273 . -759) 45172) ((-270 . -1162) 45156) ((-270 . -190) 45108) ((-270 . -186) 45054) ((-270 . -189) 45006) ((-270 . -241) 44964) ((-270 . -809) 44870) ((-270 . -806) 44774) ((-270 . -811) 44680) ((-270 . -886) 44643) ((-270 . -38) 44490) ((-270 . -82) 44310) ((-270 . -963) 44151) ((-270 . -968) 43992) ((-270 . -588) 43877) ((-270 . -590) 43777) ((-270 . -582) 43624) ((-270 . -654) 43471) ((-270 . -555) 43303) ((-270 . -118) 43282) ((-270 . -120) 43261) ((-270 . -47) 43231) ((-270 . -1158) 43201) ((-270 . -35) 43167) ((-270 . -66) 43133) ((-270 . -239) 43099) ((-270 . -433) 43065) ((-270 . -1118) 43031) ((-270 . -1115) 42997) ((-270 . -915) 42963) ((-270 . -201) 42942) ((-270 . -246) 42896) ((-270 . -104) T) ((-270 . -25) T) ((-270 . -72) T) ((-270 . -13) T) ((-270 . -1129) T) ((-270 . -552) 42878) ((-270 . -1013) T) ((-270 . -23) T) ((-270 . -21) T) ((-270 . -961) T) ((-270 . -663) T) ((-270 . -1061) T) ((-270 . -1025) T) ((-270 . -970) T) ((-270 . -258) 42857) ((-270 . -392) 42836) ((-270 . -146) 42770) ((-270 . -495) 42724) ((-270 . -832) 42703) ((-270 . -1134) 42682) ((-270 . -312) 42661) ((-270 . -716) T) ((-270 . -756) T) ((-270 . -759) T) ((-270 . -718) T) ((-265 . -364) 42645) ((-265 . -555) 42220) ((-265 . -950) 41891) ((-265 . -553) 41752) ((-265 . -794) 41736) ((-265 . -811) 41703) ((-265 . -806) 41668) ((-265 . -809) 41635) ((-265 . -413) 41614) ((-265 . -355) 41598) ((-265 . -796) 41523) ((-265 . -343) 41507) ((-265 . -580) 41415) ((-265 . -590) 41153) ((-265 . -329) 41123) ((-265 . -201) 41102) ((-265 . -82) 40991) ((-265 . -963) 40901) ((-265 . -968) 40811) ((-265 . -246) 40790) ((-265 . -654) 40700) ((-265 . -582) 40610) ((-265 . -588) 40277) ((-265 . -38) 40187) ((-265 . -258) 40166) ((-265 . -392) 40145) ((-265 . -146) 40124) ((-265 . -495) 40103) ((-265 . -832) 40082) ((-265 . -1134) 40061) ((-265 . -312) 40040) ((-265 . -260) 40027) ((-265 . -455) 39993) ((-265 . -254) T) ((-265 . -120) 39972) ((-265 . -118) 39951) ((-265 . -961) 39845) ((-265 . -663) 39698) ((-265 . -1061) 39592) ((-265 . -1025) 39445) ((-265 . -970) 39339) ((-265 . -104) 39214) ((-265 . -25) 39070) ((-265 . -72) T) ((-265 . -13) T) ((-265 . -1129) T) ((-265 . -552) 39052) ((-265 . -1013) T) ((-265 . -23) 38908) ((-265 . -21) 38783) ((-265 . -29) 38753) ((-265 . -915) 38732) ((-265 . -27) 38711) ((-265 . -1115) 38690) ((-265 . -1118) 38669) ((-265 . -433) 38648) ((-265 . -239) 38627) ((-265 . -66) 38606) ((-265 . -35) 38585) ((-265 . -133) 38564) ((-265 . -116) 38543) ((-265 . -569) 38522) ((-265 . -871) 38501) ((-265 . -1053) 38480) ((-264 . -904) 38441) ((-264 . -1066) NIL) ((-264 . -950) 38371) ((-264 . -555) 38254) ((-264 . -553) NIL) ((-264 . -933) NIL) ((-264 . -821) NIL) ((-264 . -794) 38215) ((-264 . -755) NIL) ((-264 . -721) NIL) ((-264 . -718) NIL) ((-264 . -759) NIL) ((-264 . -756) NIL) ((-264 . -716) NIL) ((-264 . -714) NIL) ((-264 . -740) NIL) ((-264 . -796) NIL) ((-264 . -343) 38176) ((-264 . -580) 38137) ((-264 . -590) 38066) ((-264 . -329) 38027) ((-264 . -241) 37893) ((-264 . -260) 37789) ((-264 . -455) 37540) ((-264 . -288) 37501) ((-264 . -201) T) ((-264 . -82) 37386) ((-264 . -963) 37315) ((-264 . -968) 37244) ((-264 . -246) T) ((-264 . -654) 37173) ((-264 . -582) 37102) ((-264 . -588) 37016) ((-264 . -38) 36945) ((-264 . -258) T) ((-264 . -392) T) ((-264 . -146) T) ((-264 . -495) T) ((-264 . -832) T) ((-264 . -1134) T) ((-264 . -312) T) ((-264 . -190) NIL) ((-264 . -186) NIL) ((-264 . -189) NIL) ((-264 . -225) 36906) ((-264 . -806) NIL) ((-264 . -811) NIL) ((-264 . -809) NIL) ((-264 . -184) 36867) ((-264 . -120) 36823) ((-264 . -118) 36779) ((-264 . -104) T) ((-264 . -25) T) ((-264 . -72) T) ((-264 . -13) T) ((-264 . -1129) T) ((-264 . -552) 36761) ((-264 . -1013) T) ((-264 . -23) T) ((-264 . -21) T) ((-264 . -961) T) ((-264 . -663) T) ((-264 . -1061) T) ((-264 . -1025) T) ((-264 . -970) T) ((-263 . -995) T) ((-263 . -430) 36742) ((-263 . -552) 36708) ((-263 . -555) 36689) ((-263 . -1013) T) ((-263 . -1129) T) ((-263 . -13) T) ((-263 . -72) T) ((-263 . -64) T) ((-262 . -1013) T) ((-262 . -552) 36671) ((-262 . -1129) T) ((-262 . -13) T) ((-262 . -72) T) ((-251 . -1107) 36650) ((-251 . -183) 36598) ((-251 . -76) 36546) ((-251 . -1035) 36494) ((-251 . -124) 36442) ((-251 . -553) NIL) ((-251 . -193) 36390) ((-251 . -538) 36369) ((-251 . -260) 36167) ((-251 . -455) 35919) ((-251 . -429) 35854) ((-251 . -241) 35833) ((-251 . -243) 35812) ((-251 . -549) 35791) ((-251 . -1013) T) ((-251 . -552) 35773) ((-251 . -72) T) ((-251 . -1129) T) ((-251 . -13) T) ((-251 . -34) T) ((-251 . -318) 35721) ((-249 . -1129) T) ((-249 . -13) T) ((-249 . -455) 35670) ((-249 . -1013) 35456) ((-249 . -552) 35202) ((-249 . -72) 34988) ((-249 . -25) 34856) ((-249 . -21) 34743) ((-249 . -588) 34490) ((-249 . -23) 34377) ((-249 . -104) 34264) ((-249 . -1025) 34149) ((-249 . -663) 34055) ((-249 . -413) 34034) ((-249 . -961) 33980) ((-249 . -1061) 33926) ((-249 . -970) 33872) ((-249 . -590) 33740) ((-249 . -555) 33675) ((-249 . -82) 33595) ((-249 . -963) 33520) ((-249 . -968) 33445) ((-249 . -654) 33390) ((-249 . -582) 33335) ((-249 . -809) 33294) ((-249 . -806) 33251) ((-249 . -811) 33210) ((-249 . -1187) 33180) ((-247 . -552) 33162) ((-244 . -258) T) ((-244 . -392) T) ((-244 . -38) 33149) ((-244 . -555) 33121) ((-244 . -970) T) ((-244 . -1025) T) ((-244 . -1061) T) ((-244 . -663) T) ((-244 . -961) T) ((-244 . -82) 33106) ((-244 . -963) 33093) ((-244 . -968) 33080) ((-244 . -21) T) ((-244 . -588) 33052) ((-244 . -23) T) ((-244 . -1013) T) ((-244 . -552) 33034) ((-244 . -1129) T) ((-244 . -13) T) ((-244 . -72) T) ((-244 . -25) T) ((-244 . -104) T) ((-244 . -590) 33021) ((-244 . -582) 33008) ((-244 . -654) 32995) ((-244 . -146) T) ((-244 . -246) T) ((-244 . -495) T) ((-244 . -832) T) ((-244 . -241) 32974) ((-235 . -552) 32956) ((-234 . -552) 32938) ((-229 . -756) T) ((-229 . -552) 32920) ((-229 . -1013) T) ((-229 . -72) T) ((-229 . -13) T) ((-229 . -1129) T) ((-229 . -759) T) ((-226 . -213) 32882) ((-226 . -555) 32642) ((-226 . -950) 32488) ((-226 . -553) 32236) ((-226 . -277) 32208) ((-226 . -355) 32192) ((-226 . -38) 32044) ((-226 . -82) 31869) ((-226 . -963) 31715) ((-226 . -968) 31561) ((-226 . -588) 31471) ((-226 . -590) 31360) ((-226 . -582) 31212) ((-226 . -654) 31064) ((-226 . -118) 31043) ((-226 . -120) 31022) ((-226 . -146) 30936) ((-226 . -495) 30870) ((-226 . -246) 30804) ((-226 . -47) 30776) ((-226 . -329) 30760) ((-226 . -580) 30708) ((-226 . -392) 30662) ((-226 . -455) 30553) ((-226 . -809) 30499) ((-226 . -806) 30408) ((-226 . -811) 30321) ((-226 . -796) 30180) ((-226 . -821) 30159) ((-226 . -1134) 30138) ((-226 . -861) 30105) ((-226 . -260) 30092) ((-226 . -190) 30071) ((-226 . -104) T) ((-226 . -25) T) ((-226 . -72) T) ((-226 . -552) 30053) ((-226 . -1013) T) ((-226 . -23) T) ((-226 . -21) T) ((-226 . -970) T) ((-226 . -1025) T) ((-226 . -1061) T) ((-226 . -663) T) ((-226 . -961) T) ((-226 . -186) 30001) ((-226 . -13) T) ((-226 . -1129) T) ((-226 . -189) 29955) ((-226 . -225) 29939) ((-226 . -184) 29923) ((-221 . -1013) T) ((-221 . -552) 29905) ((-221 . -1129) T) ((-221 . -13) T) ((-221 . -72) T) ((-211 . -196) 29884) ((-211 . -1187) 29854) ((-211 . -721) 29833) ((-211 . -718) 29812) ((-211 . -759) 29766) ((-211 . -756) 29720) ((-211 . -716) 29699) ((-211 . -717) 29678) ((-211 . -654) 29623) ((-211 . -582) 29548) ((-211 . -243) 29525) ((-211 . -241) 29502) ((-211 . -538) 29479) ((-211 . -950) 29308) ((-211 . -555) 29112) ((-211 . -355) 29081) ((-211 . -580) 28989) ((-211 . -590) 28815) ((-211 . -329) 28785) ((-211 . -429) 28769) ((-211 . -455) 28702) ((-211 . -260) 28640) ((-211 . -34) T) ((-211 . -318) 28624) ((-211 . -320) 28603) ((-211 . -190) 28556) ((-211 . -588) 28409) ((-211 . -970) 28388) ((-211 . -1025) 28367) ((-211 . -1061) 28346) ((-211 . -663) 28325) ((-211 . -961) 28304) ((-211 . -186) 28200) ((-211 . -189) 28102) ((-211 . -225) 28072) ((-211 . -806) 27944) ((-211 . -811) 27818) ((-211 . -809) 27751) ((-211 . -184) 27721) ((-211 . -552) 27682) ((-211 . -968) 27607) ((-211 . -963) 27512) ((-211 . -82) 27432) ((-211 . -104) T) ((-211 . -25) T) ((-211 . -72) T) ((-211 . -13) T) ((-211 . -1129) T) ((-211 . -1013) T) ((-211 . -23) T) ((-211 . -21) T) ((-210 . -196) 27411) ((-210 . -1187) 27381) ((-210 . -721) 27360) ((-210 . -718) 27339) ((-210 . -759) 27293) ((-210 . -756) 27247) ((-210 . -716) 27226) ((-210 . -717) 27205) ((-210 . -654) 27150) ((-210 . -582) 27075) ((-210 . -243) 27052) ((-210 . -241) 27029) ((-210 . -538) 27006) ((-210 . -950) 26835) ((-210 . -555) 26639) ((-210 . -355) 26608) ((-210 . -580) 26516) ((-210 . -590) 26329) ((-210 . -329) 26299) ((-210 . -429) 26283) ((-210 . -455) 26216) ((-210 . -260) 26154) ((-210 . -34) T) ((-210 . -318) 26138) ((-210 . -320) 26117) ((-210 . -190) 26070) ((-210 . -588) 25910) ((-210 . -970) 25889) ((-210 . -1025) 25868) ((-210 . -1061) 25847) ((-210 . -663) 25826) ((-210 . -961) 25805) ((-210 . -186) 25701) ((-210 . -189) 25603) ((-210 . -225) 25573) ((-210 . -806) 25445) ((-210 . -811) 25319) ((-210 . -809) 25252) ((-210 . -184) 25222) ((-210 . -552) 25183) ((-210 . -968) 25108) ((-210 . -963) 25013) ((-210 . -82) 24933) ((-210 . -104) T) ((-210 . -25) T) ((-210 . -72) T) ((-210 . -13) T) ((-210 . -1129) T) ((-210 . -1013) T) ((-210 . -23) T) ((-210 . -21) T) ((-209 . -1013) T) ((-209 . -552) 24915) ((-209 . -1129) T) ((-209 . -13) T) ((-209 . -72) T) ((-209 . -241) 24889) ((-208 . -160) T) ((-208 . -1013) T) ((-208 . -552) 24856) ((-208 . -1129) T) ((-208 . -13) T) ((-208 . -72) T) ((-208 . -747) 24838) ((-207 . -1013) T) ((-207 . -552) 24820) ((-207 . -1129) T) ((-207 . -13) T) ((-207 . -72) T) ((-206 . -861) 24765) ((-206 . -555) 24557) ((-206 . -950) 24435) ((-206 . -1134) 24414) ((-206 . -821) 24393) ((-206 . -796) NIL) ((-206 . -811) 24370) ((-206 . -806) 24345) ((-206 . -809) 24322) ((-206 . -455) 24260) ((-206 . -392) 24214) ((-206 . -580) 24162) ((-206 . -590) 24051) ((-206 . -329) 24035) ((-206 . -47) 23992) ((-206 . -38) 23844) ((-206 . -582) 23696) ((-206 . -654) 23548) ((-206 . -246) 23482) ((-206 . -495) 23416) ((-206 . -82) 23241) ((-206 . -963) 23087) ((-206 . -968) 22933) ((-206 . -146) 22847) ((-206 . -120) 22826) ((-206 . -118) 22805) ((-206 . -588) 22715) ((-206 . -104) T) ((-206 . -25) T) ((-206 . -72) T) ((-206 . -13) T) ((-206 . -1129) T) ((-206 . -552) 22697) ((-206 . -1013) T) ((-206 . -23) T) ((-206 . -21) T) ((-206 . -961) T) ((-206 . -663) T) ((-206 . -1061) T) ((-206 . -1025) T) ((-206 . -970) T) ((-206 . -355) 22681) ((-206 . -277) 22638) ((-206 . -260) 22625) ((-206 . -553) 22486) ((-203 . -608) 22470) ((-203 . -1168) 22454) ((-203 . -923) 22438) ((-203 . -1064) 22422) ((-203 . -318) 22406) ((-203 . -756) 22385) ((-203 . -759) 22364) ((-203 . -324) 22348) ((-203 . -593) 22332) ((-203 . -243) 22309) ((-203 . -241) 22261) ((-203 . -538) 22238) ((-203 . -553) 22199) ((-203 . -429) 22183) ((-203 . -1013) 22136) ((-203 . -455) 22069) ((-203 . -260) 22007) ((-203 . -552) 21902) ((-203 . -72) 21836) ((-203 . -1129) T) ((-203 . -13) T) ((-203 . -34) T) ((-203 . -124) 21820) ((-203 . -1035) 21804) ((-203 . -237) 21788) ((-203 . -430) 21765) ((-203 . -555) 21742) ((-197 . -196) 21721) ((-197 . -1187) 21691) ((-197 . -721) 21670) ((-197 . -718) 21649) ((-197 . -759) 21603) ((-197 . -756) 21557) ((-197 . -716) 21536) ((-197 . -717) 21515) ((-197 . -654) 21460) ((-197 . -582) 21385) ((-197 . -243) 21362) ((-197 . -241) 21339) ((-197 . -538) 21316) ((-197 . -950) 21145) ((-197 . -555) 20949) ((-197 . -355) 20918) ((-197 . -580) 20826) ((-197 . -590) 20665) ((-197 . -329) 20635) ((-197 . -429) 20619) ((-197 . -455) 20552) ((-197 . -260) 20490) ((-197 . -34) T) ((-197 . -318) 20474) ((-197 . -320) 20453) ((-197 . -190) 20406) ((-197 . -588) 20194) ((-197 . -970) 20173) ((-197 . -1025) 20152) ((-197 . -1061) 20131) ((-197 . -663) 20110) ((-197 . -961) 20089) ((-197 . -186) 19985) ((-197 . -189) 19887) ((-197 . -225) 19857) ((-197 . -806) 19729) ((-197 . -811) 19603) ((-197 . -809) 19536) ((-197 . -184) 19506) ((-197 . -552) 19203) ((-197 . -968) 19128) ((-197 . -963) 19033) ((-197 . -82) 18953) ((-197 . -104) 18828) ((-197 . -25) 18665) ((-197 . -72) 18402) ((-197 . -13) T) ((-197 . -1129) T) ((-197 . -1013) 18158) ((-197 . -23) 18014) ((-197 . -21) 17929) ((-181 . -627) 17887) ((-181 . -318) 17871) ((-181 . -34) T) ((-181 . -13) T) ((-181 . -1129) T) ((-181 . -72) 17825) ((-181 . -552) 17760) ((-181 . -260) 17698) ((-181 . -455) 17631) ((-181 . -1013) 17609) ((-181 . -429) 17593) ((-181 . -1035) 17577) ((-181 . -57) 17535) ((-179 . -347) T) ((-179 . -120) T) ((-179 . -555) 17485) ((-179 . -590) 17450) ((-179 . -588) 17400) ((-179 . -104) T) ((-179 . -25) T) ((-179 . -72) T) ((-179 . -13) T) ((-179 . -1129) T) ((-179 . -552) 17382) ((-179 . -1013) T) ((-179 . -23) T) ((-179 . -21) T) ((-179 . -970) T) ((-179 . -1025) T) ((-179 . -1061) T) ((-179 . -663) T) ((-179 . -961) T) ((-179 . -553) 17312) ((-179 . -312) T) ((-179 . -1134) T) ((-179 . -832) T) ((-179 . -495) T) ((-179 . -146) T) ((-179 . -654) 17277) ((-179 . -582) 17242) ((-179 . -38) 17207) ((-179 . -392) T) ((-179 . -258) T) ((-179 . -82) 17156) ((-179 . -963) 17121) ((-179 . -968) 17086) ((-179 . -246) T) ((-179 . -201) T) ((-179 . -755) T) ((-179 . -721) T) ((-179 . -718) T) ((-179 . -759) T) ((-179 . -756) T) ((-179 . -716) T) ((-179 . -714) T) ((-179 . -796) 17068) ((-179 . -915) T) ((-179 . -933) T) ((-179 . -950) 17028) ((-179 . -973) T) ((-179 . -190) T) ((-179 . -186) 17015) ((-179 . -189) T) ((-179 . -1115) T) ((-179 . -1118) T) ((-179 . -433) T) ((-179 . -239) T) ((-179 . -66) T) ((-179 . -35) T) ((-177 . -560) 16992) ((-177 . -555) 16954) ((-177 . -590) 16921) ((-177 . -588) 16873) ((-177 . -970) T) ((-177 . -1025) T) ((-177 . -1061) T) ((-177 . -663) T) ((-177 . -961) T) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1013) T) ((-177 . -552) 16855) ((-177 . -1129) T) ((-177 . -13) T) ((-177 . -72) T) ((-177 . -25) T) ((-177 . -104) T) ((-177 . -950) 16832) ((-176 . -214) 16816) ((-176 . -1034) 16800) ((-176 . -76) 16784) ((-176 . -429) 16768) ((-176 . -1013) 16746) ((-176 . -455) 16679) ((-176 . -260) 16617) ((-176 . -552) 16552) ((-176 . -72) 16506) ((-176 . -1129) T) ((-176 . -13) T) ((-176 . -34) T) ((-176 . -1035) 16490) ((-176 . -318) 16474) ((-176 . -908) 16458) ((-172 . -995) T) ((-172 . -430) 16439) ((-172 . -552) 16405) ((-172 . -555) 16386) ((-172 . -1013) T) ((-172 . -1129) T) ((-172 . -13) T) ((-172 . -72) T) ((-172 . -64) T) ((-171 . -904) 16368) ((-171 . -1066) T) ((-171 . -555) 16318) ((-171 . -950) 16278) ((-171 . -553) 16208) ((-171 . -933) T) ((-171 . -821) NIL) ((-171 . -794) 16190) ((-171 . -755) T) ((-171 . -721) T) ((-171 . -718) T) ((-171 . -759) T) ((-171 . -756) T) ((-171 . -716) T) ((-171 . -714) T) ((-171 . -740) T) ((-171 . -796) 16172) ((-171 . -343) 16154) ((-171 . -580) 16136) ((-171 . -329) 16118) ((-171 . -241) NIL) ((-171 . -260) NIL) ((-171 . -455) NIL) ((-171 . -288) 16100) ((-171 . -201) T) ((-171 . -82) 16027) ((-171 . -963) 15977) ((-171 . -968) 15927) ((-171 . -246) T) ((-171 . -654) 15877) ((-171 . -582) 15827) ((-171 . -590) 15777) ((-171 . -588) 15727) ((-171 . -38) 15677) ((-171 . -258) T) ((-171 . -392) T) ((-171 . -146) T) ((-171 . -495) T) ((-171 . -832) T) ((-171 . -1134) T) ((-171 . -312) T) ((-171 . -190) T) ((-171 . -186) 15664) ((-171 . -189) T) ((-171 . -225) 15646) ((-171 . -806) NIL) ((-171 . -811) NIL) ((-171 . -809) NIL) ((-171 . -184) 15628) ((-171 . -120) T) ((-171 . -118) NIL) ((-171 . -104) T) ((-171 . -25) T) ((-171 . -72) T) ((-171 . -13) T) ((-171 . -1129) T) ((-171 . -552) 15570) ((-171 . -1013) T) ((-171 . -23) T) ((-171 . -21) T) ((-171 . -961) T) ((-171 . -663) T) ((-171 . -1061) T) ((-171 . -1025) T) ((-171 . -970) T) ((-168 . -752) T) ((-168 . -759) T) ((-168 . -756) T) ((-168 . -1013) T) ((-168 . -552) 15552) ((-168 . -1129) T) ((-168 . -13) T) ((-168 . -72) T) ((-168 . -320) T) ((-167 . -1013) T) ((-167 . -552) 15534) ((-167 . -1129) T) ((-167 . -13) T) ((-167 . -72) T) ((-167 . -555) 15511) ((-166 . -1013) T) ((-166 . -552) 15493) ((-166 . -1129) T) ((-166 . -13) T) ((-166 . -72) T) ((-161 . -1013) T) ((-161 . -552) 15475) ((-161 . -1129) T) ((-161 . -13) T) ((-161 . -72) T) ((-158 . -1013) T) ((-158 . -552) 15457) ((-158 . -1129) T) ((-158 . -13) T) ((-158 . -72) T) ((-157 . -160) T) ((-157 . -1013) T) ((-157 . -552) 15439) ((-157 . -1129) T) ((-157 . -13) T) ((-157 . -72) T) ((-157 . -747) 15421) ((-154 . -995) T) ((-154 . -430) 15402) ((-154 . -552) 15368) ((-154 . -555) 15349) ((-154 . -1013) T) ((-154 . -1129) T) ((-154 . -13) T) ((-154 . -72) T) ((-154 . -64) T) ((-149 . -552) 15331) ((-148 . -38) 15263) ((-148 . -555) 15180) ((-148 . -590) 15112) ((-148 . -588) 15029) ((-148 . -970) T) ((-148 . -1025) T) ((-148 . -1061) T) ((-148 . -663) T) ((-148 . -961) T) ((-148 . -82) 14928) ((-148 . -963) 14860) ((-148 . -968) 14792) ((-148 . -21) T) ((-148 . -23) T) ((-148 . -1013) T) ((-148 . -552) 14774) ((-148 . -1129) T) ((-148 . -13) T) ((-148 . -72) T) ((-148 . -25) T) ((-148 . -104) T) ((-148 . -582) 14706) ((-148 . -654) 14638) ((-148 . -312) T) ((-148 . -1134) T) ((-148 . -832) T) ((-148 . -495) T) ((-148 . -146) T) ((-148 . -392) T) ((-148 . -258) T) ((-148 . -246) T) ((-148 . -201) T) ((-145 . -1013) T) ((-145 . -552) 14620) ((-145 . -1129) T) ((-145 . -13) T) ((-145 . -72) T) ((-142 . -139) 14604) ((-142 . -35) 14582) ((-142 . -66) 14560) ((-142 . -239) 14538) ((-142 . -433) 14516) ((-142 . -1118) 14494) ((-142 . -1115) 14472) ((-142 . -915) 14424) ((-142 . -821) 14377) ((-142 . -553) 14145) ((-142 . -794) 14129) ((-142 . -320) 14083) ((-142 . -299) 14062) ((-142 . -1066) 14041) ((-142 . -345) 14020) ((-142 . -353) 13991) ((-142 . -38) 13825) ((-142 . -82) 13717) ((-142 . -963) 13630) ((-142 . -968) 13543) ((-142 . -582) 13377) ((-142 . -654) 13211) ((-142 . -322) 13182) ((-142 . -661) 13153) ((-142 . -950) 13051) ((-142 . -555) 12836) ((-142 . -355) 12820) ((-142 . -796) 12745) ((-142 . -343) 12729) ((-142 . -580) 12677) ((-142 . -590) 12554) ((-142 . -588) 12452) ((-142 . -329) 12436) ((-142 . -241) 12394) ((-142 . -260) 12359) ((-142 . -455) 12271) ((-142 . -288) 12255) ((-142 . -201) 12209) ((-142 . -1134) 12117) ((-142 . -312) 12071) ((-142 . -832) 12005) ((-142 . -495) 11919) ((-142 . -246) 11833) ((-142 . -392) 11767) ((-142 . -258) 11701) ((-142 . -190) 11655) ((-142 . -186) 11583) ((-142 . -189) 11517) ((-142 . -225) 11501) ((-142 . -806) 11425) ((-142 . -811) 11351) ((-142 . -809) 11310) ((-142 . -184) 11294) ((-142 . -146) T) ((-142 . -120) 11273) ((-142 . -961) T) ((-142 . -663) T) ((-142 . -1061) T) ((-142 . -1025) T) ((-142 . -970) T) ((-142 . -21) T) ((-142 . -23) T) ((-142 . -1013) T) ((-142 . -552) 11255) ((-142 . -1129) T) ((-142 . -13) T) ((-142 . -72) T) ((-142 . -25) T) ((-142 . -104) T) ((-142 . -118) 11209) ((-135 . -995) T) ((-135 . -430) 11190) ((-135 . -552) 11156) ((-135 . -555) 11137) ((-135 . -1013) T) ((-135 . -1129) T) ((-135 . -13) T) ((-135 . -72) T) ((-135 . -64) T) ((-134 . -1013) T) ((-134 . -552) 11119) ((-134 . -1129) T) ((-134 . -13) T) ((-134 . -72) T) ((-130 . -25) T) ((-130 . -72) T) ((-130 . -13) T) ((-130 . -1129) T) ((-130 . -552) 11101) ((-130 . -1013) T) ((-129 . -995) T) ((-129 . -430) 11082) ((-129 . -552) 11048) ((-129 . -555) 11029) ((-129 . -1013) T) ((-129 . -1129) T) ((-129 . -13) T) ((-129 . -72) T) ((-129 . -64) T) ((-127 . -995) T) ((-127 . -430) 11010) ((-127 . -552) 10976) ((-127 . -555) 10957) ((-127 . -1013) T) ((-127 . -1129) T) ((-127 . -13) T) ((-127 . -72) T) ((-127 . -64) T) ((-125 . -961) T) ((-125 . -663) T) ((-125 . -1061) T) ((-125 . -1025) T) ((-125 . -970) T) ((-125 . -21) T) ((-125 . -588) 10916) ((-125 . -23) T) ((-125 . -1013) T) ((-125 . -552) 10898) ((-125 . -1129) T) ((-125 . -13) T) ((-125 . -72) T) ((-125 . -25) T) ((-125 . -104) T) ((-125 . -590) 10872) ((-125 . -555) 10841) ((-125 . -38) 10825) ((-125 . -82) 10804) ((-125 . -963) 10788) ((-125 . -968) 10772) ((-125 . -582) 10756) ((-125 . -654) 10740) ((-125 . -1187) 10724) ((-117 . -752) T) ((-117 . -759) T) ((-117 . -756) T) ((-117 . -1013) T) ((-117 . -552) 10706) ((-117 . -1129) T) ((-117 . -13) T) ((-117 . -72) T) ((-117 . -320) T) ((-114 . -1013) T) ((-114 . -552) 10688) ((-114 . -1129) T) ((-114 . -13) T) ((-114 . -72) T) ((-114 . -553) 10647) ((-114 . -369) 10629) ((-114 . -1011) 10611) ((-114 . -318) 10593) ((-114 . -320) T) ((-114 . -193) 10575) ((-114 . -124) 10557) ((-114 . -1035) 10539) ((-114 . -34) T) ((-114 . -260) NIL) ((-114 . -455) NIL) ((-114 . -429) 10521) ((-114 . -76) 10503) ((-114 . -183) 10485) ((-113 . -552) 10467) ((-112 . -160) T) ((-112 . -1013) T) ((-112 . -552) 10434) ((-112 . -1129) T) ((-112 . -13) T) ((-112 . -72) T) ((-112 . -747) 10416) ((-111 . -995) T) ((-111 . -430) 10397) ((-111 . -552) 10363) ((-111 . -555) 10344) ((-111 . -1013) T) ((-111 . -1129) T) ((-111 . -13) T) ((-111 . -72) T) ((-111 . -64) T) ((-110 . -995) T) ((-110 . -430) 10325) ((-110 . -552) 10291) ((-110 . -555) 10272) ((-110 . -1013) T) ((-110 . -1129) T) ((-110 . -13) T) ((-110 . -72) T) ((-110 . -64) T) ((-108 . -405) 10249) ((-108 . -555) 10145) ((-108 . -950) 10129) ((-108 . -1013) T) ((-108 . -552) 10111) ((-108 . -1129) T) ((-108 . -13) T) ((-108 . -72) T) ((-108 . -410) 10066) ((-108 . -241) 10043) ((-107 . -756) T) ((-107 . -552) 10025) ((-107 . -1013) T) ((-107 . -72) T) ((-107 . -13) T) ((-107 . -1129) T) ((-107 . -759) T) ((-107 . -23) T) ((-107 . -25) T) ((-107 . -663) T) ((-107 . -1025) T) ((-107 . -950) 10007) ((-107 . -555) 9989) ((-106 . -995) T) ((-106 . -430) 9970) ((-106 . -552) 9936) ((-106 . -555) 9917) ((-106 . -1013) T) ((-106 . -1129) T) ((-106 . -13) T) ((-106 . -72) T) ((-106 . -64) T) ((-103 . -1013) T) ((-103 . -552) 9899) ((-103 . -1129) T) ((-103 . -13) T) ((-103 . -72) T) ((-102 . -19) 9881) ((-102 . -1035) 9863) ((-102 . -318) 9845) ((-102 . -34) T) ((-102 . -13) T) ((-102 . -1129) T) ((-102 . -72) T) ((-102 . -552) 9789) ((-102 . -260) NIL) ((-102 . -455) NIL) ((-102 . -1013) T) ((-102 . -429) 9771) ((-102 . -593) 9753) ((-102 . -243) 9728) ((-102 . -241) 9678) ((-102 . -538) 9653) ((-102 . -553) NIL) ((-102 . -124) 9635) ((-102 . -756) T) ((-102 . -759) T) ((-102 . -324) 9617) ((-101 . -752) T) ((-101 . -759) T) ((-101 . -756) T) ((-101 . -1013) T) ((-101 . -552) 9599) ((-101 . -1129) T) ((-101 . -13) T) ((-101 . -72) T) ((-101 . -320) T) ((-101 . -604) T) ((-100 . -98) 9583) ((-100 . -1035) 9567) ((-100 . -318) 9551) ((-100 . -923) 9535) ((-100 . -34) T) ((-100 . -13) T) ((-100 . -1129) T) ((-100 . -72) 9489) ((-100 . -552) 9424) ((-100 . -260) 9362) ((-100 . -455) 9295) ((-100 . -1013) 9273) ((-100 . -429) 9257) ((-100 . -92) 9241) ((-99 . -98) 9225) ((-99 . -1035) 9209) ((-99 . -318) 9193) ((-99 . -923) 9177) ((-99 . -34) T) ((-99 . -13) T) ((-99 . -1129) T) ((-99 . -72) 9131) ((-99 . -552) 9066) ((-99 . -260) 9004) ((-99 . -455) 8937) ((-99 . -1013) 8915) ((-99 . -429) 8899) ((-99 . -92) 8883) ((-94 . -98) 8867) ((-94 . -1035) 8851) ((-94 . -318) 8835) ((-94 . -923) 8819) ((-94 . -34) T) ((-94 . -13) T) ((-94 . -1129) T) ((-94 . -72) 8773) ((-94 . -552) 8708) ((-94 . -260) 8646) ((-94 . -455) 8579) ((-94 . -1013) 8557) ((-94 . -429) 8541) ((-94 . -92) 8525) ((-90 . -904) 8503) ((-90 . -1066) NIL) ((-90 . -950) 8481) ((-90 . -555) 8412) ((-90 . -553) NIL) ((-90 . -933) NIL) ((-90 . -821) NIL) ((-90 . -794) 8390) ((-90 . -755) NIL) ((-90 . -721) NIL) ((-90 . -718) NIL) ((-90 . -759) NIL) ((-90 . -756) NIL) ((-90 . -716) NIL) ((-90 . -714) NIL) ((-90 . -740) NIL) ((-90 . -796) NIL) ((-90 . -343) 8368) ((-90 . -580) 8346) ((-90 . -590) 8292) ((-90 . -329) 8270) ((-90 . -241) 8204) ((-90 . -260) 8151) ((-90 . -455) 8021) ((-90 . -288) 7999) ((-90 . -201) T) ((-90 . -82) 7918) ((-90 . -963) 7864) ((-90 . -968) 7810) ((-90 . -246) T) ((-90 . -654) 7756) ((-90 . -582) 7702) ((-90 . -588) 7633) ((-90 . -38) 7579) ((-90 . -258) T) ((-90 . -392) T) ((-90 . -146) T) ((-90 . -495) T) ((-90 . -832) T) ((-90 . -1134) T) ((-90 . -312) T) ((-90 . -190) NIL) ((-90 . -186) NIL) ((-90 . -189) NIL) ((-90 . -225) 7557) ((-90 . -806) NIL) ((-90 . -811) NIL) ((-90 . -809) NIL) ((-90 . -184) 7535) ((-90 . -120) T) ((-90 . -118) NIL) ((-90 . -104) T) ((-90 . -25) T) ((-90 . -72) T) ((-90 . -13) T) ((-90 . -1129) T) ((-90 . -552) 7517) ((-90 . -1013) T) ((-90 . -23) T) ((-90 . -21) T) ((-90 . -961) T) ((-90 . -663) T) ((-90 . -1061) T) ((-90 . -1025) T) ((-90 . -970) T) ((-89 . -779) 7501) ((-89 . -832) T) ((-89 . -495) T) ((-89 . -246) T) ((-89 . -146) T) ((-89 . -555) 7473) ((-89 . -654) 7460) ((-89 . -582) 7447) ((-89 . -968) 7434) ((-89 . -963) 7421) ((-89 . -82) 7406) ((-89 . -38) 7393) ((-89 . -392) T) ((-89 . -258) T) ((-89 . -961) T) ((-89 . -663) T) ((-89 . -1061) T) ((-89 . -1025) T) ((-89 . -970) T) ((-89 . -21) T) ((-89 . -588) 7365) ((-89 . -23) T) ((-89 . -1013) T) ((-89 . -552) 7347) ((-89 . -1129) T) ((-89 . -13) T) ((-89 . -72) T) ((-89 . -25) T) ((-89 . -104) T) ((-89 . -590) 7334) ((-89 . -120) T) ((-86 . -756) T) ((-86 . -552) 7316) ((-86 . -1013) T) ((-86 . -72) T) ((-86 . -13) T) ((-86 . -1129) T) ((-86 . -759) T) ((-86 . -747) 7297) ((-85 . -752) T) ((-85 . -759) T) ((-85 . -756) T) ((-85 . -1013) T) ((-85 . -552) 7279) ((-85 . -1129) T) ((-85 . -13) T) ((-85 . -72) T) ((-85 . -320) T) ((-85 . -880) T) ((-85 . -604) T) ((-85 . -84) T) ((-85 . -553) 7261) ((-81 . -96) T) ((-81 . -324) 7244) ((-81 . -759) T) ((-81 . -756) T) ((-81 . -124) 7227) ((-81 . -553) 7209) ((-81 . -241) 7160) ((-81 . -538) 7136) ((-81 . -243) 7112) ((-81 . -593) 7095) ((-81 . -429) 7078) ((-81 . -1013) T) ((-81 . -455) NIL) ((-81 . -260) NIL) ((-81 . -552) 7060) ((-81 . -72) T) ((-81 . -34) T) ((-81 . -318) 7043) ((-81 . -1035) 7026) ((-81 . -19) 7009) ((-81 . -604) T) ((-81 . -13) T) ((-81 . -1129) T) ((-81 . -84) T) ((-79 . -80) 6993) ((-79 . -1129) T) ((-79 . |MappingCategory|) 6967) ((-79 . -1013) T) ((-79 . -552) 6949) ((-79 . -13) T) ((-79 . -72) T) ((-78 . -552) 6931) ((-77 . -904) 6913) ((-77 . -1066) T) ((-77 . -555) 6863) ((-77 . -950) 6823) ((-77 . -553) 6753) ((-77 . -933) T) ((-77 . -821) NIL) ((-77 . -794) 6735) ((-77 . -755) T) ((-77 . -721) T) ((-77 . -718) T) ((-77 . -759) T) ((-77 . -756) T) ((-77 . -716) T) ((-77 . -714) T) ((-77 . -740) T) ((-77 . -796) 6717) ((-77 . -343) 6699) ((-77 . -580) 6681) ((-77 . -329) 6663) ((-77 . -241) NIL) ((-77 . -260) NIL) ((-77 . -455) NIL) ((-77 . -288) 6645) ((-77 . -201) T) ((-77 . -82) 6572) ((-77 . -963) 6522) ((-77 . -968) 6472) ((-77 . -246) T) ((-77 . -654) 6422) ((-77 . -582) 6372) ((-77 . -590) 6322) ((-77 . -588) 6272) ((-77 . -38) 6222) ((-77 . -258) T) ((-77 . -392) T) ((-77 . -146) T) ((-77 . -495) T) ((-77 . -832) T) ((-77 . -1134) T) ((-77 . -312) T) ((-77 . -190) T) ((-77 . -186) 6209) ((-77 . -189) T) ((-77 . -225) 6191) ((-77 . -806) NIL) ((-77 . -811) NIL) ((-77 . -809) NIL) ((-77 . -184) 6173) ((-77 . -120) T) ((-77 . -118) NIL) ((-77 . -104) T) ((-77 . -25) T) ((-77 . -72) T) ((-77 . -13) T) ((-77 . -1129) T) ((-77 . -552) 6116) ((-77 . -1013) T) ((-77 . -23) T) ((-77 . -21) T) ((-77 . -961) T) ((-77 . -663) T) ((-77 . -1061) T) ((-77 . -1025) T) ((-77 . -970) T) ((-73 . -98) 6100) ((-73 . -1035) 6084) ((-73 . -318) 6068) ((-73 . -923) 6052) ((-73 . -34) T) ((-73 . -13) T) ((-73 . -1129) T) ((-73 . -72) 6006) ((-73 . -552) 5941) ((-73 . -260) 5879) ((-73 . -455) 5812) ((-73 . -1013) 5790) ((-73 . -429) 5774) ((-73 . -92) 5758) ((-69 . -413) T) ((-69 . -1025) T) ((-69 . -72) T) ((-69 . -13) T) ((-69 . -1129) T) ((-69 . -552) 5740) ((-69 . -1013) T) ((-69 . -663) T) ((-69 . -241) 5719) ((-67 . -995) T) ((-67 . -430) 5700) ((-67 . -552) 5666) ((-67 . -555) 5647) ((-67 . -1013) T) ((-67 . -1129) T) ((-67 . -13) T) ((-67 . -72) T) ((-67 . -64) T) ((-62 . -1034) 5631) ((-62 . -318) 5615) ((-62 . -1035) 5599) ((-62 . -34) T) ((-62 . -13) T) ((-62 . -1129) T) ((-62 . -72) 5553) ((-62 . -552) 5488) ((-62 . -260) 5426) ((-62 . -455) 5359) ((-62 . -1013) 5337) ((-62 . -429) 5321) ((-62 . -76) 5305) ((-60 . -57) 5267) ((-60 . -1035) 5251) ((-60 . -429) 5235) ((-60 . -1013) 5213) ((-60 . -455) 5146) ((-60 . -260) 5084) ((-60 . -552) 5019) ((-60 . -72) 4973) ((-60 . -1129) T) ((-60 . -13) T) ((-60 . -34) T) ((-60 . -318) 4957) ((-58 . -19) 4941) ((-58 . -1035) 4925) ((-58 . -318) 4909) ((-58 . -34) T) ((-58 . -13) T) ((-58 . -1129) T) ((-58 . -72) 4843) ((-58 . -552) 4758) ((-58 . -260) 4696) ((-58 . -455) 4629) ((-58 . -1013) 4582) ((-58 . -429) 4566) ((-58 . -593) 4550) ((-58 . -243) 4527) ((-58 . -241) 4479) ((-58 . -538) 4456) ((-58 . -553) 4417) ((-58 . -124) 4401) ((-58 . -756) 4380) ((-58 . -759) 4359) ((-58 . -324) 4343) ((-55 . -1013) T) ((-55 . -552) 4325) ((-55 . -1129) T) ((-55 . -13) T) ((-55 . -72) T) ((-55 . -950) 4307) ((-55 . -555) 4289) ((-51 . -1013) T) ((-51 . -552) 4271) ((-51 . -1129) T) ((-51 . -13) T) ((-51 . -72) T) ((-50 . -560) 4255) ((-50 . -555) 4224) ((-50 . -590) 4198) ((-50 . -588) 4157) ((-50 . -970) T) ((-50 . -1025) T) ((-50 . -1061) T) ((-50 . -663) T) ((-50 . -961) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1013) T) ((-50 . -552) 4139) ((-50 . -1129) T) ((-50 . -13) T) ((-50 . -72) T) ((-50 . -25) T) ((-50 . -104) T) ((-50 . -950) 4123) ((-49 . -1013) T) ((-49 . -552) 4105) ((-49 . -1129) T) ((-49 . -13) T) ((-49 . -72) T) ((-48 . -254) T) ((-48 . -72) T) ((-48 . -13) T) ((-48 . -1129) T) ((-48 . -552) 4087) ((-48 . -1013) T) ((-48 . -555) 3988) ((-48 . -950) 3931) ((-48 . -455) 3897) ((-48 . -260) 3884) ((-48 . -27) T) ((-48 . -915) T) ((-48 . -201) T) ((-48 . -82) 3833) ((-48 . -963) 3798) ((-48 . -968) 3763) ((-48 . -246) T) ((-48 . -654) 3728) ((-48 . -582) 3693) ((-48 . -590) 3643) ((-48 . -588) 3593) ((-48 . -104) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -961) T) ((-48 . -663) T) ((-48 . -1061) T) ((-48 . -1025) T) ((-48 . -970) T) ((-48 . -38) 3558) ((-48 . -258) T) ((-48 . -392) T) ((-48 . -146) T) ((-48 . -495) T) ((-48 . -832) T) ((-48 . -1134) T) ((-48 . -312) T) ((-48 . -580) 3518) ((-48 . -933) T) ((-48 . -553) 3463) ((-48 . -120) T) ((-48 . -190) T) ((-48 . -186) 3450) ((-48 . -189) T) ((-45 . -36) 3429) ((-45 . -549) 3408) ((-45 . -243) 3331) ((-45 . -241) 3229) ((-45 . -429) 3164) ((-45 . -455) 2916) ((-45 . -260) 2714) ((-45 . -538) 2637) ((-45 . -193) 2585) ((-45 . -76) 2533) ((-45 . -183) 2481) ((-45 . -1107) 2460) ((-45 . -237) 2408) ((-45 . -1035) 2356) ((-45 . -124) 2304) ((-45 . -34) T) ((-45 . -13) T) ((-45 . -1129) T) ((-45 . -72) T) ((-45 . -552) 2286) ((-45 . -1013) T) ((-45 . -553) NIL) ((-45 . -593) 2234) ((-45 . -324) 2182) ((-45 . -759) NIL) ((-45 . -756) NIL) ((-45 . -318) 2130) ((-45 . -1064) 2078) ((-45 . -923) 2026) ((-45 . -1168) 1974) ((-45 . -608) 1922) ((-44 . -361) 1906) ((-44 . -683) 1890) ((-44 . -657) T) ((-44 . -685) T) ((-44 . -82) 1869) ((-44 . -963) 1853) ((-44 . -968) 1837) ((-44 . -21) T) ((-44 . -588) 1780) ((-44 . -23) T) ((-44 . -1013) T) ((-44 . -552) 1762) ((-44 . -72) T) ((-44 . -25) T) ((-44 . -104) T) ((-44 . -590) 1720) ((-44 . -582) 1704) ((-44 . -654) 1688) ((-44 . -316) 1672) ((-44 . -1129) T) ((-44 . -13) T) ((-44 . -241) 1649) ((-40 . -291) 1623) ((-40 . -146) T) ((-40 . -555) 1553) ((-40 . -970) T) ((-40 . -1025) T) ((-40 . -1061) T) ((-40 . -663) T) ((-40 . -961) T) ((-40 . -590) 1455) ((-40 . -588) 1385) ((-40 . -104) T) ((-40 . -25) T) ((-40 . -72) T) ((-40 . -13) T) ((-40 . -1129) T) ((-40 . -552) 1367) ((-40 . -1013) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -968) 1312) ((-40 . -963) 1257) ((-40 . -82) 1174) ((-40 . -553) 1158) ((-40 . -184) 1135) ((-40 . -809) 1087) ((-40 . -811) 999) ((-40 . -806) 909) ((-40 . -225) 886) ((-40 . -189) 826) ((-40 . -186) 760) ((-40 . -190) 732) ((-40 . -312) T) ((-40 . -1134) T) ((-40 . -832) T) ((-40 . -495) T) ((-40 . -654) 677) ((-40 . -582) 622) ((-40 . -38) 567) ((-40 . -392) T) ((-40 . -258) T) ((-40 . -246) T) ((-40 . -201) T) ((-40 . -320) NIL) ((-40 . -299) NIL) ((-40 . -1066) NIL) ((-40 . -118) 539) ((-40 . -345) NIL) ((-40 . -353) 511) ((-40 . -120) 483) ((-40 . -322) 455) ((-40 . -329) 432) ((-40 . -580) 366) ((-40 . -355) 343) ((-40 . -950) 220) ((-40 . -661) 192) ((-31 . -995) T) ((-31 . -430) 173) ((-31 . -552) 139) ((-31 . -555) 120) ((-31 . -1013) T) ((-31 . -1129) T) ((-31 . -13) T) ((-31 . -72) T) ((-31 . -64) T) ((-30 . -866) T) ((-30 . -552) 102) ((0 . |EnumerationCategory|) T) ((0 . -552) 84) ((0 . -1013) T) ((0 . -72) T) ((0 . -1129) T) ((-2 . |RecordCategory|) T) ((-2 . -552) 66) ((-2 . -1013) T) ((-2 . -72) T) ((-2 . -1129) T) ((-3 . |UnionCategory|) T) ((-3 . -552) 48) ((-3 . -1013) T) ((-3 . -72) T) ((-3 . -1129) T) ((-1 . -1013) T) ((-1 . -552) 30) ((-1 . -1129) T) ((-1 . -13) T) ((-1 . -72) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 501c2736..569479dd 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3577992037)
-(4000 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3577996047)
+(3999 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&|
@@ -139,7 +139,7 @@
|HomogeneousAggregate&| |HomogeneousAggregate| |HomotopicTo| |Hostname|
|HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor|
|InnerAlgebraicNumber| |IndexedOneDimensionalArray| |InnerTwoDimensionalArray|
- |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits|
+ |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools|
|IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator|
|PolynomialIdeals| |IdealDecompositionPackage| |IdempotentOperatorCategory|
|Identifier| |IndexedDirectProductAbelianGroup|
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 801bb989..4105f186 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4052 +1,4049 @@
-(2796257 . 3577992046)
-((-1736 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1734 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2298 (($ $) 80 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3421 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-3520 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2610 (((-584 |#2|) $) 13 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2305 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1731 (((-695) |#2| $) NIL T ELT) (((-695) (-1 (-85) |#2|) $) 34 T ELT)) (-1735 (($ $ $ (-485)) 69 T ELT)) (-3402 (($ $) 68 T ELT)) (-3532 (($ (-584 |#2|)) 73 T ELT)) (-3804 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3948 (((-773) $) 92 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3058 (((-85) $ $) 95 T ELT)) (-2687 (((-85) $ $) 99 T ELT)))
-(((-18 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -1735 (|#1| |#1| |#1| (-485))) (-15 -1736 ((-85) |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -2610 ((-584 |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3790 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3960 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3532 (|#1| (-584 |#2|))) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3790 (|#2| |#1| (-485) |#2|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#1| |#1|))) (-19 |#2|) (-1130)) (T -18))
+(2792511 . 3577996055)
+((-1735 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1733 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3789 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-1146 (-484)) |#2|) 44 T ELT)) (-2297 (($ $) 80 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3420 (((-484) (-1 (-85) |#2|) $) 27 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) |#2| $ (-484)) 96 T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2609 (((-583 |#2|) $) 13 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2304 (($ |#2| $ (-484)) NIL T ELT) (($ $ $ (-484)) 67 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3801 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 76 T ELT) (($ $ (-1146 (-484))) 75 T ELT)) (-1730 (((-694) |#2| $) NIL T ELT) (((-694) (-1 (-85) |#2|) $) 34 T ELT)) (-1734 (($ $ $ (-484)) 69 T ELT)) (-3401 (($ $) 68 T ELT)) (-3531 (($ (-583 |#2|)) 73 T ELT)) (-3803 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-583 $)) 85 T ELT)) (-3947 (((-772) $) 92 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3057 (((-85) $ $) 95 T ELT)) (-2686 (((-85) $ $) 99 T ELT)))
+(((-18 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -1733 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -1734 (|#1| |#1| |#1| (-484))) (-15 -1735 ((-85) |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-484) |#2| |#1| (-484))) (-15 -3420 ((-484) |#2| |#1|)) (-15 -3420 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1735 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -2609 ((-583 |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1730 ((-694) |#2| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3789 (|#2| |#1| (-1146 (-484)) |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3803 (|#1| (-583 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1146 (-484)))) (-15 -3531 (|#1| (-583 |#2|))) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3801 (|#2| |#1| (-484))) (-15 -3801 (|#2| |#1| (-484) |#2|)) (-15 -3789 (|#2| |#1| (-484) |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-19 |#2|) (-1129)) (T -18))
NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1036 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 89 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 99 T ELT)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 96 T ELT) (((-485) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 94 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 105 T ELT)) (-3247 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 82 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1731 (((-695) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 104 T ELT)) (-1735 (($ $ $ (-485)) 90 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2568 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 86 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 101 T ELT)))
-(((-19 |#1|) (-113) (-1130)) (T -19))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1035 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-756)) (|has| $ (-1035 |#1|))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 89 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 99 T ELT)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) 96 T ELT) (((-484) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) 94 (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 81 (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 105 T ELT)) (-3246 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 82 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-1035 |#1|)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-1730 (((-694) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 104 T ELT)) (-1734 (($ $ $ (-484)) 90 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2567 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 85 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 84 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 86 (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 101 T ELT)))
+(((-19 |#1|) (-113) (-1129)) (T -19))
NIL
-(-13 (-324 |t#1|) (-1036 |t#1|))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T))
-((-1313 (((-3 $ "failed") $ $) 12 T ELT)) (-1215 (((-85) $ $) 27 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 16 T ELT) (($ (-485) $) 25 T ELT)))
-(((-20 |#1|) (-10 -7 (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -1313 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-21)) (T -20))
+(-13 (-324 |t#1|) (-1035 |t#1|))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T))
+((-1312 (((-3 $ "failed") $ $) 12 T ELT)) (-1214 (((-85) $ $) 27 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 16 T ELT) (($ (-484) $) 25 T ELT)))
+(((-20 |#1|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -1312 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-21)) (T -20))
NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT)))
(((-21) (-113)) (T -21))
-((-3839 (*1 *1 *1) (-4 *1 (-21))) (-3839 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-104) (-589 (-485)) (-10 -8 (-15 -3839 ($ $)) (-15 -3839 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T))
-((-3190 (((-85) $) 10 T ELT)) (-3726 (($) 15 T CONST)) (-1215 (((-85) $ $) 22 T ELT)) (* (($ (-831) $) 14 T ELT) (($ (-695) $) 19 T ELT)))
-(((-22 |#1|) (-10 -7 (-15 -1215 ((-85) |#1| |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 -3726 (|#1|) -3954) (-15 * (|#1| (-831) |#1|))) (-23)) (T -22))
+((-3838 (*1 *1 *1) (-4 *1 (-21))) (-3838 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-104) (-588 (-484)) (-10 -8 (-15 -3838 ($ $)) (-15 -3838 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1129) . T))
+((-3189 (((-85) $) 10 T ELT)) (-3725 (($) 15 T CONST)) (-1214 (((-85) $ $) 22 T ELT)) (* (($ (-830) $) 14 T ELT) (($ (-694) $) 19 T ELT)))
+(((-22 |#1|) (-10 -7 (-15 -1214 ((-85) |#1| |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 * (|#1| (-830) |#1|))) (-23)) (T -22))
NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
(((-23) (-113)) (T -23))
-((-2662 (*1 *1) (-4 *1 (-23))) (-3726 (*1 *1) (-4 *1 (-23))) (-3190 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695)))) (-1215 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
-(-13 (-25) (-10 -8 (-15 -2662 ($) -3954) (-15 -3726 ($) -3954) (-15 -3190 ((-85) $)) (-15 * ($ (-695) $)) (-15 -1215 ((-85) $ $))))
-(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((* (($ (-831) $) 10 T ELT)))
-(((-24 |#1|) (-10 -7 (-15 * (|#1| (-831) |#1|))) (-25)) (T -24))
+((-2661 (*1 *1) (-4 *1 (-23))) (-3725 (*1 *1) (-4 *1 (-23))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694)))) (-1214 (*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
+(-13 (-25) (-10 -8 (-15 -2661 ($) -3953) (-15 -3725 ($) -3953) (-15 -3189 ((-85) $)) (-15 * ($ (-694) $)) (-15 -1214 ((-85) $ $))))
+(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((* (($ (-830) $) 10 T ELT)))
+(((-24 |#1|) (-10 -7 (-15 * (|#1| (-830) |#1|))) (-25)) (T -24))
NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT)))
(((-25) (-113)) (T -25))
-((-3841 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831)))))
-(-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ (-831) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-1216 (((-584 $) (-858 $)) 32 T ELT) (((-584 $) (-1086 $)) 16 T ELT) (((-584 $) (-1086 $) (-1091)) 20 T ELT)) (-1217 (($ (-858 $)) 30 T ELT) (($ (-1086 $)) 11 T ELT) (($ (-1086 $) (-1091)) 60 T ELT)) (-1218 (((-584 $) (-858 $)) 33 T ELT) (((-584 $) (-1086 $)) 18 T ELT) (((-584 $) (-1086 $) (-1091)) 19 T ELT)) (-3185 (($ (-858 $)) 31 T ELT) (($ (-1086 $)) 13 T ELT) (($ (-1086 $) (-1091)) NIL T ELT)))
-(((-26 |#1|) (-10 -7 (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-858 |#1|)))) (-27)) (T -26))
+((-3840 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830)))))
+(-13 (-1013) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ (-830) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-1215 (((-583 $) (-857 $)) 32 T ELT) (((-583 $) (-1085 $)) 16 T ELT) (((-583 $) (-1085 $) (-1090)) 20 T ELT)) (-1216 (($ (-857 $)) 30 T ELT) (($ (-1085 $)) 11 T ELT) (($ (-1085 $) (-1090)) 60 T ELT)) (-1217 (((-583 $) (-857 $)) 33 T ELT) (((-583 $) (-1085 $)) 18 T ELT) (((-583 $) (-1085 $) (-1090)) 19 T ELT)) (-3184 (($ (-857 $)) 31 T ELT) (($ (-1085 $)) 13 T ELT) (($ (-1085 $) (-1090)) NIL T ELT)))
+(((-26 |#1|) (-10 -7 (-15 -1215 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-583 |#1|) (-1085 |#1|))) (-15 -1215 ((-583 |#1|) (-857 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-857 |#1|))) (-15 -1217 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-583 |#1|) (-1085 |#1|))) (-15 -1217 ((-583 |#1|) (-857 |#1|))) (-15 -3184 (|#1| (-1085 |#1|) (-1090))) (-15 -3184 (|#1| (-1085 |#1|))) (-15 -3184 (|#1| (-857 |#1|)))) (-27)) (T -26))
NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT)) (-3185 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-1215 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1085 $)) 97 T ELT) (((-583 $) (-1085 $) (-1090)) 96 T ELT)) (-1216 (($ (-857 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1217 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1085 $)) 103 T ELT) (((-583 $) (-1085 $) (-1090)) 102 T ELT)) (-3184 (($ (-857 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 109 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
(((-27) (-113)) (T -27))
-((-3185 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-3185 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1218 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-1217 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1)))))
-(-13 (-312) (-916) (-10 -8 (-15 -3185 ($ (-858 $))) (-15 -3185 ($ (-1086 $))) (-15 -3185 ($ (-1086 $) (-1091))) (-15 -1218 ((-584 $) (-858 $))) (-15 -1218 ((-584 $) (-1086 $))) (-15 -1218 ((-584 $) (-1086 $) (-1091))) (-15 -1217 ($ (-858 $))) (-15 -1217 ($ (-1086 $))) (-15 -1217 ($ (-1086 $) (-1091))) (-15 -1216 ((-584 $) (-858 $))) (-15 -1216 ((-584 $) (-1086 $))) (-15 -1216 ((-584 $) (-1086 $) (-1091)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-916) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-1216 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 54 T ELT) (((-584 $) $) 22 T ELT) (((-584 $) $ (-1091)) 45 T ELT)) (-1217 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1091)) 39 T ELT)) (-1218 (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 $) (-1091)) 52 T ELT) (((-584 $) $) 18 T ELT) (((-584 $) $ (-1091)) 47 T ELT)) (-3185 (($ (-858 $)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1091)) 41 T ELT)))
-(((-28 |#1| |#2|) (-10 -7 (-15 -1216 ((-584 |#1|) |#1| (-1091))) (-15 -1217 (|#1| |#1| (-1091))) (-15 -1216 ((-584 |#1|) |#1|)) (-15 -1217 (|#1| |#1|)) (-15 -1218 ((-584 |#1|) |#1| (-1091))) (-15 -3185 (|#1| |#1| (-1091))) (-15 -1218 ((-584 |#1|) |#1|)) (-15 -3185 (|#1| |#1|)) (-15 -1216 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1216 ((-584 |#1|) (-1086 |#1|))) (-15 -1216 ((-584 |#1|) (-858 |#1|))) (-15 -1217 (|#1| (-1086 |#1|) (-1091))) (-15 -1217 (|#1| (-1086 |#1|))) (-15 -1217 (|#1| (-858 |#1|))) (-15 -1218 ((-584 |#1|) (-1086 |#1|) (-1091))) (-15 -1218 ((-584 |#1|) (-1086 |#1|))) (-15 -1218 ((-584 |#1|) (-858 |#1|))) (-15 -3185 (|#1| (-1086 |#1|) (-1091))) (-15 -3185 (|#1| (-1086 |#1|))) (-15 -3185 (|#1| (-858 |#1|)))) (-29 |#2|) (-496)) (T -28))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1216 (((-584 $) (-858 $)) 98 T ELT) (((-584 $) (-1086 $)) 97 T ELT) (((-584 $) (-1086 $) (-1091)) 96 T ELT) (((-584 $) $) 148 T ELT) (((-584 $) $ (-1091)) 146 T ELT)) (-1217 (($ (-858 $)) 101 T ELT) (($ (-1086 $)) 100 T ELT) (($ (-1086 $) (-1091)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1091)) 147 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-1091)) $) 217 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 249 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1601 (((-584 (-551 $)) $) 180 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1605 (($ $ (-584 (-551 $)) (-584 $)) 170 T ELT) (($ $ (-584 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 110 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-1218 (((-584 $) (-858 $)) 104 T ELT) (((-584 $) (-1086 $)) 103 T ELT) (((-584 $) (-1086 $) (-1091)) 102 T ELT) (((-584 $) $) 152 T ELT) (((-584 $) $ (-1091)) 150 T ELT)) (-3185 (($ (-858 $)) 107 T ELT) (($ (-1086 $)) 106 T ELT) (($ (-1086 $) (-1091)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1091)) 151 T ELT)) (-3159 (((-3 (-858 |#1|) #1="failed") $) 268 (|has| |#1| (-962)) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 251 (|has| |#1| (-496)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-485) #1#) $) 210 (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) 204 T ELT) (((-3 (-551 $) #1#) $) 155 T ELT) (((-3 (-350 (-485)) #1#) $) 143 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-858 |#1|) $) 267 (|has| |#1| (-962)) ELT) (((-350 (-858 |#1|)) $) 250 (|has| |#1| (-496)) ELT) ((|#1| $) 212 T ELT) (((-485) $) 211 (|has| |#1| (-951 (-485))) ELT) (((-1091) $) 203 T ELT) (((-551 $) $) 154 T ELT) (((-350 (-485)) $) 144 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2280 (((-631 |#1|) (-631 $)) 256 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 255 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 142 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-631 $)) 141 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 209 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 208 (|has| |#1| (-797 (-485))) ELT)) (-2575 (($ (-584 $)) 174 T ELT) (($ $) 173 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1600 (((-584 (-86)) $) 181 T ELT)) (-3597 (((-86) (-86)) 182 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 202 (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 234 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 233 (|has| |#1| (-962)) ELT)) (-3013 (($ $ (-485)) 109 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-1598 (((-1086 $) (-551 $)) 199 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 188 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 178 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 258 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 257 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 140 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (((-631 (-485)) (-1180 $)) 139 (OR (-2564 (|has| |#1| (-962)) (|has| |#1| (-581 (-485)))) (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 179 T ELT)) (-2236 (($ (-86) (-584 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2825 (((-3 (-584 $) #3="failed") $) 228 (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #3#) $) 237 (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-1091)) 236 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $ (-86)) 235 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #3#) $) 229 (|has| |#1| (-1026)) ELT)) (-2635 (((-85) $ (-1091)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2486 (($ $) 88 T ELT)) (-2605 (((-695) $) 177 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 215 T ELT)) (-1800 ((|#1| $) 216 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1599 (((-85) $ (-1091)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2676 (((-85) $) 201 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-1091) (-695) (-1 $ $)) 241 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 240 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 239 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 238 (|has| |#1| (-962)) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 227 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 226 (|has| |#1| (-554 (-474))) ELT) (($ $) 225 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 224 (|has| |#1| (-554 (-474))) ELT) (($ $ (-1091)) 223 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-584 $))) 197 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 196 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 195 T ELT) (($ $ (-1091) (-1 $ $)) 194 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 193 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 192 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 191 T ELT) (($ $ (-584 $) (-584 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-584 (-249 $))) 159 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 158 T ELT) (($ $ (-551 $) $) 157 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-3802 (($ (-86) (-584 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1604 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) 263 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 262 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 261 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 259 (|has| |#1| (-962)) ELT)) (-2997 (($ $) 244 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 243 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 200 (|has| $ (-962)) ELT)) (-3974 (((-474) $) 272 (|has| |#1| (-554 (-474))) ELT) (($ (-348 $)) 242 (|has| |#1| (-496)) ELT) (((-801 (-330)) $) 207 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 206 (|has| |#1| (-554 (-801 (-485)))) ELT)) (-3011 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-858 |#1|)) 269 (|has| |#1| (-962)) ELT) (($ (-350 (-858 |#1|))) 252 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 248 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 247 (|has| |#1| (-496)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-496)) ELT) (($ (-1040 |#1| (-551 $))) 232 (|has| |#1| (-962)) ELT) (($ |#1|) 214 T ELT) (($ (-1091)) 205 T ELT) (($ (-551 $)) 156 T ELT)) (-2704 (((-633 $) $) 254 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-2592 (($ (-584 $)) 172 T ELT) (($ $) 171 T ELT)) (-2255 (((-85) (-86)) 183 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-1799 (($ (-1091) (-584 $)) 222 T ELT) (($ (-1091) $ $ $ $) 221 T ELT) (($ (-1091) $ $ $) 220 T ELT) (($ (-1091) $ $) 219 T ELT) (($ (-1091) $) 218 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) 266 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 265 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 264 (|has| |#1| (-962)) ELT) (($ $ (-1091)) 260 (|has| |#1| (-962)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 245 (|has| |#1| (-496)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 108 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-962)) ELT)))
-(((-29 |#1|) (-113) (-496)) (T -29))
-((-3185 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1218 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-3185 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))) (-1217 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))) (-1216 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))) (-1217 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496)))) (-1216 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3185 ($ $)) (-15 -1218 ((-584 $) $)) (-15 -3185 ($ $ (-1091))) (-15 -1218 ((-584 $) $ (-1091))) (-15 -1217 ($ $)) (-15 -1216 ((-584 $) $)) (-15 -1217 ($ $ (-1091))) (-15 -1216 ((-584 $) $ (-1091)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) . T) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) . T) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) . T) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) . T) ((-664) . T) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2898 (((-1002 (-179)) $) NIL T ELT)) (-2899 (((-1002 (-179)) $) NIL T ELT)) (-3136 (($ $ (-179)) 164 T ELT)) (-1219 (($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485)))) 103 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 181 T ELT)) (-3948 (((-773) $) 195 T ELT)))
-(((-30) (-13 (-867) (-10 -8 (-15 -1219 ($ (-858 (-485)) (-1091) (-1091) (-1002 (-350 (-485))) (-1002 (-350 (-485))))) (-15 -3136 ($ $ (-179)))))) (T -30))
-((-1219 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485)))) (-5 *1 (-30)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-1050) $) 10 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-31) (-13 (-996) (-10 -8 (-15 -2696 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -31))
-((-2696 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31)))))
-((-3185 ((|#2| (-1086 |#2|) (-1091)) 39 T ELT)) (-3597 (((-86) (-86)) 53 T ELT)) (-1598 (((-1086 |#2|) (-551 |#2|)) 148 (|has| |#1| (-951 (-485))) ELT)) (-1222 ((|#2| |#1| (-485)) 120 (|has| |#1| (-951 (-485))) ELT)) (-1220 ((|#2| (-1086 |#2|) |#2|) 29 T ELT)) (-1221 (((-773) (-584 |#2|)) 87 T ELT)) (-3187 ((|#2| |#2|) 143 (|has| |#1| (-951 (-485))) ELT)) (-2255 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-485))) 96 (|has| |#1| (-951 (-485))) ELT)))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3185 (|#2| (-1086 |#2|) (-1091))) (-15 -3597 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -1220 (|#2| (-1086 |#2|) |#2|)) (-15 -1221 ((-773) (-584 |#2|))) (IF (|has| |#1| (-951 (-485))) (PROGN (-15 ** (|#2| |#2| (-350 (-485)))) (-15 -1598 ((-1086 |#2|) (-551 |#2|))) (-15 -3187 (|#2| |#2|)) (-15 -1222 (|#2| |#1| (-485)))) |%noBranch|)) (-496) (-364 |#1|)) (T -32))
-((-1222 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4)) (-4 *3 (-496)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1221 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773)) (-5 *1 (-32 *4 *5)))) (-1220 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-32 *4 *2)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-496)))))
-((-3726 (($) 10 T CONST)) (-1223 (((-85) $ $) 8 T ELT)))
-(((-33 |#1|) (-10 -7 (-15 -3726 (|#1|) -3954) (-15 -1223 ((-85) |#1| |#1|))) (-34)) (T -33))
-NIL
-((-3726 (($) 6 T CONST)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)))
+((-3184 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-3184 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1217 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1217 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27)))) (-1216 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
+(-13 (-312) (-915) (-10 -8 (-15 -3184 ($ (-857 $))) (-15 -3184 ($ (-1085 $))) (-15 -3184 ($ (-1085 $) (-1090))) (-15 -1217 ((-583 $) (-857 $))) (-15 -1217 ((-583 $) (-1085 $))) (-15 -1217 ((-583 $) (-1085 $) (-1090))) (-15 -1216 ($ (-857 $))) (-15 -1216 ($ (-1085 $))) (-15 -1216 ($ (-1085 $) (-1090))) (-15 -1215 ((-583 $) (-857 $))) (-15 -1215 ((-583 $) (-1085 $))) (-15 -1215 ((-583 $) (-1085 $) (-1090)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-915) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-1215 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 $) (-1090)) 54 T ELT) (((-583 $) $) 22 T ELT) (((-583 $) $ (-1090)) 45 T ELT)) (-1216 (($ (-857 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1090)) 39 T ELT)) (-1217 (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 $) (-1090)) 52 T ELT) (((-583 $) $) 18 T ELT) (((-583 $) $ (-1090)) 47 T ELT)) (-3184 (($ (-857 $)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1090)) 41 T ELT)))
+(((-28 |#1| |#2|) (-10 -7 (-15 -1215 ((-583 |#1|) |#1| (-1090))) (-15 -1216 (|#1| |#1| (-1090))) (-15 -1215 ((-583 |#1|) |#1|)) (-15 -1216 (|#1| |#1|)) (-15 -1217 ((-583 |#1|) |#1| (-1090))) (-15 -3184 (|#1| |#1| (-1090))) (-15 -1217 ((-583 |#1|) |#1|)) (-15 -3184 (|#1| |#1|)) (-15 -1215 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1215 ((-583 |#1|) (-1085 |#1|))) (-15 -1215 ((-583 |#1|) (-857 |#1|))) (-15 -1216 (|#1| (-1085 |#1|) (-1090))) (-15 -1216 (|#1| (-1085 |#1|))) (-15 -1216 (|#1| (-857 |#1|))) (-15 -1217 ((-583 |#1|) (-1085 |#1|) (-1090))) (-15 -1217 ((-583 |#1|) (-1085 |#1|))) (-15 -1217 ((-583 |#1|) (-857 |#1|))) (-15 -3184 (|#1| (-1085 |#1|) (-1090))) (-15 -3184 (|#1| (-1085 |#1|))) (-15 -3184 (|#1| (-857 |#1|)))) (-29 |#2|) (-495)) (T -28))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1215 (((-583 $) (-857 $)) 98 T ELT) (((-583 $) (-1085 $)) 97 T ELT) (((-583 $) (-1085 $) (-1090)) 96 T ELT) (((-583 $) $) 148 T ELT) (((-583 $) $ (-1090)) 146 T ELT)) (-1216 (($ (-857 $)) 101 T ELT) (($ (-1085 $)) 100 T ELT) (($ (-1085 $) (-1090)) 99 T ELT) (($ $) 149 T ELT) (($ $ (-1090)) 147 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-1090)) $) 217 T ELT)) (-3084 (((-350 (-1085 $)) $ (-550 $)) 249 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1600 (((-583 (-550 $)) $) 180 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1604 (($ $ (-583 (-550 $)) (-583 $)) 170 T ELT) (($ $ (-583 (-249 $))) 169 T ELT) (($ $ (-249 $)) 168 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 110 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-1217 (((-583 $) (-857 $)) 104 T ELT) (((-583 $) (-1085 $)) 103 T ELT) (((-583 $) (-1085 $) (-1090)) 102 T ELT) (((-583 $) $) 152 T ELT) (((-583 $) $ (-1090)) 150 T ELT)) (-3184 (($ (-857 $)) 107 T ELT) (($ (-1085 $)) 106 T ELT) (($ (-1085 $) (-1090)) 105 T ELT) (($ $) 153 T ELT) (($ $ (-1090)) 151 T ELT)) (-3158 (((-3 (-857 |#1|) #1="failed") $) 268 (|has| |#1| (-961)) ELT) (((-3 (-350 (-857 |#1|)) #1#) $) 251 (|has| |#1| (-495)) ELT) (((-3 |#1| #1#) $) 213 T ELT) (((-3 (-484) #1#) $) 210 (|has| |#1| (-950 (-484))) ELT) (((-3 (-1090) #1#) $) 204 T ELT) (((-3 (-550 $) #1#) $) 155 T ELT) (((-3 (-350 (-484)) #1#) $) 143 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3157 (((-857 |#1|) $) 267 (|has| |#1| (-961)) ELT) (((-350 (-857 |#1|)) $) 250 (|has| |#1| (-495)) ELT) ((|#1| $) 212 T ELT) (((-484) $) 211 (|has| |#1| (-950 (-484))) ELT) (((-1090) $) 203 T ELT) (((-550 $) $) 154 T ELT) (((-350 (-484)) $) 144 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2279 (((-630 |#1|) (-630 $)) 256 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 255 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 142 (OR (-2563 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-630 $)) 141 (OR (-2563 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 209 (|has| |#1| (-796 (-330))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 208 (|has| |#1| (-796 (-484))) ELT)) (-2574 (($ (-583 $)) 174 T ELT) (($ $) 173 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1599 (((-583 (-86)) $) 181 T ELT)) (-3596 (((-86) (-86)) 182 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 202 (|has| $ (-950 (-484))) ELT)) (-2997 (($ $) 234 (|has| |#1| (-961)) ELT)) (-2999 (((-1039 |#1| (-550 $)) $) 233 (|has| |#1| (-961)) ELT)) (-3012 (($ $ (-484)) 109 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-1597 (((-1085 $) (-550 $)) 199 (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) 188 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 178 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 258 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 257 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 140 (OR (-2563 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (((-630 (-484)) (-1179 $)) 139 (OR (-2563 (|has| |#1| (-961)) (|has| |#1| (-580 (-484)))) (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 179 T ELT)) (-2235 (($ (-86) (-583 $)) 187 T ELT) (($ (-86) $) 186 T ELT)) (-2824 (((-3 (-583 $) #3="failed") $) 228 (|has| |#1| (-1025)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #3#) $) 237 (|has| |#1| (-961)) ELT)) (-2823 (((-3 (-583 $) #3#) $) 230 (|has| |#1| (-25)) ELT)) (-1797 (((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 $))) #3#) $) 231 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-1090)) 236 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $ (-86)) 235 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #3#) $) 229 (|has| |#1| (-1025)) ELT)) (-2634 (((-85) $ (-1090)) 185 T ELT) (((-85) $ (-86)) 184 T ELT)) (-2485 (($ $) 88 T ELT)) (-2604 (((-694) $) 177 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 215 T ELT)) (-1799 ((|#1| $) 216 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1598 (((-85) $ (-1090)) 190 T ELT) (((-85) $ $) 189 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2675 (((-85) $) 201 (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-1090) (-694) (-1 $ $)) 241 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 240 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 239 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 238 (|has| |#1| (-961)) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 227 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 226 (|has| |#1| (-553 (-473))) ELT) (($ $) 225 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) 224 (|has| |#1| (-553 (-473))) ELT) (($ $ (-1090)) 223 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) (-1 $ $)) 198 T ELT) (($ $ (-86) (-1 $ (-583 $))) 197 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 196 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 195 T ELT) (($ $ (-1090) (-1 $ $)) 194 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 193 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 192 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 191 T ELT) (($ $ (-583 $) (-583 $)) 162 T ELT) (($ $ $ $) 161 T ELT) (($ $ (-249 $)) 160 T ELT) (($ $ (-583 (-249 $))) 159 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 158 T ELT) (($ $ (-550 $) $) 157 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-3801 (($ (-86) (-583 $)) 167 T ELT) (($ (-86) $ $ $ $) 166 T ELT) (($ (-86) $ $ $) 165 T ELT) (($ (-86) $ $) 164 T ELT) (($ (-86) $) 163 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1603 (($ $ $) 176 T ELT) (($ $) 175 T ELT)) (-3759 (($ $ (-583 (-1090)) (-583 (-694))) 263 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 262 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 261 (|has| |#1| (-961)) ELT) (($ $ (-1090)) 259 (|has| |#1| (-961)) ELT)) (-2996 (($ $) 244 (|has| |#1| (-495)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 243 (|has| |#1| (-495)) ELT)) (-3186 (($ $) 200 (|has| $ (-961)) ELT)) (-3973 (((-473) $) 272 (|has| |#1| (-553 (-473))) ELT) (($ (-348 $)) 242 (|has| |#1| (-495)) ELT) (((-800 (-330)) $) 207 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-800 (-484)) $) 206 (|has| |#1| (-553 (-800 (-484)))) ELT)) (-3010 (($ $ $) 271 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 270 (|has| |#1| (-413)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-857 |#1|)) 269 (|has| |#1| (-961)) ELT) (($ (-350 (-857 |#1|))) 252 (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) 248 (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) 247 (|has| |#1| (-495)) ELT) (($ (-350 |#1|)) 246 (|has| |#1| (-495)) ELT) (($ (-1039 |#1| (-550 $))) 232 (|has| |#1| (-961)) ELT) (($ |#1|) 214 T ELT) (($ (-1090)) 205 T ELT) (($ (-550 $)) 156 T ELT)) (-2703 (((-632 $) $) 254 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-2591 (($ (-583 $)) 172 T ELT) (($ $) 171 T ELT)) (-2254 (((-85) (-86)) 183 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-1798 (($ (-1090) (-583 $)) 222 T ELT) (($ (-1090) $ $ $ $) 221 T ELT) (($ (-1090) $ $ $) 220 T ELT) (($ (-1090) $ $) 219 T ELT) (($ (-1090) $) 218 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 (-1090)) (-583 (-694))) 266 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 265 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 264 (|has| |#1| (-961)) ELT) (($ $ (-1090)) 260 (|has| |#1| (-961)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 245 (|has| |#1| (-495)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 108 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 253 (|has| |#1| (-146)) ELT) (($ |#1| $) 145 (|has| |#1| (-961)) ELT)))
+(((-29 |#1|) (-113) (-495)) (T -29))
+((-3184 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1217 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1217 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-1216 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))) (-1215 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-1216 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495)))) (-1215 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-364 |t#1|) (-10 -8 (-15 -3184 ($ $)) (-15 -1217 ((-583 $) $)) (-15 -3184 ($ $ (-1090))) (-15 -1217 ((-583 $) $ (-1090))) (-15 -1216 ($ $)) (-15 -1215 ((-583 $) $)) (-15 -1216 ($ $ (-1090))) (-15 -1215 ((-583 $) $ (-1090)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) . T) ((-27) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) . T) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1090)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) . T) ((-246) . T) ((-258) . T) ((-260 $) . T) ((-254) . T) ((-312) . T) ((-329 |#1|) |has| |#1| (-961)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-364 |#1|) . T) ((-392) . T) ((-413) |has| |#1| (-413)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) . T) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-350 (-484))) . T) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) . T) ((-663) . T) ((-806 $ (-1090)) |has| |#1| (-961)) ((-809 (-1090)) |has| |#1| (-961)) ((-811 (-1090)) |has| |#1| (-961)) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) . T) ((-915) . T) ((-950 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1090)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-2897 (((-1001 (-179)) $) NIL T ELT)) (-2898 (((-1001 (-179)) $) NIL T ELT)) (-3135 (($ $ (-179)) 164 T ELT)) (-1218 (($ (-857 (-484)) (-1090) (-1090) (-1001 (-350 (-484))) (-1001 (-350 (-484)))) 103 T ELT)) (-2899 (((-583 (-583 (-854 (-179)))) $) 181 T ELT)) (-3947 (((-772) $) 195 T ELT)))
+(((-30) (-13 (-866) (-10 -8 (-15 -1218 ($ (-857 (-484)) (-1090) (-1090) (-1001 (-350 (-484))) (-1001 (-350 (-484))))) (-15 -3135 ($ $ (-179)))))) (T -30))
+((-1218 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1090)) (-5 *4 (-1001 (-350 (-484)))) (-5 *1 (-30)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-1049) $) 10 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-31) (-13 (-995) (-10 -8 (-15 -2695 ((-1049) $)) (-15 -3234 ((-1049) $))))) (T -31))
+((-2695 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31)))))
+((-3184 ((|#2| (-1085 |#2|) (-1090)) 39 T ELT)) (-3596 (((-86) (-86)) 53 T ELT)) (-1597 (((-1085 |#2|) (-550 |#2|)) 148 (|has| |#1| (-950 (-484))) ELT)) (-1221 ((|#2| |#1| (-484)) 120 (|has| |#1| (-950 (-484))) ELT)) (-1219 ((|#2| (-1085 |#2|) |#2|) 29 T ELT)) (-1220 (((-772) (-583 |#2|)) 87 T ELT)) (-3186 ((|#2| |#2|) 143 (|has| |#1| (-950 (-484))) ELT)) (-2254 (((-85) (-86)) 17 T ELT)) (** ((|#2| |#2| (-350 (-484))) 96 (|has| |#1| (-950 (-484))) ELT)))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3184 (|#2| (-1085 |#2|) (-1090))) (-15 -3596 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -1219 (|#2| (-1085 |#2|) |#2|)) (-15 -1220 ((-772) (-583 |#2|))) (IF (|has| |#1| (-950 (-484))) (PROGN (-15 ** (|#2| |#2| (-350 (-484)))) (-15 -1597 ((-1085 |#2|) (-550 |#2|))) (-15 -3186 (|#2| |#2|)) (-15 -1221 (|#2| |#1| (-484)))) |%noBranch|)) (-495) (-364 |#1|)) (T -32))
+((-1221 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-495)))) (-3186 (*1 *2 *2) (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2)) (-4 *2 (-364 *3)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-550 *5)) (-4 *5 (-364 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-495)) (-5 *2 (-772)) (-5 *1 (-32 *4 *5)))) (-1219 (*1 *2 *3 *2) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-32 *4 *2)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5)) (-4 *5 (-364 *4)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3)))) (-3184 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-495)))))
+((-3725 (($) 10 T CONST)) (-1222 (((-85) $ $) 8 T ELT)))
+(((-33 |#1|) (-10 -7 (-15 -3725 (|#1|) -3953) (-15 -1222 ((-85) |#1| |#1|))) (-34)) (T -33))
+NIL
+((-3725 (($) 6 T CONST)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3401 (($ $) 9 T ELT)))
(((-34) (-113)) (T -34))
-((-1223 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3402 (*1 *1 *1) (-4 *1 (-34))) (-3567 (*1 *1) (-4 *1 (-34))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3726 (*1 *1) (-4 *1 (-34))))
-(-13 (-1130) (-10 -8 (-15 -1223 ((-85) $ $)) (-15 -3402 ($ $)) (-15 -3567 ($)) (-15 -3405 ((-85) $)) (-15 -3726 ($) -3954)))
-(((-13) . T) ((-1130) . T))
-((-3500 (($ $) 11 T ELT)) (-3498 (($ $) 10 T ELT)) (-3502 (($ $) 9 T ELT)) (-3503 (($ $) 8 T ELT)) (-3501 (($ $) 7 T ELT)) (-3499 (($ $) 6 T ELT)))
+((-1222 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3401 (*1 *1 *1) (-4 *1 (-34))) (-3566 (*1 *1) (-4 *1 (-34))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))) (-3725 (*1 *1) (-4 *1 (-34))))
+(-13 (-1129) (-10 -8 (-15 -1222 ((-85) $ $)) (-15 -3401 ($ $)) (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3725 ($) -3953)))
+(((-13) . T) ((-1129) . T))
+((-3499 (($ $) 11 T ELT)) (-3497 (($ $) 10 T ELT)) (-3501 (($ $) 9 T ELT)) (-3502 (($ $) 8 T ELT)) (-3500 (($ $) 7 T ELT)) (-3498 (($ $) 6 T ELT)))
(((-35) (-113)) (T -35))
-((-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3503 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3499 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3499 ($ $)) (-15 -3501 ($ $)) (-15 -3503 ($ $)) (-15 -3502 ($ $)) (-15 -3498 ($ $)) (-15 -3500 ($ $))))
-((-2570 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3404 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 131 T ELT)) (-3797 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-3799 (($ $) 152 T ELT)) (-3601 (($) 91 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 90 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 79 (|has| $ (-6 -3998)) ELT) (((-1186) $ (-485) (-485)) 181 (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 165 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 215 T ELT) (((-85) $) 209 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1734 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 206 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 205 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 216 T ELT) (($ $) 210 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3444 (((-85) $ (-695)) 198 T ELT)) (-3027 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 140 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (($ $ $) 161 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 163 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 159 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 192 (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 162 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 160 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 139 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3028 (($ $ (-584 $)) 138 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 231 T ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 179 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3798 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 153 T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 56 T ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 207 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2299 (($ $) 217 T ELT)) (-3801 (($ $ (-695)) 148 T ELT) (($ $) 146 T ELT)) (-2369 (($ $) 229 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1354 (($ $) 50 (OR (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 180 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 178 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 227 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 224 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 193 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 68 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 191 T ELT)) (-3445 (((-85) $) 195 T ELT)) (-3421 (((-485) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 214 T ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 213 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 212 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3033 (((-584 $) $) 129 T ELT)) (-3029 (((-85) $ $) 137 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3616 (($ (-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 174 T ELT)) (-3721 (((-85) $ (-695)) 197 T ELT)) (-2201 ((|#1| $) 76 (|has| |#1| (-757)) ELT) (((-485) $) 183 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 199 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 232 T ELT) (($ $ $) 228 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3520 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 218 T ELT) (($ $ $) 211 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 222 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 75 (|has| |#1| (-757)) ELT) (((-485) $) 184 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 200 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 93 (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 92 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 89 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) 171 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 123 T ELT)) (-3536 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 241 T ELT)) (-3718 (((-85) $ (-695)) 196 T ELT)) (-3032 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 134 T ELT)) (-3529 (((-85) $) 130 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3800 (($ $ (-695)) 151 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 149 T ELT)) (-2233 (((-584 |#1|) $) 58 T ELT)) (-2234 (((-85) |#1| $) 59 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 234 T ELT) (($ $ $ (-485)) 233 T ELT)) (-2305 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 168 T ELT) (($ $ $ (-485)) 167 T ELT)) (-2204 (((-584 |#1|) $) 73 T ELT) (((-584 (-485)) $) 186 T ELT)) (-2205 (((-85) |#1| $) 72 T ELT) (((-85) (-485) $) 187 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 77 (|has| |#1| (-757)) ELT) (($ $ (-695)) 145 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 143 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT) (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 177 T ELT)) (-2200 (($ $ |#2|) 78 (|has| $ (-6 -3998)) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3446 (((-85) $) 194 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 100 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 220 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 126 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 125 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 124 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2206 (((-584 |#2|) $) 71 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 188 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 190 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) 189 T ELT) (($ $ (-1147 (-485))) 175 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1#) 150 T ELT) (($ $ #2#) 147 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3#) 144 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4#) 132 T ELT)) (-3031 (((-485) $ $) 135 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1572 (($ $ (-485)) 237 T ELT) (($ $ (-1147 (-485))) 236 T ELT)) (-2306 (($ $ (-485)) 170 T ELT) (($ $ (-1147 (-485))) 169 T ELT)) (-3635 (((-85) $) 133 T ELT)) (-3794 (($ $) 157 T ELT)) (-3792 (($ $) 158 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-695) $) 156 T ELT)) (-3796 (($ $) 155 T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 101 T ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 225 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 221 T ELT)) (-1735 (($ $ $ (-485)) 208 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474)))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 176 T ELT)) (-3793 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 239 T ELT) (($ $ $) 238 T ELT)) (-3804 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 173 T ELT) (($ (-584 $)) 172 T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 142 T ELT) (($ $ $) 141 T ELT)) (-3948 (((-773) $) 15 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-3524 (((-584 $) $) 128 T ELT)) (-3030 (((-85) $ $) 136 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1224 (((-633 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |#1| $) 122 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 99 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 219 T ELT)) (-2568 (((-85) $ $) 201 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2569 (((-85) $ $) 203 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3058 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2686 (((-85) $ $) 202 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2687 (((-85) $ $) 204 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3959 (((-695) $) 98 T ELT)))
-(((-36 |#1| |#2|) (-113) (-1014) (-1014)) (T -36))
-((-1224 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-633 (-2 (|:| -3862 *3) (|:| |entry| *4)))))))
-(-13 (-1108 |t#1| |t#2|) (-609 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1224 ((-633 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1147 (-485)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-237 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-594 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-609 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-757) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ((-760) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ((-924 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1065 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1108 |#1| |#2|) . T) ((-1130) . T) ((-1169 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T))
-((-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-37 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-38 |#2|) (-146)) (T -37))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+((-3499 (*1 *1 *1) (-4 *1 (-35))) (-3497 (*1 *1 *1) (-4 *1 (-35))) (-3501 (*1 *1 *1) (-4 *1 (-35))) (-3502 (*1 *1 *1) (-4 *1 (-35))) (-3500 (*1 *1 *1) (-4 *1 (-35))) (-3498 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -3498 ($ $)) (-15 -3500 ($ $)) (-15 -3502 ($ $)) (-15 -3501 ($ $)) (-15 -3497 ($ $)) (-15 -3499 ($ $))))
+((-2569 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 131 T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 154 T ELT)) (-3798 (($ $) 152 T ELT)) (-3600 (($) 91 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 90 T ELT)) (-2198 (((-1185) $ |#1| |#1|) 79 (|has| $ (-1035 |#2|)) ELT) (((-1185) $ (-484) (-484)) 181 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3786 (($ $ (-484)) 165 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1735 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 215 T ELT) (((-85) $) 209 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1733 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 206 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) 205 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 216 T ELT) (($ $) 210 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3443 (((-85) $ (-694)) 198 T ELT)) (-3026 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 140 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ $) 161 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 163 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 159 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 192 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1146 (-484)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 166 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 164 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) 162 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 160 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 139 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3027 (($ $ (-583 $)) 138 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 231 T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 179 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 153 T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 56 T ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 207 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2298 (($ $) 217 T ELT)) (-3800 (($ $ (-694)) 148 T ELT) (($ $) 146 T ELT)) (-2368 (($ $) 229 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1353 (($ $) 50 (OR (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 57 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 235 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 230 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 180 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 178 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 103 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 227 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 224 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 223 T ELT)) (-1576 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 193 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 68 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) 191 T ELT)) (-3444 (((-85) $) 195 T ELT)) (-3420 (((-484) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 214 T ELT) (((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 213 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) 212 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3032 (((-583 $) $) 129 T ELT)) (-3028 (((-85) $ $) 137 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3615 (($ (-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 174 T ELT)) (-3720 (((-85) $ (-694)) 197 T ELT)) (-2200 ((|#1| $) 76 (|has| |#1| (-756)) ELT) (((-484) $) 183 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 199 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 232 T ELT) (($ $ $) 228 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 218 T ELT) (($ $ $) 211 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 102 T ELT) (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 222 T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 226 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) 75 (|has| |#1| (-756)) ELT) (((-484) $) 184 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 200 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 93 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 240 T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 92 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 89 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) 171 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 123 T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 241 T ELT)) (-3717 (((-85) $ (-694)) 196 T ELT)) (-3031 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 134 T ELT)) (-3528 (((-85) $) 130 T ELT)) (-3243 (((-1073) $) 20 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3799 (($ $ (-694)) 151 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 149 T ELT)) (-2232 (((-583 |#1|) $) 58 T ELT)) (-2233 (((-85) |#1| $) 59 T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 35 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) 234 T ELT) (($ $ $ (-484)) 233 T ELT)) (-2304 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) 168 T ELT) (($ $ $ (-484)) 167 T ELT)) (-2203 (((-583 |#1|) $) 73 T ELT) (((-583 (-484)) $) 186 T ELT)) (-2204 (((-85) |#1| $) 72 T ELT) (((-85) (-484) $) 187 T ELT)) (-3244 (((-1033) $) 19 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3802 ((|#2| $) 77 (|has| |#1| (-756)) ELT) (($ $ (-694)) 145 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 143 T ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6="failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 46 T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #6#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 177 T ELT)) (-2199 (($ $ |#2|) 78 (|has| $ (-1035 |#2|)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 182 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3445 (((-85) $) 194 T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 100 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 220 T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 127 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 126 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 125 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 124 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 185 (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2205 (((-583 |#2|) $) 71 T ELT) (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 188 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 190 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) 189 T ELT) (($ $ (-1146 (-484))) 175 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) 150 T ELT) (($ $ #2#) 147 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) 144 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) 132 T ELT)) (-3030 (((-484) $ $) 135 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1571 (($ $ (-484)) 237 T ELT) (($ $ (-1146 (-484))) 236 T ELT)) (-2305 (($ $ (-484)) 170 T ELT) (($ $ (-1146 (-484))) 169 T ELT)) (-3634 (((-85) $) 133 T ELT)) (-3793 (($ $) 157 T ELT)) (-3791 (($ $) 158 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3794 (((-694) $) 156 T ELT)) (-3795 (($ $) 155 T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 101 T ELT) (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 225 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 221 T ELT)) (-1734 (($ $ $ (-484)) 208 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473)))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 45 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 176 T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 239 T ELT) (($ $ $) 238 T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 173 T ELT) (($ (-583 $)) 172 T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 142 T ELT) (($ $ $) 141 T ELT)) (-3947 (((-772) $) 15 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-3523 (((-583 $) $) 128 T ELT)) (-3029 (((-85) $ $) 136 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1265 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1223 (((-632 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |#1| $) 122 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 99 T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 219 T ELT)) (-2567 (((-85) $ $) 201 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2568 (((-85) $ $) 203 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3057 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2685 (((-85) $ $) 202 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2686 (((-85) $ $) 204 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3958 (((-694) $) 98 T ELT)))
+(((-36 |#1| |#2|) (-113) (-1013) (-1013)) (T -36))
+((-1223 (*1 *2 *3 *1) (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-632 (-2 (|:| -3861 *3) (|:| |entry| *4)))))))
+(-13 (-1107 |t#1| |t#2|) (-608 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -1223 ((-632 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 (-1146 (-484)) $) . T) ((-241 |#1| |#2|) . T) ((-243 (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-237 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-324 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-593 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-608 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-756) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ((-759) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ((-923 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1013) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1064 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1107 |#1| |#2|) . T) ((-1129) . T) ((-1168 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T))
+((-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-37 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-38 |#2|) (-146)) (T -37))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
(((-38 |#1|) (-113) (-146)) (T -38))
NIL
-(-13 (-962) (-655 |t#1|) (-556 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3420 (((-348 |#1|) |#1|) 41 T ELT)) (-3734 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-584 (-48))) 33 T ELT)) (-1225 (((-85) |#1|) 59 T ELT)))
-(((-39 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1| (-584 (-48)))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3420 ((-348 |#1|) |#1|)) (-15 -1225 ((-85) |#1|))) (-1156 (-48))) (T -39))
-((-1225 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3420 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3332 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 60 T ELT) (($ (-1180 |#2|) |#2|) 130 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3844 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3379 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) 105 T ELT)) (-3134 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1226 (((-1186) (-695)) 83 T ELT)) (-1649 (((-631 (-350 |#2|))) 55 T ELT)) (-1651 (((-631 (-350 |#2|))) 48 T ELT)) (-2486 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 131 T ELT)) (-1650 (((-631 (-350 |#2|))) 49 T ELT)) (-1652 (((-631 (-350 |#2|))) 47 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1658 (((-1180 $)) 46 T ELT)) (-3920 (((-1180 $)) 45 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3448 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1769 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 54 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 61 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 106 T ELT)) (-3974 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1664 (((-85)) 41 T ELT)) (-1663 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 27 T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT)))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1226 ((-1186) (-695))))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) |#3|) (T -40))
-((-1226 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6))))
-((-1227 ((|#2| |#2|) 47 T ELT)) (-1232 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1231 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1230 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1233 ((|#2| (-86) |#2| (-695)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-951 (-485))))) ELT)) (-1229 (((-1086 |#2|) |#2|) 44 T ELT)) (-1228 ((|#2| |#2| (-584 (-551 |#2|))) 18 T ELT) ((|#2| |#2| (-584 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -1227 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -1228 (|#2| |#2| |#2|)) (-15 -1228 (|#2| |#2| (-584 |#2|))) (-15 -1228 (|#2| |#2| (-584 (-551 |#2|)))) (-15 -1229 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-951 (-485)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| |#2|)) (-15 -1233 (|#2| (-86) |#2| (-695)))) |%noBranch|) |%noBranch|)) (-496) (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 |#1| (-551 $)) $)) (-15 -2999 ((-1040 |#1| (-551 $)) $)) (-15 -3948 ($ (-1040 |#1| (-551 $))))))) (T -41))
-((-1233 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)))) (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *5 (-551 $)) $)) (-15 -2999 ((-1040 *5 (-551 $)) $)) (-15 -3948 ($ (-1040 *5 (-551 $))))))))) (-1232 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1229 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-551 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $)) (-15 -2999 ((-1040 *4 (-551 $)) $)) (-15 -3948 ($ (-1040 *4 (-551 $))))))) (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))) (-1228 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $)) (-15 -2999 ((-1040 *3 (-551 $)) $)) (-15 -3948 ($ (-1040 *3 (-551 $))))))))))
-((-3734 (((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-584 (-48))) 19 T ELT)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3| (-584 (-48)))) (-15 -3734 ((-348 (-1086 |#3|)) (-1086 |#3|) (-584 (-48))))) (-757) (-718) (-862 (-48) |#2| |#1|)) (T -42))
-((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5)))))
-((-1237 (((-695) |#2|) 70 T ELT)) (-1235 (((-695) |#2|) 74 T ELT)) (-1250 (((-584 |#2|)) 37 T ELT)) (-1234 (((-695) |#2|) 73 T ELT)) (-1236 (((-695) |#2|) 69 T ELT)) (-1238 (((-695) |#2|) 72 T ELT)) (-1248 (((-584 (-631 |#1|))) 65 T ELT)) (-1243 (((-584 |#2|)) 60 T ELT)) (-1241 (((-584 |#2|) |#2|) 48 T ELT)) (-1245 (((-584 |#2|)) 62 T ELT)) (-1244 (((-584 |#2|)) 61 T ELT)) (-1247 (((-584 (-631 |#1|))) 53 T ELT)) (-1242 (((-584 |#2|)) 59 T ELT)) (-1240 (((-584 |#2|) |#2|) 47 T ELT)) (-1239 (((-584 |#2|)) 55 T ELT)) (-1249 (((-584 (-631 |#1|))) 66 T ELT)) (-1246 (((-584 |#2|)) 64 T ELT)) (-2013 (((-1180 |#2|) (-1180 |#2|)) 99 (|has| |#1| (-258)) ELT)))
-(((-43 |#1| |#2|) (-10 -7 (-15 -1234 ((-695) |#2|)) (-15 -1235 ((-695) |#2|)) (-15 -1236 ((-695) |#2|)) (-15 -1237 ((-695) |#2|)) (-15 -1238 ((-695) |#2|)) (-15 -1239 ((-584 |#2|))) (-15 -1240 ((-584 |#2|) |#2|)) (-15 -1241 ((-584 |#2|) |#2|)) (-15 -1242 ((-584 |#2|))) (-15 -1243 ((-584 |#2|))) (-15 -1244 ((-584 |#2|))) (-15 -1245 ((-584 |#2|))) (-15 -1246 ((-584 |#2|))) (-15 -1247 ((-584 (-631 |#1|)))) (-15 -1248 ((-584 (-631 |#1|)))) (-15 -1249 ((-584 (-631 |#1|)))) (-15 -1250 ((-584 |#2|))) (IF (|has| |#1| (-258)) (-15 -2013 ((-1180 |#2|) (-1180 |#2|))) |%noBranch|)) (-496) (-361 |#1|)) (T -43))
-((-2013 (*1 *2 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-43 *3 *4)))) (-1250 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1249 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2) (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1238 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#1|))) 24 T ELT)) (-1730 (((-1180 $)) 52 T ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1086 |#1|) $) NIL T ELT)) (-1718 (((-85)) 99 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 14 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 53 T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) 101 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-1729 ((|#1| $) NIL T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#1| (-496)) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1707 (((-1086 |#1|) $) NIL (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1725 (((-1086 |#1|) $) NIL T ELT)) (-1719 (((-85)) 98 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) 106 T ELT)) (-1712 (((-85)) 105 T ELT)) (-1714 (((-85)) 107 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) 100 T ELT)) (-3802 ((|#1| $ (-485)) 55 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 48 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 28 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#1|))) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) 95 T ELT)) (-3948 (((-773) $) 71 T ELT) (($ (-1180 |#1|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 51 T ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) 91 T ELT)) (-2547 (($ (-631 |#1|) $) 18 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) 97 T ELT)) (-1720 (((-85)) 92 T ELT)) (-1716 (((-85)) 90 T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1057 |#2| |#1|) $) 19 T ELT)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-591 (-1057 |#2| |#1|)) (-10 -8 (-15 -3948 ($ (-1180 |#1|))))) (-312) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -44))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3404 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3797 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT) (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1736 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-1734 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757))) ELT)) (-2911 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 (($ $ $) 34 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3791 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-1147 (-485)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3798 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2299 (($ $) NIL T ELT)) (-3801 (($ $ (-695)) NIL T ELT) (($ $) 30 T ELT)) (-2369 (($ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3616 (($ (-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2858 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3520 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 21 T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT) (((-485) $) 41 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3536 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 50 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3800 (($ $ (-695)) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2233 (((-584 |#1|) $) 23 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2305 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT) (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT) (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT) (($ $ (-695)) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) 15 T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1467 (($) 14 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1572 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3793 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3804 (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1224 (((-633 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-757)) ELT)) (-3959 (((-695) $) 26 T ELT)))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1014) (-1014)) (T -45))
-NIL
-((-3939 (((-85) $) 12 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
-(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3939 ((-85) |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-47 |#2| |#3|) (-962) (-717)) (T -46))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-47 |#1| |#2|) (-113) (-962) (-717)) (T -47))
-((-3176 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312)))))
-(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (-15 -3176 (|t#1| $)) (-15 -2896 ($ $)) (-15 -3950 (|t#2| $)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3939 ((-85) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-496)) (-6 (-496)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-6 (-38 (-350 (-485)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3190 (((-85) $) 9 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3844 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 11 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3000 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-551 $)) NIL T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) NIL T ELT) (($ $ (-551 $)) NIL T ELT) (($ $ (-584 (-551 $))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) NIL (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2999 (((-1040 (-485) (-551 $)) $) NIL T ELT)) (-3187 (($ $) NIL (|has| $ (-962)) ELT)) (-3974 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-48) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-551 $)) $)) (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -3844 ($ $)) (-15 -3134 ((-1086 $) (-1086 $) (-551 $))) (-15 -3134 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3134 ($ $ (-551 $))) (-15 -3134 ($ $ (-584 (-551 $))))))) (T -48))
-((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48)))) (-3844 (*1 *1 *1) (-5 *1 (-48))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1942 (((-584 (-447)) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-3235 (((-1096) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-49) (-13 (-1014) (-10 -8 (-15 -1942 ((-584 (-447)) $)) (-15 -3235 ((-1096) $))))) (T -49))
-((-1942 (*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2666 (((-85) $) 31 T ELT)) (-3159 (((-3 |#1| #1#) $) 34 T ELT)) (-3158 ((|#1| $) 35 T ELT)) (-3961 (($ $) 41 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3176 ((|#1| $) 32 T ELT)) (-1456 (($ $) 75 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) 44 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 73 T ELT)) (-3945 (($ (-584 (-485))) 74 T ELT)) (-3950 (((-695) $) 45 T ELT)) (-3948 (((-773) $) 92 T ELT) (($ (-485)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3679 ((|#1| $ $) 29 T ELT)) (-3128 (((-695)) 72 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 46 T CONST)) (-2668 (($) 17 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 65 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
-(((-50 |#1| |#2|) (-13 (-561 |#1|) (-951 |#1|) (-10 -8 (-15 -3176 (|#1| $)) (-15 -1456 ($ $)) (-15 -3961 ($ $)) (-15 -3679 (|#1| $ $)) (-15 -2410 ($ (-695))) (-15 -3945 ($ (-584 (-485)))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3950 ((-695) $)) (-15 -3960 ($ (-1 |#1| |#1|) $)))) (-962) (-584 (-1091))) (T -50))
-((-3176 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))))) (-3679 (*1 *2 *1 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962)) (-14 *4 (-584 (-1091))))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4)) (-14 *4 (-584 (-1091))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1251 (((-697) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1252 (((-1016) $) 10 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1253 (($ (-1016) (-697)) 16 T ELT)) (-3058 (((-85) $ $) 12 T ELT)))
-(((-51) (-13 (-1014) (-10 -8 (-15 -1253 ($ (-1016) (-697))) (-15 -1252 ((-1016) $)) (-15 -1251 ((-697) $))))) (T -51))
-((-1253 (*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))) (-1252 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
-((-2666 (((-85) (-51)) 18 T ELT)) (-3159 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3158 ((|#1| (-51)) 21 T ELT)) (-3948 (((-51) |#1|) 14 T ELT)))
-(((-52 |#1|) (-10 -7 (-15 -3948 ((-51) |#1|)) (-15 -3159 ((-3 |#1| "failed") (-51))) (-15 -2666 ((-85) (-51))) (-15 -3158 (|#1| (-51)))) (-1130)) (T -52))
-((-3158 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130)))) (-3159 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130)))))
-((-2547 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2547 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-962) (-591 |#1|) (-762 |#1|)) (T -53))
-((-2547 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5)))))
-((-1255 ((|#3| |#3| (-584 (-1091))) 44 T ELT)) (-1254 ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831)) 32 T ELT) ((|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3|)) (-15 -1254 (|#3| (-584 (-988 |#1| |#2| |#3|)) |#3| (-831))) (-15 -1255 (|#3| |#3| (-584 (-1091))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -54))
-((-1255 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-1254 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014)) (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5)))) (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1254 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3159 (((-3 (-695) "failed") $) 31 T ELT)) (-3158 (((-695) $) NIL T ELT)) (-2411 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) 17 T ELT)) (-3948 (((-773) $) 22 T ELT) (($ (-695)) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1256 (($) 10 T CONST)) (-3058 (((-85) $ $) 19 T ELT)))
-(((-55) (-13 (-1014) (-951 (-695)) (-10 -8 (-15 -1256 ($) -3954) (-15 -3190 ((-85) $)) (-15 -2411 ((-85) $))))) (T -55))
-((-1256 (*1 *1) (-5 *1 (-55))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
-((-1258 (($ $ (-485) |#3|) 46 T ELT)) (-1257 (($ $ (-485) |#4|) 50 T ELT)) (-2610 (((-584 |#2|) $) 41 T ELT)) (-3247 (((-85) |#2| $) 55 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3802 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) 29 T ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 35 T ELT) (((-695) |#2| $) 57 T ELT)) (-3948 (((-773) $) 63 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3058 (((-85) $ $) 54 T ELT)) (-3959 (((-695) $) 26 T ELT)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -1257 (|#1| |#1| (-485) |#4|)) (-15 -1258 (|#1| |#1| (-485) |#3|)) (-15 -3802 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485))) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -2610 ((-584 |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3959 ((-695) |#1|))) (-57 |#2| |#3| |#4|) (-1130) (-324 |#2|) (-324 |#2|)) (T -56))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 51 T ELT)) (-1258 (($ $ (-485) |#2|) 49 T ELT)) (-1257 (($ $ (-485) |#3|) 48 T ELT)) (-3726 (($) 6 T CONST)) (-3113 ((|#2| $ (-485)) 53 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 50 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 55 T ELT)) (-3116 (((-695) $) 58 T ELT)) (-3616 (($ (-695) (-695) |#1|) 64 T ELT)) (-3115 (((-695) $) 57 T ELT)) (-3120 (((-485) $) 62 T ELT)) (-3118 (((-485) $) 60 T ELT)) (-2610 (((-584 |#1|) $) 39 T ELT)) (-3247 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 61 T ELT)) (-3117 (((-485) $) 59 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 63 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) (-485)) 56 T ELT) ((|#1| $ (-485) (-485) |#1|) 54 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 40 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3112 ((|#3| $ (-485)) 52 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-57 |#1| |#2| |#3|) (-113) (-1130) (-324 |t#1|) (-324 |t#1|)) (T -57))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3616 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2200 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-695)))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3790 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1577 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1258 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3960 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))))
-(-13 (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3616 ($ (-695) (-695) |t#1|)) (-15 -2200 ($ $ |t#1|)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-695) $)) (-15 -3115 ((-695) $)) (-15 -3802 (|t#1| $ (-485) (-485))) (-15 -3114 (|t#1| $ (-485) (-485))) (-15 -3802 (|t#1| $ (-485) (-485) |t#1|)) (-15 -3113 (|t#2| $ (-485))) (-15 -3112 (|t#3| $ (-485))) (-15 -3790 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1577 (|t#1| $ (-485) (-485) |t#1|)) (-15 -1258 ($ $ (-485) |t#2|)) (-15 -1257 ($ $ (-485) |t#3|)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3328 ($ (-1 |t#1| |t#1|) $)) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1259 (($ (-584 |#1|)) 11 T ELT) (($ (-695) |#1|) 14 T ELT)) (-3616 (($ (-695) |#1|) 13 T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 10 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1259 ($ (-584 |#1|))) (-15 -1259 ($ (-695) |#1|)))) (-1130)) (T -58))
-((-1259 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3)))) (-1259 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130)))))
-((-3843 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3960 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
-(((-59 |#1| |#2|) (-10 -7 (-15 -3843 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3960 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1130) (-1130)) (T -59))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-59 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1258 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-58 |#1|)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3113 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ (-695) (-695) |#1|) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3112 (((-58 |#1|) $ (-485)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1130)) (T -60))
-NIL
-((-1261 (((-1180 (-631 |#1|)) (-631 |#1|)) 61 T ELT)) (-1260 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831)) 49 T ELT)) (-1262 (((-2 (|:| |minor| (-584 (-831))) (|:| -3268 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831)) 72 (|has| |#1| (-312)) ELT)))
-(((-61 |#1| |#2|) (-10 -7 (-15 -1260 ((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 (-584 (-831))))) |#2| (-831))) (-15 -1261 ((-1180 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-312)) (-15 -1262 ((-2 (|:| |minor| (-584 (-831))) (|:| -3268 |#2|) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 |#2|))) |#2| (-831))) |%noBranch|)) (-496) (-601 |#1|)) (T -61))
-((-1262 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |minor| (-584 (-831))) (|:| -3268 *3) (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-4 *5 (-496)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 42 T ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) 37 T ELT)) (-3326 ((|#1| $) 35 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-3611 (($ |#1| $) 38 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 20 T ELT)) (-3567 (($) 46 T ELT)) (-3324 (((-695) $) 33 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 19 T ELT)) (-3948 (((-773) $) 32 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1263 (($ (-584 |#1|)) 44 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 14 T ELT)))
-(((-62 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -1263 ($ (-584 |#1|))))) (-1014)) (T -62))
-((-1263 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3)))))
-((-3948 (((-773) $) 13 T ELT) (($ (-1096)) 9 T ELT) (((-1096) $) 8 T ELT)))
-(((-63 |#1|) (-10 -7 (-15 -3948 ((-1096) |#1|)) (-15 -3948 (|#1| (-1096))) (-15 -3948 ((-773) |#1|))) (-64)) (T -63))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+(-13 (-961) (-654 |t#1|) (-555 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3419 (((-348 |#1|) |#1|) 41 T ELT)) (-3733 (((-348 |#1|) |#1|) 30 T ELT) (((-348 |#1|) |#1| (-583 (-48))) 33 T ELT)) (-1224 (((-85) |#1|) 59 T ELT)))
+(((-39 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1| (-583 (-48)))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3419 ((-348 |#1|) |#1|)) (-15 -1224 ((-85) |#1|))) (-1155 (-48))) (T -39))
+((-1224 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3419 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|))) NIL T ELT)) (-3331 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-694)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1795 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 60 T ELT) (($ (-1179 |#2|) |#2|) 130 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1784 (((-630 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-630 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-583 (-583 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-830)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) NIL T ELT) (((-85) |#2|) NIL T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1767 (($ $ (-694)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-830) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3378 (((-694)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) 105 T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1225 (((-1185) (-694)) 83 T ELT)) (-1648 (((-630 (-350 |#2|))) 55 T ELT)) (-1650 (((-630 (-350 |#2|))) 48 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 131 T ELT)) (-1649 (((-630 (-350 |#2|))) 49 T ELT)) (-1651 (((-630 (-350 |#2|))) 47 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 129 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 67 T ELT)) (-1657 (((-1179 $)) 46 T ELT)) (-3919 (((-1179 $)) 45 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1666 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 43 T ELT)) (-1768 (((-694) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 125 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 54 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 61 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 106 T ELT)) (-3973 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1663 (((-85)) 41 T ELT)) (-1662 (((-85) |#1|) 53 T ELT) (((-85) |#2|) 137 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 27 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| (-350 |#2|) (-312)) ELT)))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-291 |#1| |#2| |#3|) (-10 -7 (-15 -1225 ((-1185) (-694))))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) |#3|) (T -40))
+((-1225 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6))))
+((-1226 ((|#2| |#2|) 47 T ELT)) (-1231 ((|#2| |#2|) 136 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1230 ((|#2| |#2|) 100 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1229 ((|#2| |#2|) 101 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1232 ((|#2| (-86) |#2| (-694)) 80 (-12 (|has| |#2| (-364 |#1|)) (|has| |#1| (-13 (-392) (-950 (-484))))) ELT)) (-1228 (((-1085 |#2|) |#2|) 44 T ELT)) (-1227 ((|#2| |#2| (-583 (-550 |#2|))) 18 T ELT) ((|#2| |#2| (-583 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -1226 (|#2| |#2|)) (-15 -1227 (|#2| |#2|)) (-15 -1227 (|#2| |#2| |#2|)) (-15 -1227 (|#2| |#2| (-583 |#2|))) (-15 -1227 (|#2| |#2| (-583 (-550 |#2|)))) (-15 -1228 ((-1085 |#2|) |#2|)) (IF (|has| |#1| (-13 (-392) (-950 (-484)))) (IF (|has| |#2| (-364 |#1|)) (PROGN (-15 -1229 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -1231 (|#2| |#2|)) (-15 -1232 (|#2| (-86) |#2| (-694)))) |%noBranch|) |%noBranch|)) (-495) (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 |#1| (-550 $)) $)) (-15 -2998 ((-1039 |#1| (-550 $)) $)) (-15 -3947 ($ (-1039 |#1| (-550 $))))))) (T -41))
+((-1232 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)))) (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *5 (-550 $)) $)) (-15 -2998 ((-1039 *5 (-550 $)) $)) (-15 -3947 ($ (-1039 *5 (-550 $))))))))) (-1231 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))) (-1229 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-364 *3)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))) (-1228 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $)) (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -3947 ($ (-1039 *4 (-550 $))))))))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-550 *2))) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $)) (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -3947 ($ (-1039 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $)) (-15 -2998 ((-1039 *4 (-550 $)) $)) (-15 -3947 ($ (-1039 *4 (-550 $))))))) (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))) (-1227 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))) (-1227 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-312) (-254) (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $)) (-15 -2998 ((-1039 *3 (-550 $)) $)) (-15 -3947 ($ (-1039 *3 (-550 $))))))))))
+((-3733 (((-348 (-1085 |#3|)) (-1085 |#3|) (-583 (-48))) 23 T ELT) (((-348 |#3|) |#3| (-583 (-48))) 19 T ELT)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3| (-583 (-48)))) (-15 -3733 ((-348 (-1085 |#3|)) (-1085 |#3|) (-583 (-48))))) (-756) (-717) (-861 (-48) |#2| |#1|)) (T -42))
+((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5)))))
+((-1236 (((-694) |#2|) 70 T ELT)) (-1234 (((-694) |#2|) 74 T ELT)) (-1249 (((-583 |#2|)) 37 T ELT)) (-1233 (((-694) |#2|) 73 T ELT)) (-1235 (((-694) |#2|) 69 T ELT)) (-1237 (((-694) |#2|) 72 T ELT)) (-1247 (((-583 (-630 |#1|))) 65 T ELT)) (-1242 (((-583 |#2|)) 60 T ELT)) (-1240 (((-583 |#2|) |#2|) 48 T ELT)) (-1244 (((-583 |#2|)) 62 T ELT)) (-1243 (((-583 |#2|)) 61 T ELT)) (-1246 (((-583 (-630 |#1|))) 53 T ELT)) (-1241 (((-583 |#2|)) 59 T ELT)) (-1239 (((-583 |#2|) |#2|) 47 T ELT)) (-1238 (((-583 |#2|)) 55 T ELT)) (-1248 (((-583 (-630 |#1|))) 66 T ELT)) (-1245 (((-583 |#2|)) 64 T ELT)) (-2012 (((-1179 |#2|) (-1179 |#2|)) 99 (|has| |#1| (-258)) ELT)))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1233 ((-694) |#2|)) (-15 -1234 ((-694) |#2|)) (-15 -1235 ((-694) |#2|)) (-15 -1236 ((-694) |#2|)) (-15 -1237 ((-694) |#2|)) (-15 -1238 ((-583 |#2|))) (-15 -1239 ((-583 |#2|) |#2|)) (-15 -1240 ((-583 |#2|) |#2|)) (-15 -1241 ((-583 |#2|))) (-15 -1242 ((-583 |#2|))) (-15 -1243 ((-583 |#2|))) (-15 -1244 ((-583 |#2|))) (-15 -1245 ((-583 |#2|))) (-15 -1246 ((-583 (-630 |#1|)))) (-15 -1247 ((-583 (-630 |#1|)))) (-15 -1248 ((-583 (-630 |#1|)))) (-15 -1249 ((-583 |#2|))) (IF (|has| |#1| (-258)) (-15 -2012 ((-1179 |#2|) (-1179 |#2|))) |%noBranch|)) (-495) (-361 |#1|)) (T -43))
+((-2012 (*1 *2 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-43 *3 *4)))) (-1249 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1248 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1247 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1246 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1245 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1244 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1243 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1242 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1241 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1240 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1239 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1238 (*1 *2) (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))) (-1237 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1236 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1235 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1234 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))) (-1233 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1775 (((-3 $ #1="failed")) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-630 |#1|)) (-1179 $)) NIL T ELT) (((-1179 (-630 |#1|))) 24 T ELT)) (-1729 (((-1179 $)) 52 T ELT)) (-3725 (($) NIL T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1791 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1727 ((|#1| $) NIL T ELT)) (-1789 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1903 (((-1085 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL T ELT)) (-1705 (((-1085 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1793 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1723 (((-1085 |#1|) $) NIL T ELT)) (-1717 (((-85)) 99 T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 14 (|has| |#1| (-495)) ELT)) (-3109 (((-830)) 53 T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) 101 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#1| (-495)) ELT)) (-1792 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-1728 ((|#1| $) NIL T ELT)) (-1790 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#1| (-495)) ELT)) (-1907 (((-1085 (-857 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL T ELT)) (-1706 (((-1085 |#1|) $) NIL (|has| |#1| (-495)) ELT)) (-1794 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1724 (((-1085 |#1|) $) NIL T ELT)) (-1718 (((-85)) 98 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) 106 T ELT)) (-1711 (((-85)) 105 T ELT)) (-1713 (((-85)) 107 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1716 (((-85)) 100 T ELT)) (-3801 ((|#1| $ (-484)) 55 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 48 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 28 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3973 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1895 (((-583 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-583 (-857 |#1|))) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) 95 T ELT)) (-3947 (((-772) $) 71 T ELT) (($ (-1179 |#1|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 51 T ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (|has| |#1| (-495)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) 91 T ELT)) (-2546 (($ (-630 |#1|) $) 18 T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) 97 T ELT)) (-1719 (((-85)) 92 T ELT)) (-1715 (((-85)) 90 T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1056 |#2| |#1|) $) 19 T ELT)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-361 |#1|) (-590 (-1056 |#2| |#1|)) (-10 -8 (-15 -3947 ($ (-1179 |#1|))))) (-312) (-830) (-583 (-1090)) (-1179 (-630 |#1|))) (T -44))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-630 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3403 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3796 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-1035 |#2|)) ELT) (((-1185) $ (-484) (-484)) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3786 (($ $ (-484)) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1735 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-1733 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ $) NIL (-12 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756))) ELT)) (-2910 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3443 (((-85) $ (-694)) NIL T ELT)) (-3026 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3788 (($ $ $) 34 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3787 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3790 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 36 (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3789 ((|#2| $ |#1| |#2|) 59 (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-1146 (-484)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1="last" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ $ #2="rest" $) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3="first" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4="value" (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3797 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2231 (((-3 |#2| #5="failed") |#1| $) 44 T ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2298 (($ $) NIL T ELT)) (-3800 (($ $ (-694)) NIL T ELT) (($ $) 30 T ELT)) (-2368 (($ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #5#) |#1| $) 62 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-484) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-3615 (($ (-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3720 (((-85) $ (-694)) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2857 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3519 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 T ELT) (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 21 T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT) (((-484) $) 41 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3535 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT)) (-3717 (((-85) $ (-694)) NIL T ELT)) (-3031 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) 50 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3799 (($ $ (-694)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2232 (((-583 |#1|) $) 23 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2304 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT) (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT) (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT) (($ $ (-694)) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 28 T ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #5#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-1035 |#2|)) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT) (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT) (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 20 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 15 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $ #4#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-1466 (($) 14 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1571 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3794 (((-694) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3792 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 32 T ELT) (($ $ $) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1223 (((-632 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) |#1| $) 54 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-2685 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-756)) ELT)) (-3958 (((-694) $) 26 T ELT)))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1013) (-1013)) (T -45))
+NIL
+((-3938 (((-85) $) 12 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-350 (-484)) $) 25 T ELT) (($ $ (-350 (-484))) NIL T ELT)))
+(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3938 ((-85) |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-47 |#2| |#3|) (-961) (-716)) (T -46))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-47 |#1| |#2|) (-113) (-961) (-716)) (T -47))
+((-3175 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312)))))
+(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (-15 -3175 (|t#1| $)) (-15 -2895 ($ $)) (-15 -3949 (|t#2| $)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3938 ((-85) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-6 (-146)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-495)) (-6 (-495)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (-6 (-38 (-350 (-484)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3189 (((-85) $) 9 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1217 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3184 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3158 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3157 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 (-484))) (-630 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 11 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2999 (((-1039 (-484) (-550 $)) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-3133 (((-1085 $) (-1085 $) (-550 $)) NIL T ELT) (((-1085 $) (-1085 $) (-583 (-550 $))) NIL T ELT) (($ $ (-550 $)) NIL T ELT) (($ $ (-583 (-550 $))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1597 (((-1085 $) (-550 $)) NIL (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-1179 $) $) NIL T ELT) (((-630 (-350 (-484))) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-694) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2998 (((-1039 (-484) (-550 $)) $) NIL T ELT)) (-3186 (($ $) NIL (|has| $ (-961)) ELT)) (-3973 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-142 (-330)) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1039 (-484) (-550 $))) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
+(((-48) (-13 (-254) (-27) (-950 (-484)) (-950 (-350 (-484))) (-580 (-484)) (-933) (-580 (-350 (-484))) (-120) (-553 (-142 (-330))) (-190) (-555 (-1039 (-484) (-550 $))) (-10 -8 (-15 -2999 ((-1039 (-484) (-550 $)) $)) (-15 -2998 ((-1039 (-484) (-550 $)) $)) (-15 -3843 ($ $)) (-15 -3133 ((-1085 $) (-1085 $) (-550 $))) (-15 -3133 ((-1085 $) (-1085 $) (-583 (-550 $)))) (-15 -3133 ($ $ (-550 $))) (-15 -3133 ($ $ (-583 (-550 $))))))) (T -48))
+((-2999 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48)))) (-3843 (*1 *1 *1) (-5 *1 (-48))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1941 (((-583 (-446)) $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 7 T ELT)) (-3234 (((-1095) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-49) (-13 (-1013) (-10 -8 (-15 -1941 ((-583 (-446)) $)) (-15 -3234 ((-1095) $))))) (T -49))
+((-1941 (*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2665 (((-85) $) 31 T ELT)) (-3158 (((-3 |#1| #1#) $) 34 T ELT)) (-3157 ((|#1| $) 35 T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3175 ((|#1| $) 32 T ELT)) (-1455 (($ $) 75 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) 44 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 73 T ELT)) (-3944 (($ (-583 (-484))) 74 T ELT)) (-3949 (((-694) $) 45 T ELT)) (-3947 (((-772) $) 92 T ELT) (($ (-484)) 70 T ELT) (($ |#1|) 68 T ELT)) (-3678 ((|#1| $ $) 29 T ELT)) (-3127 (((-694)) 72 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 46 T CONST)) (-2667 (($) 17 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 65 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 66 T ELT) (($ |#1| $) 59 T ELT)))
+(((-50 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3175 (|#1| $)) (-15 -1455 ($ $)) (-15 -3960 ($ $)) (-15 -3678 (|#1| $ $)) (-15 -2409 ($ (-694))) (-15 -3944 ($ (-583 (-484)))) (-15 -1454 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3949 ((-694) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1090))) (T -50))
+((-3175 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))))) (-3678 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1090))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4)) (-14 *4 (-583 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1250 (((-696) $) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1251 (((-1015) $) 10 T ELT)) (-3947 (((-772) $) 15 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1252 (($ (-1015) (-696)) 16 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-51) (-13 (-1013) (-10 -8 (-15 -1252 ($ (-1015) (-696))) (-15 -1251 ((-1015) $)) (-15 -1250 ((-696) $))))) (T -51))
+((-1252 (*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))) (-1250 (*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
+((-2665 (((-85) (-51)) 18 T ELT)) (-3158 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3157 ((|#1| (-51)) 21 T ELT)) (-3947 (((-51) |#1|) 14 T ELT)))
+(((-52 |#1|) (-10 -7 (-15 -3947 ((-51) |#1|)) (-15 -3158 ((-3 |#1| "failed") (-51))) (-15 -2665 ((-85) (-51))) (-15 -3157 (|#1| (-51)))) (-1129)) (T -52))
+((-3157 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129)))) (-3158 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129)))))
+((-2546 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2546 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-590 |#1|) (-761 |#1|)) (T -53))
+((-2546 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5)))))
+((-1254 ((|#3| |#3| (-583 (-1090))) 44 T ELT)) (-1253 ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830)) 32 T ELT) ((|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1253 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3|)) (-15 -1253 (|#3| (-583 (-987 |#1| |#2| |#3|)) |#3| (-830))) (-15 -1254 (|#3| |#3| (-583 (-1090))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -54))
+((-1254 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-1253 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013)) (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5)))) (-4 *2 (-13 (-364 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1253 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3158 (((-3 (-694) "failed") $) 31 T ELT)) (-3157 (((-694) $) NIL T ELT)) (-2410 (((-85) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) 17 T ELT)) (-3947 (((-772) $) 22 T ELT) (($ (-694)) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1255 (($) 10 T CONST)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-55) (-13 (-1013) (-950 (-694)) (-10 -8 (-15 -1255 ($) -3953) (-15 -3189 ((-85) $)) (-15 -2410 ((-85) $))))) (T -55))
+((-1255 (*1 *1) (-5 *1 (-55))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55)))))
+((-1257 (($ $ (-484) |#3|) 46 T ELT)) (-1256 (($ $ (-484) |#4|) 50 T ELT)) (-2609 (((-583 |#2|) $) 41 T ELT)) (-3246 (((-85) |#2| $) 55 T ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3801 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) 29 T ELT)) (-1730 (((-694) (-1 (-85) |#2|) $) 35 T ELT) (((-694) |#2| $) 57 T ELT)) (-3947 (((-772) $) 63 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 20 T ELT)) (-3057 (((-85) $ $) 54 T ELT)) (-3958 (((-694) $) 26 T ELT)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -1256 (|#1| |#1| (-484) |#4|)) (-15 -1257 (|#1| |#1| (-484) |#3|)) (-15 -3801 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484) (-484))) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1730 ((-694) |#2| |#1|)) (-15 -2609 ((-583 |#2|) |#1|)) (-15 -1730 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-694) |#1|))) (-57 |#2| |#3| |#4|) (-1129) (-324 |#2|) (-324 |#2|)) (T -56))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) 51 T ELT)) (-1257 (($ $ (-484) |#2|) 49 T ELT)) (-1256 (($ $ (-484) |#3|) 48 T ELT)) (-3725 (($) 6 T CONST)) (-3112 ((|#2| $ (-484)) 53 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 50 T ELT)) (-3113 ((|#1| $ (-484) (-484)) 55 T ELT)) (-3115 (((-694) $) 58 T ELT)) (-3615 (($ (-694) (-694) |#1|) 64 T ELT)) (-3114 (((-694) $) 57 T ELT)) (-3119 (((-484) $) 62 T ELT)) (-3117 (((-484) $) 60 T ELT)) (-2609 (((-583 |#1|) $) 39 T ELT)) (-3246 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) 61 T ELT)) (-3116 (((-484) $) 59 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 63 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) (-484)) 56 T ELT) ((|#1| $ (-484) (-484) |#1|) 54 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) 40 T ELT) (((-694) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 9 T ELT)) (-3111 ((|#3| $ (-484)) 52 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-57 |#1| |#2| |#3|) (-113) (-1129) (-324 |t#1|) (-324 |t#1|)) (T -57))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3615 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-694)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-694)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *2 (-324 *4)))) (-3789 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1576 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2)) (-4 *5 (-324 *2)))) (-1257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4)) (-4 *5 (-324 *4)))) (-1256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4)) (-4 *3 (-324 *4)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3959 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))))
+(-13 (-318 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -3615 ($ (-694) (-694) |t#1|)) (-15 -2199 ($ $ |t#1|)) (-15 -3119 ((-484) $)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-694) $)) (-15 -3114 ((-694) $)) (-15 -3801 (|t#1| $ (-484) (-484))) (-15 -3113 (|t#1| $ (-484) (-484))) (-15 -3801 (|t#1| $ (-484) (-484) |t#1|)) (-15 -3112 (|t#2| $ (-484))) (-15 -3111 (|t#3| $ (-484))) (-15 -3789 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1576 (|t#1| $ (-484) (-484) |t#1|)) (-15 -1257 ($ $ (-484) |t#2|)) (-15 -1256 ($ $ (-484) |t#3|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3327 ($ (-1 |t#1| |t#1|) $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-1258 (($ (-583 |#1|)) 11 T ELT) (($ (-694) |#1|) 14 T ELT)) (-3615 (($ (-694) |#1|) 13 T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 10 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1258 ($ (-583 |#1|))) (-15 -1258 ($ (-694) |#1|)))) (-1129)) (T -58))
+((-1258 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3)))) (-1258 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1129)))))
+((-3842 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3959 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -3842 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3959 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1129) (-1129)) (T -59))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-59 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1257 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-58 |#1|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3112 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-484) (-484)) NIL T ELT)) (-3115 (((-694) $) NIL T ELT)) (-3615 (($ (-694) (-694) |#1|) NIL T ELT)) (-3114 (((-694) $) NIL T ELT)) (-3119 (((-484) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3111 (((-58 |#1|) $ (-484)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-60 |#1|) (-57 |#1| (-58 |#1|) (-58 |#1|)) (-1129)) (T -60))
+NIL
+((-1260 (((-1179 (-630 |#1|)) (-630 |#1|)) 61 T ELT)) (-1259 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 (-583 (-830))))) |#2| (-830)) 49 T ELT)) (-1261 (((-2 (|:| |minor| (-583 (-830))) (|:| -3267 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830)) 72 (|has| |#1| (-312)) ELT)))
+(((-61 |#1| |#2|) (-10 -7 (-15 -1259 ((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 (-583 (-830))))) |#2| (-830))) (-15 -1260 ((-1179 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-312)) (-15 -1261 ((-2 (|:| |minor| (-583 (-830))) (|:| -3267 |#2|) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 |#2|))) |#2| (-830))) |%noBranch|)) (-495) (-600 |#1|)) (T -61))
+((-1261 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |minor| (-583 (-830))) (|:| -3267 *3) (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3)))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))) (-1260 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-61 *4 *5)) (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))) (-1259 (*1 *2 *3 *4) (-12 (-4 *5 (-495)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 (-583 (-830)))))) (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3326 ((|#1| |#1| $) 37 T ELT)) (-3325 ((|#1| $) 35 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-3610 (($ |#1| $) 38 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 46 T ELT)) (-3323 (((-694) $) 33 T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 19 T ELT)) (-3947 (((-772) $) 32 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1262 (($ (-583 |#1|)) 44 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 14 T ELT)))
+(((-62 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -1262 ($ (-583 |#1|))))) (-1013)) (T -62))
+((-1262 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
+((-3947 (((-772) $) 13 T ELT) (($ (-1095)) 9 T ELT) (((-1095) $) 8 T ELT)))
+(((-63 |#1|) (-10 -7 (-15 -3947 ((-1095) |#1|)) (-15 -3947 (|#1| (-1095))) (-15 -3947 ((-772) |#1|))) (-64)) (T -63))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-64) (-113)) (T -64))
NIL
-(-13 (-1014) (-430 (-1096)))
-(((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3490 (($ $) 10 T ELT)) (-3491 (($ $) 12 T ELT)))
-(((-65 |#1|) (-10 -7 (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|))) (-66)) (T -65))
+(-13 (-1013) (-430 (-1095)))
+(((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3489 (($ $) 10 T ELT)) (-3490 (($ $) 12 T ELT)))
+(((-65 |#1|) (-10 -7 (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|))) (-66)) (T -65))
NIL
-((-3488 (($ $) 11 T ELT)) (-3486 (($ $) 10 T ELT)) (-3490 (($ $) 9 T ELT)) (-3491 (($ $) 8 T ELT)) (-3489 (($ $) 7 T ELT)) (-3487 (($ $) 6 T ELT)))
+((-3487 (($ $) 11 T ELT)) (-3485 (($ $) 10 T ELT)) (-3489 (($ $) 9 T ELT)) (-3490 (($ $) 8 T ELT)) (-3488 (($ $) 7 T ELT)) (-3486 (($ $) 6 T ELT)))
(((-66) (-113)) (T -66))
-((-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3491 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3487 (*1 *1 *1) (-4 *1 (-66))))
-(-13 (-10 -8 (-15 -3487 ($ $)) (-15 -3489 ($ $)) (-15 -3491 ($ $)) (-15 -3490 ($ $)) (-15 -3486 ($ $)) (-15 -3488 ($ $))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1050) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-67) (-13 (-996) (-10 -8 (-15 -3544 ((-1050) $))))) (T -67))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67)))))
+((-3487 (*1 *1 *1) (-4 *1 (-66))) (-3485 (*1 *1 *1) (-4 *1 (-66))) (-3489 (*1 *1 *1) (-4 *1 (-66))) (-3490 (*1 *1 *1) (-4 *1 (-66))) (-3488 (*1 *1 *1) (-4 *1 (-66))) (-3486 (*1 *1 *1) (-4 *1 (-66))))
+(-13 (-10 -8 (-15 -3486 ($ $)) (-15 -3488 ($ $)) (-15 -3490 ($ $)) (-15 -3489 ($ $)) (-15 -3485 ($ $)) (-15 -3487 ($ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1049) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-67) (-13 (-995) (-10 -8 (-15 -3543 ((-1049) $))))) (T -67))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67)))))
NIL
(((-68) (-113)) (T -68))
NIL
-(-13 (-10 -7 (-6 (-3999 "*")) (-6 -3994) (-6 -3992) (-6 -3991) (-6 -3990) (-6 -3995) (-6 -3989) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3993) (-6 -3996) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3984)))
-((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1264 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-485))) 24 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1|) 13 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) 10 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 30 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
-(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1264 ($ (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1264 ($ (-1 |#1| |#1| (-485)))))) (-962)) (T -69))
-((-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))) (-1264 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
-((-1265 (((-348 |#2|) |#2| (-584 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT)))
-(((-70 |#1| |#2|) (-10 -7 (-15 -1265 ((-348 |#2|) |#2| |#2|)) (-15 -1265 ((-348 |#2|) |#2| (-584 |#2|)))) (-13 (-392) (-120)) (-1156 |#1|)) (T -70))
-((-1265 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1265 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) 13 T ELT)) (-1266 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 11 T ELT)))
-(((-71 |#1|) (-10 -7 (-15 -1266 ((-85) |#1| |#1|)) (-15 -2570 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-72)) (T -71))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+(-13 (-10 -7 (-6 (-3998 "*")) (-6 -3993) (-6 -3991) (-6 -3990) (-6 -3989) (-6 -3994) (-6 -3988) (-6 -3987) (-6 -3986) (-6 -3985) (-6 -3984) (-6 -3992) (-6 -3995) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -3983)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1263 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-484))) 24 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $ |#1|) 13 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) 10 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 30 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ $ $) 31 T ELT)))
+(((-69 |#1|) (-13 (-413) (-241 |#1| |#1|) (-10 -8 (-15 -1263 ($ (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1263 ($ (-1 |#1| |#1| (-484)))))) (-961)) (T -69))
+((-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
+((-1264 (((-348 |#2|) |#2| (-583 |#2|)) 10 T ELT) (((-348 |#2|) |#2| |#2|) 11 T ELT)))
+(((-70 |#1| |#2|) (-10 -7 (-15 -1264 ((-348 |#2|) |#2| |#2|)) (-15 -1264 ((-348 |#2|) |#2| (-583 |#2|)))) (-13 (-392) (-120)) (-1155 |#1|)) (T -70))
+((-1264 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))) (-1264 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) 13 T ELT)) (-1265 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-71 |#1|) (-10 -7 (-15 -1265 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-72)) (T -71))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-72) (-113)) (T -72))
-((-3058 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2570 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1266 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
-(-13 (-1130) (-10 -8 (-15 -3058 ((-85) $ $)) (-15 -2570 ((-85) $ $)) (-15 -1266 ((-85) $ $))))
-(((-13) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3027 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1269 (($ $ (-584 |#1|)) 30 T ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 12 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 32 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1268 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1267 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 11 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) 31 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1270 (($ (-695) |#1|) 33 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1270 ($ (-695) |#1|)) (-15 -1269 ($ $ (-584 |#1|))) (-15 -1268 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1268 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ |#1| (-1 (-584 |#1|) |#1| |#1| |#1|))))) (-1014)) (T -73))
-((-1270 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1268 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))) (-1268 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))) (-1267 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))))
-((-1271 ((|#3| |#2| |#2|) 34 T ELT)) (-1273 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-1272 ((|#3| |#2| |#2|) 36 T ELT)) (-1274 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3999 #1#))) ELT)))
-(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1271 (|#3| |#2| |#2|)) (-15 -1272 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3999 "*"))) (PROGN (-15 -1273 (|#1| |#2| |#2|)) (-15 -1274 (|#1| |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-628 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74))
-((-1274 (*1 *2 *3) (-12 (|has| *2 (-6 (-3999 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1273 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3999 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2)) (-4 *4 (-628 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
-((-1277 (($ (-584 |#2|)) 11 T ELT)))
-(((-75 |#1| |#2|) (-10 -7 (-15 -1277 (|#1| (-584 |#2|)))) (-76 |#2|) (-1130)) (T -75))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-76 |#1|) (-113) (-1130)) (T -76))
-((-1277 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-3611 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))))
-(-13 (-1036 |t#1|) (-10 -8 (-15 -1277 ($ (-584 |t#1|))) (-15 -1276 (|t#1| $)) (-15 -3611 ($ |t#1| $)) (-15 -1275 (|t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 2) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2030 (($ (-350 (-485))) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-77) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 2)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -2030 ($ (-350 (-485))))))) (T -77))
-((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77)))))
-((-1289 (((-584 (-877)) $) 14 T ELT)) (-3544 (((-447) $) 12 T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1278 (($ (-447) (-584 (-877))) 16 T ELT)))
-(((-78) (-13 (-553 (-773)) (-10 -8 (-15 -3544 ((-447) $)) (-15 -1289 ((-584 (-877)) $)) (-15 -1278 ($ (-447) (-584 (-877))))))) (T -78))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1279 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-79 |#1|) (-13 (-80 |#1|) (-1014) (-10 -8 (-15 -1279 ($ (-1 |#1| |#1| |#1|))))) (-1130)) (T -79))
-((-1279 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3)))))
-((-3802 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-80 |#1|) (-113) (-1130)) (T -80))
+((-3057 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))) (-1265 (*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
+(-13 (-1129) (-10 -8 (-15 -3057 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -1265 ((-85) $ $))))
+(((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3026 ((|#1| $ |#1|) 24 (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-1268 (($ $ (-583 |#1|)) 30 T ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 12 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1302 (($ $ |#1| $) 32 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1267 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1266 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 11 T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 13 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 31 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1269 (($ (-694) |#1|) 33 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-73 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1269 ($ (-694) |#1|)) (-15 -1268 ($ $ (-583 |#1|))) (-15 -1267 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1267 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1266 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1013)) (T -73))
+((-1269 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1267 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))) (-1267 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))) (-1266 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
+((-1270 ((|#3| |#2| |#2|) 34 T ELT)) (-1272 ((|#1| |#2| |#2|) 46 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-1271 ((|#3| |#2| |#2|) 36 T ELT)) (-1273 ((|#1| |#2|) 53 (|has| |#1| (-6 (-3998 #1#))) ELT)))
+(((-74 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1270 (|#3| |#2| |#2|)) (-15 -1271 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-3998 "*"))) (PROGN (-15 -1272 (|#1| |#2| |#2|)) (-15 -1273 (|#1| |#2|))) |%noBranch|)) (-961) (-1155 |#1|) (-627 |#1| |#4| |#5|) (-324 |#1|) (-324 |#1|)) (T -74))
+((-1273 (*1 *2 *3) (-12 (|has| *2 (-6 (-3998 #1="*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1272 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-3998 #1#))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2)) (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2)) (-4 *4 (-627 *2 *5 *6)))) (-1271 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-1270 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6)) (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
+((-1276 (($ (-583 |#2|)) 11 T ELT)))
+(((-75 |#1| |#2|) (-10 -7 (-15 -1276 (|#1| (-583 |#2|)))) (-76 |#2|) (-1129)) (T -75))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-76 |#1|) (-113) (-1129)) (T -76))
+((-1276 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3)))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-3610 (*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))) (-1274 (*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(-13 (-1035 |t#1|) (-10 -8 (-15 -1276 ($ (-583 |t#1|))) (-15 -1275 (|t#1| $)) (-15 -3610 ($ |t#1| $)) (-15 -1274 (|t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3157 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-484) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-484) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3959 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-484) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 2) $) 10 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2029 (($ (-350 (-484))) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-77) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 2)) (-10 -8 (-15 -3129 ((-350 (-484)) $)) (-15 -2029 ($ (-350 (-484))))))) (T -77))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77)))) (-2029 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77)))))
+((-1288 (((-583 (-876)) $) 14 T ELT)) (-3543 (((-446) $) 12 T ELT)) (-3947 (((-772) $) 21 T ELT)) (-1277 (($ (-446) (-583 (-876))) 16 T ELT)))
+(((-78) (-13 (-552 (-772)) (-10 -8 (-15 -3543 ((-446) $)) (-15 -1288 ((-583 (-876)) $)) (-15 -1277 ($ (-446) (-583 (-876))))))) (T -78))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78)))) (-1277 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 8 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1278 (($ (-1 |#1| |#1| |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-79 |#1|) (-13 (-80 |#1|) (-1013) (-10 -8 (-15 -1278 ($ (-1 |#1| |#1| |#1|))))) (-1129)) (T -79))
+((-1278 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3)))))
+((-3801 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-80 |#1|) (-113) (-1129)) (T -80))
NIL
(-13 (|MappingCategory| |t#1| |t#1| |t#1|))
-(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3323 (($ $ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 (-85))) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3998)) ELT) (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3998)) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3421 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-72)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3616 (($ (-695) (-85)) 10 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-584 (-85)) $) NIL T ELT)) (-3247 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-3328 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) NIL T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) NIL T ELT)) (-3804 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1773 (($ (-695) (-85)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-81) (-13 (-96) (-10 -8 (-15 -1773 ($ (-695) (-85)))))) (T -81))
-((-1773 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-82 |#1| |#2|) (-113) (-962) (-962)) (T -82))
-NIL
-(-13 (-591 |t#1|) (-969 |t#2|) (-10 -7 (-6 -3992) (-6 -3991)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T))
-((-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-2564 (($ $ $) 10 T ELT)))
-(((-83 |#1|) (-10 -7 (-15 -2563 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-84)) (T -83))
-NIL
-((-2314 (($ $) 8 T ELT)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT)))
+(((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3322 (($ $ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) $) NIL (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1733 (($ $) NIL (-12 (|has| $ (-1035 (-85))) (|has| (-85) (-756))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1035 (-85))) ELT)) (-2910 (($ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3789 (((-85) $ (-1146 (-484)) (-85)) NIL (|has| $ (-6 -3997)) ELT) (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 (-85))) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1576 (((-85) $ (-484) (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-85) $ (-484)) NIL T ELT)) (-3420 (((-484) (-85) $ (-484)) NIL (|has| (-85) (-72)) ELT) (((-484) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-484) (-1 (-85) (-85)) $) NIL T ELT)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-1300 (($ $ $) NIL T ELT)) (-3615 (($ (-694) (-85)) 10 T ELT)) (-1301 (($ $ $) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2609 (((-583 (-85)) $) NIL T ELT)) (-3246 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL T ELT)) (-3327 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ (-85) $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-85) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2199 (($ $ (-85)) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3769 (($ $ (-583 (-85)) (-583 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2205 (((-583 (-85)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (($ $ (-1146 (-484))) NIL T ELT) (((-85) $ (-484)) NIL T ELT) (((-85) $ (-484) (-85)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1730 (((-694) (-1 (-85) (-85)) $) NIL T ELT) (((-694) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 (-85))) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-85) (-553 (-473))) ELT)) (-3531 (($ (-583 (-85))) NIL T ELT)) (-3803 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1772 (($ (-694) (-85)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-81) (-13 (-96) (-10 -8 (-15 -1772 ($ (-694) (-85)))))) (T -81))
+((-1772 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((-82 |#1| |#2|) (-113) (-961) (-961)) (T -82))
+NIL
+(-13 (-590 |t#1|) (-968 |t#2|) (-10 -7 (-6 -3991) (-6 -3990)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1129) . T))
+((-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-2563 (($ $ $) 10 T ELT)))
+(((-83 |#1|) (-10 -7 (-15 -2562 (|#1| |#1| |#1|)) (-15 -2563 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-84)) (T -83))
+NIL
+((-2313 (($ $) 8 T ELT)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT)))
(((-84) (-113)) (T -84))
-((-2562 (*1 *1 *1) (-4 *1 (-84))) (-2564 (*1 *1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84))))
-(-13 (-605) (-10 -8 (-15 -2562 ($ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $))))
-(((-13) . T) ((-605) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 9 T ELT)) (-3323 (($ $ $) 14 T ELT)) (-2857 (($) 6 T CONST)) (-3138 (((-695)) 23 T ELT)) (-2996 (($) 31 T ELT)) (-2563 (($ $ $) 12 T ELT)) (-2562 (($ $) 8 T ELT)) (-1301 (($ $ $) 15 T ELT)) (-1302 (($ $ $) 16 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 27 T ELT)) (-2855 (($ $ $) 19 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 7 T CONST)) (-2854 (($ $ $) 20 T ELT)) (-3974 (((-474) $) 33 T ELT)) (-3948 (((-773) $) 35 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 13 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)) (-2313 (($ $ $) 11 T ELT)))
-(((-85) (-13 (-753) (-881) (-554 (-474)) (-10 -8 (-15 -3323 ($ $ $)) (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $))))) (T -85))
-((-3323 (*1 *1 *1 *1) (-5 *1 (-85))) (-1302 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) 92 T ELT) (($ $ (-695)) 38 T ELT)) (-1287 (((-85) $) 42 T ELT)) (-1281 (($ $ (-1074) (-697)) 59 T ELT) (($ $ (-447) (-697)) 34 T ELT)) (-1280 (($ $ (-45 (-1074) (-697))) 16 T ELT)) (-2843 (((-3 (-697) "failed") $ (-1074)) 27 T ELT) (((-633 (-697)) $ (-447)) 33 T ELT)) (-1289 (((-45 (-1074) (-697)) $) 15 T ELT)) (-3597 (($ (-1091)) 20 T ELT) (($ (-1091) (-695)) 23 T ELT) (($ (-1091) (-55)) 24 T ELT)) (-1288 (((-85) $) 40 T ELT)) (-1286 (((-85) $) 44 T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-1091)) 11 T ELT)) (-2129 (($ $ (-1 (-474) (-584 (-474)))) 65 T ELT) (((-633 (-1 (-474) (-584 (-474)))) $) 69 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1283 (((-85) $ (-447)) 37 T ELT)) (-1285 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3619 (((-633 (-1 (-773) (-584 (-773)))) $) 67 T ELT) (($ $ (-1 (-773) (-584 (-773)))) 52 T ELT) (($ $ (-1 (-773) (-773))) 54 T ELT)) (-1282 (($ $ (-1074)) 56 T ELT) (($ $ (-447)) 57 T ELT)) (-3402 (($ $) 75 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3948 (((-773) $) 61 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2794 (($ $ (-447)) 35 T ELT)) (-2523 (((-55) $) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 88 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 104 T ELT)))
-(((-86) (-13 (-757) (-748 (-1091)) (-10 -8 (-15 -1289 ((-45 (-1074) (-697)) $)) (-15 -3402 ($ $)) (-15 -3597 ($ (-1091))) (-15 -3597 ($ (-1091) (-695))) (-15 -3597 ($ (-1091) (-55))) (-15 -1288 ((-85) $)) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1523 ((-695) $)) (-15 -1523 ($ $ (-695))) (-15 -1285 ($ $ (-1 (-85) $ $))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -3619 ((-633 (-1 (-773) (-584 (-773)))) $)) (-15 -3619 ($ $ (-1 (-773) (-584 (-773))))) (-15 -3619 ($ $ (-1 (-773) (-773)))) (-15 -2129 ($ $ (-1 (-474) (-584 (-474))))) (-15 -2129 ((-633 (-1 (-474) (-584 (-474)))) $)) (-15 -1283 ((-85) $ (-447))) (-15 -2794 ($ $ (-447))) (-15 -1282 ($ $ (-1074))) (-15 -1282 ($ $ (-447))) (-15 -2843 ((-3 (-697) "failed") $ (-1074))) (-15 -2843 ((-633 (-697)) $ (-447))) (-15 -1281 ($ $ (-1074) (-697))) (-15 -1281 ($ $ (-447) (-697))) (-15 -1280 ($ $ (-45 (-1074) (-697))))))) (T -86))
-((-1289 (*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))) (-3402 (*1 *1 *1) (-5 *1 (-86))) (-3597 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86)))) (-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1523 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1523 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86)))) (-1285 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86)))) (-3619 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86)))) (-2129 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2794 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86)))) (-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))))
-((-2520 (((-3 (-1 |#1| (-584 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-584 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-584 |#1|)) 25 T ELT)) (-1290 (((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-584 (-1 |#1| (-584 |#1|)))) 30 T ELT)) (-1291 (((-86) |#1|) 63 T ELT)) (-1292 (((-3 |#1| #1#) (-86)) 58 T ELT)))
-(((-87 |#1|) (-10 -7 (-15 -2520 ((-3 |#1| #1="failed") (-86) (-584 |#1|))) (-15 -2520 ((-86) (-86) (-1 |#1| (-584 |#1|)))) (-15 -2520 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2520 ((-3 (-1 |#1| (-584 |#1|)) #1#) (-86))) (-15 -1290 ((-86) (-86) (-584 (-1 |#1| (-584 |#1|))))) (-15 -1290 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1290 ((-3 (-584 (-1 |#1| (-584 |#1|))) #1#) (-86))) (-15 -1291 ((-86) |#1|)) (-15 -1292 ((-3 |#1| #1#) (-86)))) (-1014)) (T -87))
-((-1292 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))) (-1291 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))) (-1290 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1014)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014)) (-5 *1 (-87 *4)))) (-2520 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))))
-((-1293 (((-485) |#2|) 41 T ELT)))
-(((-88 |#1| |#2|) (-10 -7 (-15 -1293 ((-485) |#2|))) (-13 (-312) (-951 (-350 (-485)))) (-1156 |#1|)) (T -88))
-((-1293 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-89 |#1|) (-780 |#1|) (-485)) (T -89))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3158 (((-89 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-89 |#1|) (-951 (-485))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-89 |#1|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-89 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-89 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-89 |#1|) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-89 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3960 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-89 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-89 |#1|))) (|:| |vec| (-1180 (-89 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-89 |#1|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-89 |#1|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-89 |#1|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-89 |#1|)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-89 |#1|))) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT) (($ $ (-1091) (-89 |#1|)) NIL (|has| (-89 |#1|) (-456 (-1091) (-89 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-89 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-89 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-89 |#1|) (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-822))) (|has| (-89 |#1|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-89 |#1|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-89 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-89 |#1|) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
-(((-90 |#1|) (-13 (-905 (-89 |#1|)) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485)) (T -90))
-((-3772 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2))))
-((-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3033 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) 36 T ELT)) (-3032 (((-584 |#2|) $) 25 T ELT)) (-3529 (((-85) $) 18 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3635 (((-85) $) 55 T ELT)) (-3948 (((-773) $) 46 T ELT)) (-3524 (((-584 $) $) 32 T ELT)) (-3058 (((-85) $ $) 38 T ELT)))
-(((-91 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3790 (|#1| |#1| #1="right" |#1|)) (-15 -3790 (|#1| |#1| #2="left" |#1|)) (-15 -3802 (|#1| |#1| #1#)) (-15 -3802 (|#1| |#1| #2#)) (-15 -3790 (|#2| |#1| #3="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3032 ((-584 |#2|) |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| #3#)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-92 |#2|) (-1130)) (T -91))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1036 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3139 (($ $) 54 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3140 (($ $) 56 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-92 |#1|) (-113) (-1130)) (T -92))
-((-3140 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1295 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -3140 ($ $)) (-15 -3802 ($ $ "left")) (-15 -3139 ($ $)) (-15 -3802 ($ $ "right")) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3790 ($ $ "left" $)) (-15 -1295 ($ $ $)) (-15 -3790 ($ $ "right" $)) (-15 -1294 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-1298 (((-85) |#1|) 29 T ELT)) (-1297 (((-695) (-695)) 28 T ELT) (((-695)) 27 T ELT)) (-1296 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
-(((-93 |#1|) (-10 -7 (-15 -1296 ((-85) |#1|)) (-15 -1296 ((-85) |#1| (-85))) (-15 -1297 ((-695))) (-15 -1297 ((-695) (-695))) (-15 -1298 ((-85) |#1|))) (-1156 (-485))) (T -93))
-((-1298 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1297 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))) (-1296 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 18 T ELT)) (-3420 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 20 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 27 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 22 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1299 (($ |#1| $) 28 T ELT)) (-3611 (($ |#1| $) 15 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1300 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1300 ($ (-584 |#1|))) (-15 -3611 ($ |#1| $)) (-15 -1299 ($ |#1| $)) (-15 -3420 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-757)) (T -94))
-((-1300 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-1299 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-757)))))
-((-2314 (($ $) 13 T ELT)) (-2562 (($ $) 11 T ELT)) (-1301 (($ $ $) 23 T ELT)) (-1302 (($ $ $) 21 T ELT)) (-2312 (($ $ $) 19 T ELT)) (-2313 (($ $ $) 17 T ELT)))
-(((-95 |#1|) (-10 -7 (-15 -1301 (|#1| |#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2313 (|#1| |#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2562 (|#1| |#1|))) (-96)) (T -95))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-2314 (($ $) 104 T ELT)) (-3323 (($ $ $) 33 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 59 (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) $) 98 (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1734 (($ $) 102 (-12 (|has| (-85) (-757)) (|has| $ (-1036 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) 97 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) 78 (|has| $ (-6 -3998)) ELT) (((-85) $ (-485) (-85)) 47 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) (-85)) $) 63 (|has| $ (-318 (-85))) ELT)) (-3726 (($) 40 T CONST)) (-2298 (($ $) 100 (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) 90 T ELT)) (-1354 (($ $) 61 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-318 (-85))) ELT) (($ (-85) $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 82 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 79 (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) 46 (|has| $ (-6 -3998)) ELT)) (-3114 (((-85) $ (-485)) 48 T ELT)) (-3421 (((-485) (-85) $ (-485)) 95 (|has| (-85) (-72)) ELT) (((-485) (-85) $) 94 (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) 93 T ELT)) (-2563 (($ $ $) 109 T ELT)) (-2562 (($ $) 107 T ELT)) (-1301 (($ $ $) 34 T ELT)) (-3616 (($ (-695) (-85)) 68 T ELT)) (-1302 (($ $ $) 35 T ELT)) (-2201 (((-485) $) 56 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 23 T ELT)) (-3520 (($ $ $) 96 (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2610 (((-584 (-85)) $) 84 T ELT)) (-3247 (((-85) (-85) $) 80 (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) 55 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 22 T ELT)) (-3328 (($ (-1 (-85) (-85)) $) 103 T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) 73 T ELT) (($ (-1 (-85) (-85)) $) 41 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2305 (($ $ $ (-485)) 77 T ELT) (($ (-85) $ (-485)) 76 T ELT)) (-2204 (((-584 (-485)) $) 53 T ELT)) (-2205 (((-85) (-485) $) 52 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-85) $) 57 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 65 T ELT)) (-2200 (($ $ (-85)) 58 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) 86 T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) 42 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) 36 T ELT)) (-2203 (((-85) (-85) $) 54 (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) 51 T ELT)) (-3405 (((-85) $) 39 T ELT)) (-3567 (($) 38 T ELT)) (-3802 (($ $ (-1147 (-485))) 67 T ELT) (((-85) $ (-485)) 50 T ELT) (((-85) $ (-485) (-85)) 49 T ELT)) (-2306 (($ $ (-1147 (-485))) 75 T ELT) (($ $ (-485)) 74 T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) 85 T ELT) (((-695) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) 99 (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) 37 T ELT)) (-3974 (((-474) $) 60 (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) 66 T ELT)) (-3804 (($ (-584 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-85) $) 70 T ELT) (($ $ (-85)) 69 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-2564 (($ $ $) 108 T ELT)) (-2312 (($ $ $) 106 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 105 T ELT)) (-3959 (((-695) $) 88 T ELT)))
+((-2561 (*1 *1 *1) (-4 *1 (-84))) (-2563 (*1 *1 *1 *1) (-4 *1 (-84))) (-2562 (*1 *1 *1 *1) (-4 *1 (-84))))
+(-13 (-604) (-10 -8 (-15 -2561 ($ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $))))
+(((-13) . T) ((-604) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 9 T ELT)) (-3322 (($ $ $) 14 T ELT)) (-2856 (($) 6 T CONST)) (-3137 (((-694)) 23 T ELT)) (-2995 (($) 31 T ELT)) (-2562 (($ $ $) 12 T ELT)) (-2561 (($ $) 8 T ELT)) (-1300 (($ $ $) 15 T ELT)) (-1301 (($ $ $) 16 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 27 T ELT)) (-2854 (($ $ $) 19 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2855 (($) 7 T CONST)) (-2853 (($ $ $) 20 T ELT)) (-3973 (((-473) $) 33 T ELT)) (-3947 (((-772) $) 35 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 13 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-2312 (($ $ $) 11 T ELT)))
+(((-85) (-13 (-752) (-880) (-553 (-473)) (-10 -8 (-15 -3322 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $))))) (T -85))
+((-3322 (*1 *1 *1 *1) (-5 *1 (-85))) (-1301 (*1 *1 *1 *1) (-5 *1 (-85))) (-1300 (*1 *1 *1 *1) (-5 *1 (-85))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) 92 T ELT) (($ $ (-694)) 38 T ELT)) (-1286 (((-85) $) 42 T ELT)) (-1280 (($ $ (-1073) (-696)) 59 T ELT) (($ $ (-446) (-696)) 34 T ELT)) (-1279 (($ $ (-45 (-1073) (-696))) 16 T ELT)) (-2842 (((-3 (-696) "failed") $ (-1073)) 27 T ELT) (((-632 (-696)) $ (-446)) 33 T ELT)) (-1288 (((-45 (-1073) (-696)) $) 15 T ELT)) (-3596 (($ (-1090)) 20 T ELT) (($ (-1090) (-694)) 23 T ELT) (($ (-1090) (-55)) 24 T ELT)) (-1287 (((-85) $) 40 T ELT)) (-1285 (((-85) $) 44 T ELT)) (-3543 (((-1090) $) 8 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ (-1090)) 11 T ELT)) (-2128 (($ $ (-1 (-473) (-583 (-473)))) 65 T ELT) (((-632 (-1 (-473) (-583 (-473)))) $) 69 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1282 (((-85) $ (-446)) 37 T ELT)) (-1284 (($ $ (-1 (-85) $ $)) 46 T ELT)) (-3618 (((-632 (-1 (-772) (-583 (-772)))) $) 67 T ELT) (($ $ (-1 (-772) (-583 (-772)))) 52 T ELT) (($ $ (-1 (-772) (-772))) 54 T ELT)) (-1281 (($ $ (-1073)) 56 T ELT) (($ $ (-446)) 57 T ELT)) (-3401 (($ $) 75 T ELT)) (-1283 (($ $ (-1 (-85) $ $)) 47 T ELT)) (-3947 (((-772) $) 61 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2793 (($ $ (-446)) 35 T ELT)) (-2522 (((-55) $) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 88 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 104 T ELT)))
+(((-86) (-13 (-756) (-747 (-1090)) (-10 -8 (-15 -1288 ((-45 (-1073) (-696)) $)) (-15 -3401 ($ $)) (-15 -3596 ($ (-1090))) (-15 -3596 ($ (-1090) (-694))) (-15 -3596 ($ (-1090) (-55))) (-15 -1287 ((-85) $)) (-15 -1286 ((-85) $)) (-15 -1285 ((-85) $)) (-15 -1522 ((-694) $)) (-15 -1522 ($ $ (-694))) (-15 -1284 ($ $ (-1 (-85) $ $))) (-15 -1283 ($ $ (-1 (-85) $ $))) (-15 -3618 ((-632 (-1 (-772) (-583 (-772)))) $)) (-15 -3618 ($ $ (-1 (-772) (-583 (-772))))) (-15 -3618 ($ $ (-1 (-772) (-772)))) (-15 -2128 ($ $ (-1 (-473) (-583 (-473))))) (-15 -2128 ((-632 (-1 (-473) (-583 (-473)))) $)) (-15 -1282 ((-85) $ (-446))) (-15 -2793 ($ $ (-446))) (-15 -1281 ($ $ (-1073))) (-15 -1281 ($ $ (-446))) (-15 -2842 ((-3 (-696) "failed") $ (-1073))) (-15 -2842 ((-632 (-696)) $ (-446))) (-15 -1280 ($ $ (-1073) (-696))) (-15 -1280 ($ $ (-446) (-696))) (-15 -1279 ($ $ (-45 (-1073) (-696))))))) (T -86))
+((-1288 (*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86)))) (-3401 (*1 *1 *1) (-5 *1 (-86))) (-3596 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *1 (-86)))) (-3596 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86)))) (-1287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1285 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))) (-1522 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1522 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86)))) (-1284 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86)))) (-3618 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86)))) (-2128 (*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86)))) (-1282 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))) (-2793 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86)))) (-1281 (*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-696)) (-5 *1 (-86)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1280 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86)))))
+((-2519 (((-3 (-1 |#1| (-583 |#1|)) #1="failed") (-86)) 23 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 13 T ELT) (((-86) (-86) (-1 |#1| (-583 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-86) (-583 |#1|)) 25 T ELT)) (-1289 (((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86)) 29 T ELT) (((-86) (-86) (-1 |#1| |#1|)) 33 T ELT) (((-86) (-86) (-583 (-1 |#1| (-583 |#1|)))) 30 T ELT)) (-1290 (((-86) |#1|) 63 T ELT)) (-1291 (((-3 |#1| #1#) (-86)) 58 T ELT)))
+(((-87 |#1|) (-10 -7 (-15 -2519 ((-3 |#1| #1="failed") (-86) (-583 |#1|))) (-15 -2519 ((-86) (-86) (-1 |#1| (-583 |#1|)))) (-15 -2519 ((-86) (-86) (-1 |#1| |#1|))) (-15 -2519 ((-3 (-1 |#1| (-583 |#1|)) #1#) (-86))) (-15 -1289 ((-86) (-86) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1289 ((-86) (-86) (-1 |#1| |#1|))) (-15 -1289 ((-3 (-583 (-1 |#1| (-583 |#1|))) #1#) (-86))) (-15 -1290 ((-86) |#1|)) (-15 -1291 ((-3 |#1| #1#) (-86)))) (-1013)) (T -87))
+((-1291 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))) (-1290 (*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))) (-1289 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-1289 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4)) (-4 *4 (-1013)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013)) (-5 *1 (-87 *4)))) (-2519 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
+((-1292 (((-484) |#2|) 41 T ELT)))
+(((-88 |#1| |#2|) (-10 -7 (-15 -1292 ((-484) |#2|))) (-13 (-312) (-950 (-350 (-484)))) (-1155 |#1|)) (T -88))
+((-1292 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-950 (-350 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1085 (-484)) (-484)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3773 (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2615 (((-484)) NIL T ELT)) (-2614 (((-484) $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-484)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1069 (-484)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-484) $ (-484)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-89 |#1|) (-779 |#1|) (-484)) (T -89))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-89 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3157 (((-89 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-89 |#1|) (-950 (-484))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-89 |#1|)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-89 |#1|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-89 |#1|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-89 |#1|) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| (-89 |#1|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3959 (($ (-1 (-89 |#1|) (-89 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-89 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-89 |#1|))) (|:| |vec| (-1179 (-89 |#1|)))) (-1179 $) $) NIL T ELT) (((-630 (-89 |#1|)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-89 |#1|) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-89 |#1|) (-258)) ELT)) (-3131 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-89 |#1|) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-89 |#1|)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-89 |#1|) (-89 |#1|)) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-249 (-89 |#1|))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-249 (-89 |#1|)))) NIL (|has| (-89 |#1|) (-260 (-89 |#1|))) ELT) (($ $ (-583 (-1090)) (-583 (-89 |#1|))) NIL (|has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) ELT) (($ $ (-1090) (-89 |#1|)) NIL (|has| (-89 |#1|) (-455 (-1090) (-89 |#1|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-89 |#1|)) NIL (|has| (-89 |#1|) (-241 (-89 |#1|) (-89 |#1|))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-89 |#1|) $) NIL T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-89 |#1|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-89 |#1|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-89 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-89 |#1|) (-933)) ELT)) (-2617 (((-148 (-350 (-484))) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-89 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-89 |#1|) (-950 (-1090))) ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-89 |#1|) (-821))) (|has| (-89 |#1|) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-89 |#1|) $) NIL (|has| (-89 |#1|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-484)) $ (-484)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-89 |#1|) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-89 |#1|) (-89 |#1|))) NIL T ELT) (($ $ (-1 (-89 |#1|) (-89 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-89 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-89 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-89 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-89 |#1|) (-756)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-89 |#1|) (-89 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-89 |#1|) $) NIL T ELT) (($ $ (-89 |#1|)) NIL T ELT)))
+(((-90 |#1|) (-13 (-904 (-89 |#1|)) (-10 -8 (-15 -3771 ((-350 (-484)) $ (-484))) (-15 -2617 ((-148 (-350 (-484))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-484) $)))) (-484)) (T -90))
+((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2))))
+((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 59 T ELT) (($ $ #3="right" $) 61 T ELT)) (-3032 (((-583 $) $) 31 T ELT)) (-3028 (((-85) $ $) 36 T ELT)) (-3031 (((-583 |#2|) $) 25 T ELT)) (-3528 (((-85) $) 18 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-3634 (((-85) $) 55 T ELT)) (-3947 (((-772) $) 46 T ELT)) (-3523 (((-583 $) $) 32 T ELT)) (-3057 (((-85) $ $) 38 T ELT)))
+(((-91 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3789 (|#1| |#1| #1="right" |#1|)) (-15 -3789 (|#1| |#1| #2="left" |#1|)) (-15 -3801 (|#1| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3789 (|#2| |#1| #3="value" |#2|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3031 ((-583 |#2|) |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-583 |#1|) |#1|)) (-15 -3523 ((-583 |#1|) |#1|))) (-92 |#2|) (-1129)) (T -91))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) 49 (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) 51 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) (($ $ "left" $) 52 (|has| $ (-1035 |#1|)) ELT) (($ $ "right" $) 50 (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-3138 (($ $) 54 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3139 (($ $) 56 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) (($ $ "left") 55 T ELT) (($ $ "right") 53 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-92 |#1|) (-113) (-1129)) (T -92))
+((-3139 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3138 (*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (-4 *1 (-1035 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1294 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (-4 *1 (-1035 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1129)))) (-1293 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(-13 (-923 |t#1|) (-10 -8 (-15 -3139 ($ $)) (-15 -3801 ($ $ "left")) (-15 -3138 ($ $)) (-15 -3801 ($ $ "right")) (IF (|has| $ (-1035 |t#1|)) (PROGN (-15 -3789 ($ $ "left" $)) (-15 -1294 ($ $ $)) (-15 -3789 ($ $ "right" $)) (-15 -1293 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-1297 (((-85) |#1|) 29 T ELT)) (-1296 (((-694) (-694)) 28 T ELT) (((-694)) 27 T ELT)) (-1295 (((-85) |#1| (-85)) 30 T ELT) (((-85) |#1|) 31 T ELT)))
+(((-93 |#1|) (-10 -7 (-15 -1295 ((-85) |#1|)) (-15 -1295 ((-85) |#1| (-85))) (-15 -1296 ((-694))) (-15 -1296 ((-694) (-694))) (-15 -1297 ((-85) |#1|))) (-1155 (-484))) (T -93))
+((-1297 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1296 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1296 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1295 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))) (-1295 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3419 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) 21 (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 20 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1302 (($ $ |#1| $) 27 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 22 T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1298 (($ |#1| $) 28 T ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1299 (($ (-583 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-94 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1299 ($ (-583 |#1|))) (-15 -3610 ($ |#1| $)) (-15 -1298 ($ |#1| $)) (-15 -3419 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-756)) (T -94))
+((-1299 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-1298 (*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))) (-3419 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3)))) (-5 *1 (-94 *3)) (-4 *3 (-756)))))
+((-2313 (($ $) 13 T ELT)) (-2561 (($ $) 11 T ELT)) (-1300 (($ $ $) 23 T ELT)) (-1301 (($ $ $) 21 T ELT)) (-2311 (($ $ $) 19 T ELT)) (-2312 (($ $ $) 17 T ELT)))
+(((-95 |#1|) (-10 -7 (-15 -1300 (|#1| |#1| |#1|)) (-15 -1301 (|#1| |#1| |#1|)) (-15 -2313 (|#1| |#1|)) (-15 -2312 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -2561 (|#1| |#1|))) (-96)) (T -95))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2313 (($ $) 104 T ELT)) (-3322 (($ $ $) 33 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 59 (|has| $ (-1035 (-85))) ELT)) (-1735 (((-85) $) 98 (|has| (-85) (-756)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) 92 T ELT)) (-1733 (($ $) 102 (-12 (|has| (-85) (-756)) (|has| $ (-1035 (-85)))) ELT) (($ (-1 (-85) (-85) (-85)) $) 101 (|has| $ (-1035 (-85))) ELT)) (-2910 (($ $) 97 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $) 91 T ELT)) (-3789 (((-85) $ (-1146 (-484)) (-85)) 78 (|has| $ (-1035 (-85))) ELT) (((-85) $ (-484) (-85)) 47 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) (-85)) $) 63 (|has| $ (-318 (-85))) ELT)) (-3725 (($) 40 T CONST)) (-2297 (($ $) 100 (|has| $ (-1035 (-85))) ELT)) (-2298 (($ $) 90 T ELT)) (-1353 (($ $) 61 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3407 (($ (-1 (-85) (-85)) $) 64 (|has| $ (-318 (-85))) ELT) (($ (-85) $) 62 (-12 (|has| (-85) (-72)) (|has| $ (-318 (-85)))) ELT)) (-3843 (((-85) (-1 (-85) (-85) (-85)) $) 83 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) 82 T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) 79 (|has| (-85) (-72)) ELT)) (-1576 (((-85) $ (-484) (-85)) 46 (|has| $ (-6 -3997)) ELT)) (-3113 (((-85) $ (-484)) 48 T ELT)) (-3420 (((-484) (-85) $ (-484)) 95 (|has| (-85) (-72)) ELT) (((-484) (-85) $) 94 (|has| (-85) (-72)) ELT) (((-484) (-1 (-85) (-85)) $) 93 T ELT)) (-2562 (($ $ $) 109 T ELT)) (-2561 (($ $) 107 T ELT)) (-1300 (($ $ $) 34 T ELT)) (-3615 (($ (-694) (-85)) 68 T ELT)) (-1301 (($ $ $) 35 T ELT)) (-2200 (((-484) $) 56 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 23 T ELT)) (-3519 (($ $ $) 96 (|has| (-85) (-756)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) 89 T ELT)) (-2609 (((-583 (-85)) $) 84 T ELT)) (-3246 (((-85) (-85) $) 80 (|has| (-85) (-72)) ELT)) (-2201 (((-484) $) 55 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 22 T ELT)) (-3327 (($ (-1 (-85) (-85)) $) 103 T ELT)) (-3959 (($ (-1 (-85) (-85) (-85)) $ $) 73 T ELT) (($ (-1 (-85) (-85)) $) 41 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2304 (($ $ $ (-484)) 77 T ELT) (($ (-85) $ (-484)) 76 T ELT)) (-2203 (((-583 (-484)) $) 53 T ELT)) (-2204 (((-85) (-484) $) 52 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-85) $) 57 (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-85) "failed") (-1 (-85) (-85)) $) 65 T ELT)) (-2199 (($ $ (-85)) 58 (|has| $ (-1035 (-85))) ELT)) (-1731 (((-85) (-1 (-85) (-85)) $) 86 T ELT)) (-3769 (($ $ (-583 (-85)) (-583 (-85))) 45 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-85) (-85)) 44 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-249 (-85))) 43 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT) (($ $ (-583 (-249 (-85)))) 42 (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ELT)) (-1222 (((-85) $ $) 36 T ELT)) (-2202 (((-85) (-85) $) 54 (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2205 (((-583 (-85)) $) 51 T ELT)) (-3404 (((-85) $) 39 T ELT)) (-3566 (($) 38 T ELT)) (-3801 (($ $ (-1146 (-484))) 67 T ELT) (((-85) $ (-484)) 50 T ELT) (((-85) $ (-484) (-85)) 49 T ELT)) (-2305 (($ $ (-1146 (-484))) 75 T ELT) (($ $ (-484)) 74 T ELT)) (-1730 (((-694) (-1 (-85) (-85)) $) 85 T ELT) (((-694) (-85) $) 81 (|has| (-85) (-72)) ELT)) (-1734 (($ $ $ (-484)) 99 (|has| $ (-1035 (-85))) ELT)) (-3401 (($ $) 37 T ELT)) (-3973 (((-473) $) 60 (|has| (-85) (-553 (-473))) ELT)) (-3531 (($ (-583 (-85))) 66 T ELT)) (-3803 (($ (-583 $)) 72 T ELT) (($ $ $) 71 T ELT) (($ (-85) $) 70 T ELT) (($ $ (-85)) 69 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) 87 T ELT)) (-2563 (($ $ $) 108 T ELT)) (-2311 (($ $ $) 106 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 105 T ELT)) (-3958 (((-694) $) 88 T ELT)))
(((-96) (-113)) (T -96))
-((-1302 (*1 *1 *1 *1) (-4 *1 (-96))) (-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-3323 (*1 *1 *1 *1) (-4 *1 (-96))))
-(-13 (-757) (-84) (-605) (-19 (-85)) (-10 -8 (-15 -1302 ($ $ $)) (-15 -1301 ($ $ $)) (-15 -3323 ($ $ $))))
-(((-34) . T) ((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-124 (-85)) . T) ((-554 (-474)) |has| (-85) (-554 (-474))) ((-241 (-485) (-85)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-539 (-485) (-85)) . T) ((-456 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ((-13) . T) ((-594 (-85)) . T) ((-605) . T) ((-19 (-85)) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1036 (-85)) . T) ((-1130) . T))
-((-3328 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3402 (($ $) 16 T ELT)) (-3959 (((-695) $) 25 T ELT)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 ((-695) |#1|)) (-15 -3402 (|#1| |#1|))) (-98 |#2|) (-1014)) (T -97))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3139 (($ $) 54 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 69 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 66 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 65 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 59 T ELT)) (-2610 (((-584 |#1|) $) 64 T ELT)) (-3247 (((-85) |#1| $) 68 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3140 (($ $) 56 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-1731 (((-695) |#1| $) 67 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 63 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 61 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 60 T ELT)))
-(((-98 |#1|) (-113) (-1014)) (T -98))
-((-1303 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014)))))
-(-13 (-92 |t#1|) (-318 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -1303 ($ $ |t#1| $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 18 T ELT)) (-3027 ((|#1| $ |#1|) 22 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 23 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 21 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ |#1| $) 15 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 20 T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ (-584 |#1|)) 16 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ (-584 |#1|))) (-15 -3611 ($ |#1| $)))) (-757)) (T -99))
-((-1304 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))) (-3611 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 31 T ELT)) (-3027 ((|#1| $ |#1|) 33 (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) 37 (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) 35 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ $ |#1| $) 17 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 26 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 21 T ELT)) (-3567 (($) 13 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1305 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1305 ($ |#1|)) (-15 -1305 ($ $ |#1| $)))) (-1014)) (T -100))
-((-1305 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))) (-1305 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 32 T ELT)) (-3138 (((-695)) 17 T ELT)) (-3726 (($) 9 T CONST)) (-2996 (($) 27 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2011 (((-831) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 23 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1306 (($ (-695)) 8 T ELT)) (-3727 (($ $ $) 29 T ELT)) (-3728 (($ $ $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 31 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-2569 (((-85) $ $) 12 T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 11 T ELT)) (-2313 (($ $ $) 30 T ELT)))
-(((-101) (-13 (-753) (-605) (-10 -8 (-15 -1306 ($ (-695))) (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -101))
-((-1306 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))) (-3728 (*1 *1 *1 *1) (-5 *1 (-101))) (-3727 (*1 *1 *1 *1) (-5 *1 (-101))) (-3726 (*1 *1) (-5 *1 (-101))))
-((-695) (|%ilt| |#1| 256))
-((-2570 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-757)) ELT)) (-1734 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1036 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-101))) (|has| (-101) (-757))) ELT)) (-2911 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-757)) ELT)) (-3790 (((-101) $ (-485) (-101)) 26 (|has| $ (-6 -3998)) ELT) (((-101) $ (-1147 (-485)) (-101)) NIL (|has| $ (-6 -3998)) ELT)) (-1307 (((-695) $ (-695)) 35 T ELT)) (-3712 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-101))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-3408 (($ (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3844 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1577 (((-101) $ (-485) (-101)) 25 (|has| $ (-6 -3998)) ELT)) (-3114 (((-101) $ (-485)) 20 T ELT)) (-3421 (((-485) (-1 (-85) (-101)) $) NIL T ELT) (((-485) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-485) (-101) $ (-485)) NIL (|has| (-101) (-72)) ELT)) (-3616 (($ (-695) (-101)) 14 T ELT)) (-2201 (((-485) $) 27 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3520 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-2610 (((-584 (-101)) $) NIL T ELT)) (-3247 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2202 (((-485) $) 30 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-101) (-757)) ELT)) (-3328 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3960 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-101) (-1014)) ELT)) (-2305 (($ (-101) $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| (-101) (-1014)) ELT)) (-3803 (((-101) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2200 (($ $ (-101)) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT) (($ $ (-584 (-101)) (-584 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-2206 (((-584 (-101)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 12 T ELT)) (-3802 (((-101) $ (-485) (-101)) NIL T ELT) (((-101) $ (-485)) 23 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-695) (-1 (-85) (-101)) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-101))) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-101) (-554 (-474))) ELT)) (-3532 (($ (-584 (-101))) 41 T ELT)) (-3804 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-870 (-101)) $) 36 T ELT) (((-1074) $) 38 T ELT) (((-773) $) NIL (|has| (-101) (-553 (-773))) ELT)) (-1308 (((-695) $) 18 T ELT)) (-1309 (($ (-695)) 8 T ELT)) (-1266 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3058 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-101) (-757)) ELT)) (-3959 (((-695) $) 15 T ELT)))
-(((-102) (-13 (-19 (-101)) (-553 (-870 (-101))) (-553 (-1074)) (-10 -8 (-15 -1309 ($ (-695))) (-15 -1308 ((-695) $)) (-15 -1307 ((-695) $ (-695)))))) (T -102))
-((-1309 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1308 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))) (-1307 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1310 (($) 6 T CONST)) (-1312 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 14 T ELT)) (-1311 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT)))
-(((-103) (-13 (-1014) (-10 -8 (-15 -1312 ($) -3954) (-15 -1311 ($) -3954) (-15 -1310 ($) -3954)))) (T -103))
-((-1312 (*1 *1) (-5 *1 (-103))) (-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
+((-1301 (*1 *1 *1 *1) (-4 *1 (-96))) (-1300 (*1 *1 *1 *1) (-4 *1 (-96))) (-3322 (*1 *1 *1 *1) (-4 *1 (-96))))
+(-13 (-756) (-84) (-604) (-19 (-85)) (-10 -8 (-15 -1301 ($ $ $)) (-15 -1300 ($ $ $)) (-15 -3322 ($ $ $))))
+(((-34) . T) ((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-124 (-85)) . T) ((-553 (-473)) |has| (-85) (-553 (-473))) ((-241 (-484) (-85)) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) (-85)) . T) ((-260 (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-318 (-85)) . T) ((-324 (-85)) . T) ((-429 (-85)) . T) ((-538 (-484) (-85)) . T) ((-455 (-85) (-85)) -12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1013))) ((-13) . T) ((-593 (-85)) . T) ((-604) . T) ((-19 (-85)) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1035 (-85)) . T) ((-1129) . T))
+((-3327 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3401 (($ $) 16 T ELT)) (-3958 (((-694) $) 25 T ELT)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3958 ((-694) |#1|)) (-15 -3401 (|#1| |#1|))) (-98 |#2|) (-1013)) (T -97))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) 49 (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) 51 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) 52 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) 50 (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-3138 (($ $) 54 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 69 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 66 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 65 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1302 (($ $ |#1| $) 59 T ELT)) (-2609 (((-583 |#1|) $) 64 T ELT)) (-3246 (((-85) |#1| $) 68 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3139 (($ $) 56 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 62 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) (($ $ #2#) 55 T ELT) (($ $ #3#) 53 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-1730 (((-694) |#1| $) 67 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 63 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 61 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 60 T ELT)))
+(((-98 |#1|) (-113) (-1013)) (T -98))
+((-1302 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
+(-13 (-92 |t#1|) (-318 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -1302 ($ $ |t#1| $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-92 |#1|) . T) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 18 T ELT)) (-3026 ((|#1| $ |#1|) 22 (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) 23 (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) 21 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1302 (($ $ |#1| $) NIL T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) NIL T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3610 (($ |#1| $) 15 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 20 T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1303 (($ (-583 |#1|)) 16 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-99 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1303 ($ (-583 |#1|))) (-15 -3610 ($ |#1| $)))) (-756)) (T -99))
+((-1303 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))) (-3610 (*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 31 T ELT)) (-3026 ((|#1| $ |#1|) 33 (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) 37 (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) 35 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 24 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1302 (($ $ |#1| $) 17 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 26 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 21 T ELT)) (-3566 (($) 13 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1304 (($ |#1|) 19 T ELT) (($ $ |#1| $) 18 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 12 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-100 |#1|) (-13 (-98 |#1|) (-10 -8 (-15 -1304 ($ |#1|)) (-15 -1304 ($ $ |#1| $)))) (-1013)) (T -100))
+((-1304 (*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))) (-1304 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 32 T ELT)) (-3137 (((-694)) 17 T ELT)) (-3725 (($) 9 T CONST)) (-2995 (($) 27 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 15 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 16 T CONST)) (-2010 (((-830) $) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 23 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1305 (($ (-694)) 8 T ELT)) (-3726 (($ $ $) 29 T ELT)) (-3727 (($ $ $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 31 T ELT)) (-2567 (((-85) $ $) 14 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 11 T ELT)) (-2312 (($ $ $) 30 T ELT)))
+(((-101) (-13 (-752) (-604) (-10 -8 (-15 -1305 ($ (-694))) (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -101))
+((-1305 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))) (-3727 (*1 *1 *1 *1) (-5 *1 (-101))) (-3726 (*1 *1 *1 *1) (-5 *1 (-101))) (-3725 (*1 *1) (-5 *1 (-101))))
+((-694) (|%ilt| |#1| 256))
+((-2569 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) (-101) (-101)) $) NIL T ELT) (((-85) $) NIL (|has| (-101) (-756)) ELT)) (-1733 (($ (-1 (-85) (-101) (-101)) $) NIL (|has| $ (-1035 (-101))) ELT) (($ $) NIL (-12 (|has| $ (-1035 (-101))) (|has| (-101) (-756))) ELT)) (-2910 (($ (-1 (-85) (-101) (-101)) $) NIL T ELT) (($ $) NIL (|has| (-101) (-756)) ELT)) (-3789 (((-101) $ (-484) (-101)) 26 (|has| $ (-6 -3997)) ELT) (((-101) $ (-1146 (-484)) (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1306 (((-694) $ (-694)) 35 T ELT)) (-3711 (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 (-101))) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-3407 (($ (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT) (($ (-1 (-85) (-101)) $) NIL (|has| $ (-318 (-101))) ELT)) (-3843 (((-101) (-1 (-101) (-101) (-101)) $ (-101) (-101)) NIL (|has| (-101) (-72)) ELT) (((-101) (-1 (-101) (-101) (-101)) $ (-101)) NIL T ELT) (((-101) (-1 (-101) (-101) (-101)) $) NIL T ELT)) (-1576 (((-101) $ (-484) (-101)) 25 (|has| $ (-6 -3997)) ELT)) (-3113 (((-101) $ (-484)) 20 T ELT)) (-3420 (((-484) (-1 (-85) (-101)) $) NIL T ELT) (((-484) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-484) (-101) $ (-484)) NIL (|has| (-101) (-72)) ELT)) (-3615 (($ (-694) (-101)) 14 T ELT)) (-2200 (((-484) $) 27 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3519 (($ (-1 (-85) (-101) (-101)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-2609 (((-583 (-101)) $) NIL T ELT)) (-3246 (((-85) (-101) $) NIL (|has| (-101) (-72)) ELT)) (-2201 (((-484) $) 30 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-101) (-756)) ELT)) (-3327 (($ (-1 (-101) (-101)) $) NIL T ELT)) (-3959 (($ (-1 (-101) (-101)) $) NIL T ELT) (($ (-1 (-101) (-101) (-101)) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| (-101) (-1013)) ELT)) (-2304 (($ (-101) $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| (-101) (-1013)) ELT)) (-3802 (((-101) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-101) "failed") (-1 (-85) (-101)) $) NIL T ELT)) (-2199 (($ $ (-101)) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-101)))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-249 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-101) (-101)) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT) (($ $ (-583 (-101)) (-583 (-101))) NIL (-12 (|has| (-101) (-260 (-101))) (|has| (-101) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-101) $) NIL (-12 (|has| $ (-318 (-101))) (|has| (-101) (-72))) ELT)) (-2205 (((-583 (-101)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 12 T ELT)) (-3801 (((-101) $ (-484) (-101)) NIL T ELT) (((-101) $ (-484)) 23 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) (-101) $) NIL (|has| (-101) (-72)) ELT) (((-694) (-1 (-85) (-101)) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 (-101))) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-101) (-553 (-473))) ELT)) (-3531 (($ (-583 (-101))) 41 T ELT)) (-3803 (($ $ (-101)) NIL T ELT) (($ (-101) $) NIL T ELT) (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-869 (-101)) $) 36 T ELT) (((-1073) $) 38 T ELT) (((-772) $) NIL (|has| (-101) (-552 (-772))) ELT)) (-1307 (((-694) $) 18 T ELT)) (-1308 (($ (-694)) 8 T ELT)) (-1265 (((-85) $ $) NIL (|has| (-101) (-72)) ELT)) (-1732 (((-85) (-1 (-85) (-101)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3057 (((-85) $ $) 33 (|has| (-101) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-101) (-756)) ELT)) (-3958 (((-694) $) 15 T ELT)))
+(((-102) (-13 (-19 (-101)) (-552 (-869 (-101))) (-552 (-1073)) (-10 -8 (-15 -1308 ($ (-694))) (-15 -1307 ((-694) $)) (-15 -1306 ((-694) $ (-694)))))) (T -102))
+((-1308 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1307 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))) (-1306 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1309 (($) 6 T CONST)) (-1311 (($) 7 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 14 T ELT)) (-1310 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)))
+(((-103) (-13 (-1013) (-10 -8 (-15 -1311 ($) -3953) (-15 -1310 ($) -3953) (-15 -1309 ($) -3953)))) (T -103))
+((-1311 (*1 *1) (-5 *1 (-103))) (-1310 (*1 *1) (-5 *1 (-103))) (-1309 (*1 *1) (-5 *1 (-103))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
(((-104) (-113)) (T -104))
-((-1313 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
-(-13 (-23) (-10 -8 (-15 -1313 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-1314 (((-1186) $ (-695)) 17 T ELT)) (-3421 (((-695) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+((-1312 (*1 *1 *1 *1) (|partial| -4 *1 (-104))))
+(-13 (-23) (-10 -8 (-15 -1312 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-1313 (((-1185) $ (-694)) 17 T ELT)) (-3420 (((-694) $) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-105) (-113)) (T -105))
-((-3421 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695)))) (-1314 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186)))))
-(-13 (-1014) (-10 -8 (-15 -3421 ((-695) $)) (-15 -1314 ((-1186) $ (-695)))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-106) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $))))) (T -106))
-((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106)))))
-((-2570 (((-85) $ $) 49 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-695) #1="failed") $) 60 T ELT)) (-3158 (((-695) $) 58 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) 37 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1316 (((-85)) 61 T ELT)) (-1315 (((-85) (-85)) 63 T ELT)) (-2527 (((-85) $) 30 T ELT)) (-1317 (((-85) $) 57 T ELT)) (-3948 (((-773) $) 28 T ELT) (($ (-695)) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 19 T CONST)) (-1318 (($ (-695)) 21 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 32 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 35 T ELT)) (-3839 (((-3 $ #1#) $ $) 42 T ELT)) (-3841 (($ $ $) 38 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-695) $) 48 T ELT) (($ (-831) $) NIL T ELT) (($ $ $) 45 T ELT)))
-(((-107) (-13 (-757) (-23) (-664) (-951 (-695)) (-10 -8 (-6 (-3999 "*")) (-15 -3839 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1318 ($ (-695))) (-15 -2527 ((-85) $)) (-15 -1317 ((-85) $)) (-15 -1316 ((-85))) (-15 -1315 ((-85) (-85)))))) (T -107))
-((-3839 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1319 (($ (-584 |#3|)) 63 T ELT)) (-3416 (($ $) 125 T ELT) (($ $ (-485) (-485)) 124 T ELT)) (-3726 (($) 17 T ELT)) (-3159 (((-3 |#3| "failed") $) 86 T ELT)) (-3158 ((|#3| $) NIL T ELT)) (-1323 (($ $ (-584 (-485))) 126 T ELT)) (-1320 (((-584 |#3|) $) 58 T ELT)) (-3110 (((-695) $) 68 T ELT)) (-3946 (($ $ $) 120 T ELT)) (-1321 (($) 67 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1322 (($) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ (-485)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-485) (-485)) 73 T ELT) ((|#3| $ (-485) (-485) (-485)) 74 T ELT) ((|#3| $ (-485) (-485) (-485) (-485)) 75 T ELT) ((|#3| $ (-584 (-485))) 76 T ELT)) (-3950 (((-695) $) 69 T ELT)) (-1982 (($ $ (-485) $ (-485)) 121 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3948 (((-773) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1057 |#2| |#3|)) 105 T ELT) (($ (-584 |#3|)) 77 T ELT) (($ (-584 $)) 83 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 96 T CONST)) (-2668 (($) 97 T CONST)) (-3058 (((-85) $ $) 107 T ELT)) (-3839 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3841 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-485)) 116 T ELT) (($ (-485) $) 115 T ELT) (($ $ $) 122 T ELT)))
-(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-695)) (-410 (-485) (-695)) (-241 (-485) |#3|) (-556 (-197 |#2| |#3|)) (-556 (-1057 |#2| |#3|)) (-556 (-584 |#3|)) (-556 (-584 $)) (-10 -8 (-15 -3110 ((-695) $)) (-15 -3802 (|#3| $)) (-15 -3802 (|#3| $ (-485) (-485))) (-15 -3802 (|#3| $ (-485) (-485) (-485))) (-15 -3802 (|#3| $ (-485) (-485) (-485) (-485))) (-15 -3802 (|#3| $ (-584 (-485)))) (-15 -3946 ($ $ $)) (-15 * ($ $ $)) (-15 -1982 ($ $ (-485) $ (-485))) (-15 -1982 ($ $ (-485) (-485))) (-15 -3416 ($ $)) (-15 -3416 ($ $ (-485) (-485))) (-15 -1323 ($ $ (-584 (-485)))) (-15 -1322 ($)) (-15 -1321 ($)) (-15 -1320 ((-584 |#3|) $)) (-15 -1319 ($ (-584 |#3|))) (-15 -3726 ($)))) (-485) (-695) (-146)) (T -108))
-((-3946 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2) (-4 *5 (-146)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-695)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-485)) (-14 *5 (-695)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1982 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1982 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-3416 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695)) (-4 *5 (-146)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1322 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))) (-1320 (*1 *2 *1) (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 (-695)))) (-3726 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
-((-2416 (((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3960 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
-(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-108 |#1| |#2| |#4|) (-584 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3960 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-485) (-695) (-146) (-146)) (T -109))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485)) (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-110) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -110))
-((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-111) (-13 (-996) (-10 -8 (-15 -1427 ((-161) $)) (-15 -3235 ((-584 (-1050)) $))))) (T -111))
-((-1427 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-112) (-13 (-160) (-553 (-157)))) (T -112))
-NIL
-((-1325 (((-584 (-158 (-112))) $) 13 T ELT)) (-1324 (((-584 (-158 (-112))) $) 14 T ELT)) (-1326 (((-584 (-750)) $) 10 T ELT)) (-1483 (((-112) $) 7 T ELT)) (-3948 (((-773) $) 16 T ELT)))
-(((-113) (-13 (-553 (-773)) (-10 -8 (-15 -1483 ((-112) $)) (-15 -1326 ((-584 (-750)) $)) (-15 -1325 ((-584 (-158 (-112))) $)) (-15 -1324 ((-584 (-158 (-112))) $))))) (T -113))
-((-1483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1326 (*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3429 (($) 17 T CONST)) (-1806 (($) NIL (|has| (-117) (-320)) ELT)) (-3236 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3238 (($ $ $) NIL T ELT)) (-3237 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-117) (-320)) ELT)) (-3241 (($) NIL T ELT) (($ (-584 (-117))) NIL T ELT)) (-1571 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3712 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3407 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-318 (-117))) ELT)) (-3408 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-2996 (($) NIL (|has| (-117) (-320)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) 65 T ELT)) (-3247 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2859 (((-117) $) NIL (|has| (-117) (-757)) ELT)) (-3328 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3431 (($) 18 T CONST)) (-2011 (((-831) $) NIL (|has| (-117) (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 32 T ELT)) (-1275 (((-117) $) 57 T ELT)) (-3611 (($ (-117) $) 55 T ELT)) (-2401 (($ (-831)) NIL (|has| (-117) (-320)) ELT)) (-1329 (($) 16 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1276 (((-117) $) 58 T ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3770 (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 53 T ELT)) (-1330 (($) 15 T CONST)) (-3239 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1467 (($ (-584 (-117))) NIL T ELT) (($) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-117)) $) NIL T ELT) (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-1074) $) 39 T ELT) (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT) (((-584 (-117)) $) 37 T ELT)) (-3532 (($ (-584 (-117))) NIL T ELT)) (-1807 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3948 (((-773) $) 51 T ELT)) (-1331 (($ (-1074)) 14 T ELT) (($ (-584 (-117))) 48 T ELT)) (-1808 (((-695) $) NIL T ELT)) (-3242 (($) 54 T ELT) (($ (-584 (-117))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-117))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1327 (($) 21 T CONST)) (-1328 (($) 20 T CONST)) (-3058 (((-85) $ $) 26 T ELT)) (-3959 (((-695) $) 52 T ELT)))
-(((-114) (-13 (-1014) (-554 (-1074)) (-369 (-117)) (-554 (-584 (-117))) (-10 -8 (-15 -1331 ($ (-1074))) (-15 -1331 ($ (-584 (-117)))) (-15 -1330 ($) -3954) (-15 -1329 ($) -3954) (-15 -3429 ($) -3954) (-15 -3431 ($) -3954) (-15 -1328 ($) -3954) (-15 -1327 ($) -3954)))) (T -114))
-((-1331 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114)))) (-1330 (*1 *1) (-5 *1 (-114))) (-1329 (*1 *1) (-5 *1 (-114))) (-3429 (*1 *1) (-5 *1 (-114))) (-3431 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))))
-((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3741 ((|#1| |#3|) 9 T ELT)) (-3742 ((|#3| |#3|) 15 T ELT)))
-(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3741 (|#1| |#3|)) (-15 -3742 (|#3| |#3|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-324 |#2|)) (T -115))
-((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4)))))
-((-1370 (($ $ $) 8 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT)))
+((-3420 (*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694)))) (-1313 (*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1185)))))
+(-13 (-1013) (-10 -8 (-15 -3420 ((-694) $)) (-15 -1313 ((-1185) $ (-694)))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-583 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-106) (-13 (-995) (-10 -8 (-15 -3234 ((-583 (-1049)) $))))) (T -106))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-106)))))
+((-2569 (((-85) $ $) 49 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-694) #1="failed") $) 60 T ELT)) (-3157 (((-694) $) 58 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) 37 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1315 (((-85)) 61 T ELT)) (-1314 (((-85) (-85)) 63 T ELT)) (-2526 (((-85) $) 30 T ELT)) (-1316 (((-85) $) 57 T ELT)) (-3947 (((-772) $) 28 T ELT) (($ (-694)) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 19 T CONST)) (-1317 (($ (-694)) 21 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 32 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 35 T ELT)) (-3838 (((-3 $ #1#) $ $) 42 T ELT)) (-3840 (($ $ $) 38 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-694) $) 48 T ELT) (($ (-830) $) NIL T ELT) (($ $ $) 45 T ELT)))
+(((-107) (-13 (-756) (-23) (-663) (-950 (-694)) (-10 -8 (-6 (-3998 "*")) (-15 -3838 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1317 ($ (-694))) (-15 -2526 ((-85) $)) (-15 -1316 ((-85) $)) (-15 -1315 ((-85))) (-15 -1314 ((-85) (-85)))))) (T -107))
+((-3838 (*1 *1 *1 *1) (|partial| -5 *1 (-107))) (** (*1 *1 *1 *1) (-5 *1 (-107))) (-1317 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1315 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1318 (($ (-583 |#3|)) 63 T ELT)) (-3415 (($ $) 125 T ELT) (($ $ (-484) (-484)) 124 T ELT)) (-3725 (($) 17 T ELT)) (-3158 (((-3 |#3| "failed") $) 86 T ELT)) (-3157 ((|#3| $) NIL T ELT)) (-1322 (($ $ (-583 (-484))) 126 T ELT)) (-1319 (((-583 |#3|) $) 58 T ELT)) (-3109 (((-694) $) 68 T ELT)) (-3945 (($ $ $) 120 T ELT)) (-1320 (($) 67 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1321 (($) 16 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#3| $ (-484)) 72 T ELT) ((|#3| $) 71 T ELT) ((|#3| $ (-484) (-484)) 73 T ELT) ((|#3| $ (-484) (-484) (-484)) 74 T ELT) ((|#3| $ (-484) (-484) (-484) (-484)) 75 T ELT) ((|#3| $ (-583 (-484))) 76 T ELT)) (-3949 (((-694) $) 69 T ELT)) (-1981 (($ $ (-484) $ (-484)) 121 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3947 (((-772) $) 94 T ELT) (($ |#3|) 95 T ELT) (($ (-197 |#2| |#3|)) 102 T ELT) (($ (-1056 |#2| |#3|)) 105 T ELT) (($ (-583 |#3|)) 77 T ELT) (($ (-583 $)) 83 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 96 T CONST)) (-2667 (($) 97 T CONST)) (-3057 (((-85) $ $) 107 T ELT)) (-3838 (($ $) 113 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 109 T ELT)) (* (($ |#3| $) 118 T ELT) (($ $ |#3|) 119 T ELT) (($ $ (-484)) 116 T ELT) (($ (-484) $) 115 T ELT) (($ $ $) 122 T ELT)))
+(((-108 |#1| |#2| |#3|) (-13 (-405 |#3| (-694)) (-410 (-484) (-694)) (-241 (-484) |#3|) (-555 (-197 |#2| |#3|)) (-555 (-1056 |#2| |#3|)) (-555 (-583 |#3|)) (-555 (-583 $)) (-10 -8 (-15 -3109 ((-694) $)) (-15 -3801 (|#3| $)) (-15 -3801 (|#3| $ (-484) (-484))) (-15 -3801 (|#3| $ (-484) (-484) (-484))) (-15 -3801 (|#3| $ (-484) (-484) (-484) (-484))) (-15 -3801 (|#3| $ (-583 (-484)))) (-15 -3945 ($ $ $)) (-15 * ($ $ $)) (-15 -1981 ($ $ (-484) $ (-484))) (-15 -1981 ($ $ (-484) (-484))) (-15 -3415 ($ $)) (-15 -3415 ($ $ (-484) (-484))) (-15 -1322 ($ $ (-583 (-484)))) (-15 -1321 ($)) (-15 -1320 ($)) (-15 -1319 ((-583 |#3|) $)) (-15 -1318 ($ (-583 |#3|))) (-15 -3725 ($)))) (-484) (-694) (-146)) (T -108))
+((-3945 (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2) (-4 *5 (-146)))) (-3801 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3801 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3801 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-694)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 (-484)) (-14 *5 (-694)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1981 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1981 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-3415 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694)) (-4 *5 (-146)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1321 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1320 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))) (-1319 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1318 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 (-694)))) (-3725 (*1 *1) (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
+((-2415 (((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|)) 14 T ELT)) (-3959 (((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)) 18 T ELT)))
+(((-109 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2415 ((-108 |#1| |#2| |#4|) (-583 |#4|) (-108 |#1| |#2| |#3|))) (-15 -3959 ((-108 |#1| |#2| |#4|) (-1 |#4| |#3|) (-108 |#1| |#2| |#3|)))) (-484) (-694) (-146) (-146)) (T -109))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484)) (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8)) (-5 *1 (-109 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1049) $) 12 T ELT)) (-3530 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-110) (-13 (-995) (-10 -8 (-15 -3530 ((-1049) $)) (-15 -3529 ((-1049) $))))) (T -110))
+((-3530 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 11 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-583 (-1049)) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-111) (-13 (-995) (-10 -8 (-15 -1426 ((-161) $)) (-15 -3234 ((-583 (-1049)) $))))) (T -111))
+((-1426 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-111)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3543 (((-446) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-446)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (((-157) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-112) (-13 (-160) (-552 (-157)))) (T -112))
+NIL
+((-1324 (((-583 (-158 (-112))) $) 13 T ELT)) (-1323 (((-583 (-158 (-112))) $) 14 T ELT)) (-1325 (((-583 (-749)) $) 10 T ELT)) (-1482 (((-112) $) 7 T ELT)) (-3947 (((-772) $) 16 T ELT)))
+(((-113) (-13 (-552 (-772)) (-10 -8 (-15 -1482 ((-112) $)) (-15 -1325 ((-583 (-749)) $)) (-15 -1324 ((-583 (-158 (-112))) $)) (-15 -1323 ((-583 (-158 (-112))) $))))) (T -113))
+((-1482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3428 (($) 17 T CONST)) (-1805 (($) NIL (|has| (-117) (-320)) ELT)) (-3235 (($ $ $) 19 T ELT) (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT)) (-3237 (($ $ $) NIL T ELT)) (-3236 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| (-117) (-320)) ELT)) (-3240 (($) NIL T ELT) (($ (-583 (-117))) NIL T ELT)) (-1570 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3406 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) 56 (|has| $ (-318 (-117))) ELT)) (-3407 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT) (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT)) (-2995 (($) NIL (|has| (-117) (-320)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-2609 (((-583 (-117)) $) 65 T ELT)) (-3246 (((-85) (-117) $) 29 (|has| (-117) (-72)) ELT)) (-2858 (((-117) $) NIL (|has| (-117) (-756)) ELT)) (-3327 (($ (-1 (-117) (-117)) $) 64 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) 60 T ELT)) (-3430 (($) 18 T CONST)) (-2010 (((-830) $) NIL (|has| (-117) (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 32 T ELT)) (-1274 (((-117) $) 57 T ELT)) (-3610 (($ (-117) $) 55 T ELT)) (-2400 (($ (-830)) NIL (|has| (-117) (-320)) ELT)) (-1328 (($) 16 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-1275 (((-117) $) 58 T ELT)) (-1731 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3769 (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 53 T ELT)) (-1329 (($) 15 T CONST)) (-3238 (($ $ $) 34 T ELT) (($ $ (-117)) NIL T ELT)) (-1466 (($ (-583 (-117))) NIL T ELT) (($) NIL T ELT)) (-1730 (((-694) (-1 (-85) (-117)) $) NIL T ELT) (((-694) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-1073) $) 39 T ELT) (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT) (((-583 (-117)) $) 37 T ELT)) (-3531 (($ (-583 (-117))) NIL T ELT)) (-1806 (($ $) 35 (|has| (-117) (-320)) ELT)) (-3947 (((-772) $) 51 T ELT)) (-1330 (($ (-1073)) 14 T ELT) (($ (-583 (-117))) 48 T ELT)) (-1807 (((-694) $) NIL T ELT)) (-3241 (($) 54 T ELT) (($ (-583 (-117))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 (-117))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-1326 (($) 21 T CONST)) (-1327 (($) 20 T CONST)) (-3057 (((-85) $ $) 26 T ELT)) (-3958 (((-694) $) 52 T ELT)))
+(((-114) (-13 (-1013) (-553 (-1073)) (-369 (-117)) (-553 (-583 (-117))) (-10 -8 (-15 -1330 ($ (-1073))) (-15 -1330 ($ (-583 (-117)))) (-15 -1329 ($) -3953) (-15 -1328 ($) -3953) (-15 -3428 ($) -3953) (-15 -3430 ($) -3953) (-15 -1327 ($) -3953) (-15 -1326 ($) -3953)))) (T -114))
+((-1330 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114)))) (-1329 (*1 *1) (-5 *1 (-114))) (-1328 (*1 *1) (-5 *1 (-114))) (-3428 (*1 *1) (-5 *1 (-114))) (-3430 (*1 *1) (-5 *1 (-114))) (-1327 (*1 *1) (-5 *1 (-114))) (-1326 (*1 *1) (-5 *1 (-114))))
+((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3740 ((|#1| |#3|) 9 T ELT)) (-3741 ((|#3| |#3|) 15 T ELT)))
+(((-115 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-324 |#2|)) (T -115))
+((-3742 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2)) (-4 *2 (-324 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3)) (-4 *3 (-324 *4)))))
+((-1369 (($ $ $) 8 T ELT)) (-1367 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT)))
(((-116) (-113)) (T -116))
-((-1370 (*1 *1 *1 *1) (-4 *1 (-116))) (-1368 (*1 *1 *1) (-4 *1 (-116))) (-3103 (*1 *1 *1 *1) (-4 *1 (-116))))
-(-13 (-10 -8 (-15 -3103 ($ $ $)) (-15 -1368 ($ $)) (-15 -1370 ($ $ $))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1339 (($) 30 T CONST)) (-1334 (((-85) $) 42 T ELT)) (-3429 (($ $) 52 T ELT)) (-1346 (($) 23 T CONST)) (-1519 (($) 21 T CONST)) (-3138 (((-695)) 13 T ELT)) (-2996 (($) 20 T ELT)) (-2581 (($) 22 T CONST)) (-1348 (((-695) $) 17 T ELT)) (-1345 (($) 24 T CONST)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1333 (((-85) $) 44 T ELT)) (-3431 (($ $) 53 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-1343 (($) 26 T CONST)) (-3244 (((-1074) $) 50 T ELT)) (-2401 (($ (-831)) 16 T ELT)) (-1340 (($) 29 T CONST)) (-1336 (((-85) $) 40 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1342 (($) 27 T CONST)) (-1338 (($) 31 T CONST)) (-1337 (((-85) $) 38 T ELT)) (-3948 (((-773) $) 33 T ELT)) (-1347 (($ (-695)) 14 T ELT) (($ (-1074)) 51 T ELT)) (-1344 (($) 25 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1341 (($) 28 T CONST)) (-1332 (((-85) $) 48 T ELT)) (-1335 (((-85) $) 46 T ELT)) (-2568 (((-85) $ $) 11 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 10 T ELT)) (-2687 (((-85) $ $) 8 T ELT)))
-(((-117) (-13 (-753) (-10 -8 (-15 -1348 ((-695) $)) (-15 -1347 ($ (-695))) (-15 -1347 ($ (-1074))) (-15 -1519 ($) -3954) (-15 -2581 ($) -3954) (-15 -1346 ($) -3954) (-15 -1345 ($) -3954) (-15 -1344 ($) -3954) (-15 -1343 ($) -3954) (-15 -1342 ($) -3954) (-15 -1341 ($) -3954) (-15 -1340 ($) -3954) (-15 -1339 ($) -3954) (-15 -1338 ($) -3954) (-15 -3429 ($ $)) (-15 -3431 ($ $)) (-15 -1337 ((-85) $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $))))) (T -117))
-((-1348 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117)))) (-1519 (*1 *1) (-5 *1 (-117))) (-2581 (*1 *1) (-5 *1 (-117))) (-1346 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-3429 (*1 *1 *1) (-5 *1 (-117))) (-3431 (*1 *1 *1) (-5 *1 (-117))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-2704 (((-633 $) $) 47 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-1369 (*1 *1 *1 *1) (-4 *1 (-116))) (-1367 (*1 *1 *1) (-4 *1 (-116))) (-3102 (*1 *1 *1 *1) (-4 *1 (-116))))
+(-13 (-10 -8 (-15 -3102 ($ $ $)) (-15 -1367 ($ $)) (-15 -1369 ($ $ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1338 (($) 30 T CONST)) (-1333 (((-85) $) 42 T ELT)) (-3428 (($ $) 52 T ELT)) (-1345 (($) 23 T CONST)) (-1518 (($) 21 T CONST)) (-3137 (((-694)) 13 T ELT)) (-2995 (($) 20 T ELT)) (-2580 (($) 22 T CONST)) (-1347 (((-694) $) 17 T ELT)) (-1344 (($) 24 T CONST)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1332 (((-85) $) 44 T ELT)) (-3430 (($ $) 53 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-1342 (($) 26 T CONST)) (-3243 (((-1073) $) 50 T ELT)) (-2400 (($ (-830)) 16 T ELT)) (-1339 (($) 29 T CONST)) (-1335 (((-85) $) 40 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1341 (($) 27 T CONST)) (-1337 (($) 31 T CONST)) (-1336 (((-85) $) 38 T ELT)) (-3947 (((-772) $) 33 T ELT)) (-1346 (($ (-694)) 14 T ELT) (($ (-1073)) 51 T ELT)) (-1343 (($) 25 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1340 (($) 28 T CONST)) (-1331 (((-85) $) 48 T ELT)) (-1334 (((-85) $) 46 T ELT)) (-2567 (((-85) $ $) 11 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) 8 T ELT)))
+(((-117) (-13 (-752) (-10 -8 (-15 -1347 ((-694) $)) (-15 -1346 ($ (-694))) (-15 -1346 ($ (-1073))) (-15 -1518 ($) -3953) (-15 -2580 ($) -3953) (-15 -1345 ($) -3953) (-15 -1344 ($) -3953) (-15 -1343 ($) -3953) (-15 -1342 ($) -3953) (-15 -1341 ($) -3953) (-15 -1340 ($) -3953) (-15 -1339 ($) -3953) (-15 -1338 ($) -3953) (-15 -1337 ($) -3953) (-15 -3428 ($ $)) (-15 -3430 ($ $)) (-15 -1336 ((-85) $)) (-15 -1335 ((-85) $)) (-15 -1334 ((-85) $)) (-15 -1333 ((-85) $)) (-15 -1332 ((-85) $)) (-15 -1331 ((-85) $))))) (T -117))
+((-1347 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))) (-1346 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117)))) (-1518 (*1 *1) (-5 *1 (-117))) (-2580 (*1 *1) (-5 *1 (-117))) (-1345 (*1 *1) (-5 *1 (-117))) (-1344 (*1 *1) (-5 *1 (-117))) (-1343 (*1 *1) (-5 *1 (-117))) (-1342 (*1 *1) (-5 *1 (-117))) (-1341 (*1 *1) (-5 *1 (-117))) (-1340 (*1 *1) (-5 *1 (-117))) (-1339 (*1 *1) (-5 *1 (-117))) (-1338 (*1 *1) (-5 *1 (-117))) (-1337 (*1 *1) (-5 *1 (-117))) (-3428 (*1 *1 *1) (-5 *1 (-117))) (-3430 (*1 *1 *1) (-5 *1 (-117))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))) (-1331 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-2703 (((-632 $) $) 47 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-118) (-113)) (T -118))
-((-2704 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)))))
-(-13 (-962) (-10 -8 (-15 -2704 ((-633 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2451 ((|#1| (-631 |#1|) |#1|) 19 T ELT)))
-(((-119 |#1|) (-10 -7 (-15 -2451 (|#1| (-631 |#1|) |#1|))) (-146)) (T -119))
-((-2451 (*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-2703 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)))))
+(-13 (-961) (-10 -8 (-15 -2703 ((-632 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2450 ((|#1| (-630 |#1|) |#1|) 19 T ELT)))
+(((-119 |#1|) (-10 -7 (-15 -2450 (|#1| (-630 |#1|) |#1|))) (-146)) (T -119))
+((-2450 (*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-120) (-113)) (T -120))
NIL
-(-13 (-962))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1351 (((-2 (|:| -2402 (-695)) (|:| -3956 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695)) 76 T ELT)) (-1350 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|) 56 T ELT)) (-1349 (((-2 (|:| -3956 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1352 ((|#1| |#3| |#3|) 44 T ELT)) (-3770 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|) 53 T ELT)))
-(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1349 ((-2 (|:| -3956 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1350 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-695))) "failed") |#3|)) (-15 -1351 ((-2 (|:| -2402 (-695)) (|:| -3956 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-695))) (-15 -1352 (|#1| |#3| |#3|)) (-15 -3770 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-695))) |#3| |#3|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|))) (T -121))
-((-1353 (*1 *2 *3 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-3770 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))) (-1350 (*1 *2 *3) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -3956 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))))
-((-2706 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 35 T ELT)))
-(((-122 |#1| |#2|) (-10 -7 (-15 -2706 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)))) (-484) (-139 |#1|)) (T -122))
-((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4)) (-4 *4 (-484)) (-5 *1 (-122 *4 *5)))))
-((-3712 (($ (-1 (-85) |#2|) $) 19 T ELT)) (-1354 (($ $) 24 T ELT)) (-3408 (($ (-1 (-85) |#2|) $) 17 T ELT) (($ |#2| $) 22 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 14 T ELT)))
-(((-123 |#1| |#2|) (-10 -7 (-15 -1354 (|#1| |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -3712 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1130)) (T -123))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 39 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 37 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 40 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 35 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 41 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-124 |#1|) (-113) (-1130)) (T -124))
-((-3532 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3)))) (-1355 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1130)))) (-3408 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-1354 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))))
-(-13 (-429 |t#1|) (-10 -8 (-15 -3532 ($ (-584 |t#1|))) (-15 -1355 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3712 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3408 ($ |t#1| $)) (-15 -1354 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 113 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-584 (-831))) 72 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1356 (($ (-831)) 58 T ELT)) (-3913 (((-107)) 23 T ELT)) (-3948 (((-773) $) 88 T ELT) (($ (-485)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3679 ((|#2| $ (-584 (-831))) 75 T ELT)) (-3128 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 48 T CONST)) (-2668 (($) 52 T CONST)) (-3058 (((-85) $ $) 34 T ELT)) (-3951 (($ $ |#2|) NIL T ELT)) (-3839 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3841 (($ $ $) 39 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-125 |#1| |#2| |#3|) (-13 (-962) (-38 |#2|) (-1188 |#2|) (-10 -8 (-15 -1356 ($ (-831))) (-15 -2895 ($ |#2| (-584 (-831)))) (-15 -3679 (|#2| $ (-584 (-831)))) (-15 -3469 ((-3 $ "failed") $)))) (-831) (-312) (-907 |#1| |#2|)) (T -125))
-((-3469 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312)) (-14 *4 (-907 *2 *3)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-907 *3 *4)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-4 *2 (-312)) (-14 *5 (-907 *4 *2)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831)) (-14 *5 (-907 *4 *2)))))
-((-1358 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1357 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 95 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 96 T ELT)) (-1511 (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485))) 89 T ELT) (((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837)) 90 T ELT)))
-(((-126) (-10 -7 (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837))) (-15 -1357 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-837) (-350 (-485)) (-350 (-485)))) (-15 -1358 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-855 (-179))))) (-15 -1511 ((-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))) (-584 (-584 (-855 (-179)))))))) (T -126))
-((-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179))))))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179)))))) (-1358 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4)) (|:| |yValues| (-1002 *4)))) (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))) (-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485))) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| |brans| (-584 (-584 (-855 (-179))))) (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179))))) (-5 *1 (-126)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-584 (-1050)) $) 20 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-127) (-13 (-996) (-10 -8 (-15 -3183 ((-584 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -127))
-((-3183 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127)))))
-((-1411 (((-584 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
-(((-128 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#2|)) |#1| |#2|))) (-1156 (-142 (-485))) (-13 (-312) (-756))) (T -128))
-((-1411 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1131) $) 13 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-129) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1131) $))))) (T -129))
-((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1360 (($) 38 T ELT)) (-3100 (($) 37 T ELT)) (-1359 (((-831)) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-485) $) 41 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3099 (($) 39 T ELT)) (-2957 (($ (-485)) 44 T ELT)) (-3948 (((-773) $) 50 T ELT)) (-3098 (($) 40 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-3841 (($ $ $) 32 T ELT)) (* (($ (-831) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
-(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-831) $)) (-15 * ($ (-179) $)) (-15 -3841 ($ $ $)) (-15 -3100 ($)) (-15 -1360 ($)) (-15 -3099 ($)) (-15 -3098 ($)) (-15 -2958 ((-485) $)) (-15 -1359 ((-831))) (-15 -2957 ($ (-485)))))) (T -130))
-((-3841 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3100 (*1 *1) (-5 *1 (-130))) (-1360 (*1 *1) (-5 *1 (-130))) (-3099 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130)))) (-1359 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130)))))
-((-1373 ((|#2| |#2| (-1005 |#2|)) 98 T ELT) ((|#2| |#2| (-1091)) 75 T ELT)) (-3946 ((|#2| |#2| (-1005 |#2|)) 97 T ELT) ((|#2| |#2| (-1091)) 74 T ELT)) (-1370 ((|#2| |#2| |#2|) 25 T ELT)) (-3597 (((-86) (-86)) 111 T ELT)) (-1367 ((|#2| (-584 |#2|)) 130 T ELT)) (-1364 ((|#2| (-584 |#2|)) 150 T ELT)) (-1363 ((|#2| (-584 |#2|)) 138 T ELT)) (-1361 ((|#2| |#2|) 136 T ELT)) (-1365 ((|#2| (-584 |#2|)) 124 T ELT)) (-1366 ((|#2| (-584 |#2|)) 125 T ELT)) (-1362 ((|#2| (-584 |#2|)) 148 T ELT)) (-1374 ((|#2| |#2| (-1091)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1368 ((|#2| |#2|) 21 T ELT)) (-3103 ((|#2| |#2| |#2|) 24 T ELT)) (-2255 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
-(((-131 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3103 (|#2| |#2| |#2|)) (-15 -1370 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -1374 (|#2| |#2|)) (-15 -1374 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1091))) (-15 -1373 (|#2| |#2| (-1005 |#2|))) (-15 -3946 (|#2| |#2| (-1091))) (-15 -3946 (|#2| |#2| (-1005 |#2|))) (-15 -1361 (|#2| |#2|)) (-15 -1362 (|#2| (-584 |#2|))) (-15 -1363 (|#2| (-584 |#2|))) (-15 -1364 (|#2| (-584 |#2|))) (-15 -1365 (|#2| (-584 |#2|))) (-15 -1366 (|#2| (-584 |#2|))) (-15 -1367 (|#2| (-584 |#2|)))) (-496) (-364 |#1|)) (T -131))
-((-1367 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-496)))) (-1361 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-3946 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1374 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1370 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3103 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4)))))
-((-1372 ((|#1| |#1| |#1|) 66 T ELT)) (-1371 ((|#1| |#1| |#1|) 63 T ELT)) (-1370 ((|#1| |#1| |#1|) 57 T ELT)) (-2892 ((|#1| |#1|) 43 T ELT)) (-1369 ((|#1| |#1| (-584 |#1|)) 55 T ELT)) (-1368 ((|#1| |#1|) 47 T ELT)) (-3103 ((|#1| |#1| |#1|) 51 T ELT)))
-(((-132 |#1|) (-10 -7 (-15 -3103 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -1369 (|#1| |#1| (-584 |#1|))) (-15 -2892 (|#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|)) (-15 -1372 (|#1| |#1| |#1|))) (-484)) (T -132))
-((-1372 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-2892 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-1369 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))) (-1368 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))) (-3103 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
-((-1373 (($ $ (-1091)) 12 T ELT) (($ $ (-1005 $)) 11 T ELT)) (-3946 (($ $ (-1091)) 10 T ELT) (($ $ (-1005 $)) 9 T ELT)) (-1370 (($ $ $) 8 T ELT)) (-1374 (($ $) 14 T ELT) (($ $ (-1091)) 13 T ELT)) (-1368 (($ $) 7 T ELT)) (-3103 (($ $ $) 6 T ELT)))
+(-13 (-961))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-1350 (((-2 (|:| -2401 (-694)) (|:| -3955 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-694)) 76 T ELT)) (-1349 (((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-694))) "failed") |#3|) 56 T ELT)) (-1348 (((-2 (|:| -3955 (-350 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1351 ((|#1| |#3| |#3|) 44 T ELT)) (-3769 ((|#3| |#3| (-350 |#2|) (-350 |#2|)) 20 T ELT)) (-1352 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-694))) |#3| |#3|) 53 T ELT)))
+(((-121 |#1| |#2| |#3|) (-10 -7 (-15 -1348 ((-2 (|:| -3955 (-350 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1349 ((-3 (-2 (|:| |radicand| (-350 |#2|)) (|:| |deg| (-694))) "failed") |#3|)) (-15 -1350 ((-2 (|:| -2401 (-694)) (|:| -3955 (-350 |#2|)) (|:| |radicand| |#2|)) (-350 |#2|) (-694))) (-15 -1351 (|#1| |#3| |#3|)) (-15 -3769 (|#3| |#3| (-350 |#2|) (-350 |#2|))) (-15 -1352 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| |deg| (-694))) |#3| |#3|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|))) (T -121))
+((-1352 (*1 *2 *3 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5)) (|:| |c2| (-350 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-3769 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| *6))) (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1155 *3)))) (-1349 (*1 *2 *3) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-694)))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))) (-1348 (*1 *2 *3) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -3955 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
+((-2705 (((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)) 35 T ELT)))
+(((-122 |#1| |#2|) (-10 -7 (-15 -2705 ((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)))) (-483) (-139 |#1|)) (T -122))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4)) (-4 *4 (-483)) (-5 *1 (-122 *4 *5)))))
+((-3711 (($ (-1 (-85) |#2|) $) 19 T ELT)) (-1353 (($ $) 24 T ELT)) (-3407 (($ (-1 (-85) |#2|) $) 17 T ELT) (($ |#2| $) 22 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 14 T ELT)))
+(((-123 |#1| |#2|) (-10 -7 (-15 -1353 (|#1| |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|))) (-124 |#2|) (-1129)) (T -123))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 38 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 36 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 39 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 37 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 40 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 35 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 41 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-124 |#1|) (-113) (-1129)) (T -124))
+((-3531 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3)))) (-1354 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3)) (-4 *3 (-1129)))) (-3407 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-72)))) (-1353 (*1 *1 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-72)))))
+(-13 (-429 |t#1|) (-10 -8 (-15 -3531 ($ (-583 |t#1|))) (-15 -1354 ((-3 |t#1| "failed") (-1 (-85) |t#1|) $)) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3407 ($ |t#1| $)) (-15 -1353 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 113 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-583 (-830))) 72 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1355 (($ (-830)) 58 T ELT)) (-3912 (((-107)) 23 T ELT)) (-3947 (((-772) $) 88 T ELT) (($ (-484)) 54 T ELT) (($ |#2|) 55 T ELT)) (-3678 ((|#2| $ (-583 (-830))) 75 T ELT)) (-3127 (((-694)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 48 T CONST)) (-2667 (($) 52 T CONST)) (-3057 (((-85) $ $) 34 T ELT)) (-3950 (($ $ |#2|) NIL T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 41 T ELT)) (-3840 (($ $ $) 39 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 45 T ELT) (($ $ $) 64 T ELT) (($ |#2| $) 47 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-125 |#1| |#2| |#3|) (-13 (-961) (-38 |#2|) (-1187 |#2|) (-10 -8 (-15 -1355 ($ (-830))) (-15 -2894 ($ |#2| (-583 (-830)))) (-15 -3678 (|#2| $ (-583 (-830)))) (-15 -3468 ((-3 $ "failed") $)))) (-830) (-312) (-906 |#1| |#2|)) (T -125))
+((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312)) (-14 *4 (-906 *2 *3)))) (-1355 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312)) (-14 *5 (-906 *3 *4)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-4 *2 (-312)) (-14 *5 (-906 *4 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830)) (-14 *5 (-906 *4 *2)))))
+((-1357 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179)) 59 T ELT)) (-1356 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484))) 95 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 96 T ELT)) (-1510 (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179))))) 99 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179)))) 98 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484))) 89 T ELT) (((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836)) 90 T ELT)))
+(((-126) (-10 -7 (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484)))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836))) (-15 -1356 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-836) (-350 (-484)) (-350 (-484)))) (-15 -1357 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))) (-179) (-179) (-179) (-179))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-854 (-179))))) (-15 -1510 ((-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))) (-583 (-583 (-854 (-179)))))))) (T -126))
+((-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179))))))) (-1510 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179)))))) (-1357 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-179)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4)) (|:| |yValues| (-1001 *4)))) (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))) (-1356 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1356 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-836)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-854 (-179))))) (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179))))) (-5 *1 (-126)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3182 (((-583 (-1049)) $) 20 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-127) (-13 (-995) (-10 -8 (-15 -3182 ((-583 (-1049)) $)) (-15 -3234 ((-1049) $))))) (T -127))
+((-3182 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-127)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127)))))
+((-1410 (((-583 (-142 |#2|)) |#1| |#2|) 50 T ELT)))
+(((-128 |#1| |#2|) (-10 -7 (-15 -1410 ((-583 (-142 |#2|)) |#1| |#2|))) (-1155 (-142 (-484))) (-13 (-312) (-755))) (T -128))
+((-1410 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4)) (-4 *3 (-1155 (-142 (-484)))) (-4 *4 (-13 (-312) (-755))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1130) $) 13 T ELT)) (-3530 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-129) (-13 (-995) (-10 -8 (-15 -3530 ((-1049) $)) (-15 -3529 ((-1130) $))))) (T -129))
+((-3530 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1359 (($) 38 T ELT)) (-3099 (($) 37 T ELT)) (-1358 (((-830)) 43 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2957 (((-484) $) 41 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3098 (($) 39 T ELT)) (-2956 (($ (-484)) 44 T ELT)) (-3947 (((-772) $) 50 T ELT)) (-3097 (($) 40 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-3840 (($ $ $) 32 T ELT)) (* (($ (-830) $) 42 T ELT) (($ (-179) $) 11 T ELT)))
+(((-130) (-13 (-25) (-10 -8 (-15 * ($ (-830) $)) (-15 * ($ (-179) $)) (-15 -3840 ($ $ $)) (-15 -3099 ($)) (-15 -1359 ($)) (-15 -3098 ($)) (-15 -3097 ($)) (-15 -2957 ((-484) $)) (-15 -1358 ((-830))) (-15 -2956 ($ (-484)))))) (T -130))
+((-3840 (*1 *1 *1 *1) (-5 *1 (-130))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130)))) (-3099 (*1 *1) (-5 *1 (-130))) (-1359 (*1 *1) (-5 *1 (-130))) (-3098 (*1 *1) (-5 *1 (-130))) (-3097 (*1 *1) (-5 *1 (-130))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130)))) (-1358 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))) (-2956 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130)))))
+((-1372 ((|#2| |#2| (-1004 |#2|)) 98 T ELT) ((|#2| |#2| (-1090)) 75 T ELT)) (-3945 ((|#2| |#2| (-1004 |#2|)) 97 T ELT) ((|#2| |#2| (-1090)) 74 T ELT)) (-1369 ((|#2| |#2| |#2|) 25 T ELT)) (-3596 (((-86) (-86)) 111 T ELT)) (-1366 ((|#2| (-583 |#2|)) 130 T ELT)) (-1363 ((|#2| (-583 |#2|)) 150 T ELT)) (-1362 ((|#2| (-583 |#2|)) 138 T ELT)) (-1360 ((|#2| |#2|) 136 T ELT)) (-1364 ((|#2| (-583 |#2|)) 124 T ELT)) (-1365 ((|#2| (-583 |#2|)) 125 T ELT)) (-1361 ((|#2| (-583 |#2|)) 148 T ELT)) (-1373 ((|#2| |#2| (-1090)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1367 ((|#2| |#2|) 21 T ELT)) (-3102 ((|#2| |#2| |#2|) 24 T ELT)) (-2254 (((-85) (-86)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
+(((-131 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 ** (|#2| |#2| |#2|)) (-15 -3102 (|#2| |#2| |#2|)) (-15 -1369 (|#2| |#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -1373 (|#2| |#2|)) (-15 -1373 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1090))) (-15 -1372 (|#2| |#2| (-1004 |#2|))) (-15 -3945 (|#2| |#2| (-1090))) (-15 -3945 (|#2| |#2| (-1004 |#2|))) (-15 -1360 (|#2| |#2|)) (-15 -1361 (|#2| (-583 |#2|))) (-15 -1362 (|#2| (-583 |#2|))) (-15 -1363 (|#2| (-583 |#2|))) (-15 -1364 (|#2| (-583 |#2|))) (-15 -1365 (|#2| (-583 |#2|))) (-15 -1366 (|#2| (-583 |#2|)))) (-495) (-364 |#1|)) (T -131))
+((-1366 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1362 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2)) (-4 *4 (-495)))) (-1360 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)))) (-1372 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4)))) (-1373 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-1369 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3102 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5)) (-4 *5 (-364 *4)))))
+((-1371 ((|#1| |#1| |#1|) 66 T ELT)) (-1370 ((|#1| |#1| |#1|) 63 T ELT)) (-1369 ((|#1| |#1| |#1|) 57 T ELT)) (-2891 ((|#1| |#1|) 43 T ELT)) (-1368 ((|#1| |#1| (-583 |#1|)) 55 T ELT)) (-1367 ((|#1| |#1|) 47 T ELT)) (-3102 ((|#1| |#1| |#1|) 51 T ELT)))
+(((-132 |#1|) (-10 -7 (-15 -3102 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -1368 (|#1| |#1| (-583 |#1|))) (-15 -2891 (|#1| |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1371 (|#1| |#1| |#1|))) (-483)) (T -132))
+((-1371 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1370 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1369 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-2891 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-1368 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))) (-1367 (*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))) (-3102 (*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+((-1372 (($ $ (-1090)) 12 T ELT) (($ $ (-1004 $)) 11 T ELT)) (-3945 (($ $ (-1090)) 10 T ELT) (($ $ (-1004 $)) 9 T ELT)) (-1369 (($ $ $) 8 T ELT)) (-1373 (($ $) 14 T ELT) (($ $ (-1090)) 13 T ELT)) (-1367 (($ $) 7 T ELT)) (-3102 (($ $ $) 6 T ELT)))
(((-133) (-113)) (T -133))
-((-1374 (*1 *1 *1) (-4 *1 (-133))) (-1374 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))) (-3946 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133)))))
-(-13 (-116) (-10 -8 (-15 -1374 ($ $)) (-15 -1374 ($ $ (-1091))) (-15 -1373 ($ $ (-1091))) (-15 -1373 ($ $ (-1005 $))) (-15 -3946 ($ $ (-1091))) (-15 -3946 ($ $ (-1005 $)))))
+((-1373 (*1 *1 *1) (-4 *1 (-133))) (-1373 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))) (-3945 (*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133)))))
+(-13 (-116) (-10 -8 (-15 -1373 ($ $)) (-15 -1373 ($ $ (-1090))) (-15 -1372 ($ $ (-1090))) (-15 -1372 ($ $ (-1004 $))) (-15 -3945 ($ $ (-1090))) (-15 -3945 ($ $ (-1004 $)))))
(((-116) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-1375 (($ (-485)) 15 T ELT) (($ $ $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)))
-(((-134) (-13 (-1014) (-10 -8 (-15 -1375 ($ (-485))) (-15 -1375 ($ $ $))))) (T -134))
-((-1375 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))) (-1375 (*1 *1 *1 *1) (-5 *1 (-134))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-135) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $))))) (T -135))
-((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135)))))
-((-3597 (((-86) (-1091)) 103 T ELT)))
-(((-136) (-10 -7 (-15 -3597 ((-86) (-1091))))) (T -136))
-((-3597 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136)))))
-((-1596 ((|#3| |#3|) 19 T ELT)))
-(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1596 (|#3| |#3|))) (-962) (-1156 |#1|) (-1156 |#2|)) (T -137))
-((-1596 (*1 *2 *2) (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1156 *4)))))
-((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 222 T ELT)) (-3332 ((|#2| $) 102 T ELT)) (-3494 (($ $) 255 T ELT)) (-3641 (($ $) 249 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 47 T ELT)) (-3492 (($ $) 253 T ELT)) (-3640 (($ $) 247 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2566 (($ $ $) 228 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 160 T ELT) (((-631 |#2|) (-631 $)) 154 T ELT)) (-3844 (($ (-1086 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1086 |#2|))) NIL T ELT)) (-3469 (((-3 $ #1#) $) 213 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 203 T ELT)) (-3025 (((-85) $) 198 T ELT)) (-3024 (((-350 (-485)) $) 201 T ELT)) (-3110 (((-831)) 96 T ELT)) (-2565 (($ $ $) 230 T ELT)) (-1376 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3629 (($) 244 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 192 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 197 T ELT)) (-3134 ((|#2| $) 100 T ELT)) (-2015 (((-1086 |#2|) $) 127 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3944 (($ $) 246 T ELT)) (-3081 (((-1086 |#2|) $) 126 T ELT)) (-2486 (($ $) 206 T ELT)) (-1378 (($) 103 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 95 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 64 T ELT)) (-3468 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3945 (($ $) 245 T ELT)) (-1608 (((-695) $) 225 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 234 T ELT)) (-3759 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3187 (((-1086 |#2|)) 120 T ELT)) (-3493 (($ $) 254 T ELT)) (-3636 (($ $) 248 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) 136 T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 116 T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT) (($ (-1086 |#2|)) NIL T ELT) (((-801 (-485)) $) 183 T ELT) (((-801 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-474) $) 179 T ELT)) (-3011 (($ $) 104 T ELT)) (-3948 (((-773) $) 143 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-2451 (((-1086 |#2|) $) 32 T ELT)) (-3128 (((-695)) 106 T CONST)) (-1266 (((-85) $ $) 13 T ELT)) (-3500 (($ $) 258 T ELT)) (-3488 (($ $) 252 T ELT)) (-3498 (($ $) 256 T ELT)) (-3486 (($ $) 250 T ELT)) (-2237 ((|#2| $) 241 T ELT)) (-3499 (($ $) 257 T ELT)) (-3487 (($ $) 251 T ELT)) (-3385 (($ $) 162 T ELT)) (-3058 (((-85) $ $) 110 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)))
-(((-138 |#1| |#2|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3948 (|#1| |#1|)) (-15 -3468 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-142 (-179)) |#1|)) (-15 -3974 ((-142 (-330)) |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3629 (|#1|)) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -3026 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -1376 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2237 (|#2| |#1|)) (-15 -3385 (|#1| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3011 (|#1| |#1|)) (-15 -1378 (|#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3844 ((-3 |#1| #1#) (-350 (-1086 |#2|)))) (-15 -3081 ((-1086 |#2|) |#1|)) (-15 -3974 (|#1| (-1086 |#2|))) (-15 -3844 (|#1| (-1086 |#2|))) (-15 -3187 ((-1086 |#2|))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 ((-1086 |#2|) |#1|)) (-15 -3759 (|#2|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -2451 ((-1086 |#2|) |#1|)) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -3134 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -3110 ((-831))) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3469 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
-((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3110 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3759 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3187 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2064 (($ $) 115 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2062 (((-85) $) 117 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-3494 (($ $) 250 (|has| |#1| (-1116)) ELT)) (-3641 (($ $) 233 (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3777 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3973 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) 263 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3138 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3492 (($ $) 249 (|has| |#1| (-1116)) ELT)) (-3640 (($ $) 234 (|has| |#1| (-1116)) ELT)) (-3496 (($ $) 248 (|has| |#1| (-1116)) ELT)) (-3639 (($ $) 235 (|has| |#1| (-1116)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3844 (($ (-1086 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1086 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 275 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 268 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 270 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 269 (|has| |#1| (-484)) ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-258)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3629 (($) 260 (|has| |#1| (-1116)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 283 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 282 (|has| |#1| (-797 (-330))) ELT)) (-3774 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 262 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3447 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3944 (($ $) 257 (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3448 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-1378 (($) 279 T ELT)) (-3646 ((|#1| $) 276 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3146 (($ (-584 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3734 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-258)) ELT)) (-3945 (($ $) 258 (|has| |#1| (-1116)) ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 286 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 285 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-258)) ELT)) (-3802 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1769 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 156 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) 179 T ELT)) (-3497 (($ $) 247 (|has| |#1| (-1116)) ELT)) (-3638 (($ $) 236 (|has| |#1| (-1116)) ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3495 (($ $) 246 (|has| |#1| (-1116)) ELT)) (-3637 (($ $) 237 (|has| |#1| (-1116)) ELT)) (-3493 (($ $) 245 (|has| |#1| (-1116)) ELT)) (-3636 (($ $) 238 (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) (((-1086 |#1|) $) 195 T ELT) (($ (-1086 |#1|)) 177 T ELT) (((-801 (-485)) $) 281 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 280 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-934)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-934)) ELT) (((-474) $) 230 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 278 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 277 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) 112 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (OR (-2564 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3500 (($ $) 256 (|has| |#1| (-1116)) ELT)) (-3488 (($ $) 244 (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) 116 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))) ELT)) (-3498 (($ $) 255 (|has| |#1| (-1116)) ELT)) (-3486 (($ $) 243 (|has| |#1| (-1116)) ELT)) (-3502 (($ $) 254 (|has| |#1| (-1116)) ELT)) (-3490 (($ $) 242 (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) 272 (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 253 (|has| |#1| (-1116)) ELT)) (-3491 (($ $) 241 (|has| |#1| (-1116)) ELT)) (-3501 (($ $) 252 (|has| |#1| (-1116)) ELT)) (-3489 (($ $) 240 (|has| |#1| (-1116)) ELT)) (-3499 (($ $) 251 (|has| |#1| (-1116)) ELT)) (-3487 (($ $) 239 (|has| |#1| (-1116)) ELT)) (-3385 (($ $) 273 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) 157 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2564 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2564 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-350 (-485))) 261 (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) 259 (|has| |#1| (-1116)) ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT)))
+((-2569 (((-85) $ $) NIL T ELT)) (-1374 (($ (-484)) 15 T ELT) (($ $ $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-134) (-13 (-1013) (-10 -8 (-15 -1374 ($ (-484))) (-15 -1374 ($ $ $))))) (T -134))
+((-1374 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))) (-1374 (*1 *1 *1 *1) (-5 *1 (-134))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-583 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-135) (-13 (-995) (-10 -8 (-15 -3234 ((-583 (-1049)) $))))) (T -135))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-135)))))
+((-3596 (((-86) (-1090)) 103 T ELT)))
+(((-136) (-10 -7 (-15 -3596 ((-86) (-1090))))) (T -136))
+((-3596 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136)))))
+((-1595 ((|#3| |#3|) 19 T ELT)))
+(((-137 |#1| |#2| |#3|) (-10 -7 (-15 -1595 (|#3| |#3|))) (-961) (-1155 |#1|) (-1155 |#2|)) (T -137))
+((-1595 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2)) (-4 *2 (-1155 *4)))))
+((-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 222 T ELT)) (-3331 ((|#2| $) 102 T ELT)) (-3493 (($ $) 255 T ELT)) (-3640 (($ $) 249 T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 47 T ELT)) (-3491 (($ $) 253 T ELT)) (-3639 (($ $) 247 T ELT)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2565 (($ $ $) 228 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 160 T ELT) (((-630 |#2|) (-630 $)) 154 T ELT)) (-3843 (($ (-1085 |#2|)) 125 T ELT) (((-3 $ #1#) (-350 (-1085 |#2|))) NIL T ELT)) (-3468 (((-3 $ #1#) $) 213 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 203 T ELT)) (-3024 (((-85) $) 198 T ELT)) (-3023 (((-350 (-484)) $) 201 T ELT)) (-3109 (((-830)) 96 T ELT)) (-2564 (($ $ $) 230 T ELT)) (-1375 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-3628 (($) 244 T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 192 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 197 T ELT)) (-3133 ((|#2| $) 100 T ELT)) (-2014 (((-1085 |#2|) $) 127 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-3943 (($ $) 246 T ELT)) (-3080 (((-1085 |#2|) $) 126 T ELT)) (-2485 (($ $) 206 T ELT)) (-1377 (($) 103 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 95 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 64 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-3944 (($ $) 245 T ELT)) (-1607 (((-694) $) 225 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 234 T ELT)) (-3758 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3186 (((-1085 |#2|)) 120 T ELT)) (-3492 (($ $) 254 T ELT)) (-3635 (($ $) 248 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) 136 T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 116 T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-3973 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT) (($ (-1085 |#2|)) NIL T ELT) (((-800 (-484)) $) 183 T ELT) (((-800 (-330)) $) 187 T ELT) (((-142 (-330)) $) 172 T ELT) (((-142 (-179)) $) 167 T ELT) (((-473) $) 179 T ELT)) (-3010 (($ $) 104 T ELT)) (-3947 (((-772) $) 143 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-2450 (((-1085 |#2|) $) 32 T ELT)) (-3127 (((-694)) 106 T CONST)) (-1265 (((-85) $ $) 13 T ELT)) (-3499 (($ $) 258 T ELT)) (-3487 (($ $) 252 T ELT)) (-3497 (($ $) 256 T ELT)) (-3485 (($ $) 250 T ELT)) (-2236 ((|#2| $) 241 T ELT)) (-3498 (($ $) 257 T ELT)) (-3486 (($ $) 251 T ELT)) (-3384 (($ $) 162 T ELT)) (-3057 (((-85) $ $) 110 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-350 (-484))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)))
+(((-138 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3947 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2064 ((-2 (|:| -1775 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -2880 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3973 ((-473) |#1|)) (-15 -3973 ((-142 (-179)) |#1|)) (-15 -3973 ((-142 (-330)) |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3628 (|#1|)) (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-583 (-1085 |#1|)) #1#) (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -3025 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3023 ((-350 (-484)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -1375 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2236 (|#2| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3010 (|#1| |#1|)) (-15 -1377 (|#1|)) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -2797 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -2797 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1#) (-350 (-1085 |#2|)))) (-15 -3080 ((-1085 |#2|) |#1|)) (-15 -3973 (|#1| (-1085 |#2|))) (-15 -3843 (|#1| (-1085 |#2|))) (-15 -3186 ((-1085 |#2|))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3973 ((-1085 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -3973 (|#1| (-1179 |#2|))) (-15 -3973 ((-1179 |#2|) |#1|)) (-15 -3225 ((-630 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -2014 ((-1085 |#2|) |#1|)) (-15 -2450 ((-1085 |#2|) |#1|)) (-15 -3758 (|#2| (-1179 |#1|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -3133 (|#2| |#1|)) (-15 -3331 (|#2| |#1|)) (-15 -3109 ((-830))) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-694)) -3953) (-15 -3947 (|#1| (-484))) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-139 |#2|) (-146)) (T -138))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3109 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))) (-3758 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2)))) (-3186 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2063 (($ $) 115 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2061 (((-85) $) 117 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1785 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-3493 (($ $) 250 (|has| |#1| (-1115)) ELT)) (-3640 (($ $) 233 (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 264 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3776 (($ $) 134 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3972 (((-348 $) $) 135 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) 263 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-2705 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 267 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-258)) ELT)) (-3137 (((-694)) 108 (|has| |#1| (-320)) ELT)) (-3491 (($ $) 249 (|has| |#1| (-1115)) ELT)) (-3639 (($ $) 234 (|has| |#1| (-1115)) ELT)) (-3495 (($ $) 248 (|has| |#1| (-1115)) ELT)) (-3638 (($ $) 235 (|has| |#1| (-1115)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-258)) ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3843 (($ (-1085 |#1|)) 178 T ELT) (((-3 $ "failed") (-350 (-1085 |#1|))) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 275 T ELT)) (-3025 (((-3 (-350 (-484)) "failed") $) 268 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 270 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 269 (|has| |#1| (-483)) ELT)) (-3109 (((-830)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-258)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1767 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 271 (-12 (|has| |#1| (-973)) (|has| |#1| (-1115))) ELT)) (-3628 (($) 260 (|has| |#1| (-1115)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 283 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 282 (|has| |#1| (-796 (-330))) ELT)) (-3773 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 262 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3446 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-258)) ELT)) (-2014 (((-1085 |#1|) $) 59 (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 284 T ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-320)) ELT)) (-3943 (($ $) 257 (|has| |#1| (-1115)) ELT)) (-3080 (((-1085 |#1|) $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-630 |#1|) (-1179 $)) 181 T ELT)) (-1894 (($ (-583 $)) 121 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 120 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-320)) ELT)) (-1377 (($) 279 T ELT)) (-3645 ((|#1| $) 276 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3145 (($ (-583 $)) 119 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT) (($ $ $) 118 (OR (|has| |#1| (-258)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 266 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 265 (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3733 (((-348 $) $) 133 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 274 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 113 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-258)) ELT)) (-3944 (($ $) 258 (|has| |#1| (-1115)) ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) 290 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 289 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 288 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 287 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 286 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 285 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) 126 (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) 291 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1768 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 145 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) 149 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) 148 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) 146 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) 156 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 (((-1085 |#1|)) 179 T ELT)) (-3496 (($ $) 247 (|has| |#1| (-1115)) ELT)) (-3637 (($ $) 236 (|has| |#1| (-1115)) ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3494 (($ $) 246 (|has| |#1| (-1115)) ELT)) (-3636 (($ $) 237 (|has| |#1| (-1115)) ELT)) (-3492 (($ $) 245 (|has| |#1| (-1115)) ELT)) (-3635 (($ $) 238 (|has| |#1| (-1115)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3973 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) (((-1085 |#1|) $) 195 T ELT) (($ (-1085 |#1|)) 177 T ELT) (((-800 (-484)) $) 281 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 280 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-142 (-330)) $) 232 (|has| |#1| (-933)) ELT) (((-142 (-179)) $) 231 (|has| |#1| (-933)) ELT) (((-473) $) 230 (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) 278 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 165 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 277 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) 112 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (OR (-2563 (|has| $ (-118)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) (|has| |#1| (-118))) ELT)) (-2450 (((-1085 |#1|) $) 60 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-3499 (($ $) 256 (|has| |#1| (-1115)) ELT)) (-3487 (($ $) 244 (|has| |#1| (-1115)) ELT)) (-2062 (((-85) $ $) 116 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))) ELT)) (-3497 (($ $) 255 (|has| |#1| (-1115)) ELT)) (-3485 (($ $) 243 (|has| |#1| (-1115)) ELT)) (-3501 (($ $) 254 (|has| |#1| (-1115)) ELT)) (-3489 (($ $) 242 (|has| |#1| (-1115)) ELT)) (-2236 ((|#1| $) 272 (|has| |#1| (-1115)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 253 (|has| |#1| (-1115)) ELT)) (-3490 (($ $) 241 (|has| |#1| (-1115)) ELT)) (-3500 (($ $) 252 (|has| |#1| (-1115)) ELT)) (-3488 (($ $) 240 (|has| |#1| (-1115)) ELT)) (-3498 (($ $) 251 (|has| |#1| (-1115)) ELT)) (-3486 (($ $) 239 (|has| |#1| (-1115)) ELT)) (-3384 (($ $) 273 (|has| |#1| (-973)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 143 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) 152 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) 151 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) 147 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) 157 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-312)) (|has| |#1| (-189))) (-2563 (|has| |#1| (-312)) (|has| |#1| (-190))) (|has| |#1| (-189)) (-2563 (|has| |#1| (-189)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-350 (-484))) 261 (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT) (($ $ $) 259 (|has| |#1| (-1115)) ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| |#1| (-312)) ELT)))
(((-139 |#1|) (-113) (-146)) (T -139))
-((-3134 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1378 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3011 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-3385 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))))
-(-13 (-662 |t#1| (-1086 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-795 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1377) (-15 -1378 ($)) (-15 -3011 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -3646 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -3134 (|t#1| $)) (IF (|has| |t#1| (-496)) (PROGN (-6 (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3996)) (-6 -3996) |%noBranch|) (IF (|has| |t#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-934)) (PROGN (-6 (-554 (-142 (-179)))) (-6 (-554 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1116)) (PROGN (-6 (-1116)) (-15 -2237 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -1376 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-822)) (IF (|has| |t#1| (-258)) (-6 (-822)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1116)) ((-66) |has| |#1| (-1116)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-553 (-773)) . T) ((-146) . T) ((-554 (-142 (-179))) |has| |#1| (-934)) ((-554 (-142 (-330))) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-554 (-1086 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1116)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1086 |#1|)) . T) ((-353 |#1| (-1086 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1116)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-662 |#1| (-1086 |#1|)) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) -12 (|has| |#1| (-258)) (|has| |#1| (-822))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1116) |has| |#1| (-1116)) ((-1119) |has| |#1| (-1116)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-822)))))
-((-3734 (((-348 |#2|) |#2|) 67 T ELT)))
-(((-140 |#1| |#2|) (-10 -7 (-15 -3734 ((-348 |#2|) |#2|))) (-258) (-1156 (-142 |#1|))) (T -140))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1156 (-142 *4))))))
-((-1381 (((-1050) (-1050) (-247)) 8 T ELT)) (-1379 (((-584 (-633 (-235))) (-1074)) 81 T ELT)) (-1380 (((-633 (-235)) (-1050)) 76 T ELT)))
-(((-141) (-13 (-1130) (-10 -7 (-15 -1381 ((-1050) (-1050) (-247))) (-15 -1380 ((-633 (-235)) (-1050))) (-15 -1379 ((-584 (-633 (-235))) (-1074)))))) (T -141))
-((-1381 (*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1380 (*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-1786 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3641 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3777 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3973 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-3039 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3496 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3844 (($ (-1086 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1086 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 20 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-258)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1376 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-974)) (|has| |#1| (-1116))) ELT)) (-3629 (($) NIL (|has| |#1| (-1116)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-3013 (($ $ (-485)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT)) (-3134 ((|#1| $) 30 T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-2015 (((-1086 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3081 (((-1086 |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3448 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1378 (($) NIL T ELT)) (-3646 ((|#1| $) 21 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-258)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) ELT)) (-3734 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-312))) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-258)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-258)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3759 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT) (($ (-1086 |#1|)) NIL T ELT) (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-934)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-934)) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 29 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-299))) ELT)) (-1377 (($ |#1| |#1|) 19 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-2451 (((-1086 |#1|) $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-822))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3502 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-2237 ((|#1| $) NIL (|has| |#1| (-1116)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1116)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-350 (-485))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1116))) ELT) (($ $ $) NIL (|has| |#1| (-1116)) ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT)))
+((-3133 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1377 (*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3010 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-1376 (*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1115)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))))
+(-13 (-661 |t#1| (-1085 |t#1|)) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-343 |t#1|) (-794 |t#1|) (-329 |t#1|) (-146) (-10 -8 (-6 -1376) (-15 -1377 ($)) (-15 -3010 ($ $)) (-15 -1376 ($ |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (-15 -3644 (|t#1| $)) (-15 -3133 (|t#1| $)) (IF (|has| |t#1| (-495)) (PROGN (-6 (-495)) (-15 -3467 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-258)) (-6 (-258)) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-6 -3992)) (-6 -3992) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-553 (-142 (-179)))) (-6 (-553 (-142 (-330))))) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3384 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1115)) (PROGN (-6 (-1115)) (-15 -2236 (|t#1| $)) (IF (|has| |t#1| (-915)) (-6 (-915)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -1375 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-821)) (IF (|has| |t#1| (-258)) (-6 (-821)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-35) |has| |#1| (-1115)) ((-66) |has| |#1| (-1115)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-552 (-772)) . T) ((-146) . T) ((-553 (-142 (-179))) |has| |#1| (-933)) ((-553 (-142 (-330))) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-553 (-1085 |#1|)) . T) ((-186 $) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) OR (|has| |#1| (-299)) (|has| |#1| (-190))) ((-189) OR (|has| |#1| (-299)) (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-239) |has| |#1| (-1115)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| (-1085 |#1|)) . T) ((-353 |#1| (-1085 |#1|)) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-433) |has| |#1| (-1115)) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-661 |#1| (-1085 |#1|)) . T) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) -12 (|has| |#1| (-258)) (|has| |#1| (-821))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (|has| |#1| (-258))) ((-915) -12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-299)) ((-1115) |has| |#1| (-1115)) ((-1118) |has| |#1| (-1115)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312)) (-12 (|has| |#1| (-258)) (|has| |#1| (-821)))))
+((-3733 (((-348 |#2|) |#2|) 67 T ELT)))
+(((-140 |#1| |#2|) (-10 -7 (-15 -3733 ((-348 |#2|) |#2|))) (-258) (-1155 (-142 |#1|))) (T -140))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+((-1380 (((-1049) (-1049) (-247)) 8 T ELT)) (-1378 (((-583 (-632 (-235))) (-1073)) 81 T ELT)) (-1379 (((-632 (-235)) (-1049)) 76 T ELT)))
+(((-141) (-13 (-1129) (-10 -7 (-15 -1380 ((-1049) (-1049) (-247))) (-15 -1379 ((-632 (-235)) (-1049))) (-15 -1378 ((-583 (-632 (-235))) (-1073)))))) (T -141))
+((-1380 (*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))) (-1378 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-1785 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3640 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3776 (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3972 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-3038 (($ $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-258)) ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3639 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3495 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3638 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3843 (($ (-1085 |#1|)) NIL T ELT) (((-3 $ #1#) (-350 (-1085 |#1|))) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 20 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3109 (((-830)) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-258)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1767 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1375 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-973)) (|has| |#1| (-1115))) ELT)) (-3628 (($) NIL (|has| |#1| (-1115)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#1| (-796 (-330))) ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-3012 (($ $ (-484)) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT)) (-3133 ((|#1| $) 30 T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-2014 (((-1085 |#1|) $) NIL (|has| |#1| (-312)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3080 (((-1085 |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1377 (($) NIL T ELT)) (-3645 ((|#1| $) 21 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-258)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-258)) ELT) (($ $ $) NIL (|has| |#1| (-258)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) ELT)) (-3733 (((-348 $) $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-312))) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-258)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 31 (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-258)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-258)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-258)) ELT)) (-3758 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3637 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3636 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3635 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3973 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT) (($ (-1085 |#1|)) NIL T ELT) (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (((-142 (-330)) $) NIL (|has| |#1| (-933)) ELT) (((-142 (-179)) $) NIL (|has| |#1| (-933)) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) 29 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-299))) ELT)) (-1376 (($ |#1| |#1|) 19 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-2450 (((-1085 |#1|) $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3487 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-258)) (|has| |#1| (-821))) (|has| |#1| (-495))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3485 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3501 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3489 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-2236 ((|#1| $) NIL (|has| |#1| (-1115)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3490 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3500 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3486 (($ $) NIL (|has| |#1| (-1115)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-973)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-190)) (|has| |#1| (-312))) (|has| |#1| (-189))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-350 (-484))) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-1115))) ELT) (($ $ $) NIL (|has| |#1| (-1115)) ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT)))
(((-142 |#1|) (-139 |#1|) (-146)) (T -142))
NIL
-((-3960 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -3960 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
-((-3974 (((-801 |#1|) |#3|) 22 T ELT)))
-(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3974 ((-801 |#1|) |#3|))) (-1014) (-13 (-554 (-801 |#1|)) (-146)) (-139 |#2|)) (T -144))
-((-3974 (*1 *2 *3) (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1014)) (-4 *3 (-139 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1383 (((-85) $) 9 T ELT)) (-1382 (((-85) $ (-85)) 11 T ELT)) (-3616 (($) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3402 (($ $) 14 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-3704 (((-85) $) 8 T ELT)) (-3863 (((-85) $ (-85)) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-145) (-13 (-1014) (-10 -8 (-15 -3616 ($)) (-15 -3704 ((-85) $)) (-15 -1383 ((-85) $)) (-15 -3863 ((-85) $ (-85))) (-15 -1382 ((-85) $ (-85))) (-15 -3402 ($ $))))) (T -145))
-((-3616 (*1 *1) (-5 *1 (-145))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3402 (*1 *1 *1) (-5 *1 (-145))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3959 (((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)) 14 T ELT)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -3959 ((-142 |#2|) (-1 |#2| |#1|) (-142 |#1|)))) (-146) (-146)) (T -143))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6)))))
+((-3973 (((-800 |#1|) |#3|) 22 T ELT)))
+(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3973 ((-800 |#1|) |#3|))) (-1013) (-13 (-553 (-800 |#1|)) (-146)) (-139 |#2|)) (T -144))
+((-3973 (*1 *2 *3) (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3)) (-4 *4 (-1013)) (-4 *3 (-139 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1382 (((-85) $) 9 T ELT)) (-1381 (((-85) $ (-85)) 11 T ELT)) (-3615 (($) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3947 (((-772) $) 18 T ELT)) (-3703 (((-85) $) 8 T ELT)) (-3862 (((-85) $ (-85)) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-145) (-13 (-1013) (-10 -8 (-15 -3615 ($)) (-15 -3703 ((-85) $)) (-15 -1382 ((-85) $)) (-15 -3862 ((-85) $ (-85))) (-15 -1381 ((-85) $ (-85))) (-15 -3401 ($ $))))) (T -145))
+((-3615 (*1 *1) (-5 *1 (-145))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3862 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-1381 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))) (-3401 (*1 *1 *1) (-5 *1 (-145))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-146) (-113)) (T -146))
NIL
-(-13 (-962) (-82 $ $) (-10 -7 (-6 (-3999 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1701 (($ $) 6 T ELT)))
+(-13 (-961) (-82 $ $) (-10 -7 (-6 (-3998 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-1700 (($ $) 6 T ELT)))
(((-147) (-113)) (T -147))
-((-1701 (*1 *1 *1) (-4 *1 (-147))))
-(-13 (-10 -8 (-15 -1701 ($ $))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 79 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-1388 (($ $) 21 T ELT)) (-1392 (($ |#1| (-1070 |#1|)) 48 T ELT)) (-3469 (((-3 $ #1#) $) 123 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1389 (((-1070 |#1|) $) 86 T ELT)) (-1391 (((-1070 |#1|) $) 83 T ELT)) (-1390 (((-1070 |#1|) $) 84 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1385 (((-1070 |#1|) $) 93 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3771 (($ $ (-485)) 96 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1384 (((-1070 |#1|) $) 94 T ELT)) (-1386 (((-1070 (-350 |#1|)) $) 14 T ELT)) (-2618 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-2893 (($ $) 98 T ELT)) (-3948 (((-773) $) 139 T ELT) (($ (-485)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) 67 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-1387 (((-1070 (-350 |#1|)) $) 20 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 35 T ELT)) (-3951 (($ $ $) 121 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3841 (($ $ $) 107 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)))
-(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2618 ($ (-350 |#1|))) (-15 -2618 ($ |#1| (-1070 |#1|) (-1070 |#1|))) (-15 -1392 ($ |#1| (-1070 |#1|))) (-15 -1391 ((-1070 |#1|) $)) (-15 -1390 ((-1070 |#1|) $)) (-15 -1389 ((-1070 |#1|) $)) (-15 -3131 (|#1| $)) (-15 -1388 ($ $)) (-15 -1387 ((-1070 (-350 |#1|)) $)) (-15 -1386 ((-1070 (-350 |#1|)) $)) (-15 -1385 ((-1070 |#1|) $)) (-15 -1384 ((-1070 |#1|) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $)))) (-258)) (T -148))
-((-2618 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2618 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1388 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2893 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
-((-1393 (($ (-78) $) 15 T ELT)) (-3223 (((-633 (-78)) (-447) $) 14 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1394 (((-584 (-78)) $) 8 T ELT)))
-(((-149) (-13 (-553 (-773)) (-10 -8 (-15 -1394 ((-584 (-78)) $)) (-15 -1393 ($ (-78) $)) (-15 -3223 ((-633 (-78)) (-447) $))))) (T -149))
-((-1394 (*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))) (-1393 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149)))))
-((-1407 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 38 T ELT)) (-1398 (((-855 |#1|) (-855 |#1|)) 22 T ELT)) (-1403 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 34 T ELT)) (-1396 (((-855 |#1|) (-855 |#1|)) 20 T ELT)) (-1401 (((-855 |#1|) (-855 |#1|)) 28 T ELT)) (-1400 (((-855 |#1|) (-855 |#1|)) 27 T ELT)) (-1399 (((-855 |#1|) (-855 |#1|)) 26 T ELT)) (-1404 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 35 T ELT)) (-1402 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 33 T ELT)) (-1644 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 32 T ELT)) (-1397 (((-855 |#1|) (-855 |#1|)) 21 T ELT)) (-1408 (((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|) 41 T ELT)) (-1395 (((-855 |#1|) (-855 |#1|)) 8 T ELT)) (-1406 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 37 T ELT)) (-1405 (((-1 (-855 |#1|) (-855 |#1|)) |#1|) 36 T ELT)))
-(((-150 |#1|) (-10 -7 (-15 -1395 ((-855 |#1|) (-855 |#1|))) (-15 -1396 ((-855 |#1|) (-855 |#1|))) (-15 -1397 ((-855 |#1|) (-855 |#1|))) (-15 -1398 ((-855 |#1|) (-855 |#1|))) (-15 -1399 ((-855 |#1|) (-855 |#1|))) (-15 -1400 ((-855 |#1|) (-855 |#1|))) (-15 -1401 ((-855 |#1|) (-855 |#1|))) (-15 -1644 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1402 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1403 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1404 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1405 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1406 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1407 ((-1 (-855 |#1|) (-855 |#1|)) |#1|)) (-15 -1408 ((-1 (-855 |#1|) (-855 |#1|)) |#1| |#1|))) (-13 (-312) (-1116) (-916))) (T -150))
-((-1408 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1407 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1116) (-916))))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916))) (-5 *1 (-150 *3)))))
-((-2451 ((|#2| |#3|) 28 T ELT)))
-(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2451 (|#2| |#3|))) (-146) (-1156 |#1|) (-662 |#1| |#2|)) (T -151))
-((-2451 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-662 *4 *2)))))
-((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 44 (|has| (-858 |#2|) (-797 |#1|)) ELT)))
-(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-858 |#2|) (-797 |#1|)) (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) |%noBranch|)) (-1014) (-13 (-797 |#1|) (-146)) (-139 |#2|)) (T -152))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6)) (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
-((-1410 (((-584 |#1|) (-584 |#1|) |#1|) 41 T ELT)) (-1409 (((-584 |#1|) |#1| (-584 |#1|)) 20 T ELT)) (-2078 (((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|)) 36 T ELT) ((|#1| (-584 |#1|) (-584 |#1|)) 32 T ELT)))
-(((-153 |#1|) (-10 -7 (-15 -1409 ((-584 |#1|) |#1| (-584 |#1|))) (-15 -2078 (|#1| (-584 |#1|) (-584 |#1|))) (-15 -2078 ((-584 |#1|) (-584 (-584 |#1|)) (-584 |#1|))) (-15 -1410 ((-584 |#1|) (-584 |#1|) |#1|))) (-258)) (T -153))
-((-1410 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2078 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-154) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -154))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154)))))
-((-1419 (((-2 (|:| |start| |#2|) (|:| -1783 (-348 |#2|))) |#2|) 66 T ELT)) (-1418 ((|#1| |#1|) 58 T ELT)) (-1417 (((-142 |#1|) |#2|) 94 T ELT)) (-1416 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1415 ((|#2| |#2|) 91 T ELT)) (-1414 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3134 ((|#1| |#2|) 118 T ELT)) (-1413 ((|#2| |#2|) 131 T ELT)) (-3734 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1412 (((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|) 152 T ELT) (((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1411 (((-584 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-584 (-142 |#1|)) |#2|) 43 T ELT)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -1411 ((-584 (-142 |#1|)) |#2|)) (-15 -1411 ((-584 (-142 |#1|)) |#2| |#1|)) (-15 -1412 ((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2| (-85))) (-15 -1412 ((-584 (-2 (|:| -1783 (-584 |#2|)) (|:| -1597 |#1|))) |#2| |#2|)) (-15 -3734 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3734 ((-348 |#2|) |#2| |#1|)) (-15 -3734 ((-348 |#2|) |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3134 (|#1| |#2|)) (-15 -1414 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1414 ((-348 |#2|) |#2| |#1|)) (-15 -1415 (|#2| |#2|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -1416 (|#1| |#2|)) (-15 -1417 ((-142 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -1419 ((-2 (|:| |start| |#2|) (|:| -1783 (-348 |#2|))) |#2|))) (-13 (-312) (-756)) (-1156 (-142 |#1|))) (T -155))
-((-1419 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-2 (|:| |start| *3) (|:| -1783 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1417 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756))) (-4 *3 (-1156 *2)))) (-1416 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1416 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-1414 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1414 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3134 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1156 (-142 *2))))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1156 (-142 *3))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3734 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1412 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756))) (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5))))) (-1411 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))))
-((-1420 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1421 (((-695) |#2|) 18 T ELT)) (-1422 ((|#2| |#2| |#2|) 20 T ELT)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -1420 ((-3 |#2| "failed") |#2|)) (-15 -1421 ((-695) |#2|)) (-15 -1422 (|#2| |#2| |#2|))) (-1130) (-617 |#1|)) (T -156))
-((-1422 (*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))) (-1420 (*1 *2 *2) (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) 10 T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1423 (((-633 $) (-447)) 17 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 12 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-157) (-13 (-160) (-10 -8 (-15 -1423 ((-633 $) (-447)))))) (T -157))
-((-1423 (*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1483 ((|#1| $) 7 T ELT)) (-3948 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1424 (((-584 (-1096)) $) 10 T ELT)) (-3058 (((-85) $ $) 12 T ELT)))
-(((-158 |#1|) (-13 (-1014) (-10 -8 (-15 -1483 (|#1| $)) (-15 -1424 ((-584 (-1096)) $)))) (-160)) (T -158))
-((-1483 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-((-1425 (((-584 (-775)) $) 16 T ELT)) (-1427 (((-161) $) 8 T ELT)) (-1426 (((-584 (-85)) $) 13 T ELT)) (-2523 (((-55) $) 10 T ELT)))
-(((-159 |#1|) (-10 -7 (-15 -1425 ((-584 (-775)) |#1|)) (-15 -1426 ((-584 (-85)) |#1|)) (-15 -1427 ((-161) |#1|)) (-15 -2523 ((-55) |#1|))) (-160)) (T -159))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1425 (((-584 (-775)) $) 22 T ELT)) (-3544 (((-447) $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1427 (((-161) $) 24 T ELT)) (-2635 (((-85) $ (-447)) 17 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1426 (((-584 (-85)) $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+((-1700 (*1 *1 *1) (-4 *1 (-147))))
+(-13 (-10 -8 (-15 -1700 ($ $))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 79 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-1387 (($ $) 21 T ELT)) (-1391 (($ |#1| (-1069 |#1|)) 48 T ELT)) (-3468 (((-3 $ #1#) $) 123 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1388 (((-1069 |#1|) $) 86 T ELT)) (-1390 (((-1069 |#1|) $) 83 T ELT)) (-1389 (((-1069 |#1|) $) 84 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1384 (((-1069 |#1|) $) 93 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1894 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3770 (($ $ (-484)) 96 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1383 (((-1069 |#1|) $) 94 T ELT)) (-1385 (((-1069 (-350 |#1|)) $) 14 T ELT)) (-2617 (($ (-350 |#1|)) 17 T ELT) (($ |#1| (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-2892 (($ $) 98 T ELT)) (-3947 (((-772) $) 139 T ELT) (($ (-484)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-350 |#1|)) 36 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-694)) 67 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-1386 (((-1069 (-350 |#1|)) $) 20 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 35 T ELT)) (-3950 (($ $ $) 121 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-3840 (($ $ $) 107 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-350 |#1|) $) 117 T ELT) (($ $ (-350 |#1|)) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)))
+(((-148 |#1|) (-13 (-38 |#1|) (-38 (-350 |#1|)) (-312) (-10 -8 (-15 -2617 ($ (-350 |#1|))) (-15 -2617 ($ |#1| (-1069 |#1|) (-1069 |#1|))) (-15 -1391 ($ |#1| (-1069 |#1|))) (-15 -1390 ((-1069 |#1|) $)) (-15 -1389 ((-1069 |#1|) $)) (-15 -1388 ((-1069 |#1|) $)) (-15 -3130 (|#1| $)) (-15 -1387 ($ $)) (-15 -1386 ((-1069 (-350 |#1|)) $)) (-15 -1385 ((-1069 (-350 |#1|)) $)) (-15 -1384 ((-1069 |#1|) $)) (-15 -1383 ((-1069 |#1|) $)) (-15 -3770 ($ $ (-484))) (-15 -2892 ($ $)))) (-258)) (T -148))
+((-2617 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3)))) (-2617 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1391 (*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1387 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258)))) (-2892 (*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
+((-1392 (($ (-78) $) 15 T ELT)) (-3222 (((-632 (-78)) (-446) $) 14 T ELT)) (-3947 (((-772) $) 18 T ELT)) (-1393 (((-583 (-78)) $) 8 T ELT)))
+(((-149) (-13 (-552 (-772)) (-10 -8 (-15 -1393 ((-583 (-78)) $)) (-15 -1392 ($ (-78) $)) (-15 -3222 ((-632 (-78)) (-446) $))))) (T -149))
+((-1393 (*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149)))))
+((-1406 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 38 T ELT)) (-1397 (((-854 |#1|) (-854 |#1|)) 22 T ELT)) (-1402 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 34 T ELT)) (-1395 (((-854 |#1|) (-854 |#1|)) 20 T ELT)) (-1400 (((-854 |#1|) (-854 |#1|)) 28 T ELT)) (-1399 (((-854 |#1|) (-854 |#1|)) 27 T ELT)) (-1398 (((-854 |#1|) (-854 |#1|)) 26 T ELT)) (-1403 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 35 T ELT)) (-1401 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 33 T ELT)) (-1643 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 32 T ELT)) (-1396 (((-854 |#1|) (-854 |#1|)) 21 T ELT)) (-1407 (((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|) 41 T ELT)) (-1394 (((-854 |#1|) (-854 |#1|)) 8 T ELT)) (-1405 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 37 T ELT)) (-1404 (((-1 (-854 |#1|) (-854 |#1|)) |#1|) 36 T ELT)))
+(((-150 |#1|) (-10 -7 (-15 -1394 ((-854 |#1|) (-854 |#1|))) (-15 -1395 ((-854 |#1|) (-854 |#1|))) (-15 -1396 ((-854 |#1|) (-854 |#1|))) (-15 -1397 ((-854 |#1|) (-854 |#1|))) (-15 -1398 ((-854 |#1|) (-854 |#1|))) (-15 -1399 ((-854 |#1|) (-854 |#1|))) (-15 -1400 ((-854 |#1|) (-854 |#1|))) (-15 -1643 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1401 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1402 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1403 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1404 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1405 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1406 ((-1 (-854 |#1|) (-854 |#1|)) |#1|)) (-15 -1407 ((-1 (-854 |#1|) (-854 |#1|)) |#1| |#1|))) (-13 (-312) (-1115) (-915))) (T -150))
+((-1407 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1406 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1405 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1402 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1643 (*1 *2 *3) (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3)) (-4 *3 (-13 (-312) (-1115) (-915))))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1395 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915))) (-5 *1 (-150 *3)))))
+((-2450 ((|#2| |#3|) 28 T ELT)))
+(((-151 |#1| |#2| |#3|) (-10 -7 (-15 -2450 (|#2| |#3|))) (-146) (-1155 |#1|) (-661 |#1| |#2|)) (T -151))
+((-2450 (*1 *2 *3) (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3)) (-4 *3 (-661 *4 *2)))))
+((-2797 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 44 (|has| (-857 |#2|) (-796 |#1|)) ELT)))
+(((-152 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-857 |#2|) (-796 |#1|)) (-15 -2797 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) |%noBranch|)) (-1013) (-13 (-796 |#1|) (-146)) (-139 |#2|)) (T -152))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6)) (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146))) (-5 *1 (-152 *5 *6 *3)))))
+((-1409 (((-583 |#1|) (-583 |#1|) |#1|) 41 T ELT)) (-1408 (((-583 |#1|) |#1| (-583 |#1|)) 20 T ELT)) (-2077 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 36 T ELT) ((|#1| (-583 |#1|) (-583 |#1|)) 32 T ELT)))
+(((-153 |#1|) (-10 -7 (-15 -1408 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -2077 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -2077 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1409 ((-583 |#1|) (-583 |#1|) |#1|))) (-258)) (T -153))
+((-1409 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))) (-2077 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258)) (-5 *1 (-153 *4)))) (-2077 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258)))) (-1408 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3947 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-154) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -154))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154)))))
+((-1418 (((-2 (|:| |start| |#2|) (|:| -1782 (-348 |#2|))) |#2|) 66 T ELT)) (-1417 ((|#1| |#1|) 58 T ELT)) (-1416 (((-142 |#1|) |#2|) 94 T ELT)) (-1415 ((|#1| |#2|) 137 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1414 ((|#2| |#2|) 91 T ELT)) (-1413 (((-348 |#2|) |#2| |#1|) 119 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 88 T ELT)) (-3133 ((|#1| |#2|) 118 T ELT)) (-1412 ((|#2| |#2|) 131 T ELT)) (-3733 (((-348 |#2|) |#2|) 154 T ELT) (((-348 |#2|) |#2| |#1|) 33 T ELT) (((-348 |#2|) |#2| |#1| (-85)) 153 T ELT)) (-1411 (((-583 (-2 (|:| -1782 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2|) 152 T ELT) (((-583 (-2 (|:| -1782 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85)) 82 T ELT)) (-1410 (((-583 (-142 |#1|)) |#2| |#1|) 42 T ELT) (((-583 (-142 |#1|)) |#2|) 43 T ELT)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -1410 ((-583 (-142 |#1|)) |#2|)) (-15 -1410 ((-583 (-142 |#1|)) |#2| |#1|)) (-15 -1411 ((-583 (-2 (|:| -1782 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2| (-85))) (-15 -1411 ((-583 (-2 (|:| -1782 (-583 |#2|)) (|:| -1596 |#1|))) |#2| |#2|)) (-15 -3733 ((-348 |#2|) |#2| |#1| (-85))) (-15 -3733 ((-348 |#2|) |#2| |#1|)) (-15 -3733 ((-348 |#2|) |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -3133 (|#1| |#2|)) (-15 -1413 ((-348 |#2|) |#2| |#1| (-85))) (-15 -1413 ((-348 |#2|) |#2| |#1|)) (-15 -1414 (|#2| |#2|)) (-15 -1415 (|#1| |#2| |#1|)) (-15 -1415 (|#1| |#2|)) (-15 -1416 ((-142 |#1|) |#2|)) (-15 -1417 (|#1| |#1|)) (-15 -1418 ((-2 (|:| |start| |#2|) (|:| -1782 (-348 |#2|))) |#2|))) (-13 (-312) (-755)) (-1155 (-142 |#1|))) (T -155))
+((-1418 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-2 (|:| |start| *3) (|:| -1782 (-348 *3)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1417 (*1 *2 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1416 (*1 *2 *3) (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755))) (-4 *3 (-1155 *2)))) (-1415 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1415 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1414 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-1413 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1413 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3133 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3)) (-4 *3 (-1155 (-142 *2))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2)) (-4 *2 (-1155 (-142 *3))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3733 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1782 (-583 *3)) (|:| -1596 *4)))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1411 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755))) (-5 *2 (-583 (-2 (|:| -1782 (-583 *3)) (|:| -1596 *5)))) (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5))))) (-1410 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+((-1419 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1420 (((-694) |#2|) 18 T ELT)) (-1421 ((|#2| |#2| |#2|) 20 T ELT)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -1419 ((-3 |#2| "failed") |#2|)) (-15 -1420 ((-694) |#2|)) (-15 -1421 (|#2| |#2| |#2|))) (-1129) (-616 |#1|)) (T -156))
+((-1421 (*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))) (-1420 (*1 *2 *3) (-12 (-4 *4 (-1129)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))) (-1419 (*1 *2 *2) (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3543 (((-446) $) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) 10 T ELT)) (-2634 (((-85) $ (-446)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1422 (((-632 $) (-446)) 17 T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 12 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-157) (-13 (-160) (-10 -8 (-15 -1422 ((-632 $) (-446)))))) (T -157))
+((-1422 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1482 ((|#1| $) 7 T ELT)) (-3947 (((-772) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1423 (((-583 (-1095)) $) 10 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-158 |#1|) (-13 (-1013) (-10 -8 (-15 -1482 (|#1| $)) (-15 -1423 ((-583 (-1095)) $)))) (-160)) (T -158))
+((-1482 (*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160)))) (-1423 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+((-1424 (((-583 (-774)) $) 16 T ELT)) (-1426 (((-161) $) 8 T ELT)) (-1425 (((-583 (-85)) $) 13 T ELT)) (-2522 (((-55) $) 10 T ELT)))
+(((-159 |#1|) (-10 -7 (-15 -1424 ((-583 (-774)) |#1|)) (-15 -1425 ((-583 (-85)) |#1|)) (-15 -1426 ((-161) |#1|)) (-15 -2522 ((-55) |#1|))) (-160)) (T -159))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1424 (((-583 (-774)) $) 22 T ELT)) (-3543 (((-446) $) 19 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1426 (((-161) $) 24 T ELT)) (-2634 (((-85) $ (-446)) 17 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1425 (((-583 (-85)) $) 23 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-160) (-113)) (T -160))
-((-1427 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
-(-13 (-748 (-447)) (-10 -8 (-15 -1427 ((-161) $)) (-15 -1426 ((-584 (-85)) $)) (-15 -1425 ((-584 (-775)) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-748 (-447)) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3948 (((-773) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT)))
-(((-161) (-13 (-1014) (-10 -8 (-15 -9 ($) -3954) (-15 -8 ($) -3954) (-15 -7 ($) -3954)))) (T -161))
+((-1426 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
+(-13 (-747 (-446)) (-10 -8 (-15 -1426 ((-161) $)) (-15 -1425 ((-583 (-85)) $)) (-15 -1424 ((-583 (-774)) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-747 (-446)) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3947 (((-772) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)))
+(((-161) (-13 (-1013) (-10 -8 (-15 -9 ($) -3953) (-15 -8 ($) -3953) (-15 -7 ($) -3953)))) (T -161))
((-9 (*1 *1) (-5 *1 (-161))) (-8 (*1 *1) (-5 *1 (-161))) (-7 (*1 *1) (-5 *1 (-161))))
-((-3644 ((|#2| |#2|) 28 T ELT)) (-3647 (((-85) |#2|) 19 T ELT)) (-3645 (((-265 |#1|) |#2|) 12 T ELT)) (-3646 (((-265 |#1|) |#2|) 14 T ELT)) (-3642 ((|#2| |#2| (-1091)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3648 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3643 ((|#2| |#2| (-1091)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1091))) (-15 -3645 ((-265 |#1|) |#2|)) (-15 -3646 ((-265 |#1|) |#2|)) (-15 -3647 ((-85) |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3648 ((-142 (-265 |#1|)) |#2|))) (-13 (-496) (-951 (-485))) (-13 (-27) (-1116) (-364 (-142 |#1|)))) (T -162))
-((-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3)))))))
-((-1431 (((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|))) 26 T ELT)) (-3948 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))) 37 T ELT)))
-(((-163 |#1|) (-10 -7 (-15 -1431 ((-1180 (-631 (-858 |#1|))) (-1180 (-631 |#1|)))) (-15 -3948 ((-1180 (-631 (-350 (-858 |#1|)))) (-1180 (-631 |#1|))))) (-146)) (T -163))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146)) (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
-((-1439 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 93 T ELT)) (-1441 (((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485))) 109 T ELT)) (-1432 (((-1093 (-350 (-485))) (-831)) 54 T ELT)) (-3856 (((-1093 (-350 (-485))) (-831)) 79 T ELT)) (-3770 (((-350 (-485)) (-1093 (-350 (-485)))) 89 T ELT)) (-1433 (((-1093 (-350 (-485))) (-695)) 37 T ELT)) (-1436 (((-1093 (-350 (-485))) (-831)) 66 T ELT)) (-1435 (((-1093 (-350 (-485))) (-831)) 61 T ELT)) (-1438 (((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 87 T ELT)) (-2893 (((-1093 (-350 (-485))) (-695)) 29 T ELT)) (-1437 (((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485)))) 91 T ELT)) (-1434 (((-1093 (-350 (-485))) (-831)) 35 T ELT)) (-1440 (((-1093 (-350 (-485))) (-584 (-831))) 103 T ELT)))
-(((-164) (-10 -7 (-15 -2893 ((-1093 (-350 (-485))) (-695))) (-15 -1432 ((-1093 (-350 (-485))) (-831))) (-15 -1433 ((-1093 (-350 (-485))) (-695))) (-15 -1434 ((-1093 (-350 (-485))) (-831))) (-15 -1435 ((-1093 (-350 (-485))) (-831))) (-15 -1436 ((-1093 (-350 (-485))) (-831))) (-15 -3856 ((-1093 (-350 (-485))) (-831))) (-15 -1437 ((-350 (-485)) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1438 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -3770 ((-350 (-485)) (-1093 (-350 (-485))))) (-15 -1439 ((-1093 (-350 (-485))) (-1093 (-350 (-485))) (-1093 (-350 (-485))))) (-15 -1440 ((-1093 (-350 (-485))) (-584 (-831)))) (-15 -1441 ((-1093 (-350 (-485))) (-584 (-485)) (-584 (-485)))))) (T -164))
-((-1441 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1440 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1439 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1437 (*1 *2 *3 *3) (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-((-1443 (((-348 (-1086 (-485))) (-485)) 38 T ELT)) (-1442 (((-584 (-1086 (-485))) (-485)) 33 T ELT)) (-2803 (((-1086 (-485)) (-485)) 28 T ELT)))
-(((-165) (-10 -7 (-15 -1442 ((-584 (-1086 (-485))) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -1443 ((-348 (-1086 (-485))) (-485))))) (T -165))
-((-1443 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485)))) (-1442 (*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1444 ((|#2| $ (-695) |#2|) 11 T ELT)) (-3114 ((|#2| $ (-695)) 10 T ELT)) (-3616 (($) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 23 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)))
-(((-166 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3616 ($)) (-15 -3114 (|#2| $ (-695))) (-15 -1444 (|#2| $ (-695) |#2|)))) (-831) (-1014)) (T -166))
-((-3616 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014)))) (-3114 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)))) (-1444 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 36 T ELT) (((-1186) $ (-831) (-831)) 40 T ELT)) (-3802 (($ $ (-903)) 19 T ELT) (((-203 (-1074)) $ (-1091)) 15 T ELT)) (-3619 (((-1186) $) 34 T ELT)) (-3948 (((-773) $) 31 T ELT) (($ (-584 |#1|)) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $ $) 26 T ELT)) (-3841 (($ $ $) 22 T ELT)))
-(((-167 |#1|) (-13 (-1014) (-556 (-584 |#1|)) (-10 -8 (-15 -3802 ($ $ (-903))) (-15 -3802 ((-203 (-1074)) $ (-1091))) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $)) (-15 -1964 ((-1186) $ (-831) (-831))))) (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -167))
-((-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-903)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ *3)) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3841 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $))))))) (-1964 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $)) (-15 -1964 (*2 $))))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 10 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2853 (($ (-578 |#1|)) 11 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-168 |#1|) (-13 (-753) (-10 -8 (-15 -2853 ($ (-578 |#1|))))) (-584 (-1091))) (T -168))
-((-2853 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3)))))
-((-1445 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
-(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1445 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169))
-((-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
-((-1449 ((|#2| |#2| (-695) |#2|) 55 T ELT)) (-1448 ((|#2| |#2| (-695) |#2|) 51 T ELT)) (-2372 (((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|)))) 79 T ELT)) (-1447 (((-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))) |#2|) 72 T ELT)) (-1450 (((-85) |#2|) 70 T ELT)) (-3735 (((-348 |#2|) |#2|) 92 T ELT)) (-3734 (((-348 |#2|) |#2|) 91 T ELT)) (-2373 ((|#2| |#2| (-695) |#2|) 49 T ELT)) (-1446 (((-2 (|:| |cont| |#1|) (|:| -1783 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85)) 86 T ELT)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -3734 ((-348 |#2|) |#2|)) (-15 -3735 ((-348 |#2|) |#2|)) (-15 -1446 ((-2 (|:| |cont| |#1|) (|:| -1783 (-584 (-2 (|:| |irr| |#2|) (|:| -2396 (-485)))))) |#2| (-85))) (-15 -1447 ((-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))) |#2|)) (-15 -2372 ((-584 |#2|) (-584 (-2 (|:| |deg| (-695)) (|:| -2577 |#2|))))) (-15 -2373 (|#2| |#2| (-695) |#2|)) (-15 -1448 (|#2| |#2| (-695) |#2|)) (-15 -1449 (|#2| |#2| (-695) |#2|)) (-15 -1450 ((-85) |#2|))) (-299) (-1156 |#1|)) (T -170))
-((-1450 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1449 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2373 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))) (-2372 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *5)))) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-1446 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-1451 (($ (-350 (-485))) 9 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 10) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-171) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 10)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -1451 ($ (-350 (-485))))))) (T -171))
-((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-423) $) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-172) (-13 (-996) (-10 -8 (-15 -3180 ((-423) $)) (-15 -3321 ((-1029) $)) (-15 -3235 ((-1050) $))))) (T -172))
-((-3180 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172)))))
-((-3814 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)) (-1074)) 29 T ELT) (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|))) 25 T ELT)) (-1452 (((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)) 17 T ELT)))
-(((-173 |#1| |#2|) (-10 -7 (-15 -3814 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1005 (-751 |#2|)))) (-15 -3814 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1005 (-751 |#2|)) (-1074))) (-15 -1452 ((-3 (|:| |f1| (-751 |#2|)) (|:| |f2| (-584 (-751 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1091) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -173))
-((-1452 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1091)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-1116) (-872) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074)) (-4 *3 (-13 (-1116) (-872) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
-((-3814 (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)) 49 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074)) 50 T ELT) (((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|)))) 22 T ELT)))
-(((-174 |#1|) (-10 -7 (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-265 |#1|))) (-1074))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))))) (-15 -3814 ((-3 (|:| |f1| (-751 (-265 |#1|))) (|:| |f2| (-584 (-751 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-858 |#1|)) (-1005 (-751 (-350 (-858 |#1|)))) (-1074)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (T -174))
-((-3814 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3814 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6)))) (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
-((-3844 (((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|)) 26 T ELT)) (-3965 (((-584 (-265 |#2|)) (-265 |#2|) (-831)) 51 T ELT)))
-(((-175 |#1| |#2|) (-10 -7 (-15 -3844 ((-2 (|:| -2005 (-1086 |#1|)) (|:| |deg| (-831))) (-1086 |#1|))) (-15 -3965 ((-584 (-265 |#2|)) (-265 |#2|) (-831)))) (-962) (-496)) (T -175))
-((-3965 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962)))) (-3844 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) NIL T ELT)) (-3325 ((|#1| $) 31 T ELT)) (-3726 (($) NIL T CONST)) (-3004 (($ $) NIL T ELT)) (-2298 (($ $) 40 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) NIL T ELT)) (-3326 ((|#1| $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-695) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1494 ((|#1| |#1| $) 36 T ELT)) (-1493 ((|#1| |#1| $) 38 T ELT)) (-3611 (($ |#1| $) NIL T ELT)) (-2605 (((-695) $) 34 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) NIL T ELT)) (-1492 ((|#1| $) 32 T ELT)) (-1491 ((|#1| $) 30 T ELT)) (-1276 ((|#1| $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) NIL T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) NIL T ELT)) (-3005 ((|#1| $) NIL T ELT)) (-1497 (($) NIL T ELT) (($ (-584 |#1|)) 17 T ELT)) (-3324 (((-695) $) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 14 T ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1497 ($ (-584 |#1|))))) (-1014)) (T -176))
-((-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1454 (($ (-265 |#1|)) 24 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3158 (((-265 |#1|) $) NIL T ELT)) (-3961 (($ $) 32 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3960 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3176 (((-265 |#1|) $) NIL T ELT)) (-1456 (($ $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1455 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) NIL T ELT)) (-1453 (($ $) 33 T ELT)) (-3950 (((-485) $) NIL T ELT)) (-3948 (((-773) $) 65 T ELT) (($ (-485)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3679 (((-265 |#1|) $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) 29 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT)))
-(((-177 |#1| |#2|) (-13 (-561 (-265 |#1|)) (-951 (-265 |#1|)) (-10 -8 (-15 -3176 ((-265 |#1|) $)) (-15 -1456 ($ $)) (-15 -3961 ($ $)) (-15 -3679 ((-265 |#1|) $ $)) (-15 -2410 ($ (-695))) (-15 -1455 ((-85) $)) (-15 -2666 ((-85) $)) (-15 -3950 ((-485) $)) (-15 -3960 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1454 ($ (-265 |#1|))) (-15 -1453 ($ $)))) (-13 (-962) (-757)) (-584 (-1091))) (T -177))
-((-3176 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))) (-3679 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757))) (-14 *4 (-584 (-1091))))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1454 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091))))) (-1453 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757))) (-14 *3 (-584 (-1091))))))
-((-1457 (((-85) (-1074)) 26 T ELT)) (-1458 (((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85)) 35 T ELT)) (-1459 (((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85)) 84 T ELT)))
-(((-178 |#1| |#2|) (-10 -7 (-15 -1457 ((-85) (-1074))) (-15 -1458 ((-3 (-751 |#2|) #1="failed") (-551 |#2|) |#2| (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-858 |#1|) (-1091) (-751 |#2|) (-751 |#2|) (-85))) (-15 -1459 ((-3 (-85) #1#) (-1086 |#2|) (-751 |#2|) (-751 |#2|) (-85)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -178))
-((-1459 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6)) (-4 *6 (-13 (-1116) (-29 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))) (-1459 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091)) (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1458 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1116) (-29 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 86 T ELT)) (-3131 (((-485) $) 18 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3773 (($ $) NIL T ELT)) (-3494 (($ $) 73 T ELT)) (-3641 (($ $) 61 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) 52 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 71 T ELT)) (-3640 (($ $) 59 T ELT)) (-3625 (((-485) $) 83 T ELT)) (-3496 (($ $) 76 T ELT)) (-3639 (($ $) 63 T ELT)) (-3726 (($) NIL T CONST)) (-3129 (($ $) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) 116 T ELT) (((-3 (-350 (-485)) #1#) $) 113 T ELT)) (-3158 (((-485) $) 114 T ELT) (((-350 (-485)) $) 111 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 91 T ELT)) (-1748 (((-350 (-485)) $ (-695)) 106 T ELT) (((-350 (-485)) $ (-695) (-695)) 105 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1772 (((-831)) 12 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 107 T ELT)) (-3629 (($) 31 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-3774 (((-485) $) 25 T ELT)) (-1215 (((-85) $ $) 141 T ELT)) (-2411 (((-85) $) 87 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 85 T ELT)) (-1460 (((-85) $) 140 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) 49 T ELT) (($) 21 (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-2859 (($ $ $) 48 T ELT) (($) 20 (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-1774 (((-485) $) 10 T ELT)) (-1747 (($ $) 16 T ELT)) (-1746 (($ $) 53 T ELT)) (-3944 (($ $) 58 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-1771 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) 89 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL T ELT)) (-3132 (($ $) NIL T ELT)) (-3256 (($ (-485) (-485)) NIL T ELT) (($ (-485) (-485) (-831)) 98 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 11 T ELT)) (-1745 (($) 30 T ELT)) (-3945 (($ $) 57 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-831)) NIL T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-3760 (($ $) 92 T ELT) (($ $ (-695)) NIL T ELT)) (-1770 (((-831) (-485)) NIL (|has| $ (-6 -3988)) ELT)) (-3497 (($ $) 74 T ELT)) (-3638 (($ $) 64 T ELT)) (-3495 (($ $) 75 T ELT)) (-3637 (($ $) 62 T ELT)) (-3493 (($ $) 72 T ELT)) (-3636 (($ $) 60 T ELT)) (-3974 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-801 (-330)) $) NIL T ELT) (((-474) $) 38 T ELT)) (-3948 (((-773) $) 35 T ELT) (($ (-485)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 56 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (($ $) NIL T ELT)) (-1773 (((-831)) 19 T ELT) (((-831) (-831)) NIL (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-831)) 7 T ELT)) (-3500 (($ $) 79 T ELT)) (-3488 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 77 T ELT)) (-3486 (($ $) 65 T ELT)) (-3502 (($ $) 82 T ELT)) (-3490 (($ $) 70 T ELT)) (-3127 (((-85) $ $) 143 T ELT)) (-3503 (($ $) 80 T ELT)) (-3491 (($ $) 68 T ELT)) (-3501 (($ $) 81 T ELT)) (-3489 (($ $) 69 T ELT)) (-3499 (($ $) 78 T ELT)) (-3487 (($ $) 66 T ELT)) (-3385 (($ $) 108 T ELT)) (-2662 (($) 27 T CONST)) (-2668 (($) 28 T CONST)) (-3389 (($ $) 95 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3386 (($ $ $) 97 T ELT)) (-2568 (((-85) $ $) 42 T ELT)) (-2569 (((-85) $ $) 40 T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) 41 T ELT)) (-2687 (((-85) $ $) 39 T ELT)) (-3951 (($ $ $) 29 T ELT) (($ $ (-485)) 51 T ELT)) (-3839 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3841 (($ $ $) 44 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 54 T ELT) (($ $ (-350 (-485))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-179) (-13 (-347) (-190) (-1116) (-554 (-474)) (-10 -8 (-15 -3951 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -1745 ($)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -3488 ($ $ $)) (-15 -3389 ($ $)) (-15 -3386 ($ $ $)) (-15 -1748 ((-350 (-485)) $ (-695))) (-15 -1748 ((-350 (-485)) $ (-695) (-695))) (-15 -1460 ((-85) $))))) (T -179))
-((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179)))) (-1745 (*1 *1) (-5 *1 (-179))) (-1747 (*1 *1 *1) (-5 *1 (-179))) (-1746 (*1 *1 *1) (-5 *1 (-179))) (-3488 (*1 *1 *1 *1) (-5 *1 (-179))) (-3389 (*1 *1 *1) (-5 *1 (-179))) (-3386 (*1 *1 *1 *1) (-5 *1 (-179))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
-((-3388 (((-142 (-179)) (-695) (-142 (-179))) 11 T ELT) (((-179) (-695) (-179)) 12 T ELT)) (-1461 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1462 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3387 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3393 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3395 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3394 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3389 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3386 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
-(((-180) (-10 -7 (-15 -3389 ((-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-179))) (-15 -3387 ((-142 (-179)) (-142 (-179)))) (-15 -3388 ((-179) (-695) (-179))) (-15 -3388 ((-142 (-179)) (-695) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179) (-179))) (-15 -3393 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3394 ((-142 (-179)) (-142 (-179)))) (-15 -3394 ((-179) (-179))) (-15 -3395 ((-179) (-179))) (-15 -3395 ((-142 (-179)) (-142 (-179)))) (-15 -1462 ((-179) (-179) (-179))) (-15 -1462 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
-((-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1462 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3393 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180)))) (-3388 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) NIL T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3416 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3875 (($ |#1| |#1| |#1|) 33 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) NIL T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3849 (($ |#1| |#1| |#1|) 32 T ELT)) (-3335 (($ (-695) |#1|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-1463 (($ |#1|) 31 T ELT)) (-1464 (($ |#1|) 30 T ELT)) (-1465 (($ |#1|) 29 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) NIL T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-3108 (((-584 (-1180 |#1|)) $) NIL (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ (-695) (-695) |#1|) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#1| $) NIL (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#1|))) 11 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3596 (((-584 (-584 |#1|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1466 (($) 12 T ELT)) (-2352 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3468 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3334 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3330 ((|#1| $) NIL (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3948 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) 15 T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT) (((-855 |#1|) $ (-855 |#1|)) 21 T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-181 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 * ((-855 |#1|) $ (-855 |#1|))) (-15 -1466 ($)) (-15 -1465 ($ |#1|)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -3849 ($ |#1| |#1| |#1|)) (-15 -3875 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1116))) (T -181))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3)))) (-1466 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1465 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3849 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))) (-3875 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))))
-((-1571 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3407 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#2|)) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|))) (-183 |#2|) (-1014)) (T -182))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-183 |#1|) (-113) (-1014)) (T -183))
+((-3643 ((|#2| |#2|) 28 T ELT)) (-3646 (((-85) |#2|) 19 T ELT)) (-3644 (((-265 |#1|) |#2|) 12 T ELT)) (-3645 (((-265 |#1|) |#2|) 14 T ELT)) (-3641 ((|#2| |#2| (-1090)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-3647 (((-142 (-265 |#1|)) |#2|) 10 T ELT)) (-3642 ((|#2| |#2| (-1090)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1090))) (-15 -3644 ((-265 |#1|) |#2|)) (-15 -3645 ((-265 |#1|) |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3643 (|#2| |#2|)) (-15 -3647 ((-142 (-265 |#1|)) |#2|))) (-13 (-495) (-950 (-484))) (-13 (-27) (-1115) (-364 (-142 |#1|)))) (T -162))
+((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3645 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3644 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4)))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3)))))))
+((-1430 (((-1179 (-630 (-857 |#1|))) (-1179 (-630 |#1|))) 26 T ELT)) (-3947 (((-1179 (-630 (-350 (-857 |#1|)))) (-1179 (-630 |#1|))) 37 T ELT)))
+(((-163 |#1|) (-10 -7 (-15 -1430 ((-1179 (-630 (-857 |#1|))) (-1179 (-630 |#1|)))) (-15 -3947 ((-1179 (-630 (-350 (-857 |#1|)))) (-1179 (-630 |#1|))))) (-146)) (T -163))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-630 (-350 (-857 *4))))) (-5 *1 (-163 *4)))) (-1430 (*1 *2 *3) (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146)) (-5 *2 (-1179 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
+((-1438 (((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 93 T ELT)) (-1440 (((-1092 (-350 (-484))) (-583 (-484)) (-583 (-484))) 109 T ELT)) (-1431 (((-1092 (-350 (-484))) (-830)) 54 T ELT)) (-3855 (((-1092 (-350 (-484))) (-830)) 79 T ELT)) (-3769 (((-350 (-484)) (-1092 (-350 (-484)))) 89 T ELT)) (-1432 (((-1092 (-350 (-484))) (-694)) 37 T ELT)) (-1435 (((-1092 (-350 (-484))) (-830)) 66 T ELT)) (-1434 (((-1092 (-350 (-484))) (-830)) 61 T ELT)) (-1437 (((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 87 T ELT)) (-2892 (((-1092 (-350 (-484))) (-694)) 29 T ELT)) (-1436 (((-350 (-484)) (-1092 (-350 (-484))) (-1092 (-350 (-484)))) 91 T ELT)) (-1433 (((-1092 (-350 (-484))) (-830)) 35 T ELT)) (-1439 (((-1092 (-350 (-484))) (-583 (-830))) 103 T ELT)))
+(((-164) (-10 -7 (-15 -2892 ((-1092 (-350 (-484))) (-694))) (-15 -1431 ((-1092 (-350 (-484))) (-830))) (-15 -1432 ((-1092 (-350 (-484))) (-694))) (-15 -1433 ((-1092 (-350 (-484))) (-830))) (-15 -1434 ((-1092 (-350 (-484))) (-830))) (-15 -1435 ((-1092 (-350 (-484))) (-830))) (-15 -3855 ((-1092 (-350 (-484))) (-830))) (-15 -1436 ((-350 (-484)) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -1437 ((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -3769 ((-350 (-484)) (-1092 (-350 (-484))))) (-15 -1438 ((-1092 (-350 (-484))) (-1092 (-350 (-484))) (-1092 (-350 (-484))))) (-15 -1439 ((-1092 (-350 (-484))) (-583 (-830)))) (-15 -1440 ((-1092 (-350 (-484))) (-583 (-484)) (-583 (-484)))))) (T -164))
+((-1440 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1439 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1438 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1436 (*1 *2 *3 *3) (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))) (-3855 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1434 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1432 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-1431 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+((-1442 (((-348 (-1085 (-484))) (-484)) 38 T ELT)) (-1441 (((-583 (-1085 (-484))) (-484)) 33 T ELT)) (-2802 (((-1085 (-484)) (-484)) 28 T ELT)))
+(((-165) (-10 -7 (-15 -1441 ((-583 (-1085 (-484))) (-484))) (-15 -2802 ((-1085 (-484)) (-484))) (-15 -1442 ((-348 (-1085 (-484))) (-484))))) (T -165))
+((-1442 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-165)) (-5 *3 (-484)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-583 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1443 ((|#2| $ (-694) |#2|) 11 T ELT)) (-3113 ((|#2| $ (-694)) 10 T ELT)) (-3615 (($) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 23 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)))
+(((-166 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3615 ($)) (-15 -3113 (|#2| $ (-694))) (-15 -1443 (|#2| $ (-694) |#2|)))) (-830) (-1013)) (T -166))
+((-3615 (*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)))) (-1443 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1963 (((-1185) $) 36 T ELT) (((-1185) $ (-830) (-830)) 40 T ELT)) (-3801 (($ $ (-902)) 19 T ELT) (((-203 (-1073)) $ (-1090)) 15 T ELT)) (-3618 (((-1185) $) 34 T ELT)) (-3947 (((-772) $) 31 T ELT) (($ (-583 |#1|)) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $ $) 26 T ELT)) (-3840 (($ $ $) 22 T ELT)))
+(((-167 |#1|) (-13 (-1013) (-555 (-583 |#1|)) (-10 -8 (-15 -3801 ($ $ (-902))) (-15 -3801 ((-203 (-1073)) $ (-1090))) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $)) (-15 -1963 ((-1185) $ (-830) (-830))))) (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))) (T -167))
+((-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-902)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ *3)) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3838 (*1 *1 *1 *1) (-12 (-5 *1 (-167 *2)) (-4 *2 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $)) (-15 -1963 (*2 $))))))) (-1963 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-167 *4)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $)) (-15 -1963 (*2 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 10 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2852 (($ (-577 |#1|)) 11 T ELT)) (-3947 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-168 |#1|) (-13 (-752) (-10 -8 (-15 -2852 ($ (-577 |#1|))))) (-583 (-1090))) (T -168))
+((-2852 (*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-168 *3)))))
+((-1444 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
+(((-169 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1444 (|#2| |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -169))
+((-1444 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
+((-1448 ((|#2| |#2| (-694) |#2|) 55 T ELT)) (-1447 ((|#2| |#2| (-694) |#2|) 51 T ELT)) (-2371 (((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2576 |#2|)))) 79 T ELT)) (-1446 (((-583 (-2 (|:| |deg| (-694)) (|:| -2576 |#2|))) |#2|) 72 T ELT)) (-1449 (((-85) |#2|) 70 T ELT)) (-3734 (((-348 |#2|) |#2|) 92 T ELT)) (-3733 (((-348 |#2|) |#2|) 91 T ELT)) (-2372 ((|#2| |#2| (-694) |#2|) 49 T ELT)) (-1445 (((-2 (|:| |cont| |#1|) (|:| -1782 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85)) 86 T ELT)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -3733 ((-348 |#2|) |#2|)) (-15 -3734 ((-348 |#2|) |#2|)) (-15 -1445 ((-2 (|:| |cont| |#1|) (|:| -1782 (-583 (-2 (|:| |irr| |#2|) (|:| -2395 (-484)))))) |#2| (-85))) (-15 -1446 ((-583 (-2 (|:| |deg| (-694)) (|:| -2576 |#2|))) |#2|)) (-15 -2371 ((-583 |#2|) (-583 (-2 (|:| |deg| (-694)) (|:| -2576 |#2|))))) (-15 -2372 (|#2| |#2| (-694) |#2|)) (-15 -1447 (|#2| |#2| (-694) |#2|)) (-15 -1448 (|#2| |#2| (-694) |#2|)) (-15 -1449 ((-85) |#2|))) (-299) (-1155 |#1|)) (T -170))
+((-1449 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1448 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-1447 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2372 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2576 *5)))) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5)))) (-1446 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2576 *3)))) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-1445 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-299)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3157 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-484) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-484) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3959 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-484) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-1450 (($ (-350 (-484))) 9 T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 10) $) 10 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-171) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 10)) (-10 -8 (-15 -3129 ((-350 (-484)) $)) (-15 -1450 ($ (-350 (-484))))))) (T -171))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1028) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3179 (((-423) $) 11 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-172) (-13 (-995) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3320 ((-1028) $)) (-15 -3234 ((-1049) $))))) (T -172))
+((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172)))))
+((-3813 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)) (-1073)) 29 T ELT) (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|))) 25 T ELT)) (-1451 (((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-750 |#2|) (-750 |#2|) (-85)) 17 T ELT)))
+(((-173 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1004 (-750 |#2|)))) (-15 -3813 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1004 (-750 |#2|)) (-1073))) (-15 -1451 ((-3 (|:| |f1| (-750 |#2|)) (|:| |f2| (-583 (-750 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1090) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -173))
+((-1451 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1090)) (-5 *6 (-85)) (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-1115) (-871) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1073)) (-4 *3 (-13 (-1115) (-871) (-29 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *6 *3)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1115) (-871) (-29 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-173 *5 *3)))))
+((-3813 (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))) (-1073)) 49 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1073)) 50 T ELT) (((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|)))) 22 T ELT)))
+(((-174 |#1|) (-10 -7 (-15 -3813 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))))) (-15 -3813 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-265 |#1|))) (-1073))) (-15 -3813 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))))) (-15 -3813 ((-3 (|:| |f1| (-750 (-265 |#1|))) (|:| |f2| (-583 (-750 (-265 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-350 (-857 |#1|)) (-1004 (-750 (-350 (-857 |#1|)))) (-1073)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (T -174))
+((-3813 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-750 (-350 (-857 *6))))) (-5 *5 (-1073)) (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-750 (-350 (-857 *5))))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6)))) (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *6)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5)))) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-174 *5)))))
+((-3843 (((-2 (|:| -2004 (-1085 |#1|)) (|:| |deg| (-830))) (-1085 |#1|)) 26 T ELT)) (-3964 (((-583 (-265 |#2|)) (-265 |#2|) (-830)) 51 T ELT)))
+(((-175 |#1| |#2|) (-10 -7 (-15 -3843 ((-2 (|:| -2004 (-1085 |#1|)) (|:| |deg| (-830))) (-1085 |#1|))) (-15 -3964 ((-583 (-265 |#2|)) (-265 |#2|) (-830)))) (-961) (-495)) (T -175))
+((-3964 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6))) (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1085 *4)) (|:| |deg| (-830)))) (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-495)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) NIL T ELT)) (-3324 ((|#1| $) 31 T ELT)) (-3725 (($) NIL T CONST)) (-3003 (($ $) NIL T ELT)) (-2297 (($ $) 40 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3326 ((|#1| |#1| $) NIL T ELT)) (-3325 ((|#1| $) NIL T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-694) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) NIL T ELT)) (-1493 ((|#1| |#1| $) 36 T ELT)) (-1492 ((|#1| |#1| $) 38 T ELT)) (-3610 (($ |#1| $) NIL T ELT)) (-2604 (((-694) $) 34 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3002 ((|#1| $) NIL T ELT)) (-1491 ((|#1| $) 32 T ELT)) (-1490 ((|#1| $) 30 T ELT)) (-1275 ((|#1| $) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) NIL T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) NIL T ELT)) (-3004 ((|#1| $) NIL T ELT)) (-1496 (($) NIL T ELT) (($ (-583 |#1|)) 17 T ELT)) (-3323 (((-694) $) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1494 ((|#1| $) 14 T ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-3001 ((|#1| $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-176 |#1|) (-13 (-214 |#1|) (-10 -8 (-15 -1496 ($ (-583 |#1|))))) (-1013)) (T -176))
+((-1496 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1453 (($ (-265 |#1|)) 24 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 (-265 |#1|) #1#) $) NIL T ELT)) (-3157 (((-265 |#1|) $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3959 (($ (-1 (-265 |#1|) (-265 |#1|)) $) NIL T ELT)) (-3175 (((-265 |#1|) $) NIL T ELT)) (-1455 (($ $) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1454 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) NIL T ELT)) (-1452 (($ $) 33 T ELT)) (-3949 (((-484) $) NIL T ELT)) (-3947 (((-772) $) 65 T ELT) (($ (-484)) NIL T ELT) (($ (-265 |#1|)) NIL T ELT)) (-3678 (((-265 |#1|) $ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) 29 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-265 |#1|) $) 19 T ELT)))
+(((-177 |#1| |#2|) (-13 (-560 (-265 |#1|)) (-950 (-265 |#1|)) (-10 -8 (-15 -3175 ((-265 |#1|) $)) (-15 -1455 ($ $)) (-15 -3960 ($ $)) (-15 -3678 ((-265 |#1|) $ $)) (-15 -2409 ($ (-694))) (-15 -1454 ((-85) $)) (-15 -2665 ((-85) $)) (-15 -3949 ((-484) $)) (-15 -3959 ($ (-1 (-265 |#1|) (-265 |#1|)) $)) (-15 -1453 ($ (-265 |#1|))) (-15 -1452 ($ $)))) (-13 (-961) (-756)) (-583 (-1090))) (T -177))
+((-3175 (*1 *2 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-1455 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090))))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090))))) (-3678 (*1 *2 *1 *1) (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756))) (-14 *4 (-583 (-1090))))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090))))) (-1453 (*1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090))))) (-1452 (*1 *1 *1) (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756))) (-14 *3 (-583 (-1090))))))
+((-1456 (((-85) (-1073)) 26 T ELT)) (-1457 (((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85)) 35 T ELT)) (-1458 (((-3 (-85) #1#) (-1085 |#2|) (-750 |#2|) (-750 |#2|) (-85)) 83 T ELT) (((-3 (-85) #1#) (-857 |#1|) (-1090) (-750 |#2|) (-750 |#2|) (-85)) 84 T ELT)))
+(((-178 |#1| |#2|) (-10 -7 (-15 -1456 ((-85) (-1073))) (-15 -1457 ((-3 (-750 |#2|) #1="failed") (-550 |#2|) |#2| (-750 |#2|) (-750 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-857 |#1|) (-1090) (-750 |#2|) (-750 |#2|) (-85))) (-15 -1458 ((-3 (-85) #1#) (-1085 |#2|) (-750 |#2|) (-750 |#2|) (-85)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-29 |#1|))) (T -178))
+((-1458 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-750 *6)) (-4 *6 (-13 (-1115) (-29 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))) (-1458 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1090)) (-5 *5 (-750 *7)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7)))) (-1457 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85)) (-4 *4 (-13 (-1115) (-29 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))) (-1456 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 86 T ELT)) (-3130 (((-484) $) 18 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3772 (($ $) NIL T ELT)) (-3493 (($ $) 73 T ELT)) (-3640 (($ $) 61 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 52 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 71 T ELT)) (-3639 (($ $) 59 T ELT)) (-3624 (((-484) $) 83 T ELT)) (-3495 (($ $) 76 T ELT)) (-3638 (($ $) 63 T ELT)) (-3725 (($) NIL T CONST)) (-3128 (($ $) NIL T ELT)) (-3158 (((-3 (-484) #1#) $) 116 T ELT) (((-3 (-350 (-484)) #1#) $) 113 T ELT)) (-3157 (((-484) $) 114 T ELT) (((-350 (-484)) $) 111 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 91 T ELT)) (-1747 (((-350 (-484)) $ (-694)) 106 T ELT) (((-350 (-484)) $ (-694) (-694)) 105 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1771 (((-830)) 12 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 107 T ELT)) (-3628 (($) 31 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL T ELT)) (-3773 (((-484) $) 25 T ELT)) (-1214 (((-85) $ $) 141 T ELT)) (-2410 (((-85) $) 87 T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 85 T ELT)) (-1459 (((-85) $) 140 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) 49 T ELT) (($) 21 (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-2858 (($ $ $) 48 T ELT) (($) 20 (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-1773 (((-484) $) 10 T ELT)) (-1746 (($ $) 16 T ELT)) (-1745 (($ $) 53 T ELT)) (-3943 (($ $) 58 T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-1770 (((-830) (-484)) NIL (|has| $ (-6 -3987)) ELT)) (-3244 (((-1033) $) 89 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL T ELT)) (-3131 (($ $) NIL T ELT)) (-3255 (($ (-484) (-484)) NIL T ELT) (($ (-484) (-484) (-830)) 98 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 11 T ELT)) (-1744 (($) 30 T ELT)) (-3944 (($ $) 57 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-830)) NIL T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 92 T ELT) (($ $ (-694)) NIL T ELT)) (-1769 (((-830) (-484)) NIL (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) 74 T ELT)) (-3637 (($ $) 64 T ELT)) (-3494 (($ $) 75 T ELT)) (-3636 (($ $) 62 T ELT)) (-3492 (($ $) 72 T ELT)) (-3635 (($ $) 60 T ELT)) (-3973 (((-330) $) 102 T ELT) (((-179) $) 99 T ELT) (((-800 (-330)) $) NIL T ELT) (((-473) $) 38 T ELT)) (-3947 (((-772) $) 35 T ELT) (($ (-484)) 56 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) 56 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (($ $) NIL T ELT)) (-1772 (((-830)) 19 T ELT) (((-830) (-830)) NIL (|has| $ (-6 -3987)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-830)) 7 T ELT)) (-3499 (($ $) 79 T ELT)) (-3487 (($ $) 67 T ELT) (($ $ $) 109 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 77 T ELT)) (-3485 (($ $) 65 T ELT)) (-3501 (($ $) 82 T ELT)) (-3489 (($ $) 70 T ELT)) (-3126 (((-85) $ $) 143 T ELT)) (-3502 (($ $) 80 T ELT)) (-3490 (($ $) 68 T ELT)) (-3500 (($ $) 81 T ELT)) (-3488 (($ $) 69 T ELT)) (-3498 (($ $) 78 T ELT)) (-3486 (($ $) 66 T ELT)) (-3384 (($ $) 108 T ELT)) (-2661 (($) 27 T CONST)) (-2667 (($) 28 T CONST)) (-3388 (($ $) 95 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3385 (($ $ $) 97 T ELT)) (-2567 (((-85) $ $) 42 T ELT)) (-2568 (((-85) $ $) 40 T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) 41 T ELT)) (-2686 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-484)) 51 T ELT)) (-3838 (($ $) 43 T ELT) (($ $ $) 45 T ELT)) (-3840 (($ $ $) 44 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 54 T ELT) (($ $ (-350 (-484))) 139 T ELT) (($ $ $) 55 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 47 T ELT) (($ $ $) 46 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-179) (-13 (-347) (-190) (-1115) (-553 (-473)) (-10 -8 (-15 -3950 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -1744 ($)) (-15 -1746 ($ $)) (-15 -1745 ($ $)) (-15 -3487 ($ $ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -1747 ((-350 (-484)) $ (-694))) (-15 -1747 ((-350 (-484)) $ (-694) (-694))) (-15 -1459 ((-85) $))))) (T -179))
+((** (*1 *1 *1 *1) (-5 *1 (-179))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179)))) (-1744 (*1 *1) (-5 *1 (-179))) (-1746 (*1 *1 *1) (-5 *1 (-179))) (-1745 (*1 *1 *1) (-5 *1 (-179))) (-3487 (*1 *1 *1 *1) (-5 *1 (-179))) (-3388 (*1 *1 *1) (-5 *1 (-179))) (-3385 (*1 *1 *1 *1) (-5 *1 (-179))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) (-1747 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179)))) (-1459 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
+((-3387 (((-142 (-179)) (-694) (-142 (-179))) 11 T ELT) (((-179) (-694) (-179)) 12 T ELT)) (-1460 (((-142 (-179)) (-142 (-179))) 13 T ELT) (((-179) (-179)) 14 T ELT)) (-1461 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 19 T ELT) (((-179) (-179) (-179)) 22 T ELT)) (-3386 (((-142 (-179)) (-142 (-179))) 27 T ELT) (((-179) (-179)) 26 T ELT)) (-3390 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 57 T ELT) (((-179) (-179) (-179)) 49 T ELT)) (-3392 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 62 T ELT) (((-179) (-179) (-179)) 60 T ELT)) (-3389 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 15 T ELT) (((-179) (-179) (-179)) 16 T ELT)) (-3391 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 17 T ELT) (((-179) (-179) (-179)) 18 T ELT)) (-3394 (((-142 (-179)) (-142 (-179))) 74 T ELT) (((-179) (-179)) 73 T ELT)) (-3393 (((-179) (-179)) 68 T ELT) (((-142 (-179)) (-142 (-179))) 72 T ELT)) (-3388 (((-142 (-179)) (-142 (-179))) 8 T ELT) (((-179) (-179)) 9 T ELT)) (-3385 (((-142 (-179)) (-142 (-179)) (-142 (-179))) 35 T ELT) (((-179) (-179) (-179)) 31 T ELT)))
+(((-180) (-10 -7 (-15 -3388 ((-179) (-179))) (-15 -3388 ((-142 (-179)) (-142 (-179)))) (-15 -3385 ((-179) (-179) (-179))) (-15 -3385 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -1460 ((-179) (-179))) (-15 -1460 ((-142 (-179)) (-142 (-179)))) (-15 -3386 ((-179) (-179))) (-15 -3386 ((-142 (-179)) (-142 (-179)))) (-15 -3387 ((-179) (-694) (-179))) (-15 -3387 ((-142 (-179)) (-694) (-142 (-179)))) (-15 -3389 ((-179) (-179) (-179))) (-15 -3389 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3390 ((-179) (-179) (-179))) (-15 -3390 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3391 ((-179) (-179) (-179))) (-15 -3391 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3392 ((-179) (-179) (-179))) (-15 -3392 ((-142 (-179)) (-142 (-179)) (-142 (-179)))) (-15 -3393 ((-142 (-179)) (-142 (-179)))) (-15 -3393 ((-179) (-179))) (-15 -3394 ((-179) (-179))) (-15 -3394 ((-142 (-179)) (-142 (-179)))) (-15 -1461 ((-179) (-179) (-179))) (-15 -1461 ((-142 (-179)) (-142 (-179)) (-142 (-179)))))) (T -180))
+((-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1461 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3394 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3392 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3390 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3389 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180)))) (-3387 (*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-1460 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))) (-3388 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-694) (-694)) NIL T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3415 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3874 (($ |#1| |#1| |#1|) 33 T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) NIL T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1257 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-3848 (($ |#1| |#1| |#1|) 32 T ELT)) (-3334 (($ (-694) |#1|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3112 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-1462 (($ |#1|) 31 T ELT)) (-1463 (($ |#1|) 30 T ELT)) (-1464 (($ |#1|) 29 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3109 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) NIL T ELT)) (-3113 ((|#1| $ (-484) (-484)) NIL T ELT)) (-3108 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-3107 (((-583 (-1179 |#1|)) $) NIL (|has| |#1| (-495)) ELT)) (-3115 (((-694) $) NIL T ELT)) (-3615 (($ (-694) (-694) |#1|) NIL T ELT)) (-3114 (((-694) $) NIL T ELT)) (-3328 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-484) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3124 (($ (-583 (-583 |#1|))) 11 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-583 (-583 |#1|)) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3591 (((-3 $ #2="failed") $) NIL (|has| |#1| (-312)) ELT)) (-1465 (($) 12 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3333 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) NIL (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3111 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3947 (($ (-1179 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) 15 T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT) (((-854 |#1|) $ (-854 |#1|)) 21 T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-181 |#1|) (-13 (-627 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 * ((-854 |#1|) $ (-854 |#1|))) (-15 -1465 ($)) (-15 -1464 ($ |#1|)) (-15 -1463 ($ |#1|)) (-15 -1462 ($ |#1|)) (-15 -3848 ($ |#1| |#1| |#1|)) (-15 -3874 ($ |#1| |#1| |#1|)))) (-13 (-312) (-1115))) (T -181))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3)))) (-1465 (*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1464 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1463 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-1462 (*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3848 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))) (-3874 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+((-1570 (($ (-1 (-85) |#2|) $) 16 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 28 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 |#2|)) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -1466 (|#1| (-583 |#2|))) (-15 -1466 (|#1|))) (-183 |#2|) (-1013)) (T -182))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-183 |#1|) (-113) (-1013)) (T -183))
NIL
(-13 (-193 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-1 |#1| |#1|) (-695)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1091)) 63 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#1| (-812 (-1091))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-695)) 53 (|has| |#1| (-189)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|) (-695)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1091)) 62 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-695)) 52 (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-184 |#1|) (-113) (-962)) (T -184))
-NIL
-(-13 (-962) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2671 ((|#2| $) 9 T ELT)))
-(((-185 |#1| |#2|) (-10 -7 (-15 -2671 (|#2| |#1|))) (-186 |#2|) (-1130)) (T -185))
-NIL
-((-3760 ((|#1| $) 7 T ELT)) (-2671 ((|#1| $) 6 T ELT)))
-(((-186 |#1|) (-113) (-1130)) (T -186))
-((-3760 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130)))))
-(-13 (-1130) (-10 -8 (-15 -3760 (|t#1| $)) (-15 -2671 (|t#1| $))))
-(((-13) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 43 T ELT) (($ $) 41 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-695)) 44 T ELT) (($ $) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-187 |#1|) (-113) (-962)) (T -187))
-NIL
-(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3760 (($ $) NIL T ELT) (($ $ (-695)) 9 T ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) 11 T ELT)))
-(((-188 |#1|) (-10 -7 (-15 -2671 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-695))) (-15 -2671 (|#1| |#1|)) (-15 -3760 (|#1| |#1|))) (-189)) (T -188))
-NIL
-((-3760 (($ $) 7 T ELT) (($ $ (-695)) 10 T ELT)) (-2671 (($ $) 6 T ELT) (($ $ (-695)) 9 T ELT)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-1 |#1| |#1|) (-694)) 65 T ELT) (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1090)) 63 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 61 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 60 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 59 (|has| |#1| (-811 (-1090))) ELT) (($ $) 55 (|has| |#1| (-189)) ELT) (($ $ (-694)) 53 (|has| |#1| (-189)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|) (-694)) 67 T ELT) (($ $ (-1 |#1| |#1|)) 66 T ELT) (($ $ (-1090)) 62 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 58 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 57 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 56 (|has| |#1| (-811 (-1090))) ELT) (($ $) 54 (|has| |#1| (-189)) ELT) (($ $ (-694)) 52 (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-184 |#1|) (-113) (-961)) (T -184))
+NIL
+(-13 (-961) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-190)) (-6 (-190)) |%noBranch|) (IF (|has| |t#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2670 ((|#2| $) 9 T ELT)))
+(((-185 |#1| |#2|) (-10 -7 (-15 -2670 (|#2| |#1|))) (-186 |#2|) (-1129)) (T -185))
+NIL
+((-3759 ((|#1| $) 7 T ELT)) (-2670 ((|#1| $) 6 T ELT)))
+(((-186 |#1|) (-113) (-1129)) (T -186))
+((-3759 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3759 (|t#1| $)) (-15 -2670 (|t#1| $))))
+(((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-694)) 43 T ELT) (($ $) 41 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-694)) 44 T ELT) (($ $) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-187 |#1|) (-113) (-961)) (T -187))
+NIL
+(-13 (-82 |t#1| |t#1|) (-189) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-3759 (($ $) NIL T ELT) (($ $ (-694)) 9 T ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) 11 T ELT)))
+(((-188 |#1|) (-10 -7 (-15 -2670 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-694))) (-15 -2670 (|#1| |#1|)) (-15 -3759 (|#1| |#1|))) (-189)) (T -188))
+NIL
+((-3759 (($ $) 7 T ELT) (($ $ (-694)) 10 T ELT)) (-2670 (($ $) 6 T ELT) (($ $ (-694)) 9 T ELT)))
(((-189) (-113)) (T -189))
-((-3760 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))) (-2671 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695)))))
-(-13 (-186 $) (-10 -8 (-15 -3760 ($ $ (-695))) (-15 -2671 ($ $ (-695)))))
-(((-186 $) . T) ((-13) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 50 T ELT) (($ $) 48 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-695)) 51 T ELT) (($ $) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))) (-2670 (*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694)))))
+(-13 (-186 $) (-10 -8 (-15 -3759 ($ $ (-694))) (-15 -2670 ($ $ (-694)))))
+(((-186 $) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-694)) 50 T ELT) (($ $) 48 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-694)) 51 T ELT) (($ $) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-190) (-113)) (T -190))
NIL
-(-13 (-962) (-189))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3726 (($) 30 T CONST)) (-3469 (((-3 $ "failed") $) 36 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (** (($ $ (-831)) 40 T ELT) (($ $ (-695)) 37 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ $ $) 41 T ELT)))
+(-13 (-961) (-189))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 36 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-830)) 40 T ELT) (($ $ (-694)) 37 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ $ $) 41 T ELT)))
(((-191) (-113)) (T -191))
NIL
-(-13 (-717) (-1062))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1467 (($) 12 T ELT) (($ (-584 |#2|)) NIL T ELT)) (-3402 (($ $) 14 T ELT)) (-3532 (($ (-584 |#2|)) 10 T ELT)) (-3948 (((-773) $) 21 T ELT)))
-(((-192 |#1| |#2|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 -1467 (|#1| (-584 |#2|))) (-15 -1467 (|#1|)) (-15 -3532 (|#1| (-584 |#2|))) (-15 -3402 (|#1| |#1|))) (-193 |#2|) (-1014)) (T -192))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-193 |#1|) (-113) (-1014)) (T -193))
-((-1467 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-1467 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3)))) (-3407 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1014)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1014)))))
-(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1467 ($)) (-15 -1467 ($ (-584 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3407 ($ |t#1| $)) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -1571 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-1468 (((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485)))) 42 T ELT)))
-(((-194) (-10 -7 (-15 -1468 ((-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695))))) (-249 (-858 (-485))))))) (T -194))
-((-1468 (*1 *2 *3) (-12 (-5 *3 (-249 (-858 (-485)))) (-5 *2 (-2 (|:| |varOrder| (-584 (-1091))) (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed")) (|:| |hom| (-584 (-1180 (-695)))))) (-5 *1 (-194)))))
-((-3138 (((-695)) 56 T ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 53 T ELT) (((-631 |#3|) (-631 $)) 44 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3913 (((-107)) 62 T ELT)) (-3760 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-773) $) NIL T ELT) (($ (-485)) 12 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 15 T CONST)) (-3951 (($ $ |#3|) 59 T ELT)))
-(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3948 ((-773) |#1|)) (-15 -3128 ((-695)) -3954) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -3948 (|#1| |#3|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -3138 ((-695))) (-15 -3951 (|#1| |#1| |#3|)) (-15 -3913 ((-107))) (-15 -3948 ((-1180 |#3|) |#1|))) (-196 |#2| |#3|) (-695) (-1130)) (T -195))
-((-3913 (*1 *2) (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3138 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3128 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
-((-2570 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) 72 (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) 128 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) 124 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ "failed") $ $) 75 (|has| |#2| (-104)) ELT)) (-3138 (((-695)) 113 (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) 47 (|has| $ (-6 -3998)) ELT)) (-3726 (($) 6 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 67 (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) 64 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) 66 (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) 63 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 62 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 110 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 109 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 108 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) 107 (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 140 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3469 (((-3 $ "failed") $) 87 (|has| |#2| (-962)) ELT)) (-2996 (($) 116 (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ (-485)) 46 T ELT)) (-3188 (((-85) $) 123 (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) 74 (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) 85 (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 117 (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) 135 T ELT)) (-3247 (((-85) |#2| $) 139 (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 118 (|has| |#2| (-757)) ELT)) (-3328 (($ (-1 |#2| |#2|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2011 (((-831) $) 115 (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) 112 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 111 (-2564 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 106 (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) 105 (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) 20 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-2401 (($ (-831)) 114 (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) 19 (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) 37 (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) 36 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 133 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ (-485) |#2|) 45 T ELT) ((|#2| $ (-485)) 44 T ELT)) (-3838 ((|#2| $ $) 127 (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 129 T ELT)) (-3913 (((-107)) 126 (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) 103 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 101 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 97 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 96 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 95 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 93 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 91 (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) 138 (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) 134 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-1180 |#2|) $) 130 T ELT) (($ (-485)) 68 (OR (-2564 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) 65 (-2564 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 60 (|has| |#2| (-1014)) ELT) (((-773) $) 15 (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) 88 (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3127 (((-85) $ $) 83 (|has| |#2| (-962)) ELT)) (-2662 (($) 71 (|has| |#2| (-23)) CONST)) (-2668 (($) 84 (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) 104 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) 102 (-2564 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 100 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) 99 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) 98 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) 94 (-2564 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) 89 (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) 119 (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) 121 (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) 120 (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 122 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) 125 (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) 78 (|has| |#2| (-21)) ELT) (($ $) 77 (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) 69 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) 86 (|has| |#2| (-962)) ELT) (($ $ (-831)) 81 (|has| |#2| (-962)) ELT)) (* (($ $ $) 82 (|has| |#2| (-962)) ELT) (($ $ |#2|) 80 (|has| |#2| (-664)) ELT) (($ |#2| $) 79 (|has| |#2| (-664)) ELT) (($ (-485) $) 76 (|has| |#2| (-21)) ELT) (($ (-695) $) 73 (|has| |#2| (-23)) ELT) (($ (-831) $) 70 (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) 131 T ELT)))
-(((-196 |#1| |#2|) (-113) (-695) (-1130)) (T -196))
-((-1469 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
-(-13 (-539 (-485) |t#2|) (-318 |t#2|) (-553 (-1180 |t#2|)) (-10 -8 (-15 -1469 ($ (-1180 |t#2|))) (IF (|has| |t#2| (-1014)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-962)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3709 ($ (-831))) (-15 -3838 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-664)) (-6 (-583 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#2| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#2| (-718)) (-6 (-718)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1188 |t#2|)) |%noBranch|)))
-(((-21) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-962)) (|has| |#2| (-718)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-556 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-556 (-485)) OR (|has| |#2| (-962)) (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014)))) ((-556 |#2|) |has| |#2| (-1014)) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-553 (-773))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-553 (-1180 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-184 |#2|) |has| |#2| (-962)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-962))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) (-12 (|has| |#2| (-190)) (|has| |#2| (-962)))) ((-225 |#2|) |has| |#2| (-962)) ((-241 (-485) |#2|) . T) ((-243 (-485) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-962)) ((-355 |#2|) |has| |#2| (-1014)) ((-429 |#2|) . T) ((-539 (-485) |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-589 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-589 $) |has| |#2| (-962)) ((-591 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-591 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-591 $) |has| |#2| (-962)) ((-583 |#2|) OR (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-581 (-485)) -12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ((-581 |#2|) |has| |#2| (-962)) ((-655 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-664) |has| |#2| (-962)) ((-717) |has| |#2| (-718)) ((-718) |has| |#2| (-718)) ((-719) |has| |#2| (-718)) ((-722) |has| |#2| (-718)) ((-757) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-760) OR (|has| |#2| (-757)) (|has| |#2| (-718))) ((-807 $ (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-810 (-1091)) -12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962))) ((-812 (-1091)) OR (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) (-12 (|has| |#2| (-810 (-1091))) (|has| |#2| (-962)))) ((-951 (-350 (-485))) -12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ((-951 (-485)) -12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ((-951 |#2|) |has| |#2| (-1014)) ((-964 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-664)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-969 |#2|) OR (|has| |#2| (-962)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-962) |has| |#2| (-962)) ((-971) |has| |#2| (-962)) ((-1026) |has| |#2| (-962)) ((-1062) |has| |#2| (-962)) ((-1014) OR (|has| |#2| (-1014)) (|has| |#2| (-962)) (|has| |#2| (-757)) (|has| |#2| (-718)) (|has| |#2| (-664)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1130) . T) ((-1188 |#2|) |has| |#2| (-312)))
-((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) 63 (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) 69 (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) 29 (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 59 (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ (-485)) 57 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) 20 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) 14 T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3328 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) 21 T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) 18 T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) 9 T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) 12 (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) 37 (|has| |#2| (-23)) CONST)) (-2668 (($) 41 (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 67 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) 47 (|has| |#2| (-962)) ELT) (($ $ |#2|) 45 (|has| |#2| (-664)) ELT) (($ |#2| $) 46 (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-197 |#1| |#2|) (-196 |#1| |#2|) (-695) (-1130)) (T -197))
-NIL
-((-3843 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3844 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3960 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
-(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3843 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3844 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3960 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-695) (-1130) (-1130)) (T -198))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695)) (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
-((-1473 (((-485) (-584 (-1074))) 36 T ELT) (((-485) (-1074)) 29 T ELT)) (-1472 (((-1186) (-584 (-1074))) 40 T ELT) (((-1186) (-1074)) 39 T ELT)) (-1470 (((-1074)) 16 T ELT)) (-1471 (((-1074) (-485) (-1074)) 23 T ELT)) (-3775 (((-584 (-1074)) (-584 (-1074)) (-485) (-1074)) 37 T ELT) (((-1074) (-1074) (-485) (-1074)) 35 T ELT)) (-2622 (((-584 (-1074)) (-584 (-1074))) 15 T ELT) (((-584 (-1074)) (-1074)) 11 T ELT)))
-(((-199) (-10 -7 (-15 -2622 ((-584 (-1074)) (-1074))) (-15 -2622 ((-584 (-1074)) (-584 (-1074)))) (-15 -1470 ((-1074))) (-15 -1471 ((-1074) (-485) (-1074))) (-15 -3775 ((-1074) (-1074) (-485) (-1074))) (-15 -3775 ((-584 (-1074)) (-584 (-1074)) (-485) (-1074))) (-15 -1472 ((-1186) (-1074))) (-15 -1472 ((-1186) (-584 (-1074)))) (-15 -1473 ((-485) (-1074))) (-15 -1473 ((-485) (-584 (-1074)))))) (T -199))
-((-1473 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199)))) (-1473 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199)))) (-3775 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199)))) (-3775 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1471 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))) (-1470 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199)))) (-2622 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074)))))
-((** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 18 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) 25 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
-(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-485))) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-201)) (T -200))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 55 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 59 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 56 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 58 T ELT) (($ $ (-350 (-485))) 57 T ELT)))
+(-13 (-716) (-1061))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-1466 (($) 12 T ELT) (($ (-583 |#2|)) NIL T ELT)) (-3401 (($ $) 14 T ELT)) (-3531 (($ (-583 |#2|)) 10 T ELT)) (-3947 (((-772) $) 21 T ELT)))
+(((-192 |#1| |#2|) (-10 -7 (-15 -3947 ((-772) |#1|)) (-15 -1466 (|#1| (-583 |#2|))) (-15 -1466 (|#1|)) (-15 -3531 (|#1| (-583 |#2|))) (-15 -3401 (|#1| |#1|))) (-193 |#2|) (-1013)) (T -192))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-193 |#1|) (-113) (-1013)) (T -193))
+((-1466 (*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3)))) (-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1013)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3)) (-4 *3 (-1013)))))
+(-13 (-76 |t#1|) (-124 |t#1|) (-10 -8 (-15 -1466 ($)) (-15 -1466 ($ (-583 |t#1|))) (IF (|has| $ (-318 |t#1|)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -1570 ($ (-1 (-85) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-1467 (((-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694))))) (-249 (-857 (-484)))) 42 T ELT)))
+(((-194) (-10 -7 (-15 -1467 ((-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694))))) (-249 (-857 (-484))))))) (T -194))
+((-1467 (*1 *2 *3) (-12 (-5 *3 (-249 (-857 (-484)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1090))) (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed")) (|:| |hom| (-583 (-1179 (-694)))))) (-5 *1 (-194)))))
+((-3137 (((-694)) 56 T ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) 53 T ELT) (((-630 |#3|) (-630 $)) 44 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3912 (((-107)) 62 T ELT)) (-3759 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-772) $) NIL T ELT) (($ (-484)) 12 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3127 (((-694)) 15 T CONST)) (-3950 (($ $ |#3|) 59 T ELT)))
+(((-195 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 (|#1| (-484))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3947 ((-772) |#1|)) (-15 -3127 ((-694)) -3953) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 |#1|) (-1179 |#1|))) (-15 -3137 ((-694))) (-15 -3950 (|#1| |#1| |#3|)) (-15 -3912 ((-107))) (-15 -3947 ((-1179 |#3|) |#1|))) (-196 |#2| |#3|) (-694) (-1129)) (T -195))
+((-3912 (*1 *2) (-12 (-14 *4 (-694)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3137 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))) (-3127 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5)) (-4 *3 (-196 *4 *5)))))
+((-2569 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) 72 (|has| |#2| (-23)) ELT)) (-3708 (($ (-830)) 128 (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) 124 (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ "failed") $ $) 75 (|has| |#2| (-104)) ELT)) (-3137 (((-694)) 113 (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-484) |#2|) 47 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 6 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 67 (-2563 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) 64 (-2563 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1013)) ELT)) (-3157 (((-484) $) 66 (-2563 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) 63 (-2563 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 62 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 110 (-2563 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 109 (-2563 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 108 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) 107 (|has| |#2| (-961)) ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 140 (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 137 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 136 T ELT)) (-3468 (((-3 $ "failed") $) 87 (|has| |#2| (-961)) ELT)) (-2995 (($) 116 (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-484)) 46 T ELT)) (-3187 (((-85) $) 123 (|has| |#2| (-717)) ELT)) (-1214 (((-85) $ $) 74 (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) 85 (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 117 (|has| |#2| (-756)) ELT)) (-2609 (((-583 |#2|) $) 135 T ELT)) (-3246 (((-85) |#2| $) 139 (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 118 (|has| |#2| (-756)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-2010 (((-830) $) 115 (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) 112 (-2563 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 111 (-2563 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 106 (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) 105 (|has| |#2| (-961)) ELT)) (-3243 (((-1073) $) 20 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-2400 (($ (-830)) 114 (|has| |#2| (-320)) ELT)) (-3244 (((-1033) $) 19 (|has| |#2| (-1013)) ELT)) (-3802 ((|#2| $) 37 (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) 36 (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 133 T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#2| $ (-484) |#2|) 45 T ELT) ((|#2| $ (-484)) 44 T ELT)) (-3837 ((|#2| $ $) 127 (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) 129 T ELT)) (-3912 (((-107)) 126 (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-694)) 103 (-2563 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 101 (-2563 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 97 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) 96 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) 95 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) 93 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 91 (|has| |#2| (-961)) ELT)) (-1730 (((-694) |#2| $) 138 (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) 134 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-1179 |#2|) $) 130 T ELT) (($ (-484)) 68 (OR (-2563 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) 65 (-2563 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 60 (|has| |#2| (-1013)) ELT) (((-772) $) 15 (|has| |#2| (-552 (-772))) ELT)) (-3127 (((-694)) 88 (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 132 T ELT)) (-3126 (((-85) $ $) 83 (|has| |#2| (-961)) ELT)) (-2661 (($) 71 (|has| |#2| (-23)) CONST)) (-2667 (($) 84 (|has| |#2| (-961)) CONST)) (-2670 (($ $ (-694)) 104 (-2563 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) 102 (-2563 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 100 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) 99 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) 98 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) 94 (-2563 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) 90 (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) 89 (|has| |#2| (-961)) ELT)) (-2567 (((-85) $ $) 119 (|has| |#2| (-756)) ELT)) (-2568 (((-85) $ $) 121 (|has| |#2| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) 120 (|has| |#2| (-756)) ELT)) (-2686 (((-85) $ $) 122 (|has| |#2| (-756)) ELT)) (-3950 (($ $ |#2|) 125 (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) 78 (|has| |#2| (-21)) ELT) (($ $) 77 (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 69 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) 86 (|has| |#2| (-961)) ELT) (($ $ (-830)) 81 (|has| |#2| (-961)) ELT)) (* (($ $ $) 82 (|has| |#2| (-961)) ELT) (($ $ |#2|) 80 (|has| |#2| (-663)) ELT) (($ |#2| $) 79 (|has| |#2| (-663)) ELT) (($ (-484) $) 76 (|has| |#2| (-21)) ELT) (($ (-694) $) 73 (|has| |#2| (-23)) ELT) (($ (-830) $) 70 (|has| |#2| (-25)) ELT)) (-3958 (((-694) $) 131 T ELT)))
+(((-196 |#1| |#2|) (-113) (-694) (-1129)) (T -196))
+((-1468 (*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1129)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))))
+(-13 (-538 (-484) |t#2|) (-318 |t#2|) (-552 (-1179 |t#2|)) (-10 -8 (-15 -1468 ($ (-1179 |t#2|))) (IF (|has| |t#2| (-1013)) (-6 (-355 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-82 |t#2| |t#2|)) (-6 (-184 |t#2|)) (-6 (-329 |t#2|)) (-15 -3708 ($ (-830))) (-15 -3837 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-104)) (-6 (-104)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-663)) (-6 (-582 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |t#2| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#2| (-717)) (-6 (-717)) |%noBranch|) (IF (|has| |t#2| (-312)) (-6 (-1187 |t#2|)) |%noBranch|)))
+(((-21) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-23) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-72)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-82 |#2| |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-104) OR (|has| |#2| (-961)) (|has| |#2| (-717)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-21))) ((-555 (-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ((-555 (-484)) OR (|has| |#2| (-961)) (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013)))) ((-555 |#2|) |has| |#2| (-1013)) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-552 (-772))) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-552 (-1179 |#2|)) . T) ((-186 $) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-184 |#2|) |has| |#2| (-961)) ((-190) -12 (|has| |#2| (-190)) (|has| |#2| (-961))) ((-189) OR (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) (-12 (|has| |#2| (-190)) (|has| |#2| (-961)))) ((-225 |#2|) |has| |#2| (-961)) ((-241 (-484) |#2|) . T) ((-243 (-484) |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-320) |has| |#2| (-320)) ((-318 |#2|) . T) ((-329 |#2|) |has| |#2| (-961)) ((-355 |#2|) |has| |#2| (-1013)) ((-429 |#2|) . T) ((-538 (-484) |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-21))) ((-588 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-588 $) |has| |#2| (-961)) ((-590 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-590 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-590 $) |has| |#2| (-961)) ((-582 |#2|) OR (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-580 (-484)) -12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ((-580 |#2|) |has| |#2| (-961)) ((-654 |#2|) OR (|has| |#2| (-312)) (|has| |#2| (-146))) ((-663) |has| |#2| (-961)) ((-716) |has| |#2| (-717)) ((-717) |has| |#2| (-717)) ((-718) |has| |#2| (-717)) ((-721) |has| |#2| (-717)) ((-756) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-759) OR (|has| |#2| (-756)) (|has| |#2| (-717))) ((-806 $ (-1090)) OR (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) ((-809 (-1090)) -12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961))) ((-811 (-1090)) OR (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) (-12 (|has| |#2| (-809 (-1090))) (|has| |#2| (-961)))) ((-950 (-350 (-484))) -12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ((-950 (-484)) -12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ((-950 |#2|) |has| |#2| (-1013)) ((-963 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-663)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-968 |#2|) OR (|has| |#2| (-961)) (|has| |#2| (-312)) (|has| |#2| (-146))) ((-961) |has| |#2| (-961)) ((-970) |has| |#2| (-961)) ((-1025) |has| |#2| (-961)) ((-1061) |has| |#2| (-961)) ((-1013) OR (|has| |#2| (-1013)) (|has| |#2| (-961)) (|has| |#2| (-756)) (|has| |#2| (-717)) (|has| |#2| (-663)) (|has| |#2| (-320)) (|has| |#2| (-312)) (|has| |#2| (-146)) (|has| |#2| (-104)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1129) . T) ((-1187 |#2|) |has| |#2| (-312)))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-830)) 63 (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) 69 (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-104)) ELT)) (-3137 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1013)) ELT)) (-3157 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) 29 (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 59 (|has| |#2| (-961)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-484)) 57 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) 20 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2609 (((-583 |#2|) $) 14 T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3802 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) 21 T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) 18 T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1730 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#2|) $) 9 T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) 12 (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3127 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2661 (($) 37 (|has| |#2| (-23)) CONST)) (-2667 (($) 41 (|has| |#2| (-961)) CONST)) (-2670 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3057 (((-85) $ $) 28 (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2686 (((-85) $ $) 67 (|has| |#2| (-756)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) 47 (|has| |#2| (-961)) ELT) (($ $ |#2|) 45 (|has| |#2| (-663)) ELT) (($ |#2| $) 46 (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-197 |#1| |#2|) (-196 |#1| |#2|) (-694) (-1129)) (T -197))
+NIL
+((-3842 (((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 21 T ELT)) (-3843 ((|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|) 23 T ELT)) (-3959 (((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)) 18 T ELT)))
+(((-198 |#1| |#2| |#3|) (-10 -7 (-15 -3842 ((-197 |#1| |#3|) (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3843 (|#3| (-1 |#3| |#2| |#3|) (-197 |#1| |#2|) |#3|)) (-15 -3959 ((-197 |#1| |#3|) (-1 |#3| |#2|) (-197 |#1| |#2|)))) (-694) (-1129) (-1129)) (T -198))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694)) (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5)) (-5 *1 (-198 *6 *7 *5)))))
+((-1472 (((-484) (-583 (-1073))) 36 T ELT) (((-484) (-1073)) 29 T ELT)) (-1471 (((-1185) (-583 (-1073))) 40 T ELT) (((-1185) (-1073)) 39 T ELT)) (-1469 (((-1073)) 16 T ELT)) (-1470 (((-1073) (-484) (-1073)) 23 T ELT)) (-3774 (((-583 (-1073)) (-583 (-1073)) (-484) (-1073)) 37 T ELT) (((-1073) (-1073) (-484) (-1073)) 35 T ELT)) (-2621 (((-583 (-1073)) (-583 (-1073))) 15 T ELT) (((-583 (-1073)) (-1073)) 11 T ELT)))
+(((-199) (-10 -7 (-15 -2621 ((-583 (-1073)) (-1073))) (-15 -2621 ((-583 (-1073)) (-583 (-1073)))) (-15 -1469 ((-1073))) (-15 -1470 ((-1073) (-484) (-1073))) (-15 -3774 ((-1073) (-1073) (-484) (-1073))) (-15 -3774 ((-583 (-1073)) (-583 (-1073)) (-484) (-1073))) (-15 -1471 ((-1185) (-1073))) (-15 -1471 ((-1185) (-583 (-1073)))) (-15 -1472 ((-484) (-1073))) (-15 -1472 ((-484) (-583 (-1073)))))) (T -199))
+((-1472 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-484)) (-5 *1 (-199)))) (-1472 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-484)) (-5 *4 (-1073)) (-5 *1 (-199)))) (-3774 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1470 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))) (-1469 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)))) (-2621 (*1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073)))))
+((** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 18 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-484)) $) 25 T ELT) (($ $ (-350 (-484))) NIL T ELT)))
+(((-200 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-484))) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-201)) (T -200))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 55 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 59 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 56 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-484)) $) 58 T ELT) (($ $ (-350 (-484))) 57 T ELT)))
(((-201) (-113)) (T -201))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485)))) (-2486 (*1 *1 *1) (-4 *1 (-201))))
-(-13 (-246) (-38 (-350 (-485))) (-10 -8 (-15 ** ($ $ (-485))) (-15 -2486 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-246) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-655 (-350 (-485))) . T) ((-664) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3799 (($ $) 54 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-1475 (($ $ $) 50 (|has| $ (-1036 |#1|)) ELT)) (-1474 (($ $ $) 49 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1477 (($ $) 53 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1476 (($ $) 52 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 56 T ELT)) (-3180 (($ $) 55 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3402 (($ $) 9 T ELT)) (-3793 (($ $ $) 51 (|has| $ (-1036 |#1|)) ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-202 |#1|) (-113) (-1130)) (T -202))
-((-3800 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1477 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -3800 (|t#1| $)) (-15 -3180 ($ $)) (-15 -3799 ($ $)) (-15 -1477 ($ $)) (-15 -1476 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3793 ($ $ $)) (-15 -1475 ($ $ $)) (-15 -1474 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) 10 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-3801 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1354 (($ $) 7 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3536 (($ |#1|) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) ((|#1| $ (-485) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-695) $ "count") 16 T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1478 (($ (-584 |#1|)) 22 T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3948 (($ (-584 |#1|)) 17 T ELT) (((-584 |#1|) $) 18 T ELT) (((-773) $) 21 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 14 T ELT)))
-(((-203 |#1|) (-13 (-609 |#1|) (-430 (-584 |#1|)) (-10 -8 (-15 -1478 ($ (-584 |#1|))) (-15 -3802 ($ $ "unique")) (-15 -3802 ($ $ "sort")) (-15 -3802 ((-695) $ "count")))) (-757)) (T -203))
-((-1478 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757)))))
-((-1479 (((-3 (-695) "failed") |#1| |#1| (-695)) 40 T ELT)))
-(((-204 |#1|) (-10 -7 (-15 -1479 ((-3 (-695) "failed") |#1| |#1| (-695)))) (-13 (-664) (-320) (-10 -7 (-15 ** (|#1| |#1| (-485)))))) (T -204))
-((-1479 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-695)) (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485)))))) (-5 *1 (-204 *3)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-695)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 56 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 54 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 53 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 52 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-695)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 55 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 51 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 50 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 49 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1 |#1| |#1|) (-695)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-205 |#1|) (-113) (-962)) (T -205))
-NIL
-(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-809 |t#1| (-1091))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-655 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-809 |#1| (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-197 (-3959 |#1|) (-695)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-197 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-197 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-197 (-3959 |#1|) (-695)) (-197 (-3959 |#1|) (-695))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-197 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-197 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-206 |#1| |#2|) (-13 (-862 |#2| (-197 (-3959 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -206))
-((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1480 (((-1186) $) 17 T ELT)) (-1482 (((-158 (-208)) $) 11 T ELT)) (-1481 (($ (-158 (-208))) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1483 (((-208) $) 7 T ELT)) (-3948 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT)))
-(((-207) (-13 (-1014) (-10 -8 (-15 -1483 ((-208) $)) (-15 -1482 ((-158 (-208)) $)) (-15 -1481 ($ (-158 (-208)))) (-15 -1480 ((-1186) $))))) (T -207))
-((-1483 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1481 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1425 (((-584 (-775)) $) NIL T ELT)) (-3544 (((-447) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1427 (((-161) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1484 (((-282) $) 7 T ELT)) (-1426 (((-584 (-85)) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-208) (-13 (-160) (-553 (-157)) (-10 -8 (-15 -1484 ((-282) $))))) (T -208))
-((-1484 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 (((-1096) $ (-695)) 14 T ELT)) (-3948 (((-773) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)) (-3959 (((-695) $) 11 T ELT)))
-(((-209) (-13 (-1014) (-241 (-695) (-1096)) (-10 -8 (-15 -3959 ((-695) $))))) (T -209))
-((-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3709 (($ (-831)) NIL (|has| |#4| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) NIL (|has| |#4| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#4| (-320)) ELT)) (-3790 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3158 ((|#4| $) NIL (|has| |#4| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-631 $) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-631 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#4| (-962)) ELT)) (-2996 (($) NIL (|has| |#4| (-320)) ELT)) (-1577 ((|#4| $ (-485) |#4|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#4| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#4| (-718)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#4| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-2610 (((-584 |#4|) $) NIL T ELT)) (-3247 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#4| (-757)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#4| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#4|)) (|:| |vec| (-1180 |#4|))) (-1180 $) $) NIL (|has| |#4| (-962)) ELT) (((-631 |#4|) (-1180 $)) NIL (|has| |#4| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#4| (-581 (-485))) (|has| |#4| (-962))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#4| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#4| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#4|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-2206 (((-584 |#4|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#4| $ (-485) |#4|) NIL T ELT) ((|#4| $ (-485)) 12 T ELT)) (-3838 ((|#4| $ $) NIL (|has| |#4| (-962)) ELT)) (-1469 (($ (-1180 |#4|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3760 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#4| (-951 (-485))) (|has| |#4| (-1014))) (|has| |#4| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#4| (-951 (-350 (-485)))) (|has| |#4| (-1014))) ELT)) (-3128 (((-695)) NIL (|has| |#4| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#4| (-962)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#4| (-962)) CONST)) (-2671 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-962)) ELT) (($ $ (-1 |#4| |#4|) (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#4| (-810 (-1091))) (|has| |#4| (-962))) (-12 (|has| |#4| (-812 (-1091))) (|has| |#4| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-962))) (-12 (|has| |#4| (-189)) (|has| |#4| (-962)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#4| (-757)) ELT)) (-3951 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#4| (-962)) ELT) (($ $ (-831)) NIL (|has| |#4| (-962)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-664)) ELT) (($ |#4| $) NIL (|has| |#4| (-664)) ELT) (($ $ $) NIL (|has| |#4| (-962)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-591 |#2|) (-591 |#3|)) (-831) (-962) (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-591 |#2|)) (T -210))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3709 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3790 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3158 ((|#3| $) NIL (|has| |#3| (-1014)) ELT) (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2996 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#3| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3328 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) 11 T ELT)) (-3838 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3760 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT)) (-3128 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL (|has| |#3| (-962)) CONST)) (-2671 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#3| (-810 (-1091))) (|has| |#3| (-962))) (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-962))) (-12 (|has| |#3| (-189)) (|has| |#3| (-962)))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ $ $) NIL (|has| |#3| (-962)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-591 |#2|)) (-695) (-962) (-591 |#2|)) (T -211))
-NIL
-((-1489 (((-584 (-695)) $) 56 T ELT) (((-584 (-695)) $ |#3|) 59 T ELT)) (-1523 (((-695) $) 58 T ELT) (((-695) $ |#3|) 61 T ELT)) (-1485 (($ $) 76 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3774 (((-695) $ |#3|) 43 T ELT) (((-695) $) 38 T ELT)) (-1524 (((-1 $ (-695)) |#3|) 15 T ELT) (((-1 $ (-695)) $) 88 T ELT)) (-1487 ((|#4| $) 69 T ELT)) (-1488 (((-85) $) 67 T ELT)) (-1486 (($ $) 75 T ELT)) (-3770 (($ $ (-584 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 97 T ELT)) (-3760 (($ $ (-584 |#4|) (-584 (-695))) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-1490 (((-584 |#3|) $) 86 T ELT)) (-3950 ((|#5| $) NIL T ELT) (((-695) $ |#4|) NIL T ELT) (((-584 (-695)) $ (-584 |#4|)) NIL T ELT) (((-695) $ |#3|) 49 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)))
-(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3948 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3770 (|#1| |#1| (-584 |#3|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#3| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#3|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#3| |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#1| |#1|)) (-15 -1487 (|#4| |#1|)) (-15 -1488 ((-85) |#1|)) (-15 -1523 ((-695) |#1| |#3|)) (-15 -1489 ((-584 (-695)) |#1| |#3|)) (-15 -1523 ((-695) |#1|)) (-15 -1489 ((-584 (-695)) |#1|)) (-15 -3950 ((-695) |#1| |#3|)) (-15 -3774 ((-695) |#1|)) (-15 -3774 ((-695) |#1| |#3|)) (-15 -1490 ((-584 |#3|) |#1|)) (-15 -1524 ((-1 |#1| (-695)) |#3|)) (-15 -3948 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3950 ((-584 (-695)) |#1| (-584 |#4|))) (-15 -3950 ((-695) |#1| |#4|)) (-15 -3948 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#4| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3950 (|#5| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3760 (|#1| |#1| |#4|)) (-15 -3760 (|#1| |#1| (-584 |#4|))) (-15 -3760 (|#1| |#1| |#4| (-695))) (-15 -3760 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-962) (-757) (-228 |#3|) (-718)) (T -212))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1489 (((-584 (-695)) $) 251 T ELT) (((-584 (-695)) $ |#2|) 249 T ELT)) (-1523 (((-695) $) 250 T ELT) (((-695) $ |#2|) 248 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1485 (($ $) 244 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#4| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ |#2|) 254 T ELT) (((-695) $) 253 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#4| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1524 (((-1 $ (-695)) |#2|) 256 T ELT) (((-1 $ (-695)) $) 243 (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1487 ((|#3| $) 246 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1488 (((-85) $) 247 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-1486 (($ $) 245 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-695)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 231 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 230 (|has| |#1| (-812 (-1091))) ELT)) (-1490 (((-584 |#2|) $) 255 T ELT)) (-3950 ((|#4| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT) (((-695) $ |#2|) 252 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-695)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 228 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 227 (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-213 |#1| |#2| |#3| |#4|) (-113) (-962) (-757) (-228 |t#2|) (-718)) (T -213))
-((-1524 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1489 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))) (-1523 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718)) (-4 *2 (-228 *4)))) (-1486 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-228 *3)) (-4 *5 (-718)))) (-1524 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6)))))
-(-13 (-862 |t#1| |t#4| |t#3|) (-184 |t#1|) (-951 |t#2|) (-10 -8 (-15 -1524 ((-1 $ (-695)) |t#2|)) (-15 -1490 ((-584 |t#2|) $)) (-15 -3774 ((-695) $ |t#2|)) (-15 -3774 ((-695) $)) (-15 -3950 ((-695) $ |t#2|)) (-15 -1489 ((-584 (-695)) $)) (-15 -1523 ((-695) $)) (-15 -1489 ((-584 (-695)) $ |t#2|)) (-15 -1523 ((-695) $ |t#2|)) (-15 -1488 ((-85) $)) (-15 -1487 (|t#3| $)) (-15 -1486 ($ $)) (-15 -1485 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-456 |t#2| |t#1|)) (-6 (-456 |t#2| $)) (-6 (-260 $)) (-15 -1524 ((-1 $ (-695)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#2|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#2| |#1|) |has| |#1| (-190)) ((-456 |#2| $) |has| |#1| (-190)) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-807 $ |#3|) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-810 |#3|) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#4| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#2|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1496 ((|#1| $) 61 T ELT)) (-3325 ((|#1| $) 40 T ELT)) (-3726 (($) 6 T CONST)) (-3004 (($ $) 67 T ELT)) (-2298 (($ $) 55 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3327 ((|#1| |#1| $) 42 T ELT)) (-3326 ((|#1| $) 41 T ELT)) (-2610 (((-584 |#1|) $) 47 T ELT)) (-3247 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3835 (((-695) $) 68 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-1494 ((|#1| |#1| $) 59 T ELT)) (-1493 ((|#1| |#1| $) 58 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-2605 (((-695) $) 62 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 69 T ELT)) (-1492 ((|#1| $) 57 T ELT)) (-1491 ((|#1| $) 56 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3006 ((|#1| |#1| $) 65 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3005 ((|#1| $) 66 T ELT)) (-1497 (($) 64 T ELT) (($ (-584 |#1|)) 63 T ELT)) (-3324 (((-695) $) 39 T ELT)) (-1731 (((-695) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 46 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1495 ((|#1| $) 60 T ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3002 ((|#1| $) 70 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-214 |#1|) (-113) (-1130)) (T -214))
-((-1497 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1497 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1494 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(-13 (-1035 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1497 ($)) (-15 -1497 ($ (-584 |t#1|))) (-15 -2605 ((-695) $)) (-15 -1496 (|t#1| $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| |t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| $)) (-15 -1491 (|t#1| $)) (-15 -2298 ($ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-909 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1035 |#1|) . T) ((-1130) . T))
-((-1498 (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 75 T ELT) (((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 74 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330))) 65 T ELT) (((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 64 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330))) 56 T ELT) (((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 55 T ELT)) (-1505 (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330))) 78 T ELT) (((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 77 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330))) 68 T ELT) (((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221))) 67 T ELT) (((-1184) (-790 |#1|) (-1005 (-330))) 60 T ELT) (((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221))) 59 T ELT) (((-1183) (-788 |#1|) (-1005 (-330))) 47 T ELT) (((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221))) 46 T ELT) (((-1183) |#1| (-1005 (-330))) 38 T ELT) (((-1183) |#1| (-1005 (-330)) (-584 (-221))) 36 T ELT)))
-(((-215 |#1|) (-10 -7 (-15 -1505 ((-1183) |#1| (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) |#1| (-1005 (-330)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 |#1|) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 |#1|) (-1005 (-330)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) |#1| (-1005 (-330)) (-1005 (-330)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 |#1|) (-1005 (-330)) (-1005 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 |#1|) (-1005 (-330)) (-1005 (-330))))) (-13 (-554 (-474)) (-1014))) (T -215))
-((-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *5)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330))) (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014))))))
-((-1499 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1498 (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 178 T ELT) (((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 176 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 181 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 177 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 169 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 168 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 150 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 148 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330))) 149 T ELT) (((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 146 T ELT)) (-1505 (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330))) 180 T ELT) (((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 179 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 183 T ELT) (((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 182 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330))) 171 T ELT) (((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221))) 170 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330))) 156 T ELT) (((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221))) 155 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330))) 154 T ELT) (((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 153 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330))) 118 T ELT) (((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221))) 117 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330))) 112 T ELT) (((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221))) 110 T ELT)))
-(((-216) (-10 -7 (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-1 (-179) (-179)) (-1002 (-330)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1183) (-788 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-790 (-1 (-179) (-179))) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-330)) (-1002 (-330)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1505 ((-1184) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)) (-584 (-221)))) (-15 -1498 ((-1048 (-179)) (-793 (-1 (-179) (-179) (-179))) (-1002 (-330)) (-1002 (-330)))) (-15 -1499 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
-((-1499 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1498 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1505 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))))
-((-1505 (((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))) 102 T ELT)))
-(((-217 |#1| |#2|) (-10 -7 (-15 -1505 ((-1183) (-249 |#2|) (-1091) (-1091) (-584 (-221))))) (-13 (-496) (-757) (-951 (-485))) (-364 |#1|)) (T -217))
-((-1505 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183)) (-5 *1 (-217 *6 *7)))))
-((-1502 (((-485) (-485)) 71 T ELT)) (-1503 (((-485) (-485)) 72 T ELT)) (-1504 (((-179) (-179)) 73 T ELT)) (-1501 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179))) 70 T ELT)) (-1500 (((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85)) 68 T ELT)))
-(((-218) (-10 -7 (-15 -1500 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)) (-85))) (-15 -1501 ((-1184) (-1 (-142 (-179)) (-142 (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -1502 ((-485) (-485))) (-15 -1503 ((-485) (-485))) (-15 -1504 ((-179) (-179))))) (T -218))
-((-1504 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1503 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-1501 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *2 (-1184)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179))) (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218)))))
-((-3948 (((-1005 (-330)) (-1005 (-265 |#1|))) 16 T ELT)))
-(((-219 |#1|) (-10 -7 (-15 -3948 ((-1005 (-330)) (-1005 (-265 |#1|))))) (-13 (-757) (-496) (-554 (-330)))) (T -219))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330)))) (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4)))))
-((-1505 (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221))) 23 T ELT) (((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179))) 24 T ELT) (((-1183) (-584 (-855 (-179))) (-584 (-221))) 16 T ELT) (((-1183) (-584 (-855 (-179)))) 17 T ELT) (((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221))) 20 T ELT) (((-1183) (-584 (-179)) (-584 (-179))) 21 T ELT)))
-(((-220) (-10 -7 (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1183) (-584 (-179)) (-584 (-179)) (-584 (-221)))) (-15 -1505 ((-1183) (-584 (-855 (-179))))) (-15 -1505 ((-1183) (-584 (-855 (-179))) (-584 (-221)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)))) (-15 -1505 ((-1184) (-584 (-179)) (-584 (-179)) (-584 (-179)) (-584 (-221)))))) (T -220))
-((-1505 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1505 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3883 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1518 (($ (-831)) 81 T ELT)) (-1517 (($ (-831)) 80 T ELT)) (-1776 (($ (-584 (-330))) 87 T ELT)) (-1521 (($ (-330)) 66 T ELT)) (-1520 (($ (-831)) 82 T ELT)) (-1514 (($ (-85)) 33 T ELT)) (-3885 (($ (-1074)) 28 T ELT)) (-1513 (($ (-1074)) 29 T ELT)) (-1519 (($ (-1048 (-179))) 76 T ELT)) (-1932 (($ (-584 (-1002 (-330)))) 72 T ELT)) (-1507 (($ (-584 (-1002 (-330)))) 68 T ELT) (($ (-584 (-1002 (-350 (-485))))) 71 T ELT)) (-1510 (($ (-330)) 38 T ELT) (($ (-784)) 42 T ELT)) (-1506 (((-85) (-584 $) (-1091)) 100 T ELT)) (-1522 (((-3 (-51) "failed") (-584 $) (-1091)) 102 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1509 (($ (-330)) 43 T ELT) (($ (-784)) 44 T ELT)) (-3226 (($ (-1 (-855 (-179)) (-855 (-179)))) 65 T ELT)) (-2267 (($ (-1 (-855 (-179)) (-855 (-179)))) 83 T ELT)) (-1508 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3948 (((-773) $) 93 T ELT)) (-1511 (($ (-85)) 34 T ELT) (($ (-584 (-1002 (-330)))) 60 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1927 (($ (-85)) 35 T ELT)) (-3058 (((-85) $ $) 97 T ELT)))
-(((-221) (-13 (-1014) (-10 -8 (-15 -1927 ($ (-85))) (-15 -1511 ($ (-85))) (-15 -3883 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3885 ($ (-1074))) (-15 -1513 ($ (-1074))) (-15 -1514 ($ (-85))) (-15 -1511 ($ (-584 (-1002 (-330))))) (-15 -3226 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1510 ($ (-330))) (-15 -1510 ($ (-784))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-784))) (-15 -1508 ($ (-1 (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179)))) (-15 -1508 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1521 ($ (-330))) (-15 -1507 ($ (-584 (-1002 (-330))))) (-15 -1507 ($ (-584 (-1002 (-350 (-485)))))) (-15 -1932 ($ (-584 (-1002 (-330))))) (-15 -1519 ($ (-1048 (-179)))) (-15 -1517 ($ (-831))) (-15 -1518 ($ (-831))) (-15 -1520 ($ (-831))) (-15 -2267 ($ (-1 (-855 (-179)) (-855 (-179))))) (-15 -1776 ($ (-584 (-330)))) (-15 -1522 ((-3 (-51) "failed") (-584 $) (-1091))) (-15 -1506 ((-85) (-584 $) (-1091)))))) (T -221))
-((-1927 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3885 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-1514 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221)))) (-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221)))))
-((-3883 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1518 (((-831) (-584 (-221)) (-831)) 52 T ELT)) (-1517 (((-831) (-584 (-221)) (-831)) 51 T ELT)) (-3853 (((-584 (-330)) (-584 (-221)) (-584 (-330))) 68 T ELT)) (-1521 (((-330) (-584 (-221)) (-330)) 57 T ELT)) (-1520 (((-831) (-584 (-221)) (-831)) 53 T ELT)) (-1514 (((-85) (-584 (-221)) (-85)) 27 T ELT)) (-3885 (((-1074) (-584 (-221)) (-1074)) 19 T ELT)) (-1513 (((-1074) (-584 (-221)) (-1074)) 26 T ELT)) (-1519 (((-1048 (-179)) (-584 (-221))) 46 T ELT)) (-1932 (((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330)))) 40 T ELT)) (-1515 (((-784) (-584 (-221)) (-784)) 32 T ELT)) (-1516 (((-784) (-584 (-221)) (-784)) 33 T ELT)) (-2267 (((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179)))) 63 T ELT)) (-1512 (((-85) (-584 (-221)) (-85)) 14 T ELT)) (-1927 (((-85) (-584 (-221)) (-85)) 13 T ELT)))
-(((-222) (-10 -7 (-15 -1927 ((-85) (-584 (-221)) (-85))) (-15 -1512 ((-85) (-584 (-221)) (-85))) (-15 -3883 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-584 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3885 ((-1074) (-584 (-221)) (-1074))) (-15 -1513 ((-1074) (-584 (-221)) (-1074))) (-15 -1514 ((-85) (-584 (-221)) (-85))) (-15 -1515 ((-784) (-584 (-221)) (-784))) (-15 -1516 ((-784) (-584 (-221)) (-784))) (-15 -1932 ((-584 (-1002 (-330))) (-584 (-221)) (-584 (-1002 (-330))))) (-15 -1517 ((-831) (-584 (-221)) (-831))) (-15 -1518 ((-831) (-584 (-221)) (-831))) (-15 -1519 ((-1048 (-179)) (-584 (-221)))) (-15 -1520 ((-831) (-584 (-221)) (-831))) (-15 -1521 ((-330) (-584 (-221)) (-330))) (-15 -2267 ((-1 (-855 (-179)) (-855 (-179))) (-584 (-221)) (-1 (-855 (-179)) (-855 (-179))))) (-15 -3853 ((-584 (-330)) (-584 (-221)) (-584 (-330)))))) (T -222))
-((-3853 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-2267 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1932 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3885 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-3883 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))) (-1927 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-((-1522 (((-3 |#1| "failed") (-584 (-221)) (-1091)) 17 T ELT)))
-(((-223 |#1|) (-10 -7 (-15 -1522 ((-3 |#1| "failed") (-584 (-221)) (-1091)))) (-1130)) (T -223))
-((-1522 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2)) (-4 *2 (-1130)))))
-((-3760 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) 11 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) 19 T ELT) (($ $ (-695)) NIL T ELT) (($ $) 16 T ELT)) (-2671 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-695)) 14 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -2671 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -2671 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2671 (|#1| |#1| (-584 (-1091)))) (-15 -2671 (|#1| |#1| (-1091) (-695))) (-15 -2671 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -2671 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1130)) (T -224))
-NIL
-((-3760 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 22 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 16 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 15 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 14 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 12 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2671 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 20 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 19 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 18 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 17 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091)) 13 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-695)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
-(((-225 |#1|) (-113) (-1130)) (T -225))
-((-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130)))))
-(-13 (-1130) (-10 -8 (-15 -3760 ($ $ (-1 |t#1| |t#1|))) (-15 -3760 ($ $ (-1 |t#1| |t#1|) (-695))) (-15 -2671 ($ $ (-1 |t#1| |t#1|))) (-15 -2671 ($ $ (-1 |t#1| |t#1|) (-695))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-812 (-1091))) (-6 (-812 (-1091))) |%noBranch|)))
-(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-807 $ (-1091)) |has| |#1| (-812 (-1091))) ((-812 (-1091)) |has| |#1| (-812 (-1091))) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ |#2|) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#3|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#3|)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 23 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3758 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#3|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ELT)) (-3774 (((-695) $ |#2|) NIL T ELT) (((-695) $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) |#3|) NIL T ELT) (($ (-1086 $) |#3|) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) NIL T ELT)) (-2822 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT)) (-1626 (($ (-1 (-470 |#3|) (-470 |#3|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) |#2|) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 |#3| #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 ((|#3| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-584 |#3|) (-584 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-584 |#3|) (-584 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 |#2|) $) NIL T ELT)) (-3950 (((-470 |#3|) $) NIL T ELT) (((-695) $ |#3|) NIL T ELT) (((-584 (-695)) $ (-584 |#3|)) NIL T ELT) (((-695) $ |#2|) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#1| |#2|)) 32 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 |#3|)) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) NIL T ELT) (($ $ |#3| (-695)) NIL T ELT) (($ $ (-584 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-470 |#3|)) (-951 (-1040 |#1| |#2|))) (-962) (-757) (-228 |#2|)) (T -226))
-NIL
-((-1523 (((-695) $) 37 T ELT)) (-3159 (((-3 |#2| "failed") $) 22 T ELT)) (-3158 ((|#2| $) 33 T ELT)) (-3760 (($ $ (-695)) 18 T ELT) (($ $) 14 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 36 T ELT)))
-(((-227 |#1| |#2|) (-10 -7 (-15 -1523 ((-695) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| "failed") |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -2687 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-228 |#2|) (-757)) (T -227))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1523 (((-695) $) 26 T ELT)) (-3833 ((|#1| $) 27 T ELT)) (-3159 (((-3 |#1| "failed") $) 31 T ELT)) (-3158 ((|#1| $) 32 T ELT)) (-3774 (((-695) $) 28 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-1524 (($ |#1| (-695)) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-695)) 35 T ELT) (($ $) 33 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2671 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)))
-(((-228 |#1|) (-113) (-757)) (T -228))
-((-1524 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
-(-13 (-757) (-189) (-951 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| (-695))) (-15 -3774 ((-695) $)) (-15 -3833 (|t#1| $)) (-15 -1523 ((-695) $))))
-(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1526 (((-584 (-485)) $) 28 T ELT)) (-3950 (((-695) $) 26 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ (-584 (-485))) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1525 (($ (-695)) 29 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 18 T ELT)))
-(((-229) (-13 (-757) (-10 -8 (-15 -3948 ($ (-584 (-485)))) (-15 -3950 ((-695) $)) (-15 -1526 ((-584 (-485)) $)) (-15 -1525 ($ (-695)))))) (T -229))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))) (-1525 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
-((-3494 ((|#2| |#2|) 77 T ELT)) (-3641 ((|#2| |#2|) 65 T ELT)) (-1555 (((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3492 ((|#2| |#2|) 75 T ELT)) (-3640 ((|#2| |#2|) 63 T ELT)) (-3496 ((|#2| |#2|) 79 T ELT)) (-3639 ((|#2| |#2|) 67 T ELT)) (-3629 ((|#2|) 46 T ELT)) (-3597 (((-86) (-86)) 97 T ELT)) (-3944 ((|#2| |#2|) 61 T ELT)) (-1556 (((-85) |#2|) 146 T ELT)) (-1545 ((|#2| |#2|) 193 T ELT)) (-1533 ((|#2| |#2|) 169 T ELT)) (-1528 ((|#2|) 59 T ELT)) (-1527 ((|#2|) 58 T ELT)) (-1543 ((|#2| |#2|) 189 T ELT)) (-1531 ((|#2| |#2|) 165 T ELT)) (-1547 ((|#2| |#2|) 197 T ELT)) (-1535 ((|#2| |#2|) 173 T ELT)) (-1530 ((|#2| |#2|) 161 T ELT)) (-1529 ((|#2| |#2|) 163 T ELT)) (-1548 ((|#2| |#2|) 199 T ELT)) (-1536 ((|#2| |#2|) 175 T ELT)) (-1546 ((|#2| |#2|) 195 T ELT)) (-1534 ((|#2| |#2|) 171 T ELT)) (-1544 ((|#2| |#2|) 191 T ELT)) (-1532 ((|#2| |#2|) 167 T ELT)) (-1551 ((|#2| |#2|) 205 T ELT)) (-1539 ((|#2| |#2|) 181 T ELT)) (-1549 ((|#2| |#2|) 201 T ELT)) (-1537 ((|#2| |#2|) 177 T ELT)) (-1553 ((|#2| |#2|) 209 T ELT)) (-1541 ((|#2| |#2|) 185 T ELT)) (-1554 ((|#2| |#2|) 211 T ELT)) (-1542 ((|#2| |#2|) 187 T ELT)) (-1552 ((|#2| |#2|) 207 T ELT)) (-1540 ((|#2| |#2|) 183 T ELT)) (-1550 ((|#2| |#2|) 203 T ELT)) (-1538 ((|#2| |#2|) 179 T ELT)) (-3945 ((|#2| |#2|) 62 T ELT)) (-3497 ((|#2| |#2|) 80 T ELT)) (-3638 ((|#2| |#2|) 68 T ELT)) (-3495 ((|#2| |#2|) 78 T ELT)) (-3637 ((|#2| |#2|) 66 T ELT)) (-3493 ((|#2| |#2|) 76 T ELT)) (-3636 ((|#2| |#2|) 64 T ELT)) (-2255 (((-85) (-86)) 95 T ELT)) (-3500 ((|#2| |#2|) 83 T ELT)) (-3488 ((|#2| |#2|) 71 T ELT)) (-3498 ((|#2| |#2|) 81 T ELT)) (-3486 ((|#2| |#2|) 69 T ELT)) (-3502 ((|#2| |#2|) 85 T ELT)) (-3490 ((|#2| |#2|) 73 T ELT)) (-3503 ((|#2| |#2|) 86 T ELT)) (-3491 ((|#2| |#2|) 74 T ELT)) (-3501 ((|#2| |#2|) 84 T ELT)) (-3489 ((|#2| |#2|) 72 T ELT)) (-3499 ((|#2| |#2|) 82 T ELT)) (-3487 ((|#2| |#2|) 70 T ELT)))
-(((-230 |#1| |#2|) (-10 -7 (-15 -3945 (|#2| |#2|)) (-15 -3944 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3641 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3629 (|#2|)) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1527 (|#2|)) (-15 -1528 (|#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1555 ((-3 |#2| "failed") |#2| (-584 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1556 ((-85) |#2|))) (-496) (-13 (-364 |#1|) (-916))) (T -230))
-((-1556 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-916))))) (-1555 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-1528 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-916))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-916))))) (-3629 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
-((-1559 (((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091)) 151 T ELT)) (-1561 ((|#2| (-350 (-485)) |#2|) 49 T ELT)) (-1560 ((|#2| |#2| (-551 |#2|)) 144 T ELT)) (-1557 (((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091)) 143 T ELT)) (-1558 ((|#2| |#2| (-1091)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2445 ((|#2| |#2| (-1091)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
-(((-231 |#1| |#2|) (-10 -7 (-15 -2445 (|#2| |#2|)) (-15 -2445 (|#2| |#2| (-1091))) (-15 -1557 ((-2 (|:| |func| |#2|) (|:| |kers| (-584 (-551 |#2|))) (|:| |vals| (-584 |#2|))) |#2| (-1091))) (-15 -1558 (|#2| |#2|)) (-15 -1558 (|#2| |#2| (-1091))) (-15 -1559 ((-3 |#2| "failed") (-584 (-551 |#2|)) |#2| (-1091))) (-15 -1560 (|#2| |#2| (-551 |#2|))) (-15 -1561 (|#2| (-350 (-485)) |#2|))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -231))
-((-1561 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1560 (*1 *2 *2 *3) (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))) (-1559 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))) (-1558 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-1557 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2445 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))))
-((-2977 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3494 ((|#3| |#3|) 142 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3641 ((|#3| |#3|) 132 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3492 ((|#3| |#3|) 140 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3640 ((|#3| |#3|) 130 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3496 ((|#3| |#3|) 144 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3639 ((|#3| |#3|) 134 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-695)) 41 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3944 ((|#3| |#3|) 129 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3945 ((|#3| |#3|) 128 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3497 ((|#3| |#3|) 145 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3638 ((|#3| |#3|) 135 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3495 ((|#3| |#3|) 143 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3637 ((|#3| |#3|) 133 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3493 ((|#3| |#3|) 141 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3636 ((|#3| |#3|) 131 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3500 ((|#3| |#3|) 148 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3488 ((|#3| |#3|) 152 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3498 ((|#3| |#3|) 146 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3486 ((|#3| |#3|) 136 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3502 ((|#3| |#3|) 150 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3490 ((|#3| |#3|) 138 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3503 ((|#3| |#3|) 151 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3491 ((|#3| |#3|) 139 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3501 ((|#3| |#3|) 149 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3489 ((|#3| |#3|) 153 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3499 ((|#3| |#3|) 147 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3487 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-485))) 47 (|has| |#1| (-312)) ELT)))
-(((-232 |#1| |#2| |#3|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3945 (|#3| |#3|)) (-15 -3944 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)))) (-38 (-350 (-485))) (-1173 |#1|) (-1144 |#1| |#2|)) (T -232))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1144 *3 *4)))))
-((-2977 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3494 ((|#3| |#3|) 137 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3641 ((|#3| |#3|) 125 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3492 ((|#3| |#3|) 135 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3640 ((|#3| |#3|) 123 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3496 ((|#3| |#3|) 139 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3639 ((|#3| |#3|) 127 T ELT)) (-2960 (((-3 |#3| #1#) |#3| (-695)) 38 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3944 ((|#3| |#3|) 111 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3945 ((|#3| |#3|) 122 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3497 ((|#3| |#3|) 140 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3638 ((|#3| |#3|) 128 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3495 ((|#3| |#3|) 138 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3637 ((|#3| |#3|) 126 T ELT)) (-2976 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3493 ((|#3| |#3|) 136 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3636 ((|#3| |#3|) 124 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3500 ((|#3| |#3|) 143 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3488 ((|#3| |#3|) 131 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3498 ((|#3| |#3|) 141 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3486 ((|#3| |#3|) 129 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3502 ((|#3| |#3|) 145 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3490 ((|#3| |#3|) 133 T ELT)) (-2986 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3503 ((|#3| |#3|) 146 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3491 ((|#3| |#3|) 134 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3501 ((|#3| |#3|) 144 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3489 ((|#3| |#3|) 132 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3499 ((|#3| |#3|) 142 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3487 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-485))) 44 (|has| |#1| (-312)) ELT)))
-(((-233 |#1| |#2| |#3| |#4|) (-13 (-897 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-485)))) |%noBranch|) (-15 -3945 (|#3| |#3|)) (-15 -3944 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3641 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)) (-15 -3503 (|#3| |#3|)))) (-38 (-350 (-485))) (-1142 |#1|) (-1165 |#1| |#2|) (-897 |#2|)) (T -233))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4)))))
-((-1564 (((-85) $) 20 T ELT)) (-1566 (((-1096) $) 9 T ELT)) (-3571 (((-3 (-447) #1="failed") $) 15 T ELT)) (-3570 (((-3 (-584 $) #1#) $) NIL T ELT)) (-1563 (((-3 (-447) #1#) $) 21 T ELT)) (-1565 (((-3 (-1016) #1#) $) 19 T ELT)) (-3955 (((-85) $) 17 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1562 (((-85) $) 10 T ELT)))
-(((-234) (-13 (-553 (-773)) (-10 -8 (-15 -1566 ((-1096) $)) (-15 -3955 ((-85) $)) (-15 -1565 ((-3 (-1016) #1="failed") $)) (-15 -1564 ((-85) $)) (-15 -1563 ((-3 (-447) #1#) $)) (-15 -1562 ((-85) $)) (-15 -3571 ((-3 (-447) #1#) $)) (-15 -3570 ((-3 (-584 $) #1#) $))))) (T -234))
-((-1566 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1565 (*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3571 (*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234)))))
-((-1568 (((-533) $) 10 T ELT)) (-1569 (((-523) $) 8 T ELT)) (-1567 (((-247) $) 12 T ELT)) (-1570 (($ (-523) (-533) (-247)) NIL T ELT)) (-3948 (((-773) $) 19 T ELT)))
-(((-235) (-13 (-553 (-773)) (-10 -8 (-15 -1570 ($ (-523) (-533) (-247))) (-15 -1569 ((-523) $)) (-15 -1568 ((-533) $)) (-15 -1567 ((-247) $))))) (T -235))
-((-1570 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
-((-3712 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1354 (($ $) 38 T ELT)) (-3407 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3408 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2858 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2305 (($ |#2| $ (-485)) 20 T ELT) (($ $ $ (-485)) 22 T ELT)) (-2306 (($ $ (-485)) 11 T ELT) (($ $ (-1147 (-485))) 14 T ELT)) (-3793 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3804 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-584 $)) NIL T ELT)))
-(((-236 |#1| |#2|) (-10 -7 (-15 -2858 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -3793 (|#1| |#1| |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3408 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3712 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3408 (|#1| |#2| |#1|)) (-15 -1354 (|#1| |#1|))) (-237 |#2|) (-1130)) (T -236))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 84 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 82 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 88 T ELT) (($ |#1| $) 83 (|has| |#1| (-72)) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2858 (($ (-1 (-85) |#1| |#1|) $ $) 85 T ELT) (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3611 (($ |#1| $ (-485)) 87 T ELT) (($ $ $ (-485)) 86 T ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-1572 (($ $ (-485)) 90 T ELT) (($ $ (-1147 (-485))) 89 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3793 (($ $ |#1|) 92 T ELT) (($ $ $) 91 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-237 |#1|) (-113) (-1130)) (T -237))
-((-3793 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3611 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130)))) (-3611 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-2858 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-1571 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))) (-3407 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))))
-(-13 (-594 |t#1|) (-1036 |t#1|) (-10 -8 (-15 -3793 ($ $ |t#1|)) (-15 -3793 ($ $ $)) (-15 -1572 ($ $ (-485))) (-15 -1572 ($ $ (-1147 (-485)))) (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3611 ($ |t#1| $ (-485))) (-15 -3611 ($ $ $ (-485))) (-15 -2858 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1571 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3407 ($ |t#1| $)) (-15 -2369 ($ $))) |%noBranch|) (IF (|has| |t#1| (-757)) (-15 -2858 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484)))) (-2485 (*1 *1 *1) (-4 *1 (-201))))
+(-13 (-246) (-38 (-350 (-484))) (-10 -8 (-15 ** ($ $ (-484))) (-15 -2485 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-246) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-654 (-350 (-484))) . T) ((-663) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3798 (($ $) 54 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-1474 (($ $ $) 50 (|has| $ (-1035 |#1|)) ELT)) (-1473 (($ $ $) 49 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1476 (($ $) 53 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-1475 (($ $) 52 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) 56 T ELT)) (-3179 (($ $) 55 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3401 (($ $) 9 T ELT)) (-3792 (($ $ $) 51 (|has| $ (-1035 |#1|)) ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-202 |#1|) (-113) (-1129)) (T -202))
+((-3799 (*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1476 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1475 (*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1474 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))) (-1473 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(-13 (-923 |t#1|) (-10 -8 (-15 -3799 (|t#1| $)) (-15 -3179 ($ $)) (-15 -3798 ($ $)) (-15 -1476 ($ $)) (-15 -1475 ($ $)) (IF (|has| $ (-1035 |t#1|)) (PROGN (-15 -3792 ($ $ $)) (-15 -1474 ($ $ $)) (-15 -1473 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1733 (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2910 (($ $) 10 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-694)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1353 (($ $) 7 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-3720 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-694)) NIL T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3610 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) ((|#1| $ (-484) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-694) $ "count") 16 T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-1477 (($ (-583 |#1|)) 22 T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (($ (-583 |#1|)) 17 T ELT) (((-583 |#1|) $) 18 T ELT) (((-772) $) 21 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 14 T ELT)))
+(((-203 |#1|) (-13 (-608 |#1|) (-430 (-583 |#1|)) (-10 -8 (-15 -1477 ($ (-583 |#1|))) (-15 -3801 ($ $ "unique")) (-15 -3801 ($ $ "sort")) (-15 -3801 ((-694) $ "count")))) (-756)) (T -203))
+((-1477 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756)))))
+((-1478 (((-3 (-694) "failed") |#1| |#1| (-694)) 40 T ELT)))
+(((-204 |#1|) (-10 -7 (-15 -1478 ((-3 (-694) "failed") |#1| |#1| (-694)))) (-13 (-663) (-320) (-10 -7 (-15 ** (|#1| |#1| (-484)))))) (T -204))
+((-1478 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-694)) (-4 *3 (-13 (-663) (-320) (-10 -7 (-15 ** (*3 *3 (-484)))))) (-5 *1 (-204 *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $) 60 (|has| |#1| (-189)) ELT) (($ $ (-694)) 58 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 56 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 54 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 53 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 52 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 46 T ELT) (($ $ (-1 |#1| |#1|)) 45 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $) 59 (|has| |#1| (-189)) ELT) (($ $ (-694)) 57 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 55 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 51 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 50 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 49 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1 |#1| |#1|) (-694)) 48 T ELT) (($ $ (-1 |#1| |#1|)) 47 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-205 |#1|) (-113) (-961)) (T -205))
+NIL
+(-13 (-82 |t#1| |t#1|) (-225 |t#1|) (-10 -7 (IF (|has| |t#1| (-189)) (-6 (-187 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-811 (-1090))) (-6 (-808 |t#1| (-1090))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-186 $) |has| |#1| (-189)) ((-187 |#1|) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-225 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-654 |#1|) OR (-12 (|has| |#1| (-146)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-146)) (|has| |#1| (-189)))) ((-806 $ (-1090)) |has| |#1| (-811 (-1090))) ((-808 |#1| (-1090)) |has| |#1| (-811 (-1090))) ((-811 (-1090)) |has| |#1| (-811 (-1090))) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1940 (($ $ (-583 (-484))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-197 (-3958 |#1|) (-694)) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-197 (-3958 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2821 (((-197 (-3958 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-197 (-3958 |#1|) (-694)) (-197 (-3958 |#1|) (-694))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3758 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3949 (((-197 (-3958 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-197 (-3958 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-206 |#1| |#2|) (-13 (-861 |#2| (-197 (-3958 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1940 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961)) (T -206))
+((-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1090))) (-4 *4 (-961)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1479 (((-1185) $) 17 T ELT)) (-1481 (((-158 (-208)) $) 11 T ELT)) (-1480 (($ (-158 (-208))) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1482 (((-208) $) 7 T ELT)) (-3947 (((-772) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-207) (-13 (-1013) (-10 -8 (-15 -1482 ((-208) $)) (-15 -1481 ((-158 (-208)) $)) (-15 -1480 ($ (-158 (-208)))) (-15 -1479 ((-1185) $))))) (T -207))
+((-1482 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1424 (((-583 (-774)) $) NIL T ELT)) (-3543 (((-446) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1426 (((-161) $) NIL T ELT)) (-2634 (((-85) $ (-446)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1483 (((-282) $) 7 T ELT)) (-1425 (((-583 (-85)) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (((-157) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-208) (-13 (-160) (-552 (-157)) (-10 -8 (-15 -1483 ((-282) $))))) (T -208))
+((-1483 (*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 (((-1095) $ (-694)) 14 T ELT)) (-3947 (((-772) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)) (-3958 (((-694) $) 11 T ELT)))
+(((-209) (-13 (-1013) (-241 (-694) (-1095)) (-10 -8 (-15 -3958 ((-694) $))))) (T -209))
+((-3958 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3708 (($ (-830)) NIL (|has| |#4| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#4| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#4| (-320)) ELT)) (-3789 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-3157 ((|#4| $) NIL (|has| |#4| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1179 |#4|))) (-630 $) (-1179 $)) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-630 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#4| (-961)) ELT)) (-2995 (($) NIL (|has| |#4| (-320)) ELT)) (-1576 ((|#4| $ (-484) |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#4| $ (-484)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#4| (-717)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#4| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-2609 (((-583 |#4|) $) NIL T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#4| (-756)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#4| (-320)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#4|)) (|:| |vec| (-1179 |#4|))) (-1179 $) $) NIL (|has| |#4| (-961)) ELT) (((-630 |#4|) (-1179 $)) NIL (|has| |#4| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#4| (-580 (-484))) (|has| |#4| (-961))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#4| (-320)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 ((|#4| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#4|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-2205 (((-583 |#4|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#4| $ (-484) |#4|) NIL T ELT) ((|#4| $ (-484)) 12 T ELT)) (-3837 ((|#4| $ $) NIL (|has| |#4| (-961)) ELT)) (-1468 (($ (-1179 |#4|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#4| (-312)) ELT)) (-3759 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#4| (-950 (-484))) (|has| |#4| (-1013))) (|has| |#4| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#4| (-950 (-350 (-484)))) (|has| |#4| (-1013))) ELT)) (-3127 (((-694)) NIL (|has| |#4| (-961)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#4| (-961)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#4| (-961)) CONST)) (-2670 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961)) ELT) (($ $ (-1 |#4| |#4|) (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#4| (-809 (-1090))) (|has| |#4| (-961))) (-12 (|has| |#4| (-811 (-1090))) (|has| |#4| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#4| (-190)) (|has| |#4| (-961))) (-12 (|has| |#4| (-189)) (|has| |#4| (-961)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#4| (-756)) ELT)) (-3950 (($ $ |#4|) NIL (|has| |#4| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#4| (-961)) ELT) (($ $ (-830)) NIL (|has| |#4| (-961)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-663)) ELT) (($ |#4| $) NIL (|has| |#4| (-663)) ELT) (($ $ $) NIL (|has| |#4| (-961)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-210 |#1| |#2| |#3| |#4|) (-13 (-196 |#1| |#4|) (-590 |#2|) (-590 |#3|)) (-830) (-961) (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-590 |#2|)) (T -210))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3708 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#3| (-320)) ELT)) (-3789 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-3157 ((|#3| $) NIL (|has| |#3| (-1013)) ELT) (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3843 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#3| $ (-484)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2609 (((-583 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-320)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) 11 T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-1730 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT)) (-3127 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL (|has| |#3| (-961)) CONST)) (-2670 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#3| (-809 (-1090))) (|has| |#3| (-961))) (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT) (($ $) NIL (OR (-12 (|has| |#3| (-190)) (|has| |#3| (-961))) (-12 (|has| |#3| (-189)) (|has| |#3| (-961)))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ $ $) NIL (|has| |#3| (-961)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-211 |#1| |#2| |#3|) (-13 (-196 |#1| |#3|) (-590 |#2|)) (-694) (-961) (-590 |#2|)) (T -211))
+NIL
+((-1488 (((-583 (-694)) $) 56 T ELT) (((-583 (-694)) $ |#3|) 59 T ELT)) (-1522 (((-694) $) 58 T ELT) (((-694) $ |#3|) 61 T ELT)) (-1484 (($ $) 76 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-3773 (((-694) $ |#3|) 43 T ELT) (((-694) $) 38 T ELT)) (-1523 (((-1 $ (-694)) |#3|) 15 T ELT) (((-1 $ (-694)) $) 88 T ELT)) (-1486 ((|#4| $) 69 T ELT)) (-1487 (((-85) $) 67 T ELT)) (-1485 (($ $) 75 T ELT)) (-3769 (($ $ (-583 (-249 $))) 111 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 97 T ELT)) (-3759 (($ $ (-583 |#4|) (-583 (-694))) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-1489 (((-583 |#3|) $) 86 T ELT)) (-3949 ((|#5| $) NIL T ELT) (((-694) $ |#4|) NIL T ELT) (((-583 (-694)) $ (-583 |#4|)) NIL T ELT) (((-694) $ |#3|) 49 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)))
+(((-212 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3769 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -3769 (|#1| |#1| |#3| |#2|)) (-15 -3769 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#3| |#1|)) (-15 -1523 ((-1 |#1| (-694)) |#1|)) (-15 -1484 (|#1| |#1|)) (-15 -1485 (|#1| |#1|)) (-15 -1486 (|#4| |#1|)) (-15 -1487 ((-85) |#1|)) (-15 -1522 ((-694) |#1| |#3|)) (-15 -1488 ((-583 (-694)) |#1| |#3|)) (-15 -1522 ((-694) |#1|)) (-15 -1488 ((-583 (-694)) |#1|)) (-15 -3949 ((-694) |#1| |#3|)) (-15 -3773 ((-694) |#1|)) (-15 -3773 ((-694) |#1| |#3|)) (-15 -1489 ((-583 |#3|) |#1|)) (-15 -1523 ((-1 |#1| (-694)) |#3|)) (-15 -3947 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3949 ((-583 (-694)) |#1| (-583 |#4|))) (-15 -3949 ((-694) |#1| |#4|)) (-15 -3947 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3769 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3949 (|#5| |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| (-583 |#4|))) (-15 -3759 (|#1| |#1| |#4| (-694))) (-15 -3759 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-213 |#2| |#3| |#4| |#5|) (-961) (-756) (-228 |#3|) (-717)) (T -212))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1488 (((-583 (-694)) $) 251 T ELT) (((-583 (-694)) $ |#2|) 249 T ELT)) (-1522 (((-694) $) 250 T ELT) (((-694) $ |#2|) 248 T ELT)) (-3082 (((-583 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-1484 (($ $) 244 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 |#2| #2#) $) 258 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) ((|#2| $) 259 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| |#4| $) 189 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ |#2|) 254 T ELT) (((-694) $) 253 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-583 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#4|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#4| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#4| |#4|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-1523 (((-1 $ (-694)) |#2|) 256 T ELT) (((-1 $ (-694)) $) 243 (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1486 ((|#3| $) 246 T ELT)) (-1894 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1487 (((-85) $) 247 T ELT)) (-2824 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-1485 (($ $) 245 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 183 T ELT)) (-1799 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT) (($ $ |#2| $) 242 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) 241 (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) 240 (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) 239 (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT) (($ $ (-1 |#1| |#1|)) 263 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 262 T ELT) (($ $) 238 (|has| |#1| (-189)) ELT) (($ $ (-694)) 236 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 234 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 232 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 231 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 230 (|has| |#1| (-811 (-1090))) ELT)) (-1489 (((-583 |#2|) $) 255 T ELT)) (-3949 ((|#4| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT) (((-694) $ |#2|) 252 T ELT)) (-3973 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ |#2|) 257 T ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#4|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2703 (((-632 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT) (($ $ (-1 |#1| |#1|)) 261 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 260 T ELT) (($ $) 237 (|has| |#1| (-189)) ELT) (($ $ (-694)) 235 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 229 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 228 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 227 (|has| |#1| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-213 |#1| |#2| |#3| |#4|) (-113) (-961) (-756) (-228 |t#2|) (-717)) (T -213))
+((-1523 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1488 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))) (-1522 (*1 *2 *1 *3) (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694)))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717)) (-4 *2 (-228 *4)))) (-1485 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1484 (*1 *1 *1) (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-228 *3)) (-4 *5 (-717)))) (-1523 (*1 *2 *1) (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6)))))
+(-13 (-861 |t#1| |t#4| |t#3|) (-184 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1523 ((-1 $ (-694)) |t#2|)) (-15 -1489 ((-583 |t#2|) $)) (-15 -3773 ((-694) $ |t#2|)) (-15 -3773 ((-694) $)) (-15 -3949 ((-694) $ |t#2|)) (-15 -1488 ((-583 (-694)) $)) (-15 -1522 ((-694) $)) (-15 -1488 ((-583 (-694)) $ |t#2|)) (-15 -1522 ((-694) $ |t#2|)) (-15 -1487 ((-85) $)) (-15 -1486 (|t#3| $)) (-15 -1485 ($ $)) (-15 -1484 ($ $)) (IF (|has| |t#1| (-190)) (PROGN (-6 (-455 |t#2| |t#1|)) (-6 (-455 |t#2| $)) (-6 (-260 $)) (-15 -1523 ((-1 $ (-694)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#2|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#4|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#2| |#1|) |has| |#1| (-190)) ((-455 |#2| $) |has| |#1| (-190)) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-806 $ |#3|) . T) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-809 |#3|) . T) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#4| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821)))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1495 ((|#1| $) 61 T ELT)) (-3324 ((|#1| $) 40 T ELT)) (-3725 (($) 6 T CONST)) (-3003 (($ $) 67 T ELT)) (-2297 (($ $) 55 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3326 ((|#1| |#1| $) 42 T ELT)) (-3325 ((|#1| $) 41 T ELT)) (-2609 (((-583 |#1|) $) 47 T ELT)) (-3246 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3834 (((-694) $) 68 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-1493 ((|#1| |#1| $) 59 T ELT)) (-1492 ((|#1| |#1| $) 58 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-2604 (((-694) $) 62 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3002 ((|#1| $) 69 T ELT)) (-1491 ((|#1| $) 57 T ELT)) (-1490 ((|#1| $) 56 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3005 ((|#1| |#1| $) 65 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3004 ((|#1| $) 66 T ELT)) (-1496 (($) 64 T ELT) (($ (-583 |#1|)) 63 T ELT)) (-3323 (((-694) $) 39 T ELT)) (-1730 (((-694) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 46 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1494 ((|#1| $) 60 T ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3001 ((|#1| $) 70 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-214 |#1|) (-113) (-1129)) (T -214))
+((-1496 (*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1496 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-1495 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1493 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1492 (*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(-13 (-1034 |t#1|) (-908 |t#1|) (-10 -8 (-15 -1496 ($)) (-15 -1496 ($ (-583 |t#1|))) (-15 -2604 ((-694) $)) (-15 -1495 (|t#1| $)) (-15 -1494 (|t#1| $)) (-15 -1493 (|t#1| |t#1| $)) (-15 -1492 (|t#1| |t#1| $)) (-15 -1491 (|t#1| $)) (-15 -1490 (|t#1| $)) (-15 -2297 ($ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-908 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1034 |#1|) . T) ((-1129) . T))
+((-1497 (((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330))) 75 T ELT) (((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 74 T ELT) (((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330))) 65 T ELT) (((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 64 T ELT) (((-1047 (-179)) (-789 |#1|) (-1004 (-330))) 56 T ELT) (((-1047 (-179)) (-789 |#1|) (-1004 (-330)) (-583 (-221))) 55 T ELT)) (-1504 (((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330))) 78 T ELT) (((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 77 T ELT) (((-1183) |#1| (-1004 (-330)) (-1004 (-330))) 68 T ELT) (((-1183) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221))) 67 T ELT) (((-1183) (-789 |#1|) (-1004 (-330))) 60 T ELT) (((-1183) (-789 |#1|) (-1004 (-330)) (-583 (-221))) 59 T ELT) (((-1182) (-787 |#1|) (-1004 (-330))) 47 T ELT) (((-1182) (-787 |#1|) (-1004 (-330)) (-583 (-221))) 46 T ELT) (((-1182) |#1| (-1004 (-330))) 38 T ELT) (((-1182) |#1| (-1004 (-330)) (-583 (-221))) 36 T ELT)))
+(((-215 |#1|) (-10 -7 (-15 -1504 ((-1182) |#1| (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) |#1| (-1004 (-330)))) (-15 -1504 ((-1182) (-787 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-787 |#1|) (-1004 (-330)))) (-15 -1504 ((-1183) (-789 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-789 |#1|) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) (-789 |#1|) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-789 |#1|) (-1004 (-330)))) (-15 -1504 ((-1183) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) |#1| (-1004 (-330)) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) |#1| (-1004 (-330)) (-1004 (-330)))) (-15 -1504 ((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-792 |#1|) (-1004 (-330)) (-1004 (-330)))) (-15 -1497 ((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-792 |#1|) (-1004 (-330)) (-1004 (-330))))) (-13 (-553 (-473)) (-1013))) (T -215))
+((-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *5)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-330))) (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013))))))
+((-1498 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 158 T ELT)) (-1497 (((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330))) 178 T ELT) (((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 176 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 181 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 177 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 169 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 168 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330))) 150 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221))) 148 T ELT) (((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330))) 149 T ELT) (((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 146 T ELT)) (-1504 (((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330))) 180 T ELT) (((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 179 T ELT) (((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 183 T ELT) (((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 182 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330))) 171 T ELT) (((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221))) 170 T ELT) (((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330))) 156 T ELT) (((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221))) 155 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330))) 154 T ELT) (((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 153 T ELT) (((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330))) 118 T ELT) (((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221))) 117 T ELT) (((-1182) (-1 (-179) (-179)) (-1001 (-330))) 112 T ELT) (((-1182) (-1 (-179) (-179)) (-1001 (-330)) (-583 (-221))) 110 T ELT)))
+(((-216) (-10 -7 (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-1 (-179) (-179)) (-1001 (-330)))) (-15 -1504 ((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1182) (-787 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1504 ((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-789 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-789 (-1 (-179) (-179))) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179)) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-330)) (-1001 (-330)))) (-15 -1504 ((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1504 ((-1183) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)))) (-15 -1497 ((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)) (-583 (-221)))) (-15 -1497 ((-1047 (-179)) (-792 (-1 (-179) (-179) (-179))) (-1001 (-330)) (-1001 (-330)))) (-15 -1498 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -216))
+((-1498 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1497 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182)) (-5 *1 (-216)))) (-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216)))))
+((-1504 (((-1182) (-249 |#2|) (-1090) (-1090) (-583 (-221))) 102 T ELT)))
+(((-217 |#1| |#2|) (-10 -7 (-15 -1504 ((-1182) (-249 |#2|) (-1090) (-1090) (-583 (-221))))) (-13 (-495) (-756) (-950 (-484))) (-364 |#1|)) (T -217))
+((-1504 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-583 (-221))) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1182)) (-5 *1 (-217 *6 *7)))))
+((-1501 (((-484) (-484)) 71 T ELT)) (-1502 (((-484) (-484)) 72 T ELT)) (-1503 (((-179) (-179)) 73 T ELT)) (-1500 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179))) 70 T ELT)) (-1499 (((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85)) 68 T ELT)))
+(((-218) (-10 -7 (-15 -1499 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)) (-85))) (-15 -1500 ((-1183) (-1 (-142 (-179)) (-142 (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -1501 ((-484) (-484))) (-15 -1502 ((-484) (-484))) (-15 -1503 ((-179) (-179))))) (T -218))
+((-1503 (*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *2 (-1183)) (-5 *1 (-218)))) (-1499 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179))) (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218)))))
+((-3947 (((-1004 (-330)) (-1004 (-265 |#1|))) 16 T ELT)))
+(((-219 |#1|) (-10 -7 (-15 -3947 ((-1004 (-330)) (-1004 (-265 |#1|))))) (-13 (-756) (-495) (-553 (-330)))) (T -219))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-330)))) (-5 *2 (-1004 (-330))) (-5 *1 (-219 *4)))))
+((-1504 (((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221))) 23 T ELT) (((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179))) 24 T ELT) (((-1182) (-583 (-854 (-179))) (-583 (-221))) 16 T ELT) (((-1182) (-583 (-854 (-179)))) 17 T ELT) (((-1182) (-583 (-179)) (-583 (-179)) (-583 (-221))) 20 T ELT) (((-1182) (-583 (-179)) (-583 (-179))) 21 T ELT)))
+(((-220) (-10 -7 (-15 -1504 ((-1182) (-583 (-179)) (-583 (-179)))) (-15 -1504 ((-1182) (-583 (-179)) (-583 (-179)) (-583 (-221)))) (-15 -1504 ((-1182) (-583 (-854 (-179))))) (-15 -1504 ((-1182) (-583 (-854 (-179))) (-583 (-221)))) (-15 -1504 ((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)))) (-15 -1504 ((-1183) (-583 (-179)) (-583 (-179)) (-583 (-179)) (-583 (-221)))))) (T -220))
+((-1504 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1183)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-220)))) (-1504 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3882 (($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 24 T ELT)) (-1517 (($ (-830)) 81 T ELT)) (-1516 (($ (-830)) 80 T ELT)) (-1775 (($ (-583 (-330))) 87 T ELT)) (-1520 (($ (-330)) 66 T ELT)) (-1519 (($ (-830)) 82 T ELT)) (-1513 (($ (-85)) 33 T ELT)) (-3884 (($ (-1073)) 28 T ELT)) (-1512 (($ (-1073)) 29 T ELT)) (-1518 (($ (-1047 (-179))) 76 T ELT)) (-1931 (($ (-583 (-1001 (-330)))) 72 T ELT)) (-1506 (($ (-583 (-1001 (-330)))) 68 T ELT) (($ (-583 (-1001 (-350 (-484))))) 71 T ELT)) (-1509 (($ (-330)) 38 T ELT) (($ (-783)) 42 T ELT)) (-1505 (((-85) (-583 $) (-1090)) 100 T ELT)) (-1521 (((-3 (-51) "failed") (-583 $) (-1090)) 102 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1508 (($ (-330)) 43 T ELT) (($ (-783)) 44 T ELT)) (-3225 (($ (-1 (-854 (-179)) (-854 (-179)))) 65 T ELT)) (-2266 (($ (-1 (-854 (-179)) (-854 (-179)))) 83 T ELT)) (-1507 (($ (-1 (-179) (-179))) 48 T ELT) (($ (-1 (-179) (-179) (-179))) 52 T ELT) (($ (-1 (-179) (-179) (-179) (-179))) 56 T ELT)) (-3947 (((-772) $) 93 T ELT)) (-1510 (($ (-85)) 34 T ELT) (($ (-583 (-1001 (-330)))) 60 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1926 (($ (-85)) 35 T ELT)) (-3057 (((-85) $ $) 97 T ELT)))
+(((-221) (-13 (-1013) (-10 -8 (-15 -1926 ($ (-85))) (-15 -1510 ($ (-85))) (-15 -3882 ($ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ($ (-1073))) (-15 -1512 ($ (-1073))) (-15 -1513 ($ (-85))) (-15 -1510 ($ (-583 (-1001 (-330))))) (-15 -3225 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1509 ($ (-330))) (-15 -1509 ($ (-783))) (-15 -1508 ($ (-330))) (-15 -1508 ($ (-783))) (-15 -1507 ($ (-1 (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179)))) (-15 -1507 ($ (-1 (-179) (-179) (-179) (-179)))) (-15 -1520 ($ (-330))) (-15 -1506 ($ (-583 (-1001 (-330))))) (-15 -1506 ($ (-583 (-1001 (-350 (-484)))))) (-15 -1931 ($ (-583 (-1001 (-330))))) (-15 -1518 ($ (-1047 (-179)))) (-15 -1516 ($ (-830))) (-15 -1517 ($ (-830))) (-15 -1519 ($ (-830))) (-15 -2266 ($ (-1 (-854 (-179)) (-854 (-179))))) (-15 -1775 ($ (-583 (-330)))) (-15 -1521 ((-3 (-51) "failed") (-583 $) (-1090))) (-15 -1505 ((-85) (-583 $) (-1090)))))) (T -221))
+((-1926 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-221)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1512 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))) (-1510 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-3225 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1509 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221)))) (-1507 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221)))) (-1520 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-350 (-484))))) (-5 *1 (-221)))) (-1931 (*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221)))) (-1775 (*1 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-221)))) (-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-51)) (-5 *1 (-221)))) (-1505 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221)))))
+((-3882 (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 25 T ELT)) (-1517 (((-830) (-583 (-221)) (-830)) 52 T ELT)) (-1516 (((-830) (-583 (-221)) (-830)) 51 T ELT)) (-3852 (((-583 (-330)) (-583 (-221)) (-583 (-330))) 68 T ELT)) (-1520 (((-330) (-583 (-221)) (-330)) 57 T ELT)) (-1519 (((-830) (-583 (-221)) (-830)) 53 T ELT)) (-1513 (((-85) (-583 (-221)) (-85)) 27 T ELT)) (-3884 (((-1073) (-583 (-221)) (-1073)) 19 T ELT)) (-1512 (((-1073) (-583 (-221)) (-1073)) 26 T ELT)) (-1518 (((-1047 (-179)) (-583 (-221))) 46 T ELT)) (-1931 (((-583 (-1001 (-330))) (-583 (-221)) (-583 (-1001 (-330)))) 40 T ELT)) (-1514 (((-783) (-583 (-221)) (-783)) 32 T ELT)) (-1515 (((-783) (-583 (-221)) (-783)) 33 T ELT)) (-2266 (((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179)))) 63 T ELT)) (-1511 (((-85) (-583 (-221)) (-85)) 14 T ELT)) (-1926 (((-85) (-583 (-221)) (-85)) 13 T ELT)))
+(((-222) (-10 -7 (-15 -1926 ((-85) (-583 (-221)) (-85))) (-15 -1511 ((-85) (-583 (-221)) (-85))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) (-583 (-221)) (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3884 ((-1073) (-583 (-221)) (-1073))) (-15 -1512 ((-1073) (-583 (-221)) (-1073))) (-15 -1513 ((-85) (-583 (-221)) (-85))) (-15 -1514 ((-783) (-583 (-221)) (-783))) (-15 -1515 ((-783) (-583 (-221)) (-783))) (-15 -1931 ((-583 (-1001 (-330))) (-583 (-221)) (-583 (-1001 (-330))))) (-15 -1516 ((-830) (-583 (-221)) (-830))) (-15 -1517 ((-830) (-583 (-221)) (-830))) (-15 -1518 ((-1047 (-179)) (-583 (-221)))) (-15 -1519 ((-830) (-583 (-221)) (-830))) (-15 -1520 ((-330) (-583 (-221)) (-330))) (-15 -2266 ((-1 (-854 (-179)) (-854 (-179))) (-583 (-221)) (-1 (-854 (-179)) (-854 (-179))))) (-15 -3852 ((-583 (-330)) (-583 (-221)) (-583 (-330)))))) (T -222))
+((-3852 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-330))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-2266 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1520 (*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1519 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222)))) (-1517 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1931 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1515 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1514 (*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1513 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1512 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3884 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-3882 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1511 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))) (-1926 (*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+((-1521 (((-3 |#1| "failed") (-583 (-221)) (-1090)) 17 T ELT)))
+(((-223 |#1|) (-10 -7 (-15 -1521 ((-3 |#1| "failed") (-583 (-221)) (-1090)))) (-1129)) (T -223))
+((-1521 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2)) (-4 *2 (-1129)))))
+((-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) 11 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) 19 T ELT) (($ $ (-694)) NIL T ELT) (($ $) 16 T ELT)) (-2670 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-694)) 14 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -2670 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -2670 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -2670 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2670 (|#1| |#1| (-583 (-1090)))) (-15 -2670 (|#1| |#1| (-1090) (-694))) (-15 -2670 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -2670 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1129)) (T -224))
+NIL
+((-3759 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 22 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 16 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 15 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 14 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090)) 12 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-694)) 10 (|has| |#1| (-189)) ELT) (($ $) 8 (|has| |#1| (-189)) ELT)) (-2670 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 20 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 19 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 18 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 17 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090)) 13 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-694)) 11 (|has| |#1| (-189)) ELT) (($ $) 9 (|has| |#1| (-189)) ELT)))
+(((-225 |#1|) (-113) (-1129)) (T -225))
+((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3759 ($ $ (-1 |t#1| |t#1|))) (-15 -3759 ($ $ (-1 |t#1| |t#1|) (-694))) (-15 -2670 ($ $ (-1 |t#1| |t#1|))) (-15 -2670 ($ $ (-1 |t#1| |t#1|) (-694))) (IF (|has| |t#1| (-189)) (-6 (-189)) |%noBranch|) (IF (|has| |t#1| (-811 (-1090))) (-6 (-811 (-1090))) |%noBranch|)))
+(((-186 $) |has| |#1| (-189)) ((-189) |has| |#1| (-189)) ((-13) . T) ((-806 $ (-1090)) |has| |#1| (-811 (-1090))) ((-811 (-1090)) |has| |#1| (-811 (-1090))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ |#2|) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3082 (((-583 |#3|) $) NIL T ELT)) (-3084 (((-1085 $) $ |#3|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 |#3|)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 23 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 |#3|) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ELT)) (-3773 (((-694) $ |#2|) NIL T ELT) (((-694) $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) |#3|) NIL T ELT) (($ (-1085 $) |#3|) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#3|) NIL T ELT)) (-2821 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT)) (-1625 (($ (-1 (-469 |#3|) (-469 |#3|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) |#2|) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 |#3| #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 ((|#3| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-583 |#3|) (-583 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-583 |#3|) (-583 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ |#3|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 |#2|) $) NIL T ELT)) (-3949 (((-469 |#3|) $) NIL T ELT) (((-694) $ |#3|) NIL T ELT) (((-583 (-694)) $ (-583 |#3|)) NIL T ELT) (((-694) $ |#2|) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ |#3|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#1| |#2|)) 32 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-469 |#3|)) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 |#3|) (-583 (-694))) NIL T ELT) (($ $ |#3| (-694)) NIL T ELT) (($ $ (-583 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-226 |#1| |#2| |#3|) (-13 (-213 |#1| |#2| |#3| (-469 |#3|)) (-950 (-1039 |#1| |#2|))) (-961) (-756) (-228 |#2|)) (T -226))
+NIL
+((-1522 (((-694) $) 37 T ELT)) (-3158 (((-3 |#2| "failed") $) 22 T ELT)) (-3157 ((|#2| $) 33 T ELT)) (-3759 (($ $ (-694)) 18 T ELT) (($ $) 14 T ELT)) (-3947 (((-772) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 36 T ELT)))
+(((-227 |#1| |#2|) (-10 -7 (-15 -1522 ((-694) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| "failed") |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -2686 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-228 |#2|) (-756)) (T -227))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-1522 (((-694) $) 26 T ELT)) (-3832 ((|#1| $) 27 T ELT)) (-3158 (((-3 |#1| "failed") $) 31 T ELT)) (-3157 ((|#1| $) 32 T ELT)) (-3773 (((-694) $) 28 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-1523 (($ |#1| (-694)) 29 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-694)) 35 T ELT) (($ $) 33 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2670 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-228 |#1|) (-113) (-756)) (T -228))
+((-1523 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
+(-13 (-756) (-189) (-950 |t#1|) (-10 -8 (-15 -1523 ($ |t#1| (-694))) (-15 -3773 ((-694) $)) (-15 -3832 (|t#1| $)) (-15 -1522 ((-694) $))))
+(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-186 $) . T) ((-189) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1525 (((-583 (-484)) $) 28 T ELT)) (-3949 (((-694) $) 26 T ELT)) (-3947 (((-772) $) 32 T ELT) (($ (-583 (-484))) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1524 (($ (-694)) 29 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-229) (-13 (-756) (-10 -8 (-15 -3947 ($ (-583 (-484)))) (-15 -3949 ((-694) $)) (-15 -1525 ((-583 (-484)) $)) (-15 -1524 ($ (-694)))))) (T -229))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))) (-1524 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
+((-3493 ((|#2| |#2|) 77 T ELT)) (-3640 ((|#2| |#2|) 65 T ELT)) (-1554 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85))))) 123 T ELT)) (-3491 ((|#2| |#2|) 75 T ELT)) (-3639 ((|#2| |#2|) 63 T ELT)) (-3495 ((|#2| |#2|) 79 T ELT)) (-3638 ((|#2| |#2|) 67 T ELT)) (-3628 ((|#2|) 46 T ELT)) (-3596 (((-86) (-86)) 97 T ELT)) (-3943 ((|#2| |#2|) 61 T ELT)) (-1555 (((-85) |#2|) 146 T ELT)) (-1544 ((|#2| |#2|) 193 T ELT)) (-1532 ((|#2| |#2|) 169 T ELT)) (-1527 ((|#2|) 59 T ELT)) (-1526 ((|#2|) 58 T ELT)) (-1542 ((|#2| |#2|) 189 T ELT)) (-1530 ((|#2| |#2|) 165 T ELT)) (-1546 ((|#2| |#2|) 197 T ELT)) (-1534 ((|#2| |#2|) 173 T ELT)) (-1529 ((|#2| |#2|) 161 T ELT)) (-1528 ((|#2| |#2|) 163 T ELT)) (-1547 ((|#2| |#2|) 199 T ELT)) (-1535 ((|#2| |#2|) 175 T ELT)) (-1545 ((|#2| |#2|) 195 T ELT)) (-1533 ((|#2| |#2|) 171 T ELT)) (-1543 ((|#2| |#2|) 191 T ELT)) (-1531 ((|#2| |#2|) 167 T ELT)) (-1550 ((|#2| |#2|) 205 T ELT)) (-1538 ((|#2| |#2|) 181 T ELT)) (-1548 ((|#2| |#2|) 201 T ELT)) (-1536 ((|#2| |#2|) 177 T ELT)) (-1552 ((|#2| |#2|) 209 T ELT)) (-1540 ((|#2| |#2|) 185 T ELT)) (-1553 ((|#2| |#2|) 211 T ELT)) (-1541 ((|#2| |#2|) 187 T ELT)) (-1551 ((|#2| |#2|) 207 T ELT)) (-1539 ((|#2| |#2|) 183 T ELT)) (-1549 ((|#2| |#2|) 203 T ELT)) (-1537 ((|#2| |#2|) 179 T ELT)) (-3944 ((|#2| |#2|) 62 T ELT)) (-3496 ((|#2| |#2|) 80 T ELT)) (-3637 ((|#2| |#2|) 68 T ELT)) (-3494 ((|#2| |#2|) 78 T ELT)) (-3636 ((|#2| |#2|) 66 T ELT)) (-3492 ((|#2| |#2|) 76 T ELT)) (-3635 ((|#2| |#2|) 64 T ELT)) (-2254 (((-85) (-86)) 95 T ELT)) (-3499 ((|#2| |#2|) 83 T ELT)) (-3487 ((|#2| |#2|) 71 T ELT)) (-3497 ((|#2| |#2|) 81 T ELT)) (-3485 ((|#2| |#2|) 69 T ELT)) (-3501 ((|#2| |#2|) 85 T ELT)) (-3489 ((|#2| |#2|) 73 T ELT)) (-3502 ((|#2| |#2|) 86 T ELT)) (-3490 ((|#2| |#2|) 74 T ELT)) (-3500 ((|#2| |#2|) 84 T ELT)) (-3488 ((|#2| |#2|) 72 T ELT)) (-3498 ((|#2| |#2|) 82 T ELT)) (-3486 ((|#2| |#2|) 70 T ELT)))
+(((-230 |#1| |#2|) (-10 -7 (-15 -3944 (|#2| |#2|)) (-15 -3943 (|#2| |#2|)) (-15 -3639 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -3636 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3637 (|#2| |#2|)) (-15 -3485 (|#2| |#2|)) (-15 -3486 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3489 (|#2| |#2|)) (-15 -3490 (|#2| |#2|)) (-15 -3491 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3494 (|#2| |#2|)) (-15 -3495 (|#2| |#2|)) (-15 -3496 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3498 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3501 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -3628 (|#2|)) (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1526 (|#2|)) (-15 -1527 (|#2|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1532 (|#2| |#2|)) (-15 -1533 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1535 (|#2| |#2|)) (-15 -1536 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -1538 (|#2| |#2|)) (-15 -1539 (|#2| |#2|)) (-15 -1540 (|#2| |#2|)) (-15 -1541 (|#2| |#2|)) (-15 -1542 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -1545 (|#2| |#2|)) (-15 -1546 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1548 (|#2| |#2|)) (-15 -1549 (|#2| |#2|)) (-15 -1550 (|#2| |#2|)) (-15 -1551 (|#2| |#2|)) (-15 -1552 (|#2| |#2|)) (-15 -1553 (|#2| |#2|)) (-15 -1554 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-85)))))) (-15 -1555 ((-85) |#2|))) (-495) (-13 (-364 |#1|) (-915))) (T -230))
+((-1555 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3)) (-4 *3 (-13 (-364 *4) (-915))))) (-1554 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85))))) (-4 *2 (-13 (-364 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))) (-1553 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1552 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1551 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1550 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1549 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1548 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1546 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1545 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1542 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1541 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1540 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1539 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1538 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1536 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1533 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1532 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-1527 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-1526 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4)) (-4 *4 (-13 (-364 *3) (-915))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5)) (-4 *5 (-13 (-364 *4) (-915))))) (-3628 (*1 *2) (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
+((-1558 (((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1090)) 151 T ELT)) (-1560 ((|#2| (-350 (-484)) |#2|) 49 T ELT)) (-1559 ((|#2| |#2| (-550 |#2|)) 144 T ELT)) (-1556 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1090)) 143 T ELT)) (-1557 ((|#2| |#2| (-1090)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2444 ((|#2| |#2| (-1090)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
+(((-231 |#1| |#2|) (-10 -7 (-15 -2444 (|#2| |#2|)) (-15 -2444 (|#2| |#2| (-1090))) (-15 -1556 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-550 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1090))) (-15 -1557 (|#2| |#2|)) (-15 -1557 (|#2| |#2| (-1090))) (-15 -1558 ((-3 |#2| "failed") (-583 (-550 |#2|)) |#2| (-1090))) (-15 -1559 (|#2| |#2| (-550 |#2|))) (-15 -1560 (|#2| (-350 (-484)) |#2|))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -231))
+((-1560 (*1 *2 *3 *2) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1559 (*1 *2 *2 *3) (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))) (-1558 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1090)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-1557 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2444 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2444 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
+((-2976 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3493 ((|#3| |#3|) 142 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-3640 ((|#3| |#3|) 132 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3491 ((|#3| |#3|) 140 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-3639 ((|#3| |#3|) 130 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3495 ((|#3| |#3|) 144 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-3638 ((|#3| |#3|) 134 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-694)) 41 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-3943 ((|#3| |#3|) 129 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-3944 ((|#3| |#3|) 128 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3496 ((|#3| |#3|) 145 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-3637 ((|#3| |#3|) 135 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3494 ((|#3| |#3|) 143 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-3636 ((|#3| |#3|) 133 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3492 ((|#3| |#3|) 141 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-3635 ((|#3| |#3|) 131 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3499 ((|#3| |#3|) 148 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3487 ((|#3| |#3|) 152 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3497 ((|#3| |#3|) 146 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3485 ((|#3| |#3|) 136 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3501 ((|#3| |#3|) 150 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3489 ((|#3| |#3|) 138 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3502 ((|#3| |#3|) 151 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3490 ((|#3| |#3|) 139 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3500 ((|#3| |#3|) 149 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3488 ((|#3| |#3|) 153 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3498 ((|#3| |#3|) 147 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3486 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-350 (-484))) 47 (|has| |#1| (-312)) ELT)))
+(((-232 |#1| |#2| |#3|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-484)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-350 (-484))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -232))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
+((-2976 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3493 ((|#3| |#3|) 137 T ELT)) (-2964 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-3640 ((|#3| |#3|) 125 T ELT)) (-2974 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3491 ((|#3| |#3|) 135 T ELT)) (-2962 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-3639 ((|#3| |#3|) 123 T ELT)) (-2978 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3495 ((|#3| |#3|) 139 T ELT)) (-2966 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-3638 ((|#3| |#3|) 127 T ELT)) (-2959 (((-3 |#3| #1#) |#3| (-694)) 38 T ELT)) (-2961 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-3943 ((|#3| |#3|) 111 T ELT)) (-2960 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-3944 ((|#3| |#3|) 122 T ELT)) (-2979 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3496 ((|#3| |#3|) 140 T ELT)) (-2967 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-3637 ((|#3| |#3|) 128 T ELT)) (-2977 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3494 ((|#3| |#3|) 138 T ELT)) (-2965 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-3636 ((|#3| |#3|) 126 T ELT)) (-2975 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3492 ((|#3| |#3|) 136 T ELT)) (-2963 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-3635 ((|#3| |#3|) 124 T ELT)) (-2982 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3499 ((|#3| |#3|) 143 T ELT)) (-2970 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3487 ((|#3| |#3|) 131 T ELT)) (-2980 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3497 ((|#3| |#3|) 141 T ELT)) (-2968 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3485 ((|#3| |#3|) 129 T ELT)) (-2984 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3501 ((|#3| |#3|) 145 T ELT)) (-2972 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3489 ((|#3| |#3|) 133 T ELT)) (-2985 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3502 ((|#3| |#3|) 146 T ELT)) (-2973 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3490 ((|#3| |#3|) 134 T ELT)) (-2983 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3500 ((|#3| |#3|) 144 T ELT)) (-2971 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3488 ((|#3| |#3|) 132 T ELT)) (-2981 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3498 ((|#3| |#3|) 142 T ELT)) (-2969 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3486 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-350 (-484))) 44 (|has| |#1| (-312)) ELT)))
+(((-233 |#1| |#2| |#3| |#4|) (-13 (-896 |#3|) (-10 -7 (IF (|has| |#1| (-312)) (-15 ** (|#3| |#3| (-350 (-484)))) |%noBranch|) (-15 -3944 (|#3| |#3|)) (-15 -3943 (|#3| |#3|)) (-15 -3639 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3640 (|#3| |#3|)) (-15 -3636 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3637 (|#3| |#3|)) (-15 -3485 (|#3| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -3487 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3489 (|#3| |#3|)) (-15 -3490 (|#3| |#3|)) (-15 -3491 (|#3| |#3|)) (-15 -3492 (|#3| |#3|)) (-15 -3493 (|#3| |#3|)) (-15 -3494 (|#3| |#3|)) (-15 -3495 (|#3| |#3|)) (-15 -3496 (|#3| |#3|)) (-15 -3497 (|#3| |#3|)) (-15 -3498 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3501 (|#3| |#3|)) (-15 -3502 (|#3| |#3|)))) (-38 (-350 (-484))) (-1141 |#1|) (-1164 |#1| |#2|) (-896 |#2|)) (T -233))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-896 *5)))) (-3944 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3943 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3636 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3637 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3485 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3489 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3490 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3494 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3495 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3496 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3498 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3501 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3)) (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4)))))
+((-1563 (((-85) $) 20 T ELT)) (-1565 (((-1095) $) 9 T ELT)) (-3570 (((-3 (-446) #1="failed") $) 15 T ELT)) (-3569 (((-3 (-583 $) #1#) $) NIL T ELT)) (-1562 (((-3 (-446) #1#) $) 21 T ELT)) (-1564 (((-3 (-1015) #1#) $) 19 T ELT)) (-3954 (((-85) $) 17 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1561 (((-85) $) 10 T ELT)))
+(((-234) (-13 (-552 (-772)) (-10 -8 (-15 -1565 ((-1095) $)) (-15 -3954 ((-85) $)) (-15 -1564 ((-3 (-1015) #1="failed") $)) (-15 -1563 ((-85) $)) (-15 -1562 ((-3 (-446) #1#) $)) (-15 -1561 ((-85) $)) (-15 -3570 ((-3 (-446) #1#) $)) (-15 -3569 ((-3 (-583 $) #1#) $))))) (T -234))
+((-1565 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1564 (*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-1562 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))) (-3570 (*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))) (-3569 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234)))))
+((-1567 (((-532) $) 10 T ELT)) (-1568 (((-522) $) 8 T ELT)) (-1566 (((-247) $) 12 T ELT)) (-1569 (($ (-522) (-532) (-247)) NIL T ELT)) (-3947 (((-772) $) 19 T ELT)))
+(((-235) (-13 (-552 (-772)) (-10 -8 (-15 -1569 ($ (-522) (-532) (-247))) (-15 -1568 ((-522) $)) (-15 -1567 ((-532) $)) (-15 -1566 ((-247) $))))) (T -235))
+((-1569 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
+((-3711 (($ (-1 (-85) |#2|) $) 24 T ELT)) (-1353 (($ $) 38 T ELT)) (-3406 (($ (-1 (-85) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3407 (($ |#2| $) 34 T ELT) (($ (-1 (-85) |#2|) $) 18 T ELT)) (-2857 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2304 (($ |#2| $ (-484)) 20 T ELT) (($ $ $ (-484)) 22 T ELT)) (-2305 (($ $ (-484)) 11 T ELT) (($ $ (-1146 (-484))) 14 T ELT)) (-3792 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3803 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-583 $)) NIL T ELT)))
+(((-236 |#1| |#2|) (-10 -7 (-15 -2857 (|#1| |#1| |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -3803 (|#1| (-583 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3711 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -1353 (|#1| |#1|))) (-237 |#2|) (-1129)) (T -236))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 84 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2368 (($ $) 82 (|has| |#1| (-72)) ELT)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ (-1 (-85) |#1|) $) 88 T ELT) (($ |#1| $) 83 (|has| |#1| (-72)) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2857 (($ (-1 (-85) |#1| |#1|) $ $) 85 T ELT) (($ $ $) 81 (|has| |#1| (-756)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3610 (($ |#1| $ (-484)) 87 T ELT) (($ $ $ (-484)) 86 T ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-1035 |#1|)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-1571 (($ $ (-484)) 90 T ELT) (($ $ (-1146 (-484))) 89 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3792 (($ $ |#1|) 92 T ELT) (($ $ $) 91 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-237 |#1|) (-113) (-1129)) (T -237))
+((-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1571 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1129)))) (-3610 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-2857 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-1570 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))) (-3406 (*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-72)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-72)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))))
+(-13 (-593 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -3792 ($ $ |t#1|)) (-15 -3792 ($ $ $)) (-15 -1571 ($ $ (-484))) (-15 -1571 ($ $ (-1146 (-484)))) (-15 -3406 ($ (-1 (-85) |t#1|) $)) (-15 -3610 ($ |t#1| $ (-484))) (-15 -3610 ($ $ $ (-484))) (-15 -2857 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -1570 ($ (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3406 ($ |t#1| $)) (-15 -2368 ($ $))) |%noBranch|) (IF (|has| |t#1| (-756)) (-15 -2857 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
((** (($ $ $) 10 T ELT)))
(((-238 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-239)) (T -238))
NIL
-((-3944 (($ $) 6 T ELT)) (-3945 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
+((-3943 (($ $) 6 T ELT)) (-3944 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
(((-239) (-113)) (T -239))
-((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3945 (*1 *1 *1) (-4 *1 (-239))) (-3944 (*1 *1 *1) (-4 *1 (-239))))
-(-13 (-10 -8 (-15 -3944 ($ $)) (-15 -3945 ($ $)) (-15 ** ($ $ $))))
-((-1576 (((-584 (-1070 |#1|)) (-1070 |#1|) |#1|) 35 T ELT)) (-1573 ((|#2| |#2| |#1|) 39 T ELT)) (-1575 ((|#2| |#2| |#1|) 41 T ELT)) (-1574 ((|#2| |#2| |#1|) 40 T ELT)))
-(((-240 |#1| |#2|) (-10 -7 (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 (|#2| |#2| |#1|)) (-15 -1576 ((-584 (-1070 |#1|)) (-1070 |#1|) |#1|))) (-312) (-1173 |#1|)) (T -240))
-((-1576 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))))
-((-3802 ((|#2| $ |#1|) 6 T ELT)))
-(((-241 |#1| |#2|) (-113) (-1130) (-1130)) (T -241))
-((-3802 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130)))))
-(-13 (-1130) (-10 -8 (-15 -3802 (|t#2| $ |t#1|))))
-(((-13) . T) ((-1130) . T))
-((-1577 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3114 ((|#3| $ |#2|) 10 T ELT)))
-(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1577 (|#3| |#1| |#2| |#3|)) (-15 -3114 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1014) (-1130)) (T -242))
-NIL
-((-3790 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3998)) ELT)) (-1577 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 11 T ELT)) (-3802 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
-(((-243 |#1| |#2|) (-113) (-1014) (-1130)) (T -243))
-((-3802 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3114 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3998)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-1577 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3998)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))))
-(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3802 (|t#2| $ |t#1| |t#2|)) (-15 -3114 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3998)) (PROGN (-15 -3790 (|t#2| $ |t#1| |t#2|)) (-15 -1577 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
-(((-241 |#1| |#2|) . T) ((-13) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 44 T ELT)) (-2064 (($ $) 41 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) 35 T ELT)) (-3844 (($ |#2| |#3|) 18 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 ((|#3| $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 19 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) 36 T ELT)) (-3802 ((|#2| $ |#2|) 46 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 23 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 39 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT)))
-(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2616 (|#3| $)) (-15 -3948 (|#2| $)) (-15 -3844 ($ |#2| |#3|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3469 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-1156 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
-((-3469 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2616 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3844 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2486 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
-((-3127 (((-85) $ $) 10 T ELT)))
-(((-245 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-246)) (T -245))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((** (*1 *1 *1 *1) (-4 *1 (-239))) (-3944 (*1 *1 *1) (-4 *1 (-239))) (-3943 (*1 *1 *1) (-4 *1 (-239))))
+(-13 (-10 -8 (-15 -3943 ($ $)) (-15 -3944 ($ $)) (-15 ** ($ $ $))))
+((-1575 (((-583 (-1069 |#1|)) (-1069 |#1|) |#1|) 35 T ELT)) (-1572 ((|#2| |#2| |#1|) 39 T ELT)) (-1574 ((|#2| |#2| |#1|) 41 T ELT)) (-1573 ((|#2| |#2| |#1|) 40 T ELT)))
+(((-240 |#1| |#2|) (-10 -7 (-15 -1572 (|#2| |#2| |#1|)) (-15 -1573 (|#2| |#2| |#1|)) (-15 -1574 (|#2| |#2| |#1|)) (-15 -1575 ((-583 (-1069 |#1|)) (-1069 |#1|) |#1|))) (-312) (-1172 |#1|)) (T -240))
+((-1575 (*1 *2 *3 *4) (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1069 *4))) (-5 *1 (-240 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1573 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))) (-1572 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+((-3801 ((|#2| $ |#1|) 6 T ELT)))
+(((-241 |#1| |#2|) (-113) (-1129) (-1129)) (T -241))
+((-3801 (*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3801 (|t#2| $ |t#1|))))
+(((-13) . T) ((-1129) . T))
+((-1576 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3113 ((|#3| $ |#2|) 10 T ELT)))
+(((-242 |#1| |#2| |#3|) (-10 -7 (-15 -1576 (|#3| |#1| |#2| |#3|)) (-15 -3113 (|#3| |#1| |#2|))) (-243 |#2| |#3|) (-1013) (-1129)) (T -242))
+NIL
+((-3789 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -3997)) ELT)) (-1576 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 11 T ELT)) (-3801 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
+(((-243 |#1| |#2|) (-113) (-1013) (-1129)) (T -243))
+((-3801 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-3113 (*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-3789 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-1576 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))))
+(-13 (-241 |t#1| |t#2|) (-10 -8 (-15 -3801 (|t#2| $ |t#1| |t#2|)) (-15 -3113 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -3997)) (PROGN (-15 -3789 (|t#2| $ |t#1| |t#2|)) (-15 -1576 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+(((-241 |#1| |#2|) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 44 T ELT)) (-2063 (($ $) 41 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) 35 T ELT)) (-3843 (($ |#2| |#3|) 18 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2615 ((|#3| $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 19 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-694) $) 36 T ELT)) (-3801 ((|#2| $ |#2|) 46 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 23 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 39 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT)))
+(((-244 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-258) (-241 |#2| |#2|) (-10 -8 (-15 -2615 (|#3| $)) (-15 -3947 (|#2| $)) (-15 -3843 ($ |#2| |#3|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-1155 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -244))
+((-3468 (*1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2615 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-3843 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))))
+((-3126 (((-85) $ $) 10 T ELT)))
+(((-245 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-246)) (T -245))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-246) (-113)) (T -246))
NIL
-(-13 (-962) (-82 $ $) (-10 -7 (-6 -3990)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1585 (((-584 (-998)) $) 10 T ELT)) (-1583 (($ (-447) (-447) (-1016) $) 19 T ELT)) (-1581 (($ (-447) (-584 (-877)) $) 23 T ELT)) (-1579 (($) 25 T ELT)) (-1584 (((-633 (-1016)) (-447) (-447) $) 18 T ELT)) (-1582 (((-584 (-877)) (-447) $) 22 T ELT)) (-3567 (($) 7 T ELT)) (-1580 (($) 24 T ELT)) (-3948 (((-773) $) 29 T ELT)) (-1578 (($) 26 T ELT)))
-(((-247) (-13 (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -1585 ((-584 (-998)) $)) (-15 -1584 ((-633 (-1016)) (-447) (-447) $)) (-15 -1583 ($ (-447) (-447) (-1016) $)) (-15 -1582 ((-584 (-877)) (-447) $)) (-15 -1581 ($ (-447) (-584 (-877)) $)) (-15 -1580 ($)) (-15 -1579 ($)) (-15 -1578 ($))))) (T -247))
-((-3567 (*1 *1) (-5 *1 (-247))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))) (-1584 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))) (-1583 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))) (-1582 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))) (-1581 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))) (-1580 (*1 *1) (-5 *1 (-247))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247))))
-((-1589 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 103 T ELT)) (-1588 (((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|)))) 98 T ELT) (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695)) 42 T ELT)) (-1590 (((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))) 100 T ELT)) (-1587 (((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|)))) 76 T ELT)) (-1586 (((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|)))) 75 T ELT)) (-2451 (((-858 |#1|) (-631 (-350 (-858 |#1|)))) 56 T ELT) (((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091)) 57 T ELT)))
-(((-248 |#1|) (-10 -7 (-15 -2451 ((-858 |#1|) (-631 (-350 (-858 |#1|))) (-1091))) (-15 -2451 ((-858 |#1|) (-631 (-350 (-858 |#1|))))) (-15 -1586 ((-584 (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (-631 (-350 (-858 |#1|))))) (-15 -1587 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|))) (-631 (-350 (-858 |#1|))) (-695) (-695))) (-15 -1588 ((-584 (-631 (-350 (-858 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|)))))) (-631 (-350 (-858 |#1|))))) (-15 -1589 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|))))) (-15 -1590 ((-584 (-2 (|:| |eigval| (-3 (-350 (-858 |#1|)) (-1081 (-1091) (-858 |#1|)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 |#1|))))))) (-631 (-350 (-858 |#1|)))))) (-392)) (T -248))
-((-1590 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-584 (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))) (|:| |geneigvec| (-584 (-631 (-350 (-858 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))) (-1588 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1588 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695)) (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-631 (-350 (-858 *6)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-631 (-350 (-858 *5)))))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392)) (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))) (-5 *1 (-248 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1596 (($ $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1605 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3726 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-664))) CONST)) (-1594 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 62 (|has| |#1| (-664)) ELT)) (-3530 ((|#1| $) 11 T ELT)) (-3469 (((-3 $ #1#) $) 60 (|has| |#1| (-664)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-664)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3531 ((|#1| $) 10 T ELT)) (-1595 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1593 (((-3 $ #1#) $) 61 (|has| |#1| (-664)) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2486 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1591 (((-584 $) $) 85 (|has| |#1| (-496)) ELT)) (-3770 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 21 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3228 (($ |#1| |#1|) 9 T ELT)) (-3913 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 87 (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3948 (($ (-485)) NIL (|has| |#1| (-962)) ELT) (((-85) $) 37 (|has| |#1| (-1014)) ELT) (((-773) $) 36 (|has| |#1| (-1014)) ELT)) (-3128 (((-695)) 67 (|has| |#1| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-2662 (($) 47 (|has| |#1| (-21)) CONST)) (-2668 (($) 57 (|has| |#1| (-664)) CONST)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-810 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-810 (-1091))) ELT)) (-3058 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1014)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3839 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3841 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) NIL (|has| |#1| (-413)) ELT) (($ $ (-695)) NIL (|has| |#1| (-664)) ELT) (($ $ (-831)) NIL (|has| |#1| (-1026)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1026)) ELT) (($ |#1| $) 54 (|has| |#1| (-1026)) ELT) (($ $ $) 53 (|has| |#1| (-1026)) ELT) (($ (-485) $) 70 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-25)) ELT)))
-(((-249 |#1|) (-13 (-1130) (-10 -8 (-15 -3058 ($ |#1| |#1|)) (-15 -3228 ($ |#1| |#1|)) (-15 -1596 ($ $)) (-15 -3531 (|#1| $)) (-15 -3530 (|#1| $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-456 (-1091) |#1|)) (-6 (-456 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1014)) (PROGN (-6 (-1014)) (-6 (-553 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3770 ($ $ $)) (-15 -3770 ($ $ (-584 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3841 ($ |#1| $)) (-15 -3841 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1595 ($ $)) (-15 -1594 ($ $)) (-15 -3839 ($ |#1| $)) (-15 -3839 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1026)) (PROGN (-6 (-1026)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-664)) (PROGN (-6 (-664)) (-15 -1593 ((-3 $ #1="failed") $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1593 ((-3 $ #1#) $)) (-15 -1592 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-6 (-962)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|) (IF (|has| |#1| (-496)) (-15 -1591 ((-584 $) $)) |%noBranch|) (IF (|has| |#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1188 |#1|)) (-15 -3951 ($ $ $)) (-15 -2486 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1605 ($ $ $)) |%noBranch|))) (-1130)) (T -249))
-((-3058 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3228 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3770 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)) (-5 *1 (-249 *3)))) (-3841 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3839 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))) (-1593 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496)) (-4 *3 (-1130)))) (-1605 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130)))) (-3951 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))) (-2486 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130))))))
-((-3960 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT)))
-(((-250 |#1| |#2|) (-10 -7 (-15 -3960 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1130) (-1130)) (T -250))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-251 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -251))
-NIL
-((-1597 (((-262) (-1074) (-584 (-1074))) 17 T ELT) (((-262) (-1074) (-1074)) 16 T ELT) (((-262) (-584 (-1074))) 15 T ELT) (((-262) (-1074)) 14 T ELT)))
-(((-252) (-10 -7 (-15 -1597 ((-262) (-1074))) (-15 -1597 ((-262) (-584 (-1074)))) (-15 -1597 ((-262) (-1074) (-1074))) (-15 -1597 ((-262) (-1074) (-584 (-1074)))))) (T -252))
-((-1597 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))))
-((-1601 (((-584 (-551 $)) $) 27 T ELT)) (-1605 (($ $ (-249 $)) 78 T ELT) (($ $ (-584 (-249 $))) 140 T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1="failed") $) 128 T ELT)) (-3158 (((-551 $) $) 127 T ELT)) (-2575 (($ $) 17 T ELT) (($ (-584 $)) 54 T ELT)) (-1600 (((-584 (-86)) $) 35 T ELT)) (-3597 (((-86) (-86)) 89 T ELT)) (-2675 (((-85) $) 151 T ELT)) (-3960 (($ (-1 $ $) (-551 $)) 87 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 95 T ELT)) (-2236 (($ (-86) $) 59 T ELT) (($ (-86) (-584 $)) 111 T ELT)) (-2635 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1091)) 132 T ELT)) (-2605 (((-695) $) 44 T ELT)) (-1599 (((-85) $ $) 57 T ELT) (((-85) $ (-1091)) 49 T ELT)) (-2676 (((-85) $) 149 T ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 81 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) 67 T ELT) (($ $ (-1091) (-1 $ $)) 72 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 80 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-584 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3802 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-584 $)) 124 T ELT)) (-1604 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2592 (($ $) 15 T ELT) (($ (-584 $)) 53 T ELT)) (-2255 (((-85) (-86)) 21 T ELT)))
-(((-253 |#1|) (-10 -7 (-15 -2675 ((-85) |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -1599 ((-85) |#1| (-1091))) (-15 -1599 ((-85) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#1| |#1|) (-551 |#1|))) (-15 -2236 (|#1| (-86) (-584 |#1|))) (-15 -2236 (|#1| (-86) |#1|)) (-15 -2635 ((-85) |#1| (-1091))) (-15 -2635 ((-85) |#1| (-86))) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1600 ((-584 (-86)) |#1|)) (-15 -1601 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1="failed") |#1|)) (-15 -2605 ((-695) |#1|)) (-15 -1604 (|#1| |#1| |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2575 (|#1| (-584 |#1|))) (-15 -2575 (|#1| |#1|)) (-15 -2592 (|#1| (-584 |#1|))) (-15 -2592 (|#1| |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3802 (|#1| (-86) (-584 |#1|))) (-15 -3802 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3159 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3158 ((-551 |#1|) |#1|))) (-254)) (T -253))
-((-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3159 (((-3 (-551 $) "failed") $) 67 T ELT)) (-3158 (((-551 $) $) 68 T ELT)) (-2575 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3597 (((-86) (-86)) 40 T ELT)) (-2675 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2605 (((-695) $) 45 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-2676 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3802 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3187 (($ $) 22 (|has| $ (-962)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT)) (-2592 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+(-13 (-961) (-82 $ $) (-10 -7 (-6 -3989)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-1584 (((-583 (-997)) $) 10 T ELT)) (-1582 (($ (-446) (-446) (-1015) $) 19 T ELT)) (-1580 (($ (-446) (-583 (-876)) $) 23 T ELT)) (-1578 (($) 25 T ELT)) (-1583 (((-632 (-1015)) (-446) (-446) $) 18 T ELT)) (-1581 (((-583 (-876)) (-446) $) 22 T ELT)) (-3566 (($) 7 T ELT)) (-1579 (($) 24 T ELT)) (-3947 (((-772) $) 29 T ELT)) (-1577 (($) 26 T ELT)))
+(((-247) (-13 (-552 (-772)) (-10 -8 (-15 -3566 ($)) (-15 -1584 ((-583 (-997)) $)) (-15 -1583 ((-632 (-1015)) (-446) (-446) $)) (-15 -1582 ($ (-446) (-446) (-1015) $)) (-15 -1581 ((-583 (-876)) (-446) $)) (-15 -1580 ($ (-446) (-583 (-876)) $)) (-15 -1579 ($)) (-15 -1578 ($)) (-15 -1577 ($))))) (T -247))
+((-3566 (*1 *1) (-5 *1 (-247))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))) (-1583 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))) (-1582 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))) (-1581 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))) (-1580 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))) (-1579 (*1 *1) (-5 *1 (-247))) (-1578 (*1 *1) (-5 *1 (-247))) (-1577 (*1 *1) (-5 *1 (-247))))
+((-1588 (((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))) 103 T ELT)) (-1587 (((-583 (-630 (-350 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|)))))) (-630 (-350 (-857 |#1|)))) 98 T ELT) (((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))) (-694) (-694)) 42 T ELT)) (-1589 (((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))) 100 T ELT)) (-1586 (((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|)))) 76 T ELT)) (-1585 (((-583 (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (-630 (-350 (-857 |#1|)))) 75 T ELT)) (-2450 (((-857 |#1|) (-630 (-350 (-857 |#1|)))) 56 T ELT) (((-857 |#1|) (-630 (-350 (-857 |#1|))) (-1090)) 57 T ELT)))
+(((-248 |#1|) (-10 -7 (-15 -2450 ((-857 |#1|) (-630 (-350 (-857 |#1|))) (-1090))) (-15 -2450 ((-857 |#1|) (-630 (-350 (-857 |#1|))))) (-15 -1585 ((-583 (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (-630 (-350 (-857 |#1|))))) (-15 -1586 ((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))))) (-15 -1587 ((-583 (-630 (-350 (-857 |#1|)))) (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|))) (-630 (-350 (-857 |#1|))) (-694) (-694))) (-15 -1587 ((-583 (-630 (-350 (-857 |#1|)))) (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|)))))) (-630 (-350 (-857 |#1|))))) (-15 -1588 ((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|))))) (-15 -1589 ((-583 (-2 (|:| |eigval| (-3 (-350 (-857 |#1|)) (-1080 (-1090) (-857 |#1|)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 |#1|))))))) (-630 (-350 (-857 |#1|)))))) (-392)) (T -248))
+((-1589 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-392)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))) (|:| |geneigvec| (-583 (-630 (-350 (-857 *4)))))))) (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-350 (-857 *5)))))) (-1587 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-350 (-857 *6)) (-1080 (-1090) (-857 *6)))) (-5 *5 (-694)) (-4 *6 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *6))))) (-5 *1 (-248 *6)) (-5 *4 (-630 (-350 (-857 *6)))))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5)) (-5 *4 (-630 (-350 (-857 *5)))))) (-1585 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-4 *4 (-392)) (-5 *2 (-583 (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4))))) (-5 *1 (-248 *4)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4)) (-4 *4 (-392)))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-857 *5)))) (-5 *4 (-1090)) (-5 *2 (-857 *5)) (-5 *1 (-248 *5)) (-4 *5 (-392)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1595 (($ $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1604 (($ $ $) 95 (|has| |#1| (-254)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-21)) (|has| |#1| (-663))) CONST)) (-1593 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1591 (((-3 $ #1#) $) 62 (|has| |#1| (-663)) ELT)) (-3529 ((|#1| $) 11 T ELT)) (-3468 (((-3 $ #1#) $) 60 (|has| |#1| (-663)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-663)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-1594 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1592 (((-3 $ #1#) $) 61 (|has| |#1| (-663)) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2485 (($ $) 64 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1590 (((-583 $) $) 85 (|has| |#1| (-495)) ELT)) (-3769 (($ $ $) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 $)) 28 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-1090) |#1|) 17 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 21 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3227 (($ |#1| |#1|) 9 T ELT)) (-3912 (((-107)) 90 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 87 (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-809 (-1090))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3947 (($ (-484)) NIL (|has| |#1| (-961)) ELT) (((-85) $) 37 (|has| |#1| (-1013)) ELT) (((-772) $) 36 (|has| |#1| (-1013)) ELT)) (-3127 (((-694)) 67 (|has| |#1| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-2661 (($) 47 (|has| |#1| (-21)) CONST)) (-2667 (($) 57 (|has| |#1| (-663)) CONST)) (-2670 (($ $ (-1090)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-809 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-809 (-1090))) ELT)) (-3057 (($ |#1| |#1|) 8 T ELT) (((-85) $ $) 32 (|has| |#1| (-1013)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 92 (OR (|has| |#1| (-312)) (|has| |#1| (-413))) ELT)) (-3838 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) NIL (|has| |#1| (-413)) ELT) (($ $ (-694)) NIL (|has| |#1| (-663)) ELT) (($ $ (-830)) NIL (|has| |#1| (-1025)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1025)) ELT) (($ |#1| $) 54 (|has| |#1| (-1025)) ELT) (($ $ $) 53 (|has| |#1| (-1025)) ELT) (($ (-484) $) 70 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-25)) ELT)))
+(((-249 |#1|) (-13 (-1129) (-10 -8 (-15 -3057 ($ |#1| |#1|)) (-15 -3227 ($ |#1| |#1|)) (-15 -1595 ($ $)) (-15 -3530 (|#1| $)) (-15 -3529 (|#1| $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455 (-1090) |#1|)) (-6 (-455 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1013)) (PROGN (-6 (-1013)) (-6 (-552 (-85))) (IF (|has| |#1| (-260 |#1|)) (PROGN (-15 -3769 ($ $ $)) (-15 -3769 ($ $ (-583 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3840 ($ |#1| $)) (-15 -3840 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1594 ($ $)) (-15 -1593 ($ $)) (-15 -3838 ($ |#1| $)) (-15 -3838 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-663)) (PROGN (-6 (-663)) (-15 -1592 ((-3 $ #1="failed") $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-413)) (PROGN (-6 (-413)) (-15 -1592 ((-3 $ #1#) $)) (-15 -1591 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-82 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|) (IF (|has| |#1| (-495)) (-15 -1590 ((-583 $) $)) |%noBranch|) (IF (|has| |#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-1187 |#1|)) (-15 -3950 ($ $ $)) (-15 -2485 ($ $))) |%noBranch|) (IF (|has| |#1| (-254)) (-15 -1604 ($ $ $)) |%noBranch|))) (-1129)) (T -249))
+((-3057 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3227 (*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3529 (*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3769 (*1 *1 *1 *1) (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)) (-5 *1 (-249 *2)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)) (-5 *1 (-249 *3)))) (-3840 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129)))) (-1594 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1593 (*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3838 (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-3838 (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))) (-1592 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))) (-1591 (*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495)) (-4 *3 (-1129)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129)))) (-3950 (*1 *1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))) (-2485 (*1 *1 *1) (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129))) (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129))))))
+((-3959 (((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)) 14 T ELT)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -3959 ((-249 |#2|) (-1 |#2| |#1|) (-249 |#1|)))) (-1129) (-1129)) (T -250))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-251 |#1| |#2|) (-1107 |#1| |#2|) (-1013) (-1013)) (T -251))
+NIL
+((-1596 (((-262) (-1073) (-583 (-1073))) 17 T ELT) (((-262) (-1073) (-1073)) 16 T ELT) (((-262) (-583 (-1073))) 15 T ELT) (((-262) (-1073)) 14 T ELT)))
+(((-252) (-10 -7 (-15 -1596 ((-262) (-1073))) (-15 -1596 ((-262) (-583 (-1073)))) (-15 -1596 ((-262) (-1073) (-1073))) (-15 -1596 ((-262) (-1073) (-583 (-1073)))))) (T -252))
+((-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-262)) (-5 *1 (-252)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))))
+((-1600 (((-583 (-550 $)) $) 27 T ELT)) (-1604 (($ $ (-249 $)) 78 T ELT) (($ $ (-583 (-249 $))) 140 T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3158 (((-3 (-550 $) #1="failed") $) 128 T ELT)) (-3157 (((-550 $) $) 127 T ELT)) (-2574 (($ $) 17 T ELT) (($ (-583 $)) 54 T ELT)) (-1599 (((-583 (-86)) $) 35 T ELT)) (-3596 (((-86) (-86)) 89 T ELT)) (-2674 (((-85) $) 151 T ELT)) (-3959 (($ (-1 $ $) (-550 $)) 87 T ELT)) (-1602 (((-3 (-550 $) #1#) $) 95 T ELT)) (-2235 (($ (-86) $) 59 T ELT) (($ (-86) (-583 $)) 111 T ELT)) (-2634 (((-85) $ (-86)) 133 T ELT) (((-85) $ (-1090)) 132 T ELT)) (-2604 (((-694) $) 44 T ELT)) (-1598 (((-85) $ $) 57 T ELT) (((-85) $ (-1090)) 49 T ELT)) (-2675 (((-85) $) 149 T ELT)) (-3769 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) 138 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 81 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) 67 T ELT) (($ $ (-1090) (-1 $ $)) 72 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 80 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 83 T ELT) (($ $ (-86) (-1 $ (-583 $))) 68 T ELT) (($ $ (-86) (-1 $ $)) 74 T ELT)) (-3801 (($ (-86) $) 60 T ELT) (($ (-86) $ $) 61 T ELT) (($ (-86) $ $ $) 62 T ELT) (($ (-86) $ $ $ $) 63 T ELT) (($ (-86) (-583 $)) 124 T ELT)) (-1603 (($ $) 51 T ELT) (($ $ $) 136 T ELT)) (-2591 (($ $) 15 T ELT) (($ (-583 $)) 53 T ELT)) (-2254 (((-85) (-86)) 21 T ELT)))
+(((-253 |#1|) (-10 -7 (-15 -2674 ((-85) |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3769 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1090) (-1 |#1| (-583 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| |#1|)))) (-15 -1598 ((-85) |#1| (-1090))) (-15 -1598 ((-85) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#1| |#1|) (-550 |#1|))) (-15 -2235 (|#1| (-86) (-583 |#1|))) (-15 -2235 (|#1| (-86) |#1|)) (-15 -2634 ((-85) |#1| (-1090))) (-15 -2634 ((-85) |#1| (-86))) (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1599 ((-583 (-86)) |#1|)) (-15 -1600 ((-583 (-550 |#1|)) |#1|)) (-15 -1602 ((-3 (-550 |#1|) #1="failed") |#1|)) (-15 -2604 ((-694) |#1|)) (-15 -1603 (|#1| |#1| |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -2574 (|#1| (-583 |#1|))) (-15 -2574 (|#1| |#1|)) (-15 -2591 (|#1| (-583 |#1|))) (-15 -2591 (|#1| |#1|)) (-15 -1604 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1604 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-583 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3769 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3158 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3157 ((-550 |#1|) |#1|))) (-254)) (T -253))
+((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-1600 (((-583 (-550 $)) $) 42 T ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3158 (((-3 (-550 $) "failed") $) 67 T ELT)) (-3157 (((-550 $) $) 68 T ELT)) (-2574 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1599 (((-583 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2674 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-1597 (((-1085 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2604 (((-694) $) 45 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-2675 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3186 (($ $) 22 (|has| $ (-961)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT)) (-2591 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-254) (-113)) (T -254))
-((-3802 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254)))) (-1605 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-2592 (*1 *1 *1) (-4 *1 (-254))) (-2592 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-2575 (*1 *1 *1) (-4 *1 (-254))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1) (-4 *1 (-254))) (-1604 (*1 *1 *1 *1) (-4 *1 (-254))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695)))) (-1603 (*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))) (-3597 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2255 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-2236 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254)))) (-3960 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254)))) (-1599 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1599 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1)))) (-3187 (*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85)))))
-(-13 (-1014) (-951 (-551 $)) (-456 (-551 $) $) (-260 $) (-10 -8 (-15 -3802 ($ (-86) $)) (-15 -3802 ($ (-86) $ $)) (-15 -3802 ($ (-86) $ $ $)) (-15 -3802 ($ (-86) $ $ $ $)) (-15 -3802 ($ (-86) (-584 $))) (-15 -1605 ($ $ (-249 $))) (-15 -1605 ($ $ (-584 (-249 $)))) (-15 -1605 ($ $ (-584 (-551 $)) (-584 $))) (-15 -2592 ($ $)) (-15 -2592 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -1604 ($ $)) (-15 -1604 ($ $ $)) (-15 -2605 ((-695) $)) (-15 -1603 ((-3 (-551 $) "failed") $)) (-15 -1602 ((-584 (-551 $)) $)) (-15 -1601 ((-584 (-551 $)) $)) (-15 -1600 ((-584 (-86)) $)) (-15 -3597 ((-86) (-86))) (-15 -2255 ((-85) (-86))) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (-15 -2236 ($ (-86) $)) (-15 -2236 ($ (-86) (-584 $))) (-15 -3960 ($ (-1 $ $) (-551 $))) (-15 -1599 ((-85) $ $)) (-15 -1599 ((-85) $ (-1091))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-1091) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-1091) (-1 $ $))) (-15 -3770 ($ $ (-584 (-86)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-86)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-86) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-962)) (PROGN (-15 -1598 ((-1086 $) (-551 $))) (-15 -3187 ($ $))) |%noBranch|) (IF (|has| $ (-951 (-485))) (PROGN (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $))) |%noBranch|)))
-(((-72) . T) ((-556 (-551 $)) . T) ((-553 (-773)) . T) ((-260 $) . T) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-13) . T) ((-951 (-551 $)) . T) ((-1014) . T) ((-1130) . T))
-((-3960 ((|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)) 18 T ELT)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3960 (|#2| (-1 |#2| |#1|) (-1074) (-551 |#1|)))) (-254) (-1130)) (T -255))
-((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254)) (-4 *2 (-1130)) (-5 *1 (-255 *6 *2)))))
-((-3960 ((|#2| (-1 |#2| |#1|) (-551 |#1|)) 17 T ELT)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -3960 (|#2| (-1 |#2| |#1|) (-551 |#1|)))) (-254) (-254)) (T -256))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))))
-((-1609 (((-85) $ $) 14 T ELT)) (-2566 (($ $ $) 18 T ELT)) (-2565 (($ $ $) 17 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 50 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 67 T ELT)) (-3146 (($ $ $) 25 T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3468 (((-3 $ #1#) $ $) 21 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 55 T ELT)))
-(((-257 |#1|) (-10 -7 (-15 -1606 ((-3 (-584 |#1|) #1="failed") (-584 |#1|) |#1|)) (-15 -1607 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1607 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2566 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -1609 ((-85) |#1| |#1|)) (-15 -2742 ((-633 (-584 |#1|)) (-584 |#1|) |#1|)) (-15 -2743 ((-2 (|:| -3956 (-584 |#1|)) (|:| -2410 |#1|)) (-584 |#1|))) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) "failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-3801 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254)))) (-1604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-2591 (*1 *1 *1) (-4 *1 (-254))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-2574 (*1 *1 *1) (-4 *1 (-254))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254)))) (-1603 (*1 *1 *1) (-4 *1 (-254))) (-1603 (*1 *1 *1 *1) (-4 *1 (-254))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694)))) (-1602 (*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))) (-3596 (*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2254 (*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-2235 (*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86)))) (-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254)))) (-1598 (*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))) (-1598 (*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1085 *1)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85)))))
+(-13 (-1013) (-950 (-550 $)) (-455 (-550 $) $) (-260 $) (-10 -8 (-15 -3801 ($ (-86) $)) (-15 -3801 ($ (-86) $ $)) (-15 -3801 ($ (-86) $ $ $)) (-15 -3801 ($ (-86) $ $ $ $)) (-15 -3801 ($ (-86) (-583 $))) (-15 -1604 ($ $ (-249 $))) (-15 -1604 ($ $ (-583 (-249 $)))) (-15 -1604 ($ $ (-583 (-550 $)) (-583 $))) (-15 -2591 ($ $)) (-15 -2591 ($ (-583 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-583 $))) (-15 -1603 ($ $)) (-15 -1603 ($ $ $)) (-15 -2604 ((-694) $)) (-15 -1602 ((-3 (-550 $) "failed") $)) (-15 -1601 ((-583 (-550 $)) $)) (-15 -1600 ((-583 (-550 $)) $)) (-15 -1599 ((-583 (-86)) $)) (-15 -3596 ((-86) (-86))) (-15 -2254 ((-85) (-86))) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1090))) (-15 -2235 ($ (-86) $)) (-15 -2235 ($ (-86) (-583 $))) (-15 -3959 ($ (-1 $ $) (-550 $))) (-15 -1598 ((-85) $ $)) (-15 -1598 ((-85) $ (-1090))) (-15 -3769 ($ $ (-583 (-1090)) (-583 (-1 $ $)))) (-15 -3769 ($ $ (-583 (-1090)) (-583 (-1 $ (-583 $))))) (-15 -3769 ($ $ (-1090) (-1 $ (-583 $)))) (-15 -3769 ($ $ (-1090) (-1 $ $))) (-15 -3769 ($ $ (-583 (-86)) (-583 (-1 $ $)))) (-15 -3769 ($ $ (-583 (-86)) (-583 (-1 $ (-583 $))))) (-15 -3769 ($ $ (-86) (-1 $ (-583 $)))) (-15 -3769 ($ $ (-86) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1597 ((-1085 $) (-550 $))) (-15 -3186 ($ $))) |%noBranch|) (IF (|has| $ (-950 (-484))) (PROGN (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $))) |%noBranch|)))
+(((-72) . T) ((-555 (-550 $)) . T) ((-552 (-772)) . T) ((-260 $) . T) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-13) . T) ((-950 (-550 $)) . T) ((-1013) . T) ((-1129) . T))
+((-3959 ((|#2| (-1 |#2| |#1|) (-1073) (-550 |#1|)) 18 T ELT)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-1073) (-550 |#1|)))) (-254) (-1129)) (T -255))
+((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-550 *6)) (-4 *6 (-254)) (-4 *2 (-1129)) (-5 *1 (-255 *6 *2)))))
+((-3959 ((|#2| (-1 |#2| |#1|) (-550 |#1|)) 17 T ELT)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -3959 (|#2| (-1 |#2| |#1|) (-550 |#1|)))) (-254) (-254)) (T -256))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254)) (-5 *1 (-256 *5 *2)))))
+((-1608 (((-85) $ $) 14 T ELT)) (-2565 (($ $ $) 18 T ELT)) (-2564 (($ $ $) 17 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 50 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 67 T ELT)) (-3145 (($ $ $) 25 T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3467 (((-3 $ #1#) $ $) 21 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 55 T ELT)))
+(((-257 |#1|) (-10 -7 (-15 -1605 ((-3 (-583 |#1|) #1="failed") (-583 |#1|) |#1|)) (-15 -1606 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1606 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2565 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| |#1|)) (-15 -1608 ((-85) |#1| |#1|)) (-15 -2741 ((-632 (-583 |#1|)) (-583 |#1|) |#1|)) (-15 -2742 ((-2 (|:| -3955 (-583 |#1|)) (|:| -2409 |#1|)) (-583 |#1|))) (-15 -3145 (|#1| (-583 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|))) (-258)) (T -257))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) "failed") (-583 $) $) 68 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-258) (-113)) (T -258))
-((-1609 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-258)))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-2566 (*1 *1 *1 *1) (-4 *1 (-258))) (-1607 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-258)))) (-1607 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258)))))
-(-13 (-833) (-10 -8 (-15 -1609 ((-85) $ $)) (-15 -1608 ((-695) $)) (-15 -2881 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -1607 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -1607 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1606 ((-3 (-584 $) "failed") (-584 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3770 (($ $ (-584 |#2|) (-584 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-584 (-249 |#2|))) NIL T ELT)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -3770 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|)))) (-260 |#2|) (-1014)) (T -259))
-NIL
-((-3770 (($ $ (-584 |#1|) (-584 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-584 (-249 |#1|))) 12 T ELT)))
-(((-260 |#1|) (-113) (-1014)) (T -260))
-((-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014)))))
-(-13 (-456 |t#1| |t#1|) (-10 -8 (-15 -3770 ($ $ (-249 |t#1|))) (-15 -3770 ($ $ (-584 (-249 |t#1|))))))
-(((-456 |#1| |#1|) . T))
-((-3770 ((|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))) 26 T ELT)))
-(((-261 |#1|) (-10 -7 (-15 -3770 (|#1| (-1 |#1| (-485)) (-1093 (-350 (-485)))))) (-38 (-350 (-485)))) (T -261))
-((-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-485)))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT)))
-(((-262) (-1014)) (T -262))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3508 (((-485) $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-263) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3508 ((-485) $))))) (T -263))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 60 T ELT)) (-3131 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1167 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3158 (((-1167 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1091) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-485))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-1167 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3447 (((-633 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3960 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3786 (((-3 (-751 |#2|) #1#) $) 80 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1180 (-1167 |#1| |#2| |#3| |#4|)))) (-1180 $) $) NIL T ELT) (((-631 (-1167 |#1| |#2| |#3| |#4|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3132 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-1167 |#1| |#2| |#3| |#4|)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-249 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-260 (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-584 (-1091)) (-584 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1091) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-456 (-1091) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-241 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1167 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT) (((-179) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-951 (-1091))) ELT) (($ (-1161 |#2| |#3| |#4|)) 37 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-822))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-757)) ELT)) (-3951 (($ $ $) 35 T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-1167 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL T ELT)))
-(((-264 |#1| |#2| |#3| |#4|) (-13 (-905 (-1167 |#1| |#2| |#3| |#4|)) (-951 (-1161 |#2| |#3| |#4|)) (-10 -8 (-15 -3786 ((-3 (-751 |#2|) "failed") $)) (-15 -3948 ($ (-1161 |#2| |#3| |#4|))))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -264))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4) (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-1217 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3190 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3083 (((-584 (-1091)) $) 365 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) NIL (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) NIL T ELT)) (-3494 (($ $) 170 (|has| |#1| (-496)) ELT)) (-3641 (($ $) 146 (|has| |#1| (-496)) ELT)) (-1373 (($ $ (-1005 $)) 231 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 227 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) 383 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 438 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3492 (($ $) 166 (|has| |#1| (-496)) ELT)) (-3640 (($ $) 142 (|has| |#1| (-496)) ELT)) (-1610 (($ $ (-485)) 68 (|has| |#1| (-496)) ELT)) (-3496 (($ $) 174 (|has| |#1| (-496)) ELT)) (-3639 (($ $) 150 (|has| |#1| (-496)) ELT)) (-3726 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) (|has| |#1| (-1026))) CONST)) (-1218 (((-584 $) $ (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) $) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $) (-1091)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-1086 $)) NIL (|has| |#1| (-496)) ELT) (((-584 $) (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3185 (($ $ (-1091)) NIL (|has| |#1| (-496)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-1086 $) (-1091)) 133 (|has| |#1| (-496)) ELT) (($ (-1086 $)) NIL (|has| |#1| (-496)) ELT) (($ (-858 $)) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 (-551 $) #1#) $) 18 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-858 |#1|)) #1#) $) NIL (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) NIL (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 48 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-551 $) $) 12 T ELT) (((-1091) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-858 |#1|)) $) NIL (|has| |#1| (-496)) ELT) (((-858 |#1|) $) NIL (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 316 (OR (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2280 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 124 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 114 (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-3844 (($ $) 95 (|has| |#1| (-496)) ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3946 (($ $ (-1005 $)) 235 (|has| |#1| (-496)) ELT) (($ $ (-1091)) 233 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-496)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3388 (($ $ $) 201 (|has| |#1| (-496)) ELT)) (-3629 (($) 136 (|has| |#1| (-496)) ELT)) (-1370 (($ $ $) 221 (|has| |#1| (-496)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 389 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 396 (|has| |#1| (-797 (-330))) ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) 275 T ELT)) (-2411 (((-85) $) 27 (|has| |#1| (-1026)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 73 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 90 (|has| |#1| (-962)) ELT)) (-1611 (((-85) $) 49 (|has| |#1| (-496)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-496)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 276 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 434 T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-3944 (($ $) 140 (|has| |#1| (-496)) ELT)) (-2258 (($ $) 246 (|has| |#1| (-496)) ELT)) (-2281 (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#1| (-962)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) 51 T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) 439 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) NIL (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) NIL (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) NIL (|has| |#1| (-962)) ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) 53 T ELT)) (-2486 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2834 (($ $ (-1091)) 250 (|has| |#1| (-496)) ELT) (($ $ (-1005 $)) 252 (|has| |#1| (-496)) ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 45 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 298 (|has| |#1| (-496)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-1374 (($ $ (-1091)) 225 (|has| |#1| (-496)) ELT) (($ $) 223 (|has| |#1| (-496)) ELT)) (-1368 (($ $) 217 (|has| |#1| (-496)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-496))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) 138 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 433 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 376 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-554 (-474))) ELT) (($ $) NIL (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 363 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 362 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) NIL (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-496)) ELT)) (-2256 (($ $) 238 (|has| |#1| (-496)) ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2257 (($ $) 248 (|has| |#1| (-496)) ELT)) (-3387 (($ $) 199 (|has| |#1| (-496)) ELT)) (-3760 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2997 (($ $) 74 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 92 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 314 (|has| $ (-962)) ELT)) (-3497 (($ $) 176 (|has| |#1| (-496)) ELT)) (-3638 (($ $) 152 (|has| |#1| (-496)) ELT)) (-3495 (($ $) 172 (|has| |#1| (-496)) ELT)) (-3637 (($ $) 148 (|has| |#1| (-496)) ELT)) (-3493 (($ $) 168 (|has| |#1| (-496)) ELT)) (-3636 (($ $) 144 (|has| |#1| (-496)) ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-496)) ELT) (((-474) $) 360 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 432 T ELT) (($ (-551 $)) 423 T ELT) (($ (-1091)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485)))) ELT) (($ (-1040 |#1| (-551 $))) 94 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) NIL (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) NIL (|has| |#1| (-962)) ELT) (($ (-485)) 36 (OR (|has| |#1| (-951 (-485))) (|has| |#1| (-962))) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-496)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL (|has| |#1| (-962)) CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3103 (($ $ $) 219 (|has| |#1| (-496)) ELT)) (-3391 (($ $ $) 205 (|has| |#1| (-496)) ELT)) (-3393 (($ $ $) 209 (|has| |#1| (-496)) ELT)) (-3390 (($ $ $) 203 (|has| |#1| (-496)) ELT)) (-3392 (($ $ $) 207 (|has| |#1| (-496)) ELT)) (-2255 (((-85) (-86)) 10 T ELT)) (-1266 (((-85) $ $) 85 T ELT)) (-3500 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3488 (($ $) 158 (|has| |#1| (-496)) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 178 (|has| |#1| (-496)) ELT)) (-3486 (($ $) 154 (|has| |#1| (-496)) ELT)) (-3502 (($ $) 186 (|has| |#1| (-496)) ELT)) (-3490 (($ $) 162 (|has| |#1| (-496)) ELT)) (-1799 (($ (-1091) $) NIL T ELT) (($ (-1091) $ $) NIL T ELT) (($ (-1091) $ $ $) NIL T ELT) (($ (-1091) $ $ $ $) NIL T ELT) (($ (-1091) (-584 $)) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-962)) ELT)) (-3395 (($ $) 213 (|has| |#1| (-496)) ELT)) (-3394 (($ $) 211 (|has| |#1| (-496)) ELT)) (-3503 (($ $) 188 (|has| |#1| (-496)) ELT)) (-3491 (($ $) 164 (|has| |#1| (-496)) ELT)) (-3501 (($ $) 184 (|has| |#1| (-496)) ELT)) (-3489 (($ $) 160 (|has| |#1| (-496)) ELT)) (-3499 (($ $) 180 (|has| |#1| (-496)) ELT)) (-3487 (($ $) 156 (|has| |#1| (-496)) ELT)) (-3385 (($ $) 191 (|has| |#1| (-496)) ELT)) (-2662 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) CONST)) (-2260 (($ $) 242 (|has| |#1| (-496)) ELT)) (-2668 (($) 25 (|has| |#1| (-1026)) CONST)) (-3389 (($ $) 193 (|has| |#1| (-496)) ELT) (($ $ $) 195 (|has| |#1| (-496)) ELT)) (-2261 (($ $) 240 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-1091)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-962)) ELT)) (-2259 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3386 (($ $ $) 197 (|has| |#1| (-496)) ELT)) (-3058 (((-85) $ $) 87 T ELT)) (-3951 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 105 (|has| |#1| (-496)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3839 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (-3841 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 311 (|has| |#1| (-496)) ELT) (($ $ (-485)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 75 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 83 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) NIL (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-496)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-962)) ELT) (($ $ $) 38 (|has| |#1| (-1026)) ELT) (($ (-485) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-695) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT) (($ (-831) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962)))) ELT)))
-(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-496)) (PROGN (-6 (-29 |#1|)) (-6 (-1116)) (-6 (-133)) (-6 (-570)) (-6 (-1054)) (-15 -3844 ($ $)) (-15 -1611 ((-85) $)) (-15 -1610 ($ $ (-485))) (IF (|has| |#1| (-392)) (PROGN (-15 -2708 ((-348 (-1086 $)) (-1086 $))) (-15 -2709 ((-348 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-951 (-485))) (-6 (-951 (-48))) |%noBranch|)) |%noBranch|))) (-1014)) (T -265))
-((-3844 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-1610 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014)))))
-((-3960 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT)))
-(((-266 |#1| |#2|) (-10 -7 (-15 -3960 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1014) (-1014)) (T -266))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))))
-((-3731 (((-51) |#2| (-249 |#2|) (-695)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-695)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1091)) 26 T ELT)) (-3820 (((-51) |#2| (-249 |#2|) (-350 (-485))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-485))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1091)) 55 T ELT)) (-3784 (((-51) |#2| (-249 |#2|) (-350 (-485))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-485))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1091)) 50 T ELT)) (-3781 (((-51) |#2| (-249 |#2|) (-485)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-485)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1091)) 43 T ELT)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -3731 ((-51) (-1091))) (-15 -3731 ((-51) |#2|)) (-15 -3731 ((-51) |#2| (-695))) (-15 -3731 ((-51) |#2| (-249 |#2|))) (-15 -3731 ((-51) |#2| (-249 |#2|) (-695))) (-15 -3781 ((-51) (-1091))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-485))) (-15 -3781 ((-51) |#2| (-249 |#2|))) (-15 -3781 ((-51) |#2| (-249 |#2|) (-485))) (-15 -3784 ((-51) (-1091))) (-15 -3784 ((-51) |#2|)) (-15 -3784 ((-51) |#2| (-350 (-485)))) (-15 -3784 ((-51) |#2| (-249 |#2|))) (-15 -3784 ((-51) |#2| (-249 |#2|) (-350 (-485)))) (-15 -3820 ((-51) (-1091))) (-15 -3820 ((-51) |#2|)) (-15 -3820 ((-51) |#2| (-350 (-485)))) (-15 -3820 ((-51) |#2| (-249 |#2|))) (-15 -3820 ((-51) |#2| (-249 |#2|) (-350 (-485))))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -267))
-((-3820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3820 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3784 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3784 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4))))))
-((-1612 (((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 81 T ELT) (((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 83 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|)) 84 T ELT) (((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-584 (-249 |#2|)) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 |#2|))) (-15 -1612 ((-51) (-584 |#2|) (-584 (-86)) (-249 |#2|) (-584 (-249 |#2|)))) (-15 -1612 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1612 ((-51) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-496) (-554 (-474))) (-364 |#1|)) (T -268))
-((-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1612 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1612 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1612 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))))
-((-1614 (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074)) 67 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485)) 68 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074)) 64 T ELT) (((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485)) 65 T ELT)) (-1613 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
-(((-269) (-10 -7 (-15 -1613 ((-1 (-179) (-179)) (-179))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-1 (-179) (-179)) (-485) (-1074))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485))) (-15 -1614 ((-1126 (-839)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-179) (-485) (-1074))))) (T -269))
-((-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1614 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269)))) (-1613 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 26 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 20 T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 36 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1615 (((-350 (-485)) $) 17 T ELT)) (-3092 (($ (-1161 |#1| |#2| |#3|)) 11 T ELT)) (-2402 (((-1161 |#1| |#2| |#3|) $) 12 T ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 10 T ELT)) (-3948 (((-773) $) 42 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 34 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 28 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 37 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-270 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-717) (-10 -8 (-15 -3092 ($ (-1161 |#1| |#2| |#3|))) (-15 -2402 ((-1161 |#1| |#2| |#3|) $)) (-15 -1615 ((-350 (-485)) $)))) (-312) (-1091) |#1|) (T -270))
-((-3092 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3))))
-((-3013 (((-2 (|:| -2402 (-695)) (|:| -3956 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695)) 35 T ELT)) (-3944 (((-584 (-2 (|:| -3956 (-695)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT)))
-(((-271 |#1|) (-10 -7 (-15 -3013 ((-2 (|:| -2402 (-695)) (|:| -3956 |#1|) (|:| |radicand| (-584 |#1|))) (-348 |#1|) (-695))) (-15 -3944 ((-584 (-2 (|:| -3956 (-695)) (|:| |logand| |#1|))) (-348 |#1|)))) (-496)) (T -271))
-((-3944 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-496)) (-5 *2 (-584 (-2 (|:| -3956 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3013 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-496)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *5) (|:| |radicand| (-584 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-695)))))
-((-3083 (((-584 |#2|) (-1086 |#4|)) 45 T ELT)) (-1620 ((|#3| (-485)) 48 T ELT)) (-1618 (((-1086 |#4|) (-1086 |#3|)) 30 T ELT)) (-1619 (((-1086 |#4|) (-1086 |#4|) (-485)) 67 T ELT)) (-1617 (((-1086 |#3|) (-1086 |#4|)) 21 T ELT)) (-3950 (((-584 (-695)) (-1086 |#4|) (-584 |#2|)) 41 T ELT)) (-1616 (((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|)) 35 T ELT)))
-(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1616 ((-1086 |#3|) (-1086 |#4|) (-584 |#2|) (-584 |#3|))) (-15 -3950 ((-584 (-695)) (-1086 |#4|) (-584 |#2|))) (-15 -3083 ((-584 |#2|) (-1086 |#4|))) (-15 -1617 ((-1086 |#3|) (-1086 |#4|))) (-15 -1618 ((-1086 |#4|) (-1086 |#3|))) (-15 -1619 ((-1086 |#4|) (-1086 |#4|) (-485))) (-15 -1620 (|#3| (-485)))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|)) (T -272))
-((-1620 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))) (-1619 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757)) (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1616 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8)) (-5 *1 (-272 *6 *7 *8 *9)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $) 21 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-485) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-485) (-485)) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-485) (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3679 (((-485) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 30 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ (-485) |#1|) 28 T ELT)))
-(((-273 |#1|) (-13 (-21) (-655 (-485)) (-274 |#1| (-485)) (-10 -7 (IF (|has| |#1| (-757)) (-6 (-757)) |%noBranch|))) (-1014)) (T -273))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 34 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-695) $) 35 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 39 T ELT)) (-3158 ((|#1| $) 40 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2300 ((|#1| $ (-485)) 32 T ELT)) (-1623 ((|#2| $ (-485)) 33 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1621 (($ $ $) 28 (|has| |#2| (-717)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3679 ((|#2| |#1| $) 31 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
-(((-274 |#1| |#2|) (-113) (-1014) (-104)) (T -274))
-((-3841 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))))) (-1623 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014)))) (-3679 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104)))) (-1622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))) (-1621 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717)))))
-(-13 (-104) (-951 |t#1|) (-10 -8 (-15 -3841 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3138 ((-695) $)) (-15 -3776 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3945 |t#2|))) $)) (-15 -1623 (|t#2| $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -3679 (|t#2| |t#1| $)) (-15 -1622 ($ (-1 |t#2| |t#2|) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-717)) (-15 -1621 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-1623 (((-695) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1622 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) NIL (|has| (-695) (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3679 (((-695) |#1| $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-695) |#1|) NIL T ELT)))
-(((-275 |#1|) (-274 |#1| (-695)) (-1014)) (T -275))
-NIL
-((-3505 (($ $) 72 T ELT)) (-1625 (($ $ |#2| |#3| $) 14 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1801 (((-85) $) 42 T ELT)) (-1800 ((|#2| $) 44 T ELT)) (-3468 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2819 ((|#2| $) 68 T ELT)) (-3819 (((-584 |#2|) $) 56 T ELT)) (-1624 (($ $ $ (-695)) 37 T ELT)) (-3951 (($ $ |#2|) 60 T ELT)))
-(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3505 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1624 (|#1| |#1| |#1| (-695))) (-15 -1625 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1626 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3819 ((-584 |#2|) |#1|)) (-15 -1800 (|#2| |#1|)) (-15 -1801 ((-85) |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3951 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-962) (-717)) (T -276))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 107 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 105 T ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 97 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 100 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT)) (-2822 ((|#2| $) 99 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 103 T ELT)) (-1800 ((|#1| $) 102 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2819 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-485))) 77 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 101 T ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 96 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-277 |#1| |#2|) (-113) (-962) (-717)) (T -277))
-((-1801 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-1625 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))) (-1624 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *3 (-146)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-496)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392)))))
-(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1801 ((-85) $)) (-15 -1800 (|t#1| $)) (-15 -3819 ((-584 |t#1|) $)) (-15 -2421 ((-695) $)) (-15 -2822 (|t#2| $)) (-15 -1626 ($ (-1 |t#2| |t#2|) $)) (-15 -1625 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1624 ($ $ $ (-695))) |%noBranch|) (IF (|has| |t#1| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3505 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-355 |#1|) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) NIL T ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1988 (($ $ (-485)) NIL T ELT)) (-1989 (((-695) $) NIL T ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130)) (T -278))
-((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130)))))
-((-3934 (((-85) $) 47 T ELT)) (-3931 (((-695)) 23 T ELT)) (-3332 ((|#2| $) 51 T ELT) (($ $ (-831)) 123 T ELT)) (-3138 (((-695)) 124 T ELT)) (-1796 (($ (-1180 |#2|)) 20 T ELT)) (-2012 (((-85) $) 136 T ELT)) (-3134 ((|#2| $) 53 T ELT) (($ $ (-831)) 120 T ELT)) (-2015 (((-1086 |#2|) $) NIL T ELT) (((-1086 $) $ (-831)) 111 T ELT)) (-1628 (((-1086 |#2|) $) 95 T ELT)) (-1627 (((-1086 |#2|) $) 91 T ELT) (((-3 (-1086 |#2|) "failed") $ $) 88 T ELT)) (-1629 (($ $ (-1086 |#2|)) 58 T ELT)) (-3932 (((-744 (-831))) 30 T ELT) (((-831)) 48 T ELT)) (-3913 (((-107)) 27 T ELT)) (-3950 (((-744 (-831)) $) 32 T ELT) (((-831) $) 139 T ELT)) (-1630 (($) 130 T ELT)) (-3226 (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $)) 42 T ELT)) (-2704 (($ $) NIL T ELT) (((-633 $) $) 100 T ELT)) (-3935 (((-85) $) 45 T ELT)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -2704 ((-633 |#1|) |#1|)) (-15 -3138 ((-695))) (-15 -2704 (|#1| |#1|)) (-15 -1627 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -1627 ((-1086 |#2|) |#1|)) (-15 -1628 ((-1086 |#2|) |#1|)) (-15 -1629 (|#1| |#1| (-1086 |#2|))) (-15 -2012 ((-85) |#1|)) (-15 -1630 (|#1|)) (-15 -3332 (|#1| |#1| (-831))) (-15 -3134 (|#1| |#1| (-831))) (-15 -2015 ((-1086 |#1|) |#1| (-831))) (-15 -3332 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3950 ((-831) |#1|)) (-15 -3932 ((-831))) (-15 -2015 ((-1086 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -3931 ((-695))) (-15 -3932 ((-744 (-831)))) (-15 -3950 ((-744 (-831)) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3935 ((-85) |#1|)) (-15 -3913 ((-107)))) (-280 |#2|) (-312)) (T -279))
-((-3913 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3932 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3932 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3138 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3934 (((-85) $) 114 T ELT)) (-3931 (((-695)) 110 T ELT)) (-3332 ((|#1| $) 162 T ELT) (($ $ (-831)) 159 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 144 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-695)) 134 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-1796 (($ (-1180 |#1|)) 168 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 131 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2835 (($) 146 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-831) $) 149 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 163 T ELT) (($ $ (-831)) 160 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) 135 (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2015 (((-1086 |#1|) $) 167 T ELT) (((-1086 $) $ (-831)) 161 (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 132 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 136 (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 133 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 113 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 155 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 143 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-3932 (((-744 (-831))) 111 T ELT) (((-831)) 165 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-695) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) 119 T ELT)) (-3760 (($ $ (-695)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) 112 T ELT) (((-831) $) 164 T ELT)) (-3187 (((-1086 |#1|)) 166 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) 158 (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 170 T ELT) (((-631 |#1|) (-1180 $)) 169 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 142 (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (($ $) 141 (|has| |#1| (-320)) ELT) (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 172 T ELT) (((-1180 $) (-831)) 171 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3935 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3930 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
+((-1608 (*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))) (-1607 (*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-258)))) (-2564 (*1 *1 *1 *1) (-4 *1 (-258))) (-2565 (*1 *1 *1 *1) (-4 *1 (-258))) (-1606 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-258)))) (-1606 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-258)))) (-1605 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258)))))
+(-13 (-832) (-10 -8 (-15 -1608 ((-85) $ $)) (-15 -1607 ((-694) $)) (-15 -2880 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -1606 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -1606 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1605 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3769 (($ $ (-583 |#2|) (-583 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-249 |#2|)) 11 T ELT) (($ $ (-583 (-249 |#2|))) NIL T ELT)))
+(((-259 |#1| |#2|) (-10 -7 (-15 -3769 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-260 |#2|) (-1013)) (T -259))
+NIL
+((-3769 (($ $ (-583 |#1|) (-583 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-249 |#1|)) 13 T ELT) (($ $ (-583 (-249 |#1|))) 12 T ELT)))
+(((-260 |#1|) (-113) (-1013)) (T -260))
+((-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013)))))
+(-13 (-455 |t#1| |t#1|) (-10 -8 (-15 -3769 ($ $ (-249 |t#1|))) (-15 -3769 ($ $ (-583 (-249 |t#1|))))))
+(((-455 |#1| |#1|) . T))
+((-3769 ((|#1| (-1 |#1| (-484)) (-1092 (-350 (-484)))) 26 T ELT)))
+(((-261 |#1|) (-10 -7 (-15 -3769 (|#1| (-1 |#1| (-484)) (-1092 (-350 (-484)))))) (-38 (-350 (-484)))) (T -261))
+((-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1092 (-350 (-484)))) (-5 *1 (-261 *2)) (-4 *2 (-38 (-350 (-484)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-262) (-1013)) (T -262))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3507 (((-484) $) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 10 T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-263) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3507 ((-484) $))))) (T -263))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-3130 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1166 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3157 (((-1166 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1090) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-484))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-1166 |#1| |#2| |#3| |#4|)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-1166 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3446 (((-632 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3959 (($ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-750 |#2|) #1#) $) 80 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-1166 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1179 (-1166 |#1| |#2| |#3| |#4|)))) (-1179 $) $) NIL T ELT) (((-630 (-1166 |#1| |#2| |#3| |#4|)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-258)) ELT)) (-3131 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-1166 |#1| |#2| |#3| |#4|)) (-583 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-249 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-249 (-1166 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-260 (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-583 (-1090)) (-583 (-1166 |#1| |#2| |#3| |#4|))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1090) (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-455 (-1090) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-241 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-1166 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-933)) ELT) (((-179) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-950 (-1090))) ELT) (($ (-1160 |#2| |#3| |#4|)) 37 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1166 |#1| |#2| |#3| |#4|) (-821))) (|has| (-1166 |#1| |#2| |#3| |#4|) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-1166 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-1166 |#1| |#2| |#3| |#4|) (-756)) ELT)) (-3950 (($ $ $) 35 T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) (-1166 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-1166 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1166 |#1| |#2| |#3| |#4|)) NIL T ELT)))
+(((-264 |#1| |#2| |#3| |#4|) (-13 (-904 (-1166 |#1| |#2| |#3| |#4|)) (-950 (-1160 |#2| |#3| |#4|)) (-10 -8 (-15 -3785 ((-3 (-750 |#2|) "failed") $)) (-15 -3947 ($ (-1160 |#2| |#3| |#4|))))) (-13 (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -264))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4) (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *1 (-264 *3 *4 *5 *6)))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) $ (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-1216 (($ $ (-1090)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3189 (((-85) $) 29 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3082 (((-583 (-1090)) $) 365 T ELT)) (-3084 (((-350 (-1085 $)) $ (-550 $)) NIL (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1600 (((-583 (-550 $)) $) NIL T ELT)) (-3493 (($ $) 170 (|has| |#1| (-495)) ELT)) (-3640 (($ $) 146 (|has| |#1| (-495)) ELT)) (-1372 (($ $ (-1004 $)) 231 (|has| |#1| (-495)) ELT) (($ $ (-1090)) 227 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) 383 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 438 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 305 (-12 (|has| |#1| (-392)) (|has| |#1| (-495))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-495)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-495)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3491 (($ $) 166 (|has| |#1| (-495)) ELT)) (-3639 (($ $) 142 (|has| |#1| (-495)) ELT)) (-1609 (($ $ (-484)) 68 (|has| |#1| (-495)) ELT)) (-3495 (($ $) 174 (|has| |#1| (-495)) ELT)) (-3638 (($ $) 150 (|has| |#1| (-495)) ELT)) (-3725 (($) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) (|has| |#1| (-1025))) CONST)) (-1217 (((-583 $) $ (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) $) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $) (-1090)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-1085 $)) NIL (|has| |#1| (-495)) ELT) (((-583 $) (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3184 (($ $ (-1090)) NIL (|has| |#1| (-495)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-1085 $) (-1090)) 133 (|has| |#1| (-495)) ELT) (($ (-1085 $)) NIL (|has| |#1| (-495)) ELT) (($ (-857 $)) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 (-550 $) #1#) $) 18 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 450 T ELT) (((-3 (-48) #1#) $) 333 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-857 |#1|)) #1#) $) NIL (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) NIL (|has| |#1| (-961)) ELT) (((-3 (-350 (-484)) #1#) $) 48 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3157 (((-550 $) $) 12 T ELT) (((-1090) $) NIL T ELT) ((|#1| $) 429 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-857 |#1|)) $) NIL (|has| |#1| (-495)) ELT) (((-857 |#1|) $) NIL (|has| |#1| (-961)) ELT) (((-350 (-484)) $) 316 (OR (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2279 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 124 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 114 (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-3843 (($ $) 95 (|has| |#1| (-495)) ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3945 (($ $ (-1004 $)) 235 (|has| |#1| (-495)) ELT) (($ $ (-1090)) 233 (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-495)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3387 (($ $ $) 201 (|has| |#1| (-495)) ELT)) (-3628 (($) 136 (|has| |#1| (-495)) ELT)) (-1369 (($ $ $) 221 (|has| |#1| (-495)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 389 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 396 (|has| |#1| (-796 (-330))) ELT)) (-2574 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) 275 T ELT)) (-2410 (((-85) $) 27 (|has| |#1| (-1025)) ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2997 (($ $) 73 (|has| |#1| (-961)) ELT)) (-2999 (((-1039 |#1| (-550 $)) $) 90 (|has| |#1| (-961)) ELT)) (-1610 (((-85) $) 49 (|has| |#1| (-495)) ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-495)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-1597 (((-1085 $) (-550 $)) 276 (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) 434 T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-3943 (($ $) 140 (|has| |#1| (-495)) ELT)) (-2257 (($ $) 246 (|has| |#1| (-495)) ELT)) (-2280 (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#1| (-961)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) 51 T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) 439 T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL (|has| |#1| (-1025)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-961)) ELT)) (-2823 (((-3 (-583 $) #1#) $) 444 (|has| |#1| (-25)) ELT)) (-1797 (((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 $))) #1#) $) 448 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) NIL (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) NIL (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1090)) NIL (|has| |#1| (-961)) ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) 53 T ELT)) (-2485 (($ $) NIL (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-2833 (($ $ (-1090)) 250 (|has| |#1| (-495)) ELT) (($ $ (-1004 $)) 252 (|has| |#1| (-495)) ELT)) (-2604 (((-694) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) 45 T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 298 (|has| |#1| (-495)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-1373 (($ $ (-1090)) 225 (|has| |#1| (-495)) ELT) (($ $) 223 (|has| |#1| (-495)) ELT)) (-1367 (($ $) 217 (|has| |#1| (-495)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 303 (-12 (|has| |#1| (-392)) (|has| |#1| (-495))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-495)) ELT)) (-3944 (($ $) 138 (|has| |#1| (-495)) ELT)) (-2675 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 433 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 376 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-553 (-473))) ELT) (($ $) NIL (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 363 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 362 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ $)) NIL (|has| |#1| (-961)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-495)) ELT)) (-2255 (($ $) 238 (|has| |#1| (-495)) ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2256 (($ $) 248 (|has| |#1| (-495)) ELT)) (-3386 (($ $) 199 (|has| |#1| (-495)) ELT)) (-3759 (($ $ (-1090)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2996 (($ $) 74 (|has| |#1| (-495)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 92 (|has| |#1| (-495)) ELT)) (-3186 (($ $) 314 (|has| $ (-961)) ELT)) (-3496 (($ $) 176 (|has| |#1| (-495)) ELT)) (-3637 (($ $) 152 (|has| |#1| (-495)) ELT)) (-3494 (($ $) 172 (|has| |#1| (-495)) ELT)) (-3636 (($ $) 148 (|has| |#1| (-495)) ELT)) (-3492 (($ $) 168 (|has| |#1| (-495)) ELT)) (-3635 (($ $) 144 (|has| |#1| (-495)) ELT)) (-3973 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (($ (-348 $)) NIL (|has| |#1| (-495)) ELT) (((-473) $) 360 (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) NIL (|has| |#1| (-413)) ELT)) (-3947 (((-772) $) 432 T ELT) (($ (-550 $)) 423 T ELT) (($ (-1090)) 378 T ELT) (($ |#1|) 334 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-48)) 309 (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484)))) ELT) (($ (-1039 |#1| (-550 $))) 94 (|has| |#1| (-961)) ELT) (($ (-350 |#1|)) NIL (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-857 |#1|))) NIL (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) NIL (|has| |#1| (-961)) ELT) (($ (-484)) 36 (OR (|has| |#1| (-950 (-484))) (|has| |#1| (-961))) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-495)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL (|has| |#1| (-961)) CONST)) (-2591 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3102 (($ $ $) 219 (|has| |#1| (-495)) ELT)) (-3390 (($ $ $) 205 (|has| |#1| (-495)) ELT)) (-3392 (($ $ $) 209 (|has| |#1| (-495)) ELT)) (-3389 (($ $ $) 203 (|has| |#1| (-495)) ELT)) (-3391 (($ $ $) 207 (|has| |#1| (-495)) ELT)) (-2254 (((-85) (-86)) 10 T ELT)) (-1265 (((-85) $ $) 85 T ELT)) (-3499 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3487 (($ $) 158 (|has| |#1| (-495)) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) 178 (|has| |#1| (-495)) ELT)) (-3485 (($ $) 154 (|has| |#1| (-495)) ELT)) (-3501 (($ $) 186 (|has| |#1| (-495)) ELT)) (-3489 (($ $) 162 (|has| |#1| (-495)) ELT)) (-1798 (($ (-1090) $) NIL T ELT) (($ (-1090) $ $) NIL T ELT) (($ (-1090) $ $ $) NIL T ELT) (($ (-1090) $ $ $ $) NIL T ELT) (($ (-1090) (-583 $)) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-961)) ELT)) (-3394 (($ $) 213 (|has| |#1| (-495)) ELT)) (-3393 (($ $) 211 (|has| |#1| (-495)) ELT)) (-3502 (($ $) 188 (|has| |#1| (-495)) ELT)) (-3490 (($ $) 164 (|has| |#1| (-495)) ELT)) (-3500 (($ $) 184 (|has| |#1| (-495)) ELT)) (-3488 (($ $) 160 (|has| |#1| (-495)) ELT)) (-3498 (($ $) 180 (|has| |#1| (-495)) ELT)) (-3486 (($ $) 156 (|has| |#1| (-495)) ELT)) (-3384 (($ $) 191 (|has| |#1| (-495)) ELT)) (-2661 (($) 23 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) CONST)) (-2259 (($ $) 242 (|has| |#1| (-495)) ELT)) (-2667 (($) 25 (|has| |#1| (-1025)) CONST)) (-3388 (($ $) 193 (|has| |#1| (-495)) ELT) (($ $ $) 195 (|has| |#1| (-495)) ELT)) (-2260 (($ $) 240 (|has| |#1| (-495)) ELT)) (-2670 (($ $ (-1090)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-961)) ELT)) (-2258 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3385 (($ $ $) 197 (|has| |#1| (-495)) ELT)) (-3057 (((-85) $ $) 87 T ELT)) (-3950 (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 105 (|has| |#1| (-495)) ELT) (($ $ $) 44 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-3838 (($ $ $) 42 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ $) 31 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (-3840 (($ $ $) 40 (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)) (** (($ $ $) 65 (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) 311 (|has| |#1| (-495)) ELT) (($ $ (-484)) 79 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 75 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 83 (|has| |#1| (-1025)) ELT)) (* (($ (-350 (-484)) $) NIL (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-495)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT) (($ |#1| $) NIL (|has| |#1| (-961)) ELT) (($ $ $) 38 (|has| |#1| (-1025)) ELT) (($ (-484) $) 34 (OR (|has| |#1| (-21)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-694) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT) (($ (-830) $) NIL (OR (|has| |#1| (-25)) (-12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961)))) ELT)))
+(((-265 |#1|) (-13 (-364 |#1|) (-10 -8 (IF (|has| |#1| (-495)) (PROGN (-6 (-29 |#1|)) (-6 (-1115)) (-6 (-133)) (-6 (-569)) (-6 (-1053)) (-15 -3843 ($ $)) (-15 -1610 ((-85) $)) (-15 -1609 ($ $ (-484))) (IF (|has| |#1| (-392)) (PROGN (-15 -2707 ((-348 (-1085 $)) (-1085 $))) (-15 -2708 ((-348 (-1085 $)) (-1085 $)))) |%noBranch|) (IF (|has| |#1| (-950 (-484))) (-6 (-950 (-48))) |%noBranch|)) |%noBranch|))) (-1013)) (T -265))
+((-3843 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-1609 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013)))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013)))))
+((-3959 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 13 T ELT)))
+(((-266 |#1| |#2|) (-10 -7 (-15 -3959 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1013) (-1013)) (T -266))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6)))))
+((-3730 (((-51) |#2| (-249 |#2|) (-694)) 40 T ELT) (((-51) |#2| (-249 |#2|)) 32 T ELT) (((-51) |#2| (-694)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1090)) 26 T ELT)) (-3819 (((-51) |#2| (-249 |#2|) (-350 (-484))) 59 T ELT) (((-51) |#2| (-249 |#2|)) 56 T ELT) (((-51) |#2| (-350 (-484))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1090)) 55 T ELT)) (-3783 (((-51) |#2| (-249 |#2|) (-350 (-484))) 54 T ELT) (((-51) |#2| (-249 |#2|)) 51 T ELT) (((-51) |#2| (-350 (-484))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1090)) 50 T ELT)) (-3780 (((-51) |#2| (-249 |#2|) (-484)) 47 T ELT) (((-51) |#2| (-249 |#2|)) 44 T ELT) (((-51) |#2| (-484)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1090)) 43 T ELT)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1090))) (-15 -3730 ((-51) |#2|)) (-15 -3730 ((-51) |#2| (-694))) (-15 -3730 ((-51) |#2| (-249 |#2|))) (-15 -3730 ((-51) |#2| (-249 |#2|) (-694))) (-15 -3780 ((-51) (-1090))) (-15 -3780 ((-51) |#2|)) (-15 -3780 ((-51) |#2| (-484))) (-15 -3780 ((-51) |#2| (-249 |#2|))) (-15 -3780 ((-51) |#2| (-249 |#2|) (-484))) (-15 -3783 ((-51) (-1090))) (-15 -3783 ((-51) |#2|)) (-15 -3783 ((-51) |#2| (-350 (-484)))) (-15 -3783 ((-51) |#2| (-249 |#2|))) (-15 -3783 ((-51) |#2| (-249 |#2|) (-350 (-484)))) (-15 -3819 ((-51) (-1090))) (-15 -3819 ((-51) |#2|)) (-15 -3819 ((-51) |#2| (-350 (-484)))) (-15 -3819 ((-51) |#2| (-249 |#2|))) (-15 -3819 ((-51) |#2| (-249 |#2|) (-350 (-484))))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -267))
+((-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3819 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3783 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3783 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3780 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-13 (-392) (-950 *4) (-580 *4))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3780 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3780 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-3730 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3730 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4))))))
+((-1611 (((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)) 89 T ELT) (((-51) |#2| (-86) (-249 |#2|) (-249 |#2|)) 85 T ELT) (((-51) |#2| (-86) (-249 |#2|) |#2|) 87 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|) 88 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 81 T ELT) (((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 83 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|)) 84 T ELT) (((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|))) 82 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 90 T ELT) (((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|)) 86 T ELT)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1611 ((-51) (-583 (-249 |#2|)) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 |#2|))) (-15 -1611 ((-51) (-583 |#2|) (-583 (-86)) (-249 |#2|) (-583 (-249 |#2|)))) (-15 -1611 ((-51) (-249 |#2|) (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) |#2|)) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-249 |#2|))) (-15 -1611 ((-51) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-495) (-553 (-473))) (-364 |#1|)) (T -268))
+((-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))) (-1611 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8))) (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8)) (-5 *6 (-583 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *8)))) (-1611 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7)))) (-1611 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5)) (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6)))))
+((-1613 (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1073)) 67 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484)) 68 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1073)) 64 T ELT) (((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484)) 65 T ELT)) (-1612 (((-1 (-179) (-179)) (-179)) 66 T ELT)))
+(((-269) (-10 -7 (-15 -1612 ((-1 (-179) (-179)) (-179))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-1 (-179) (-179)) (-484) (-1073))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484))) (-15 -1613 ((-1125 (-838)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-179) (-484) (-1073))))) (T -269))
+((-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *7 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1613 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269)))) (-1612 (*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 26 T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 20 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 36 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-484))) NIL T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1614 (((-350 (-484)) $) 17 T ELT)) (-3091 (($ (-1160 |#1| |#2| |#3|)) 11 T ELT)) (-2401 (((-1160 |#1| |#2| |#3|) $) 12 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3949 (((-350 (-484)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 10 T ELT)) (-3947 (((-772) $) 42 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) 34 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 28 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 37 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-270 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-716) (-10 -8 (-15 -3091 ($ (-1160 |#1| |#2| |#3|))) (-15 -2401 ((-1160 |#1| |#2| |#3|) $)) (-15 -1614 ((-350 (-484)) $)))) (-312) (-1090) |#1|) (T -270))
+((-3091 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-270 *3 *4 *5)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3))))
+((-3012 (((-2 (|:| -2401 (-694)) (|:| -3955 |#1|) (|:| |radicand| (-583 |#1|))) (-348 |#1|) (-694)) 35 T ELT)) (-3943 (((-583 (-2 (|:| -3955 (-694)) (|:| |logand| |#1|))) (-348 |#1|)) 40 T ELT)))
+(((-271 |#1|) (-10 -7 (-15 -3012 ((-2 (|:| -2401 (-694)) (|:| -3955 |#1|) (|:| |radicand| (-583 |#1|))) (-348 |#1|) (-694))) (-15 -3943 ((-583 (-2 (|:| -3955 (-694)) (|:| |logand| |#1|))) (-348 |#1|)))) (-495)) (T -271))
+((-3943 (*1 *2 *3) (-12 (-5 *3 (-348 *4)) (-4 *4 (-495)) (-5 *2 (-583 (-2 (|:| -3955 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4)))) (-3012 (*1 *2 *3 *4) (-12 (-5 *3 (-348 *5)) (-4 *5 (-495)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-271 *5)) (-5 *4 (-694)))))
+((-3082 (((-583 |#2|) (-1085 |#4|)) 45 T ELT)) (-1619 ((|#3| (-484)) 48 T ELT)) (-1617 (((-1085 |#4|) (-1085 |#3|)) 30 T ELT)) (-1618 (((-1085 |#4|) (-1085 |#4|) (-484)) 67 T ELT)) (-1616 (((-1085 |#3|) (-1085 |#4|)) 21 T ELT)) (-3949 (((-583 (-694)) (-1085 |#4|) (-583 |#2|)) 41 T ELT)) (-1615 (((-1085 |#3|) (-1085 |#4|) (-583 |#2|) (-583 |#3|)) 35 T ELT)))
+(((-272 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1615 ((-1085 |#3|) (-1085 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3949 ((-583 (-694)) (-1085 |#4|) (-583 |#2|))) (-15 -3082 ((-583 |#2|) (-1085 |#4|))) (-15 -1616 ((-1085 |#3|) (-1085 |#4|))) (-15 -1617 ((-1085 |#4|) (-1085 |#3|))) (-15 -1618 ((-1085 |#4|) (-1085 |#4|) (-484))) (-15 -1619 (|#3| (-484)))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|)) (T -272))
+((-1619 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1085 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756)) (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694))) (-5 *1 (-272 *5 *6 *7 *8)))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1085 *8)) (-5 *1 (-272 *6 *7 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3775 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-484)))) $) 21 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1622 (((-484) $ (-484)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-484) (-484)) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-484) (-716)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-484) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 30 (|has| |#1| (-756)) ELT)) (-3838 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ (-484) |#1|) 28 T ELT)))
+(((-273 |#1|) (-13 (-21) (-654 (-484)) (-274 |#1| (-484)) (-10 -7 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|))) (-1013)) (T -273))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3775 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 34 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-694) $) 35 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 39 T ELT)) (-3157 ((|#1| $) 40 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2299 ((|#1| $ (-484)) 32 T ELT)) (-1622 ((|#2| $ (-484)) 33 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 30 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1620 (($ $ $) 28 (|has| |#2| (-716)) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#1|) 38 T ELT)) (-3678 ((|#2| |#1| $) 31 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT) (($ |#1| $) 37 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ |#2| |#1|) 36 T ELT)))
+(((-274 |#1| |#2|) (-113) (-1013) (-104)) (T -274))
+((-3840 (*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4)))))) (-1622 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013)))) (-3678 (*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104)))) (-1621 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))) (-1620 (*1 *1 *1 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716)))))
+(-13 (-104) (-950 |t#1|) (-10 -8 (-15 -3840 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3137 ((-694) $)) (-15 -3775 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3944 |t#2|))) $)) (-15 -1622 (|t#2| $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -3678 (|t#2| |t#1| $)) (-15 -1621 ($ (-1 |t#2| |t#2|) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-716)) (-15 -1620 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-694)))) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-1622 (((-694) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1621 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) NIL (|has| (-694) (-716)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3678 (((-694) |#1| $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-694) |#1|) NIL T ELT)))
+(((-275 |#1|) (-274 |#1| (-694)) (-1013)) (T -275))
+NIL
+((-3504 (($ $) 72 T ELT)) (-1624 (($ $ |#2| |#3| $) 14 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1800 (((-85) $) 42 T ELT)) (-1799 ((|#2| $) 44 T ELT)) (-3467 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-2818 ((|#2| $) 68 T ELT)) (-3818 (((-583 |#2|) $) 56 T ELT)) (-1623 (($ $ $ (-694)) 37 T ELT)) (-3950 (($ $ |#2|) 60 T ELT)))
+(((-276 |#1| |#2| |#3|) (-10 -7 (-15 -3504 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1623 (|#1| |#1| |#1| (-694))) (-15 -1624 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1625 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3818 ((-583 |#2|) |#1|)) (-15 -1799 (|#2| |#1|)) (-15 -1800 ((-85) |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3950 (|#1| |#1| |#2|))) (-277 |#2| |#3|) (-961) (-716)) (T -276))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 107 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 104 T ELT)) (-3157 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 106 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 105 T ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 93 (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 97 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 100 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT)) (-2821 ((|#2| $) 99 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 98 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 103 T ELT)) (-1799 ((|#1| $) 102 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ |#1|) 95 (|has| |#1| (-495)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2818 ((|#1| $) 94 (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 T ELT) (($ (-350 (-484))) 77 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3818 (((-583 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 96 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-277 |#1| |#2|) (-113) (-961) (-716)) (T -277))
+((-1800 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-1625 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-1624 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))) (-1623 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *3 (-146)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-495)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-392)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-392)))))
+(-13 (-47 |t#1| |t#2|) (-355 |t#1|) (-10 -8 (-15 -1800 ((-85) $)) (-15 -1799 (|t#1| $)) (-15 -3818 ((-583 |t#1|) $)) (-15 -2420 ((-694) $)) (-15 -2821 (|t#2| $)) (-15 -1625 ($ (-1 |t#2| |t#2|) $)) (-15 -1624 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-146)) (-15 -1623 ($ $ $ (-694))) |%noBranch|) (IF (|has| |t#1| (-495)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-355 |#1|) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) NIL T ELT)) (-3789 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) NIL (|has| |#1| (-72)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-1987 (($ $ (-484)) NIL T ELT)) (-1988 (((-694) $) NIL T ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3610 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3792 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-278 |#1|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1129)) (T -278))
+((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129)))))
+((-3933 (((-85) $) 47 T ELT)) (-3930 (((-694)) 23 T ELT)) (-3331 ((|#2| $) 51 T ELT) (($ $ (-830)) 123 T ELT)) (-3137 (((-694)) 124 T ELT)) (-1795 (($ (-1179 |#2|)) 20 T ELT)) (-2011 (((-85) $) 136 T ELT)) (-3133 ((|#2| $) 53 T ELT) (($ $ (-830)) 120 T ELT)) (-2014 (((-1085 |#2|) $) NIL T ELT) (((-1085 $) $ (-830)) 111 T ELT)) (-1627 (((-1085 |#2|) $) 95 T ELT)) (-1626 (((-1085 |#2|) $) 91 T ELT) (((-3 (-1085 |#2|) "failed") $ $) 88 T ELT)) (-1628 (($ $ (-1085 |#2|)) 58 T ELT)) (-3931 (((-743 (-830))) 30 T ELT) (((-830)) 48 T ELT)) (-3912 (((-107)) 27 T ELT)) (-3949 (((-743 (-830)) $) 32 T ELT) (((-830) $) 139 T ELT)) (-1629 (($) 130 T ELT)) (-3225 (((-1179 |#2|) $) NIL T ELT) (((-630 |#2|) (-1179 $)) 42 T ELT)) (-2703 (($ $) NIL T ELT) (((-632 $) $) 100 T ELT)) (-3934 (((-85) $) 45 T ELT)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -2703 ((-632 |#1|) |#1|)) (-15 -3137 ((-694))) (-15 -2703 (|#1| |#1|)) (-15 -1626 ((-3 (-1085 |#2|) "failed") |#1| |#1|)) (-15 -1626 ((-1085 |#2|) |#1|)) (-15 -1627 ((-1085 |#2|) |#1|)) (-15 -1628 (|#1| |#1| (-1085 |#2|))) (-15 -2011 ((-85) |#1|)) (-15 -1629 (|#1|)) (-15 -3331 (|#1| |#1| (-830))) (-15 -3133 (|#1| |#1| (-830))) (-15 -2014 ((-1085 |#1|) |#1| (-830))) (-15 -3331 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3949 ((-830) |#1|)) (-15 -3931 ((-830))) (-15 -2014 ((-1085 |#2|) |#1|)) (-15 -1795 (|#1| (-1179 |#2|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -3930 ((-694))) (-15 -3931 ((-743 (-830)))) (-15 -3949 ((-743 (-830)) |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3912 ((-107)))) (-280 |#2|) (-312)) (T -279))
+((-3912 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3931 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-694)) 110 T ELT)) (-3331 ((|#1| $) 162 T ELT) (($ $ (-830)) 159 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 144 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3137 (((-694)) 134 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-1795 (($ (-1179 |#1|)) 168 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 131 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2834 (($) 146 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 147 (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-830) $) 149 (|has| |#1| (-320)) ELT) (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2013 (($) 157 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 156 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 163 T ELT) (($ $ (-830)) 160 (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) 135 (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2014 (((-1085 |#1|) $) 167 T ELT) (((-1085 $) $ (-830)) 161 (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 132 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 153 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 152 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) "failed") $ $) 151 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 154 (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 136 (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 133 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 113 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2409 (($) 155 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 143 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-3931 (((-743 (-830))) 111 T ELT) (((-830)) 165 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1768 (((-694) $) 148 (|has| |#1| (-320)) ELT) (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3759 (($ $ (-694)) 139 (|has| |#1| (-320)) ELT) (($ $) 137 (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) 112 T ELT) (((-830) $) 164 T ELT)) (-3186 (((-1085 |#1|)) 166 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) 158 (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 170 T ELT) (((-630 |#1|) (-1179 $)) 169 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 142 (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (($ $) 141 (|has| |#1| (-320)) ELT) (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 172 T ELT) (((-1179 $) (-830)) 171 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-694)) 108 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) 140 (|has| |#1| (-320)) ELT) (($ $) 138 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
(((-280 |#1|) (-113) (-312)) (T -280))
-((-2013 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3187 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3)))) (-3932 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1)) (-4 *1 (-280 *4)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3332 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1630 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2014 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2410 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1629 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))) (-1627 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))))
-(-13 (-1199 |t#1|) (-951 |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -2013 ((-1180 $) (-831))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -2015 ((-1086 |t#1|) $)) (-15 -3187 ((-1086 |t#1|))) (-15 -3932 ((-831))) (-15 -3950 ((-831) $)) (-15 -3134 (|t#1| $)) (-15 -3332 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2015 ((-1086 $) $ (-831))) (-15 -3134 ($ $ (-831))) (-15 -3332 ($ $ (-831))) (-15 -1630 ($)) (-15 -2014 ($)) (-15 -2012 ((-85) $)) (-15 -2410 ($)) (-15 -1629 ($ $ (-1086 |t#1|))) (-15 -1628 ((-1086 |t#1|) $)) (-15 -1627 ((-1086 |t#1|) $)) (-15 -1627 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1199 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-320)) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-1631 (((-85) $) 13 T ELT)) (-3640 (($ |#1|) 10 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3636 (($ |#1|) 12 T ELT)) (-3948 (((-773) $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 ((|#1| $) 14 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)))
-(((-281 |#1|) (-13 (-757) (-10 -8 (-15 -3640 ($ |#1|)) (-15 -3636 ($ |#1|)) (-15 -1631 ((-85) $)) (-15 -2237 (|#1| $)))) (-757)) (T -281))
-((-3640 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-3636 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))) (-2237 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1632 (((-447) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1633 (((-870 (-695)) $) 18 T ELT)) (-1635 (((-209) $) 7 T ELT)) (-3948 (((-773) $) 26 T ELT)) (-2207 (((-870 (-158 (-112))) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1634 (((-584 (-783 (-1096) (-695))) $) 12 T ELT)) (-3058 (((-85) $ $) 22 T ELT)))
-(((-282) (-13 (-1014) (-10 -8 (-15 -1635 ((-209) $)) (-15 -1634 ((-584 (-783 (-1096) (-695))) $)) (-15 -1633 ((-870 (-695)) $)) (-15 -2207 ((-870 (-158 (-112))) $)) (-15 -1632 ((-447) $))))) (T -282))
-((-1635 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ $) 34 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1636 (((-1180 |#4|) $) 133 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 37 T ELT)) (-1637 (((-1180 |#4|) $) 125 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-485)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3058 (((-85) $ $) 21 T ELT)) (-3839 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 24 T ELT)))
-(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1637 ((-1180 |#4|) $)) (-15 -1636 ((-1180 |#4|) $)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283))
-((-1637 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
-((-3960 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT)))
-(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))))
-((-1638 (((-85) $) 14 T ELT)))
-(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1638 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3844 (($ $) 35 T ELT)) (-1638 (((-85) $) 34 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (((-3 |#4| "failed") $) 33 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-485)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT)))
-(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1156 |t#1|) (-1156 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286))
-((-1969 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1639 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1639 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2)) (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3844 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2410 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1639 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -1969 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1639 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1639 ($ |t#4|)) (-15 -1639 ($ |t#1| |t#1|)) (-15 -1639 ($ |t#1| |t#1| (-485))) (-15 -3437 ((-2 (|:| -2337 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3844 ($ $)) (-15 -1638 ((-85) $)) (-15 -2410 ((-3 |t#4| "failed") $)) (-15 -1639 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1014) . T) ((-1130) . T))
-((-3770 (($ $ (-1091) |#2|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 20 T ELT) (($ $ (-584 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)) (-3802 (($ $ |#2|) 11 T ELT)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -3802 (|#1| |#1| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#2|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 |#2|))) (-15 -3770 (|#1| |#1| (-1091) |#2|))) (-288 |#2|) (-1014)) (T -287))
-NIL
-((-3960 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3770 (($ $ (-1091) |#1|) 17 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 16 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3802 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
-(((-288 |#1|) (-113) (-1014)) (T -288))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014)))))
-(-13 (-10 -8 (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-456 (-1091) |t#1|)) (-6 (-456 (-1091) |t#1|)) |%noBranch|)))
-(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1130) |has| |#1| (-241 |#1| |#1|)))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-289 |#1| |#2|) (-280 (-818 |#1|)) (-831) (-831)) (T -289))
-NIL
-((-1648 (((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1796 (($ (-1180 (-350 |#3|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#3|))) NIL T ELT) (($ (-1180 |#3|) |#3|) 172 T ELT)) (-1653 (((-1180 $) (-1180 $)) 156 T ELT)) (-1640 (((-584 (-584 |#2|))) 126 T ELT)) (-1665 (((-85) |#2| |#2|) 76 T ELT)) (-3505 (($ $) 148 T ELT)) (-3379 (((-695)) 171 T ELT)) (-1654 (((-1180 $) (-1180 $)) 219 T ELT)) (-1641 (((-584 (-858 |#2|)) (-1091)) 115 T ELT)) (-1657 (((-85) $) 168 T ELT)) (-1656 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1643 (((-3 |#3| #1="failed")) 52 T ELT)) (-1667 (((-695)) 183 T ELT)) (-3802 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1644 (((-3 |#3| #1#)) 71 T ELT)) (-3760 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-1655 (((-1180 $) (-1180 $)) 162 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1666 (((-85)) 34 T ELT)))
-(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -1640 ((-584 (-584 |#2|)))) (-15 -1641 ((-584 (-858 |#2|)) (-1091))) (-15 -1642 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1643 ((-3 |#3| #1="failed"))) (-15 -1644 ((-3 |#3| #1#))) (-15 -3802 (|#2| |#1| |#2| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1656 ((-85) |#1| |#3|)) (-15 -1656 ((-85) |#1| |#2|)) (-15 -1796 (|#1| (-1180 |#3|) |#3|)) (-15 -1648 ((-2 (|:| |num| (-1180 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1653 ((-1180 |#1|) (-1180 |#1|))) (-15 -1654 ((-1180 |#1|) (-1180 |#1|))) (-15 -1655 ((-1180 |#1|) (-1180 |#1|))) (-15 -1656 ((-85) |#1|)) (-15 -1657 ((-85) |#1|)) (-15 -1665 ((-85) |#2| |#2|)) (-15 -1666 ((-85))) (-15 -1667 ((-695))) (-15 -3379 ((-695))) (-15 -3760 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-695))) (-15 -3760 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1796 (|#1| (-1180 (-350 |#3|)))) (-15 -1796 (|#1| (-1180 (-350 |#3|)) (-1180 |#1|)))) (-291 |#2| |#3| |#4|) (-1135) (-1156 |#2|) (-1156 (-350 |#3|))) (T -290))
-((-3379 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1667 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1644 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1640 (*1 *2) (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) 61 T ELT) (((-631 (-350 |#2|))) 77 T ELT)) (-3332 (((-350 |#2|) $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) 242 T ELT)) (-1661 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) 63 T ELT) (($ (-1180 (-350 |#2|))) 80 T ELT) (($ (-1180 |#2|) |#2|) 224 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) 68 T ELT) (((-631 (-350 |#2|)) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) 184 T ELT) (((-631 (-350 |#2|)) (-631 $)) 183 T ELT)) (-1653 (((-1180 $) (-1180 $)) 230 T ELT)) (-3844 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1640 (((-584 (-584 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) 246 T ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) 239 T ELT)) (-1659 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2565 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) 217 T ELT)) (-2835 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3379 (((-695)) 249 T ELT)) (-1654 (((-1180 $) (-1180 $)) 231 T ELT)) (-3134 (((-350 |#2|) $) 66 T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) 212 (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) 182 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1649 (((-631 (-350 |#2|))) 226 T ELT)) (-1651 (((-631 (-350 |#2|))) 228 T ELT)) (-2486 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 222 T ELT)) (-1650 (((-631 (-350 |#2|))) 227 T ELT)) (-1652 (((-631 (-350 |#2|))) 229 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1658 (((-1180 $)) 235 T ELT)) (-3920 (((-1180 $)) 236 T ELT)) (-1657 (((-85) $) 234 T ELT)) (-1656 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3448 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| "failed")) 214 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1667 (((-695)) 248 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1644 (((-3 |#2| "failed")) 215 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1769 (((-695) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 149 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 148 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 146 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 156 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 179 T ELT)) (-1675 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) 65 T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 (-350 |#2|)) $) 82 T ELT) (((-631 (-350 |#2|)) (-1180 $)) 81 T ELT)) (-3974 (((-1180 (-350 |#2|)) $) 79 T ELT) (($ (-1180 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) 232 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-485))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1664 (((-85)) 245 T ELT)) (-1663 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1666 (((-85)) 247 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091) (-695)) 152 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-584 (-1091))) 151 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1091)) 147 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-2564 (|has| (-350 |#2|) (-812 (-1091))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-695)) 157 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2564 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2564 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| (-350 |#2|) (-312)) ELT)))
-(((-291 |#1| |#2| |#3|) (-113) (-1135) (-1156 |t#1|) (-1156 (-350 |t#2|))) (T -291))
-((-3379 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1667 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1665 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1662 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1661 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-1660 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1659 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3920 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1658 (*1 *2) (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-1652 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))) (-1646 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))) (-1656 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85)))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-3802 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3))))) (-1644 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135)) (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))) (-1642 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135)) (-4 *6 (-1156 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-584 (-858 *4))))) (-1640 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3))))))
-(-13 (-662 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3379 ((-695))) (-15 -1667 ((-695))) (-15 -1666 ((-85))) (-15 -1665 ((-85) |t#1| |t#1|)) (-15 -1664 ((-85))) (-15 -1663 ((-85) |t#1|)) (-15 -1663 ((-85) |t#2|)) (-15 -1662 ((-85))) (-15 -1661 ((-85) |t#1|)) (-15 -1661 ((-85) |t#2|)) (-15 -1660 ((-85))) (-15 -1659 ((-85) |t#1|)) (-15 -1659 ((-85) |t#2|)) (-15 -3920 ((-1180 $))) (-15 -1658 ((-1180 $))) (-15 -1657 ((-85) $)) (-15 -1656 ((-85) $)) (-15 -1655 ((-1180 $) (-1180 $))) (-15 -1654 ((-1180 $) (-1180 $))) (-15 -1653 ((-1180 $) (-1180 $))) (-15 -1652 ((-631 (-350 |t#2|)))) (-15 -1651 ((-631 (-350 |t#2|)))) (-15 -1650 ((-631 (-350 |t#2|)))) (-15 -1649 ((-631 (-350 |t#2|)))) (-15 -1648 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1796 ($ (-1180 |t#2|) |t#2|)) (-15 -1647 ((-2 (|:| |num| (-1180 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1646 ($ (-1180 |t#2|) |t#2|)) (-15 -1645 ((-2 (|:| |num| (-631 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1656 ((-85) $ |t#1|)) (-15 -1656 ((-85) $ |t#2|)) (-15 -3760 ($ $ (-1 |t#2| |t#2|))) (-15 -3505 ($ $)) (-15 -3802 (|t#1| $ |t#1| |t#1|)) (-15 -1644 ((-3 |t#2| "failed"))) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1641 ((-584 (-858 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1640 ((-584 (-584 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-556 (-350 (-485))) OR (|has| (-350 |#2|) (-951 (-350 (-485)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-556 (-350 |#2|)) . T) ((-556 (-485)) . T) ((-556 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-496) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-589 (-350 |#2|)) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-591 (-350 |#2|)) . T) ((-591 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-583 (-350 |#2|)) . T) ((-583 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-581 (-350 |#2|)) . T) ((-581 (-485)) |has| (-350 |#2|) (-581 (-485))) ((-655 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-655 (-350 |#2|)) . T) ((-655 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-662 (-350 |#2|) |#3|) . T) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-810 (-1091)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091))))) ((-833) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-951 (-350 (-485))) |has| (-350 |#2|) (-951 (-350 (-485)))) ((-951 (-350 |#2|)) . T) ((-951 (-485)) |has| (-350 |#2|) (-951 (-485))) ((-964 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-964 (-350 |#2|)) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-969 (-350 |#2|)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| (-350 |#2|) (-299)) ((-1130) . T) ((-1135) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))))
-((-3960 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
-(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 (|#8| (-1 |#5| |#1|) |#4|))) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#5|) (-1156 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1156 (-350 *9))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-293 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-831) (-831)) (T -293))
-((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 56 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 139 T ELT)) (-3158 ((|#1| $) 111 T ELT)) (-1796 (($ (-1180 |#1|)) 128 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 122 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 155 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) 60 (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 62 T ELT)) (-2014 (($) 157 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 115 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 165 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 172 T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 94 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 142 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) 57 T ELT)) (-2410 (($) 153 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 117 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) 88 T ELT) (((-831)) 89 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) 120 T ELT)) (-1675 (($) 154 (|has| |#1| (-320)) ELT)) (-1630 (($) 162 (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 76 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 168 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 150 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 141 T ELT) (((-1180 $) (-831)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 66 T CONST)) (-2668 (($) 101 T CONST)) (-3930 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3951 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3839 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 84 T ELT)) (** (($ $ (-831)) 174 T ELT) (($ $ (-695)) 175 T ELT) (($ $ (-485)) 173 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
-(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-1086 |#1|)) (T -294))
-((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1086 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1668 (((-870 (-1034))) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1668 ((-870 (-1034)))))) (-299) (-831)) (T -295))
-((-1668 (*1 *2) (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
-((-1678 (((-695) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 61 T ELT)) (-1669 (((-870 (-1034)) (-1086 |#1|)) 112 T ELT)) (-1670 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|)) 103 T ELT)) (-1671 (((-631 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 113 T ELT)) (-1672 (((-3 (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) "failed") (-831)) 13 T ELT)) (-1673 (((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) (-831)) 18 T ELT)))
-(((-296 |#1|) (-10 -7 (-15 -1669 ((-870 (-1034)) (-1086 |#1|))) (-15 -1670 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) (-1086 |#1|))) (-15 -1671 ((-631 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1678 ((-695) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1672 ((-3 (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) "failed") (-831))) (-15 -1673 ((-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) (-831)))) (-299)) (T -296))
-((-1673 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1672 (*1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034))) (-5 *1 (-296 *4)))))
-((-3948 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
-(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3948 (|#3| |#1|)) (-15 -3948 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297))
-((-3948 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3948 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4)))))
-((-1681 (((-85) $) 65 T ELT)) (-3774 (((-744 (-831)) $) 26 T ELT) (((-831) $) 69 T ELT)) (-3447 (((-633 $) $) 21 T ELT)) (-3448 (($) 9 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 120 T ELT)) (-1769 (((-3 (-695) #1="failed") $ $) 98 T ELT) (((-695) $) 84 T ELT)) (-3760 (($ $) 8 T ELT) (($ $ (-695)) NIL T ELT)) (-1675 (($) 58 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 41 T ELT)) (-2704 (((-633 $) $) 50 T ELT) (($ $) 47 T ELT)))
-(((-298 |#1|) (-10 -7 (-15 -3774 ((-831) |#1|)) (-15 -1769 ((-695) |#1|)) (-15 -1681 ((-85) |#1|)) (-15 -1675 (|#1|)) (-15 -2705 ((-3 (-1180 |#1|) #1="failed") (-631 |#1|))) (-15 -2704 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -1769 ((-3 (-695) #1#) |#1| |#1|)) (-15 -3774 ((-744 (-831)) |#1|)) (-15 -2704 ((-633 |#1|) |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-299)) (T -298))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 113 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3138 (((-695)) 123 T ELT)) (-3726 (($) 23 T CONST)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 126 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-2835 (($) 111 T ELT)) (-1681 (((-85) $) 110 T ELT)) (-1768 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 99 T ELT) (((-831) $) 108 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3447 (((-633 $) $) 122 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2011 (((-831) $) 125 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 121 T CONST)) (-2401 (($ (-831)) 124 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 114 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 98 T ELT) (((-695) $) 109 T ELT)) (-3760 (($ $) 120 T ELT) (($ $ (-695)) 118 T ELT)) (-1675 (($) 112 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 115 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2704 (((-633 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 119 T ELT) (($ $ (-695)) 117 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+((-2012 (*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3186 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3)))) (-3931 (*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312)))) (-2014 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1)) (-4 *1 (-280 *4)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-3331 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)))) (-1629 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2013 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85)))) (-2409 (*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))) (-1626 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
+(-13 (-1198 |t#1|) (-950 |t#1|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -2012 ((-1179 $) (-830))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-630 |t#1|) (-1179 $))) (-15 -1795 ($ (-1179 |t#1|))) (-15 -2014 ((-1085 |t#1|) $)) (-15 -3186 ((-1085 |t#1|))) (-15 -3931 ((-830))) (-15 -3949 ((-830) $)) (-15 -3133 (|t#1| $)) (-15 -3331 (|t#1| $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-299)) (-15 -2014 ((-1085 $) $ (-830))) (-15 -3133 ($ $ (-830))) (-15 -3331 ($ $ (-830))) (-15 -1629 ($)) (-15 -2013 ($)) (-15 -2011 ((-85) $)) (-15 -2409 ($)) (-15 -1628 ($ $ (-1085 |t#1|))) (-15 -1627 ((-1085 |t#1|) $)) (-15 -1626 ((-1085 |t#1|) $)) (-15 -1626 ((-3 (-1085 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) |has| |#1| (-320)) ((-190) |has| |#1| (-320)) ((-189) |has| |#1| (-320)) ((-201) . T) ((-246) . T) ((-258) . T) ((-1198 |#1|) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-320) |has| |#1| (-320)) ((-299) |has| |#1| (-320)) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-320)) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1630 (((-85) $) 13 T ELT)) (-3639 (($ |#1|) 10 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3635 (($ |#1|) 12 T ELT)) (-3947 (((-772) $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2236 ((|#1| $) 14 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)))
+(((-281 |#1|) (-13 (-756) (-10 -8 (-15 -3639 ($ |#1|)) (-15 -3635 ($ |#1|)) (-15 -1630 ((-85) $)) (-15 -2236 (|#1| $)))) (-756)) (T -281))
+((-3639 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-3635 (*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))) (-1630 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))) (-2236 (*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1631 (((-446) $) 20 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1632 (((-869 (-694)) $) 18 T ELT)) (-1634 (((-209) $) 7 T ELT)) (-3947 (((-772) $) 26 T ELT)) (-2206 (((-869 (-158 (-112))) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1633 (((-583 (-782 (-1095) (-694))) $) 12 T ELT)) (-3057 (((-85) $ $) 22 T ELT)))
+(((-282) (-13 (-1013) (-10 -8 (-15 -1634 ((-209) $)) (-15 -1633 ((-583 (-782 (-1095) (-694))) $)) (-15 -1632 ((-869 (-694)) $)) (-15 -2206 ((-869 (-158 (-112))) $)) (-15 -1631 ((-446) $))))) (T -282))
+((-1634 (*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1095) (-694)))) (-5 *1 (-282)))) (-1632 (*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282)))) (-1631 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 34 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1635 (((-1179 |#4|) $) 133 T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 32 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 37 T ELT)) (-1636 (((-1179 |#4|) $) 125 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 42 T ELT) (($ |#4|) 44 T ELT) (($ |#1| |#1|) 46 T ELT) (($ |#1| |#1| (-484)) 48 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 50 T ELT)) (-3436 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 40 T ELT)) (-3947 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 28 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 24 T ELT)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-286 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1636 ((-1179 |#4|) $)) (-15 -1635 ((-1179 |#4|) $)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -283))
+((-1636 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))) (-1635 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+((-3959 (((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)) 33 T ELT)))
+(((-284 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-283 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-283 |#1| |#2| |#3| |#4|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-312) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -284))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10))) (-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-291 *9 *10 *11)))))
+((-1637 (((-85) $) 14 T ELT)))
+(((-285 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1637 ((-85) |#1|))) (-286 |#2| |#3| |#4| |#5|) (-312) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -285))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3843 (($ $) 35 T ELT)) (-1637 (((-85) $) 34 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 41 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2409 (((-3 |#4| "failed") $) 33 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 40 T ELT) (($ |#4|) 39 T ELT) (($ |#1| |#1|) 38 T ELT) (($ |#1| |#1| (-484)) 37 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 32 T ELT)) (-3436 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 36 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT)))
+(((-286 |#1| |#2| |#3| |#4|) (-113) (-312) (-1155 |t#1|) (-1155 (-350 |t#2|)) (-291 |t#1| |t#2| |t#3|)) (T -286))
+((-1968 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-356 *4 (-350 *4) *5 *6)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312)) (-4 *1 (-286 *3 *4 *5 *6)))) (-1638 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *2) (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4)))) (-1638 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1155 *2)) (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6)) (-4 *6 (-291 *2 *4 *5)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-2 (|:| -2336 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6))))) (-3843 (*1 *1 *1) (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))) (-2409 (*1 *2 *1) (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5)))) (-1638 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1968 ((-356 |t#2| (-350 |t#2|) |t#3| |t#4|) $)) (-15 -1638 ($ (-356 |t#2| (-350 |t#2|) |t#3| |t#4|))) (-15 -1638 ($ |t#4|)) (-15 -1638 ($ |t#1| |t#1|)) (-15 -1638 ($ |t#1| |t#1| (-484))) (-15 -3436 ((-2 (|:| -2336 (-356 |t#2| (-350 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3843 ($ $)) (-15 -1637 ((-85) $)) (-15 -2409 ((-3 |t#4| "failed") $)) (-15 -1638 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1013) . T) ((-1129) . T))
+((-3769 (($ $ (-1090) |#2|) NIL T ELT) (($ $ (-583 (-1090)) (-583 |#2|)) 20 T ELT) (($ $ (-583 (-249 |#2|))) 15 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)) (-3801 (($ $ |#2|) 11 T ELT)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -3801 (|#1| |#1| |#2|)) (-15 -3769 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#2|)))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 |#2|))) (-15 -3769 (|#1| |#1| (-1090) |#2|))) (-288 |#2|) (-1013)) (T -287))
+NIL
+((-3959 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-3769 (($ $ (-1090) |#1|) 17 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 16 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 15 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 14 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-260 |#1|)) ELT)) (-3801 (($ $ |#1|) 11 (|has| |#1| (-241 |#1| |#1|)) ELT)))
+(((-288 |#1|) (-113) (-1013)) (T -288))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013)))))
+(-13 (-10 -8 (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-241 |t#1| |t#1|)) (-6 (-241 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455 (-1090) |t#1|)) (-6 (-455 (-1090) |t#1|)) |%noBranch|)))
+(((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) |has| |#1| (-241 |#1| |#1|)) ((-1129) |has| |#1| (-241 |#1| |#1|)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3157 (((-817 |#1|) $) NIL T ELT)) (-1795 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3133 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3225 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
+(((-289 |#1| |#2|) (-280 (-817 |#1|)) (-830) (-830)) (T -289))
+NIL
+((-1647 (((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1795 (($ (-1179 (-350 |#3|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#3|))) NIL T ELT) (($ (-1179 |#3|) |#3|) 172 T ELT)) (-1652 (((-1179 $) (-1179 $)) 156 T ELT)) (-1639 (((-583 (-583 |#2|))) 126 T ELT)) (-1664 (((-85) |#2| |#2|) 76 T ELT)) (-3504 (($ $) 148 T ELT)) (-3378 (((-694)) 171 T ELT)) (-1653 (((-1179 $) (-1179 $)) 219 T ELT)) (-1640 (((-583 (-857 |#2|)) (-1090)) 115 T ELT)) (-1656 (((-85) $) 168 T ELT)) (-1655 (((-85) $) 27 T ELT) (((-85) $ |#2|) 31 T ELT) (((-85) $ |#3|) 223 T ELT)) (-1642 (((-3 |#3| #1="failed")) 52 T ELT)) (-1666 (((-694)) 183 T ELT)) (-3801 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1643 (((-3 |#3| #1#)) 71 T ELT)) (-3759 (($ $ (-1 (-350 |#3|) (-350 |#3|))) NIL T ELT) (($ $ (-1 (-350 |#3|) (-350 |#3|)) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-1654 (((-1179 $) (-1179 $)) 162 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1665 (((-85)) 34 T ELT)))
+(((-290 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -1639 ((-583 (-583 |#2|)))) (-15 -1640 ((-583 (-857 |#2|)) (-1090))) (-15 -1641 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1642 ((-3 |#3| #1="failed"))) (-15 -1643 ((-3 |#3| #1#))) (-15 -3801 (|#2| |#1| |#2| |#2|)) (-15 -3504 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1655 ((-85) |#1| |#3|)) (-15 -1655 ((-85) |#1| |#2|)) (-15 -1795 (|#1| (-1179 |#3|) |#3|)) (-15 -1647 ((-2 (|:| |num| (-1179 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1652 ((-1179 |#1|) (-1179 |#1|))) (-15 -1653 ((-1179 |#1|) (-1179 |#1|))) (-15 -1654 ((-1179 |#1|) (-1179 |#1|))) (-15 -1655 ((-85) |#1|)) (-15 -1656 ((-85) |#1|)) (-15 -1664 ((-85) |#2| |#2|)) (-15 -1665 ((-85))) (-15 -1666 ((-694))) (-15 -3378 ((-694))) (-15 -3759 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)) (-694))) (-15 -3759 (|#1| |#1| (-1 (-350 |#3|) (-350 |#3|)))) (-15 -1795 (|#1| (-1179 (-350 |#3|)))) (-15 -1795 (|#1| (-1179 (-350 |#3|)) (-1179 |#1|)))) (-291 |#2| |#3| |#4|) (-1134) (-1155 |#2|) (-1155 (-350 |#3|))) (T -290))
+((-3378 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1666 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1665 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6)))) (-1643 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1642 (*1 *2) (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-583 (-857 *5))) (-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7)))) (-1639 (*1 *2) (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 225 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) 115 (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) 117 (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-630 (-350 |#2|)) (-1179 $)) 61 T ELT) (((-630 (-350 |#2|))) 77 T ELT)) (-3331 (((-350 |#2|) $) 67 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) 135 (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-694)) 108 (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) 242 T ELT)) (-1660 (((-85) |#1|) 241 T ELT) (((-85) |#2|) 240 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 194 (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) 189 T ELT)) (-3157 (((-484) $) 193 (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) 190 T ELT)) (-1795 (($ (-1179 (-350 |#2|)) (-1179 $)) 63 T ELT) (($ (-1179 (-350 |#2|))) 80 T ELT) (($ (-1179 |#2|) |#2|) 224 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) 129 (|has| (-350 |#2|) (-312)) ELT)) (-1784 (((-630 (-350 |#2|)) $ (-1179 $)) 68 T ELT) (((-630 (-350 |#2|)) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) 184 T ELT) (((-630 (-350 |#2|)) (-630 $)) 183 T ELT)) (-1652 (((-1179 $) (-1179 $)) 230 T ELT)) (-3843 (($ |#3|) 178 T ELT) (((-3 $ "failed") (-350 |#3|)) 175 (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1639 (((-583 (-583 |#1|))) 211 (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) 246 T ELT)) (-3109 (((-830)) 69 T ELT)) (-2995 (($) 111 (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) 239 T ELT)) (-1658 (((-85) |#1|) 238 T ELT) (((-85) |#2|) 237 T ELT)) (-2564 (($ $ $) 128 (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) 217 T ELT)) (-2834 (($) 169 (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) 170 (|has| (-350 |#2|) (-299)) ELT)) (-1767 (($ $ (-694)) 161 (|has| (-350 |#2|) (-299)) ELT) (($ $) 160 (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) 136 (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-830) $) 172 (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) 158 (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3378 (((-694)) 249 T ELT)) (-1653 (((-1179 $) (-1179 $)) 231 T ELT)) (-3133 (((-350 |#2|) $) 66 T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) 212 (|has| |#1| (-312)) ELT)) (-3446 (((-632 $) $) 162 (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) 59 (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) 110 (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) 182 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 181 T ELT)) (-1894 (($ (-583 $)) 121 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 120 (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1648 (((-630 (-350 |#2|))) 226 T ELT)) (-1650 (((-630 (-350 |#2|))) 228 T ELT)) (-2485 (($ $) 137 (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 222 T ELT)) (-1649 (((-630 (-350 |#2|))) 227 T ELT)) (-1651 (((-630 (-350 |#2|))) 229 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 221 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 223 T ELT)) (-1657 (((-1179 $)) 235 T ELT)) (-3919 (((-1179 $)) 236 T ELT)) (-1656 (((-85) $) 234 T ELT)) (-1655 (((-85) $) 233 T ELT) (((-85) $ |#1|) 220 T ELT) (((-85) $ |#2|) 219 T ELT)) (-3447 (($) 163 (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| "failed")) 214 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1666 (((-694)) 248 T ELT)) (-2409 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-583 $)) 119 (|has| (-350 |#2|) (-312)) ELT) (($ $ $) 118 (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 166 (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) 133 (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 124 (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) 126 (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) 216 T ELT)) (-1643 (((-3 |#2| "failed")) 215 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 127 (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1179 $)) 62 T ELT) (((-350 |#2|)) 76 T ELT)) (-1768 (((-694) $) 171 (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 145 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) 144 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) 218 T ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-694)) 149 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-583 (-1090))) 148 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 146 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-694)) 156 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 154 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) 174 (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 179 T ELT)) (-1674 (($) 168 (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) 65 T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 (-350 |#2|)) $) 82 T ELT) (((-630 (-350 |#2|)) (-1179 $)) 81 T ELT)) (-3973 (((-1179 (-350 |#2|)) $) 79 T ELT) (($ (-1179 (-350 |#2|))) 78 T ELT) ((|#3| $) 195 T ELT) (($ |#3|) 177 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 165 (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) 232 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 |#2|)) 52 T ELT) (($ (-350 (-484))) 107 (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) 112 (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) 164 (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) 58 (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) 60 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1663 (((-85)) 245 T ELT)) (-1662 (((-85) |#1|) 244 T ELT) (((-85) |#2|) 243 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 213 T ELT)) (-1665 (((-85)) 247 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) 143 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) 142 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090) (-694)) 152 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-583 (-1090))) 151 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-1090)) 147 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-2563 (|has| (-350 |#2|) (-811 (-1090))) (|has| (-350 |#2|) (-312)))) ELT) (($ $ (-694)) 157 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) 155 (OR (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-189))) (-2563 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-190))) (-2563 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 |#2|)) 54 T ELT) (($ (-350 |#2|) $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| (-350 |#2|) (-312)) ELT)))
+(((-291 |#1| |#2| |#3|) (-113) (-1134) (-1155 |t#1|) (-1155 (-350 |t#2|))) (T -291))
+((-3378 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))) (-1666 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))) (-1665 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1664 (*1 *2 *3 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1663 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1662 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1661 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1660 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-1659 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1658 (*1 *2 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3919 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1657 (*1 *2) (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))) (-1656 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1653 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-1651 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1650 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1649 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1648 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))) (-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134)) (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))) (-1655 (*1 *2 *1 *3) (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-3801 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3))))) (-1643 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1642 (*1 *2) (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134)) (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))) (-1641 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134)) (-4 *6 (-1155 (-350 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-291 *4 *5 *6)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312)) (-5 *2 (-583 (-857 *4))))) (-1639 (*1 *2) (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-583 (-583 *3))))))
+(-13 (-661 (-350 |t#2|) |t#3|) (-10 -8 (-15 -3378 ((-694))) (-15 -1666 ((-694))) (-15 -1665 ((-85))) (-15 -1664 ((-85) |t#1| |t#1|)) (-15 -1663 ((-85))) (-15 -1662 ((-85) |t#1|)) (-15 -1662 ((-85) |t#2|)) (-15 -1661 ((-85))) (-15 -1660 ((-85) |t#1|)) (-15 -1660 ((-85) |t#2|)) (-15 -1659 ((-85))) (-15 -1658 ((-85) |t#1|)) (-15 -1658 ((-85) |t#2|)) (-15 -3919 ((-1179 $))) (-15 -1657 ((-1179 $))) (-15 -1656 ((-85) $)) (-15 -1655 ((-85) $)) (-15 -1654 ((-1179 $) (-1179 $))) (-15 -1653 ((-1179 $) (-1179 $))) (-15 -1652 ((-1179 $) (-1179 $))) (-15 -1651 ((-630 (-350 |t#2|)))) (-15 -1650 ((-630 (-350 |t#2|)))) (-15 -1649 ((-630 (-350 |t#2|)))) (-15 -1648 ((-630 (-350 |t#2|)))) (-15 -1647 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1795 ($ (-1179 |t#2|) |t#2|)) (-15 -1646 ((-2 (|:| |num| (-1179 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1645 ($ (-1179 |t#2|) |t#2|)) (-15 -1644 ((-2 (|:| |num| (-630 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1655 ((-85) $ |t#1|)) (-15 -1655 ((-85) $ |t#2|)) (-15 -3759 ($ $ (-1 |t#2| |t#2|))) (-15 -3504 ($ $)) (-15 -3801 (|t#1| $ |t#1| |t#1|)) (-15 -1643 ((-3 |t#2| "failed"))) (-15 -1642 ((-3 |t#2| "failed"))) (-15 -1641 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-312)) (-15 -1640 ((-583 (-857 |t#1|)) (-1090))) |%noBranch|) (IF (|has| |t#1| (-320)) (-15 -1639 ((-583 (-583 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-38 (-350 |#2|)) . T) ((-38 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-82 (-350 |#2|) (-350 |#2|)) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-118))) ((-120) |has| (-350 |#2|) (-120)) ((-555 (-350 (-484))) OR (|has| (-350 |#2|) (-950 (-350 (-484)))) (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-555 (-350 |#2|)) . T) ((-555 (-484)) . T) ((-555 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#3|) . T) ((-186 $) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-184 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-190) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-189) OR (|has| (-350 |#2|) (-299)) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312)))) ((-225 (-350 |#2|)) |has| (-350 |#2|) (-312)) ((-201) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-246) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-258) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-312) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-345) |has| (-350 |#2|) (-299)) ((-320) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-320))) ((-299) |has| (-350 |#2|) (-299)) ((-322 (-350 |#2|) |#3|) . T) ((-353 (-350 |#2|) |#3|) . T) ((-329 (-350 |#2|)) . T) ((-355 (-350 |#2|)) . T) ((-392) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-495) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-588 (-350 |#2|)) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-590 (-350 |#2|)) . T) ((-590 (-484)) |has| (-350 |#2|) (-580 (-484))) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-582 (-350 |#2|)) . T) ((-582 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-580 (-350 |#2|)) . T) ((-580 (-484)) |has| (-350 |#2|) (-580 (-484))) ((-654 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-654 (-350 |#2|)) . T) ((-654 $) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-661 (-350 |#2|) |#3|) . T) ((-663) . T) ((-806 $ (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090))))) ((-809 (-1090)) -12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) ((-811 (-1090)) OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090))))) ((-832) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-950 (-350 (-484))) |has| (-350 |#2|) (-950 (-350 (-484)))) ((-950 (-350 |#2|)) . T) ((-950 (-484)) |has| (-350 |#2|) (-950 (-484))) ((-963 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-963 (-350 |#2|)) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))) ((-968 (-350 |#2|)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| (-350 |#2|) (-299)) ((-1129) . T) ((-1134) OR (|has| (-350 |#2|) (-299)) (|has| (-350 |#2|) (-312))))
+((-3959 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
+(((-292 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|))) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#5|) (-1155 (-350 |#6|)) (-291 |#5| |#6| |#7|)) (T -292))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10)) (-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7)) (-4 *10 (-1155 (-350 *9))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3157 (((-817 |#1|) $) NIL T ELT)) (-1795 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3133 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3225 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
+(((-293 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-830) (-830)) (T -293))
+((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 56 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 139 T ELT)) (-3157 ((|#1| $) 111 T ELT)) (-1795 (($ (-1179 |#1|)) 128 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 119 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 122 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) 155 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) 65 (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) 60 (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 62 T ELT)) (-2013 (($) 157 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 115 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 165 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 172 T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 94 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 142 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) 57 T ELT)) (-2409 (($) 153 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 117 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) 88 T ELT) (((-830)) 89 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) 156 (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) 149 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 |#1|)) 120 T ELT)) (-1674 (($) 154 (|has| |#1| (-320)) ELT)) (-1629 (($) 162 (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 76 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) 168 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) 150 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 141 T ELT) (((-1179 $) (-830)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 66 T CONST)) (-2667 (($) 101 T CONST)) (-3929 (($ $) 105 (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) 170 T ELT) (($ $ |#1|) 171 T ELT)) (-3838 (($ $) 152 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 84 T ELT)) (** (($ $ (-830)) 174 T ELT) (($ $ (-694)) 175 T ELT) (($ $ (-484)) 173 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 100 T ELT) (($ $ $) 99 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 169 T ELT)))
+(((-294 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-299) (-1085 |#1|)) (T -294))
+((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299)) (-14 *4 (-1085 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1795 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1667 (((-869 (-1033))) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-295 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1667 ((-869 (-1033)))))) (-299) (-830)) (T -295))
+((-1667 (*1 *2) (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
+((-1677 (((-694) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) 61 T ELT)) (-1668 (((-869 (-1033)) (-1085 |#1|)) 112 T ELT)) (-1669 (((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) (-1085 |#1|)) 103 T ELT)) (-1670 (((-630 |#1|) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) 113 T ELT)) (-1671 (((-3 (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) "failed") (-830)) 13 T ELT)) (-1672 (((-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) (-830)) 18 T ELT)))
+(((-296 |#1|) (-10 -7 (-15 -1668 ((-869 (-1033)) (-1085 |#1|))) (-15 -1669 ((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) (-1085 |#1|))) (-15 -1670 ((-630 |#1|) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))))) (-15 -1677 ((-694) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))))) (-15 -1671 ((-3 (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) "failed") (-830))) (-15 -1672 ((-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) (-830)))) (-299)) (T -296))
+((-1672 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-3 (-1085 *4) (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1671 (*1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-5 *2 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)) (-4 *4 (-299)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))) (-5 *1 (-296 *4)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033))) (-5 *1 (-296 *4)))))
+((-3947 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
+(((-297 |#1| |#2| |#3|) (-10 -7 (-15 -3947 (|#3| |#1|)) (-15 -3947 (|#1| |#3|))) (-280 |#2|) (-299) (-280 |#2|)) (T -297))
+((-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3)) (-4 *3 (-280 *4)))) (-3947 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2)) (-4 *3 (-280 *4)))))
+((-1680 (((-85) $) 65 T ELT)) (-3773 (((-743 (-830)) $) 26 T ELT) (((-830) $) 69 T ELT)) (-3446 (((-632 $) $) 21 T ELT)) (-3447 (($) 9 T CONST)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 120 T ELT)) (-1768 (((-3 (-694) #1="failed") $ $) 98 T ELT) (((-694) $) 84 T ELT)) (-3759 (($ $) 8 T ELT) (($ $ (-694)) NIL T ELT)) (-1674 (($) 58 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 41 T ELT)) (-2703 (((-632 $) $) 50 T ELT) (($ $) 47 T ELT)))
+(((-298 |#1|) (-10 -7 (-15 -3773 ((-830) |#1|)) (-15 -1768 ((-694) |#1|)) (-15 -1680 ((-85) |#1|)) (-15 -1674 (|#1|)) (-15 -2704 ((-3 (-1179 |#1|) #1="failed") (-630 |#1|))) (-15 -2703 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-632 |#1|) |#1|)) (-15 -1768 ((-3 (-694) #1#) |#1| |#1|)) (-15 -3773 ((-743 (-830)) |#1|)) (-15 -2703 ((-632 |#1|) |#1|)) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-299)) (T -298))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 113 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3137 (((-694)) 123 T ELT)) (-3725 (($) 23 T CONST)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 107 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 126 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-2834 (($) 111 T ELT)) (-1680 (((-85) $) 110 T ELT)) (-1767 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-743 (-830)) $) 99 T ELT) (((-830) $) 108 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3446 (((-632 $) $) 122 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2010 (((-830) $) 125 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 121 T CONST)) (-2400 (($ (-830)) 124 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 114 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1768 (((-3 (-694) "failed") $ $) 98 T ELT) (((-694) $) 109 T ELT)) (-3759 (($ $) 120 T ELT) (($ $ (-694)) 118 T ELT)) (-1674 (($) 112 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 115 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-2703 (((-632 $) $) 100 T ELT) (($ $) 116 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 119 T ELT) (($ $ (-694)) 117 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
(((-299) (-113)) (T -299))
-((-2704 (*1 *1 *1) (-4 *1 (-299))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1)))) (-1677 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))))) (-1676 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))) (-1675 (*1 *1) (-4 *1 (-299))) (-2835 (*1 *1) (-4 *1 (-299))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831)))) (-1674 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-345) (-320) (-1067) (-190) (-10 -8 (-15 -2704 ($ $)) (-15 -2705 ((-3 (-1180 $) "failed") (-631 $))) (-15 -1677 ((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485)))))) (-15 -1676 ((-1103 (-831) (-695)) (-485))) (-15 -1675 ($)) (-15 -2835 ($)) (-15 -1681 ((-85) $)) (-15 -1769 ((-695) $)) (-15 -3774 ((-831) $)) (-15 -1674 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T))
-((-3921 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|) 55 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 53 T ELT)))
-(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -300))
-((-3921 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3920 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-818 |#1|) #1#) $) NIL T ELT)) (-3158 (((-818 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-818 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3134 (((-818 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-818 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1628 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1627 (((-1086 (-818 |#1|)) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-1086 (-818 |#1|)) #1#) $ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-818 |#1|))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-818 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 (-818 |#1|)) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 (-818 |#1|))) NIL T ELT)) (-2410 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-818 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3226 (((-1180 (-818 |#1|)) $) NIL T ELT) (((-631 (-818 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-818 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-818 |#1|) (-118)) (|has| (-818 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-818 |#1|) (-320)) ELT) (($ $) NIL (|has| (-818 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-818 |#1|)) NIL T ELT) (($ (-818 |#1|) $) NIL T ELT)))
-(((-301 |#1| |#2|) (-13 (-280 (-818 |#1|)) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 (-818 |#1|)) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 (-818 |#1|)))) (-15 -1678 ((-695))))) (-831) (-831)) (T -301))
-((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 (-818 *3)) (|:| -2401 (-1034)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))))
-((-2570 (((-85) $ $) 72 T ELT)) (-3190 (((-85) $) 87 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) 105 T ELT) (($ $ (-831)) 103 (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 168 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) 102 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 185 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 126 T ELT)) (-3158 ((|#1| $) 104 T ELT)) (-1796 (($ (-1180 |#1|)) 70 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 180 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 169 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 112 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 107 T ELT) (($ $ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 212 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 146 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 216 T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 148 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 122 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) 96 T ELT)) (-1679 (((-631 |#1|)) 100 T ELT)) (-2410 (($) 109 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 171 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) 172 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) 74 T ELT)) (-3187 (((-1086 |#1|)) 173 T ELT)) (-1675 (($) 145 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 120 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 138 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 178 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 195 T ELT) (((-1180 $) (-831)) 115 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 184 T CONST)) (-2668 (($) 159 T CONST)) (-3930 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-695)) 113 (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 206 T ELT)) (-3951 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3839 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3841 (($ $ $) 202 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 151 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
-(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-3 (-1086 |#1|) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (T -302))
-((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1678 (((-695)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1680 (((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034)))))) NIL T ELT)) (-1679 (((-631 |#1|)) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1680 ((-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))))) (-15 -1679 ((-631 |#1|))) (-15 -1678 ((-695))))) (-299) (-831)) (T -303))
-((-1680 (*1 *2) (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1679 (*1 *2) (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))) (-1678 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 130 (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 156 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 104 T ELT)) (-3158 ((|#1| $) 101 T ELT)) (-1796 (($ (-1180 |#1|)) 96 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) 93 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 52 (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 131 (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) 48 T ELT) (($ $ (-831)) 53 (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) 76 T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) 108 (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) 106 (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) 158 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 45 (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 125 (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) 155 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) 68 T ELT)) (-3187 (((-1086 |#1|)) 99 T ELT)) (-1675 (($) 136 (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) 64 T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 154 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 160 T CONST)) (-1266 (((-85) $ $) 162 T ELT)) (-2013 (((-1180 $)) 120 T ELT) (((-1180 $) (-831)) 59 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 122 T CONST)) (-2668 (($) 40 T CONST)) (-3930 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 118 T ELT)) (-3951 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3839 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3841 (($ $ $) 114 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 54 T ELT) (($ $ (-485)) 139 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
-(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1086 |#1|)) (T -304))
-NIL
-((-1696 (((-870 (-1086 |#1|)) (-1086 |#1|)) 49 T ELT)) (-2996 (((-1086 |#1|) (-831) (-831)) 159 T ELT) (((-1086 |#1|) (-831)) 155 T ELT)) (-1681 (((-85) (-1086 |#1|)) 110 T ELT)) (-1683 (((-831) (-831)) 85 T ELT)) (-1684 (((-831) (-831)) 94 T ELT)) (-1682 (((-831) (-831)) 83 T ELT)) (-2012 (((-85) (-1086 |#1|)) 114 T ELT)) (-1691 (((-3 (-1086 |#1|) #1="failed") (-1086 |#1|)) 139 T ELT)) (-1694 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 144 T ELT)) (-1693 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 143 T ELT)) (-1692 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 142 T ELT)) (-1690 (((-3 (-1086 |#1|) #1#) (-1086 |#1|)) 134 T ELT)) (-1695 (((-1086 |#1|) (-1086 |#1|)) 71 T ELT)) (-1686 (((-1086 |#1|) (-831)) 149 T ELT)) (-1689 (((-1086 |#1|) (-831)) 152 T ELT)) (-1688 (((-1086 |#1|) (-831)) 151 T ELT)) (-1687 (((-1086 |#1|) (-831)) 150 T ELT)) (-1685 (((-1086 |#1|) (-831)) 147 T ELT)))
-(((-305 |#1|) (-10 -7 (-15 -1681 ((-85) (-1086 |#1|))) (-15 -2012 ((-85) (-1086 |#1|))) (-15 -1682 ((-831) (-831))) (-15 -1683 ((-831) (-831))) (-15 -1684 ((-831) (-831))) (-15 -1685 ((-1086 |#1|) (-831))) (-15 -1686 ((-1086 |#1|) (-831))) (-15 -1687 ((-1086 |#1|) (-831))) (-15 -1688 ((-1086 |#1|) (-831))) (-15 -1689 ((-1086 |#1|) (-831))) (-15 -1690 ((-3 (-1086 |#1|) #1="failed") (-1086 |#1|))) (-15 -1691 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1692 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1693 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -1694 ((-3 (-1086 |#1|) #1#) (-1086 |#1|))) (-15 -2996 ((-1086 |#1|) (-831))) (-15 -2996 ((-1086 |#1|) (-831) (-831))) (-15 -1695 ((-1086 |#1|) (-1086 |#1|))) (-15 -1696 ((-870 (-1086 |#1|)) (-1086 |#1|)))) (-299)) (T -305))
-((-1696 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1086 *4)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2996 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1694 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
-((-1697 ((|#1| (-1086 |#2|)) 60 T ELT)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -1697 (|#1| (-1086 |#2|)))) (-13 (-345) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -2011 ((-831) |#1|)) (-15 -2013 ((-1180 |#1|) (-831))) (-15 -3930 (|#1| |#1|)))) (-299)) (T -306))
-((-1697 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3948 (*2 *4)) (-15 -2011 ((-831) *2)) (-15 -2013 ((-1180 *2) (-831))) (-15 -3930 (*2 *2))))) (-5 *1 (-306 *2 *4)))))
-((-2706 (((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|) 40 T ELT)))
-(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2706 ((-3 (-584 |#3|) "failed") (-584 |#3|) |#3|))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -307))
-((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| |#1| (-320)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| |#1| (-320)) ELT)) (-2012 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3134 ((|#1| $) NIL T ELT) (($ $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 |#1|) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-1628 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1086 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1086 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1629 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| |#1| (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 |#1|)) NIL T ELT)) (-1675 (($) NIL (|has| |#1| (-320)) ELT)) (-1630 (($) NIL (|has| |#1| (-320)) ELT)) (-3226 (((-1180 |#1|) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2704 (($ $) NIL (|has| |#1| (-320)) ELT) (((-633 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-695)) NIL (|has| |#1| (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-308 |#1| |#2|) (-280 |#1|) (-299) (-831)) (T -308))
-NIL
-((-2250 (((-85) (-584 (-858 |#1|))) 41 T ELT)) (-2252 (((-584 (-858 |#1|)) (-584 (-858 |#1|))) 53 T ELT)) (-2251 (((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|))) 48 T ELT)))
-(((-309 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-858 |#1|)))) (-15 -2251 ((-3 (-584 (-858 |#1|)) "failed") (-584 (-858 |#1|)))) (-15 -2252 ((-584 (-858 |#1|)) (-584 (-858 |#1|))))) (-392) (-584 (-1091))) (T -309))
-((-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-584 (-1091))))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-485) $ (-485)) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2292 (($ (-1 (-485) (-485)) $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 28 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $) 30 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ |#1| (-485)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
-(((-310 |#1|) (-13 (-413) (-951 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-485))) (-15 -3138 ((-695) $)) (-15 -2301 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2292 ($ (-1 (-485) (-485)) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)) (-15 -1783 ((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-485)))) $)))) (-1014)) (T -310))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2301 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-485))))) (-5 *1 (-310 *3)) (-4 *3 (-1014)))))
-((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 13 T ELT)) (-2064 (($ $) 14 T ELT)) (-3973 (((-348 $) $) 31 T ELT)) (-3725 (((-85) $) 27 T ELT)) (-2486 (($ $) 19 T ELT)) (-3146 (($ $ $) 22 T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) 32 T ELT)) (-3468 (((-3 $ "failed") $ $) 21 T ELT)) (-1608 (((-695) $) 25 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 36 T ELT)) (-2063 (((-85) $ $) 16 T ELT)) (-3951 (($ $ $) 34 T ELT)))
-(((-311 |#1|) (-10 -7 (-15 -3951 (|#1| |#1| |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3725 ((-85) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+((-2703 (*1 *1 *1) (-4 *1 (-299))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1)))) (-1676 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))))) (-1675 (*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1102 (-830) (-694))))) (-1674 (*1 *1) (-4 *1 (-299))) (-2834 (*1 *1) (-4 *1 (-299))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830)))) (-1673 (*1 *2) (-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-345) (-320) (-1066) (-190) (-10 -8 (-15 -2703 ($ $)) (-15 -2704 ((-3 (-1179 $) "failed") (-630 $))) (-15 -1676 ((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484)))))) (-15 -1675 ((-1102 (-830) (-694)) (-484))) (-15 -1674 ($)) (-15 -2834 ($)) (-15 -1680 ((-85) $)) (-15 -1768 ((-694) $)) (-15 -3773 ((-830) $)) (-15 -1673 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) . T) ((-320) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T))
+((-3920 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|) 55 T ELT)) (-3919 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 53 T ELT)))
+(((-300 |#1| |#2| |#3|) (-10 -7 (-15 -3919 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))))) (-15 -3920 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) |#1|))) (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -300))
+((-3920 (*1 *2 *3) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-817 |#1|) #1#) $) NIL T ELT)) (-3157 (((-817 |#1|) $) NIL T ELT)) (-1795 (($ (-1179 (-817 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3133 (((-817 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-817 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1627 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1626 (((-1085 (-817 |#1|)) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-1085 (-817 |#1|)) #1#) $ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-817 |#1|))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-817 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3403 (-817 |#1|)) (|:| -2400 (-1033)))))) NIL T ELT)) (-1678 (((-630 (-817 |#1|))) NIL T ELT)) (-2409 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 (-817 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3225 (((-1179 (-817 |#1|)) $) NIL T ELT) (((-630 (-817 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-817 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-817 |#1|) (-118)) (|has| (-817 |#1|) (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| (-817 |#1|) (-320)) ELT) (($ $) NIL (|has| (-817 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-817 |#1|)) NIL T ELT) (($ (-817 |#1|) $) NIL T ELT)))
+(((-301 |#1| |#2|) (-13 (-280 (-817 |#1|)) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3403 (-817 |#1|)) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 (-817 |#1|)))) (-15 -1677 ((-694))))) (-830) (-830)) (T -301))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 (-817 *3)) (|:| -2400 (-1033)))))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))))
+((-2569 (((-85) $ $) 72 T ELT)) (-3189 (((-85) $) 87 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) 105 T ELT) (($ $ (-830)) 103 (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 168 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) 102 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) 185 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 126 T ELT)) (-3157 ((|#1| $) 104 T ELT)) (-1795 (($ (-1179 |#1|)) 70 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 211 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 180 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) 169 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 112 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 198 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 107 T ELT) (($ $ (-830)) 106 (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 212 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 146 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) 86 (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) 83 (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) 95 (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) 82 (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 216 T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 148 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 122 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) 96 T ELT)) (-1678 (((-630 |#1|)) 100 T ELT)) (-2409 (($) 109 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 171 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) 172 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) 74 T ELT)) (-3186 (((-1085 |#1|)) 173 T ELT)) (-1674 (($) 145 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 120 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) 138 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 69 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) 178 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 195 T ELT) (((-1179 $) (-830)) 115 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 184 T CONST)) (-2667 (($) 159 T CONST)) (-3929 (($ $) 121 (|has| |#1| (-320)) ELT) (($ $ (-694)) 113 (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 206 T ELT)) (-3950 (($ $ $) 118 T ELT) (($ $ |#1|) 119 T ELT)) (-3838 (($ $) 200 T ELT) (($ $ $) 204 T ELT)) (-3840 (($ $ $) 202 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 151 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 209 T ELT) (($ $ $) 162 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 117 T ELT)))
+(((-302 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 |#1|))) (-15 -1677 ((-694))))) (-299) (-3 (-1085 |#1|) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))))) (T -302))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033)))))) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033))))))))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033))))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1677 (((-694)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1795 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1679 (((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033)))))) NIL T ELT)) (-1678 (((-630 |#1|)) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-303 |#1| |#2|) (-13 (-280 |#1|) (-10 -7 (-15 -1679 ((-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))))) (-15 -1678 ((-630 |#1|))) (-15 -1677 ((-694))))) (-299) (-830)) (T -303))
+((-1679 (*1 *2) (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033)))))) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1678 (*1 *2) (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))) (-1677 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 130 (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) 156 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 104 T ELT)) (-3157 ((|#1| $) 101 T ELT)) (-1795 (($ (-1179 |#1|)) 96 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 127 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) 93 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) 52 (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 131 (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) 85 (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) 48 T ELT) (($ $ (-830)) 53 (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) 76 T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) 108 (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) 106 (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) 158 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) 45 (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 125 (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) 155 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) 68 T ELT)) (-3186 (((-1085 |#1|)) 99 T ELT)) (-1674 (($) 136 (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) 64 T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) 154 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 98 T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) 160 T CONST)) (-1265 (((-85) $ $) 162 T ELT)) (-2012 (((-1179 $)) 120 T ELT) (((-1179 $) (-830)) 59 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 122 T CONST)) (-2667 (($) 40 T CONST)) (-3929 (($ $) 79 (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 118 T ELT)) (-3950 (($ $ $) 110 T ELT) (($ $ |#1|) 111 T ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 116 T ELT)) (-3840 (($ $ $) 114 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 54 T ELT) (($ $ (-484)) 139 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 89 T ELT) (($ $ $) 66 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 87 T ELT)))
+(((-304 |#1| |#2|) (-280 |#1|) (-299) (-1085 |#1|)) (T -304))
+NIL
+((-1695 (((-869 (-1085 |#1|)) (-1085 |#1|)) 49 T ELT)) (-2995 (((-1085 |#1|) (-830) (-830)) 159 T ELT) (((-1085 |#1|) (-830)) 155 T ELT)) (-1680 (((-85) (-1085 |#1|)) 110 T ELT)) (-1682 (((-830) (-830)) 85 T ELT)) (-1683 (((-830) (-830)) 94 T ELT)) (-1681 (((-830) (-830)) 83 T ELT)) (-2011 (((-85) (-1085 |#1|)) 114 T ELT)) (-1690 (((-3 (-1085 |#1|) #1="failed") (-1085 |#1|)) 139 T ELT)) (-1693 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 144 T ELT)) (-1692 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 143 T ELT)) (-1691 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 142 T ELT)) (-1689 (((-3 (-1085 |#1|) #1#) (-1085 |#1|)) 134 T ELT)) (-1694 (((-1085 |#1|) (-1085 |#1|)) 71 T ELT)) (-1685 (((-1085 |#1|) (-830)) 149 T ELT)) (-1688 (((-1085 |#1|) (-830)) 152 T ELT)) (-1687 (((-1085 |#1|) (-830)) 151 T ELT)) (-1686 (((-1085 |#1|) (-830)) 150 T ELT)) (-1684 (((-1085 |#1|) (-830)) 147 T ELT)))
+(((-305 |#1|) (-10 -7 (-15 -1680 ((-85) (-1085 |#1|))) (-15 -2011 ((-85) (-1085 |#1|))) (-15 -1681 ((-830) (-830))) (-15 -1682 ((-830) (-830))) (-15 -1683 ((-830) (-830))) (-15 -1684 ((-1085 |#1|) (-830))) (-15 -1685 ((-1085 |#1|) (-830))) (-15 -1686 ((-1085 |#1|) (-830))) (-15 -1687 ((-1085 |#1|) (-830))) (-15 -1688 ((-1085 |#1|) (-830))) (-15 -1689 ((-3 (-1085 |#1|) #1="failed") (-1085 |#1|))) (-15 -1690 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1691 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1692 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -1693 ((-3 (-1085 |#1|) #1#) (-1085 |#1|))) (-15 -2995 ((-1085 |#1|) (-830))) (-15 -2995 ((-1085 |#1|) (-830) (-830))) (-15 -1694 ((-1085 |#1|) (-1085 |#1|))) (-15 -1695 ((-869 (-1085 |#1|)) (-1085 |#1|)))) (-299)) (T -305))
+((-1695 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1085 *4))) (-5 *1 (-305 *4)) (-5 *3 (-1085 *4)))) (-1694 (*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-2995 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1693 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1692 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1691 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1689 (*1 *2 *2) (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-1681 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
+((-1696 ((|#1| (-1085 |#2|)) 60 T ELT)))
+(((-306 |#1| |#2|) (-10 -7 (-15 -1696 (|#1| (-1085 |#2|)))) (-13 (-345) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -2010 ((-830) |#1|)) (-15 -2012 ((-1179 |#1|) (-830))) (-15 -3929 (|#1| |#1|)))) (-299)) (T -306))
+((-1696 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-4 *2 (-13 (-345) (-10 -7 (-15 -3947 (*2 *4)) (-15 -2010 ((-830) *2)) (-15 -2012 ((-1179 *2) (-830))) (-15 -3929 (*2 *2))))) (-5 *1 (-306 *2 *4)))))
+((-2705 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 40 T ELT)))
+(((-307 |#1| |#2| |#3|) (-10 -7 (-15 -2705 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -307))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1795 (($ (-1179 |#1|)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| |#1| (-320)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| |#1| (-320)) ELT)) (-2011 (((-85) $) NIL (|has| |#1| (-320)) ELT)) (-3133 ((|#1| $) NIL T ELT) (($ $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 |#1|) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-1627 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT)) (-1626 (((-1085 |#1|) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-1085 |#1|) #1#) $ $) NIL (|has| |#1| (-320)) ELT)) (-1628 (($ $ (-1085 |#1|)) NIL (|has| |#1| (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| |#1| (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 |#1|)) NIL T ELT)) (-1674 (($) NIL (|has| |#1| (-320)) ELT)) (-1629 (($) NIL (|has| |#1| (-320)) ELT)) (-3225 (((-1179 |#1|) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) NIL T ELT)) (-2703 (($ $) NIL (|has| |#1| (-320)) ELT) (((-632 $) $) NIL (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| |#1| (-320)) ELT) (($ $ (-694)) NIL (|has| |#1| (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| |#1| (-320)) ELT) (($ $) NIL (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-308 |#1| |#2|) (-280 |#1|) (-299) (-830)) (T -308))
+NIL
+((-2249 (((-85) (-583 (-857 |#1|))) 41 T ELT)) (-2251 (((-583 (-857 |#1|)) (-583 (-857 |#1|))) 53 T ELT)) (-2250 (((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|))) 48 T ELT)))
+(((-309 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-857 |#1|)))) (-15 -2250 ((-3 (-583 (-857 |#1|)) "failed") (-583 (-857 |#1|)))) (-15 -2251 ((-583 (-857 |#1|)) (-583 (-857 |#1|))))) (-392) (-583 (-1090))) (T -309))
+((-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1090))))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4)) (-14 *4 (-583 (-1090))))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-85)) (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-484) $ (-484)) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2291 (($ (-1 (-484) (-484)) $) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 28 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1782 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-484)))) $) 30 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ |#1| (-484)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
+(((-310 |#1|) (-13 (-413) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-484))) (-15 -3137 ((-694) $)) (-15 -2300 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2291 ($ (-1 (-484) (-484)) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)) (-15 -1782 ((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-484)))) $)))) (-1013)) (T -310))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2300 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 (-484))))) (-5 *1 (-310 *3)) (-4 *3 (-1013)))))
+((-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 13 T ELT)) (-2063 (($ $) 14 T ELT)) (-3972 (((-348 $) $) 31 T ELT)) (-3724 (((-85) $) 27 T ELT)) (-2485 (($ $) 19 T ELT)) (-3145 (($ $ $) 22 T ELT) (($ (-583 $)) NIL T ELT)) (-3733 (((-348 $) $) 32 T ELT)) (-3467 (((-3 $ "failed") $ $) 21 T ELT)) (-1607 (((-694) $) 25 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 36 T ELT)) (-2062 (((-85) $ $) 16 T ELT)) (-3950 (($ $ $) 34 T ELT)))
+(((-311 |#1|) (-10 -7 (-15 -3950 (|#1| |#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2880 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -3145 (|#1| (-583 |#1|))) (-15 -3145 (|#1| |#1| |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1775 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#1|))) (-312)) (T -311))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
(((-312) (-113)) (T -312))
-((-3951 (*1 *1 *1 *1) (-4 *1 (-312))))
-(-13 (-258) (-1135) (-201) (-10 -8 (-15 -3951 ($ $ $)) (-6 -3995) (-6 -3989)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-1698 ((|#1| $ |#1|) 35 T ELT)) (-1702 (($ $ (-1074)) 23 T ELT)) (-3621 (((-3 |#1| "failed") $) 34 T ELT)) (-1699 ((|#1| $) 32 T ELT)) (-1703 (($ (-338)) 22 T ELT) (($ (-338) (-1074)) 21 T ELT)) (-3544 (((-338) $) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT)) (-1701 (($ $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT)))
-(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") $)))) (-1014)) (T -313))
-((-3621 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-1698 ((|#2| $ |#2|) 17 T ELT)) (-1702 (($ $ (-1074)) 22 T ELT)) (-1699 ((|#2| $) 18 T ELT)) (-1703 (($ |#1|) 24 T ELT) (($ |#1| (-1074)) 23 T ELT)) (-3544 ((|#1| $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1700 (((-1074) $) 19 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1701 (($ $) 21 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-314 |#1| |#2|) (-113) (-1014) (-1014)) (T -314))
-((-1703 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-1703 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014)))) (-1702 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-1701 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-1698 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(-13 (-1014) (-10 -8 (-15 -1703 ($ |t#1|)) (-15 -1703 ($ |t#1| (-1074))) (-15 -1702 ($ $ (-1074))) (-15 -1701 ($ $)) (-15 -3544 (|t#1| $)) (-15 -1700 ((-1074) $)) (-15 -1699 (|t#2| $)) (-15 -1698 (|t#2| $ |t#2|))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3225 (((-1180 (-631 |#2|)) (-1180 $)) 67 T ELT)) (-1792 (((-631 |#2|) (-1180 $)) 139 T ELT)) (-1728 ((|#2| $) 36 T ELT)) (-1790 (((-631 |#2|) $ (-1180 $)) 142 T ELT)) (-2405 (((-3 $ #1="failed") $) 89 T ELT)) (-1726 ((|#2| $) 39 T ELT)) (-1706 (((-1086 |#2|) $) 98 T ELT)) (-1794 ((|#2| (-1180 $)) 122 T ELT)) (-1724 (((-1086 |#2|) $) 32 T ELT)) (-1718 (((-85)) 116 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) 132 T ELT)) (-3469 (((-3 $ #1#) $) 93 T ELT)) (-1711 (((-85)) 111 T ELT)) (-1709 (((-85)) 106 T ELT)) (-1713 (((-85)) 58 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) 137 T ELT)) (-1729 ((|#2| $) 35 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) 141 T ELT)) (-2406 (((-3 $ #1#) $) 87 T ELT)) (-1727 ((|#2| $) 38 T ELT)) (-1707 (((-1086 |#2|) $) 97 T ELT)) (-1795 ((|#2| (-1180 $)) 120 T ELT)) (-1725 (((-1086 |#2|) $) 30 T ELT)) (-1719 (((-85)) 115 T ELT)) (-1710 (((-85)) 108 T ELT)) (-1712 (((-85)) 56 T ELT)) (-1714 (((-85)) 103 T ELT)) (-1717 (((-85)) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 128 T ELT)) (-1723 (((-85)) 113 T ELT)) (-1708 (((-584 (-1180 |#2|))) 102 T ELT)) (-1721 (((-85)) 114 T ELT)) (-1722 (((-85)) 112 T ELT)) (-1720 (((-85)) 51 T ELT)) (-1716 (((-85)) 118 T ELT)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -1706 ((-1086 |#2|) |#1|)) (-15 -1707 ((-1086 |#2|) |#1|)) (-15 -1708 ((-584 (-1180 |#2|)))) (-15 -2405 ((-3 |#1| #1="failed") |#1|)) (-15 -2406 ((-3 |#1| #1#) |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1|)) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1714 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-85))) (-15 -1724 ((-1086 |#2|) |#1|)) (-15 -1725 ((-1086 |#2|) |#1|)) (-15 -1792 ((-631 |#2|) (-1180 |#1|))) (-15 -1793 ((-631 |#2|) (-1180 |#1|))) (-15 -1794 (|#2| (-1180 |#1|))) (-15 -1795 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1729 (|#2| |#1|)) (-15 -1790 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-631 |#2|)) (-1180 |#1|)))) (-316 |#2|) (-146)) (T -315))
-((-1723 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1714 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1776 (((-3 $ "failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3726 (($) 23 T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ "failed")) 49 (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) 76 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) 87 T ELT)) (-2405 (((-3 $ "failed") $) 56 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) 78 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 80 T ELT)) (-3469 (((-3 $ "failed") $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed")) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ "failed")) 50 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 77 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 88 T ELT)) (-2406 (((-3 $ "failed") $) 57 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 79 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-3950 (*1 *1 *1 *1) (-4 *1 (-312))))
+(-13 (-258) (-1134) (-201) (-10 -8 (-15 -3950 ($ $ $)) (-6 -3994) (-6 -3988)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-1697 ((|#1| $ |#1|) 35 T ELT)) (-1701 (($ $ (-1073)) 23 T ELT)) (-3620 (((-3 |#1| "failed") $) 34 T ELT)) (-1698 ((|#1| $) 32 T ELT)) (-1702 (($ (-338)) 22 T ELT) (($ (-338) (-1073)) 21 T ELT)) (-3543 (((-338) $) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) 26 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT)) (-1700 (($ $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-313 |#1|) (-13 (-314 (-338) |#1|) (-10 -8 (-15 -3620 ((-3 |#1| "failed") $)))) (-1013)) (T -313))
+((-3620 (*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-1697 ((|#2| $ |#2|) 17 T ELT)) (-1701 (($ $ (-1073)) 22 T ELT)) (-1698 ((|#2| $) 18 T ELT)) (-1702 (($ |#1|) 24 T ELT) (($ |#1| (-1073)) 23 T ELT)) (-3543 ((|#1| $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1699 (((-1073) $) 19 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1700 (($ $) 21 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-314 |#1| |#2|) (-113) (-1013) (-1013)) (T -314))
+((-1702 (*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1073)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-1697 (*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -1702 ($ |t#1|)) (-15 -1702 ($ |t#1| (-1073))) (-15 -1701 ($ $ (-1073))) (-15 -1700 ($ $)) (-15 -3543 (|t#1| $)) (-15 -1699 ((-1073) $)) (-15 -1698 (|t#2| $)) (-15 -1697 (|t#2| $ |t#2|))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3224 (((-1179 (-630 |#2|)) (-1179 $)) 67 T ELT)) (-1791 (((-630 |#2|) (-1179 $)) 139 T ELT)) (-1727 ((|#2| $) 36 T ELT)) (-1789 (((-630 |#2|) $ (-1179 $)) 142 T ELT)) (-2404 (((-3 $ #1="failed") $) 89 T ELT)) (-1725 ((|#2| $) 39 T ELT)) (-1705 (((-1085 |#2|) $) 98 T ELT)) (-1793 ((|#2| (-1179 $)) 122 T ELT)) (-1723 (((-1085 |#2|) $) 32 T ELT)) (-1717 (((-85)) 116 T ELT)) (-1795 (($ (-1179 |#2|) (-1179 $)) 132 T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-1710 (((-85)) 111 T ELT)) (-1708 (((-85)) 106 T ELT)) (-1712 (((-85)) 58 T ELT)) (-1792 (((-630 |#2|) (-1179 $)) 137 T ELT)) (-1728 ((|#2| $) 35 T ELT)) (-1790 (((-630 |#2|) $ (-1179 $)) 141 T ELT)) (-2405 (((-3 $ #1#) $) 87 T ELT)) (-1726 ((|#2| $) 38 T ELT)) (-1706 (((-1085 |#2|) $) 97 T ELT)) (-1794 ((|#2| (-1179 $)) 120 T ELT)) (-1724 (((-1085 |#2|) $) 30 T ELT)) (-1718 (((-85)) 115 T ELT)) (-1709 (((-85)) 108 T ELT)) (-1711 (((-85)) 56 T ELT)) (-1713 (((-85)) 103 T ELT)) (-1716 (((-85)) 117 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) 128 T ELT)) (-1722 (((-85)) 113 T ELT)) (-1707 (((-583 (-1179 |#2|))) 102 T ELT)) (-1720 (((-85)) 114 T ELT)) (-1721 (((-85)) 112 T ELT)) (-1719 (((-85)) 51 T ELT)) (-1715 (((-85)) 118 T ELT)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -1705 ((-1085 |#2|) |#1|)) (-15 -1706 ((-1085 |#2|) |#1|)) (-15 -1707 ((-583 (-1179 |#2|)))) (-15 -2404 ((-3 |#1| #1="failed") |#1|)) (-15 -2405 ((-3 |#1| #1#) |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|)) (-15 -1708 ((-85))) (-15 -1709 ((-85))) (-15 -1710 ((-85))) (-15 -1711 ((-85))) (-15 -1712 ((-85))) (-15 -1713 ((-85))) (-15 -1715 ((-85))) (-15 -1716 ((-85))) (-15 -1717 ((-85))) (-15 -1718 ((-85))) (-15 -1719 ((-85))) (-15 -1720 ((-85))) (-15 -1721 ((-85))) (-15 -1722 ((-85))) (-15 -1723 ((-1085 |#2|) |#1|)) (-15 -1724 ((-1085 |#2|) |#1|)) (-15 -1791 ((-630 |#2|) (-1179 |#1|))) (-15 -1792 ((-630 |#2|) (-1179 |#1|))) (-15 -1793 (|#2| (-1179 |#1|))) (-15 -1794 (|#2| (-1179 |#1|))) (-15 -1795 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1725 (|#2| |#1|)) (-15 -1726 (|#2| |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -1728 (|#2| |#1|)) (-15 -1789 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -1790 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -3224 ((-1179 (-630 |#2|)) (-1179 |#1|)))) (-316 |#2|) (-146)) (T -315))
+((-1722 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1720 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1719 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1718 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1717 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1716 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1715 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1713 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1712 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1711 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1710 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1709 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1708 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))) (-1707 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1179 *4))) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1775 (((-3 $ "failed")) 48 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1179 (-630 |#1|)) (-1179 $)) 89 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 51 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ "failed")) 49 (|has| |#1| (-495)) ELT)) (-1791 (((-630 |#1|) (-1179 $)) 76 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1789 (((-630 |#1|) $ (-1179 $)) 87 T ELT)) (-2404 (((-3 $ "failed") $) 56 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1793 ((|#1| (-1179 $)) 78 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) 80 T ELT)) (-3468 (((-3 $ "failed") $) 58 (|has| |#1| (-495)) ELT)) (-3109 (((-830)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2434 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed")) 52 (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ "failed")) 50 (|has| |#1| (-495)) ELT)) (-1792 (((-630 |#1|) (-1179 $)) 77 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1790 (((-630 |#1|) $ (-1179 $)) 88 T ELT)) (-2405 (((-3 $ "failed") $) 57 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1794 ((|#1| (-1179 $)) 79 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 81 T ELT)) (-1895 (((-583 (-857 |#1|)) (-1179 $)) 90 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1707 (((-583 (-1179 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-316 |#1|) (-113) (-146)) (T -316))
-((-1730 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3)))) (-3110 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))))) (-1791 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1790 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1729 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))) (-1723 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3469 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2406 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-584 (-1180 *3))))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))) (-1911 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1910 (*1 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3)))) (-1705 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))) (-1776 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
-(-13 (-684 |t#1|) (-10 -8 (-15 -1730 ((-1180 $))) (-15 -3110 ((-831))) (-15 -1896 ((-584 (-858 |t#1|)) (-1180 $))) (-15 -3225 ((-1180 (-631 |t#1|)) (-1180 $))) (-15 -1791 ((-631 |t#1|) $ (-1180 $))) (-15 -1790 ((-631 |t#1|) $ (-1180 $))) (-15 -1729 (|t#1| $)) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|) (-1180 $))) (-15 -1795 (|t#1| (-1180 $))) (-15 -1794 (|t#1| (-1180 $))) (-15 -1793 ((-631 |t#1|) (-1180 $))) (-15 -1792 ((-631 |t#1|) (-1180 $))) (-15 -1725 ((-1086 |t#1|) $)) (-15 -1724 ((-1086 |t#1|) $)) (-15 -1723 ((-85))) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (IF (|has| |t#1| (-496)) (PROGN (-15 -3469 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -1708 ((-584 (-1180 |t#1|)))) (-15 -1707 ((-1086 |t#1|) $)) (-15 -1706 ((-1086 |t#1|) $)) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) "failed"))) (-15 -1705 ((-3 $ "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1776 ((-3 $ "failed"))) (-6 -3994)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 35 T ELT)) (-3247 (((-85) |#2| $) 32 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3405 (((-85) $) 13 T ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 27 T ELT) (((-695) |#2| $) 30 T ELT)) (-3948 (((-773) $) 43 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-3959 (((-695) $) 17 T ELT)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3247 ((-85) |#2| |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3959 ((-695) |#1|)) (-15 -3405 ((-85) |#1|))) (-318 |#2|) (-1130)) (T -317))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-2610 (((-584 |#1|) $) 39 T ELT)) (-3247 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 40 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-318 |#1|) (-113) (-1130)) (T -318))
-((-3959 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1733 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3844 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-3844 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-1731 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3247 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3844 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))))
-(-13 (-429 |t#1|) (-10 -8 (-15 -3959 ((-695) $)) (-15 -1733 ((-85) (-1 (-85) |t#1|) $)) (-15 -1732 ((-85) (-1 (-85) |t#1|) $)) (-15 -1731 ((-695) (-1 (-85) |t#1|) $)) (-15 -2610 ((-584 |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1731 ((-695) |t#1| $)) (-15 -3247 ((-85) |t#1| $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2996 (($) 15 T ELT)))
-(((-319 |#1|) (-10 -7 (-15 -2996 (|#1|))) (-320)) (T -319))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695)) 20 T ELT)) (-2996 (($) 17 T ELT)) (-2011 (((-831) $) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 19 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+((-1729 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3)))) (-3109 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))))) (-1790 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1728 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))) (-1722 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1721 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1720 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1719 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1718 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1717 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1716 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1715 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1714 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1713 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1712 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1711 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1710 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1709 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-1708 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))) (-3468 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2405 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-2404 (*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495)))) (-1707 (*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-583 (-1179 *3))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))) (-1705 (*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))) (-1910 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1909 (*1 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3)))) (-1704 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1703 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))) (-1775 (*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
+(-13 (-683 |t#1|) (-10 -8 (-15 -1729 ((-1179 $))) (-15 -3109 ((-830))) (-15 -1895 ((-583 (-857 |t#1|)) (-1179 $))) (-15 -3224 ((-1179 (-630 |t#1|)) (-1179 $))) (-15 -1790 ((-630 |t#1|) $ (-1179 $))) (-15 -1789 ((-630 |t#1|) $ (-1179 $))) (-15 -1728 (|t#1| $)) (-15 -1727 (|t#1| $)) (-15 -1726 (|t#1| $)) (-15 -1725 (|t#1| $)) (-15 -3225 ((-1179 |t#1|) $ (-1179 $))) (-15 -3225 ((-630 |t#1|) (-1179 $) (-1179 $))) (-15 -1795 ($ (-1179 |t#1|) (-1179 $))) (-15 -1794 (|t#1| (-1179 $))) (-15 -1793 (|t#1| (-1179 $))) (-15 -1792 ((-630 |t#1|) (-1179 $))) (-15 -1791 ((-630 |t#1|) (-1179 $))) (-15 -1724 ((-1085 |t#1|) $)) (-15 -1723 ((-1085 |t#1|) $)) (-15 -1722 ((-85))) (-15 -1721 ((-85))) (-15 -1720 ((-85))) (-15 -1719 ((-85))) (-15 -1718 ((-85))) (-15 -1717 ((-85))) (-15 -1716 ((-85))) (-15 -1715 ((-85))) (-15 -1714 ((-85))) (-15 -1713 ((-85))) (-15 -1712 ((-85))) (-15 -1711 ((-85))) (-15 -1710 ((-85))) (-15 -1709 ((-85))) (-15 -1708 ((-85))) (IF (|has| |t#1| (-495)) (PROGN (-15 -3468 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $)) (-15 -1707 ((-583 (-1179 |t#1|)))) (-15 -1706 ((-1085 |t#1|) $)) (-15 -1705 ((-1085 |t#1|) $)) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1909 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) "failed"))) (-15 -1704 ((-3 $ "failed"))) (-15 -1703 ((-3 $ "failed"))) (-15 -1775 ((-3 $ "failed"))) (-6 -3993)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-3843 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 35 T ELT)) (-3246 (((-85) |#2| $) 32 T ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 24 T ELT)) (-3404 (((-85) $) 13 T ELT)) (-1730 (((-694) (-1 (-85) |#2|) $) 27 T ELT) (((-694) |#2| $) 30 T ELT)) (-3947 (((-772) $) 43 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 21 T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-3958 (((-694) $) 17 T ELT)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3246 ((-85) |#2| |#1|)) (-15 -1730 ((-694) |#2| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1730 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1732 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -3958 ((-694) |#1|)) (-15 -3404 ((-85) |#1|))) (-318 |#2|) (-1129)) (T -317))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-2609 (((-583 |#1|) $) 39 T ELT)) (-3246 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) 40 T ELT) (((-694) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-318 |#1|) (-113) (-1129)) (T -318))
+((-3958 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-1732 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1731 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-1730 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-694)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-3843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1129)))) (-3843 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1129)))) (-1730 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-694)))) (-3246 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3843 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1129)))))
+(-13 (-429 |t#1|) (-10 -8 (-15 -3958 ((-694) $)) (-15 -1732 ((-85) (-1 (-85) |t#1|) $)) (-15 -1731 ((-85) (-1 (-85) |t#1|) $)) (-15 -1730 ((-694) (-1 (-85) |t#1|) $)) (-15 -2609 ((-583 |t#1|) $)) (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1730 ((-694) |t#1| $)) (-15 -3246 ((-85) |t#1| $)) (-15 -3843 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-2995 (($) 15 T ELT)))
+(((-319 |#1|) (-10 -7 (-15 -2995 (|#1|))) (-320)) (T -319))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-694)) 20 T ELT)) (-2995 (($) 17 T ELT)) (-2010 (((-830) $) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2400 (($ (-830)) 19 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-320) (-113)) (T -320))
-((-3138 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695)))) (-2401 (*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831)))) (-2996 (*1 *1) (-4 *1 (-320))))
-(-13 (-1014) (-10 -8 (-15 -3138 ((-695))) (-15 -2401 ($ (-831))) (-15 -2011 ((-831) $)) (-15 -2996 ($))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-1786 (((-631 |#2|) (-1180 $)) 45 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) 39 T ELT)) (-1785 (((-631 |#2|) $ (-1180 $)) 47 T ELT)) (-3759 ((|#2| (-1180 $)) 13 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) 27 T ELT)))
-(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1786 ((-631 |#2|) (-1180 |#1|))) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1180 |#1|)))) (-322 |#2| |#3|) (-146) (-1156 |#2|)) (T -321))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-322 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -322))
-((-3110 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-3226 (*1 *2 *1 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4)))) (-3226 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2)) (-4 *2 (-146)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -3110 ((-831))) (-15 -1785 ((-631 |t#1|) $ (-1180 $))) (-15 -3332 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3226 ((-1180 |t#1|) $ (-1180 $))) (-15 -3226 ((-631 |t#1|) (-1180 $) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|) (-1180 $))) (-15 -3759 (|t#1| (-1180 $))) (-15 -1786 ((-631 |t#1|) (-1180 $))) (-15 -2451 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2015 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-1736 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1734 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2911 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2299 (($ $) 25 T ELT)) (-3421 (((-485) (-1 (-85) |#2|) $) NIL T ELT) (((-485) |#2| $) 11 T ELT) (((-485) |#2| $ (-485)) NIL T ELT)) (-3520 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
-(((-323 |#1| |#2|) (-10 -7 (-15 -1734 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1736 ((-85) |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2911 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2299 (|#1| |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1130)) (T -323))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1036 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 89 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 99 T ELT)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 96 T ELT) (((-485) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 94 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 105 T ELT)) (-3247 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 82 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1731 (((-695) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 104 T ELT)) (-1735 (($ $ $ (-485)) 90 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2568 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 86 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 101 T ELT)))
-(((-324 |#1|) (-113) (-1130)) (T -324))
-((-3520 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2299 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-2911 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1736 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3421 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-2911 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85)))) (-1735 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)))) (-1734 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))) (-1734 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757)))))
-(-13 (-594 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3520 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2299 ($ $)) (-15 -2911 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1736 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3421 ((-485) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3421 ((-485) |t#1| $)) (-15 -3421 ((-485) |t#1| $ (-485)))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-6 (-757)) (-15 -3520 ($ $ $)) (-15 -2911 ($ $)) (-15 -1736 ((-85) $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -1735 ($ $ $ (-485))) (-15 -2298 ($ $)) (-15 -1734 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-15 -1734 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1130) . T))
-((-3843 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3844 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3960 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
-(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3844 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3843 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1130) (-324 |#1|) (-1130) (-324 |#3|)) (T -325))
-((-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 43 T ELT)) (-3949 (($ $ (-695)) 44 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3938 (($ $) 45 T ELT)) (-3942 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 48 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ |#1| $) 42 T ELT) (($ $ (-584 |#1|) (-584 $)) 41 T ELT)) (-3950 (((-695) $) 49 T ELT)) (-3532 (($ $ $) 40 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1196 |#1| |#2|) $) 51 T ELT) (((-1205 |#1| |#2|) $) 50 T ELT)) (-3956 ((|#2| (-1205 |#1| |#2|) $) 53 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-1737 (($ (-615 |#1|)) 46 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
-(((-326 |#1| |#2|) (-113) (-757) (-146)) (T -326))
-((-3956 (*1 *2 *3 *1) (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757)) (-4 *2 (-146)))) (-3948 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1196 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-1205 *3 *4)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695)))) (-3942 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3941 (*1 *2 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3)))) (-3770 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757)) (-4 *5 (-146)))))
-(-13 (-575 |t#2|) (-10 -8 (-15 -3956 (|t#2| (-1205 |t#1| |t#2|) $)) (-15 -3948 ($ |t#1|)) (-15 -3948 ((-1196 |t#1| |t#2|) $)) (-15 -3948 ((-1205 |t#1| |t#2|) $)) (-15 -3950 ((-695) $)) (-15 -3942 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -3941 ((-1205 |t#1| |t#2|) (-1205 |t#1| |t#2|) $)) (-15 -1737 ($ (-615 |t#1|))) (-15 -3938 ($ $)) (-15 -3949 ($ $ (-695))) (-15 -3936 ((-584 |t#1|) $)) (-15 -3770 ($ $ |t#1| $)) (-15 -3770 ($ $ (-584 |t#1|) (-584 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-591 |#2|) . T) ((-575 |#2|) . T) ((-583 |#2|) . T) ((-655 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-1014) . T) ((-1130) . T))
-((-1740 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1738 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1739 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
-(((-327 |#1| |#2|) (-10 -7 (-15 -1738 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1739 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1740 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1130) (-13 (-324 |#1|) (-10 -7 (-6 -3998)))) (T -327))
-((-1740 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))) (-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))) (-1738 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))))
-((-2280 (((-631 |#2|) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 22 T ELT) (((-631 (-485)) (-631 $)) 14 T ELT)))
-(((-328 |#1| |#2|) (-10 -7 (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 |#2|) (-631 |#1|)))) (-329 |#2|) (-962)) (T -328))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 47 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-631 $)) 46 (|has| |#1| (-581 (-485))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 45 (|has| |#1| (-581 (-485))) ELT) (((-631 (-485)) (-1180 $)) 44 (|has| |#1| (-581 (-485))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-329 |#1|) (-113) (-962)) (T -329))
-NIL
-(-13 (-581 |t#1|) (-10 -7 (IF (|has| |t#1| (-581 (-485))) (-6 (-581 (-485))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3131 (((-485) $) 44 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3773 (($ $) 120 T ELT)) (-3494 (($ $) 81 T ELT)) (-3641 (($ $) 72 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) 28 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3492 (($ $) 79 T ELT)) (-3640 (($ $) 67 T ELT)) (-3625 (((-485) $) 60 T ELT)) (-2443 (($ $ (-485)) 55 T ELT)) (-3496 (($ $) NIL T ELT)) (-3639 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3129 (($ $) 122 T ELT)) (-3159 (((-3 (-485) #1#) $) 217 T ELT) (((-3 (-350 (-485)) #1#) $) 213 T ELT)) (-3158 (((-485) $) 215 T ELT) (((-350 (-485)) $) 211 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-1749 (((-485) $ $) 110 T ELT)) (-3469 (((-3 $ #1#) $) 125 T ELT)) (-1748 (((-350 (-485)) $ (-695)) 218 T ELT) (((-350 (-485)) $ (-695) (-695)) 210 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1772 (((-831)) 106 T ELT) (((-831) (-831)) 107 (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 38 T ELT)) (-3629 (($) 22 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL T ELT)) (-1741 (((-1186) (-695)) 177 T ELT)) (-1742 (((-1186)) 182 T ELT) (((-1186) (-695)) 183 T ELT)) (-1744 (((-1186)) 184 T ELT) (((-1186) (-695)) 185 T ELT)) (-1743 (((-1186)) 180 T ELT) (((-1186) (-695)) 181 T ELT)) (-3774 (((-485) $) 50 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 21 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-2445 (($ $) 32 T ELT)) (-3134 (($ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-2859 (($ $ $) NIL T ELT) (($) NIL (-12 (-2562 (|has| $ (-6 -3980))) (-2562 (|has| $ (-6 -3988)))) ELT)) (-1774 (((-485) $) 112 T ELT)) (-1747 (($) 90 T ELT) (($ $) 97 T ELT)) (-1746 (($) 96 T ELT) (($ $) 98 T ELT)) (-3944 (($ $) 84 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 127 T ELT)) (-1771 (((-831) (-485)) 27 (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) 41 T ELT)) (-3132 (($ $) 119 T ELT)) (-3256 (($ (-485) (-485)) 115 T ELT) (($ (-485) (-485) (-831)) 116 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2402 (((-485) $) 113 T ELT)) (-1745 (($) 99 T ELT)) (-3945 (($ $) 78 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-831)) 108 T ELT) (((-831) (-831)) 109 (|has| $ (-6 -3988)) ELT)) (-3760 (($ $) 126 T ELT) (($ $ (-695)) NIL T ELT)) (-1770 (((-831) (-485)) 31 (|has| $ (-6 -3988)) ELT)) (-3497 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3495 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3493 (($ $) 80 T ELT)) (-3636 (($ $) 71 T ELT)) (-3974 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-801 (-330)) $) NIL T ELT) (((-1074) $) 188 T ELT) (((-474) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3948 (((-773) $) 192 T ELT) (($ (-485)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) 214 T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 205 T ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (($ $) 121 T ELT)) (-1773 (((-831)) 42 T ELT) (((-831) (-831)) 62 (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-831)) 111 T ELT)) (-3500 (($ $) 87 T ELT)) (-3488 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 85 T ELT)) (-3486 (($ $) 20 T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL T ELT)) (-3491 (($ $) NIL T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3499 (($ $) 86 T ELT)) (-3487 (($ $) 33 T ELT)) (-3385 (($ $) 39 T ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 24 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 189 T ELT)) (-2569 (((-85) $ $) 26 T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 43 T ELT)) (-3951 (($ $ $) 29 T ELT) (($ $ (-485)) 23 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3841 (($ $ $) 54 T ELT)) (** (($ $ (-831)) 65 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 91 T ELT) (($ $ (-350 (-485))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-831) $) 61 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-330) (-13 (-347) (-190) (-554 (-1074)) (-553 (-179)) (-1116) (-554 (-474)) (-558 (-179)) (-10 -8 (-15 -3951 ($ $ (-485))) (-15 ** ($ $ $)) (-15 -2445 ($ $)) (-15 -1749 ((-485) $ $)) (-15 -2443 ($ $ (-485))) (-15 -1748 ((-350 (-485)) $ (-695))) (-15 -1748 ((-350 (-485)) $ (-695) (-695))) (-15 -1747 ($)) (-15 -1746 ($)) (-15 -1745 ($)) (-15 -3488 ($ $ $)) (-15 -1747 ($ $)) (-15 -1746 ($ $)) (-15 -1744 ((-1186))) (-15 -1744 ((-1186) (-695))) (-15 -1743 ((-1186))) (-15 -1743 ((-1186) (-695))) (-15 -1742 ((-1186))) (-15 -1742 ((-1186) (-695))) (-15 -1741 ((-1186) (-695))) (-6 -3988) (-6 -3980)))) (T -330))
-((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3951 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2445 (*1 *1 *1) (-5 *1 (-330))) (-1749 (*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1748 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))) (-1747 (*1 *1) (-5 *1 (-330))) (-1746 (*1 *1) (-5 *1 (-330))) (-1745 (*1 *1) (-5 *1 (-330))) (-3488 (*1 *1 *1 *1) (-5 *1 (-330))) (-1747 (*1 *1 *1) (-5 *1 (-330))) (-1746 (*1 *1 *1) (-5 *1 (-330))) (-1744 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1743 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1742 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))))
-((-1750 (((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|) 52 T ELT) (((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|) 51 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|) 48 T ELT) (((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|) 42 T ELT)) (-1751 (((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|) 30 T ELT) (((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|) 18 T ELT)))
-(((-331 |#1|) (-10 -7 (-15 -1750 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1750 ((-584 (-584 (-249 (-858 (-142 |#1|))))) (-584 (-249 (-350 (-858 (-142 (-485)))))) |#1|)) (-15 -1750 ((-584 (-249 (-858 (-142 |#1|)))) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1750 ((-584 (-249 (-858 (-142 |#1|)))) (-249 (-350 (-858 (-142 (-485))))) |#1|)) (-15 -1751 ((-584 (-142 |#1|)) (-350 (-858 (-142 (-485)))) |#1|)) (-15 -1751 ((-584 (-584 (-142 |#1|))) (-584 (-350 (-858 (-142 (-485))))) (-584 (-1091)) |#1|))) (-13 (-312) (-756))) (T -331))
-((-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-756))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485))))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756))))))
-((-3575 (((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|) 47 T ELT) (((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|) 46 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|) 43 T ELT) (((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|) 37 T ELT)) (-1752 (((-584 |#1|) (-350 (-858 (-485))) |#1|) 20 T ELT) (((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|) 30 T ELT)))
-(((-332 |#1|) (-10 -7 (-15 -3575 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-350 (-858 (-485)))) |#1|)) (-15 -3575 ((-584 (-584 (-249 (-858 |#1|)))) (-584 (-249 (-350 (-858 (-485))))) |#1|)) (-15 -3575 ((-584 (-249 (-858 |#1|))) (-350 (-858 (-485))) |#1|)) (-15 -3575 ((-584 (-249 (-858 |#1|))) (-249 (-350 (-858 (-485)))) |#1|)) (-15 -1752 ((-584 (-584 |#1|)) (-584 (-350 (-858 (-485)))) (-584 (-1091)) |#1|)) (-15 -1752 ((-584 |#1|) (-350 (-858 (-485))) |#1|))) (-13 (-756) (-312))) (T -332))
-((-1752 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-1752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485)))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) 34 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
-(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-450 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-655 |#1|)) |%noBranch|))) (-962) (-760)) (T -333))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 29 T ELT)) (-3158 ((|#2| $) 31 T ELT)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) 13 T ELT)) (-2823 (((-584 $) $) 23 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ |#2| |#1|) 21 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2896 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3819 (((-584 |#1|) $) 20 T ELT)) (-3679 ((|#1| $ |#2|) 54 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
-(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-962) (-757)) (T -334))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 55 T ELT)) (-3158 ((|#2| $) 56 T ELT)) (-3961 (($ $) 41 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2421 (((-695) $) 45 T ELT)) (-2823 (((-584 $) $) 46 T ELT)) (-3939 (((-85) $) 49 T ELT)) (-3940 (($ |#2| |#1|) 50 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2896 ((|#2| $) 44 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3819 (((-584 |#1|) $) 47 T ELT)) (-3679 ((|#1| $ |#2|) 52 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT)))
-(((-335 |#1| |#2|) (-113) (-962) (-1014)) (T -335))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)))) (-3940 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962)))) (-1753 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014)))))
-(-13 (-82 |t#1| |t#1|) (-951 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3679 (|t#1| $ |t#2|)) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ($ |t#2| |t#1|)) (-15 -3939 ((-85) $)) (-15 -2667 ((-584 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3819 ((-584 |t#1|) $)) (-15 -2823 ((-584 $) $)) (-15 -2421 ((-695) $)) (-15 -2896 (|t#2| $)) (-15 -3176 (|t#1| $)) (-15 -1753 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3961 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-951 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695) $) 40 T ELT)) (-3726 (($) 23 T CONST)) (-3941 (((-3 $ "failed") $ $) 43 T ELT)) (-3159 (((-3 |#1| "failed") $) 51 T ELT)) (-3158 ((|#1| $) 52 T ELT)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2300 ((|#1| $ (-485)) 37 T ELT)) (-2301 (((-695) $ (-485)) 38 T ELT)) (-2533 (($ $ $) 29 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 30 (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 36 T ELT)) (-3942 (((-3 $ "failed") $ $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1755 (($ $ $) 45 T ELT)) (-1756 (($ $ $) 46 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) 39 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 31 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 33 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 32 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 34 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ |#1| (-695)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
-(((-336 |#1|) (-113) (-1014)) (T -336))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1756 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-1755 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3942 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-3941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2881 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1754 (*1 *2 *1 *1) (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-695))))))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014)))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014)))))
-(-13 (-664) (-951 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-695))) (-15 -1756 ($ $ $)) (-15 -1755 ($ $ $)) (-15 -3942 ((-3 $ "failed") $ $)) (-15 -3941 ((-3 $ "failed") $ $)) (-15 -2881 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1754 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3138 ((-695) $)) (-15 -1783 ((-584 (-2 (|:| |gen| |t#1|) (|:| -3945 (-695)))) $)) (-15 -2301 ((-695) $ (-485))) (-15 -2300 (|t#1| $ (-485))) (-15 -2292 ($ (-1 (-695) (-695)) $)) (-15 -2291 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|)))
-(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 |#1|) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) 74 T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2411 (((-85) $) 17 T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2291 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2292 (($ (-1 (-695) (-695)) $) 37 T ELT)) (-3942 (((-3 $ #1#) $ $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1755 (($ $ $) 28 T ELT)) (-1756 (($ $ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) 34 T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
-(((-337 |#1|) (-336 |#1|) (-1014)) (T -337))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1757 (((-85) $) 25 T ELT)) (-1758 (((-85) $) 22 T ELT)) (-3616 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-3544 (((-1074) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1762 (($ (-1074) (-1074) (-1074)) 14 T ELT)) (-1760 (((-1074) $) 17 T ELT)) (-1759 (((-85) $) 18 T ELT)) (-1761 (((-1074) $) 15 T ELT)) (-3948 (((-773) $) 12 T ELT) (($ (-1074)) 13 T ELT) (((-1074) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT)))
+((-3137 (*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-694)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-320)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-830)))) (-2995 (*1 *1) (-4 *1 (-320))))
+(-13 (-1013) (-10 -8 (-15 -3137 ((-694))) (-15 -2400 ($ (-830))) (-15 -2010 ((-830) $)) (-15 -2995 ($))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-1785 (((-630 |#2|) (-1179 $)) 45 T ELT)) (-1795 (($ (-1179 |#2|) (-1179 $)) 39 T ELT)) (-1784 (((-630 |#2|) $ (-1179 $)) 47 T ELT)) (-3758 ((|#2| (-1179 $)) 13 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) 27 T ELT)))
+(((-321 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-630 |#2|) (-1179 |#1|))) (-15 -3758 (|#2| (-1179 |#1|))) (-15 -1795 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1179 |#1|)))) (-322 |#2| |#3|) (-146) (-1155 |#2|)) (T -321))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1785 (((-630 |#1|) (-1179 $)) 61 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1795 (($ (-1179 |#1|) (-1179 $)) 63 T ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) 68 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-830)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3758 ((|#1| (-1179 $)) 62 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-322 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -322))
+((-3109 (*1 *2) (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-830)))) (-1784 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-3225 (*1 *2 *1 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-1795 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2)) (-4 *2 (-146)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -3109 ((-830))) (-15 -1784 ((-630 |t#1|) $ (-1179 $))) (-15 -3331 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3225 ((-1179 |t#1|) $ (-1179 $))) (-15 -3225 ((-630 |t#1|) (-1179 $) (-1179 $))) (-15 -1795 ($ (-1179 |t#1|) (-1179 $))) (-15 -3758 (|t#1| (-1179 $))) (-15 -1785 ((-630 |t#1|) (-1179 $))) (-15 -2450 (|t#2| $)) (IF (|has| |t#1| (-312)) (-15 -2014 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-1735 (((-85) (-1 (-85) |#2| |#2|) $) NIL T ELT) (((-85) $) 18 T ELT)) (-1733 (($ (-1 (-85) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2910 (($ (-1 (-85) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2298 (($ $) 25 T ELT)) (-3420 (((-484) (-1 (-85) |#2|) $) NIL T ELT) (((-484) |#2| $) 11 T ELT) (((-484) |#2| $ (-484)) NIL T ELT)) (-3519 (($ (-1 (-85) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
+(((-323 |#1| |#2|) (-10 -7 (-15 -1733 (|#1| |#1|)) (-15 -1733 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1735 ((-85) |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -3519 (|#1| |#1| |#1|)) (-15 -3420 ((-484) |#2| |#1| (-484))) (-15 -3420 ((-484) |#2| |#1|)) (-15 -3420 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -1735 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -2910 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|))) (-324 |#2|) (-1129)) (T -323))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1035 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-756)) (|has| $ (-1035 |#1|))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 89 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 99 T ELT)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) 96 T ELT) (((-484) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) 94 (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 81 (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 105 T ELT)) (-3246 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 82 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-1035 |#1|)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-1730 (((-694) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 104 T ELT)) (-1734 (($ $ $ (-484)) 90 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2567 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 85 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 84 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 86 (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 101 T ELT)))
+(((-324 |#1|) (-113) (-1129)) (T -324))
+((-3519 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2298 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-2910 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1735 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-484)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-484)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-72)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) (-2910 (*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))) (-1735 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-756)) (-5 *2 (-85)))) (-1734 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1035 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-2297 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1129)))) (-1733 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1035 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))) (-1733 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756)))))
+(-13 (-593 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3519 ($ (-1 (-85) |t#1| |t#1|) $ $)) (-15 -2298 ($ $)) (-15 -2910 ($ (-1 (-85) |t#1| |t#1|) $)) (-15 -1735 ((-85) (-1 (-85) |t#1| |t#1|) $)) (-15 -3420 ((-484) (-1 (-85) |t#1|) $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3420 ((-484) |t#1| $)) (-15 -3420 ((-484) |t#1| $ (-484)))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-6 (-756)) (-15 -3519 ($ $ $)) (-15 -2910 ($ $)) (-15 -1735 ((-85) $))) |%noBranch|) (IF (|has| $ (-1035 |t#1|)) (PROGN (-15 -1734 ($ $ $ (-484))) (-15 -2297 ($ $)) (-15 -1733 ($ (-1 (-85) |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-15 -1733 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1129) . T))
+((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
+(((-325 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1129) (-324 |#1|) (-1129) (-324 |#3|)) (T -325))
+((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5)) (-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6)) (-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-583 |#1|) $) 43 T ELT)) (-3948 (($ $ (-694)) 44 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3937 (($ $) 45 T ELT)) (-3941 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 48 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3769 (($ $ |#1| $) 42 T ELT) (($ $ (-583 |#1|) (-583 $)) 41 T ELT)) (-3949 (((-694) $) 49 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#1|) 52 T ELT) (((-1195 |#1| |#2|) $) 51 T ELT) (((-1204 |#1| |#2|) $) 50 T ELT)) (-3955 ((|#2| (-1204 |#1| |#2|) $) 53 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-1736 (($ (-614 |#1|)) 46 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 39 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#2| $) 33 T ELT) (($ $ |#2|) 37 T ELT)))
+(((-326 |#1| |#2|) (-113) (-756) (-146)) (T -326))
+((-3955 (*1 *2 *3 *1) (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-756)) (-4 *2 (-146)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1195 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-1204 *3 *4)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694)))) (-3941 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3940 (*1 *2 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3)))) (-3769 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-756)) (-4 *5 (-146)))))
+(-13 (-574 |t#2|) (-10 -8 (-15 -3955 (|t#2| (-1204 |t#1| |t#2|) $)) (-15 -3947 ($ |t#1|)) (-15 -3947 ((-1195 |t#1| |t#2|) $)) (-15 -3947 ((-1204 |t#1| |t#2|) $)) (-15 -3949 ((-694) $)) (-15 -3941 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -3940 ((-1204 |t#1| |t#2|) (-1204 |t#1| |t#2|) $)) (-15 -1736 ($ (-614 |t#1|))) (-15 -3937 ($ $)) (-15 -3948 ($ $ (-694))) (-15 -3935 ((-583 |t#1|) $)) (-15 -3769 ($ $ |t#1| $)) (-15 -3769 ($ $ (-583 |t#1|) (-583 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-590 |#2|) . T) ((-574 |#2|) . T) ((-582 |#2|) . T) ((-654 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-1013) . T) ((-1129) . T))
+((-1739 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 40 T ELT)) (-1737 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 13 T ELT)) (-1738 ((|#2| (-1 (-85) |#1| |#1|) |#2|) 33 T ELT)))
+(((-327 |#1| |#2|) (-10 -7 (-15 -1737 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1738 (|#2| (-1 (-85) |#1| |#1|) |#2|)) (-15 -1739 (|#2| (-1 (-85) |#1| |#1|) |#2|))) (-1129) (-13 (-324 |#1|) (-1035 |#1|))) (T -327))
+((-1739 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1035 *4))))) (-1738 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1035 *4))))) (-1737 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2)) (-4 *2 (-13 (-324 *4) (-1035 *4))))))
+((-2279 (((-630 |#2|) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 22 T ELT) (((-630 (-484)) (-630 $)) 14 T ELT)))
+(((-328 |#1| |#2|) (-10 -7 (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 |#2|) (-630 |#1|)))) (-329 |#2|) (-961)) (T -328))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 35 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 47 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-630 $)) 46 (|has| |#1| (-580 (-484))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 45 (|has| |#1| (-580 (-484))) ELT) (((-630 (-484)) (-1179 $)) 44 (|has| |#1| (-580 (-484))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-329 |#1|) (-113) (-961)) (T -329))
+NIL
+(-13 (-580 |t#1|) (-10 -7 (IF (|has| |t#1| (-580 (-484))) (-6 (-580 (-484))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3130 (((-484) $) 44 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3772 (($ $) 120 T ELT)) (-3493 (($ $) 81 T ELT)) (-3640 (($ $) 72 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) 28 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3491 (($ $) 79 T ELT)) (-3639 (($ $) 67 T ELT)) (-3624 (((-484) $) 60 T ELT)) (-2442 (($ $ (-484)) 55 T ELT)) (-3495 (($ $) NIL T ELT)) (-3638 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3128 (($ $) 122 T ELT)) (-3158 (((-3 (-484) #1#) $) 217 T ELT) (((-3 (-350 (-484)) #1#) $) 213 T ELT)) (-3157 (((-484) $) 215 T ELT) (((-350 (-484)) $) 211 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-1748 (((-484) $ $) 110 T ELT)) (-3468 (((-3 $ #1#) $) 125 T ELT)) (-1747 (((-350 (-484)) $ (-694)) 218 T ELT) (((-350 (-484)) $ (-694) (-694)) 210 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1771 (((-830)) 106 T ELT) (((-830) (-830)) 107 (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 38 T ELT)) (-3628 (($) 22 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL T ELT)) (-1740 (((-1185) (-694)) 177 T ELT)) (-1741 (((-1185)) 182 T ELT) (((-1185) (-694)) 183 T ELT)) (-1743 (((-1185)) 184 T ELT) (((-1185) (-694)) 185 T ELT)) (-1742 (((-1185)) 180 T ELT) (((-1185) (-694)) 181 T ELT)) (-3773 (((-484) $) 50 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 21 T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-2444 (($ $) 32 T ELT)) (-3133 (($ $) NIL T ELT)) (-3188 (((-85) $) 18 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-2858 (($ $ $) NIL T ELT) (($) NIL (-12 (-2561 (|has| $ (-6 -3979))) (-2561 (|has| $ (-6 -3987)))) ELT)) (-1773 (((-484) $) 112 T ELT)) (-1746 (($) 90 T ELT) (($ $) 97 T ELT)) (-1745 (($) 96 T ELT) (($ $) 98 T ELT)) (-3943 (($ $) 84 T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 127 T ELT)) (-1770 (((-830) (-484)) 27 (|has| $ (-6 -3987)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) 41 T ELT)) (-3131 (($ $) 119 T ELT)) (-3255 (($ (-484) (-484)) 115 T ELT) (($ (-484) (-484) (-830)) 116 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2401 (((-484) $) 113 T ELT)) (-1744 (($) 99 T ELT)) (-3944 (($ $) 78 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-830)) 108 T ELT) (((-830) (-830)) 109 (|has| $ (-6 -3987)) ELT)) (-3759 (($ $) 126 T ELT) (($ $ (-694)) NIL T ELT)) (-1769 (((-830) (-484)) 31 (|has| $ (-6 -3987)) ELT)) (-3496 (($ $) NIL T ELT)) (-3637 (($ $) NIL T ELT)) (-3494 (($ $) NIL T ELT)) (-3636 (($ $) NIL T ELT)) (-3492 (($ $) 80 T ELT)) (-3635 (($ $) 71 T ELT)) (-3973 (((-330) $) 202 T ELT) (((-179) $) 204 T ELT) (((-800 (-330)) $) NIL T ELT) (((-1073) $) 188 T ELT) (((-473) $) 200 T ELT) (($ (-179)) 209 T ELT)) (-3947 (((-772) $) 192 T ELT) (($ (-484)) 214 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) 214 T ELT) (($ (-350 (-484))) NIL T ELT) (((-179) $) 205 T ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (($ $) 121 T ELT)) (-1772 (((-830)) 42 T ELT) (((-830) (-830)) 62 (|has| $ (-6 -3987)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-830)) 111 T ELT)) (-3499 (($ $) 87 T ELT)) (-3487 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 85 T ELT)) (-3485 (($ $) 20 T ELT)) (-3501 (($ $) NIL T ELT)) (-3489 (($ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-3500 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-3498 (($ $) 86 T ELT)) (-3486 (($ $) 33 T ELT)) (-3384 (($ $) 39 T ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 24 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2567 (((-85) $ $) 189 T ELT)) (-2568 (((-85) $ $) 26 T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 43 T ELT)) (-3950 (($ $ $) 29 T ELT) (($ $ (-484)) 23 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-3840 (($ $ $) 54 T ELT)) (** (($ $ (-830)) 65 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 91 T ELT) (($ $ (-350 (-484))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-830) $) 61 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-330) (-13 (-347) (-190) (-553 (-1073)) (-552 (-179)) (-1115) (-553 (-473)) (-557 (-179)) (-10 -8 (-15 -3950 ($ $ (-484))) (-15 ** ($ $ $)) (-15 -2444 ($ $)) (-15 -1748 ((-484) $ $)) (-15 -2442 ($ $ (-484))) (-15 -1747 ((-350 (-484)) $ (-694))) (-15 -1747 ((-350 (-484)) $ (-694) (-694))) (-15 -1746 ($)) (-15 -1745 ($)) (-15 -1744 ($)) (-15 -3487 ($ $ $)) (-15 -1746 ($ $)) (-15 -1745 ($ $)) (-15 -1743 ((-1185))) (-15 -1743 ((-1185) (-694))) (-15 -1742 ((-1185))) (-15 -1742 ((-1185) (-694))) (-15 -1741 ((-1185))) (-15 -1741 ((-1185) (-694))) (-15 -1740 ((-1185) (-694))) (-6 -3987) (-6 -3979)))) (T -330))
+((** (*1 *1 *1 *1) (-5 *1 (-330))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-2444 (*1 *1 *1) (-5 *1 (-330))) (-1748 (*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330)))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))) (-1747 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))) (-1746 (*1 *1) (-5 *1 (-330))) (-1745 (*1 *1) (-5 *1 (-330))) (-1744 (*1 *1) (-5 *1 (-330))) (-3487 (*1 *1 *1 *1) (-5 *1 (-330))) (-1746 (*1 *1 *1) (-5 *1 (-330))) (-1745 (*1 *1 *1) (-5 *1 (-330))) (-1743 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1742 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1741 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))))
+((-1749 (((-583 (-249 (-857 (-142 |#1|)))) (-249 (-350 (-857 (-142 (-484))))) |#1|) 52 T ELT) (((-583 (-249 (-857 (-142 |#1|)))) (-350 (-857 (-142 (-484)))) |#1|) 51 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-350 (-857 (-142 (-484)))))) |#1|) 48 T ELT) (((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-350 (-857 (-142 (-484))))) |#1|) 42 T ELT)) (-1750 (((-583 (-583 (-142 |#1|))) (-583 (-350 (-857 (-142 (-484))))) (-583 (-1090)) |#1|) 30 T ELT) (((-583 (-142 |#1|)) (-350 (-857 (-142 (-484)))) |#1|) 18 T ELT)))
+(((-331 |#1|) (-10 -7 (-15 -1749 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-350 (-857 (-142 (-484))))) |#1|)) (-15 -1749 ((-583 (-583 (-249 (-857 (-142 |#1|))))) (-583 (-249 (-350 (-857 (-142 (-484)))))) |#1|)) (-15 -1749 ((-583 (-249 (-857 (-142 |#1|)))) (-350 (-857 (-142 (-484)))) |#1|)) (-15 -1749 ((-583 (-249 (-857 (-142 |#1|)))) (-249 (-350 (-857 (-142 (-484))))) |#1|)) (-15 -1750 ((-583 (-142 |#1|)) (-350 (-857 (-142 (-484)))) |#1|)) (-15 -1750 ((-583 (-583 (-142 |#1|))) (-583 (-350 (-857 (-142 (-484))))) (-583 (-1090)) |#1|))) (-13 (-312) (-755))) (T -331))
+((-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-331 *5)) (-4 *5 (-13 (-312) (-755))))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 (-142 (-484)))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 (-142 (-484))))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755))))))
+((-3574 (((-583 (-249 (-857 |#1|))) (-249 (-350 (-857 (-484)))) |#1|) 47 T ELT) (((-583 (-249 (-857 |#1|))) (-350 (-857 (-484))) |#1|) 46 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-350 (-857 (-484))))) |#1|) 43 T ELT) (((-583 (-583 (-249 (-857 |#1|)))) (-583 (-350 (-857 (-484)))) |#1|) 37 T ELT)) (-1751 (((-583 |#1|) (-350 (-857 (-484))) |#1|) 20 T ELT) (((-583 (-583 |#1|)) (-583 (-350 (-857 (-484)))) (-583 (-1090)) |#1|) 30 T ELT)))
+(((-332 |#1|) (-10 -7 (-15 -3574 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-350 (-857 (-484)))) |#1|)) (-15 -3574 ((-583 (-583 (-249 (-857 |#1|)))) (-583 (-249 (-350 (-857 (-484))))) |#1|)) (-15 -3574 ((-583 (-249 (-857 |#1|))) (-350 (-857 (-484))) |#1|)) (-15 -3574 ((-583 (-249 (-857 |#1|))) (-249 (-350 (-857 (-484)))) |#1|)) (-15 -1751 ((-583 (-583 |#1|)) (-583 (-350 (-857 (-484)))) (-583 (-1090)) |#1|)) (-15 -1751 ((-583 |#1|) (-350 (-857 (-484))) |#1|))) (-13 (-755) (-312))) (T -332))
+((-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-755) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4)))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 (-484)))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3947 (((-772) $) 34 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
+(((-333 |#1| |#2|) (-13 (-82 |#1| |#1|) (-449 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-146)) (-6 (-654 |#1|)) |%noBranch|))) (-961) (-759)) (T -333))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 29 T ELT)) (-3157 ((|#2| $) 31 T ELT)) (-3960 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) 13 T ELT)) (-2822 (((-583 $) $) 23 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) 21 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1752 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-2895 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-3818 (((-583 |#1|) $) 20 T ELT)) (-3678 ((|#1| $ |#2|) 54 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2666 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT)))
+(((-334 |#1| |#2|) (-13 (-335 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-756)) (T -334))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 55 T ELT)) (-3157 ((|#2| $) 56 T ELT)) (-3960 (($ $) 41 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2420 (((-694) $) 45 T ELT)) (-2822 (((-583 $) $) 46 T ELT)) (-3938 (((-85) $) 49 T ELT)) (-3939 (($ |#2| |#1|) 50 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 51 T ELT)) (-1752 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 42 T ELT)) (-2895 ((|#2| $) 44 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#2|) 54 T ELT)) (-3818 (((-583 |#1|) $) 47 T ELT)) (-3678 ((|#1| $ |#2|) 52 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2666 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 48 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 53 T ELT)))
+(((-335 |#1| |#2|) (-113) (-961) (-1013)) (T -335))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)))) (-3939 (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2666 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-335 *3 *4)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2895 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013)))))
+(-13 (-82 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3678 (|t#1| $ |t#2|)) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -3939 ($ |t#2| |t#1|)) (-15 -3938 ((-85) $)) (-15 -2666 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3818 ((-583 |t#1|) $)) (-15 -2822 ((-583 $) $)) (-15 -2420 ((-694) $)) (-15 -2895 (|t#2| $)) (-15 -3175 (|t#1| $)) (-15 -1752 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-950 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-694) $) 40 T ELT)) (-3725 (($) 23 T CONST)) (-3940 (((-3 $ "failed") $ $) 43 T ELT)) (-3158 (((-3 |#1| "failed") $) 51 T ELT)) (-3157 ((|#1| $) 52 T ELT)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-1753 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2299 ((|#1| $ (-484)) 37 T ELT)) (-2300 (((-694) $ (-484)) 38 T ELT)) (-2532 (($ $ $) 29 (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) 30 (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 36 T ELT)) (-3941 (((-3 $ "failed") $ $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1754 (($ $ $) 45 T ELT)) (-1755 (($ $ $) 46 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1782 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-694)))) $) 39 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 31 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 33 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 32 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 34 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ |#1| (-694)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT)))
+(((-336 |#1|) (-113) (-1013)) (T -336))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-1755 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-1754 (*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-3941 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-3940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-2880 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-1753 (*1 *2 *1 *1) (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-336 *3)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 (-694))))))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *4)) (-4 *4 (-1013)) (-5 *2 (-694)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *2)) (-4 *2 (-1013)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-336 *3)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1013)))))
+(-13 (-663) (-950 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-694))) (-15 -1755 ($ $ $)) (-15 -1754 ($ $ $)) (-15 -3941 ((-3 $ "failed") $ $)) (-15 -3940 ((-3 $ "failed") $ $)) (-15 -2880 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1753 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3137 ((-694) $)) (-15 -1782 ((-583 (-2 (|:| |gen| |t#1|) (|:| -3944 (-694)))) $)) (-15 -2300 ((-694) $ (-484))) (-15 -2299 (|t#1| $ (-484))) (-15 -2291 ($ (-1 (-694) (-694)) $)) (-15 -2290 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|)))
+(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 |#1|) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694) $) 74 T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1753 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2410 (((-85) $) 17 T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2290 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2291 (($ (-1 (-694) (-694)) $) 37 T ELT)) (-3941 (((-3 $ #1#) $ $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1754 (($ $ $) 28 T ELT)) (-1755 (($ $ $) 26 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1782 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-694)))) $) 34 T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-3947 (((-772) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
+(((-337 |#1|) (-336 |#1|) (-1013)) (T -337))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1756 (((-85) $) 25 T ELT)) (-1757 (((-85) $) 22 T ELT)) (-3615 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-3543 (((-1073) $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1761 (($ (-1073) (-1073) (-1073)) 14 T ELT)) (-1759 (((-1073) $) 17 T ELT)) (-1758 (((-85) $) 18 T ELT)) (-1760 (((-1073) $) 15 T ELT)) (-3947 (((-772) $) 12 T ELT) (($ (-1073)) 13 T ELT) (((-1073) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
(((-338) (-339)) (T -338))
NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-1757 (((-85) $) 20 T ELT)) (-1758 (((-85) $) 21 T ELT)) (-3616 (($ (-1074) (-1074) (-1074)) 19 T ELT)) (-3544 (((-1074) $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1762 (($ (-1074) (-1074) (-1074)) 26 T ELT)) (-1760 (((-1074) $) 23 T ELT)) (-1759 (((-85) $) 22 T ELT)) (-1761 (((-1074) $) 25 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1074)) 28 T ELT) (((-1074) $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
+((-2569 (((-85) $ $) 7 T ELT)) (-1756 (((-85) $) 20 T ELT)) (-1757 (((-85) $) 21 T ELT)) (-3615 (($ (-1073) (-1073) (-1073)) 19 T ELT)) (-3543 (((-1073) $) 24 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1761 (($ (-1073) (-1073) (-1073)) 26 T ELT)) (-1759 (((-1073) $) 23 T ELT)) (-1758 (((-85) $) 22 T ELT)) (-1760 (((-1073) $) 25 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-1073)) 28 T ELT) (((-1073) $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
(((-339) (-113)) (T -339))
-((-1762 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))) (-1761 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3616 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))))
-(-13 (-1014) (-430 (-1074)) (-10 -8 (-15 -1762 ($ (-1074) (-1074) (-1074))) (-15 -1761 ((-1074) $)) (-15 -3544 ((-1074) $)) (-15 -1760 ((-1074) $)) (-15 -1759 ((-85) $)) (-15 -1758 ((-85) $)) (-15 -1757 ((-85) $)) (-15 -3616 ($ (-1074) (-1074) (-1074)))))
-(((-72) . T) ((-556 (-1074)) . T) ((-553 (-773)) . T) ((-553 (-1074)) . T) ((-430 (-1074)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-1763 (((-773) $) 64 T ELT)) (-3726 (($) NIL T CONST)) (-2408 (($ $ (-831)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($ (-695)) 38 T ELT)) (-3913 (((-695)) 18 T ELT)) (-1764 (((-773) $) 66 T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3839 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3841 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
-(((-340 |#1| |#2| |#3|) (-13 (-684 |#3|) (-10 -8 (-15 -3913 ((-695))) (-15 -1764 ((-773) $)) (-15 -1763 ((-773) $)) (-15 -2410 ($ (-695))))) (-695) (-695) (-146)) (T -340))
-((-3913 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)) (-4 *5 (-146)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
-((-3774 (((-695) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3774 ((-695) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341))
-((-3774 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1766 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1767 (($ (-350 |#2|)) 93 T ELT)) (-1765 (((-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3760 (($ $ (-695)) 36 T ELT) (($ $) 34 T ELT)) (-3974 (((-350 |#2|) $) 49 T ELT)) (-3532 (($ (-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3948 (((-773) $) 131 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) 37 T ELT) (($ $) 35 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ |#2| $) 41 T ELT)))
-(((-342 |#1| |#2|) (-13 (-1014) (-189) (-554 (-350 |#2|)) (-10 -8 (-15 -3841 ($ |#2| $)) (-15 -1767 ($ (-350 |#2|))) (-15 -1766 (|#2| $)) (-15 -1765 ((-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))) $)) (-15 -3532 ($ (-584 (-2 (|:| -2402 (-695)) (|:| -3775 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1156 |#1|)) (T -342))
-((-3841 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3)))) (-1767 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1766 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1765 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4)))) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))))
-((-2570 (((-85) $ $) 10 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 16 (|has| |#1| (-797 (-330))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 15 (|has| |#1| (-797 (-485))) ELT)) (-3244 (((-1074) $) 14 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3245 (((-1034) $) 13 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3948 (((-773) $) 12 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-1266 (((-85) $ $) 11 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)) (-3058 (((-85) $ $) 9 (OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ELT)))
-(((-343 |#1|) (-113) (-1130)) (T -343))
-NIL
-(-13 (-1130) (-10 -7 (IF (|has| |t#1| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|)))
-(((-72) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-553 (-773)) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-13) . T) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-1014) OR (|has| |#1| (-797 (-485))) (|has| |#1| (-797 (-330)))) ((-1130) . T))
-((-1768 (($ $) 10 T ELT) (($ $ (-695)) 12 T ELT)))
-(((-344 |#1|) (-10 -7 (-15 -1768 (|#1| |#1| (-695))) (-15 -1768 (|#1| |#1|))) (-345)) (T -344))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1768 (($ $) 97 T ELT) (($ $ (-695)) 96 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 99 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 98 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT)) (-2704 (((-633 $) $) 100 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+((-1761 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))) (-1760 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))) (-3615 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))))
+(-13 (-1013) (-430 (-1073)) (-10 -8 (-15 -1761 ($ (-1073) (-1073) (-1073))) (-15 -1760 ((-1073) $)) (-15 -3543 ((-1073) $)) (-15 -1759 ((-1073) $)) (-15 -1758 ((-85) $)) (-15 -1757 ((-85) $)) (-15 -1756 ((-85) $)) (-15 -3615 ($ (-1073) (-1073) (-1073)))))
+(((-72) . T) ((-555 (-1073)) . T) ((-552 (-772)) . T) ((-552 (-1073)) . T) ((-430 (-1073)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-1762 (((-772) $) 64 T ELT)) (-3725 (($) NIL T CONST)) (-2407 (($ $ (-830)) NIL T ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($ (-694)) 38 T ELT)) (-3912 (((-694)) 18 T ELT)) (-1763 (((-772) $) 66 T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
+(((-340 |#1| |#2| |#3|) (-13 (-683 |#3|) (-10 -8 (-15 -3912 ((-694))) (-15 -1763 ((-772) $)) (-15 -1762 ((-772) $)) (-15 -2409 ($ (-694))))) (-694) (-694) (-146)) (T -340))
+((-3912 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)) (-4 *5 (-146)))) (-2409 (*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-146)))))
+((-3773 (((-694) (-283 |#1| |#2| |#3| |#4|)) 16 T ELT)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3773 ((-694) (-283 |#1| |#2| |#3| |#4|)))) (-13 (-320) (-312)) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -341))
+((-3773 (*1 *2 *3) (-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312))) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6)) (-5 *2 (-694)) (-5 *1 (-341 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1765 ((|#2| $) 38 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1766 (($ (-350 |#2|)) 93 T ELT)) (-1764 (((-583 (-2 (|:| -2401 (-694)) (|:| -3774 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3759 (($ $ (-694)) 36 T ELT) (($ $) 34 T ELT)) (-3973 (((-350 |#2|) $) 49 T ELT)) (-3531 (($ (-583 (-2 (|:| -2401 (-694)) (|:| -3774 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3947 (((-772) $) 131 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-694)) 37 T ELT) (($ $) 35 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ |#2| $) 41 T ELT)))
+(((-342 |#1| |#2|) (-13 (-1013) (-189) (-553 (-350 |#2|)) (-10 -8 (-15 -3840 ($ |#2| $)) (-15 -1766 ($ (-350 |#2|))) (-15 -1765 (|#2| $)) (-15 -1764 ((-583 (-2 (|:| -2401 (-694)) (|:| -3774 |#2|) (|:| |num| |#2|))) $)) (-15 -3531 ($ (-583 (-2 (|:| -2401 (-694)) (|:| -3774 |#2|) (|:| |num| |#2|))))))) (-13 (-312) (-120)) (-1155 |#1|)) (T -342))
+((-3840 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3)))) (-1766 (*1 *1 *2) (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))) (-1765 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))) (-1764 (*1 *2 *1) (-12 (-4 *3 (-13 (-312) (-120))) (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3774 *4) (|:| |num| *4)))) (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3774 *4) (|:| |num| *4)))) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4)))))
+((-2569 (((-85) $ $) 10 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 16 (|has| |#1| (-796 (-330))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 15 (|has| |#1| (-796 (-484))) ELT)) (-3243 (((-1073) $) 14 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3244 (((-1033) $) 13 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3947 (((-772) $) 12 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-1265 (((-85) $ $) 11 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)) (-3057 (((-85) $ $) 9 (OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ELT)))
+(((-343 |#1|) (-113) (-1129)) (T -343))
+NIL
+(-13 (-1129) (-10 -7 (IF (|has| |t#1| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) (IF (|has| |t#1| (-796 (-330))) (-6 (-796 (-330))) |%noBranch|)))
+(((-72) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-552 (-772)) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-13) . T) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-1013) OR (|has| |#1| (-796 (-484))) (|has| |#1| (-796 (-330)))) ((-1129) . T))
+((-1767 (($ $) 10 T ELT) (($ $ (-694)) 12 T ELT)))
+(((-344 |#1|) (-10 -7 (-15 -1767 (|#1| |#1| (-694))) (-15 -1767 (|#1| |#1|))) (-345)) (T -344))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1767 (($ $) 97 T ELT) (($ $ (-694)) 96 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-743 (-830)) $) 99 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1768 (((-3 (-694) "failed") $ $) 98 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT)) (-2703 (((-632 $) $) 100 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
(((-345) (-113)) (T -345))
-((-3774 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831))))) (-1769 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))) (-1768 (*1 *1 *1) (-4 *1 (-345))) (-1768 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695)))))
-(-13 (-312) (-118) (-10 -8 (-15 -3774 ((-744 (-831)) $)) (-15 -1769 ((-3 (-695) "failed") $ $)) (-15 -1768 ($ $)) (-15 -1768 ($ $ (-695)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-3256 (($ (-485) (-485)) 11 T ELT) (($ (-485) (-485) (-831)) NIL T ELT)) (-2617 (((-831)) 19 T ELT) (((-831) (-831)) NIL T ELT)))
-(((-346 |#1|) (-10 -7 (-15 -2617 ((-831) (-831))) (-15 -2617 ((-831))) (-15 -3256 (|#1| (-485) (-485) (-831))) (-15 -3256 (|#1| (-485) (-485)))) (-347)) (T -346))
-((-2617 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3773 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 133 T ELT)) (-3726 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-1772 (((-831)) 149 T ELT) (((-831) (-831)) 146 (|has| $ (-6 -3988)) ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-3774 (((-485) $) 155 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT) (($) 143 (-12 (-2562 (|has| $ (-6 -3988))) (-2562 (|has| $ (-6 -3980)))) ELT)) (-2859 (($ $ $) 126 T ELT) (($) 142 (-12 (-2562 (|has| $ (-6 -3988))) (-2562 (|has| $ (-6 -3980)))) ELT)) (-1774 (((-485) $) 152 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-1771 (((-831) (-485)) 145 (|has| $ (-6 -3988)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3256 (($ (-485) (-485)) 157 T ELT) (($ (-485) (-485) (-831)) 156 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-2402 (((-485) $) 153 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-831)) 150 T ELT) (((-831) (-831)) 147 (|has| $ (-6 -3988)) ELT)) (-1770 (((-831) (-485)) 144 (|has| $ (-6 -3988)) ELT)) (-3974 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1773 (((-831)) 151 T ELT) (((-831) (-831)) 148 (|has| $ (-6 -3988)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (((-831)) 154 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
+((-3773 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-743 (-830))))) (-1768 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-694)))) (-1767 (*1 *1 *1) (-4 *1 (-345))) (-1767 (*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-694)))))
+(-13 (-312) (-118) (-10 -8 (-15 -3773 ((-743 (-830)) $)) (-15 -1768 ((-3 (-694) "failed") $ $)) (-15 -1767 ($ $)) (-15 -1767 ($ $ (-694)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-118) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-3255 (($ (-484) (-484)) 11 T ELT) (($ (-484) (-484) (-830)) NIL T ELT)) (-2616 (((-830)) 19 T ELT) (((-830) (-830)) NIL T ELT)))
+(((-346 |#1|) (-10 -7 (-15 -2616 ((-830) (-830))) (-15 -2616 ((-830))) (-15 -3255 (|#1| (-484) (-484) (-830))) (-15 -3255 (|#1| (-484) (-484)))) (-347)) (T -346))
+((-2616 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3624 (((-484) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-350 (-484)) #1#) $) 118 T ELT)) (-3157 (((-484) $) 122 T ELT) (((-350 (-484)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-1771 (((-830)) 149 T ELT) (((-830) (-830)) 146 (|has| $ (-6 -3987)) ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 112 T ELT)) (-3773 (((-484) $) 155 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT) (($) 143 (-12 (-2561 (|has| $ (-6 -3987))) (-2561 (|has| $ (-6 -3979)))) ELT)) (-2858 (($ $ $) 126 T ELT) (($) 142 (-12 (-2561 (|has| $ (-6 -3987))) (-2561 (|has| $ (-6 -3979)))) ELT)) (-1773 (((-484) $) 152 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-1770 (((-830) (-484)) 145 (|has| $ (-6 -3987)) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3255 (($ (-484) (-484)) 157 T ELT) (($ (-484) (-484) (-830)) 156 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-2401 (((-484) $) 153 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-830)) 150 T ELT) (((-830) (-830)) 147 (|has| $ (-6 -3987)) ELT)) (-1769 (((-830) (-484)) 144 (|has| $ (-6 -3987)) ELT)) (-3973 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-330)) $) 113 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-350 (-484))) 117 T ELT)) (-3127 (((-694)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1772 (((-830)) 151 T ELT) (((-830) (-830)) 148 (|has| $ (-6 -3987)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2695 (((-830)) 154 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
(((-347) (-113)) (T -347))
-((-3256 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347)))) (-3256 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-2696 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))) (-1773 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-2617 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1772 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) (-1773 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))) (-2533 (*1 *1) (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) (-2562 (|has| *1 (-6 -3980))))) (-2859 (*1 *1) (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988))) (-2562 (|has| *1 (-6 -3980))))))
-(-13 (-974) (-10 -8 (-6 -3772) (-15 -3256 ($ (-485) (-485))) (-15 -3256 ($ (-485) (-485) (-831))) (-15 -3774 ((-485) $)) (-15 -2696 ((-831))) (-15 -2402 ((-485) $)) (-15 -1774 ((-485) $)) (-15 -1773 ((-831))) (-15 -2617 ((-831))) (-15 -1772 ((-831))) (IF (|has| $ (-6 -3988)) (PROGN (-15 -1773 ((-831) (-831))) (-15 -2617 ((-831) (-831))) (-15 -1772 ((-831) (-831))) (-15 -1771 ((-831) (-485))) (-15 -1770 ((-831) (-485)))) |%noBranch|) (IF (|has| $ (-6 -3980)) |%noBranch| (IF (|has| $ (-6 -3988)) |%noBranch| (PROGN (-15 -2533 ($)) (-15 -2859 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-974) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1775 (($ $) 77 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 189 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 48 T ELT)) (-1776 ((|#1| $) 16 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-1135)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-1778 (($ |#1| (-485)) 42 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 73 T ELT)) (-3469 (((-3 $ #1#) $) 163 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 84 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 80 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 82 (|has| |#1| (-484)) ELT)) (-1779 (($ |#1| (-485)) 44 T ELT)) (-3725 (((-85) $) 209 (|has| |#1| (-1135)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 61 T ELT)) (-1838 (((-695) $) 51 T ELT)) (-1780 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-485)) 174 T ELT)) (-2300 ((|#1| $ (-485)) 173 T ELT)) (-1781 (((-485) $ (-485)) 172 T ELT)) (-1784 (($ |#1| (-485)) 41 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1835 (($ |#1| (-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485))))) 78 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1782 (($ |#1| (-485)) 43 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1777 (($ |#1| (-485) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1783 (((-584 (-2 (|:| -3734 |#1|) (|:| -2402 (-485)))) $) 72 T ELT)) (-1952 (((-584 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $) 12 T ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-1135)) ELT)) (-3468 (((-3 $ #1#) $ $) 175 T ELT)) (-2402 (((-485) $) 166 T ELT)) (-3965 ((|#1| $) 74 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 105 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) $) NIL (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-1091)) (-584 $)) 106 (|has| |#1| (-456 (-1091) $)) ELT) (($ $ (-584 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-584 $) (-584 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3802 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) 39 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 112 (|has| |#1| (-934)) ELT) (((-179) $) 118 (|has| |#1| (-934)) ELT)) (-3948 (((-773) $) 145 T ELT) (($ (-485)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT)) (-3128 (((-695)) 66 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 53 T CONST)) (-2668 (($) 52 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 158 T ELT)) (-3839 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 179 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 124 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-348 |#1|) (-13 (-496) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3965 (|#1| $)) (-15 -2402 ((-485) $)) (-15 -1835 ($ |#1| (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))))) (-15 -1952 ((-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-485)))) $)) (-15 -1784 ($ |#1| (-485))) (-15 -1783 ((-584 (-2 (|:| -3734 |#1|) (|:| -2402 (-485)))) $)) (-15 -1782 ($ |#1| (-485))) (-15 -1781 ((-485) $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -1780 ((-3 #1# #2# #3# #4#) $ (-485))) (-15 -1838 ((-695) $)) (-15 -1779 ($ |#1| (-485))) (-15 -1778 ($ |#1| (-485))) (-15 -1777 ($ |#1| (-485) (-3 #1# #2# #3# #4#))) (-15 -1776 (|#1| $)) (-15 -1775 ($ $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |#1| (-1135)) (-6 (-1135)) |%noBranch|) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-456 (-1091) $)) (-6 (-456 (-1091) $)) |%noBranch|))) (-496)) (T -348))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3)))) (-3965 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1835 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-485))))) (-4 *2 (-496)) (-5 *1 (-348 *2)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1784 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1782 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1781 (*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1780 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-496)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1777 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1776 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-1775 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496)))))
-((-3960 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT)))
-(((-349 |#1| |#2|) (-10 -7 (-15 -3960 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-496) (-496)) (T -349))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 13 T ELT)) (-3131 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 54 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 15 T ELT) (((-1091) $) NIL (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 51 (|has| |#1| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 32 T ELT)) (-2996 (($) NIL (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#1| $) 55 T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 22 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 82 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 26 (|has| |#1| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 128 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 57 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#1| (-934)) ELT) (((-179) $) NIL (|has| |#1| (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1091)) NIL (|has| |#1| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 93 T CONST)) (-3133 ((|#1| $) 24 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-741)) ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 48 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3951 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3841 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 122 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
-(((-350 |#1|) (-13 (-905 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3984)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3995)) (-6 -3984) |%noBranch|) |%noBranch|) |%noBranch|))) (-496)) (T -350))
-NIL
-((-3960 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT)))
-(((-351 |#1| |#2|) (-10 -7 (-15 -3960 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-496) (-496)) (T -351))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))))
-((-1786 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 18 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 24 T ELT)) (-1785 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 40 T ELT)) (-2015 ((|#3| $) 69 T ELT)) (-3759 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 22 T ELT) (((-631 |#2|) (-1180 $)) 38 T ELT)) (-3974 (((-1180 |#2|) $) 11 T ELT) (($ (-1180 |#2|)) 13 T ELT)) (-2451 ((|#3| $) 55 T ELT)))
-(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1785 ((-631 |#2|) |#1|)) (-15 -3759 (|#2|)) (-15 -1786 ((-631 |#2|))) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -2015 (|#3| |#1|)) (-15 -2451 (|#3| |#1|)) (-15 -1786 ((-631 |#2|) (-1180 |#1|))) (-15 -3759 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1785 ((-631 |#2|) |#1| (-1180 |#1|)))) (-353 |#2| |#3|) (-146) (-1156 |#2|)) (T -352))
-((-1786 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3759 (*1 *2) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2704 (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-353 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -353))
-((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1)) (-4 *1 (-353 *3 *4)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *3)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1156 *3)))) (-1786 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))) (-3759 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-631 *3)))))
-(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -3974 ((-1180 |t#1|) $)) (-15 -3974 ($ (-1180 |t#1|))) (-15 -1786 ((-631 |t#1|))) (-15 -3759 (|t#1|)) (-15 -1785 ((-631 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) 27 T ELT) (((-3 (-485) #1#) $) 19 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) 24 T ELT) (((-485) $) 14 T ELT)) (-3948 (($ |#2|) NIL T ELT) (($ (-350 (-485))) 22 T ELT) (($ (-485)) 11 T ELT)))
-(((-354 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|))) (-355 |#2|) (-1130)) (T -354))
-NIL
-((-3159 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-485)) #1#) $) 16 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) 13 (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 8 T ELT) (((-350 (-485)) $) 17 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 14 (|has| |#1| (-951 (-485))) ELT)) (-3948 (($ |#1|) 6 T ELT) (($ (-350 (-485))) 15 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ (-485)) 12 (|has| |#1| (-951 (-485))) ELT)))
-(((-355 |#1|) (-113) (-1130)) (T -355))
-NIL
-(-13 (-951 |t#1|) (-10 -7 (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-485))) |%noBranch|) (IF (|has| |t#1| (-951 (-350 (-485)))) (-6 (-951 (-350 (-485)))) |%noBranch|)))
-(((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) |has| |#1| (-951 (-485))) ((-556 |#1|) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-1787 ((|#4| (-695) (-1180 |#4|)) 55 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3000 (((-1180 |#4|) $) 15 T ELT)) (-3134 ((|#2| $) 53 T ELT)) (-1788 (($ $) 156 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 103 T ELT)) (-1969 (($ (-1180 |#4|)) 102 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#1| $) 16 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 147 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 140 T ELT)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
-(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1969 ($ (-1180 |#4|))) (-15 -2013 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -3000 ((-1180 |#4|) $)) (-15 -2999 (|#1| $)) (-15 -1788 ($ $)) (-15 -1787 (|#4| (-695) (-1180 |#4|))))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|))) (T -356))
-((-1969 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2))))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1788 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))) (-1787 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1156 *6)))))
-((-3960 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT)))
-(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-905 |#1|) (-1156 |#2|) (-13 (-353 |#2| |#3|) (-951 |#2|)) (-258) (-905 |#5|) (-1156 |#6|) (-13 (-353 |#6| |#7|) (-951 |#6|))) (T -357))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6))) (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-951 *10))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#2| $) 69 T ELT)) (-1789 (($ (-1180 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-951 |#2|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 37 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 |#4|) $) 28 T ELT)) (-2668 (($) 26 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
-(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-664) (-10 -8 (-15 -2013 ((-1180 |#4|) $)) (-15 -3134 (|#2| $)) (-15 -1789 ($ (-1180 |#4|))) (IF (|has| |#4| (-951 |#2|)) (-15 -1789 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-905 |#1|) (-1156 |#2|) (-353 |#2| |#3|) (-1180 |#4|)) (T -358))
-((-2013 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3134 (*1 *2 *1) (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))))
-((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
-(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))))
-((-1776 (((-3 $ #1="failed")) 99 T ELT)) (-3225 (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT) (((-1180 (-631 |#2|))) 104 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 97 T ELT)) (-1704 (((-3 $ #1#)) 96 T ELT)) (-1792 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 115 T ELT)) (-1790 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 123 T ELT)) (-1904 (((-1086 (-858 |#2|))) 64 T ELT)) (-1794 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1796 (($ (-1180 |#2|) (-1180 $)) NIL T ELT) (($ (-1180 |#2|)) 125 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 95 T ELT)) (-1705 (((-3 $ #1#)) 87 T ELT)) (-1793 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-631 |#2|)) 113 T ELT)) (-1791 (((-631 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) $) 121 T ELT)) (-1908 (((-1086 (-858 |#2|))) 63 T ELT)) (-1795 ((|#2| (-1180 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3226 (((-1180 |#2|) $ (-1180 $)) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) 124 T ELT) (((-631 |#2|) (-1180 $)) 133 T ELT)) (-3974 (((-1180 |#2|) $) 109 T ELT) (($ (-1180 |#2|)) 111 T ELT)) (-1896 (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT) (((-584 (-858 |#2|))) 107 T ELT)) (-2547 (($ (-631 |#2|) $) 103 T ELT)))
-(((-360 |#1| |#2|) (-10 -7 (-15 -2547 (|#1| (-631 |#2|) |#1|)) (-15 -1904 ((-1086 (-858 |#2|)))) (-15 -1908 ((-1086 (-858 |#2|)))) (-15 -1790 ((-631 |#2|) |#1|)) (-15 -1791 ((-631 |#2|) |#1|)) (-15 -1792 ((-631 |#2|))) (-15 -1793 ((-631 |#2|))) (-15 -1794 (|#2|)) (-15 -1795 (|#2|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -1796 (|#1| (-1180 |#2|))) (-15 -1896 ((-584 (-858 |#2|)))) (-15 -3225 ((-1180 (-631 |#2|)))) (-15 -3226 ((-631 |#2|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1|)) (-15 -1776 ((-3 |#1| #1="failed"))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1705 ((-3 |#1| #1#))) (-15 -1910 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1911 ((-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#))) (-15 -1792 ((-631 |#2|) (-1180 |#1|))) (-15 -1793 ((-631 |#2|) (-1180 |#1|))) (-15 -1794 (|#2| (-1180 |#1|))) (-15 -1795 (|#2| (-1180 |#1|))) (-15 -1796 (|#1| (-1180 |#2|) (-1180 |#1|))) (-15 -3226 ((-631 |#2|) (-1180 |#1|) (-1180 |#1|))) (-15 -3226 ((-1180 |#2|) |#1| (-1180 |#1|))) (-15 -1790 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -1791 ((-631 |#2|) |#1| (-1180 |#1|))) (-15 -3225 ((-1180 (-631 |#2|)) (-1180 |#1|))) (-15 -1896 ((-584 (-858 |#2|)) (-1180 |#1|)))) (-361 |#2|) (-146)) (T -360))
-((-3225 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1896 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1795 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1794 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1793 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1792 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1908 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1904 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1776 (((-3 $ #1="failed")) 48 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3225 (((-1180 (-631 |#1|)) (-1180 $)) 89 T ELT) (((-1180 (-631 |#1|))) 115 T ELT)) (-1730 (((-1180 $)) 92 T ELT)) (-3726 (($) 23 T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 51 (|has| |#1| (-496)) ELT)) (-1704 (((-3 $ #1#)) 49 (|has| |#1| (-496)) ELT)) (-1792 (((-631 |#1|) (-1180 $)) 76 T ELT) (((-631 |#1|)) 107 T ELT)) (-1728 ((|#1| $) 85 T ELT)) (-1790 (((-631 |#1|) $ (-1180 $)) 87 T ELT) (((-631 |#1|) $) 105 T ELT)) (-2405 (((-3 $ #1#) $) 56 (|has| |#1| (-496)) ELT)) (-1904 (((-1086 (-858 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2408 (($ $ (-831)) 37 T ELT)) (-1726 ((|#1| $) 83 T ELT)) (-1706 (((-1086 |#1|) $) 53 (|has| |#1| (-496)) ELT)) (-1794 ((|#1| (-1180 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1724 (((-1086 |#1|) $) 74 T ELT)) (-1718 (((-85)) 68 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 80 T ELT) (($ (-1180 |#1|)) 113 T ELT)) (-3469 (((-3 $ #1#) $) 58 (|has| |#1| (-496)) ELT)) (-3110 (((-831)) 91 T ELT)) (-1715 (((-85)) 65 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-1711 (((-85)) 61 T ELT)) (-1709 (((-85)) 59 T ELT)) (-1713 (((-85)) 63 T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) 52 (|has| |#1| (-496)) ELT)) (-1705 (((-3 $ #1#)) 50 (|has| |#1| (-496)) ELT)) (-1793 (((-631 |#1|) (-1180 $)) 77 T ELT) (((-631 |#1|)) 108 T ELT)) (-1729 ((|#1| $) 86 T ELT)) (-1791 (((-631 |#1|) $ (-1180 $)) 88 T ELT) (((-631 |#1|) $) 106 T ELT)) (-2406 (((-3 $ #1#) $) 57 (|has| |#1| (-496)) ELT)) (-1908 (((-1086 (-858 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-1727 ((|#1| $) 84 T ELT)) (-1707 (((-1086 |#1|) $) 54 (|has| |#1| (-496)) ELT)) (-1795 ((|#1| (-1180 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1725 (((-1086 |#1|) $) 75 T ELT)) (-1719 (((-85)) 69 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1710 (((-85)) 60 T ELT)) (-1712 (((-85)) 62 T ELT)) (-1714 (((-85)) 64 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1717 (((-85)) 67 T ELT)) (-3802 ((|#1| $ (-485)) 119 T ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 82 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 81 T ELT) (((-1180 |#1|) $) 117 T ELT) (((-631 |#1|) (-1180 $)) 116 T ELT)) (-3974 (((-1180 |#1|) $) 112 T ELT) (($ (-1180 |#1|)) 111 T ELT)) (-1896 (((-584 (-858 |#1|)) (-1180 $)) 90 T ELT) (((-584 (-858 |#1|))) 114 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-1723 (((-85)) 73 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 118 T ELT)) (-1708 (((-584 (-1180 |#1|))) 55 (|has| |#1| (-496)) ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-1721 (((-85)) 71 T ELT)) (-2547 (($ (-631 |#1|) $) 102 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-1722 (((-85)) 72 T ELT)) (-1720 (((-85)) 70 T ELT)) (-1716 (((-85)) 66 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-3255 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-347)))) (-3255 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-347)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-2695 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))) (-1772 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-2616 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-1771 (*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-1771 (*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-830)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-484)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-830)))) (-2532 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) (-2561 (|has| *1 (-6 -3979))))) (-2858 (*1 *1) (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987))) (-2561 (|has| *1 (-6 -3979))))))
+(-13 (-973) (-10 -8 (-6 -3771) (-15 -3255 ($ (-484) (-484))) (-15 -3255 ($ (-484) (-484) (-830))) (-15 -3773 ((-484) $)) (-15 -2695 ((-830))) (-15 -2401 ((-484) $)) (-15 -1773 ((-484) $)) (-15 -1772 ((-830))) (-15 -2616 ((-830))) (-15 -1771 ((-830))) (IF (|has| $ (-6 -3987)) (PROGN (-15 -1772 ((-830) (-830))) (-15 -2616 ((-830) (-830))) (-15 -1771 ((-830) (-830))) (-15 -1770 ((-830) (-484))) (-15 -1769 ((-830) (-484)))) |%noBranch|) (IF (|has| $ (-6 -3979)) |%noBranch| (IF (|has| $ (-6 -3987)) |%noBranch| (PROGN (-15 -2532 ($)) (-15 -2858 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-800 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-330)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-973) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1774 (($ $) 77 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 189 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 48 T ELT)) (-1775 ((|#1| $) 16 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-1134)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-1777 (($ |#1| (-484)) 42 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 147 T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 73 T ELT)) (-3468 (((-3 $ #1#) $) 163 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 84 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 80 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 82 (|has| |#1| (-483)) ELT)) (-1778 (($ |#1| (-484)) 44 T ELT)) (-3724 (((-85) $) 209 (|has| |#1| (-1134)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 61 T ELT)) (-1837 (((-694) $) 51 T ELT)) (-1779 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-484)) 174 T ELT)) (-2299 ((|#1| $ (-484)) 173 T ELT)) (-1780 (((-484) $ (-484)) 172 T ELT)) (-1783 (($ |#1| (-484)) 41 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 182 T ELT)) (-1834 (($ |#1| (-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484))))) 78 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1781 (($ |#1| (-484)) 43 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 190 (|has| |#1| (-392)) ELT)) (-1776 (($ |#1| (-484) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1782 (((-583 (-2 (|:| -3733 |#1|) (|:| -2401 (-484)))) $) 72 T ELT)) (-1951 (((-583 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $) 12 T ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-1134)) ELT)) (-3467 (((-3 $ #1#) $ $) 175 T ELT)) (-2401 (((-484) $) 166 T ELT)) (-3964 ((|#1| $) 74 T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 105 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) $) NIL (|has| |#1| (-455 (-1090) $)) ELT) (($ $ (-583 (-1090)) (-583 $)) 106 (|has| |#1| (-455 (-1090) $)) ELT) (($ $ (-583 (-249 $))) 102 (|has| |#1| (-260 $)) ELT) (($ $ (-249 $)) NIL (|has| |#1| (-260 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-260 $)) ELT) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-260 $)) ELT)) (-3801 (($ $ |#1|) 91 (|has| |#1| (-241 |#1| |#1|)) ELT) (($ $ $) 92 (|has| |#1| (-241 $ $)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 181 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3973 (((-473) $) 39 (|has| |#1| (-553 (-473))) ELT) (((-330) $) 112 (|has| |#1| (-933)) ELT) (((-179) $) 118 (|has| |#1| (-933)) ELT)) (-3947 (((-772) $) 145 T ELT) (($ (-484)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT)) (-3127 (((-694)) 66 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 53 T CONST)) (-2667 (($) 52 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 158 T ELT)) (-3838 (($ $) 160 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 179 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 124 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-348 |#1|) (-13 (-495) (-184 |#1|) (-38 |#1|) (-288 |#1|) (-355 |#1|) (-10 -8 (-15 -3964 (|#1| $)) (-15 -2401 ((-484) $)) (-15 -1834 ($ |#1| (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))))) (-15 -1951 ((-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-484)))) $)) (-15 -1783 ($ |#1| (-484))) (-15 -1782 ((-583 (-2 (|:| -3733 |#1|) (|:| -2401 (-484)))) $)) (-15 -1781 ($ |#1| (-484))) (-15 -1780 ((-484) $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -1779 ((-3 #1# #2# #3# #4#) $ (-484))) (-15 -1837 ((-694) $)) (-15 -1778 ($ |#1| (-484))) (-15 -1777 ($ |#1| (-484))) (-15 -1776 ($ |#1| (-484) (-3 #1# #2# #3# #4#))) (-15 -1775 (|#1| $)) (-15 -1774 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-392)) (-6 (-392)) |%noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |#1| (-1134)) (-6 (-1134)) |%noBranch|) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-241 $ $)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |#1| (-260 $)) (-6 (-260 $)) |%noBranch|) (IF (|has| |#1| (-455 (-1090) $)) (-6 (-455 (-1090) $)) |%noBranch|))) (-495)) (T -348))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-348 *3)))) (-3964 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1834 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-484))))) (-4 *2 (-495)) (-5 *1 (-348 *2)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-484))))) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1783 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1782 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3733 *3) (|:| -2401 (-484))))) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1781 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1780 (*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1779 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *4)) (-4 *4 (-495)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-348 *3)) (-4 *3 (-495)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1777 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1776 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1775 (*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-1774 (*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495)))))
+((-3959 (((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)) 20 T ELT)))
+(((-349 |#1| |#2|) (-10 -7 (-15 -3959 ((-348 |#2|) (-1 |#2| |#1|) (-348 |#1|)))) (-495) (-495)) (T -349))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 13 T ELT)) (-3130 ((|#1| $) 21 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| |#1| (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#1| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) 54 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-3157 ((|#1| $) 15 T ELT) (((-1090) $) NIL (|has| |#1| (-950 (-1090))) ELT) (((-350 (-484)) $) 51 (|has| |#1| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 32 T ELT)) (-2995 (($) NIL (|has| |#1| (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#1| (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#1| $) 55 T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3188 (((-85) $) 22 (|has| |#1| (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 82 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 26 (|has| |#1| (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 133 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 128 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#1| $) 57 T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (((-330) $) NIL (|has| |#1| (-933)) ELT) (((-179) $) NIL (|has| |#1| (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 112 (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1090)) NIL (|has| |#1| (-950 (-1090))) ELT)) (-2703 (((-632 $) $) 92 (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 93 T CONST)) (-3132 ((|#1| $) 24 (|has| |#1| (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-740)) ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 48 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3950 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 122 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT)))
+(((-350 |#1|) (-13 (-904 |#1|) (-10 -7 (IF (|has| |#1| (-6 -3983)) (IF (|has| |#1| (-392)) (IF (|has| |#1| (-6 -3994)) (-6 -3983) |%noBranch|) |%noBranch|) |%noBranch|))) (-495)) (T -350))
+NIL
+((-3959 (((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)) 13 T ELT)))
+(((-351 |#1| |#2|) (-10 -7 (-15 -3959 ((-350 |#2|) (-1 |#2| |#1|) (-350 |#1|)))) (-495) (-495)) (T -351))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6)))))
+((-1785 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 18 T ELT)) (-1795 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 24 T ELT)) (-1784 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 40 T ELT)) (-2014 ((|#3| $) 69 T ELT)) (-3758 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 22 T ELT) (((-630 |#2|) (-1179 $)) 38 T ELT)) (-3973 (((-1179 |#2|) $) 11 T ELT) (($ (-1179 |#2|)) 13 T ELT)) (-2450 ((|#3| $) 55 T ELT)))
+(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1784 ((-630 |#2|) |#1|)) (-15 -3758 (|#2|)) (-15 -1785 ((-630 |#2|))) (-15 -3973 (|#1| (-1179 |#2|))) (-15 -3973 ((-1179 |#2|) |#1|)) (-15 -1795 (|#1| (-1179 |#2|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -2014 (|#3| |#1|)) (-15 -2450 (|#3| |#1|)) (-15 -1785 ((-630 |#2|) (-1179 |#1|))) (-15 -3758 (|#2| (-1179 |#1|))) (-15 -1795 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1784 ((-630 |#2|) |#1| (-1179 |#1|)))) (-353 |#2| |#3|) (-146) (-1155 |#2|)) (T -352))
+((-1785 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)) (-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5)))) (-3758 (*1 *2) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4)) (-4 *3 (-353 *2 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1785 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1795 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-830)) 69 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3758 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3973 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT)) (-2703 (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-353 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -353))
+((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1)) (-4 *1 (-353 *3 *4)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4)) (-4 *4 (-1155 *3)))) (-1785 (*1 *2) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-630 *3)))) (-3758 (*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-630 *3)))))
+(-13 (-322 |t#1| |t#2|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-630 |t#1|) (-1179 $))) (-15 -1795 ($ (-1179 |t#1|))) (-15 -3973 ((-1179 |t#1|) $)) (-15 -3973 ($ (-1179 |t#1|))) (-15 -1785 ((-630 |t#1|))) (-15 -3758 (|t#1|)) (-15 -1784 ((-630 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-322 |#1| |#2|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) 27 T ELT) (((-3 (-484) #1#) $) 19 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) 24 T ELT) (((-484) $) 14 T ELT)) (-3947 (($ |#2|) NIL T ELT) (($ (-350 (-484))) 22 T ELT) (($ (-484)) 11 T ELT)))
+(((-354 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-484))) (-15 -3158 ((-3 (-484) #1="failed") |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|))) (-355 |#2|) (-1129)) (T -354))
+NIL
+((-3158 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-350 (-484)) #1#) $) 16 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) 13 (|has| |#1| (-950 (-484))) ELT)) (-3157 ((|#1| $) 8 T ELT) (((-350 (-484)) $) 17 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 14 (|has| |#1| (-950 (-484))) ELT)) (-3947 (($ |#1|) 6 T ELT) (($ (-350 (-484))) 15 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ (-484)) 12 (|has| |#1| (-950 (-484))) ELT)))
+(((-355 |#1|) (-113) (-1129)) (T -355))
+NIL
+(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-484))) |%noBranch|) (IF (|has| |t#1| (-950 (-350 (-484)))) (-6 (-950 (-350 (-484)))) |%noBranch|)))
+(((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) |has| |#1| (-950 (-484))) ((-555 |#1|) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-1786 ((|#4| (-694) (-1179 |#4|)) 55 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2999 (((-1179 |#4|) $) 15 T ELT)) (-3133 ((|#2| $) 53 T ELT)) (-1787 (($ $) 156 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 103 T ELT)) (-1968 (($ (-1179 |#4|)) 102 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2998 ((|#1| $) 16 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) 147 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 |#4|) $) 140 T ELT)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 133 T ELT)) (* (($ $ $) 130 T ELT)))
+(((-356 |#1| |#2| |#3| |#4|) (-13 (-413) (-10 -8 (-15 -1968 ($ (-1179 |#4|))) (-15 -2012 ((-1179 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -2999 ((-1179 |#4|) $)) (-15 -2998 (|#1| $)) (-15 -1787 ($ $)) (-15 -1786 (|#4| (-694) (-1179 |#4|))))) (-258) (-904 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-950 |#2|))) (T -356))
+((-1968 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-356 *3 *4 *5 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-356 *3 *2 *4 *5)) (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-950 *2))))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4))))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))) (-1787 (*1 *1 *1) (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))) (-1786 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *2 (-13 (-353 *6 *7) (-950 *6))) (-5 *1 (-356 *5 *6 *7 *2)) (-4 *7 (-1155 *6)))))
+((-3959 (((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)) 35 T ELT)))
+(((-357 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 ((-356 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-356 |#1| |#2| |#3| |#4|)))) (-258) (-904 |#1|) (-1155 |#2|) (-13 (-353 |#2| |#3|) (-950 |#2|)) (-258) (-904 |#5|) (-1155 |#6|) (-13 (-353 |#6| |#7|) (-950 |#6|))) (T -357))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258)) (-4 *6 (-904 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-950 *6))) (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1155 *10)) (-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-353 *10 *11) (-950 *10))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3133 ((|#2| $) 69 T ELT)) (-1788 (($ (-1179 |#4|)) 27 T ELT) (($ (-356 |#1| |#2| |#3| |#4|)) 83 (|has| |#4| (-950 |#2|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 37 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 |#4|) $) 28 T ELT)) (-2667 (($) 26 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ $ $) 80 T ELT)))
+(((-358 |#1| |#2| |#3| |#4| |#5|) (-13 (-663) (-10 -8 (-15 -2012 ((-1179 |#4|) $)) (-15 -3133 (|#2| $)) (-15 -1788 ($ (-1179 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1788 ($ (-356 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-258) (-904 |#1|) (-1155 |#2|) (-353 |#2| |#3|) (-1179 |#4|)) (T -358))
+((-2012 (*1 *2 *1) (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2))) (-3133 (*1 *2 *1) (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6)) (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5)))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1788 (*1 *1 *2) (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5)) (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7)))))
+((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
+(((-359 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-361 |#2|) (-146) (-361 |#4|) (-146)) (T -359))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6)) (-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5)))))
+((-1775 (((-3 $ #1="failed")) 99 T ELT)) (-3224 (((-1179 (-630 |#2|)) (-1179 $)) NIL T ELT) (((-1179 (-630 |#2|))) 104 T ELT)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 97 T ELT)) (-1703 (((-3 $ #1#)) 96 T ELT)) (-1791 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 115 T ELT)) (-1789 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 123 T ELT)) (-1903 (((-1085 (-857 |#2|))) 64 T ELT)) (-1793 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1795 (($ (-1179 |#2|) (-1179 $)) NIL T ELT) (($ (-1179 |#2|)) 125 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 95 T ELT)) (-1704 (((-3 $ #1#)) 87 T ELT)) (-1792 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-630 |#2|)) 113 T ELT)) (-1790 (((-630 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) $) 121 T ELT)) (-1907 (((-1085 (-857 |#2|))) 63 T ELT)) (-1794 ((|#2| (-1179 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3225 (((-1179 |#2|) $ (-1179 $)) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) 124 T ELT) (((-630 |#2|) (-1179 $)) 133 T ELT)) (-3973 (((-1179 |#2|) $) 109 T ELT) (($ (-1179 |#2|)) 111 T ELT)) (-1895 (((-583 (-857 |#2|)) (-1179 $)) NIL T ELT) (((-583 (-857 |#2|))) 107 T ELT)) (-2546 (($ (-630 |#2|) $) 103 T ELT)))
+(((-360 |#1| |#2|) (-10 -7 (-15 -2546 (|#1| (-630 |#2|) |#1|)) (-15 -1903 ((-1085 (-857 |#2|)))) (-15 -1907 ((-1085 (-857 |#2|)))) (-15 -1789 ((-630 |#2|) |#1|)) (-15 -1790 ((-630 |#2|) |#1|)) (-15 -1791 ((-630 |#2|))) (-15 -1792 ((-630 |#2|))) (-15 -1793 (|#2|)) (-15 -1794 (|#2|)) (-15 -3973 (|#1| (-1179 |#2|))) (-15 -3973 ((-1179 |#2|) |#1|)) (-15 -1795 (|#1| (-1179 |#2|))) (-15 -1895 ((-583 (-857 |#2|)))) (-15 -3224 ((-1179 (-630 |#2|)))) (-15 -3225 ((-630 |#2|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1|)) (-15 -1775 ((-3 |#1| #1="failed"))) (-15 -1703 ((-3 |#1| #1#))) (-15 -1704 ((-3 |#1| #1#))) (-15 -1909 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1910 ((-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#))) (-15 -1791 ((-630 |#2|) (-1179 |#1|))) (-15 -1792 ((-630 |#2|) (-1179 |#1|))) (-15 -1793 (|#2| (-1179 |#1|))) (-15 -1794 (|#2| (-1179 |#1|))) (-15 -1795 (|#1| (-1179 |#2|) (-1179 |#1|))) (-15 -3225 ((-630 |#2|) (-1179 |#1|) (-1179 |#1|))) (-15 -3225 ((-1179 |#2|) |#1| (-1179 |#1|))) (-15 -1789 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -1790 ((-630 |#2|) |#1| (-1179 |#1|))) (-15 -3224 ((-1179 (-630 |#2|)) (-1179 |#1|))) (-15 -1895 ((-583 (-857 |#2|)) (-1179 |#1|)))) (-361 |#2|) (-146)) (T -360))
+((-3224 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1895 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1794 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1793 (*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2)))) (-1792 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1791 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1907 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1775 (((-3 $ #1="failed")) 48 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3224 (((-1179 (-630 |#1|)) (-1179 $)) 89 T ELT) (((-1179 (-630 |#1|))) 115 T ELT)) (-1729 (((-1179 $)) 92 T ELT)) (-3725 (($) 23 T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 51 (|has| |#1| (-495)) ELT)) (-1703 (((-3 $ #1#)) 49 (|has| |#1| (-495)) ELT)) (-1791 (((-630 |#1|) (-1179 $)) 76 T ELT) (((-630 |#1|)) 107 T ELT)) (-1727 ((|#1| $) 85 T ELT)) (-1789 (((-630 |#1|) $ (-1179 $)) 87 T ELT) (((-630 |#1|) $) 105 T ELT)) (-2404 (((-3 $ #1#) $) 56 (|has| |#1| (-495)) ELT)) (-1903 (((-1085 (-857 |#1|))) 103 (|has| |#1| (-312)) ELT)) (-2407 (($ $ (-830)) 37 T ELT)) (-1725 ((|#1| $) 83 T ELT)) (-1705 (((-1085 |#1|) $) 53 (|has| |#1| (-495)) ELT)) (-1793 ((|#1| (-1179 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1723 (((-1085 |#1|) $) 74 T ELT)) (-1717 (((-85)) 68 T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) 80 T ELT) (($ (-1179 |#1|)) 113 T ELT)) (-3468 (((-3 $ #1#) $) 58 (|has| |#1| (-495)) ELT)) (-3109 (((-830)) 91 T ELT)) (-1714 (((-85)) 65 T ELT)) (-2434 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-1710 (((-85)) 61 T ELT)) (-1708 (((-85)) 59 T ELT)) (-1712 (((-85)) 63 T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) 52 (|has| |#1| (-495)) ELT)) (-1704 (((-3 $ #1#)) 50 (|has| |#1| (-495)) ELT)) (-1792 (((-630 |#1|) (-1179 $)) 77 T ELT) (((-630 |#1|)) 108 T ELT)) (-1728 ((|#1| $) 86 T ELT)) (-1790 (((-630 |#1|) $ (-1179 $)) 88 T ELT) (((-630 |#1|) $) 106 T ELT)) (-2405 (((-3 $ #1#) $) 57 (|has| |#1| (-495)) ELT)) (-1907 (((-1085 (-857 |#1|))) 104 (|has| |#1| (-312)) ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-1726 ((|#1| $) 84 T ELT)) (-1706 (((-1085 |#1|) $) 54 (|has| |#1| (-495)) ELT)) (-1794 ((|#1| (-1179 $)) 79 T ELT) ((|#1|) 110 T ELT)) (-1724 (((-1085 |#1|) $) 75 T ELT)) (-1718 (((-85)) 69 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1709 (((-85)) 60 T ELT)) (-1711 (((-85)) 62 T ELT)) (-1713 (((-85)) 64 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1716 (((-85)) 67 T ELT)) (-3801 ((|#1| $ (-484)) 119 T ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 82 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 81 T ELT) (((-1179 |#1|) $) 117 T ELT) (((-630 |#1|) (-1179 $)) 116 T ELT)) (-3973 (((-1179 |#1|) $) 112 T ELT) (($ (-1179 |#1|)) 111 T ELT)) (-1895 (((-583 (-857 |#1|)) (-1179 $)) 90 T ELT) (((-583 (-857 |#1|))) 114 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-1722 (((-85)) 73 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 118 T ELT)) (-1707 (((-583 (-1179 |#1|))) 55 (|has| |#1| (-495)) ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-1720 (((-85)) 71 T ELT)) (-2546 (($ (-630 |#1|) $) 102 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-1721 (((-85)) 72 T ELT)) (-1719 (((-85)) 70 T ELT)) (-1715 (((-85)) 66 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-361 |#1|) (-113) (-146)) (T -361))
-((-2013 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4)))) (-3225 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3))))) (-1896 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3))))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1795 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1794 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1793 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1792 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))) (-1908 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-1904 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1086 (-858 *3))))) (-2547 (*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))))
-(-13 (-316 |t#1|) (-241 (-485) |t#1|) (-10 -8 (-15 -2013 ((-1180 $))) (-15 -3226 ((-1180 |t#1|) $)) (-15 -3226 ((-631 |t#1|) (-1180 $))) (-15 -3225 ((-1180 (-631 |t#1|)))) (-15 -1896 ((-584 (-858 |t#1|)))) (-15 -1796 ($ (-1180 |t#1|))) (-15 -3974 ((-1180 |t#1|) $)) (-15 -3974 ($ (-1180 |t#1|))) (-15 -1795 (|t#1|)) (-15 -1794 (|t#1|)) (-15 -1793 ((-631 |t#1|))) (-15 -1792 ((-631 |t#1|))) (-15 -1791 ((-631 |t#1|) $)) (-15 -1790 ((-631 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1908 ((-1086 (-858 |t#1|)))) (-15 -1904 ((-1086 (-858 |t#1|))))) |%noBranch|) (-15 -2547 ($ (-631 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-241 (-485) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-684 |#1|) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3136 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1797 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT)))
-(((-362 |#1|) (-10 -7 (-15 -3136 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1797 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-496)) (T -362))
-((-1797 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))) (-3136 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4)))))
-((-3083 (((-584 (-1091)) $) 81 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 313 T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 277 T ELT)) (-3159 (((-3 (-551 $) #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 84 T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-858 |#2|)) #1#) $) 363 T ELT) (((-3 (-858 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-1091) $) 28 T ELT) (((-485) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-858 |#2|)) $) 345 T ELT) (((-858 |#2|) $) 272 T ELT) (((-350 (-485)) $) NIL T ELT)) (-3597 (((-86) (-86)) 47 T ELT)) (-2998 (($ $) 99 T ELT)) (-1603 (((-3 (-551 $) #1#) $) 268 T ELT)) (-1602 (((-584 (-551 $)) $) 269 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 287 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) #1#) $) 294 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 285 T ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) #1#) $) 304 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) #1#) $ (-1091)) 257 T ELT)) (-1801 (((-85) $) 17 T ELT)) (-1800 ((|#2| $) 19 T ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) 276 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 109 T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1091)) 62 T ELT) (($ $ (-584 (-1091))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1091)) 65 T ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 72 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 120 T ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 282 T ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 105 T ELT) (($ $ (-1091) (-695) (-1 $ $)) 104 T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) 119 T ELT)) (-3760 (($ $ (-1091)) 278 T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2997 (($ $) 324 T ELT)) (-3974 (((-801 (-485)) $) 297 T ELT) (((-801 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-474) $) NIL T ELT)) (-3948 (((-773) $) 279 T ELT) (($ (-551 $)) 93 T ELT) (($ (-1091)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1040 |#2| (-551 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-858 (-350 |#2|))) 368 T ELT) (($ (-350 (-858 (-350 |#2|)))) 341 T ELT) (($ (-350 (-858 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-858 |#2|)) 216 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 373 T ELT)) (-3128 (((-695)) 88 T CONST)) (-2255 (((-85) (-86)) 42 T ELT)) (-1799 (($ (-1091) $) 31 T ELT) (($ (-1091) $ $) 32 T ELT) (($ (-1091) $ $ $) 33 T ELT) (($ (-1091) $ $ $ $) 34 T ELT) (($ (-1091) (-584 $)) 39 T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-831) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3948 (|#1| (-485))) (-15 -3128 ((-695)) -3954) (-15 * (|#1| |#2| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3948 (|#1| (-858 |#2|))) (-15 -3159 ((-3 (-858 |#2|) #1#) |#1|)) (-15 -3158 ((-858 |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 * (|#1| |#1| |#2|)) (-15 -3948 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3948 (|#1| (-350 (-858 |#2|)))) (-15 -3159 ((-3 (-350 (-858 |#2|)) #1#) |#1|)) (-15 -3158 ((-350 (-858 |#2|)) |#1|)) (-15 -3085 ((-350 (-1086 |#1|)) |#1| (-551 |#1|))) (-15 -3948 (|#1| (-350 (-858 (-350 |#2|))))) (-15 -3948 (|#1| (-858 (-350 |#2|)))) (-15 -3948 (|#1| (-350 |#2|))) (-15 -2997 (|#1| |#1|)) (-15 -3974 (|#1| (-348 |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-695) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-695) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-695)) (-584 (-1 |#1| |#1|)))) (-15 -2827 ((-3 (-2 (|:| |val| |#1|) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-1091))) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1| (-86))) (-15 -2998 (|#1| |#1|)) (-15 -3948 (|#1| (-1040 |#2| (-551 |#1|)))) (-15 -1798 ((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 |#1|))) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 |#1|)) (|:| -2402 (-485))) #1#) |#1|)) (-15 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 |#1|) (-1091))) (-15 -3770 (|#1| |#1| (-86) |#1| (-1091))) (-15 -3770 (|#1| |#1|)) (-15 -3770 (|#1| |#1| (-584 (-1091)))) (-15 -3770 (|#1| |#1| (-1091))) (-15 -1799 (|#1| (-1091) (-584 |#1|))) (-15 -1799 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1| |#1|)) (-15 -1799 (|#1| (-1091) |#1|)) (-15 -3083 ((-584 (-1091)) |#1|)) (-15 -1800 (|#2| |#1|)) (-15 -1801 ((-85) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3948 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-86) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-86)) (-584 (-1 |#1| |#1|)))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -3770 (|#1| |#1| (-1091) (-1 |#1| (-584 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| (-584 |#1|))))) (-15 -3770 (|#1| |#1| (-584 (-1091)) (-584 (-1 |#1| |#1|)))) (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -1602 ((-584 (-551 |#1|)) |#1|)) (-15 -1603 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -1605 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -1605 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -1605 (|#1| |#1| (-249 |#1|))) (-15 -3802 (|#1| (-86) (-584 |#1|))) (-15 -3802 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1| |#1|)) (-15 -3802 (|#1| (-86) |#1|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3770 (|#1| |#1| (-584 (-551 |#1|)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-551 |#1|) |#1|)) (-15 -3948 (|#1| (-551 |#1|))) (-15 -3159 ((-3 (-551 |#1|) #1#) |#1|)) (-15 -3158 ((-551 |#1|) |#1|)) (-15 -3948 ((-773) |#1|))) (-364 |#2|) (-1014)) (T -363))
-((-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3128 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3083 (((-584 (-1091)) $) 222 T ELT)) (-3085 (((-350 (-1086 $)) $ (-551 $)) 190 (|has| |#1| (-496)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 162 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 163 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 165 (|has| |#1| (-496)) ELT)) (-1601 (((-584 (-551 $)) $) 42 T ELT)) (-1313 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1605 (($ $ (-249 $)) 54 T ELT) (($ $ (-584 (-249 $))) 53 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 52 T ELT)) (-3777 (($ $) 182 (|has| |#1| (-496)) ELT)) (-3973 (((-348 $) $) 183 (|has| |#1| (-496)) ELT)) (-1609 (((-85) $ $) 173 (|has| |#1| (-496)) ELT)) (-3726 (($) 117 (OR (|has| |#1| (-1026)) (|has| |#1| (-25))) CONST)) (-3159 (((-3 (-551 $) #1="failed") $) 67 T ELT) (((-3 (-1091) #1#) $) 235 T ELT) (((-3 (-485) #1#) $) 229 (|has| |#1| (-951 (-485))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-858 |#1|)) #1#) $) 188 (|has| |#1| (-496)) ELT) (((-3 (-858 |#1|) #1#) $) 137 (|has| |#1| (-962)) ELT) (((-3 (-350 (-485)) #1#) $) 111 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 (((-551 $) $) 68 T ELT) (((-1091) $) 236 T ELT) (((-485) $) 228 (|has| |#1| (-951 (-485))) ELT) ((|#1| $) 227 T ELT) (((-350 (-858 |#1|)) $) 189 (|has| |#1| (-496)) ELT) (((-858 |#1|) $) 138 (|has| |#1| (-962)) ELT) (((-350 (-485)) $) 112 (OR (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2566 (($ $ $) 177 (|has| |#1| (-496)) ELT)) (-2280 (((-631 (-485)) (-631 $)) 155 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 154 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 153 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-631 $)) 152 (|has| |#1| (-962)) ELT)) (-3469 (((-3 $ "failed") $) 119 (|has| |#1| (-1026)) ELT)) (-2565 (($ $ $) 176 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 171 (|has| |#1| (-496)) ELT)) (-3725 (((-85) $) 184 (|has| |#1| (-496)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 231 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 230 (|has| |#1| (-797 (-330))) ELT)) (-2575 (($ $) 49 T ELT) (($ (-584 $)) 48 T ELT)) (-1215 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1600 (((-584 (-86)) $) 41 T ELT)) (-3597 (((-86) (-86)) 40 T ELT)) (-2411 (((-85) $) 118 (|has| |#1| (-1026)) ELT)) (-2675 (((-85) $) 20 (|has| $ (-951 (-485))) ELT)) (-2998 (($ $) 205 (|has| |#1| (-962)) ELT)) (-3000 (((-1040 |#1| (-551 $)) $) 206 (|has| |#1| (-962)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 180 (|has| |#1| (-496)) ELT)) (-1598 (((-1086 $) (-551 $)) 23 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) 34 T ELT)) (-1603 (((-3 (-551 $) "failed") $) 44 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 157 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 156 (-2564 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 151 (|has| |#1| (-962)) ELT) (((-631 |#1|) (-1180 $)) 150 (|has| |#1| (-962)) ELT)) (-1895 (($ (-584 $)) 169 (|has| |#1| (-496)) ELT) (($ $ $) 168 (|has| |#1| (-496)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-1602 (((-584 (-551 $)) $) 43 T ELT)) (-2236 (($ (-86) $) 36 T ELT) (($ (-86) (-584 $)) 35 T ELT)) (-2825 (((-3 (-584 $) "failed") $) 211 (|has| |#1| (-1026)) ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $) 202 (|has| |#1| (-962)) ELT)) (-2824 (((-3 (-584 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1798 (((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2826 (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $) 210 (|has| |#1| (-1026)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86)) 204 (|has| |#1| (-962)) ELT) (((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091)) 203 (|has| |#1| (-962)) ELT)) (-2635 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1091)) 37 T ELT)) (-2486 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-2605 (((-695) $) 45 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 224 T ELT)) (-1800 ((|#1| $) 223 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 170 (|has| |#1| (-496)) ELT)) (-3146 (($ (-584 $)) 167 (|has| |#1| (-496)) ELT) (($ $ $) 166 (|has| |#1| (-496)) ELT)) (-1599 (((-85) $ $) 33 T ELT) (((-85) $ (-1091)) 32 T ELT)) (-3734 (((-348 $) $) 181 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-496)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 178 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ "failed") $ $) 161 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 172 (|has| |#1| (-496)) ELT)) (-2676 (((-85) $) 21 (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) 65 T ELT) (($ $ (-584 (-551 $)) (-584 $)) 64 T ELT) (($ $ (-584 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-584 $) (-584 $)) 60 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) 31 T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) 30 T ELT) (($ $ (-1091) (-1 $ (-584 $))) 29 T ELT) (($ $ (-1091) (-1 $ $)) 28 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) 27 T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-584 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1091)) 216 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091))) 215 (|has| |#1| (-554 (-474))) ELT) (($ $) 214 (|has| |#1| (-554 (-474))) ELT) (($ $ (-86) $ (-1091)) 213 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-86)) (-584 $) (-1091)) 212 (|has| |#1| (-554 (-474))) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $))) 201 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $)))) 200 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ (-584 $))) 199 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695) (-1 $ $)) 198 (|has| |#1| (-962)) ELT)) (-1608 (((-695) $) 174 (|has| |#1| (-496)) ELT)) (-3802 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-584 $)) 55 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 175 (|has| |#1| (-496)) ELT)) (-1604 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3760 (($ $ (-1091)) 148 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 146 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 145 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 144 (|has| |#1| (-962)) ELT)) (-2997 (($ $) 195 (|has| |#1| (-496)) ELT)) (-2999 (((-1040 |#1| (-551 $)) $) 196 (|has| |#1| (-496)) ELT)) (-3187 (($ $) 22 (|has| $ (-962)) ELT)) (-3974 (((-801 (-485)) $) 233 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 232 (|has| |#1| (-554 (-801 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-496)) ELT) (((-474) $) 113 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2437 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-551 $)) 66 T ELT) (($ (-1091)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1040 |#1| (-551 $))) 207 (|has| |#1| (-962)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-496)) ELT) (($ (-858 (-350 |#1|))) 192 (|has| |#1| (-496)) ELT) (($ (-350 (-858 (-350 |#1|)))) 191 (|has| |#1| (-496)) ELT) (($ (-350 (-858 |#1|))) 187 (|has| |#1| (-496)) ELT) (($ $) 160 (|has| |#1| (-496)) ELT) (($ (-858 |#1|)) 136 (|has| |#1| (-962)) ELT) (($ (-350 (-485))) 110 (OR (|has| |#1| (-496)) (-12 (|has| |#1| (-951 (-485))) (|has| |#1| (-496))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ (-485)) 109 (OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485)))) ELT)) (-2704 (((-633 $) $) 158 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 140 (|has| |#1| (-962)) CONST)) (-2592 (($ $) 51 T ELT) (($ (-584 $)) 50 T ELT)) (-2255 (((-85) (-86)) 39 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 164 (|has| |#1| (-496)) ELT)) (-1799 (($ (-1091) $) 221 T ELT) (($ (-1091) $ $) 220 T ELT) (($ (-1091) $ $ $) 219 T ELT) (($ (-1091) $ $ $ $) 218 T ELT) (($ (-1091) (-584 $)) 217 T ELT)) (-3127 (((-85) $ $) 139 (|has| |#1| (-962)) ELT)) (-2662 (($) 128 (|has| |#1| (-25)) CONST)) (-2668 (($) 116 (|has| |#1| (-1026)) CONST)) (-2671 (($ $ (-1091)) 147 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091))) 143 (|has| |#1| (-962)) ELT) (($ $ (-1091) (-695)) 142 (|has| |#1| (-962)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 141 (|has| |#1| (-962)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ (-1040 |#1| (-551 $)) (-1040 |#1| (-551 $))) 194 (|has| |#1| (-496)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT)) (-3839 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-485)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-496))) ELT) (($ $ (-695)) 120 (|has| |#1| (-1026)) ELT) (($ $ (-831)) 115 (|has| |#1| (-1026)) ELT)) (* (($ (-350 (-485)) $) 186 (|has| |#1| (-496)) ELT) (($ $ (-350 (-485))) 185 (|has| |#1| (-496)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-962)) ELT) (($ (-485) $) 133 (|has| |#1| (-21)) ELT) (($ (-695) $) 130 (|has| |#1| (-25)) ELT) (($ (-831) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1026)) ELT)))
-(((-364 |#1|) (-113) (-1014)) (T -364))
-((-1801 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091))))) (-1799 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))) (-1799 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-554 (-474))))) (-3770 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474))))) (-3770 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-554 (-474))))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-554 (-474))))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-364 *3)))) (-1798 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| -3956 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2826 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014)) (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4)))) (-2827 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3770 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1))) (-4 *1 (-364 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496)))) (-3951 (*1 *1 *2 *2) (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3)))) (-3085 (*1 *2 *1 *3) (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496)) (-5 *2 (-350 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026)))))
-(-13 (-254) (-951 (-1091)) (-795 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1801 ((-85) $)) (-15 -1800 (|t#1| $)) (-15 -3083 ((-584 (-1091)) $)) (-15 -1799 ($ (-1091) $)) (-15 -1799 ($ (-1091) $ $)) (-15 -1799 ($ (-1091) $ $ $)) (-15 -1799 ($ (-1091) $ $ $ $)) (-15 -1799 ($ (-1091) (-584 $))) (IF (|has| |t#1| (-554 (-474))) (PROGN (-6 (-554 (-474))) (-15 -3770 ($ $ (-1091))) (-15 -3770 ($ $ (-584 (-1091)))) (-15 -3770 ($ $)) (-15 -3770 ($ $ (-86) $ (-1091))) (-15 -3770 ($ $ (-584 (-86)) (-584 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1026)) (PROGN (-6 (-664)) (-15 ** ($ $ (-695))) (-15 -2825 ((-3 (-584 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -1798 ((-3 (-2 (|:| -3956 (-485)) (|:| |var| (-551 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-962)) (-6 (-951 (-858 |t#1|))) (-6 (-810 (-1091))) (-6 (-329 |t#1|)) (-15 -3948 ($ (-1040 |t#1| (-551 $)))) (-15 -3000 ((-1040 |t#1| (-551 $)) $)) (-15 -2998 ($ $)) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-86))) (-15 -2826 ((-3 (-2 (|:| |var| (-551 $)) (|:| -2402 (-485))) "failed") $ (-1091))) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2402 (-485))) "failed") $)) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ $)))) (-15 -3770 ($ $ (-584 (-1091)) (-584 (-695)) (-584 (-1 $ (-584 $))))) (-15 -3770 ($ $ (-1091) (-695) (-1 $ (-584 $)))) (-15 -3770 ($ $ (-1091) (-695) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-312)) (-6 (-951 (-350 (-858 |t#1|)))) (-15 -3974 ($ (-348 $))) (-15 -2999 ((-1040 |t#1| (-551 $)) $)) (-15 -2997 ($ $)) (-15 -3951 ($ (-1040 |t#1| (-551 $)) (-1040 |t#1| (-551 $)))) (-15 -3948 ($ (-350 |t#1|))) (-15 -3948 ($ (-858 (-350 |t#1|)))) (-15 -3948 ($ (-350 (-858 (-350 |t#1|))))) (-15 -3085 ((-350 (-1086 $)) $ (-551 $))) (IF (|has| |t#1| (-951 (-485))) (-6 (-951 (-350 (-485)))) |%noBranch|)) |%noBranch|)))
-(((-21) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-485))) |has| |#1| (-496)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-496)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-496)) ((-104) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-496))) ((-556 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-556 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-951 (-485))) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-556 (-551 $)) . T) ((-556 (-858 |#1|)) |has| |#1| (-962)) ((-556 (-1091)) . T) ((-556 |#1|) . T) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) |has| |#1| (-496)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-201) |has| |#1| (-496)) ((-246) |has| |#1| (-496)) ((-258) |has| |#1| (-496)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-496)) ((-329 |#1|) |has| |#1| (-962)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-496)) ((-413) |has| |#1| (-413)) ((-456 (-551 $) $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-496)) ((-589 (-485)) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-589 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-589 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-591 (-350 (-485))) |has| |#1| (-496)) ((-591 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-591 |#1|) OR (|has| |#1| (-962)) (|has| |#1| (-146))) ((-591 $) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-583 (-350 (-485))) |has| |#1| (-496)) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-581 (-485)) -12 (|has| |#1| (-581 (-485))) (|has| |#1| (-962))) ((-581 |#1|) |has| |#1| (-962)) ((-655 (-350 (-485))) |has| |#1| (-496)) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-807 $ (-1091)) |has| |#1| (-962)) ((-810 (-1091)) |has| |#1| (-962)) ((-812 (-1091)) |has| |#1| (-962)) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-833) |has| |#1| (-496)) ((-951 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (-12 (|has| |#1| (-496)) (|has| |#1| (-951 (-485))))) ((-951 (-350 (-858 |#1|))) |has| |#1| (-496)) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-551 $)) . T) ((-951 (-858 |#1|)) |has| |#1| (-962)) ((-951 (-1091)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-496)) ((-964 |#1|) |has| |#1| (-146)) ((-964 $) |has| |#1| (-496)) ((-969 (-350 (-485))) |has| |#1| (-496)) ((-969 |#1|) |has| |#1| (-146)) ((-969 $) |has| |#1| (-496)) ((-962) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-971) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1026) OR (|has| |#1| (-1026)) (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1062) OR (|has| |#1| (-962)) (|has| |#1| (-496)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-496)))
-((-3960 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
-(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-364 |#1|) (-962) (-364 |#3|)) (T -365))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))))
-((-1805 ((|#2| |#2|) 182 T ELT)) (-1802 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85)) 60 T ELT)))
-(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1802 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85))) (-15 -1805 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -366))
-((-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3))) (-14 *4 (-1091)) (-14 *5 *2))) (-1802 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-14 *6 (-1091)) (-14 *7 *3))))
-((-1805 ((|#2| |#2|) 105 T ELT)) (-1803 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 52 T ELT)) (-1804 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074)) 169 T ELT)))
-(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1803 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1804 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-85) (-1074))) (-15 -1805 (|#2| |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|) (-10 -8 (-15 -3948 ($ |#3|)))) (-756) (-13 (-1159 |#2| |#3|) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $)))) (-897 |#4|) (-1091)) (T -367))
-((-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3948 ($ *4))))) (-4 *4 (-756)) (-4 *5 (-13 (-1159 *2 *4) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091)))) (-1804 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091)))) (-1803 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7))))) (-4 *7 (-756)) (-4 *8 (-13 (-1159 *3 *7) (-312) (-1116) (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8)) (-14 *10 (-1091)))))
-((-1806 (($) 51 T ELT)) (-3236 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3238 (($ $ $) 46 T ELT)) (-3237 (((-85) $ $) 35 T ELT)) (-3138 (((-695)) 55 T ELT)) (-3241 (($ (-584 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2996 (($) 66 T ELT)) (-3243 (((-85) $ $) 15 T ELT)) (-2533 ((|#2| $) 77 T ELT)) (-2859 ((|#2| $) 75 T ELT)) (-2011 (((-831) $) 70 T ELT)) (-3240 (($ $ $) 42 T ELT)) (-2401 (($ (-831)) 60 T ELT)) (-3239 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1731 (((-695) |#2| $) 31 T ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3532 (($ (-584 |#2|)) 27 T ELT)) (-1807 (($ $) 53 T ELT)) (-3948 (((-773) $) 40 T ELT)) (-1808 (((-695) $) 24 T ELT)) (-3242 (($ (-584 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3058 (((-85) $ $) 19 T ELT)))
-(((-368 |#1| |#2|) (-10 -7 (-15 -3138 ((-695))) (-15 -2401 (|#1| (-831))) (-15 -2011 ((-831) |#1|)) (-15 -2996 (|#1|)) (-15 -2533 (|#2| |#1|)) (-15 -2859 (|#2| |#1|)) (-15 -1806 (|#1|)) (-15 -1807 (|#1| |#1|)) (-15 -1808 ((-695) |#1|)) (-15 -1731 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -1731 ((-695) |#2| |#1|)) (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3243 ((-85) |#1| |#1|)) (-15 -3242 (|#1|)) (-15 -3242 (|#1| (-584 |#2|))) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-584 |#2|))) (-15 -3240 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3237 ((-85) |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#2| |#1|)) (-15 -3532 (|#1| (-584 |#2|)))) (-369 |#2|) (-1014)) (T -368))
-((-3138 (*1 *2) (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
-((-2570 (((-85) $ $) 17 T ELT)) (-1806 (($) 60 (|has| |#1| (-320)) ELT)) (-3236 (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ $ $) 83 T ELT)) (-3238 (($ $ $) 81 T ELT)) (-3237 (((-85) $ $) 82 T ELT)) (-3138 (((-695)) 54 (|has| |#1| (-320)) ELT)) (-3241 (($ (-584 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 72 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 69 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 68 T ELT)) (-2996 (($) 57 (|has| |#1| (-320)) ELT)) (-3243 (((-85) $ $) 73 T ELT)) (-2533 ((|#1| $) 58 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 67 T ELT)) (-3247 (((-85) |#1| $) 71 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 59 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2011 (((-831) $) 56 (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 78 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-2401 (($ (-831)) 55 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3239 (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-1731 (((-695) |#1| $) 70 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 66 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-1807 (($ $) 61 (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) 15 T ELT)) (-1808 (((-695) $) 62 T ELT)) (-3242 (($ (-584 |#1|)) 75 T ELT) (($) 74 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 64 T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-3959 (((-695) $) 63 T ELT)))
-(((-369 |#1|) (-113) (-1014)) (T -369))
-((-1808 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))) (-1807 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))) (-1806 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757)))))
-(-13 (-183 |t#1|) (-1012 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1808 ((-695) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1807 ($ $)) (-15 -1806 ($))) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2859 (|t#1| $)) (-15 -2533 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-3843 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3844 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3960 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
-(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3844 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3843 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1014) (-369 |#1|) (-1014) (-369 |#3|)) (T -370))
-((-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))))
-((-1809 (((-520 |#2|) |#2| (-1091)) 36 T ELT)) (-2101 (((-520 |#2|) |#2| (-1091)) 21 T ELT)) (-2150 ((|#2| |#2| (-1091)) 26 T ELT)))
-(((-371 |#1| |#2|) (-10 -7 (-15 -2101 ((-520 |#2|) |#2| (-1091))) (-15 -1809 ((-520 |#2|) |#2| (-1091))) (-15 -2150 (|#2| |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-29 |#1|))) (T -371))
-((-2150 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4))))) (-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1811 (($ |#2| |#1|) 37 T ELT)) (-1810 (($ |#2| |#1|) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 16 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3984)) (IF (|has| |#1| (-6 -3984)) (-6 -3984) |%noBranch|) |%noBranch|) (-15 -3948 ($ |#1|)) (-15 -3948 ($ (-281 |#2|))) (-15 -1811 ($ |#2| |#1|)) (-15 -1810 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-485)))) (-13 (-757) (-21))) (T -372))
-((-3948 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485))))) (-4 *3 (-13 (-757) (-21))))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))))) (-1811 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))) (-1810 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485))))) (-4 *2 (-13 (-757) (-21))))))
-((-3814 (((-3 |#2| (-584 |#2|)) |#2| (-1091)) 115 T ELT)))
-(((-373 |#1| |#2|) (-10 -7 (-15 -3814 ((-3 |#2| (-584 |#2|)) |#2| (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -373))
-((-3814 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1116) (-872) (-29 *5))))))
-((-3388 ((|#2| |#2| |#2|) 31 T ELT)) (-3597 (((-86) (-86)) 43 T ELT)) (-1813 ((|#2| |#2|) 63 T ELT)) (-1812 ((|#2| |#2|) 66 T ELT)) (-3387 ((|#2| |#2|) 30 T ELT)) (-3391 ((|#2| |#2| |#2|) 33 T ELT)) (-3393 ((|#2| |#2| |#2|) 35 T ELT)) (-3390 ((|#2| |#2| |#2|) 32 T ELT)) (-3392 ((|#2| |#2| |#2|) 34 T ELT)) (-2255 (((-85) (-86)) 41 T ELT)) (-3395 ((|#2| |#2|) 37 T ELT)) (-3394 ((|#2| |#2|) 36 T ELT)) (-3385 ((|#2| |#2|) 25 T ELT)) (-3389 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3386 ((|#2| |#2| |#2|) 29 T ELT)))
-(((-374 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -3385 (|#2| |#2|)) (-15 -3389 (|#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -1812 (|#2| |#2|)) (-15 -1813 (|#2| |#2|))) (-496) (-364 |#1|)) (T -374))
-((-1813 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1812 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4)))))
-((-2835 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|)) 65 T ELT)))
-(((-375 |#1| |#2|) (-10 -7 (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-584 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-584 |#2|))) (IF (|has| |#2| (-27)) (-15 -2835 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-496) (-120)) (-364 |#1|)) (T -375))
-((-2835 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-375 *4 *5)))))
-((-1815 (((-1186)) 18 T ELT)) (-1814 (((-1086 (-350 (-485))) |#2| (-551 |#2|)) 40 T ELT) (((-350 (-485)) |#2|) 27 T ELT)))
-(((-376 |#1| |#2|) (-10 -7 (-15 -1814 ((-350 (-485)) |#2|)) (-15 -1814 ((-1086 (-350 (-485))) |#2| (-551 |#2|))) (-15 -1815 ((-1186)))) (-13 (-496) (-951 (-485))) (-364 |#1|)) (T -376))
-((-1815 (*1 *2) (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3)))) (-1814 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))))
-((-3647 (((-85) $) 33 T ELT)) (-1816 (((-85) $) 35 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-1818 (((-85) $) 39 T ELT)) (-1820 (((-85) $) 34 T ELT)) (-1819 (((-85) $) 38 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1074)) 32 T ELT) (($ (-1091)) 30 T ELT) (((-1091) $) 24 T ELT) (((-1016) $) 23 T ELT)) (-1817 (((-85) $) 37 T ELT)) (-3058 (((-85) $ $) 17 T ELT)))
-(((-377) (-13 (-553 (-773)) (-10 -8 (-15 -3948 ($ (-1074))) (-15 -3948 ($ (-1091))) (-15 -3948 ((-1091) $)) (-15 -3948 ((-1016) $)) (-15 -3647 ((-85) $)) (-15 -1820 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -1819 ((-85) $)) (-15 -1818 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -3058 ((-85) $ $))))) (T -377))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
-((-1822 (((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|) 71 T ELT)) (-1821 (((-348 |#3|) |#3|) 34 T ELT)) (-1824 (((-3 (-348 (-1086 (-48))) #1#) |#3|) 29 (|has| |#2| (-951 (-48))) ELT)) (-1823 (((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|) 37 T ELT)))
-(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1821 ((-348 |#3|) |#3|)) (-15 -1822 ((-3 (-348 (-1086 (-350 (-485)))) #1="failed") |#3|)) (-15 -1823 ((-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85))) |#3|)) (IF (|has| |#2| (-951 (-48))) (-15 -1824 ((-3 (-348 (-1086 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|)) (T -378))
-((-1824 (*1 *2 *3) (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1823 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48))) (|:| -2641 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1822 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-1821 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1834 (((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1831 (($) 35 T ELT)) (-1828 (($) 41 T ELT)) (-1829 (($) 37 T ELT)) (-1826 (($) 39 T ELT)) (-1830 (($) 36 T ELT)) (-1827 (($) 38 T ELT)) (-1825 (($) 40 T ELT)) (-1832 (((-85) $) 8 T ELT)) (-1833 (((-584 (-858 (-485))) $) 19 T ELT)) (-3532 (($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-1091)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-858 (-485))) (-85)) 30 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-379) (-13 (-1014) (-10 -8 (-15 -3948 ($ (-377))) (-15 -1834 ((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $)) (-15 -1833 ((-584 (-858 (-485))) $)) (-15 -1832 ((-85) $)) (-15 -3532 ($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-1091)) (-85))) (-15 -3532 ($ (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-584 (-858 (-485))) (-85))) (-15 -1831 ($)) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($))))) (T -379))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *1 (-379)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-1091))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1831 (*1 *1) (-5 *1 (-379))) (-1830 (*1 *1) (-5 *1 (-379))) (-1829 (*1 *1) (-5 *1 (-379))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT)))
-(((-380 |#1|) (-13 (-1014) (-10 -8 (-15 -3544 ((-1091) $)))) (-1091)) (T -380))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 7 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT)))
-(((-381) (-13 (-1014) (-10 -8 (-15 -3321 ((-1029) $))))) (T -381))
-((-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381)))))
-((-1840 (((-85)) 18 T ELT)) (-1841 (((-85) (-85)) 19 T ELT)) (-1842 (((-85)) 14 T ELT)) (-1843 (((-85) (-85)) 15 T ELT)) (-1845 (((-85)) 16 T ELT)) (-1846 (((-85) (-85)) 17 T ELT)) (-1837 (((-831) (-831)) 22 T ELT) (((-831)) 21 T ELT)) (-1838 (((-695) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485))))) 52 T ELT)) (-1836 (((-831) (-831)) 24 T ELT) (((-831)) 23 T ELT)) (-1839 (((-2 (|:| -2580 (-485)) (|:| -1783 (-584 |#1|))) |#1|) 94 T ELT)) (-1835 (((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485))))))) 176 T ELT)) (-3736 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 209 T ELT)) (-3735 (((-348 |#1|) |#1| (-695) (-695)) 224 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 221 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 223 T ELT) (((-348 |#1|) |#1| (-695)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1857 (((-3 |#1| #1="failed") (-831) |#1| (-584 (-695)) (-695) (-85)) 226 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695)) 227 T ELT) (((-3 |#1| #1#) (-831) |#1| (-584 (-695))) 229 T ELT) (((-3 |#1| #1#) (-831) |#1| (-695)) 228 T ELT) (((-3 |#1| #1#) (-831) |#1|) 230 T ELT)) (-3734 (((-348 |#1|) |#1| (-695) (-695)) 219 T ELT) (((-348 |#1|) |#1| (-584 (-695)) (-695)) 215 T ELT) (((-348 |#1|) |#1| (-584 (-695))) 217 T ELT) (((-348 |#1|) |#1| (-695)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1844 (((-85) |#1|) 43 T ELT)) (-1856 (((-676 (-695)) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485))))) 99 T ELT)) (-1847 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)) 213 T ELT)))
-(((-382 |#1|) (-10 -7 (-15 -1835 ((-348 |#1|) (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))))) (-15 -1856 ((-676 (-695)) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))))) (-15 -1836 ((-831))) (-15 -1836 ((-831) (-831))) (-15 -1837 ((-831))) (-15 -1837 ((-831) (-831))) (-15 -1838 ((-695) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))))) (-15 -1839 ((-2 (|:| -2580 (-485)) (|:| -1783 (-584 |#1|))) |#1|)) (-15 -1840 ((-85))) (-15 -1841 ((-85) (-85))) (-15 -1842 ((-85))) (-15 -1843 ((-85) (-85))) (-15 -1844 ((-85) |#1|)) (-15 -1845 ((-85))) (-15 -1846 ((-85) (-85))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1| (-695))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3734 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3734 ((-348 |#1|) |#1| (-695) (-695))) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1| (-695))) (-15 -3735 ((-348 |#1|) |#1| (-584 (-695)))) (-15 -3735 ((-348 |#1|) |#1| (-584 (-695)) (-695))) (-15 -3735 ((-348 |#1|) |#1| (-695) (-695))) (-15 -1857 ((-3 |#1| #1="failed") (-831) |#1|)) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-695))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695))) (-15 -1857 ((-3 |#1| #1#) (-831) |#1| (-584 (-695)) (-695) (-85))) (-15 -3736 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85))) (-15 -1847 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85) (-1010 (-695)) (-695)))) (-1156 (-485))) (T -382))
-((-1847 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-1857 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1845 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1844 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1843 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1842 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1840 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1783 (-584 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))) (-1837 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1837 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1836 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485))))) (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4)))) (-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485))))))) (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
-((-1851 (((-485) |#2|) 52 T ELT) (((-485) |#2| (-695)) 51 T ELT)) (-1850 (((-485) |#2|) 64 T ELT)) (-1852 ((|#3| |#2|) 26 T ELT)) (-3134 ((|#3| |#2| (-831)) 15 T ELT)) (-3835 ((|#3| |#2|) 16 T ELT)) (-1853 ((|#3| |#2|) 9 T ELT)) (-2605 ((|#3| |#2|) 10 T ELT)) (-1849 ((|#3| |#2| (-831)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1848 (((-485) |#2|) 66 T ELT)))
-(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1848 ((-485) |#2|)) (-15 -1849 (|#3| |#2|)) (-15 -1849 (|#3| |#2| (-831))) (-15 -1850 ((-485) |#2|)) (-15 -1851 ((-485) |#2| (-695))) (-15 -1851 ((-485) |#2|)) (-15 -3134 (|#3| |#2| (-831))) (-15 -1852 (|#3| |#2|)) (-15 -1853 (|#3| |#2|)) (-15 -2605 (|#3| |#2|)) (-15 -3835 (|#3| |#2|))) (-962) (-1156 |#1|) (-13 (-347) (-951 |#1|) (-312) (-1116) (-239))) (T -383))
-((-3835 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-2605 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-3134 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1851 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239))))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))) (-1849 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-962)) (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1156 *5)))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4)) (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))))
-((-3356 ((|#2| (-1180 |#1|)) 42 T ELT)) (-1855 ((|#2| |#2| |#1|) 58 T ELT)) (-1854 ((|#2| |#2| |#1|) 49 T ELT)) (-2299 ((|#2| |#2|) 44 T ELT)) (-3175 (((-85) |#2|) 32 T ELT)) (-1858 (((-584 |#2|) (-831) (-348 |#2|)) 21 T ELT)) (-1857 ((|#2| (-831) (-348 |#2|)) 25 T ELT)) (-1856 (((-676 (-695)) (-348 |#2|)) 29 T ELT)))
-(((-384 |#1| |#2|) (-10 -7 (-15 -3175 ((-85) |#2|)) (-15 -3356 (|#2| (-1180 |#1|))) (-15 -2299 (|#2| |#2|)) (-15 -1854 (|#2| |#2| |#1|)) (-15 -1855 (|#2| |#2| |#1|)) (-15 -1856 ((-676 (-695)) (-348 |#2|))) (-15 -1857 (|#2| (-831) (-348 |#2|))) (-15 -1858 ((-584 |#2|) (-831) (-348 |#2|)))) (-962) (-1156 |#1|)) (T -384))
-((-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962)) (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-962)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))) (-1855 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-1854 (*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-2299 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4)) (-5 *1 (-384 *4 *2)))) (-3175 (*1 *2 *3) (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4)))))
-((-1861 (((-695)) 59 T ELT)) (-1865 (((-695)) 29 (|has| |#1| (-347)) ELT) (((-695) (-695)) 28 (|has| |#1| (-347)) ELT)) (-1864 (((-485) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1863 (((-485) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1860 (((-695)) 58 T ELT) (((-695) (-695)) 57 T ELT)) (-1859 ((|#1| (-695) (-485)) 37 T ELT)) (-1862 (((-1186)) 61 T ELT)))
-(((-385 |#1|) (-10 -7 (-15 -1859 (|#1| (-695) (-485))) (-15 -1860 ((-695) (-695))) (-15 -1860 ((-695))) (-15 -1861 ((-695))) (-15 -1862 ((-1186))) (IF (|has| |#1| (-347)) (PROGN (-15 -1863 ((-485) |#1|)) (-15 -1864 ((-485) |#1|)) (-15 -1865 ((-695) (-695))) (-15 -1865 ((-695)))) |%noBranch|)) (-962)) (T -385))
-((-1865 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1864 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1863 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))) (-1862 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1861 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1860 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
-((-1866 (((-584 (-485)) (-485)) 76 T ELT)) (-3725 (((-85) (-142 (-485))) 84 T ELT)) (-3734 (((-348 (-142 (-485))) (-142 (-485))) 75 T ELT)))
-(((-386) (-10 -7 (-15 -3734 ((-348 (-142 (-485))) (-142 (-485)))) (-15 -1866 ((-584 (-485)) (-485))) (-15 -3725 ((-85) (-142 (-485)))))) (T -386))
-((-3725 (*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1866 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485))))))
-((-2948 ((|#4| |#4| (-584 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2252 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 46 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 45 T ELT) (((-584 |#4|) (-584 |#4|)) 34 T ELT)))
-(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2252 ((-584 |#4|) (-584 |#4|))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -2252 ((-584 |#4|) (-584 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-312)) (-15 -2948 (|#4| |#4| (-584 |#4|))) |%noBranch|)) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -387))
-((-2948 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2252 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6)))))
-((-1867 ((|#4| |#4| (-584 |#4|)) 82 T ELT)) (-1868 (((-584 |#4|) (-584 |#4|) (-1074) (-1074)) 22 T ELT) (((-584 |#4|) (-584 |#4|) (-1074)) 21 T ELT) (((-584 |#4|) (-584 |#4|)) 13 T ELT)))
-(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1867 (|#4| |#4| (-584 |#4|))) (-15 -1868 ((-584 |#4|) (-584 |#4|))) (-15 -1868 ((-584 |#4|) (-584 |#4|) (-1074))) (-15 -1868 ((-584 |#4|) (-584 |#4|) (-1074) (-1074)))) (-258) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -388))
-((-1868 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1868 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
-((-1870 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 90 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 89 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85)) 83 T ELT) (((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-1869 (((-584 (-584 |#4|)) (-584 |#4|) (-85)) 56 T ELT) (((-584 (-584 |#4|)) (-584 |#4|)) 78 T ELT)))
-(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1869 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1869 ((-584 (-584 |#4|)) (-584 |#4|) (-85))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-584 |#4|) (-85))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|))) (-15 -1870 ((-584 (-584 |#4|)) (-584 |#4|) (-85)))) (-13 (-258) (-120)) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -389))
-((-1870 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1870 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1870 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-584 *8)))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-((-1894 (((-695) |#4|) 12 T ELT)) (-1882 (((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)))) 39 T ELT)) (-1884 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1883 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1872 ((|#4| |#4| (-584 |#4|)) 54 T ELT)) (-1880 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|)) 96 T ELT)) (-1887 (((-1186) |#4|) 59 T ELT)) (-1890 (((-1186) (-584 |#4|)) 69 T ELT)) (-1888 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485)) 66 T ELT)) (-1891 (((-1186) (-485)) 110 T ELT)) (-1885 (((-584 |#4|) (-584 |#4|)) 104 T ELT)) (-1893 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695)) 31 T ELT)) (-1886 (((-485) |#4|) 109 T ELT)) (-1881 ((|#4| |#4|) 37 T ELT)) (-1873 (((-584 |#4|) (-584 |#4|) (-485) (-485)) 74 T ELT)) (-1889 (((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485)) 123 T ELT)) (-1892 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1874 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1879 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1878 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1875 (((-85) |#2| |#2|) 75 T ELT)) (-1877 (((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1876 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1871 ((|#4| |#4| (-584 |#4|)) 97 T ELT)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1871 (|#4| |#4| (-584 |#4|))) (-15 -1872 (|#4| |#4| (-584 |#4|))) (-15 -1873 ((-584 |#4|) (-584 |#4|) (-485) (-485))) (-15 -1874 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1875 ((-85) |#2| |#2|)) (-15 -1876 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1877 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1878 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1880 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-584 |#4|))) (-15 -1881 (|#4| |#4|)) (-15 -1882 ((-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))) |#4| (-695) (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|))))) (-15 -1883 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1884 ((-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-584 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1885 ((-584 |#4|) (-584 |#4|))) (-15 -1886 ((-485) |#4|)) (-15 -1887 ((-1186) |#4|)) (-15 -1888 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485))) (-15 -1889 ((-485) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-485) (-485) (-485) (-485))) (-15 -1890 ((-1186) (-584 |#4|))) (-15 -1891 ((-1186) (-485))) (-15 -1892 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1893 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-695)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-695)) (|:| -2005 |#4|)) |#4| (-695))) (-15 -1894 ((-695) |#4|))) (-392) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -390))
-((-1894 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695)) (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1892 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1889 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1888 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1887 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1884 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-757)))) (-1882 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1881 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1878 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1877 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1876 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1875 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1873 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1872 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
-((-1895 (($ $ $) 14 T ELT) (($ (-584 $)) 21 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 45 T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) 22 T ELT)))
-(((-391 |#1|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1895 (|#1| (-584 |#1|))) (-15 -1895 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3146 (|#1| |#1| |#1|))) (-392)) (T -391))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
+((-2012 (*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4)))) (-3224 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-630 *3))))) (-1895 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3))))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))) (-1794 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1793 (*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))) (-1792 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1791 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))) (-1907 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-857 *3))))) (-1903 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312)) (-5 *2 (-1085 (-857 *3))))) (-2546 (*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146)))))
+(-13 (-316 |t#1|) (-241 (-484) |t#1|) (-10 -8 (-15 -2012 ((-1179 $))) (-15 -3225 ((-1179 |t#1|) $)) (-15 -3225 ((-630 |t#1|) (-1179 $))) (-15 -3224 ((-1179 (-630 |t#1|)))) (-15 -1895 ((-583 (-857 |t#1|)))) (-15 -1795 ($ (-1179 |t#1|))) (-15 -3973 ((-1179 |t#1|) $)) (-15 -3973 ($ (-1179 |t#1|))) (-15 -1794 (|t#1|)) (-15 -1793 (|t#1|)) (-15 -1792 ((-630 |t#1|))) (-15 -1791 ((-630 |t#1|))) (-15 -1790 ((-630 |t#1|) $)) (-15 -1789 ((-630 |t#1|) $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -1907 ((-1085 (-857 |t#1|)))) (-15 -1903 ((-1085 (-857 |t#1|))))) |%noBranch|) (-15 -2546 ($ (-630 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-241 (-484) |#1|) . T) ((-316 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-683 |#1|) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-3135 (((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|)) 28 T ELT)) (-1796 (((-348 |#1|) (-348 |#1|) (-348 |#1|)) 17 T ELT)))
+(((-362 |#1|) (-10 -7 (-15 -3135 ((-348 |#1|) (-348 |#1|) (-1 (-348 |#1|) |#1|))) (-15 -1796 ((-348 |#1|) (-348 |#1|) (-348 |#1|)))) (-495)) (T -362))
+((-1796 (*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-495)) (-5 *1 (-362 *3)))) (-3135 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-495)) (-5 *2 (-348 *4)) (-5 *1 (-362 *4)))))
+((-3082 (((-583 (-1090)) $) 81 T ELT)) (-3084 (((-350 (-1085 $)) $ (-550 $)) 313 T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 277 T ELT)) (-3158 (((-3 (-550 $) #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 84 T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-350 (-857 |#2|)) #1#) $) 363 T ELT) (((-3 (-857 |#2|) #1#) $) 275 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3157 (((-550 $) $) NIL T ELT) (((-1090) $) 28 T ELT) (((-484) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-350 (-857 |#2|)) $) 345 T ELT) (((-857 |#2|) $) 272 T ELT) (((-350 (-484)) $) NIL T ELT)) (-3596 (((-86) (-86)) 47 T ELT)) (-2997 (($ $) 99 T ELT)) (-1602 (((-3 (-550 $) #1#) $) 268 T ELT)) (-1601 (((-583 (-550 $)) $) 269 T ELT)) (-2824 (((-3 (-583 $) #1#) $) 287 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) #1#) $) 294 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 285 T ELT)) (-1797 (((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 $))) #1#) $) 304 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-86)) 255 T ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) #1#) $ (-1090)) 257 T ELT)) (-1800 (((-85) $) 17 T ELT)) (-1799 ((|#2| $) 19 T ELT)) (-3769 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) 276 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 109 T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT) (($ $ (-1090)) 62 T ELT) (($ $ (-583 (-1090))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-86) $ (-1090)) 65 T ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 72 T ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 120 T ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 282 T ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 105 T ELT) (($ $ (-1090) (-694) (-1 $ $)) 104 T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) 119 T ELT)) (-3759 (($ $ (-1090)) 278 T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-2996 (($ $) 324 T ELT)) (-3973 (((-800 (-484)) $) 297 T ELT) (((-800 (-330)) $) 301 T ELT) (($ (-348 $)) 359 T ELT) (((-473) $) NIL T ELT)) (-3947 (((-772) $) 279 T ELT) (($ (-550 $)) 93 T ELT) (($ (-1090)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1039 |#2| (-550 $))) NIL T ELT) (($ (-350 |#2|)) 329 T ELT) (($ (-857 (-350 |#2|))) 368 T ELT) (($ (-350 (-857 (-350 |#2|)))) 341 T ELT) (($ (-350 (-857 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-857 |#2|)) 216 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) 373 T ELT)) (-3127 (((-694)) 88 T CONST)) (-2254 (((-85) (-86)) 42 T ELT)) (-1798 (($ (-1090) $) 31 T ELT) (($ (-1090) $ $) 32 T ELT) (($ (-1090) $ $ $) 33 T ELT) (($ (-1090) $ $ $ $) 34 T ELT) (($ (-1090) (-583 $)) 39 T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
+(((-363 |#1| |#2|) (-10 -7 (-15 * (|#1| (-830) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3158 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3947 (|#1| (-484))) (-15 -3127 ((-694)) -3953) (-15 * (|#1| |#2| |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3947 (|#1| (-857 |#2|))) (-15 -3158 ((-3 (-857 |#2|) #1#) |#1|)) (-15 -3157 ((-857 |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3947 (|#1| (-350 (-857 |#2|)))) (-15 -3158 ((-3 (-350 (-857 |#2|)) #1#) |#1|)) (-15 -3157 ((-350 (-857 |#2|)) |#1|)) (-15 -3084 ((-350 (-1085 |#1|)) |#1| (-550 |#1|))) (-15 -3947 (|#1| (-350 (-857 (-350 |#2|))))) (-15 -3947 (|#1| (-857 (-350 |#2|)))) (-15 -3947 (|#1| (-350 |#2|))) (-15 -2996 (|#1| |#1|)) (-15 -3973 (|#1| (-348 |#1|))) (-15 -3769 (|#1| |#1| (-1090) (-694) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1090) (-694) (-1 |#1| (-583 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-694)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-694)) (-583 (-1 |#1| |#1|)))) (-15 -2826 ((-3 (-2 (|:| |val| |#1|) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-1090))) (-15 -2825 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1| (-86))) (-15 -2997 (|#1| |#1|)) (-15 -3947 (|#1| (-1039 |#2| (-550 |#1|)))) (-15 -1797 ((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 |#1|))) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| (-550 |#1|)) (|:| -2401 (-484))) #1#) |#1|)) (-15 -2824 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -3769 (|#1| |#1| (-583 (-86)) (-583 |#1|) (-1090))) (-15 -3769 (|#1| |#1| (-86) |#1| (-1090))) (-15 -3769 (|#1| |#1|)) (-15 -3769 (|#1| |#1| (-583 (-1090)))) (-15 -3769 (|#1| |#1| (-1090))) (-15 -1798 (|#1| (-1090) (-583 |#1|))) (-15 -1798 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -1798 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -1798 (|#1| (-1090) |#1| |#1|)) (-15 -1798 (|#1| (-1090) |#1|)) (-15 -3082 ((-583 (-1090)) |#1|)) (-15 -1799 (|#2| |#1|)) (-15 -1800 ((-85) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -3947 (|#1| (-1090))) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-86) (-1 |#1| (-583 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3769 (|#1| |#1| (-583 (-86)) (-583 (-1 |#1| |#1|)))) (-15 -3769 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3769 (|#1| |#1| (-1090) (-1 |#1| (-583 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -3769 (|#1| |#1| (-583 (-1090)) (-583 (-1 |#1| |#1|)))) (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -1601 ((-583 (-550 |#1|)) |#1|)) (-15 -1602 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -1604 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -1604 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -1604 (|#1| |#1| (-249 |#1|))) (-15 -3801 (|#1| (-86) (-583 |#1|))) (-15 -3801 (|#1| (-86) |#1| |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1| |#1|)) (-15 -3801 (|#1| (-86) |#1|)) (-15 -3769 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3769 (|#1| |#1| (-583 (-550 |#1|)) (-583 |#1|))) (-15 -3769 (|#1| |#1| (-550 |#1|) |#1|)) (-15 -3947 (|#1| (-550 |#1|))) (-15 -3158 ((-3 (-550 |#1|) #1#) |#1|)) (-15 -3157 ((-550 |#1|) |#1|)) (-15 -3947 ((-772) |#1|))) (-364 |#2|) (-1013)) (T -363))
+((-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5)) (-4 *4 (-364 *5)))) (-3127 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 129 (|has| |#1| (-25)) ELT)) (-3082 (((-583 (-1090)) $) 222 T ELT)) (-3084 (((-350 (-1085 $)) $ (-550 $)) 190 (|has| |#1| (-495)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 162 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 163 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 165 (|has| |#1| (-495)) ELT)) (-1600 (((-583 (-550 $)) $) 42 T ELT)) (-1312 (((-3 $ "failed") $ $) 132 (|has| |#1| (-21)) ELT)) (-1604 (($ $ (-249 $)) 54 T ELT) (($ $ (-583 (-249 $))) 53 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 52 T ELT)) (-3776 (($ $) 182 (|has| |#1| (-495)) ELT)) (-3972 (((-348 $) $) 183 (|has| |#1| (-495)) ELT)) (-1608 (((-85) $ $) 173 (|has| |#1| (-495)) ELT)) (-3725 (($) 117 (OR (|has| |#1| (-1025)) (|has| |#1| (-25))) CONST)) (-3158 (((-3 (-550 $) #1="failed") $) 67 T ELT) (((-3 (-1090) #1#) $) 235 T ELT) (((-3 (-484) #1#) $) 229 (|has| |#1| (-950 (-484))) ELT) (((-3 |#1| #1#) $) 226 T ELT) (((-3 (-350 (-857 |#1|)) #1#) $) 188 (|has| |#1| (-495)) ELT) (((-3 (-857 |#1|) #1#) $) 137 (|has| |#1| (-961)) ELT) (((-3 (-350 (-484)) #1#) $) 111 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3157 (((-550 $) $) 68 T ELT) (((-1090) $) 236 T ELT) (((-484) $) 228 (|has| |#1| (-950 (-484))) ELT) ((|#1| $) 227 T ELT) (((-350 (-857 |#1|)) $) 189 (|has| |#1| (-495)) ELT) (((-857 |#1|) $) 138 (|has| |#1| (-961)) ELT) (((-350 (-484)) $) 112 (OR (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2565 (($ $ $) 177 (|has| |#1| (-495)) ELT)) (-2279 (((-630 (-484)) (-630 $)) 155 (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 154 (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 153 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-630 $)) 152 (|has| |#1| (-961)) ELT)) (-3468 (((-3 $ "failed") $) 119 (|has| |#1| (-1025)) ELT)) (-2564 (($ $ $) 176 (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 171 (|has| |#1| (-495)) ELT)) (-3724 (((-85) $) 184 (|has| |#1| (-495)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 231 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 230 (|has| |#1| (-796 (-330))) ELT)) (-2574 (($ $) 49 T ELT) (($ (-583 $)) 48 T ELT)) (-1214 (((-85) $ $) 131 (|has| |#1| (-25)) ELT)) (-1599 (((-583 (-86)) $) 41 T ELT)) (-3596 (((-86) (-86)) 40 T ELT)) (-2410 (((-85) $) 118 (|has| |#1| (-1025)) ELT)) (-2674 (((-85) $) 20 (|has| $ (-950 (-484))) ELT)) (-2997 (($ $) 205 (|has| |#1| (-961)) ELT)) (-2999 (((-1039 |#1| (-550 $)) $) 206 (|has| |#1| (-961)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 180 (|has| |#1| (-495)) ELT)) (-1597 (((-1085 $) (-550 $)) 23 (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) 34 T ELT)) (-1602 (((-3 (-550 $) "failed") $) 44 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 157 (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 156 (-2563 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 151 (|has| |#1| (-961)) ELT) (((-630 |#1|) (-1179 $)) 150 (|has| |#1| (-961)) ELT)) (-1894 (($ (-583 $)) 169 (|has| |#1| (-495)) ELT) (($ $ $) 168 (|has| |#1| (-495)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-1601 (((-583 (-550 $)) $) 43 T ELT)) (-2235 (($ (-86) $) 36 T ELT) (($ (-86) (-583 $)) 35 T ELT)) (-2824 (((-3 (-583 $) "failed") $) 211 (|has| |#1| (-1025)) ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $) 202 (|has| |#1| (-961)) ELT)) (-2823 (((-3 (-583 $) "failed") $) 209 (|has| |#1| (-25)) ELT)) (-1797 (((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 $))) "failed") $) 208 (|has| |#1| (-25)) ELT)) (-2825 (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $) 210 (|has| |#1| (-1025)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86)) 204 (|has| |#1| (-961)) ELT) (((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1090)) 203 (|has| |#1| (-961)) ELT)) (-2634 (((-85) $ (-86)) 38 T ELT) (((-85) $ (-1090)) 37 T ELT)) (-2485 (($ $) 121 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-2604 (((-694) $) 45 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 224 T ELT)) (-1799 ((|#1| $) 223 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 170 (|has| |#1| (-495)) ELT)) (-3145 (($ (-583 $)) 167 (|has| |#1| (-495)) ELT) (($ $ $) 166 (|has| |#1| (-495)) ELT)) (-1598 (((-85) $ $) 33 T ELT) (((-85) $ (-1090)) 32 T ELT)) (-3733 (((-348 $) $) 181 (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 179 (|has| |#1| (-495)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 178 (|has| |#1| (-495)) ELT)) (-3467 (((-3 $ "failed") $ $) 161 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 172 (|has| |#1| (-495)) ELT)) (-2675 (((-85) $) 21 (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-550 $) $) 65 T ELT) (($ $ (-583 (-550 $)) (-583 $)) 64 T ELT) (($ $ (-583 (-249 $))) 63 T ELT) (($ $ (-249 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-583 $) (-583 $)) 60 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) 31 T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) 30 T ELT) (($ $ (-1090) (-1 $ (-583 $))) 29 T ELT) (($ $ (-1090) (-1 $ $)) 28 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) 27 T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) 26 T ELT) (($ $ (-86) (-1 $ (-583 $))) 25 T ELT) (($ $ (-86) (-1 $ $)) 24 T ELT) (($ $ (-1090)) 216 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090))) 215 (|has| |#1| (-553 (-473))) ELT) (($ $) 214 (|has| |#1| (-553 (-473))) ELT) (($ $ (-86) $ (-1090)) 213 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-86)) (-583 $) (-1090)) 212 (|has| |#1| (-553 (-473))) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $))) 201 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $)))) 200 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ (-583 $))) 199 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694) (-1 $ $)) 198 (|has| |#1| (-961)) ELT)) (-1607 (((-694) $) 174 (|has| |#1| (-495)) ELT)) (-3801 (($ (-86) $) 59 T ELT) (($ (-86) $ $) 58 T ELT) (($ (-86) $ $ $) 57 T ELT) (($ (-86) $ $ $ $) 56 T ELT) (($ (-86) (-583 $)) 55 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 175 (|has| |#1| (-495)) ELT)) (-1603 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3759 (($ $ (-1090)) 148 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 146 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 145 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 144 (|has| |#1| (-961)) ELT)) (-2996 (($ $) 195 (|has| |#1| (-495)) ELT)) (-2998 (((-1039 |#1| (-550 $)) $) 196 (|has| |#1| (-495)) ELT)) (-3186 (($ $) 22 (|has| $ (-961)) ELT)) (-3973 (((-800 (-484)) $) 233 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 232 (|has| |#1| (-553 (-800 (-330)))) ELT) (($ (-348 $)) 197 (|has| |#1| (-495)) ELT) (((-473) $) 113 (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $ $) 124 (|has| |#1| (-413)) ELT)) (-2436 (($ $ $) 125 (|has| |#1| (-413)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-550 $)) 66 T ELT) (($ (-1090)) 234 T ELT) (($ |#1|) 225 T ELT) (($ (-1039 |#1| (-550 $))) 207 (|has| |#1| (-961)) ELT) (($ (-350 |#1|)) 193 (|has| |#1| (-495)) ELT) (($ (-857 (-350 |#1|))) 192 (|has| |#1| (-495)) ELT) (($ (-350 (-857 (-350 |#1|)))) 191 (|has| |#1| (-495)) ELT) (($ (-350 (-857 |#1|))) 187 (|has| |#1| (-495)) ELT) (($ $) 160 (|has| |#1| (-495)) ELT) (($ (-857 |#1|)) 136 (|has| |#1| (-961)) ELT) (($ (-350 (-484))) 110 (OR (|has| |#1| (-495)) (-12 (|has| |#1| (-950 (-484))) (|has| |#1| (-495))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ (-484)) 109 (OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484)))) ELT)) (-2703 (((-632 $) $) 158 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 140 (|has| |#1| (-961)) CONST)) (-2591 (($ $) 51 T ELT) (($ (-583 $)) 50 T ELT)) (-2254 (((-85) (-86)) 39 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 164 (|has| |#1| (-495)) ELT)) (-1798 (($ (-1090) $) 221 T ELT) (($ (-1090) $ $) 220 T ELT) (($ (-1090) $ $ $) 219 T ELT) (($ (-1090) $ $ $ $) 218 T ELT) (($ (-1090) (-583 $)) 217 T ELT)) (-3126 (((-85) $ $) 139 (|has| |#1| (-961)) ELT)) (-2661 (($) 128 (|has| |#1| (-25)) CONST)) (-2667 (($) 116 (|has| |#1| (-1025)) CONST)) (-2670 (($ $ (-1090)) 147 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090))) 143 (|has| |#1| (-961)) ELT) (($ $ (-1090) (-694)) 142 (|has| |#1| (-961)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 141 (|has| |#1| (-961)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ (-1039 |#1| (-550 $)) (-1039 |#1| (-550 $))) 194 (|has| |#1| (-495)) ELT) (($ $ $) 122 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT)) (-3838 (($ $ $) 135 (|has| |#1| (-21)) ELT) (($ $) 134 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-484)) 123 (OR (|has| |#1| (-413)) (|has| |#1| (-495))) ELT) (($ $ (-694)) 120 (|has| |#1| (-1025)) ELT) (($ $ (-830)) 115 (|has| |#1| (-1025)) ELT)) (* (($ (-350 (-484)) $) 186 (|has| |#1| (-495)) ELT) (($ $ (-350 (-484))) 185 (|has| |#1| (-495)) ELT) (($ $ |#1|) 159 (|has| |#1| (-146)) ELT) (($ |#1| $) 149 (|has| |#1| (-961)) ELT) (($ (-484) $) 133 (|has| |#1| (-21)) ELT) (($ (-694) $) 130 (|has| |#1| (-25)) ELT) (($ (-830) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1025)) ELT)))
+(((-364 |#1|) (-113) (-1013)) (T -364))
+((-1800 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-1799 (*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1090))))) (-1798 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1798 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1798 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1798 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))) (-1798 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-553 (-473))))) (-3769 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473))))) (-3769 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-553 (-473))))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-553 (-473))))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-364 *3)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-364 *3)))) (-1797 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| -3955 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) (-4 *1 (-364 *3)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-961)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) (-2825 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-961)) (-4 *4 (-1013)) (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-364 *3)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3769 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))) (-2998 (*1 *2 *1) (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1))) (-4 *1 (-364 *3)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-495)))) (-3950 (*1 *1 *2 *2) (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 *3))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 (-857 (-350 *3)))) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-550 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-495)) (-5 *2 (-350 (-1085 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-1025)))))
+(-13 (-254) (-950 (-1090)) (-794 |t#1|) (-343 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1800 ((-85) $)) (-15 -1799 (|t#1| $)) (-15 -3082 ((-583 (-1090)) $)) (-15 -1798 ($ (-1090) $)) (-15 -1798 ($ (-1090) $ $)) (-15 -1798 ($ (-1090) $ $ $)) (-15 -1798 ($ (-1090) $ $ $ $)) (-15 -1798 ($ (-1090) (-583 $))) (IF (|has| |t#1| (-553 (-473))) (PROGN (-6 (-553 (-473))) (-15 -3769 ($ $ (-1090))) (-15 -3769 ($ $ (-583 (-1090)))) (-15 -3769 ($ $)) (-15 -3769 ($ $ (-86) $ (-1090))) (-15 -3769 ($ $ (-583 (-86)) (-583 $) (-1090)))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-663)) (-15 ** ($ $ (-694))) (-15 -2824 ((-3 (-583 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-413)) (-6 (-413)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -1797 ((-3 (-2 (|:| -3955 (-484)) (|:| |var| (-550 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-950 (-857 |t#1|))) (-6 (-809 (-1090))) (-6 (-329 |t#1|)) (-15 -3947 ($ (-1039 |t#1| (-550 $)))) (-15 -2999 ((-1039 |t#1| (-550 $)) $)) (-15 -2997 ($ $)) (-15 -2825 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-86))) (-15 -2825 ((-3 (-2 (|:| |var| (-550 $)) (|:| -2401 (-484))) "failed") $ (-1090))) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2401 (-484))) "failed") $)) (-15 -3769 ($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ $)))) (-15 -3769 ($ $ (-583 (-1090)) (-583 (-694)) (-583 (-1 $ (-583 $))))) (-15 -3769 ($ $ (-1090) (-694) (-1 $ (-583 $)))) (-15 -3769 ($ $ (-1090) (-694) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-312)) (-6 (-950 (-350 (-857 |t#1|)))) (-15 -3973 ($ (-348 $))) (-15 -2998 ((-1039 |t#1| (-550 $)) $)) (-15 -2996 ($ $)) (-15 -3950 ($ (-1039 |t#1| (-550 $)) (-1039 |t#1| (-550 $)))) (-15 -3947 ($ (-350 |t#1|))) (-15 -3947 ($ (-857 (-350 |t#1|)))) (-15 -3947 ($ (-350 (-857 (-350 |t#1|))))) (-15 -3084 ((-350 (-1085 $)) $ (-550 $))) (IF (|has| |t#1| (-950 (-484))) (-6 (-950 (-350 (-484)))) |%noBranch|)) |%noBranch|)))
+(((-21) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-23) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-350 (-484))) |has| |#1| (-495)) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-495)) ((-82 |#1| |#1|) |has| |#1| (-146)) ((-82 $ $) |has| |#1| (-495)) ((-104) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-495))) ((-555 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-555 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-950 (-484))) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-555 (-550 $)) . T) ((-555 (-857 |#1|)) |has| |#1| (-961)) ((-555 (-1090)) . T) ((-555 |#1|) . T) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) |has| |#1| (-495)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-201) |has| |#1| (-495)) ((-246) |has| |#1| (-495)) ((-258) |has| |#1| (-495)) ((-260 $) . T) ((-254) . T) ((-312) |has| |#1| (-495)) ((-329 |#1|) |has| |#1| (-961)) ((-343 |#1|) . T) ((-355 |#1|) . T) ((-392) |has| |#1| (-495)) ((-413) |has| |#1| (-413)) ((-455 (-550 $) $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-495)) ((-588 (-484)) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118)) (|has| |#1| (-21))) ((-588 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-588 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-590 (-350 (-484))) |has| |#1| (-495)) ((-590 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-590 |#1|) OR (|has| |#1| (-961)) (|has| |#1| (-146))) ((-590 $) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-582 (-350 (-484))) |has| |#1| (-495)) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-580 (-484)) -12 (|has| |#1| (-580 (-484))) (|has| |#1| (-961))) ((-580 |#1|) |has| |#1| (-961)) ((-654 (-350 (-484))) |has| |#1| (-495)) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-806 $ (-1090)) |has| |#1| (-961)) ((-809 (-1090)) |has| |#1| (-961)) ((-811 (-1090)) |has| |#1| (-961)) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-832) |has| |#1| (-495)) ((-950 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (-12 (|has| |#1| (-495)) (|has| |#1| (-950 (-484))))) ((-950 (-350 (-857 |#1|))) |has| |#1| (-495)) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-550 $)) . T) ((-950 (-857 |#1|)) |has| |#1| (-961)) ((-950 (-1090)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-495)) ((-963 |#1|) |has| |#1| (-146)) ((-963 $) |has| |#1| (-495)) ((-968 (-350 (-484))) |has| |#1| (-495)) ((-968 |#1|) |has| |#1| (-146)) ((-968 $) |has| |#1| (-495)) ((-961) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-970) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1025) OR (|has| |#1| (-1025)) (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-413)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1061) OR (|has| |#1| (-961)) (|has| |#1| (-495)) (|has| |#1| (-146)) (|has| |#1| (-120)) (|has| |#1| (-118))) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-495)))
+((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
+(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-364 |#1|) (-961) (-364 |#3|)) (T -365))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-364 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5)))))
+((-1804 ((|#2| |#2|) 182 T ELT)) (-1801 (((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85)) 60 T ELT)))
+(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1801 ((-3 (|:| |%expansion| (-264 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85))) (-15 -1804 (|#2| |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -366))
+((-1804 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3))) (-14 *4 (-1090)) (-14 *5 *2))) (-1801 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (|:| |%expansion| (-264 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-14 *6 (-1090)) (-14 *7 *3))))
+((-1804 ((|#2| |#2|) 105 T ELT)) (-1802 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 52 T ELT)) (-1803 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073)) 169 T ELT)))
+(((-367 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1802 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1803 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-85) (-1073))) (-15 -1804 (|#2| |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|) (-10 -8 (-15 -3947 ($ |#3|)))) (-755) (-13 (-1158 |#2| |#3|) (-312) (-1115) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))) (-896 |#4|) (-1090)) (T -367))
+((-1804 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3947 ($ *4))))) (-4 *4 (-755)) (-4 *5 (-13 (-1158 *2 *4) (-312) (-1115) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1090)))) (-1803 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) (-14 *10 (-1090)))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3947 ($ *7))))) (-4 *7 (-755)) (-4 *8 (-13 (-1158 *3 *7) (-312) (-1115) (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8)) (-14 *10 (-1090)))))
+((-1805 (($) 51 T ELT)) (-3235 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3237 (($ $ $) 46 T ELT)) (-3236 (((-85) $ $) 35 T ELT)) (-3137 (((-694)) 55 T ELT)) (-3240 (($ (-583 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2995 (($) 66 T ELT)) (-3242 (((-85) $ $) 15 T ELT)) (-2532 ((|#2| $) 77 T ELT)) (-2858 ((|#2| $) 75 T ELT)) (-2010 (((-830) $) 70 T ELT)) (-3239 (($ $ $) 42 T ELT)) (-2400 (($ (-830)) 60 T ELT)) (-3238 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-1730 (((-694) |#2| $) 31 T ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3531 (($ (-583 |#2|)) 27 T ELT)) (-1806 (($ $) 53 T ELT)) (-3947 (((-772) $) 40 T ELT)) (-1807 (((-694) $) 24 T ELT)) (-3241 (($ (-583 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3057 (((-85) $ $) 19 T ELT)))
+(((-368 |#1| |#2|) (-10 -7 (-15 -3137 ((-694))) (-15 -2400 (|#1| (-830))) (-15 -2010 ((-830) |#1|)) (-15 -2995 (|#1|)) (-15 -2532 (|#2| |#1|)) (-15 -2858 (|#2| |#1|)) (-15 -1805 (|#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1807 ((-694) |#1|)) (-15 -1730 ((-694) (-1 (-85) |#2|) |#1|)) (-15 -1730 ((-694) |#2| |#1|)) (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3242 ((-85) |#1| |#1|)) (-15 -3241 (|#1|)) (-15 -3241 (|#1| (-583 |#2|))) (-15 -3240 (|#1|)) (-15 -3240 (|#1| (-583 |#2|))) (-15 -3239 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3236 ((-85) |#1| |#1|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#2| |#1|)) (-15 -3531 (|#1| (-583 |#2|)))) (-369 |#2|) (-1013)) (T -368))
+((-3137 (*1 *2) (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
+((-2569 (((-85) $ $) 17 T ELT)) (-1805 (($) 60 (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) 85 T ELT) (($ $ |#1|) 84 T ELT) (($ $ $) 83 T ELT)) (-3237 (($ $ $) 81 T ELT)) (-3236 (((-85) $ $) 82 T ELT)) (-3137 (((-694)) 54 (|has| |#1| (-320)) ELT)) (-3240 (($ (-583 |#1|)) 77 T ELT) (($) 76 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 72 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 69 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 68 T ELT)) (-2995 (($) 57 (|has| |#1| (-320)) ELT)) (-3242 (((-85) $ $) 73 T ELT)) (-2532 ((|#1| $) 58 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 67 T ELT)) (-3246 (((-85) |#1| $) 71 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 59 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-2010 (((-830) $) 56 (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) 20 T ELT)) (-3239 (($ $ $) 78 T ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-2400 (($ (-830)) 55 (|has| |#1| (-320)) ELT)) (-3244 (((-1033) $) 19 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 65 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3238 (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-1730 (((-694) |#1| $) 70 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 66 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-1806 (($ $) 61 (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) 15 T ELT)) (-1807 (((-694) $) 62 T ELT)) (-3241 (($ (-583 |#1|)) 75 T ELT) (($) 74 T ELT)) (-1265 (((-85) $ $) 18 T ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 64 T ELT)) (-3057 (((-85) $ $) 16 T ELT)) (-3958 (((-694) $) 63 T ELT)))
+(((-369 |#1|) (-113) (-1013)) (T -369))
+((-1807 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))) (-1806 (*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-320)))) (-1805 (*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1013)))) (-2858 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756)))))
+(-13 (-183 |t#1|) (-1011 |t#1|) (-318 |t#1|) (-10 -8 (-15 -1807 ((-694) $)) (IF (|has| |t#1| (-320)) (PROGN (-6 (-320)) (-15 -1806 ($ $)) (-15 -1805 ($))) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2858 (|t#1| $)) (-15 -2532 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-183 |#1|) . T) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-320) |has| |#1| (-320)) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T))
+((-3842 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-3843 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3843 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3842 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1013) (-369 |#1|) (-1013) (-369 |#3|)) (T -370))
+((-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-369 *5)) (-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013)) (-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-369 *6)) (-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5)))))
+((-1808 (((-519 |#2|) |#2| (-1090)) 36 T ELT)) (-2100 (((-519 |#2|) |#2| (-1090)) 21 T ELT)) (-2149 ((|#2| |#2| (-1090)) 26 T ELT)))
+(((-371 |#1| |#2|) (-10 -7 (-15 -2100 ((-519 |#2|) |#2| (-1090))) (-15 -1808 ((-519 |#2|) |#2| (-1090))) (-15 -2149 (|#2| |#2| (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-29 |#1|))) (T -371))
+((-2149 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4))))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1810 (($ |#2| |#1|) 37 T ELT)) (-1809 (($ |#2| |#1|) 35 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-281 |#2|)) 25 T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 16 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-372 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -3983)) (IF (|has| |#1| (-6 -3983)) (-6 -3983) |%noBranch|) |%noBranch|) (-15 -3947 ($ |#1|)) (-15 -3947 ($ (-281 |#2|))) (-15 -1810 ($ |#2| |#1|)) (-15 -1809 ($ |#2| |#1|)))) (-13 (-146) (-38 (-350 (-484)))) (-13 (-756) (-21))) (T -372))
+((-3947 (*1 *1 *2) (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-484))))) (-4 *3 (-13 (-756) (-21))))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-372 *3 *4)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))))) (-1810 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) (-4 *2 (-13 (-756) (-21))))) (-1809 (*1 *1 *2 *3) (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484))))) (-4 *2 (-13 (-756) (-21))))))
+((-3813 (((-3 |#2| (-583 |#2|)) |#2| (-1090)) 115 T ELT)))
+(((-373 |#1| |#2|) (-10 -7 (-15 -3813 ((-3 |#2| (-583 |#2|)) |#2| (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -373))
+((-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-373 *5 *3)) (-4 *3 (-13 (-1115) (-871) (-29 *5))))))
+((-3387 ((|#2| |#2| |#2|) 31 T ELT)) (-3596 (((-86) (-86)) 43 T ELT)) (-1812 ((|#2| |#2|) 63 T ELT)) (-1811 ((|#2| |#2|) 66 T ELT)) (-3386 ((|#2| |#2|) 30 T ELT)) (-3390 ((|#2| |#2| |#2|) 33 T ELT)) (-3392 ((|#2| |#2| |#2|) 35 T ELT)) (-3389 ((|#2| |#2| |#2|) 32 T ELT)) (-3391 ((|#2| |#2| |#2|) 34 T ELT)) (-2254 (((-85) (-86)) 41 T ELT)) (-3394 ((|#2| |#2|) 37 T ELT)) (-3393 ((|#2| |#2|) 36 T ELT)) (-3384 ((|#2| |#2|) 25 T ELT)) (-3388 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3385 ((|#2| |#2| |#2|) 29 T ELT)))
+(((-374 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -3384 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -3388 (|#2| |#2| |#2|)) (-15 -3385 (|#2| |#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3387 (|#2| |#2| |#2|)) (-15 -3389 (|#2| |#2| |#2|)) (-15 -3390 (|#2| |#2| |#2|)) (-15 -3391 (|#2| |#2| |#2|)) (-15 -3392 (|#2| |#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1811 (|#2| |#2|)) (-15 -1812 (|#2| |#2|))) (-495) (-364 |#1|)) (T -374))
+((-1812 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-1811 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3392 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3390 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3389 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3387 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3385 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5)) (-4 *5 (-364 *4)))))
+((-2834 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-583 |#2|)) 65 T ELT)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1085 |#2|))) (|:| |prim| (-1085 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -2834 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1085 |#2|)) (|:| |pol2| (-1085 |#2|)) (|:| |prim| (-1085 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-495) (-120)) (-364 |#1|)) (T -375))
+((-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3)) (|:| |prim| (-1085 *3)))) (-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-375 *4 *5)))))
+((-1814 (((-1185)) 18 T ELT)) (-1813 (((-1085 (-350 (-484))) |#2| (-550 |#2|)) 40 T ELT) (((-350 (-484)) |#2|) 27 T ELT)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -1813 ((-350 (-484)) |#2|)) (-15 -1813 ((-1085 (-350 (-484))) |#2| (-550 |#2|))) (-15 -1814 ((-1185)))) (-13 (-495) (-950 (-484))) (-364 |#1|)) (T -376))
+((-1814 (*1 *2) (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4)) (-4 *4 (-364 *3)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-376 *5 *3)))) (-1813 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4)))))
+((-3646 (((-85) $) 33 T ELT)) (-1815 (((-85) $) 35 T ELT)) (-3260 (((-85) $) 36 T ELT)) (-1817 (((-85) $) 39 T ELT)) (-1819 (((-85) $) 34 T ELT)) (-1818 (((-85) $) 38 T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1073)) 32 T ELT) (($ (-1090)) 30 T ELT) (((-1090) $) 24 T ELT) (((-1015) $) 23 T ELT)) (-1816 (((-85) $) 37 T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-377) (-13 (-552 (-772)) (-10 -8 (-15 -3947 ($ (-1073))) (-15 -3947 ($ (-1090))) (-15 -3947 ((-1090) $)) (-15 -3947 ((-1015) $)) (-15 -3646 ((-85) $)) (-15 -1819 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -1818 ((-85) $)) (-15 -1817 ((-85) $)) (-15 -1816 ((-85) $)) (-15 -1815 ((-85) $)) (-15 -3057 ((-85) $ $))))) (T -377))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-377)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1818 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1816 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))) (-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
+((-1821 (((-3 (-348 (-1085 (-350 (-484)))) #1="failed") |#3|) 71 T ELT)) (-1820 (((-348 |#3|) |#3|) 34 T ELT)) (-1823 (((-3 (-348 (-1085 (-48))) #1#) |#3|) 29 (|has| |#2| (-950 (-48))) ELT)) (-1822 (((-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85))) |#3|) 37 T ELT)))
+(((-378 |#1| |#2| |#3|) (-10 -7 (-15 -1820 ((-348 |#3|) |#3|)) (-15 -1821 ((-3 (-348 (-1085 (-350 (-484)))) #1="failed") |#3|)) (-15 -1822 ((-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85))) |#3|)) (IF (|has| |#2| (-950 (-48))) (-15 -1823 ((-3 (-348 (-1085 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-495) (-950 (-484))) (-364 |#1|) (-1155 |#2|)) (T -378))
+((-1823 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1822 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48))) (|:| -2640 (-85)))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-350 (-484))))) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-1820 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3)) (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1833 (((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1830 (($) 35 T ELT)) (-1827 (($) 41 T ELT)) (-1828 (($) 37 T ELT)) (-1825 (($) 39 T ELT)) (-1829 (($) 36 T ELT)) (-1826 (($) 38 T ELT)) (-1824 (($) 40 T ELT)) (-1831 (((-85) $) 8 T ELT)) (-1832 (((-583 (-857 (-484))) $) 19 T ELT)) (-3531 (($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-583 (-1090)) (-85)) 29 T ELT) (($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-583 (-857 (-484))) (-85)) 30 T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-377)) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-379) (-13 (-1013) (-10 -8 (-15 -3947 ($ (-377))) (-15 -1833 ((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $)) (-15 -1832 ((-583 (-857 (-484))) $)) (-15 -1831 ((-85) $)) (-15 -3531 ($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-583 (-1090)) (-85))) (-15 -3531 ($ (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-583 (-857 (-484))) (-85))) (-15 -1830 ($)) (-15 -1829 ($)) (-15 -1828 ($)) (-15 -1827 ($)) (-15 -1826 ($)) (-15 -1825 ($)) (-15 -1824 ($))))) (T -379))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *1 (-379)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-379)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-583 (-1090))) (-5 *4 (-85)) (-5 *1 (-379)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-379)))) (-1830 (*1 *1) (-5 *1 (-379))) (-1829 (*1 *1) (-5 *1 (-379))) (-1828 (*1 *1) (-5 *1 (-379))) (-1827 (*1 *1) (-5 *1 (-379))) (-1826 (*1 *1) (-5 *1 (-379))) (-1825 (*1 *1) (-5 *1 (-379))) (-1824 (*1 *1) (-5 *1 (-379))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1090) $) 8 T ELT)) (-3243 (((-1073) $) 17 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)))
+(((-380 |#1|) (-13 (-1013) (-10 -8 (-15 -3543 ((-1090) $)))) (-1090)) (T -380))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1028) $) 7 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-381) (-13 (-1013) (-10 -8 (-15 -3320 ((-1028) $))))) (T -381))
+((-3320 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-381)))))
+((-1839 (((-85)) 18 T ELT)) (-1840 (((-85) (-85)) 19 T ELT)) (-1841 (((-85)) 14 T ELT)) (-1842 (((-85) (-85)) 15 T ELT)) (-1844 (((-85)) 16 T ELT)) (-1845 (((-85) (-85)) 17 T ELT)) (-1836 (((-830) (-830)) 22 T ELT) (((-830)) 21 T ELT)) (-1837 (((-694) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484))))) 52 T ELT)) (-1835 (((-830) (-830)) 24 T ELT) (((-830)) 23 T ELT)) (-1838 (((-2 (|:| -2579 (-484)) (|:| -1782 (-583 |#1|))) |#1|) 94 T ELT)) (-1834 (((-348 |#1|) (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484))))))) 176 T ELT)) (-3735 (((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 209 T ELT)) (-3734 (((-348 |#1|) |#1| (-694) (-694)) 224 T ELT) (((-348 |#1|) |#1| (-583 (-694)) (-694)) 221 T ELT) (((-348 |#1|) |#1| (-583 (-694))) 223 T ELT) (((-348 |#1|) |#1| (-694)) 222 T ELT) (((-348 |#1|) |#1|) 220 T ELT)) (-1856 (((-3 |#1| #1="failed") (-830) |#1| (-583 (-694)) (-694) (-85)) 226 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694)) 227 T ELT) (((-3 |#1| #1#) (-830) |#1| (-583 (-694))) 229 T ELT) (((-3 |#1| #1#) (-830) |#1| (-694)) 228 T ELT) (((-3 |#1| #1#) (-830) |#1|) 230 T ELT)) (-3733 (((-348 |#1|) |#1| (-694) (-694)) 219 T ELT) (((-348 |#1|) |#1| (-583 (-694)) (-694)) 215 T ELT) (((-348 |#1|) |#1| (-583 (-694))) 217 T ELT) (((-348 |#1|) |#1| (-694)) 216 T ELT) (((-348 |#1|) |#1|) 214 T ELT)) (-1843 (((-85) |#1|) 43 T ELT)) (-1855 (((-675 (-694)) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484))))) 99 T ELT)) (-1846 (((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)) 213 T ELT)))
+(((-382 |#1|) (-10 -7 (-15 -1834 ((-348 |#1|) (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))))) (-15 -1855 ((-675 (-694)) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))))) (-15 -1835 ((-830))) (-15 -1835 ((-830) (-830))) (-15 -1836 ((-830))) (-15 -1836 ((-830) (-830))) (-15 -1837 ((-694) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))))) (-15 -1838 ((-2 (|:| -2579 (-484)) (|:| -1782 (-583 |#1|))) |#1|)) (-15 -1839 ((-85))) (-15 -1840 ((-85) (-85))) (-15 -1841 ((-85))) (-15 -1842 ((-85) (-85))) (-15 -1843 ((-85) |#1|)) (-15 -1844 ((-85))) (-15 -1845 ((-85) (-85))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3733 ((-348 |#1|) |#1| (-694))) (-15 -3733 ((-348 |#1|) |#1| (-583 (-694)))) (-15 -3733 ((-348 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3733 ((-348 |#1|) |#1| (-694) (-694))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1| (-694))) (-15 -3734 ((-348 |#1|) |#1| (-583 (-694)))) (-15 -3734 ((-348 |#1|) |#1| (-583 (-694)) (-694))) (-15 -3734 ((-348 |#1|) |#1| (-694) (-694))) (-15 -1856 ((-3 |#1| #1="failed") (-830) |#1|)) (-15 -1856 ((-3 |#1| #1#) (-830) |#1| (-694))) (-15 -1856 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)))) (-15 -1856 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694))) (-15 -1856 ((-3 |#1| #1#) (-830) |#1| (-583 (-694)) (-694) (-85))) (-15 -3735 ((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85))) (-15 -1846 ((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85) (-1009 (-694)) (-694)))) (-1155 (-484))) (T -382))
+((-1846 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1856 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1856 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1856 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1856 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-1856 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-830)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484))))) (-3734 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1844 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1843 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1841 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1839 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2579 (-484)) (|:| -1782 (-583 *3)))) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3733 *4) (|:| -3949 (-484))))) (-4 *4 (-1155 (-484))) (-5 *2 (-694)) (-5 *1 (-382 *4)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1836 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1835 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1835 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3733 *4) (|:| -3949 (-484))))) (-4 *4 (-1155 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-382 *4)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484))))))) (-4 *4 (-1155 (-484))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
+((-1850 (((-484) |#2|) 52 T ELT) (((-484) |#2| (-694)) 51 T ELT)) (-1849 (((-484) |#2|) 64 T ELT)) (-1851 ((|#3| |#2|) 26 T ELT)) (-3133 ((|#3| |#2| (-830)) 15 T ELT)) (-3834 ((|#3| |#2|) 16 T ELT)) (-1852 ((|#3| |#2|) 9 T ELT)) (-2604 ((|#3| |#2|) 10 T ELT)) (-1848 ((|#3| |#2| (-830)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1847 (((-484) |#2|) 66 T ELT)))
+(((-383 |#1| |#2| |#3|) (-10 -7 (-15 -1847 ((-484) |#2|)) (-15 -1848 (|#3| |#2|)) (-15 -1848 (|#3| |#2| (-830))) (-15 -1849 ((-484) |#2|)) (-15 -1850 ((-484) |#2| (-694))) (-15 -1850 ((-484) |#2|)) (-15 -3133 (|#3| |#2| (-830))) (-15 -1851 (|#3| |#2|)) (-15 -1852 (|#3| |#2|)) (-15 -2604 (|#3| |#2|)) (-15 -3834 (|#3| |#2|))) (-961) (-1155 |#1|) (-13 (-347) (-950 |#1|) (-312) (-1115) (-239))) (T -383))
+((-3834 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-2604 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1851 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1850 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))) (-1850 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *5 *3 *6)) (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-950 *5) (-312) (-1115) (-239))))) (-1849 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))) (-1848 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-961)) (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2)) (-4 *3 (-1155 *5)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239))) (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4)) (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))))
+((-3355 ((|#2| (-1179 |#1|)) 42 T ELT)) (-1854 ((|#2| |#2| |#1|) 58 T ELT)) (-1853 ((|#2| |#2| |#1|) 49 T ELT)) (-2298 ((|#2| |#2|) 44 T ELT)) (-3174 (((-85) |#2|) 32 T ELT)) (-1857 (((-583 |#2|) (-830) (-348 |#2|)) 21 T ELT)) (-1856 ((|#2| (-830) (-348 |#2|)) 25 T ELT)) (-1855 (((-675 (-694)) (-348 |#2|)) 29 T ELT)))
+(((-384 |#1| |#2|) (-10 -7 (-15 -3174 ((-85) |#2|)) (-15 -3355 (|#2| (-1179 |#1|))) (-15 -2298 (|#2| |#2|)) (-15 -1853 (|#2| |#2| |#1|)) (-15 -1854 (|#2| |#2| |#1|)) (-15 -1855 ((-675 (-694)) (-348 |#2|))) (-15 -1856 (|#2| (-830) (-348 |#2|))) (-15 -1857 ((-583 |#2|) (-830) (-348 |#2|)))) (-961) (-1155 |#1|)) (T -384))
+((-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-384 *5 *6)))) (-1856 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2)) (-4 *5 (-961)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-675 (-694))) (-5 *1 (-384 *4 *5)))) (-1854 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-1853 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-2298 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-961)) (-4 *2 (-1155 *4)) (-5 *1 (-384 *4 *2)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4)))))
+((-1860 (((-694)) 59 T ELT)) (-1864 (((-694)) 29 (|has| |#1| (-347)) ELT) (((-694) (-694)) 28 (|has| |#1| (-347)) ELT)) (-1863 (((-484) |#1|) 25 (|has| |#1| (-347)) ELT)) (-1862 (((-484) |#1|) 27 (|has| |#1| (-347)) ELT)) (-1859 (((-694)) 58 T ELT) (((-694) (-694)) 57 T ELT)) (-1858 ((|#1| (-694) (-484)) 37 T ELT)) (-1861 (((-1185)) 61 T ELT)))
+(((-385 |#1|) (-10 -7 (-15 -1858 (|#1| (-694) (-484))) (-15 -1859 ((-694) (-694))) (-15 -1859 ((-694))) (-15 -1860 ((-694))) (-15 -1861 ((-1185))) (IF (|has| |#1| (-347)) (PROGN (-15 -1862 ((-484) |#1|)) (-15 -1863 ((-484) |#1|)) (-15 -1864 ((-694) (-694))) (-15 -1864 ((-694)))) |%noBranch|)) (-961)) (T -385))
+((-1864 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1864 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1863 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1862 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))) (-1861 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1860 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1859 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1859 (*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-385 *2)) (-4 *2 (-961)))))
+((-1865 (((-583 (-484)) (-484)) 76 T ELT)) (-3724 (((-85) (-142 (-484))) 84 T ELT)) (-3733 (((-348 (-142 (-484))) (-142 (-484))) 75 T ELT)))
+(((-386) (-10 -7 (-15 -3733 ((-348 (-142 (-484))) (-142 (-484)))) (-15 -1865 ((-583 (-484)) (-484))) (-15 -3724 ((-85) (-142 (-484)))))) (T -386))
+((-3724 (*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-386)))) (-1865 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-386)) (-5 *3 (-484)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 (-142 (-484)))) (-5 *1 (-386)) (-5 *3 (-142 (-484))))))
+((-2947 ((|#4| |#4| (-583 |#4|)) 20 (|has| |#1| (-312)) ELT)) (-2251 (((-583 |#4|) (-583 |#4|) (-1073) (-1073)) 46 T ELT) (((-583 |#4|) (-583 |#4|) (-1073)) 45 T ELT) (((-583 |#4|) (-583 |#4|)) 34 T ELT)))
+(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-583 |#4|) (-583 |#4|))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1073))) (-15 -2251 ((-583 |#4|) (-583 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-312)) (-15 -2947 (|#4| |#4| (-583 |#4|))) |%noBranch|)) (-392) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -387))
+((-2947 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2)))) (-2251 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2251 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6)))))
+((-1866 ((|#4| |#4| (-583 |#4|)) 82 T ELT)) (-1867 (((-583 |#4|) (-583 |#4|) (-1073) (-1073)) 22 T ELT) (((-583 |#4|) (-583 |#4|) (-1073)) 21 T ELT) (((-583 |#4|) (-583 |#4|)) 13 T ELT)))
+(((-388 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1866 (|#4| |#4| (-583 |#4|))) (-15 -1867 ((-583 |#4|) (-583 |#4|))) (-15 -1867 ((-583 |#4|) (-583 |#4|) (-1073))) (-15 -1867 ((-583 |#4|) (-583 |#4|) (-1073) (-1073)))) (-258) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -388))
+((-1867 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-388 *3 *4 *5 *6)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *2)))))
+((-1869 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 90 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 89 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85)) 83 T ELT) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-1868 (((-583 (-583 |#4|)) (-583 |#4|) (-85)) 56 T ELT) (((-583 (-583 |#4|)) (-583 |#4|)) 78 T ELT)))
+(((-389 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1868 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1868 ((-583 (-583 |#4|)) (-583 |#4|) (-85))) (-15 -1869 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -1869 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-85))) (-15 -1869 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -1869 ((-583 (-583 |#4|)) (-583 |#4|) (-85)))) (-13 (-258) (-120)) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -389))
+((-1869 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1869 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1869 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1869 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1868 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-1868 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+((-1893 (((-694) |#4|) 12 T ELT)) (-1881 (((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)))) 39 T ELT)) (-1883 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-1882 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1871 ((|#4| |#4| (-583 |#4|)) 54 T ELT)) (-1879 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 96 T ELT)) (-1886 (((-1185) |#4|) 59 T ELT)) (-1889 (((-1185) (-583 |#4|)) 69 T ELT)) (-1887 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484)) 66 T ELT)) (-1890 (((-1185) (-484)) 110 T ELT)) (-1884 (((-583 |#4|) (-583 |#4|)) 104 T ELT)) (-1892 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694)) 31 T ELT)) (-1885 (((-484) |#4|) 109 T ELT)) (-1880 ((|#4| |#4|) 37 T ELT)) (-1872 (((-583 |#4|) (-583 |#4|) (-484) (-484)) 74 T ELT)) (-1888 (((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484)) 123 T ELT)) (-1891 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-1873 (((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-1878 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-1877 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-1874 (((-85) |#2| |#2|) 75 T ELT)) (-1876 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-1875 (((-85) |#2| |#2| |#2| |#2|) 80 T ELT)) (-1870 ((|#4| |#4| (-583 |#4|)) 97 T ELT)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1870 (|#4| |#4| (-583 |#4|))) (-15 -1871 (|#4| |#4| (-583 |#4|))) (-15 -1872 ((-583 |#4|) (-583 |#4|) (-484) (-484))) (-15 -1873 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1874 ((-85) |#2| |#2|)) (-15 -1875 ((-85) |#2| |#2| |#2| |#2|)) (-15 -1876 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1877 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1878 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1879 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -1880 (|#4| |#4|)) (-15 -1881 ((-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))) |#4| (-694) (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|))))) (-15 -1882 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1883 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1884 ((-583 |#4|) (-583 |#4|))) (-15 -1885 ((-484) |#4|)) (-15 -1886 ((-1185) |#4|)) (-15 -1887 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484))) (-15 -1888 ((-484) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-484) (-484) (-484) (-484))) (-15 -1889 ((-1185) (-583 |#4|))) (-15 -1890 ((-1185) (-484))) (-15 -1891 ((-85) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1892 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-694)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-694)) (|:| -2004 |#4|)) |#4| (-694))) (-15 -1893 ((-694) |#4|))) (-392) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -390))
+((-1893 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1892 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694)) (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-390 *6 *7 *8 *4)))) (-1891 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1888 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1887 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *4)))) (-1886 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1885 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484)) (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1883 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2)) (-4 *4 (-392)) (-4 *6 (-756)))) (-1881 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-390 *5 *6 *7 *3)))) (-1880 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-390 *5 *6 *7 *3)))) (-1878 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *4 *3 *5 *6)))) (-1877 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))) (-1876 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *3)))) (-1875 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1872 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *7)))) (-1871 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2)))) (-1870 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2)))))
+((-1894 (($ $ $) 14 T ELT) (($ (-583 $)) 21 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 45 T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) 22 T ELT)))
+(((-391 |#1|) (-10 -7 (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -1894 (|#1| (-583 |#1|))) (-15 -1894 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-583 |#1|))) (-15 -3145 (|#1| |#1| |#1|))) (-392)) (T -391))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
(((-392) (-113)) (T -392))
-((-3146 (*1 *1 *1 *1) (-4 *1 (-392))) (-3146 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-1895 (*1 *1 *1 *1) (-4 *1 (-392))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392)))))
-(-13 (-496) (-10 -8 (-15 -3146 ($ $ $)) (-15 -3146 ($ (-584 $))) (-15 -1895 ($ $ $)) (-15 -1895 ($ (-584 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-1180 (-631 (-350 (-858 |#1|))))) NIL T ELT)) (-1730 (((-1180 $)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1792 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1728 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1790 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1904 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 89 (|has| |#1| (-496)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1706 (((-1086 (-350 (-858 |#1|))) $) 87 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1794 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1724 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-1796 (($ (-1180 (-350 (-858 |#1|))) (-1180 $)) 111 T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-3110 (((-831)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL T ELT)) (-1705 (((-3 $ #1#)) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1793 (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|)))) NIL T ELT)) (-1729 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1791 (((-631 (-350 (-858 |#1|))) $ (-1180 $)) NIL T ELT) (((-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1908 (((-1086 (-858 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-312)) ELT) (((-1086 (-350 (-858 |#1|)))) 88 (|has| |#1| (-496)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 (((-350 (-858 |#1|)) $) NIL T ELT)) (-1707 (((-1086 (-350 (-858 |#1|))) $) 84 (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-1795 (((-350 (-858 |#1|)) (-1180 $)) NIL T ELT) (((-350 (-858 |#1|))) NIL T ELT)) (-1725 (((-1086 (-350 (-858 |#1|))) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1898 (((-350 (-858 |#1|)) $ $) 75 (|has| |#1| (-496)) ELT)) (-1902 (((-350 (-858 |#1|)) $) 74 (|has| |#1| (-496)) ELT)) (-1901 (((-350 (-858 |#1|)) $) 101 (|has| |#1| (-496)) ELT)) (-1903 (((-1086 (-350 (-858 |#1|))) $) 93 (|has| |#1| (-496)) ELT)) (-1897 (((-350 (-858 |#1|))) 76 (|has| |#1| (-496)) ELT)) (-1900 (((-350 (-858 |#1|)) $ $) 64 (|has| |#1| (-496)) ELT)) (-1906 (((-350 (-858 |#1|)) $) 63 (|has| |#1| (-496)) ELT)) (-1905 (((-350 (-858 |#1|)) $) 100 (|has| |#1| (-496)) ELT)) (-1907 (((-1086 (-350 (-858 |#1|))) $) 92 (|has| |#1| (-496)) ELT)) (-1899 (((-350 (-858 |#1|))) 73 (|has| |#1| (-496)) ELT)) (-1909 (($) 107 T ELT) (($ (-1091)) 115 T ELT) (($ (-1180 (-1091))) 114 T ELT) (($ (-1180 $)) 102 T ELT) (($ (-1091) (-1180 $)) 113 T ELT) (($ (-1180 (-1091)) (-1180 $)) 112 T ELT)) (-1717 (((-85)) NIL T ELT)) (-3802 (((-350 (-858 |#1|)) $ (-485)) NIL T ELT)) (-3226 (((-1180 (-350 (-858 |#1|))) $ (-1180 $)) 104 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 (-858 |#1|))) $) 44 T ELT) (((-631 (-350 (-858 |#1|))) (-1180 $)) NIL T ELT)) (-3974 (((-1180 (-350 (-858 |#1|))) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) 41 T ELT)) (-1896 (((-584 (-858 (-350 (-858 |#1|)))) (-1180 $)) NIL T ELT) (((-584 (-858 (-350 (-858 |#1|))))) NIL T ELT) (((-584 (-858 |#1|)) (-1180 $)) 105 (|has| |#1| (-496)) ELT) (((-584 (-858 |#1|))) 106 (|has| |#1| (-496)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1180 (-350 (-858 |#1|)))) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 66 T ELT)) (-1708 (((-584 (-1180 (-350 (-858 |#1|))))) NIL (|has| (-350 (-858 |#1|)) (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-631 (-350 (-858 |#1|))) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-858 |#1|))) NIL T ELT) (($ (-350 (-858 |#1|)) $) NIL T ELT) (($ (-1057 |#2| (-350 (-858 |#1|))) $) NIL T ELT)))
-(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-858 |#1|))) (-591 (-1057 |#2| (-350 (-858 |#1|)))) (-10 -8 (-15 -3948 ($ (-1180 (-350 (-858 |#1|))))) (-15 -1911 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1="failed"))) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#))) (-15 -1909 ($)) (-15 -1909 ($ (-1091))) (-15 -1909 ($ (-1180 (-1091)))) (-15 -1909 ($ (-1180 $))) (-15 -1909 ($ (-1091) (-1180 $))) (-15 -1909 ($ (-1180 (-1091)) (-1180 $))) (IF (|has| |#1| (-496)) (PROGN (-15 -1908 ((-1086 (-350 (-858 |#1|))))) (-15 -1907 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1906 ((-350 (-858 |#1|)) $)) (-15 -1905 ((-350 (-858 |#1|)) $)) (-15 -1904 ((-1086 (-350 (-858 |#1|))))) (-15 -1903 ((-1086 (-350 (-858 |#1|))) $)) (-15 -1902 ((-350 (-858 |#1|)) $)) (-15 -1901 ((-350 (-858 |#1|)) $)) (-15 -1900 ((-350 (-858 |#1|)) $ $)) (-15 -1899 ((-350 (-858 |#1|)))) (-15 -1898 ((-350 (-858 |#1|)) $ $)) (-15 -1897 ((-350 (-858 |#1|)))) (-15 -1896 ((-584 (-858 |#1|)) (-1180 $))) (-15 -1896 ((-584 (-858 |#1|))))) |%noBranch|))) (-146) (-831) (-584 (-1091)) (-1180 (-631 |#1|))) (T -393))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146)) (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))))) (-1911 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1910 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2013 (-584 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831)) (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2)) (-14 *7 (-1180 (-631 *4))))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1908 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1904 (*1 *2) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1900 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1899 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1898 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1897 (*1 *2) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))) (-1896 (*1 *2) (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 19 T ELT)) (-3083 (((-584 (-774 |#1|)) $) 88 T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) 53 T ELT) (((-1086 |#2|) $) 140 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) 28 T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 49 T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) 95 T ELT)) (-3961 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| |#3| $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 66 T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) 145 T ELT) (($ (-1086 $) (-774 |#1|)) 59 T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) 69 T ELT)) (-2895 (($ |#2| |#3|) 36 T ELT) (($ $ (-774 |#1|) (-695)) 38 T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 ((|#3| $) NIL T ELT) (((-695) $ (-774 |#1|)) 57 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 64 T ELT)) (-1626 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) 46 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) 48 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 47 T ELT)) (-1800 ((|#2| $) 138 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) 102 T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) 108 T ELT) (($ $ (-774 |#1|) $) 100 T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) 126 T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) 60 T ELT)) (-3950 ((|#3| $) 80 T ELT) (((-695) $ (-774 |#1|)) 43 T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) 63 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) 175 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-774 |#1|)) 40 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ |#3|) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 133 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 131 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-394 |#1| |#2| |#3|) (-13 (-862 |#2| |#3| (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962) (-196 (-3959 |#1|) (-695))) (T -394))
-((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-962)) (-4 *5 (-196 (-3959 *3) (-695))))))
-((-1915 (((-85) |#1| (-584 |#2|)) 90 T ELT)) (-1913 (((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|)) 99 T ELT)) (-1914 (((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|))) 101 T ELT)) (-2038 ((|#2| |#2| |#1|) 35 T ELT)) (-1912 (((-695) |#2| (-584 |#2|)) 26 T ELT)))
-(((-395 |#1| |#2|) (-10 -7 (-15 -2038 (|#2| |#2| |#1|)) (-15 -1912 ((-695) |#2| (-584 |#2|))) (-15 -1913 ((-3 (-1180 (-584 |#2|)) #1="failed") (-695) |#1| (-584 |#2|))) (-15 -1914 ((-3 (-584 |#2|) #1#) |#2| |#1| (-1180 (-584 |#2|)))) (-15 -1915 ((-85) |#1| (-584 |#2|)))) (-258) (-1156 |#1|)) (T -395))
-((-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1914 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))) (-1913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4)) (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695)) (-5 *1 (-395 *5 *3)))) (-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3)))))
-((-3734 (((-348 |#5|) |#5|) 24 T ELT)))
-(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3734 ((-348 |#5|) |#5|))) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-718) (-496) (-496) (-862 |#4| |#2| |#1|)) (T -396))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4)))))
-((-2702 ((|#3|) 43 T ELT)) (-2710 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 34 T ELT)))
-(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2702 (|#3|))) (-718) (-757) (-822) (-862 |#3| |#1| |#2|)) (T -397))
-((-2702 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6)))))
-((-3734 (((-348 (-1086 |#1|)) (-1086 |#1|)) 43 T ELT)))
-(((-398 |#1|) (-10 -7 (-15 -3734 ((-348 (-1086 |#1|)) (-1086 |#1|)))) (-258)) (T -398))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1086 *4)))))
-((-3731 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695))) 44 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695))) 43 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 29 T ELT)) (-3820 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 88 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 87 T ELT) (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 86 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 85 T ELT) (((-51) |#2| (-1091) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|)) 79 T ELT)) (-3784 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 74 T ELT) (((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))) 72 T ELT)) (-3781 (((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485))) 51 T ELT) (((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485))) 50 T ELT)))
-(((-399 |#1| |#2|) (-10 -7 (-15 -3731 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3731 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3731 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-695)))) (-15 -3731 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-695)))) (-15 -3781 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3781 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3784 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3784 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3820 ((-51) (-1 |#2| (-485)) (-249 |#2|))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|))) (-15 -3820 ((-51) (-1 |#2| (-485)) (-249 |#2|) (-1147 (-485)))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-485)))) (-15 -3820 ((-51) (-1 |#2| (-350 (-485))) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485)))) (-15 -3820 ((-51) |#2| (-1091) (-249 |#2|) (-1147 (-350 (-485))) (-350 (-485))))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -399))
-((-3820 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3820 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3820 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3820 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3784 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485)))) (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8))) (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3784 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8)) (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485))) (-4 *8 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3731 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695))) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695))) (-4 *7 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3731 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3731 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))))
-((-2038 ((|#2| |#2| |#1|) 15 T ELT)) (-1917 (((-584 |#2|) |#2| (-584 |#2|) |#1| (-831)) 82 T ELT)) (-1916 (((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831)) 71 T ELT)))
-(((-400 |#1| |#2|) (-10 -7 (-15 -1916 ((-2 (|:| |plist| (-584 |#2|)) (|:| |modulo| |#1|)) |#2| (-584 |#2|) |#1| (-831))) (-15 -1917 ((-584 |#2|) |#2| (-584 |#2|) |#1| (-831))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|)) (T -400))
-((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3)))) (-1917 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1916 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5)) (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-584 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 28 T ELT)) (-3709 (($ |#3|) 25 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) 32 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1918 (($ |#2| |#4| $) 33 T ELT)) (-2895 (($ |#2| (-651 |#3| |#4| |#5|)) 24 T ELT)) (-2896 (((-651 |#3| |#4| |#5|) $) 15 T ELT)) (-1920 ((|#3| $) 19 T ELT)) (-1921 ((|#4| $) 17 T ELT)) (-3176 ((|#2| $) 29 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1919 (($ |#2| |#3| |#4|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-655 |#6|) (-655 |#2|) (-10 -8 (-15 -3176 (|#2| $)) (-15 -2896 ((-651 |#3| |#4| |#5|) $)) (-15 -1921 (|#4| $)) (-15 -1920 (|#3| $)) (-15 -3961 ($ $)) (-15 -2895 ($ |#2| (-651 |#3| |#4| |#5|))) (-15 -3709 ($ |#3|)) (-15 -1919 ($ |#2| |#3| |#4|)) (-15 -1918 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-584 (-1091)) (-146) (-757) (-196 (-3959 |#1|) (-695)) (-1 (-85) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|)) (-2 (|:| -2401 |#3|) (|:| -2402 |#4|))) (-862 |#2| |#4| (-774 |#1|))) (T -401))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757)) (-4 *2 (-862 *4 *6 (-774 *3))))) (-3176 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *2 *5 (-774 *3))))) (-2896 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757)) (-4 *8 (-862 *4 *6 (-774 *3))))) (-1921 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2)) (-2 (|:| -2401 *5) (|:| -2402 *2)))) (-4 *2 (-196 (-3959 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))) (-1920 (*1 *2 *1) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-3961 (*1 *1 *1) (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3959 *2) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5)) (-2 (|:| -2401 *4) (|:| -2402 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757)) (-4 *7 (-862 *3 *5 (-774 *2))))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3959 *4) (-695))) (-14 *7 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6)) (-2 (|:| -2401 *5) (|:| -2402 *6)))) (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-862 *2 *6 (-774 *4))))) (-3709 (*1 *1 *2) (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5)) (-2 (|:| -2401 *2) (|:| -2402 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757)) (-4 *7 (-862 *4 *5 (-774 *3))))) (-1919 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3959 *5) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4)) (-2 (|:| -2401 *3) (|:| -2402 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757)) (-4 *7 (-862 *2 *4 (-774 *5))))) (-1918 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3959 *4) (-695))) (-14 *6 (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3)) (-2 (|:| -2401 *5) (|:| -2402 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757)) (-4 *7 (-862 *2 *3 (-774 *4))))))
-((-1922 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
-(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1922 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -402))
-((-1922 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496)) (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-951 (-350 (-485))) (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3083 (((-584 |#3|) $) 40 T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1="failed") (-584 |#4|)) 48 T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3182 ((|#3| $) 46 T ELT)) (-2610 (((-584 |#4|) $) 14 T ELT)) (-3247 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 38 T ELT)) (-3567 (($) 17 T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 16 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT) (($ (-584 |#4|)) 50 T ELT)) (-3532 (($ (-584 |#4|)) 13 T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 37 T ELT) (((-584 |#4|) $) 49 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3058 (((-85) $ $) 29 T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-403 |#1| |#2| |#3| |#4|) (-13 (-890 |#1| |#2| |#3| |#4|) (-1036 |#4|) (-10 -8 (-15 -3974 ($ (-584 |#4|))))) (-962) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -403))
-((-3974 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6)))))
-((-2662 (($) 11 T CONST)) (-2668 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
-(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2668 (|#1|) -3954) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2662 (|#1|) -3954)) (-405 |#2| |#3|) (-146) (-23)) (T -404))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3159 (((-3 |#1| "failed") $) 30 T ELT)) (-3158 ((|#1| $) 31 T ELT)) (-3946 (($ $ $) 27 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 28 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+((-3145 (*1 *1 *1 *1) (-4 *1 (-392))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) (-1894 (*1 *1 *1 *1) (-4 *1 (-392))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392)))))
+(-13 (-495) (-10 -8 (-15 -3145 ($ $ $)) (-15 -3145 ($ (-583 $))) (-15 -1894 ($ $ $)) (-15 -1894 ($ (-583 $))) (-15 -2709 ((-1085 $) (-1085 $) (-1085 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1775 (((-3 $ #1="failed")) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-630 (-350 (-857 |#1|)))) (-1179 $)) NIL T ELT) (((-1179 (-630 (-350 (-857 |#1|))))) NIL T ELT)) (-1729 (((-1179 $)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1703 (((-3 $ #1#)) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1791 (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|)))) NIL T ELT)) (-1727 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1789 (((-630 (-350 (-857 |#1|))) $ (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1903 (((-1085 (-857 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-312)) ELT) (((-1085 (-350 (-857 |#1|)))) 89 (|has| |#1| (-495)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1705 (((-1085 (-350 (-857 |#1|))) $) 87 (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1793 (((-350 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-857 |#1|))) NIL T ELT)) (-1723 (((-1085 (-350 (-857 |#1|))) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-1795 (($ (-1179 (-350 (-857 |#1|))) (-1179 $)) 111 T ELT) (($ (-1179 (-350 (-857 |#1|)))) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-3109 (((-830)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL T ELT)) (-1704 (((-3 $ #1#)) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1792 (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|)))) NIL T ELT)) (-1728 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1790 (((-630 (-350 (-857 |#1|))) $ (-1179 $)) NIL T ELT) (((-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1907 (((-1085 (-857 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-312)) ELT) (((-1085 (-350 (-857 |#1|)))) 88 (|has| |#1| (-495)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 (((-350 (-857 |#1|)) $) NIL T ELT)) (-1706 (((-1085 (-350 (-857 |#1|))) $) 84 (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-1794 (((-350 (-857 |#1|)) (-1179 $)) NIL T ELT) (((-350 (-857 |#1|))) NIL T ELT)) (-1724 (((-1085 (-350 (-857 |#1|))) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1897 (((-350 (-857 |#1|)) $ $) 75 (|has| |#1| (-495)) ELT)) (-1901 (((-350 (-857 |#1|)) $) 74 (|has| |#1| (-495)) ELT)) (-1900 (((-350 (-857 |#1|)) $) 101 (|has| |#1| (-495)) ELT)) (-1902 (((-1085 (-350 (-857 |#1|))) $) 93 (|has| |#1| (-495)) ELT)) (-1896 (((-350 (-857 |#1|))) 76 (|has| |#1| (-495)) ELT)) (-1899 (((-350 (-857 |#1|)) $ $) 64 (|has| |#1| (-495)) ELT)) (-1905 (((-350 (-857 |#1|)) $) 63 (|has| |#1| (-495)) ELT)) (-1904 (((-350 (-857 |#1|)) $) 100 (|has| |#1| (-495)) ELT)) (-1906 (((-1085 (-350 (-857 |#1|))) $) 92 (|has| |#1| (-495)) ELT)) (-1898 (((-350 (-857 |#1|))) 73 (|has| |#1| (-495)) ELT)) (-1908 (($) 107 T ELT) (($ (-1090)) 115 T ELT) (($ (-1179 (-1090))) 114 T ELT) (($ (-1179 $)) 102 T ELT) (($ (-1090) (-1179 $)) 113 T ELT) (($ (-1179 (-1090)) (-1179 $)) 112 T ELT)) (-1716 (((-85)) NIL T ELT)) (-3801 (((-350 (-857 |#1|)) $ (-484)) NIL T ELT)) (-3225 (((-1179 (-350 (-857 |#1|))) $ (-1179 $)) 104 T ELT) (((-630 (-350 (-857 |#1|))) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 (-857 |#1|))) $) 44 T ELT) (((-630 (-350 (-857 |#1|))) (-1179 $)) NIL T ELT)) (-3973 (((-1179 (-350 (-857 |#1|))) $) NIL T ELT) (($ (-1179 (-350 (-857 |#1|)))) 41 T ELT)) (-1895 (((-583 (-857 (-350 (-857 |#1|)))) (-1179 $)) NIL T ELT) (((-583 (-857 (-350 (-857 |#1|))))) NIL T ELT) (((-583 (-857 |#1|)) (-1179 $)) 105 (|has| |#1| (-495)) ELT) (((-583 (-857 |#1|))) 106 (|has| |#1| (-495)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-1179 (-350 (-857 |#1|)))) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 66 T ELT)) (-1707 (((-583 (-1179 (-350 (-857 |#1|))))) NIL (|has| (-350 (-857 |#1|)) (-495)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2546 (($ (-630 (-350 (-857 |#1|))) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 103 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-857 |#1|))) NIL T ELT) (($ (-350 (-857 |#1|)) $) NIL T ELT) (($ (-1056 |#2| (-350 (-857 |#1|))) $) NIL T ELT)))
+(((-393 |#1| |#2| |#3| |#4|) (-13 (-361 (-350 (-857 |#1|))) (-590 (-1056 |#2| (-350 (-857 |#1|)))) (-10 -8 (-15 -3947 ($ (-1179 (-350 (-857 |#1|))))) (-15 -1910 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1="failed"))) (-15 -1909 ((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#))) (-15 -1908 ($)) (-15 -1908 ($ (-1090))) (-15 -1908 ($ (-1179 (-1090)))) (-15 -1908 ($ (-1179 $))) (-15 -1908 ($ (-1090) (-1179 $))) (-15 -1908 ($ (-1179 (-1090)) (-1179 $))) (IF (|has| |#1| (-495)) (PROGN (-15 -1907 ((-1085 (-350 (-857 |#1|))))) (-15 -1906 ((-1085 (-350 (-857 |#1|))) $)) (-15 -1905 ((-350 (-857 |#1|)) $)) (-15 -1904 ((-350 (-857 |#1|)) $)) (-15 -1903 ((-1085 (-350 (-857 |#1|))))) (-15 -1902 ((-1085 (-350 (-857 |#1|))) $)) (-15 -1901 ((-350 (-857 |#1|)) $)) (-15 -1900 ((-350 (-857 |#1|)) $)) (-15 -1899 ((-350 (-857 |#1|)) $ $)) (-15 -1898 ((-350 (-857 |#1|)))) (-15 -1897 ((-350 (-857 |#1|)) $ $)) (-15 -1896 ((-350 (-857 |#1|)))) (-15 -1895 ((-583 (-857 |#1|)) (-1179 $))) (-15 -1895 ((-583 (-857 |#1|))))) |%noBranch|))) (-146) (-830) (-583 (-1090)) (-1179 (-630 |#1|))) (T -393))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1179 (-350 (-857 *3)))) (-4 *3 (-146)) (-14 *6 (-1179 (-630 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))))) (-1910 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1909 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-393 *3 *4 *5 *6)) (|:| -2012 (-583 (-393 *3 *4 *5 *6))))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1908 (*1 *1) (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830)) (-14 *4 (-583 (-1090))) (-14 *5 (-1179 (-630 *2))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1179 (-630 *3))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1908 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2)) (-14 *7 (-1179 (-630 *4))))) (-1908 (*1 *1 *2 *3) (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))) (-1907 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1906 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1903 (*1 *2) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1899 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1897 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1896 (*1 *2) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4))) (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))) (-1895 (*1 *2) (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 19 T ELT)) (-3082 (((-583 (-773 |#1|)) $) 88 T ELT)) (-3084 (((-1085 $) $ (-773 |#1|)) 53 T ELT) (((-1085 |#2|) $) 140 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) 28 T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 51 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 49 T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1940 (($ $ (-583 (-484))) 95 T ELT)) (-3960 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| |#3| $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 66 T ELT)) (-3085 (($ (-1085 |#2|) (-773 |#1|)) 145 T ELT) (($ (-1085 $) (-773 |#1|)) 59 T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) 69 T ELT)) (-2894 (($ |#2| |#3|) 36 T ELT) (($ $ (-773 |#1|) (-694)) 38 T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2821 ((|#3| $) NIL T ELT) (((-694) $ (-773 |#1|)) 57 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 64 T ELT)) (-1625 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-773 |#1|) #1#) $) 46 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) 48 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) 47 T ELT)) (-1799 ((|#2| $) 138 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) 151 (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) 102 T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) 108 T ELT) (($ $ (-773 |#1|) $) 100 T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) 126 T ELT)) (-3758 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) 60 T ELT)) (-3949 ((|#3| $) 80 T ELT) (((-694) $ (-773 |#1|)) 43 T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) 63 T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#2| $) 147 (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3947 (((-772) $) 175 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 101 T ELT) (($ (-773 |#1|)) 40 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) 77 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 133 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 131 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 37 T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) 76 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-394 |#1| |#2| |#3|) (-13 (-861 |#2| |#3| (-773 |#1|)) (-10 -8 (-15 -1940 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961) (-196 (-3958 |#1|) (-694))) (T -394))
+((-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1090))) (-5 *1 (-394 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-196 (-3958 *3) (-694))))))
+((-1914 (((-85) |#1| (-583 |#2|)) 90 T ELT)) (-1912 (((-3 (-1179 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|)) 99 T ELT)) (-1913 (((-3 (-583 |#2|) #1#) |#2| |#1| (-1179 (-583 |#2|))) 101 T ELT)) (-2037 ((|#2| |#2| |#1|) 35 T ELT)) (-1911 (((-694) |#2| (-583 |#2|)) 26 T ELT)))
+(((-395 |#1| |#2|) (-10 -7 (-15 -2037 (|#2| |#2| |#1|)) (-15 -1911 ((-694) |#2| (-583 |#2|))) (-15 -1912 ((-3 (-1179 (-583 |#2|)) #1="failed") (-694) |#1| (-583 |#2|))) (-15 -1913 ((-3 (-583 |#2|) #1#) |#2| |#1| (-1179 (-583 |#2|)))) (-15 -1914 ((-85) |#1| (-583 |#2|)))) (-258) (-1155 |#1|)) (T -395))
+((-1914 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85)) (-5 *1 (-395 *3 *5)))) (-1913 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1179 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3)) (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4)))) (-1912 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1155 *4)) (-5 *2 (-1179 (-583 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-583 *6)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-694)) (-5 *1 (-395 *5 *3)))) (-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3)))))
+((-3733 (((-348 |#5|) |#5|) 24 T ELT)))
+(((-396 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3733 ((-348 |#5|) |#5|))) (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))) (-717) (-495) (-495) (-861 |#4| |#2| |#1|)) (T -396))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090)))))) (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4)))))
+((-2701 ((|#3|) 43 T ELT)) (-2709 (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 34 T ELT)))
+(((-397 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2701 (|#3|))) (-717) (-756) (-821) (-861 |#3| |#1| |#2|)) (T -397))
+((-2701 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-397 *3 *4 *2 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-821)) (-5 *1 (-397 *3 *4 *5 *6)))))
+((-3733 (((-348 (-1085 |#1|)) (-1085 |#1|)) 43 T ELT)))
+(((-398 |#1|) (-10 -7 (-15 -3733 ((-348 (-1085 |#1|)) (-1085 |#1|)))) (-258)) (T -398))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4)) (-5 *3 (-1085 *4)))))
+((-3730 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-694))) 44 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-694))) 43 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 29 T ELT)) (-3819 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 88 T ELT) (((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 87 T ELT) (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484))) 86 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484))) 85 T ELT) (((-51) |#2| (-1090) (-249 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|)) 79 T ELT)) (-3783 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 74 T ELT) (((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))) 72 T ELT)) (-3780 (((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484))) 51 T ELT) (((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484))) 50 T ELT)))
+(((-399 |#1| |#2|) (-10 -7 (-15 -3730 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3730 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3730 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-694)))) (-15 -3730 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-694)))) (-15 -3780 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484)))) (-15 -3780 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484)))) (-15 -3783 ((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3783 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3819 ((-51) (-1 |#2| (-484)) (-249 |#2|))) (-15 -3819 ((-51) |#2| (-1090) (-249 |#2|))) (-15 -3819 ((-51) (-1 |#2| (-484)) (-249 |#2|) (-1146 (-484)))) (-15 -3819 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-484)))) (-15 -3819 ((-51) (-1 |#2| (-350 (-484))) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484)))) (-15 -3819 ((-51) |#2| (-1090) (-249 |#2|) (-1146 (-350 (-484))) (-350 (-484))))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -399))
+((-3819 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3819 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3819 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))) (-3783 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484)))) (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8))) (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *8 *3)))) (-3783 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8)) (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484))) (-4 *8 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *8)))) (-3780 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3780 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3730 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-694))) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *7 *3)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-694))) (-4 *7 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *7)))) (-3730 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *6 *3)))) (-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6)) (-4 *6 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51)) (-5 *1 (-399 *5 *6)))))
+((-2037 ((|#2| |#2| |#1|) 15 T ELT)) (-1916 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-830)) 82 T ELT)) (-1915 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830)) 71 T ELT)))
+(((-400 |#1| |#2|) (-10 -7 (-15 -1915 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-830))) (-15 -1916 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-830))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1155 |#1|)) (T -400))
+((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3)))) (-1916 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1155 *4)) (-4 *4 (-258)) (-5 *1 (-400 *4 *3)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1155 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3)) (-5 *4 (-583 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 28 T ELT)) (-3708 (($ |#3|) 25 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 32 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1917 (($ |#2| |#4| $) 33 T ELT)) (-2894 (($ |#2| (-650 |#3| |#4| |#5|)) 24 T ELT)) (-2895 (((-650 |#3| |#4| |#5|) $) 15 T ELT)) (-1919 ((|#3| $) 19 T ELT)) (-1920 ((|#4| $) 17 T ELT)) (-3175 ((|#2| $) 29 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1918 (($ |#2| |#3| |#4|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-401 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-654 |#6|) (-654 |#2|) (-10 -8 (-15 -3175 (|#2| $)) (-15 -2895 ((-650 |#3| |#4| |#5|) $)) (-15 -1920 (|#4| $)) (-15 -1919 (|#3| $)) (-15 -3960 ($ $)) (-15 -2894 ($ |#2| (-650 |#3| |#4| |#5|))) (-15 -3708 ($ |#3|)) (-15 -1918 ($ |#2| |#3| |#4|)) (-15 -1917 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1090)) (-146) (-756) (-196 (-3958 |#1|) (-694)) (-1 (-85) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|)) (-2 (|:| -2400 |#3|) (|:| -2401 |#4|))) (-861 |#2| |#4| (-773 |#1|))) (T -401))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756)) (-4 *2 (-861 *4 *6 (-773 *3))))) (-3175 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *5 (-196 (-3958 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *2 *5 (-773 *3))))) (-2895 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756)) (-4 *8 (-861 *4 *6 (-773 *3))))) (-1920 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2)) (-2 (|:| -2400 *5) (|:| -2401 *2)))) (-4 *2 (-196 (-3958 *3) (-694))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))) (-1919 (*1 *2 *1) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-4 *2 (-756)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-3960 (*1 *1 *1) (-12 (-14 *2 (-583 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5)) (-2 (|:| -2400 *4) (|:| -2401 *5)))) (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756)) (-4 *7 (-861 *3 *5 (-773 *2))))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3958 *4) (-694))) (-14 *7 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6)) (-2 (|:| -2400 *5) (|:| -2401 *6)))) (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8)) (-4 *8 (-861 *2 *6 (-773 *4))))) (-3708 (*1 *1 *2) (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5)) (-2 (|:| -2400 *2) (|:| -2401 *5)))) (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756)) (-4 *7 (-861 *4 *5 (-773 *3))))) (-1918 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4)) (-2 (|:| -2400 *3) (|:| -2401 *4)))) (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756)) (-4 *7 (-861 *2 *4 (-773 *5))))) (-1917 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-694))) (-14 *6 (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3)) (-2 (|:| -2400 *5) (|:| -2401 *3)))) (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756)) (-4 *7 (-861 *2 *3 (-773 *4))))))
+((-1921 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
+(((-402 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1921 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-950 (-350 (-484))) (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -402))
+((-1921 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495)) (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-350 (-484))) (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3082 (((-583 |#3|) $) 40 T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1="failed") (-583 |#4|)) 48 T ELT)) (-3157 (($ (-583 |#4|)) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT)) (-3181 ((|#3| $) 46 T ELT)) (-2609 (((-583 |#4|) $) 14 T ELT)) (-3246 (((-85) |#4| $) 25 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 20 T ELT)) (-2915 (((-583 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 38 T ELT)) (-3566 (($) 17 T ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT) (($ (-583 |#4|)) 50 T ELT)) (-3531 (($ (-583 |#4|)) 13 T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-772) $) 37 T ELT) (((-583 |#4|) $) 49 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3057 (((-85) $ $) 29 T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-403 |#1| |#2| |#3| |#4|) (-13 (-889 |#1| |#2| |#3| |#4|) (-1035 |#4|) (-10 -8 (-15 -3973 ($ (-583 |#4|))))) (-961) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -403))
+((-3973 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-403 *3 *4 *5 *6)))))
+((-2661 (($) 11 T CONST)) (-2667 (($) 13 T CONST)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
+(((-404 |#1| |#2| |#3|) (-10 -7 (-15 -2667 (|#1|) -3953) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2661 (|#1|) -3953)) (-405 |#2| |#3|) (-146) (-23)) (T -404))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3158 (((-3 |#1| "failed") $) 30 T ELT)) (-3157 ((|#1| $) 31 T ELT)) (-3945 (($ $ $) 27 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 28 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
(((-405 |#1| |#2|) (-113) (-146) (-23)) (T -405))
-((-2668 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3946 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-410 |t#1| |t#2|) (-951 |t#1|) (-10 -8 (-15 -2668 ($) -3954) (-15 -3946 ($ $ $))))
-(((-72) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-951 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-1923 (((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831)) 26 T ELT)) (-1924 (((-1180 (-1180 (-485))) (-831)) 21 T ELT)))
-(((-406) (-10 -7 (-15 -1923 ((-1180 (-1180 (-485))) (-1180 (-1180 (-485))) (-831))) (-15 -1924 ((-1180 (-1180 (-485))) (-831))))) (T -406))
-((-1924 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
-((-2772 (((-485) (-485)) 32 T ELT) (((-485)) 24 T ELT)) (-2776 (((-485) (-485)) 28 T ELT) (((-485)) 20 T ELT)) (-2774 (((-485) (-485)) 30 T ELT) (((-485)) 22 T ELT)) (-1926 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1925 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1927 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
-(((-407) (-10 -7 (-15 -1925 ((-85))) (-15 -1926 ((-85))) (-15 -1925 ((-85) (-85))) (-15 -1926 ((-85) (-85))) (-15 -1927 ((-85))) (-15 -2774 ((-485))) (-15 -2776 ((-485))) (-15 -2772 ((-485))) (-15 -1927 ((-85) (-85))) (-15 -2774 ((-485) (-485))) (-15 -2776 ((-485) (-485))) (-15 -2772 ((-485) (-485))))) (T -407))
-((-2772 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407)))) (-1927 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1926 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3853 (((-584 (-330)) $) 34 T ELT) (((-584 (-330)) $ (-584 (-330))) 145 T ELT)) (-1932 (((-584 (-1002 (-330))) $) 16 T ELT) (((-584 (-1002 (-330))) $ (-584 (-1002 (-330)))) 142 T ELT)) (-1929 (((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784))) 58 T ELT)) (-1933 (((-584 (-584 (-855 (-179)))) $) 137 T ELT)) (-3708 (((-1186) $ (-855 (-179)) (-784)) 162 T ELT)) (-1934 (($ $) 136 T ELT) (($ (-584 (-584 (-855 (-179))))) 148 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831))) 147 T ELT) (($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221))) 149 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 110 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1935 (($) 146 T ELT)) (-1928 (((-584 (-179)) (-584 (-584 (-855 (-179))))) 89 T ELT)) (-1931 (((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831)) 154 T ELT) (((-1186) $ (-855 (-179))) 156 T ELT) (((-1186) $ (-855 (-179)) (-784) (-784) (-831)) 155 T ELT)) (-3948 (((-773) $) 168 T ELT) (($ (-584 (-584 (-855 (-179))))) 163 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1930 (((-1186) $ (-855 (-179))) 161 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-408) (-13 (-1014) (-10 -8 (-15 -1935 ($)) (-15 -1934 ($ $)) (-15 -1934 ($ (-584 (-584 (-855 (-179)))))) (-15 -1934 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)))) (-15 -1934 ($ (-584 (-584 (-855 (-179)))) (-584 (-784)) (-584 (-784)) (-584 (-831)) (-584 (-221)))) (-15 -1933 ((-584 (-584 (-855 (-179)))) $)) (-15 -3862 ((-485) $)) (-15 -1932 ((-584 (-1002 (-330))) $)) (-15 -1932 ((-584 (-1002 (-330))) $ (-584 (-1002 (-330))))) (-15 -3853 ((-584 (-330)) $)) (-15 -3853 ((-584 (-330)) $ (-584 (-330)))) (-15 -1931 ((-1186) $ (-584 (-855 (-179))) (-784) (-784) (-831))) (-15 -1931 ((-1186) $ (-855 (-179)))) (-15 -1931 ((-1186) $ (-855 (-179)) (-784) (-784) (-831))) (-15 -1930 ((-1186) $ (-855 (-179)))) (-15 -3708 ((-1186) $ (-855 (-179)) (-784))) (-15 -3948 ($ (-584 (-584 (-855 (-179)))))) (-15 -3948 ((-773) $)) (-15 -1929 ((-584 (-584 (-855 (-179)))) (-584 (-584 (-855 (-179)))) (-584 (-784)))) (-15 -1928 ((-584 (-179)) (-584 (-584 (-855 (-179))))))))) (T -408))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408)))) (-1935 (*1 *1) (-5 *1 (-408))) (-1934 (*1 *1 *1) (-5 *1 (-408))) (-1934 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1934 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *1 (-408)))) (-1934 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-1932 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-3853 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3708 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))) (-1929 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784))) (-5 *1 (-408)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179))) (-5 *1 (-408)))))
-((-3839 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
-(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 ((|#2| $) 23 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 22 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
+((-2667 (*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3945 (*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-410 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 -2667 ($) -3953) (-15 -3945 ($ $ $))))
+(((-72) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-410 |#1| |#2|) . T) ((-13) . T) ((-950 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-1922 (((-1179 (-1179 (-484))) (-1179 (-1179 (-484))) (-830)) 26 T ELT)) (-1923 (((-1179 (-1179 (-484))) (-830)) 21 T ELT)))
+(((-406) (-10 -7 (-15 -1922 ((-1179 (-1179 (-484))) (-1179 (-1179 (-484))) (-830))) (-15 -1923 ((-1179 (-1179 (-484))) (-830))))) (T -406))
+((-1923 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 (-484)))) (-5 *1 (-406)))) (-1922 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 (-1179 (-484)))) (-5 *3 (-830)) (-5 *1 (-406)))))
+((-2771 (((-484) (-484)) 32 T ELT) (((-484)) 24 T ELT)) (-2775 (((-484) (-484)) 28 T ELT) (((-484)) 20 T ELT)) (-2773 (((-484) (-484)) 30 T ELT) (((-484)) 22 T ELT)) (-1925 (((-85) (-85)) 14 T ELT) (((-85)) 12 T ELT)) (-1924 (((-85) (-85)) 13 T ELT) (((-85)) 11 T ELT)) (-1926 (((-85) (-85)) 26 T ELT) (((-85)) 17 T ELT)))
+(((-407) (-10 -7 (-15 -1924 ((-85))) (-15 -1925 ((-85))) (-15 -1924 ((-85) (-85))) (-15 -1925 ((-85) (-85))) (-15 -1926 ((-85))) (-15 -2773 ((-484))) (-15 -2775 ((-484))) (-15 -2771 ((-484))) (-15 -1926 ((-85) (-85))) (-15 -2773 ((-484) (-484))) (-15 -2775 ((-484) (-484))) (-15 -2771 ((-484) (-484))))) (T -407))
+((-2771 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1926 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-2771 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2775 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-2773 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407)))) (-1926 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1924 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1925 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))) (-1924 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3852 (((-583 (-330)) $) 34 T ELT) (((-583 (-330)) $ (-583 (-330))) 145 T ELT)) (-1931 (((-583 (-1001 (-330))) $) 16 T ELT) (((-583 (-1001 (-330))) $ (-583 (-1001 (-330)))) 142 T ELT)) (-1928 (((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783))) 58 T ELT)) (-1932 (((-583 (-583 (-854 (-179)))) $) 137 T ELT)) (-3707 (((-1185) $ (-854 (-179)) (-783)) 162 T ELT)) (-1933 (($ $) 136 T ELT) (($ (-583 (-583 (-854 (-179))))) 148 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830))) 147 T ELT) (($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221))) 149 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3861 (((-484) $) 110 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1934 (($) 146 T ELT)) (-1927 (((-583 (-179)) (-583 (-583 (-854 (-179))))) 89 T ELT)) (-1930 (((-1185) $ (-583 (-854 (-179))) (-783) (-783) (-830)) 154 T ELT) (((-1185) $ (-854 (-179))) 156 T ELT) (((-1185) $ (-854 (-179)) (-783) (-783) (-830)) 155 T ELT)) (-3947 (((-772) $) 168 T ELT) (($ (-583 (-583 (-854 (-179))))) 163 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1929 (((-1185) $ (-854 (-179))) 161 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-408) (-13 (-1013) (-10 -8 (-15 -1934 ($)) (-15 -1933 ($ $)) (-15 -1933 ($ (-583 (-583 (-854 (-179)))))) (-15 -1933 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)))) (-15 -1933 ($ (-583 (-583 (-854 (-179)))) (-583 (-783)) (-583 (-783)) (-583 (-830)) (-583 (-221)))) (-15 -1932 ((-583 (-583 (-854 (-179)))) $)) (-15 -3861 ((-484) $)) (-15 -1931 ((-583 (-1001 (-330))) $)) (-15 -1931 ((-583 (-1001 (-330))) $ (-583 (-1001 (-330))))) (-15 -3852 ((-583 (-330)) $)) (-15 -3852 ((-583 (-330)) $ (-583 (-330)))) (-15 -1930 ((-1185) $ (-583 (-854 (-179))) (-783) (-783) (-830))) (-15 -1930 ((-1185) $ (-854 (-179)))) (-15 -1930 ((-1185) $ (-854 (-179)) (-783) (-783) (-830))) (-15 -1929 ((-1185) $ (-854 (-179)))) (-15 -3707 ((-1185) $ (-854 (-179)) (-783))) (-15 -3947 ($ (-583 (-583 (-854 (-179)))))) (-15 -3947 ((-772) $)) (-15 -1928 ((-583 (-583 (-854 (-179)))) (-583 (-583 (-854 (-179)))) (-583 (-783)))) (-15 -1927 ((-583 (-179)) (-583 (-583 (-854 (-179))))))))) (T -408))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-408)))) (-1934 (*1 *1) (-5 *1 (-408))) (-1933 (*1 *1 *1) (-5 *1 (-408))) (-1933 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-1933 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *1 (-408)))) (-1933 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-408)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-408)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))) (-1931 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) (-3852 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408)))) (-1930 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1930 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-1929 (*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3707 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-408)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))) (-1928 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783))) (-5 *1 (-408)))) (-1927 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179))) (-5 *1 (-408)))))
+((-3838 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
+(((-409 |#1| |#2| |#3|) (-10 -7 (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|))) (-410 |#2| |#3|) (-146) (-23)) (T -409))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3949 ((|#2| $) 23 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 22 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT)))
(((-410 |#1| |#2|) (-113) (-146) (-23)) (T -410))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2662 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
-(-13 (-1014) (-10 -8 (-15 -3950 (|t#2| $)) (-15 -2662 ($) -3954) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3839 ($ $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-1937 (((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|))) 135 T ELT)) (-1936 (((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 132 T ELT)) (-1938 (((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))) 87 T ELT)))
-(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1936 ((-584 (-584 (-206 |#1| |#2|))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1937 ((-3 (-584 (-421 |#1| |#2|)) "failed") (-584 (-421 |#1| |#2|)) (-584 (-774 |#1|)))) (-15 -1938 ((-2 (|:| |dpolys| (-584 (-206 |#1| |#2|))) (|:| |coords| (-584 (-485)))) (-584 (-206 |#1| |#2|)) (-584 (-774 |#1|))))) (-584 (-1091)) (-392) (-392)) (T -411))
-((-1938 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))) (-1937 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1936 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
-((-3469 (((-3 $ "failed") $) 11 T ELT)) (-3011 (($ $ $) 22 T ELT)) (-2437 (($ $ $) 23 T ELT)) (-3951 (($ $ $) 9 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 21 T ELT)))
-(((-412 |#1|) (-10 -7 (-15 -2437 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3951 (|#1| |#1| |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-413)) (T -412))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23)))) (-2661 (*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23)))))
+(-13 (-1013) (-10 -8 (-15 -3949 (|t#2| $)) (-15 -2661 ($) -3953) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3838 ($ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-1936 (((-3 (-583 (-421 |#1| |#2|)) "failed") (-583 (-421 |#1| |#2|)) (-583 (-773 |#1|))) 135 T ELT)) (-1935 (((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 132 T ELT)) (-1937 (((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))) 87 T ELT)))
+(((-411 |#1| |#2| |#3|) (-10 -7 (-15 -1935 ((-583 (-583 (-206 |#1| |#2|))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1936 ((-3 (-583 (-421 |#1| |#2|)) "failed") (-583 (-421 |#1| |#2|)) (-583 (-773 |#1|)))) (-15 -1937 ((-2 (|:| |dpolys| (-583 (-206 |#1| |#2|))) (|:| |coords| (-583 (-484)))) (-583 (-206 |#1| |#2|)) (-583 (-773 |#1|))))) (-583 (-1090)) (-392) (-392)) (T -411))
+((-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484))))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392)))) (-1936 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6)) (-4 *6 (-392)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392)))))
+((-3468 (((-3 $ "failed") $) 11 T ELT)) (-3010 (($ $ $) 22 T ELT)) (-2436 (($ $ $) 23 T ELT)) (-3950 (($ $ $) 9 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 21 T ELT)))
+(((-412 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -3010 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3950 (|#1| |#1| |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-413)) (T -412))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
(((-413) (-113)) (T -413))
-((-2486 (*1 *1 *1) (-4 *1 (-413))) (-3951 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485)))) (-3011 (*1 *1 *1 *1) (-4 *1 (-413))) (-2437 (*1 *1 *1 *1) (-4 *1 (-413))))
-(-13 (-664) (-10 -8 (-15 -2486 ($ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ (-485))) (-6 -3994) (-15 -3011 ($ $ $)) (-15 -2437 ($ $ $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 18 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) NIL T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 29 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 30 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 28 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 16 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1177 |#2|)) NIL T ELT) (($ (-1161 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 21 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-414 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (-15 -3948 ($ (-1161 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -414))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-415 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|) |#2|) (T -415))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) NIL T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3771 (($ $ |#4|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3935 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-416 |#1| |#2| |#3| |#4|) (-1125 |#1| |#2| |#3| |#4|) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -416))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3629 (($) 17 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3974 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1086 (-485))) $) 18 T ELT) (((-474) $) 53 T ELT)) (-3948 (((-773) $) 51 T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 37 T CONST)) (-2668 (($) 8 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-417) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))) (-934) (-553 (-179)) (-553 (-330)) (-554 (-350 (-1086 (-485)))) (-554 (-474)) (-10 -8 (-15 -3629 ($))))) (T -417))
-((-3629 (*1 *1) (-5 *1 (-417))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-418) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -418))
-((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418)))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) 13 T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 19 T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) 15 T ELT)))
-(((-419 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1074)) (T -419))
-NIL
-((-1939 (((-485) (-485) (-485)) 19 T ELT)) (-1940 (((-85) (-485) (-485) (-485) (-485)) 28 T ELT)) (-3459 (((-1180 (-584 (-485))) (-695) (-695)) 42 T ELT)))
-(((-420) (-10 -7 (-15 -1939 ((-485) (-485) (-485))) (-15 -1940 ((-85) (-485) (-485) (-485) (-485))) (-15 -3459 ((-1180 (-584 (-485))) (-695) (-695))))) (T -420))
-((-3459 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420)))) (-1940 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1939 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1941 (($ $ (-584 (-485))) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-422 (-3959 |#1|) (-695)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-422 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-422 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-422 (-3959 |#1|) (-695)) (-422 (-3959 |#1|) (-695))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-422 (-3959 |#1|) (-695)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-422 (-3959 |#1|) (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-421 |#1| |#2|) (-13 (-862 |#2| (-422 (-3959 |#1|) (-695)) (-774 |#1|)) (-10 -8 (-15 -1941 ($ $ (-584 (-485)))))) (-584 (-1091)) (-962)) (T -421))
-((-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091))) (-4 *4 (-962)))))
-((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ (-485)) 11 T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3328 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 17 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-422 |#1| |#2|) (-196 |#1| |#2|) (-695) (-718)) (T -422))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1942 (((-584 (-786)) $) 16 T ELT)) (-3544 (((-447) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1943 (($ (-447) (-584 (-786))) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-423) (-13 (-996) (-10 -8 (-15 -1943 ($ (-447) (-584 (-786)))) (-15 -3544 ((-447) $)) (-15 -1942 ((-584 (-786)) $))))) (T -423))
-((-1943 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2858 (($ $ $) 48 T ELT)) (-3520 (($ $ $) 47 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 40 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 41 T ELT)) (-3611 (($ |#1| $) 18 T ELT)) (-1944 (($ (-584 |#1|)) 19 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 34 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 11 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 45 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 29 T ELT)))
-(((-424 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -1944 ($ (-584 |#1|))))) (-757)) (T -424))
-((-1944 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ $) 71 T ELT)) (-1638 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1969 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (((-3 |#4| #1#) $) 117 T ELT)) (-1639 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-485)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3437 (((-2 (|:| -2337 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3948 (((-773) $) 110 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-3058 (((-85) $ $) 121 T ELT)) (-3839 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 72 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 77 T ELT)))
-(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425))
-NIL
-((-1948 (((-485) (-584 (-485))) 53 T ELT)) (-1945 ((|#1| (-584 |#1|)) 94 T ELT)) (-1947 (((-584 |#1|) (-584 |#1|)) 95 T ELT)) (-1946 (((-584 |#1|) (-584 |#1|)) 97 T ELT)) (-3146 ((|#1| (-584 |#1|)) 96 T ELT)) (-2819 (((-584 (-485)) (-584 |#1|)) 56 T ELT)))
-(((-426 |#1|) (-10 -7 (-15 -3146 (|#1| (-584 |#1|))) (-15 -1945 (|#1| (-584 |#1|))) (-15 -1946 ((-584 |#1|) (-584 |#1|))) (-15 -1947 ((-584 |#1|) (-584 |#1|))) (-15 -2819 ((-584 (-485)) (-584 |#1|))) (-15 -1948 ((-485) (-584 (-485))))) (-1156 (-485))) (T -426))
-((-1948 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4)) (-4 *4 (-1156 *2)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485))) (-5 *1 (-426 *4)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1946 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-485) $) NIL (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-1949 (($ (-350 (-485))) 9 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) NIL T ELT)) (-3132 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 8 T ELT) (($ (-485)) NIL T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL T ELT) (((-918 16) $) 10 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-485) $) NIL (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-485) (-485)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ (-485)) NIL T ELT)))
-(((-427) (-13 (-905 (-485)) (-553 (-350 (-485))) (-553 (-918 16)) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -1949 ($ (-350 (-485))))))) (T -427))
-((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))))
-((-3770 (($ $ (-584 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL T ELT)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#2| |#2|)) (-15 -3770 (|#1| |#1| (-249 |#2|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#2|))))) (-429 |#2|) (-1130)) (T -428))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-429 |#1|) (-113) (-1130)) (T -429))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3998)) (-4 *1 (-429 *3)) (-4 *3 (-1130)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |t#1| (-1014)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3998)) (-15 -3328 ($ (-1 |t#1| |t#1|) $)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-3948 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
-(((-430 |#1|) (-113) (-1130)) (T -430))
-NIL
-(-13 (-553 |t#1|) (-556 |t#1|))
-(((-556 |#1|) . T) ((-553 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1950 (($ (-1074)) 8 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT) (((-1074) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)))
-(((-431) (-13 (-1014) (-553 (-1074)) (-10 -8 (-15 -1950 ($ (-1074)))))) (T -431))
-((-1950 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431)))))
-((-3494 (($ $) 15 T ELT)) (-3492 (($ $) 24 T ELT)) (-3496 (($ $) 12 T ELT)) (-3497 (($ $) 10 T ELT)) (-3495 (($ $) 17 T ELT)) (-3493 (($ $) 22 T ELT)))
-(((-432 |#1|) (-10 -7 (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|))) (-433)) (T -432))
-NIL
-((-3494 (($ $) 11 T ELT)) (-3492 (($ $) 10 T ELT)) (-3496 (($ $) 9 T ELT)) (-3497 (($ $) 8 T ELT)) (-3495 (($ $) 7 T ELT)) (-3493 (($ $) 6 T ELT)))
+((-2485 (*1 *1 *1) (-4 *1 (-413))) (-3950 (*1 *1 *1 *1) (-4 *1 (-413))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-484)))) (-3010 (*1 *1 *1 *1) (-4 *1 (-413))) (-2436 (*1 *1 *1 *1) (-4 *1 (-413))))
+(-13 (-663) (-10 -8 (-15 -2485 ($ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-484))) (-6 -3993) (-15 -3010 ($ $ $)) (-15 -2436 ($ $ $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 18 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-484))) NIL T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 29 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 35 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 30 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 28 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 16 T ELT)) (-3949 (((-350 (-484)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1176 |#2|)) NIL T ELT) (($ (-1160 |#1| |#2| |#3|)) 9 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 21 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-414 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3947 ($ (-1176 |#2|))) (-15 -3947 ($ (-1160 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -414))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-414 *3 *4 *5)))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 18 (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-415 |#1| |#2| |#3| |#4|) (-1107 |#1| |#2|) (-1013) (-1013) (-1107 |#1| |#2|) |#2|) (T -415))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3683 (((-583 $) (-583 |#4|)) NIL T ELT)) (-3082 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3157 (($ (-583 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 44 T ELT)) (-3686 ((|#4| |#4| $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 37 T ELT)) (-2609 (((-583 |#4|) $) 18 T ELT)) (-3246 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2915 (((-583 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) 41 T ELT)) (-3698 (((-583 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 39 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 54 T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 21 T ELT)) (-2911 (($ $ |#3|) 48 T ELT)) (-2913 (($ $ |#3|) 50 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-772) $) 34 T ELT) (((-583 |#4|) $) 45 T ELT)) (-3679 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-583 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-416 |#1| |#2| |#3| |#4|) (-1124 |#1| |#2| |#3| |#4|) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -416))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3628 (($) 17 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3973 (((-330) $) 21 T ELT) (((-179) $) 24 T ELT) (((-350 (-1085 (-484))) $) 18 T ELT) (((-473) $) 53 T ELT)) (-3947 (((-772) $) 51 T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (((-179) $) 23 T ELT) (((-330) $) 20 T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 37 T CONST)) (-2667 (($) 8 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-417) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))) (-933) (-552 (-179)) (-552 (-330)) (-553 (-350 (-1085 (-484)))) (-553 (-473)) (-10 -8 (-15 -3628 ($))))) (T -417))
+((-3628 (*1 *1) (-5 *1 (-417))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1049) $) 12 T ELT)) (-3530 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-418) (-13 (-995) (-10 -8 (-15 -3530 ((-1049) $)) (-15 -3529 ((-1049) $))))) (T -418))
+((-3530 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 16 (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) 13 T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 11 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) 15 T ELT)))
+(((-419 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) (-1073)) (T -419))
+NIL
+((-1938 (((-484) (-484) (-484)) 19 T ELT)) (-1939 (((-85) (-484) (-484) (-484) (-484)) 28 T ELT)) (-3458 (((-1179 (-583 (-484))) (-694) (-694)) 42 T ELT)))
+(((-420) (-10 -7 (-15 -1938 ((-484) (-484) (-484))) (-15 -1939 ((-85) (-484) (-484) (-484) (-484))) (-15 -3458 ((-1179 (-583 (-484))) (-694) (-694))))) (T -420))
+((-3458 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1179 (-583 (-484)))) (-5 *1 (-420)))) (-1939 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-420)))) (-1938 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-420)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-1940 (($ $ (-583 (-484))) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-422 (-3958 |#1|) (-694)) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-422 (-3958 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2821 (((-422 (-3958 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-422 (-3958 |#1|) (-694)) (-422 (-3958 |#1|) (-694))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3758 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3949 (((-422 (-3958 |#1|) (-694)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-422 (-3958 |#1|) (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-421 |#1| |#2|) (-13 (-861 |#2| (-422 (-3958 |#1|) (-694)) (-773 |#1|)) (-10 -8 (-15 -1940 ($ $ (-583 (-484)))))) (-583 (-1090)) (-961)) (T -421))
+((-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-421 *3 *4)) (-14 *3 (-583 (-1090))) (-4 *4 (-961)))))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3157 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-484)) 11 T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2609 (((-583 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3802 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1730 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3127 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-961)) CONST)) (-2670 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2686 (((-85) $ $) 17 (|has| |#2| (-756)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-422 |#1| |#2|) (-196 |#1| |#2|) (-694) (-717)) (T -422))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1941 (((-583 (-785)) $) 16 T ELT)) (-3543 (((-446) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1942 (($ (-446) (-583 (-785))) 12 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 23 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-423) (-13 (-995) (-10 -8 (-15 -1942 ($ (-446) (-583 (-785)))) (-15 -3543 ((-446) $)) (-15 -1941 ((-583 (-785)) $))))) (T -423))
+((-1942 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-423)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-423)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-423)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2857 (($ $ $) 48 T ELT)) (-3519 (($ $ $) 47 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 40 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 41 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-1943 (($ (-583 |#1|)) 19 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 11 T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 45 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 29 T ELT)))
+(((-424 |#1|) (-13 (-881 |#1|) (-10 -8 (-15 -1943 ($ (-583 |#1|))))) (-756)) (T -424))
+((-1943 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-424 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ $) 71 T ELT)) (-1637 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1968 (((-356 |#2| (-350 |#2|) |#3| |#4|) $) 45 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (((-3 |#4| #1#) $) 117 T ELT)) (-1638 (($ (-356 |#2| (-350 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-484)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3436 (((-2 (|:| -2336 (-356 |#2| (-350 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3947 (((-772) $) 110 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-3057 (((-85) $ $) 121 T ELT)) (-3838 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 72 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 77 T ELT)))
+(((-425 |#1| |#2| |#3| |#4|) (-286 |#1| |#2| |#3| |#4|) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -425))
+NIL
+((-1947 (((-484) (-583 (-484))) 53 T ELT)) (-1944 ((|#1| (-583 |#1|)) 94 T ELT)) (-1946 (((-583 |#1|) (-583 |#1|)) 95 T ELT)) (-1945 (((-583 |#1|) (-583 |#1|)) 97 T ELT)) (-3145 ((|#1| (-583 |#1|)) 96 T ELT)) (-2818 (((-583 (-484)) (-583 |#1|)) 56 T ELT)))
+(((-426 |#1|) (-10 -7 (-15 -3145 (|#1| (-583 |#1|))) (-15 -1944 (|#1| (-583 |#1|))) (-15 -1945 ((-583 |#1|) (-583 |#1|))) (-15 -1946 ((-583 |#1|) (-583 |#1|))) (-15 -2818 ((-583 (-484)) (-583 |#1|))) (-15 -1947 ((-484) (-583 (-484))))) (-1155 (-484))) (T -426))
+((-1947 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-426 *4)) (-4 *4 (-1155 *2)))) (-2818 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1155 (-484))) (-5 *2 (-583 (-484))) (-5 *1 (-426 *4)))) (-1946 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484))))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-484) $) NIL (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-3157 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-484) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-484) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3959 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-484) (-1066)) CONST)) (-1948 (($ (-350 (-484))) 9 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) NIL T ELT)) (-3131 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) NIL T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 8 T ELT) (($ (-484)) NIL T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL T ELT) (((-917 16) $) 10 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-484) $) NIL (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-484) (-484)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ (-484)) NIL T ELT)))
+(((-427) (-13 (-904 (-484)) (-552 (-350 (-484))) (-552 (-917 16)) (-10 -8 (-15 -3129 ((-350 (-484)) $)) (-15 -1948 ($ (-350 (-484))))))) (T -427))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427)))) (-1948 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427)))))
+((-3769 (($ $ (-583 (-249 |#2|))) 13 T ELT) (($ $ (-249 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL T ELT)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -3769 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -3769 (|#1| |#1| |#2| |#2|)) (-15 -3769 (|#1| |#1| (-249 |#2|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#2|))))) (-429 |#2|) (-1129)) (T -428))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-429 |#1|) (-113) (-1129)) (T -429))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-429 *3)) (-4 *3 (-1129)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |t#1| (-72)) (-6 (-72)) |%noBranch|) (IF (|has| |t#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |t#1| (-1013)) (IF (|has| |t#1| (-260 |t#1|)) (-6 (-260 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -3997)) (-15 -3327 ($ (-1 |t#1| |t#1|) $)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-3947 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
+(((-430 |#1|) (-113) (-1129)) (T -430))
+NIL
+(-13 (-552 |t#1|) (-555 |t#1|))
+(((-555 |#1|) . T) ((-552 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1949 (($ (-1073)) 8 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 15 T ELT) (((-1073) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-431) (-13 (-1013) (-552 (-1073)) (-10 -8 (-15 -1949 ($ (-1073)))))) (T -431))
+((-1949 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431)))))
+((-3493 (($ $) 15 T ELT)) (-3491 (($ $) 24 T ELT)) (-3495 (($ $) 12 T ELT)) (-3496 (($ $) 10 T ELT)) (-3494 (($ $) 17 T ELT)) (-3492 (($ $) 22 T ELT)))
+(((-432 |#1|) (-10 -7 (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|))) (-433)) (T -432))
+NIL
+((-3493 (($ $) 11 T ELT)) (-3491 (($ $) 10 T ELT)) (-3495 (($ $) 9 T ELT)) (-3496 (($ $) 8 T ELT)) (-3494 (($ $) 7 T ELT)) (-3492 (($ $) 6 T ELT)))
(((-433) (-113)) (T -433))
-((-3494 (*1 *1 *1) (-4 *1 (-433))) (-3492 (*1 *1 *1) (-4 *1 (-433))) (-3496 (*1 *1 *1) (-4 *1 (-433))) (-3497 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3493 (*1 *1 *1) (-4 *1 (-433))))
-(-13 (-10 -8 (-15 -3493 ($ $)) (-15 -3495 ($ $)) (-15 -3497 ($ $)) (-15 -3496 ($ $)) (-15 -3492 ($ $)) (-15 -3494 ($ $))))
-((-3734 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT)))
-(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1156 |#1|) (-13 (-312) (-120) (-662 |#1| |#2|)) (-1156 |#3|)) (T -434))
-((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1216 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-1217 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3190 (((-85) $) 39 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1951 (((-85) $ $) 72 T ELT)) (-1601 (((-584 (-551 $)) $) 49 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1605 (($ $ (-249 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1218 (((-584 $) (-1086 $) (-1091)) NIL T ELT) (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT)) (-3185 (($ (-1086 $) (-1091)) NIL T ELT) (($ (-1086 $)) NIL T ELT) (($ (-858 $)) NIL T ELT)) (-3159 (((-3 (-551 $) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3158 (((-551 $) $) NIL T ELT) (((-485) $) NIL T ELT) (((-350 (-485)) $) 54 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 (-485))) (-631 $)) NIL T ELT)) (-3844 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2575 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1600 (((-584 (-86)) $) NIL T ELT)) (-3597 (((-86) (-86)) NIL T ELT)) (-2411 (((-85) $) 42 T ELT)) (-2675 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3000 (((-1040 (-485) (-551 $)) $) 37 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3134 (((-1086 $) (-1086 $) (-551 $)) 86 T ELT) (((-1086 $) (-1086 $) (-584 (-551 $))) 61 T ELT) (($ $ (-551 $)) 75 T ELT) (($ $ (-584 (-551 $))) 76 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1598 (((-1086 $) (-551 $)) 73 (|has| $ (-962)) ELT)) (-3960 (($ (-1 $ $) (-551 $)) NIL T ELT)) (-1603 (((-3 (-551 $) #1#) $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-350 (-485)))) (|:| |vec| (-1180 (-350 (-485))))) (-1180 $) $) NIL T ELT) (((-631 (-350 (-485))) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1602 (((-584 (-551 $)) $) NIL T ELT)) (-2236 (($ (-86) $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2635 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-2605 (((-695) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1599 (((-85) $ $) NIL T ELT) (((-85) $ (-1091)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL (|has| $ (-951 (-485))) ELT)) (-3770 (($ $ (-551 $) $) NIL T ELT) (($ $ (-584 (-551 $)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-1091) (-1 $ (-584 $))) NIL T ELT) (($ $ (-1091) (-1 $ $)) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ $))) NIL T ELT) (($ $ (-584 (-86)) (-584 (-1 $ (-584 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-584 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-584 $)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1604 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3760 (($ $) 36 T ELT) (($ $ (-695)) NIL T ELT)) (-2999 (((-1040 (-485) (-551 $)) $) 20 T ELT)) (-3187 (($ $) NIL (|has| $ (-962)) ELT)) (-3974 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-551 $)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1040 (-485) (-551 $))) 21 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2592 (($ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2255 (((-85) (-86)) 92 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 22 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT)) (-3951 (($ $ $) 44 T ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-485))) NIL T ELT) (($ $ (-485)) 47 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-485) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-831) $) NIL T ELT)))
-(((-435) (-13 (-254) (-27) (-951 (-485)) (-951 (-350 (-485))) (-581 (-485)) (-934) (-581 (-350 (-485))) (-120) (-554 (-142 (-330))) (-190) (-556 (-1040 (-485) (-551 $))) (-10 -8 (-15 -3000 ((-1040 (-485) (-551 $)) $)) (-15 -2999 ((-1040 (-485) (-551 $)) $)) (-15 -3844 ($ $)) (-15 -1951 ((-85) $ $)) (-15 -3134 ((-1086 $) (-1086 $) (-551 $))) (-15 -3134 ((-1086 $) (-1086 $) (-584 (-551 $)))) (-15 -3134 ($ $ (-551 $))) (-15 -3134 ($ $ (-584 (-551 $))))))) (T -435))
-((-3000 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435)))) (-3844 (*1 *1 *1) (-5 *1 (-435))) (-1951 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435)))) (-3134 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 19 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 14 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 13 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) 9 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 16 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-436 |#1| |#2|) (-19 |#1|) (-1130) (-485)) (T -436))
-NIL
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 44 T ELT)) (-1258 (($ $ (-485) |#2|) NIL T ELT)) (-1257 (($ $ (-485) |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3113 ((|#2| $ (-485)) 53 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 43 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 38 T ELT)) (-3116 (((-695) $) 28 T ELT)) (-3616 (($ (-695) (-695) |#1|) 24 T ELT)) (-3115 (((-695) $) 30 T ELT)) (-3120 (((-485) $) 26 T ELT)) (-3118 (((-485) $) 27 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 29 T ELT)) (-3117 (((-485) $) 31 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3244 (((-1074) $) 48 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 61 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 33 T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) 41 T ELT) ((|#1| $ (-485) (-485) |#1|) 72 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) 59 T ELT)) (-3112 ((|#3| $ (-485)) 55 T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1130) (-324 |#1|) (-324 |#1|)) (T -437))
-NIL
-((-1953 (((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695)) 32 T ELT)) (-1952 (((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695)) 43 T ELT)) (-2078 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)) 107 T ELT)))
-(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1952 ((-584 (-1086 |#1|)) |#1| (-695) (-695) (-695))) (-15 -1953 ((-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-695) (-695))) (-15 -2078 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) (-584 |#3|) (-584 (-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) (-695)))) (-299) (-1156 |#1|) (-1156 |#2|)) (T -438))
-((-2078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))) (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1953 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6)))) (-4 *7 (-1156 *6)))) (-1952 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3)) (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5)))))
-((-1959 (((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))) 70 T ELT)) (-1954 ((|#1| (-631 |#1|) |#1| (-695)) 24 T ELT)) (-1956 (((-695) (-695) (-695)) 34 T ELT)) (-1958 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 50 T ELT)) (-1957 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 58 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 55 T ELT)) (-1955 ((|#1| (-631 |#1|) (-631 |#1|) |#1| (-485)) 28 T ELT)) (-3331 ((|#1| (-631 |#1|)) 18 T ELT)))
-(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3331 (|#1| (-631 |#1|))) (-15 -1954 (|#1| (-631 |#1|) |#1| (-695))) (-15 -1955 (|#1| (-631 |#1|) (-631 |#1|) |#1| (-485))) (-15 -1956 ((-695) (-695) (-695))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1957 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -1958 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -1959 ((-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|))) (-2 (|:| -2013 (-631 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-631 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))) (-1156 |#1|) (-353 |#1| |#2|)) (T -439))
-((-1959 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-485)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1954 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-631 *2)) (-5 *4 (-695)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 44 T ELT)) (-3323 (($ $ $) 41 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) $) NIL (|has| (-85) (-757)) ELT) (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 (-85))) (|has| (-85) (-757))) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL (|has| $ (-1036 (-85))) ELT)) (-2911 (($ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $) NIL T ELT)) (-3790 (((-85) $ (-1147 (-485)) (-85)) NIL (|has| $ (-6 -3998)) ELT) (((-85) $ (-485) (-85)) 43 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 (-85))) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3408 (($ (-1 (-85) (-85)) $) NIL (|has| $ (-318 (-85))) ELT) (($ (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-3844 (((-85) (-1 (-85) (-85) (-85)) $) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85)) NIL T ELT) (((-85) (-1 (-85) (-85) (-85)) $ (-85) (-85)) NIL (|has| (-85) (-72)) ELT)) (-1577 (((-85) $ (-485) (-85)) NIL (|has| $ (-6 -3998)) ELT)) (-3114 (((-85) $ (-485)) NIL T ELT)) (-3421 (((-485) (-85) $ (-485)) NIL (|has| (-85) (-72)) ELT) (((-485) (-85) $) NIL (|has| (-85) (-72)) ELT) (((-485) (-1 (-85) (-85)) $) NIL T ELT)) (-2563 (($ $ $) 39 T ELT)) (-2562 (($ $) NIL T ELT)) (-1301 (($ $ $) NIL T ELT)) (-3616 (($ (-695) (-85)) 27 T ELT)) (-1302 (($ $ $) NIL T ELT)) (-2201 (((-485) $) 8 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL T ELT)) (-3520 (($ $ $) NIL (|has| (-85) (-757)) ELT) (($ (-1 (-85) (-85) (-85)) $ $) NIL T ELT)) (-2610 (((-584 (-85)) $) NIL T ELT)) (-3247 (((-85) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL T ELT)) (-3328 (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3960 (($ (-1 (-85) (-85) (-85)) $ $) 36 T ELT) (($ (-1 (-85) (-85)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ (-85) $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-85) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-85) "failed") (-1 (-85) (-85)) $) NIL T ELT)) (-2200 (($ $ (-85)) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-3770 (($ $ (-584 (-85)) (-584 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-85) (-85)) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-249 (-85))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT) (($ $ (-584 (-249 (-85)))) NIL (-12 (|has| (-85) (-260 (-85))) (|has| (-85) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-85) $) NIL (-12 (|has| $ (-318 (-85))) (|has| (-85) (-72))) ELT)) (-2206 (((-584 (-85)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 29 T ELT)) (-3802 (($ $ (-1147 (-485))) NIL T ELT) (((-85) $ (-485)) 22 T ELT) (((-85) $ (-485) (-85)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-85)) $) NIL T ELT) (((-695) (-85) $) NIL (|has| (-85) (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 (-85))) ELT)) (-3402 (($ $) 30 T ELT)) (-3974 (((-474) $) NIL (|has| (-85) (-554 (-474))) ELT)) (-3532 (($ (-584 (-85))) NIL T ELT)) (-3804 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-85) $) NIL T ELT) (($ $ (-85)) NIL T ELT)) (-3948 (((-773) $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-85)) $) NIL T ELT)) (-2564 (($ $ $) 37 T ELT)) (-2312 (($ $ $) 46 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 32 T ELT)) (-2313 (($ $ $) 45 T ELT)) (-3959 (((-695) $) 13 T ELT)))
-(((-440 |#1|) (-96) (-485)) (T -440))
-NIL
-((-1961 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|)) 35 T ELT)) (-1960 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22 T ELT)) (-1962 (((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|))) 46 T ELT)) (-1963 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1960 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -1960 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1961 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1086 |#4|))) (-15 -1962 ((-3 (-631 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-631 (-1086 |#4|)))) (-15 -1963 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-962) (-1156 |#1|) (-1156 |#2|) (-962)) (T -441))
-((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))) (-1962 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8))) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6)) (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))) (-1960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1964 (((-1186) $) 25 T ELT)) (-3802 (((-1074) $ (-1091)) 30 T ELT)) (-3619 (((-1186) $) 20 T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1074)) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 12 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 10 T ELT)))
-(((-442) (-13 (-757) (-556 (-1074)) (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $)) (-15 -1964 ((-1186) $))))) (T -442))
-((-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))) (-1964 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))))
-((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3741 ((|#1| |#4|) 10 T ELT)) (-3742 ((|#3| |#4|) 17 T ELT)))
-(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 (|#1| |#4|)) (-15 -3742 (|#3| |#4|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-496) (-905 |#1|) (-324 |#1|) (-324 |#2|)) (T -443))
-((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4)) (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1974 (((-85) $ (-584 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3190 (((-85) $) 178 T ELT)) (-1966 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-584 |#3|)) 122 T ELT)) (-1965 (((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|)) 171 (|has| |#3| (-554 (-1091))) ELT)) (-1973 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2411 (((-85) $) 177 T ELT)) (-1970 (($ $) 132 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 99 T ELT) (($ (-584 $)) 101 T ELT)) (-1975 (((-85) |#4| $) 130 T ELT)) (-1976 (((-85) $ $) 82 T ELT)) (-1969 (($ (-584 |#4|)) 106 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1968 (($ (-584 |#4|)) 175 T ELT)) (-1967 (((-85) $) 176 T ELT)) (-2252 (($ $) 85 T ELT)) (-2697 (((-584 |#4|) $) 73 T ELT)) (-1972 (((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|)) NIL T ELT)) (-1977 (((-85) |#4| $) 89 T ELT)) (-3913 (((-485) $ (-584 |#3|)) 134 T ELT) (((-485) $) 135 T ELT)) (-3948 (((-773) $) 174 T ELT) (($ (-584 |#4|)) 102 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1971 (($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3058 (((-85) $ $) 84 T ELT)) (-3841 (($ $ $) 109 T ELT)) (** (($ $ (-695)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
-(((-444 |#1| |#2| |#3| |#4|) (-13 (-1014) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 -3841 ($ $ $)) (-15 -2411 ((-85) $)) (-15 -3190 ((-85) $)) (-15 -1977 ((-85) |#4| $)) (-15 -1976 ((-85) $ $)) (-15 -1975 ((-85) |#4| $)) (-15 -1974 ((-85) $ (-584 |#3|))) (-15 -1974 ((-85) $)) (-15 -3240 ($ $ $)) (-15 -3240 ($ (-584 $))) (-15 -1973 ($ $ $)) (-15 -1973 ($ $ |#4|)) (-15 -2252 ($ $)) (-15 -1972 ((-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)) $ (-584 |#3|))) (-15 -1971 ($ (-2 (|:| |mval| (-631 |#1|)) (|:| |invmval| (-631 |#1|)) (|:| |genIdeal| $)))) (-15 -3913 ((-485) $ (-584 |#3|))) (-15 -3913 ((-485) $)) (-15 -1970 ($ $)) (-15 -1969 ($ (-584 |#4|))) (-15 -1968 ($ (-584 |#4|))) (-15 -1967 ((-85) $)) (-15 -2697 ((-584 |#4|) $)) (-15 -3948 ($ (-584 |#4|))) (-15 -1966 ($ $ |#4|)) (-15 -1966 ($ $ |#4| (-584 |#3|))) (IF (|has| |#3| (-554 (-1091))) (-15 -1965 ((-1081 (-584 (-858 |#1|)) (-584 (-249 (-858 |#1|)))) (-584 |#4|))) |%noBranch|))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -444))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2411 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3190 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1977 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1976 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1975 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1974 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1973 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1973 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-2252 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4)) (|:| |genIdeal| (-444 *4 *5 *6 *7)))) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3)) (|:| |genIdeal| (-444 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3913 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))) (-3913 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-1970 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-1969 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1967 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1966 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-862 *3 *4 *5)))) (-1966 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091))) (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4))))) (-5 *1 (-444 *4 *5 *6 *7)))))
-((-1978 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 178 T ELT)) (-1979 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 179 T ELT)) (-1980 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 129 T ELT)) (-3725 (((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) NIL T ELT)) (-1981 (((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) 181 T ELT)) (-1982 (((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))) 197 T ELT)))
-(((-445 |#1| |#2|) (-10 -7 (-15 -1978 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1979 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -3725 ((-85) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1980 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1981 ((-584 (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485))))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))))) (-15 -1982 ((-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-444 (-350 (-485)) (-197 |#2| (-695)) (-774 |#1|) (-206 |#1| (-350 (-485)))) (-584 (-774 |#1|))))) (-584 (-1091)) (-695)) (T -445))
-((-1982 (*1 *2 *2 *3) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *1 (-445 *4 *5)))) (-1981 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-584 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))) (-5 *1 (-445 *4 *5)) (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))) (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
-((-3802 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-446 |#1|) (-113) (-72)) (T -446))
-NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3058 (|f| |x| |x|) |x|))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1983 (($) 6 T ELT)) (-3948 (((-773) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-447) (-13 (-1014) (-10 -8 (-15 -1983 ($))))) (T -447))
-((-1983 (*1 *1) (-5 *1 (-447))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 15 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 25 T ELT)))
-(((-448 |#1| |#2|) (-13 (-21) (-450 |#1| |#2|)) (-21) (-760)) (T -448))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 16 T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 13 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) 39 T ELT)) (-1215 (((-85) $ $) 44 T ELT)) (-2895 (($ |#1| |#2|) 36 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) 41 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 11 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) 30 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 35 T ELT)))
-(((-449 |#1| |#2|) (-13 (-23) (-450 |#1| |#2|)) (-23) (-760)) (T -449))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 16 T ELT)) (-3961 (($ $) 17 T ELT)) (-2895 (($ |#1| |#2|) 20 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 18 T ELT)) (-3176 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 15 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3245 (((-1034) $) 14 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 22 T ELT)) (-3948 (((-773) $) 13 (-12 (|has| |#2| (-1014)) (|has| |#1| (-1014))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-450 |#1| |#2|) (-113) (-72) (-760)) (T -450))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)))) (-2895 (*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760)) (-5 *2 (-584 (-454 *3 *4))))))
-(-13 (-72) (-558 (-584 (-454 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1014)) (IF (|has| |t#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -3960 ($ (-1 |t#1| |t#1|) $)) (-15 -2895 ($ |t#1| |t#2|)) (-15 -3176 (|t#1| $)) (-15 -1984 (|t#2| $)) (-15 -3961 ($ $)) (-15 -3776 ((-584 (-454 |t#1| |t#2|)) $))))
-(((-72) . T) ((-553 (-773)) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-558 (-584 (-454 |#1| |#2|))) . T) ((-13) . T) ((-1014) -12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 29 T ELT)) (-3961 (($ $) 23 T ELT)) (-2895 (($ |#1| |#2|) 19 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1984 ((|#2| $) 28 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3245 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) 30 T ELT)) (-1985 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3948 (((-773) $) 17 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-451 |#1| |#2|) (-13 (-450 |#1| |#2|) (-10 -8 (-15 -1985 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-760)) (T -451))
-((-1985 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) 10 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 21 T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-452 |#1| |#2|) (-13 (-717) (-450 |#1| |#2|)) (-717) (-760)) (T -452))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| |#2|)) $) NIL T ELT)) (-2485 (($ $ $) 24 T ELT)) (-1313 (((-3 $ "failed") $ $) 20 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1984 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 |#1| |#2|))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-453 |#1| |#2|) (-13 (-718) (-450 |#1| |#2|)) (-718) (-757)) (T -453))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1986 (($ |#2| |#1|) 9 T ELT)) (-2401 ((|#2| $) 11 T ELT)) (-3948 (((-783 |#2| |#1|) $) 14 T ELT)) (-3679 ((|#1| $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-454 |#1| |#2|) (-13 (-72) (-553 (-783 |#2| |#1|)) (-10 -8 (-15 -1986 ($ |#2| |#1|)) (-15 -2401 (|#2| $)) (-15 -3679 (|#1| $)))) (-72) (-760)) (T -454))
-((-1986 (*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72)))) (-3679 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760)))))
-((-3770 (($ $ (-584 |#2|) (-584 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
-(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3770 (|#1| |#1| |#2| |#3|)) (-15 -3770 (|#1| |#1| (-584 |#2|) (-584 |#3|)))) (-456 |#2| |#3|) (-1014) (-1130)) (T -455))
-NIL
-((-3770 (($ $ (-584 |#1|) (-584 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
-(((-456 |#1| |#2|) (-113) (-1014) (-1130)) (T -456))
-((-3770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1130)))) (-3770 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130)))))
-(-13 (-10 -8 (-15 -3770 ($ $ |t#1| |t#2|)) (-15 -3770 ($ $ (-584 |t#1|) (-584 |t#2|)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 17 T ELT)) (-3776 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 19 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2300 ((|#1| $ (-485)) 24 T ELT)) (-1623 ((|#2| $ (-485)) 22 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1622 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1621 (($ $ $) 55 (|has| |#2| (-717)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3679 ((|#2| |#1| $) 51 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 11 T CONST)) (-3058 (((-85) $ $) 30 T ELT)) (-3841 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
-(((-457 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1014) (-104) |#2|) (T -457))
-NIL
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-1987 (((-85) (-85)) 32 T ELT)) (-3790 ((|#1| $ (-485) |#1|) 42 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-2369 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-1988 (($ $ (-485)) 19 T ELT)) (-1989 (((-695) $) 13 T ELT)) (-3616 (($ (-695) |#1|) 31 T ELT)) (-2201 (((-485) $) 29 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 28 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3611 (($ $ $ (-485)) 75 T ELT) (($ |#1| $ (-485)) 59 T ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1990 (($ (-584 |#1|)) 43 T ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 24 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 62 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 21 T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 55 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) 73 T ELT) (($ $ (-485)) 67 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) 63 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 53 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3793 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 22 T ELT)))
-(((-458 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1990 ($ (-584 |#1|))) (-15 -1989 ((-695) $)) (-15 -1988 ($ $ (-485))) (-15 -1987 ((-85) (-85))))) (-1130) (-485)) (T -458))
-((-1990 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))) (-1989 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))) (-1988 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1992 (((-1050) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1991 (((-1050) $) 14 T ELT)) (-3924 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-459) (-13 (-996) (-10 -8 (-15 -3924 ((-1050) $)) (-15 -1992 ((-1050) $)) (-15 -1991 ((-1050) $))))) (T -459))
-((-3924 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1992 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-518 |#1|) #1#) $) NIL T ELT)) (-3158 (((-518 |#1|) $) NIL T ELT)) (-1796 (($ (-1180 (-518 |#1|))) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1681 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1768 (($ $ (-695)) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-744 (-831)) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2012 (((-85) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3134 (((-518 |#1|) $) NIL T ELT) (($ $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 (-518 |#1|)) $) NIL T ELT) (((-1086 $) $ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2011 (((-831) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1628 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1627 (((-1086 (-518 |#1|)) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-1086 (-518 |#1|)) #1#) $ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1629 (($ $ (-1086 (-518 |#1|))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-518 |#1|) (-320)) CONST)) (-2401 (($ (-831)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-744 (-831))) NIL T ELT) (((-831)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-695) $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-3 (-695) #1#) $ $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3950 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-3187 (((-1086 (-518 |#1|))) NIL T ELT)) (-1675 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-1630 (($) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3226 (((-1180 (-518 |#1|)) $) NIL T ELT) (((-631 (-518 |#1|)) (-1180 $)) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-518 |#1|)) NIL T ELT)) (-2704 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (((-633 $) $) NIL (OR (|has| (-518 |#1|) (-118)) (|has| (-518 |#1|) (-320))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT) (((-1180 $) (-831)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT)) (-2671 (($ $ (-695)) NIL (|has| (-518 |#1|) (-320)) ELT) (($ $) NIL (|has| (-518 |#1|) (-320)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-518 |#1|)) NIL T ELT) (($ (-518 |#1|) $) NIL T ELT)))
-(((-460 |#1| |#2|) (-280 (-518 |#1|)) (-831) (-831)) (T -460))
-NIL
-((-3111 ((|#4| |#4|) 38 T ELT)) (-3110 (((-695) |#4|) 45 T ELT)) (-3109 (((-695) |#4|) 46 T ELT)) (-3108 (((-584 |#3|) |#4|) 57 (|has| |#3| (-1036 |#1|)) ELT)) (-3592 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1993 ((|#4| |#4|) 61 T ELT)) (-3330 ((|#1| |#4|) 60 T ELT)))
-(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3111 (|#4| |#4|)) (-15 -3110 ((-695) |#4|)) (-15 -3109 ((-695) |#4|)) (IF (|has| |#3| (-1036 |#1|)) (-15 -3108 ((-584 |#3|) |#4|)) |%noBranch|) (-15 -3330 (|#1| |#4|)) (-15 -1993 (|#4| |#4|)) (-15 -3592 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -461))
-((-3592 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-1993 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-4 *6 (-1036 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-3111 ((|#8| |#4|) 20 T ELT)) (-3108 (((-584 |#3|) |#4|) 29 (|has| |#7| (-1036 |#1|)) ELT)) (-3592 (((-3 |#8| "failed") |#4|) 23 T ELT)))
-(((-462 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3111 (|#8| |#4|)) (-15 -3592 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1036 |#1|)) (-15 -3108 ((-584 |#3|) |#4|)) |%noBranch|)) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-905 |#1|) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -462))
-((-3108 (*1 *2 *3) (-12 (-4 *9 (-1036 *4)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6)) (-4 *10 (-628 *7 *8 *9)))) (-3592 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3111 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1994 (((-584 (-1131)) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (($ (-584 (-1131))) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-463) (-13 (-996) (-10 -8 (-15 -3948 ($ (-584 (-1131)))) (-15 -1994 ((-584 (-1131)) $))))) (T -463))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1995 (((-1050) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3452 (((-447) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-464) (-13 (-996) (-10 -8 (-15 -3452 ((-447) $)) (-15 -1995 ((-1050) $))))) (T -464))
-((-3452 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464)))))
-((-2001 (((-633 (-1139)) $) 15 T ELT)) (-1997 (((-633 (-1137)) $) 38 T ELT)) (-1999 (((-633 (-1136)) $) 29 T ELT)) (-2002 (((-633 (-489)) $) 12 T ELT)) (-1998 (((-633 (-487)) $) 42 T ELT)) (-2000 (((-633 (-486)) $) 33 T ELT)) (-1996 (((-695) $ (-102)) 54 T ELT)))
-(((-465 |#1|) (-10 -7 (-15 -1996 ((-695) |#1| (-102))) (-15 -1997 ((-633 (-1137)) |#1|)) (-15 -1998 ((-633 (-487)) |#1|)) (-15 -1999 ((-633 (-1136)) |#1|)) (-15 -2000 ((-633 (-486)) |#1|)) (-15 -2001 ((-633 (-1139)) |#1|)) (-15 -2002 ((-633 (-489)) |#1|))) (-466)) (T -465))
-NIL
-((-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-466) (-113)) (T -466))
-((-2003 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))) (-1996 (*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695)))))
-(-13 (-147) (-10 -8 (-15 -2003 ((-633 (-101)) $)) (-15 -2002 ((-633 (-489)) $)) (-15 -2001 ((-633 (-1139)) $)) (-15 -2000 ((-633 (-486)) $)) (-15 -1999 ((-633 (-1136)) $)) (-15 -1998 ((-633 (-487)) $)) (-15 -1997 ((-633 (-1137)) $)) (-15 -1996 ((-695) $ (-102)))))
+((-3493 (*1 *1 *1) (-4 *1 (-433))) (-3491 (*1 *1 *1) (-4 *1 (-433))) (-3495 (*1 *1 *1) (-4 *1 (-433))) (-3496 (*1 *1 *1) (-4 *1 (-433))) (-3494 (*1 *1 *1) (-4 *1 (-433))) (-3492 (*1 *1 *1) (-4 *1 (-433))))
+(-13 (-10 -8 (-15 -3492 ($ $)) (-15 -3494 ($ $)) (-15 -3496 ($ $)) (-15 -3495 ($ $)) (-15 -3491 ($ $)) (-15 -3493 ($ $))))
+((-3733 (((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)) 54 T ELT)))
+(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4| (-1 (-348 |#2|) |#2|)))) (-312) (-1155 |#1|) (-13 (-312) (-120) (-661 |#1| |#2|)) (-1155 |#3|)) (T -434))
+((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-348 *3)) (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1215 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-1216 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1950 (((-85) $ $) 72 T ELT)) (-1600 (((-583 (-550 $)) $) 49 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1604 (($ $ (-249 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1217 (((-583 $) (-1085 $) (-1090)) NIL T ELT) (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT)) (-3184 (($ (-1085 $) (-1090)) NIL T ELT) (($ (-1085 $)) NIL T ELT) (($ (-857 $)) NIL T ELT)) (-3158 (((-3 (-550 $) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3157 (((-550 $) $) NIL T ELT) (((-484) $) NIL T ELT) (((-350 (-484)) $) 54 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 (-484))) (-630 $)) NIL T ELT)) (-3843 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2574 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1599 (((-583 (-86)) $) NIL T ELT)) (-3596 (((-86) (-86)) NIL T ELT)) (-2410 (((-85) $) 42 T ELT)) (-2674 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-2999 (((-1039 (-484) (-550 $)) $) 37 T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-3133 (((-1085 $) (-1085 $) (-550 $)) 86 T ELT) (((-1085 $) (-1085 $) (-583 (-550 $))) 61 T ELT) (($ $ (-550 $)) 75 T ELT) (($ $ (-583 (-550 $))) 76 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1597 (((-1085 $) (-550 $)) 73 (|has| $ (-961)) ELT)) (-3959 (($ (-1 $ $) (-550 $)) NIL T ELT)) (-1602 (((-3 (-550 $) #1#) $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-350 (-484)))) (|:| |vec| (-1179 (-350 (-484))))) (-1179 $) $) NIL T ELT) (((-630 (-350 (-484))) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1601 (((-583 (-550 $)) $) NIL T ELT)) (-2235 (($ (-86) $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2634 (((-85) $ (-86)) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-2604 (((-694) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1598 (((-85) $ $) NIL T ELT) (((-85) $ (-1090)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2675 (((-85) $) NIL (|has| $ (-950 (-484))) ELT)) (-3769 (($ $ (-550 $) $) NIL T ELT) (($ $ (-583 (-550 $)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-1090) (-1 $ (-583 $))) NIL T ELT) (($ $ (-1090) (-1 $ $)) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ $))) NIL T ELT) (($ $ (-583 (-86)) (-583 (-1 $ (-583 $)))) NIL T ELT) (($ $ (-86) (-1 $ (-583 $))) NIL T ELT) (($ $ (-86) (-1 $ $)) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ (-86) $) NIL T ELT) (($ (-86) $ $) NIL T ELT) (($ (-86) $ $ $) NIL T ELT) (($ (-86) $ $ $ $) NIL T ELT) (($ (-86) (-583 $)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1603 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3759 (($ $) 36 T ELT) (($ $ (-694)) NIL T ELT)) (-2998 (((-1039 (-484) (-550 $)) $) 20 T ELT)) (-3186 (($ $) NIL (|has| $ (-961)) ELT)) (-3973 (((-330) $) 100 T ELT) (((-179) $) 108 T ELT) (((-142 (-330)) $) 116 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-550 $)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1039 (-484) (-550 $))) 21 T ELT)) (-3127 (((-694)) NIL T CONST)) (-2591 (($ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2254 (((-85) (-86)) 92 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 22 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 44 T ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-350 (-484))) NIL T ELT) (($ $ (-484)) 47 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-484) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-830) $) NIL T ELT)))
+(((-435) (-13 (-254) (-27) (-950 (-484)) (-950 (-350 (-484))) (-580 (-484)) (-933) (-580 (-350 (-484))) (-120) (-553 (-142 (-330))) (-190) (-555 (-1039 (-484) (-550 $))) (-10 -8 (-15 -2999 ((-1039 (-484) (-550 $)) $)) (-15 -2998 ((-1039 (-484) (-550 $)) $)) (-15 -3843 ($ $)) (-15 -1950 ((-85) $ $)) (-15 -3133 ((-1085 $) (-1085 $) (-550 $))) (-15 -3133 ((-1085 $) (-1085 $) (-583 (-550 $)))) (-15 -3133 ($ $ (-550 $))) (-15 -3133 ($ $ (-583 (-550 $))))))) (T -435))
+((-2999 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435)))) (-3843 (*1 *1 *1) (-5 *1 (-435))) (-1950 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-550 (-435))) (-5 *1 (-435)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-583 (-550 (-435)))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-550 (-435))) (-5 *1 (-435)))) (-3133 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-435)))) (-5 *1 (-435)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 19 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) 14 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 13 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) 9 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 16 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-436 |#1| |#2|) (-19 |#1|) (-1129) (-484)) (T -436))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) 44 T ELT)) (-1257 (($ $ (-484) |#2|) NIL T ELT)) (-1256 (($ $ (-484) |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3112 ((|#2| $ (-484)) 53 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 43 T ELT)) (-3113 ((|#1| $ (-484) (-484)) 38 T ELT)) (-3115 (((-694) $) 28 T ELT)) (-3615 (($ (-694) (-694) |#1|) 24 T ELT)) (-3114 (((-694) $) 30 T ELT)) (-3119 (((-484) $) 26 T ELT)) (-3117 (((-484) $) 27 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) 29 T ELT)) (-3116 (((-484) $) 31 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 66 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 64 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 70 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 74 T ELT)) (-3243 (((-1073) $) 48 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 61 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 33 T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) (-484)) 41 T ELT) ((|#1| $ (-484) (-484) |#1|) 72 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) 59 T ELT)) (-3111 ((|#3| $ (-484)) 55 T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-437 |#1| |#2| |#3|) (-57 |#1| |#2| |#3|) (-1129) (-324 |#1|) (-324 |#1|)) (T -437))
+NIL
+((-1952 (((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694)) 32 T ELT)) (-1951 (((-583 (-1085 |#1|)) |#1| (-694) (-694) (-694)) 43 T ELT)) (-2077 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)) 107 T ELT)))
+(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1951 ((-583 (-1085 |#1|)) |#1| (-694) (-694) (-694))) (-15 -1952 ((-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-694) (-694))) (-15 -2077 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) (-583 |#3|) (-583 (-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) (-694)))) (-299) (-1155 |#1|) (-1155 |#2|)) (T -438))
+((-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))) (-5 *5 (-694)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299)) (-5 *2 (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7)))) (-5 *1 (-438 *6 *7 *8)))) (-1952 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6)))) (-4 *7 (-1155 *6)))) (-1951 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1155 *3)) (-5 *2 (-583 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5)))))
+((-1958 (((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))) 70 T ELT)) (-1953 ((|#1| (-630 |#1|) |#1| (-694)) 24 T ELT)) (-1955 (((-694) (-694) (-694)) 34 T ELT)) (-1957 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 50 T ELT)) (-1956 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 58 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 55 T ELT)) (-1954 ((|#1| (-630 |#1|) (-630 |#1|) |#1| (-484)) 28 T ELT)) (-3330 ((|#1| (-630 |#1|)) 18 T ELT)))
+(((-439 |#1| |#2| |#3|) (-10 -7 (-15 -3330 (|#1| (-630 |#1|))) (-15 -1953 (|#1| (-630 |#1|) |#1| (-694))) (-15 -1954 (|#1| (-630 |#1|) (-630 |#1|) |#1| (-484))) (-15 -1955 ((-694) (-694) (-694))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1956 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -1957 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -1958 ((-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|))) (-2 (|:| -2012 (-630 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-630 |#1|)))))) (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))) (-1155 |#1|) (-353 |#1| |#2|)) (T -439))
+((-1958 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1957 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1956 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))) (-1954 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-484)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-1953 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-630 *2)) (-5 *4 (-694)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1155 *2)) (-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *4 (-1155 *2)) (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4)))))
+((-1960 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|)) 35 T ELT)) (-1959 (((-1085 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1085 |#4|)) 22 T ELT)) (-1961 (((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1085 |#4|))) 46 T ELT)) (-1962 (((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
+(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1959 (|#2| (-1 |#1| |#4|) (-1085 |#4|))) (-15 -1959 ((-1085 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1960 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1085 |#4|))) (-15 -1961 ((-3 (-630 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-630 (-1085 |#4|)))) (-15 -1962 ((-1085 (-1085 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1155 |#1|) (-1155 |#2|) (-961)) (T -440))
+((-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))) (-1961 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1085 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *6)) (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1155 *5)) (-5 *2 (-1085 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1963 (((-1185) $) 25 T ELT)) (-3801 (((-1073) $ (-1090)) 30 T ELT)) (-3618 (((-1185) $) 20 T ELT)) (-3947 (((-772) $) 27 T ELT) (($ (-1073)) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 12 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 10 T ELT)))
+(((-441) (-13 (-756) (-555 (-1073)) (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $)) (-15 -1963 ((-1185) $))))) (T -441))
+((-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-441)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441)))))
+((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3740 ((|#1| |#4|) 10 T ELT)) (-3741 ((|#3| |#4|) 17 T ELT)))
+(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3740 (|#1| |#4|)) (-15 -3741 (|#3| |#4|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-495) (-904 |#1|) (-324 |#1|) (-324 |#2|)) (T -442))
+((-3742 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *6 (-324 *4)) (-4 *3 (-324 *5)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-324 *4)) (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-324 *5)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3)) (-4 *5 (-324 *2)) (-4 *3 (-324 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1973 (((-85) $ (-583 |#3|)) 127 T ELT) (((-85) $) 128 T ELT)) (-3189 (((-85) $) 178 T ELT)) (-1965 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-583 |#3|)) 122 T ELT)) (-1964 (((-1080 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|)) 171 (|has| |#3| (-553 (-1090))) ELT)) (-1972 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2410 (((-85) $) 177 T ELT)) (-1969 (($ $) 132 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 99 T ELT) (($ (-583 $)) 101 T ELT)) (-1974 (((-85) |#4| $) 130 T ELT)) (-1975 (((-85) $ $) 82 T ELT)) (-1968 (($ (-583 |#4|)) 106 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1967 (($ (-583 |#4|)) 175 T ELT)) (-1966 (((-85) $) 176 T ELT)) (-2251 (($ $) 85 T ELT)) (-2696 (((-583 |#4|) $) 73 T ELT)) (-1971 (((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL T ELT)) (-1976 (((-85) |#4| $) 89 T ELT)) (-3912 (((-484) $ (-583 |#3|)) 134 T ELT) (((-484) $) 135 T ELT)) (-3947 (((-772) $) 174 T ELT) (($ (-583 |#4|)) 102 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1970 (($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3057 (((-85) $ $) 84 T ELT)) (-3840 (($ $ $) 109 T ELT)) (** (($ $ (-694)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
+(((-443 |#1| |#2| |#3| |#4|) (-13 (-1013) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 -3840 ($ $ $)) (-15 -2410 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -1976 ((-85) |#4| $)) (-15 -1975 ((-85) $ $)) (-15 -1974 ((-85) |#4| $)) (-15 -1973 ((-85) $ (-583 |#3|))) (-15 -1973 ((-85) $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ (-583 $))) (-15 -1972 ($ $ $)) (-15 -1972 ($ $ |#4|)) (-15 -2251 ($ $)) (-15 -1971 ((-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -1970 ($ (-2 (|:| |mval| (-630 |#1|)) (|:| |invmval| (-630 |#1|)) (|:| |genIdeal| $)))) (-15 -3912 ((-484) $ (-583 |#3|))) (-15 -3912 ((-484) $)) (-15 -1969 ($ $)) (-15 -1968 ($ (-583 |#4|))) (-15 -1967 ($ (-583 |#4|))) (-15 -1966 ((-85) $)) (-15 -2696 ((-583 |#4|) $)) (-15 -3947 ($ (-583 |#4|))) (-15 -1965 ($ $ |#4|)) (-15 -1965 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-553 (-1090))) (-15 -1964 ((-1080 (-583 (-857 |#1|)) (-583 (-249 (-857 |#1|)))) (-583 |#4|))) |%noBranch|))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -443))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3189 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1974 (*1 *2 *3 *1) (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1973 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-3239 (*1 *1 *2) (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1972 (*1 *1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1972 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4)) (|:| |genIdeal| (-443 *4 *5 *6 *7)))) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-1970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3)) (|:| |genIdeal| (-443 *3 *4 *5 *6)))) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))) (-3912 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-1969 (*1 *1 *1) (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-1968 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1966 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-2696 (*1 *2 *1) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))) (-1965 (*1 *1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-861 *3 *4 *5)))) (-1965 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1090))) (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1080 (-583 (-857 *4)) (-583 (-249 (-857 *4))))) (-5 *1 (-443 *4 *5 *6 *7)))))
+((-1977 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 178 T ELT)) (-1978 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 179 T ELT)) (-1979 (((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 129 T ELT)) (-3724 (((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) NIL T ELT)) (-1980 (((-583 (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) 181 T ELT)) (-1981 (((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-583 (-773 |#1|))) 197 T ELT)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -1977 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1978 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -3724 ((-85) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1979 ((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1980 ((-583 (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484))))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))))) (-15 -1981 ((-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-443 (-350 (-484)) (-197 |#2| (-694)) (-773 |#1|) (-206 |#1| (-350 (-484)))) (-583 (-773 |#1|))))) (-583 (-1090)) (-694)) (T -444))
+((-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *1 (-444 *4 *5)))) (-1980 (*1 *2 *3) (-12 (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-583 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))) (-5 *1 (-444 *4 *5)) (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-443 (-350 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-350 (-484))))) (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))) (-3724 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))) (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
+((-3801 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-445 |#1|) (-113) (-72)) (T -445))
+NIL
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |idempotence| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (-3057 (|f| |x| |x|) |x|))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1982 (($) 6 T ELT)) (-3947 (((-772) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-446) (-13 (-1013) (-10 -8 (-15 -1982 ($))))) (T -446))
+((-1982 (*1 *1) (-5 *1 (-446))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) 15 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 16 T ELT) (($ $ $) 36 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 25 T ELT)))
+(((-447 |#1| |#2|) (-13 (-21) (-449 |#1| |#2|)) (-21) (-759)) (T -447))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 16 T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) 13 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) 39 T ELT)) (-1214 (((-85) $ $) 44 T ELT)) (-2894 (($ |#1| |#2|) 36 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) 41 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) 11 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) 30 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 35 T ELT)))
+(((-448 |#1| |#2|) (-13 (-23) (-449 |#1| |#2|)) (-23) (-759)) (T -448))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) 16 T ELT)) (-3960 (($ $) 17 T ELT)) (-2894 (($ |#1| |#2|) 20 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 18 T ELT)) (-3175 ((|#1| $) 19 T ELT)) (-3243 (((-1073) $) 15 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3244 (((-1033) $) 14 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) 22 T ELT)) (-3947 (((-772) $) 13 (-12 (|has| |#2| (-1013)) (|has| |#1| (-1013))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-449 |#1| |#2|) (-113) (-72) (-759)) (T -449))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)))) (-2894 (*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759)) (-5 *2 (-583 (-453 *3 *4))))))
+(-13 (-72) (-557 (-583 (-453 |t#1| |t#2|))) (-10 -8 (IF (|has| |t#1| (-1013)) (IF (|has| |t#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -3959 ($ (-1 |t#1| |t#1|) $)) (-15 -2894 ($ |t#1| |t#2|)) (-15 -3175 (|t#1| $)) (-15 -1983 (|t#2| $)) (-15 -3960 ($ $)) (-15 -3775 ((-583 (-453 |t#1| |t#2|)) $))))
+(((-72) . T) ((-552 (-772)) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-557 (-583 (-453 |#1| |#2|))) . T) ((-13) . T) ((-1013) -12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) 29 T ELT)) (-3960 (($ $) 23 T ELT)) (-2894 (($ |#1| |#2|) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 21 T ELT)) (-1983 ((|#2| $) 28 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1073) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3244 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) 30 T ELT)) (-1984 (($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|)) 40 T ELT)) (-3947 (((-772) $) 17 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-450 |#1| |#2|) (-13 (-449 |#1| |#2|) (-10 -8 (-15 -1984 ($ $ $ (-1 |#1| |#1| |#1|) (-1 (-85) |#1| |#1|))))) (-72) (-759)) (T -450))
+((-1984 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72)) (-5 *1 (-450 *4 *5)) (-4 *5 (-759)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) 10 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 21 T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
+(((-451 |#1| |#2|) (-13 (-716) (-449 |#1| |#2|)) (-716) (-759)) (T -451))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 |#1| |#2|)) $) NIL T ELT)) (-2484 (($ $ $) 24 T ELT)) (-1312 (((-3 $ "failed") $ $) 20 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1983 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 |#1| |#2|))) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
+(((-452 |#1| |#2|) (-13 (-717) (-449 |#1| |#2|)) (-717) (-756)) (T -452))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1985 (($ |#2| |#1|) 9 T ELT)) (-2400 ((|#2| $) 11 T ELT)) (-3947 (((-782 |#2| |#1|) $) 14 T ELT)) (-3678 ((|#1| $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-453 |#1| |#2|) (-13 (-72) (-552 (-782 |#2| |#1|)) (-10 -8 (-15 -1985 ($ |#2| |#1|)) (-15 -2400 (|#2| $)) (-15 -3678 (|#1| $)))) (-72) (-759)) (T -453))
+((-1985 (*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72)))) (-3678 (*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759)))))
+((-3769 (($ $ (-583 |#2|) (-583 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
+(((-454 |#1| |#2| |#3|) (-10 -7 (-15 -3769 (|#1| |#1| |#2| |#3|)) (-15 -3769 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-455 |#2| |#3|) (-1013) (-1129)) (T -454))
+NIL
+((-3769 (($ $ (-583 |#1|) (-583 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
+(((-455 |#1| |#2|) (-113) (-1013) (-1129)) (T -455))
+((-3769 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1129)))) (-3769 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1129)))))
+(-13 (-10 -8 (-15 -3769 ($ $ |t#1| |t#2|)) (-15 -3769 ($ $ (-583 |t#1|) (-583 |t#2|)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 17 T ELT)) (-3775 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 19 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2299 ((|#1| $ (-484)) 24 T ELT)) (-1622 ((|#2| $ (-484)) 22 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1621 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1620 (($ $ $) 55 (|has| |#2| (-716)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-3678 ((|#2| |#1| $) 51 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 11 T CONST)) (-3057 (((-85) $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
+(((-456 |#1| |#2| |#3|) (-274 |#1| |#2|) (-1013) (-104) |#2|) (T -456))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-1986 (((-85) (-85)) 32 T ELT)) (-3789 ((|#1| $ (-484) |#1|) 42 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 79 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-2368 (($ $) 83 (|has| |#1| (-72)) ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 66 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-1987 (($ $ (-484)) 19 T ELT)) (-1988 (((-694) $) 13 T ELT)) (-3615 (($ (-694) |#1|) 31 T ELT)) (-2200 (((-484) $) 29 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 57 T ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 28 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3610 (($ $ $ (-484)) 75 T ELT) (($ |#1| $ (-484)) 59 T ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1989 (($ (-583 |#1|)) 43 T ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 24 (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 62 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 21 T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 55 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) 73 T ELT) (($ $ (-484)) 67 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) 63 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 53 T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3792 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 22 T ELT)))
+(((-457 |#1| |#2|) (-13 (-19 |#1|) (-237 |#1|) (-10 -8 (-15 -1989 ($ (-583 |#1|))) (-15 -1988 ((-694) $)) (-15 -1987 ($ $ (-484))) (-15 -1986 ((-85) (-85))))) (-1129) (-484)) (T -457))
+((-1989 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1991 (((-1049) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1990 (((-1049) $) 14 T ELT)) (-3923 (((-1049) $) 10 T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-458) (-13 (-995) (-10 -8 (-15 -3923 ((-1049) $)) (-15 -1991 ((-1049) $)) (-15 -1990 ((-1049) $))))) (T -458))
+((-3923 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-517 |#1|) #1#) $) NIL T ELT)) (-3157 (((-517 |#1|) $) NIL T ELT)) (-1795 (($ (-1179 (-517 |#1|))) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1680 (((-85) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1767 (($ $ (-694)) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT) (($ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-830) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-743 (-830)) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2011 (((-85) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3133 (((-517 |#1|) $) NIL T ELT) (($ $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 (-517 |#1|)) $) NIL T ELT) (((-1085 $) $ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2010 (((-830) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1627 (((-1085 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1626 (((-1085 (-517 |#1|)) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-3 (-1085 (-517 |#1|)) #1#) $ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1628 (($ $ (-1085 (-517 |#1|))) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-517 |#1|) (-320)) CONST)) (-2400 (($ (-830)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-743 (-830))) NIL T ELT) (((-830)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-694) $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-3 (-694) #1#) $ $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3949 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-3186 (((-1085 (-517 |#1|))) NIL T ELT)) (-1674 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-1629 (($) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3225 (((-1179 (-517 |#1|)) $) NIL T ELT) (((-630 (-517 |#1|)) (-1179 $)) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-517 |#1|)) NIL T ELT)) (-2703 (($ $) NIL (|has| (-517 |#1|) (-320)) ELT) (((-632 $) $) NIL (OR (|has| (-517 |#1|) (-118)) (|has| (-517 |#1|) (-320))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT) (((-1179 $) (-830)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT)) (-2670 (($ $ (-694)) NIL (|has| (-517 |#1|) (-320)) ELT) (($ $) NIL (|has| (-517 |#1|) (-320)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-517 |#1|)) NIL T ELT) (($ (-517 |#1|) $) NIL T ELT)))
+(((-459 |#1| |#2|) (-280 (-517 |#1|)) (-830) (-830)) (T -459))
+NIL
+((-3110 ((|#4| |#4|) 38 T ELT)) (-3109 (((-694) |#4|) 45 T ELT)) (-3108 (((-694) |#4|) 46 T ELT)) (-3107 (((-583 |#3|) |#4|) 57 (|has| |#3| (-1035 |#1|)) ELT)) (-3591 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-1992 ((|#4| |#4|) 61 T ELT)) (-3329 ((|#1| |#4|) 60 T ELT)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3110 (|#4| |#4|)) (-15 -3109 ((-694) |#4|)) (-15 -3108 ((-694) |#4|)) (IF (|has| |#3| (-1035 |#1|)) (-15 -3107 ((-583 |#3|) |#4|)) |%noBranch|) (-15 -3329 (|#1| |#4|)) (-15 -1992 (|#4| |#4|)) (-15 -3591 ((-3 |#4| "failed") |#4|))) (-312) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -460))
+((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312)) (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3107 (*1 *2 *3) (-12 (-4 *6 (-1035 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+((-3110 ((|#8| |#4|) 20 T ELT)) (-3107 (((-583 |#3|) |#4|) 29 (|has| |#7| (-1035 |#1|)) ELT)) (-3591 (((-3 |#8| "failed") |#4|) 23 T ELT)))
+(((-461 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3110 (|#8| |#4|)) (-15 -3591 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-1035 |#1|)) (-15 -3107 ((-583 |#3|) |#4|)) |%noBranch|)) (-495) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|) (-904 |#1|) (-324 |#5|) (-324 |#5|) (-627 |#5| |#6| |#7|)) (T -461))
+((-3107 (*1 *2 *3) (-12 (-4 *9 (-1035 *4)) (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-583 *6)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6)) (-4 *10 (-627 *7 *8 *9)))) (-3591 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1993 (((-583 (-1130)) $) 14 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (($ (-583 (-1130))) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-462) (-13 (-995) (-10 -8 (-15 -3947 ($ (-583 (-1130)))) (-15 -1993 ((-583 (-1130)) $))))) (T -462))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1994 (((-1049) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3451 (((-446) $) 12 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 22 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-463) (-13 (-995) (-10 -8 (-15 -3451 ((-446) $)) (-15 -1994 ((-1049) $))))) (T -463))
+((-3451 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463)))) (-1994 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-463)))))
+((-2000 (((-632 (-1138)) $) 15 T ELT)) (-1996 (((-632 (-1136)) $) 38 T ELT)) (-1998 (((-632 (-1135)) $) 29 T ELT)) (-2001 (((-632 (-488)) $) 12 T ELT)) (-1997 (((-632 (-486)) $) 42 T ELT)) (-1999 (((-632 (-485)) $) 33 T ELT)) (-1995 (((-694) $ (-102)) 54 T ELT)))
+(((-464 |#1|) (-10 -7 (-15 -1995 ((-694) |#1| (-102))) (-15 -1996 ((-632 (-1136)) |#1|)) (-15 -1997 ((-632 (-486)) |#1|)) (-15 -1998 ((-632 (-1135)) |#1|)) (-15 -1999 ((-632 (-485)) |#1|)) (-15 -2000 ((-632 (-1138)) |#1|)) (-15 -2001 ((-632 (-488)) |#1|))) (-465)) (T -464))
+NIL
+((-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-465) (-113)) (T -465))
+((-2002 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))) (-2000 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1138))))) (-1999 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))) (-1996 (*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1136))))) (-1995 (*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694)))))
+(-13 (-147) (-10 -8 (-15 -2002 ((-632 (-101)) $)) (-15 -2001 ((-632 (-488)) $)) (-15 -2000 ((-632 (-1138)) $)) (-15 -1999 ((-632 (-485)) $)) (-15 -1998 ((-632 (-1135)) $)) (-15 -1997 ((-632 (-486)) $)) (-15 -1996 ((-632 (-1136)) $)) (-15 -1995 ((-694) $ (-102)))))
(((-147) . T))
-((-2006 (((-1086 |#1|) (-695)) 114 T ELT)) (-3332 (((-1180 |#1|) (-1180 |#1|) (-831)) 107 T ELT)) (-2004 (((-1186) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) |#1|) 122 T ELT)) (-2008 (((-1180 |#1|) (-1180 |#1|) (-695)) 53 T ELT)) (-2996 (((-1180 |#1|) (-831)) 109 T ELT)) (-2010 (((-1180 |#1|) (-1180 |#1|) (-485)) 30 T ELT)) (-2005 (((-1086 |#1|) (-1180 |#1|)) 115 T ELT)) (-2014 (((-1180 |#1|) (-831)) 136 T ELT)) (-2012 (((-85) (-1180 |#1|)) 119 T ELT)) (-3134 (((-1180 |#1|) (-1180 |#1|) (-831)) 99 T ELT)) (-2015 (((-1086 |#1|) (-1180 |#1|)) 130 T ELT)) (-2011 (((-831) (-1180 |#1|)) 95 T ELT)) (-2486 (((-1180 |#1|) (-1180 |#1|)) 38 T ELT)) (-2401 (((-1180 |#1|) (-831) (-831)) 139 T ELT)) (-2009 (((-1180 |#1|) (-1180 |#1|) (-1034) (-1034)) 29 T ELT)) (-2007 (((-1180 |#1|) (-1180 |#1|) (-695) (-1034)) 54 T ELT)) (-2013 (((-1180 (-1180 |#1|)) (-831)) 135 T ELT)) (-3951 (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 120 T ELT)) (** (((-1180 |#1|) (-1180 |#1|) (-485)) 67 T ELT)) (* (((-1180 |#1|) (-1180 |#1|) (-1180 |#1|)) 31 T ELT)))
-(((-467 |#1|) (-10 -7 (-15 -2004 ((-1186) (-1180 (-584 (-2 (|:| -3404 |#1|) (|:| -2401 (-1034))))) |#1|)) (-15 -2996 ((-1180 |#1|) (-831))) (-15 -2401 ((-1180 |#1|) (-831) (-831))) (-15 -2005 ((-1086 |#1|) (-1180 |#1|))) (-15 -2006 ((-1086 |#1|) (-695))) (-15 -2007 ((-1180 |#1|) (-1180 |#1|) (-695) (-1034))) (-15 -2008 ((-1180 |#1|) (-1180 |#1|) (-695))) (-15 -2009 ((-1180 |#1|) (-1180 |#1|) (-1034) (-1034))) (-15 -2010 ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 ** ((-1180 |#1|) (-1180 |#1|) (-485))) (-15 * ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3951 ((-1180 |#1|) (-1180 |#1|) (-1180 |#1|))) (-15 -3134 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -3332 ((-1180 |#1|) (-1180 |#1|) (-831))) (-15 -2486 ((-1180 |#1|) (-1180 |#1|))) (-15 -2011 ((-831) (-1180 |#1|))) (-15 -2012 ((-85) (-1180 |#1|))) (-15 -2013 ((-1180 (-1180 |#1|)) (-831))) (-15 -2014 ((-1180 |#1|) (-831))) (-15 -2015 ((-1086 |#1|) (-1180 |#1|)))) (-299)) (T -467))
-((-2015 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))) (-2486 (*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3134 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2010 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2009 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2008 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))) (-2007 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299)) (-5 *1 (-467 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))) (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4)))))
-((-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) 26 T ELT)) (-2016 (((-1034) $ (-1034)) 31 T ELT)) (-3421 (((-1034) $) 30 T ELT)) (-2560 (((-85) $) 20 T ELT)) (-2018 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-2017 (((-85) $) 27 T ELT)) (-3948 (((-773) $) 34 T ELT)) (-1701 (($ $) 28 T ELT)))
-(((-468) (-13 (-466) (-553 (-773)) (-10 -8 (-15 -2018 ($ (-338))) (-15 -2018 ($ (-1074))) (-15 -2017 ((-85) $)) (-15 -2560 ((-85) $)) (-15 -3421 ((-1034) $)) (-15 -2016 ((-1034) $ (-1034)))))) (T -468))
-((-2018 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))) (-2018 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))) (-2016 (*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))))
-((-2020 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2019 (((-1 |#1| |#1|)) 10 T ELT)))
-(((-469 |#1|) (-10 -7 (-15 -2019 ((-1 |#1| |#1|))) (-15 -2020 ((-1 |#1| |#1|) |#1|))) (-13 (-664) (-25))) (T -469))
-((-2020 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))) (-2019 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 (-695) |#1|)) $) NIL T ELT)) (-2485 (($ $ $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ (-695) |#1|) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3960 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-1984 ((|#1| $) NIL T ELT)) (-3176 (((-695) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (($ (-584 (-454 (-695) |#1|))) NIL T ELT)) (-3948 (((-773) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT)))
-(((-470 |#1|) (-13 (-718) (-450 (-695) |#1|)) (-757)) (T -470))
-NIL
-((-2022 (((-584 |#2|) (-1086 |#1|) |#3|) 98 T ELT)) (-2023 (((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))) 114 T ELT)) (-2021 (((-1086 |#1|) (-631 |#1|)) 110 T ELT)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2021 ((-1086 |#1|) (-631 |#1|))) (-15 -2022 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2023 ((-584 (-2 (|:| |outval| |#2|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#2|))))) (-631 |#1|) |#3| (-1 (-348 (-1086 |#1|)) (-1086 |#1|))))) (-312) (-312) (-13 (-312) (-756))) (T -471))
-((-2023 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6))) (-4 *6 (-312)) (-5 *2 (-584 (-2 (|:| |outval| *7) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *7)))))) (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6)) (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4)) (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756))))))
-((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) 39 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 40 T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) 35 T ELT)) (-2003 (((-633 (-101)) $) 37 T ELT)) (-2441 (((-85) $) 27 T ELT)) (-2442 (((-633 $) (-516) (-866)) 18 T ELT) (((-633 $) (-431) (-866)) 24 T ELT)) (-3948 (((-773) $) 48 T ELT)) (-1701 (($ $) 42 T ELT)))
-(((-472) (-13 (-692 (-516)) (-553 (-773)) (-10 -8 (-15 -2442 ((-633 $) (-431) (-866)))))) (T -472))
-((-2442 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472)))))
-((-2529 (((-751 (-485))) 12 T ELT)) (-2528 (((-751 (-485))) 14 T ELT)) (-2516 (((-744 (-485))) 9 T ELT)))
-(((-473) (-10 -7 (-15 -2516 ((-744 (-485)))) (-15 -2529 ((-751 (-485)))) (-15 -2528 ((-751 (-485)))))) (T -473))
-((-2528 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2529 (*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473)))) (-2516 (*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2027 (((-1074) $) 55 T ELT)) (-3262 (((-85) $) 51 T ELT)) (-3258 (((-1091) $) 52 T ELT)) (-3263 (((-85) $) 49 T ELT)) (-3537 (((-1074) $) 50 T ELT)) (-2026 (($ (-1074)) 56 T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2029 (($ $ (-584 (-1091))) 21 T ELT)) (-2032 (((-51) $) 23 T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2384 (($ $ (-584 (-1091)) (-1091)) 73 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-2028 (($ $) 44 T ELT)) (-3255 (((-773) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3802 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3259 (((-584 $) $) 30 T ELT)) (-2025 (((-1091) (-584 $)) 57 T ELT)) (-3974 (($ (-1074)) NIL T ELT) (($ (-1091)) 19 T ELT) (($ (-485)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) 65 T ELT) (((-1016) $) 12 T ELT) (($ (-1016)) 13 T ELT)) (-2024 (((-1091) (-1091) (-584 $)) 60 T ELT)) (-3948 (((-773) $) 54 T ELT)) (-3253 (($ $) 59 T ELT)) (-3254 (($ $) 58 T ELT)) (-2030 (($ $ (-584 $)) 66 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 29 T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 11 T CONST)) (-3058 (((-85) $ $) 74 T ELT)) (-3951 (($ $ $) 82 T ELT)) (-3841 (($ $ $) 75 T ELT)) (** (($ $ (-695)) 81 T ELT) (($ $ (-485)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3959 (((-485) $) NIL T ELT)))
-(((-474) (-13 (-1017 (-1074) (-1091) (-485) (-179) (-773)) (-554 (-1016)) (-10 -8 (-15 -2032 ((-51) $)) (-15 -3974 ($ (-1016))) (-15 -2030 ($ $ (-584 $))) (-15 -2384 ($ $ (-584 (-1091)) (-1091))) (-15 -2029 ($ $ (-584 (-1091)))) (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ (-485))) (-15 -2662 ($) -3954) (-15 -2668 ($) -3954) (-15 -2028 ($ $)) (-15 -2027 ((-1074) $)) (-15 -2026 ($ (-1074))) (-15 -2025 ((-1091) (-584 $))) (-15 -2024 ((-1091) (-1091) (-584 $)))))) (T -474))
-((-2032 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474)))) (-2030 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))) (-2384 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))) (-3841 (*1 *1 *1 *1) (-5 *1 (-474))) (* (*1 *1 *1 *1) (-5 *1 (-474))) (-3951 (*1 *1 *1 *1) (-5 *1 (-474))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474)))) (-2662 (*1 *1) (-5 *1 (-474))) (-2668 (*1 *1) (-5 *1 (-474))) (-2028 (*1 *1 *1) (-5 *1 (-474))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2026 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))) (-2024 (*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
-((-2031 (((-474) (-1091)) 15 T ELT)) (-2032 ((|#1| (-474)) 20 T ELT)))
-(((-475 |#1|) (-10 -7 (-15 -2031 ((-474) (-1091))) (-15 -2032 (|#1| (-474)))) (-1130)) (T -475))
-((-2032 (*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130)))))
-((-3455 ((|#2| |#2|) 17 T ELT)) (-3453 ((|#2| |#2|) 13 T ELT)) (-3456 ((|#2| |#2| (-485) (-485)) 20 T ELT)) (-3454 ((|#2| |#2|) 15 T ELT)))
-(((-476 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2| (-485) (-485)))) (-13 (-496) (-120)) (-1173 |#1|)) (T -476))
-((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2)) (-4 *2 (-1173 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3)))))
-((-2035 (((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))) 32 T ELT)) (-2033 (((-584 |#2|) (-858 |#1|) |#3|) 54 T ELT) (((-584 |#2|) (-1086 |#1|) |#3|) 53 T ELT)) (-2034 (((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|) 106 T ELT)))
-(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2033 ((-584 |#2|) (-1086 |#1|) |#3|)) (-15 -2033 ((-584 |#2|) (-858 |#1|) |#3|)) (-15 -2034 ((-584 (-584 |#2|)) (-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)) |#3|)) (-15 -2035 ((-584 (-249 (-858 |#2|))) (-584 |#2|) (-584 (-1091))))) (-392) (-312) (-13 (-312) (-756))) (T -477))
-((-2035 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312)) (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-756))))) (-2034 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))) (-2033 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6)) (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
-((-2038 ((|#2| |#2| |#1|) 17 T ELT)) (-2036 ((|#2| (-584 |#2|)) 30 T ELT)) (-2037 ((|#2| (-584 |#2|)) 51 T ELT)))
-(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2036 (|#2| (-584 |#2|))) (-15 -2037 (|#2| (-584 |#2|))) (-15 -2038 (|#2| |#2| |#1|))) (-258) (-1156 |#1|) |#1| (-1 |#1| |#1| (-695))) (T -478))
-((-2038 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695))) (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
-((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|))) 213 T ELT)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4| (-1 (-348 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|) (-1 (-348 (-1086 |#3|)) (-1086 |#3|))))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -479))
-((-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3)) (-4 *3 (-862 *7 *6 *5)))))
-((-3455 ((|#4| |#4|) 74 T ELT)) (-3453 ((|#4| |#4|) 70 T ELT)) (-3456 ((|#4| |#4| (-485) (-485)) 76 T ELT)) (-3454 ((|#4| |#4|) 72 T ELT)))
-(((-480 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4|)) (-15 -3456 (|#4| |#4| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1156 |#1|) (-662 |#1| |#2|) (-1173 |#3|)) (T -480))
-((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4)) (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3)) (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5)))))
-((-3455 ((|#2| |#2|) 27 T ELT)) (-3453 ((|#2| |#2|) 23 T ELT)) (-3456 ((|#2| |#2| (-485) (-485)) 29 T ELT)) (-3454 ((|#2| |#2|) 25 T ELT)))
-(((-481 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3456 (|#2| |#2| (-485) (-485)))) (-13 (-312) (-320) (-554 (-485))) (-1173 |#1|)) (T -481))
-((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2)) (-4 *2 (-1173 *3)))))
-((-2039 (((-3 (-485) #1="failed") |#2| |#1| (-1 (-3 (-485) #1#) |#1|)) 18 T ELT) (((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|)) 14 T ELT) (((-3 (-485) #1#) |#2| (-485) (-1 (-3 (-485) #1#) |#1|)) 30 T ELT)))
-(((-482 |#1| |#2|) (-10 -7 (-15 -2039 ((-3 (-485) #1="failed") |#2| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-485) (-1 (-3 (-485) #1#) |#1|))) (-15 -2039 ((-3 (-485) #1#) |#2| |#1| (-1 (-3 (-485) #1#) |#1|)))) (-962) (-1156 |#1|)) (T -482))
-((-2039 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1="failed") *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))) (-2039 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-485) #1#) *5)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2048 (($ $ $) 87 T ELT)) (-3973 (((-348 $) $) 50 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 62 T ELT)) (-3158 (((-485) $) 40 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 80 T ELT)) (-3025 (((-85) $) 24 T ELT)) (-3024 (((-350 (-485)) $) 78 T ELT)) (-3725 (((-85) $) 53 T ELT)) (-2041 (($ $ $ $) 94 T ELT)) (-1370 (($ $ $) 60 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 75 T ELT)) (-3447 (((-633 $) $) 70 T ELT)) (-2045 (($ $) 22 T ELT)) (-2040 (($ $ $) 92 T ELT)) (-3448 (($) 63 T CONST)) (-1368 (($ $) 56 T ELT)) (-3734 (((-348 $) $) 48 T ELT)) (-2676 (((-85) $) 15 T ELT)) (-1608 (((-695) $) 30 T ELT)) (-3760 (($ $) 11 T ELT) (($ $ (-695)) NIL T ELT)) (-3402 (($ $) 16 T ELT)) (-3974 (((-485) $) NIL T ELT) (((-474) $) 39 T ELT) (((-801 (-485)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3128 (((-695)) 9 T CONST)) (-2050 (((-85) $ $) 19 T ELT)) (-3103 (($ $ $) 58 T ELT)))
-(((-483 |#1|) (-10 -7 (-15 -2040 (|#1| |#1| |#1|)) (-15 -2041 (|#1| |#1| |#1| |#1|)) (-15 -2045 (|#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -2048 (|#1| |#1| |#1|)) (-15 -2050 ((-85) |#1| |#1|)) (-15 -2676 ((-85) |#1|)) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -1370 (|#1| |#1| |#1|)) (-15 -1368 (|#1| |#1|)) (-15 -3103 (|#1| |#1| |#1|)) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3974 ((-485) |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -1608 ((-695) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3725 ((-85) |#1|)) (-15 -3128 ((-695)) -3954)) (-484)) (T -483))
-((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-2048 (($ $ $) 102 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2043 (($ $ $ $) 91 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-1609 (((-85) $ $) 145 T ELT)) (-3625 (((-485) $) 134 T ELT)) (-2443 (($ $ $) 105 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 126 T ELT)) (-3158 (((-485) $) 127 T ELT)) (-2566 (($ $ $) 149 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 124 T ELT) (((-631 (-485)) (-631 $)) 123 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 99 T ELT)) (-3025 (((-85) $) 101 T ELT)) (-3024 (((-350 (-485)) $) 100 T ELT)) (-2996 (($) 98 T ELT) (($ $) 97 T ELT)) (-2565 (($ $ $) 148 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 143 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-2041 (($ $ $ $) 89 T ELT)) (-2049 (($ $ $) 103 T ELT)) (-3188 (((-85) $) 136 T ELT)) (-1370 (($ $ $) 114 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2675 (((-85) $) 109 T ELT)) (-3447 (((-633 $) $) 111 T ELT)) (-3189 (((-85) $) 135 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 152 T ELT)) (-2042 (($ $ $ $) 90 T ELT)) (-2533 (($ $ $) 142 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-2045 (($ $) 93 T ELT)) (-3835 (($ $) 106 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 122 T ELT) (((-631 (-485)) (-1180 $)) 121 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2040 (($ $ $) 88 T ELT)) (-3448 (($) 110 T CONST)) (-2047 (($ $) 95 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1368 (($ $) 115 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 150 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 144 T ELT)) (-2676 (((-85) $) 108 T ELT)) (-1608 (((-695) $) 146 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 147 T ELT)) (-3760 (($ $) 132 T ELT) (($ $ (-695)) 130 T ELT)) (-2046 (($ $) 94 T ELT)) (-3402 (($ $) 96 T ELT)) (-3974 (((-485) $) 128 T ELT) (((-474) $) 119 T ELT) (((-801 (-485)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 125 T ELT)) (-3128 (((-695)) 40 T CONST)) (-2050 (((-85) $ $) 104 T ELT)) (-3103 (($ $ $) 116 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2696 (($) 107 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2044 (($ $ $ $) 92 T ELT)) (-3385 (($ $) 133 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $) 131 T ELT) (($ $ (-695)) 129 T ELT)) (-2568 (((-85) $ $) 140 T ELT)) (-2569 (((-85) $ $) 138 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 139 T ELT)) (-2687 (((-85) $ $) 137 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-485) $) 120 T ELT)))
-(((-484) (-113)) (T -484))
-((-2675 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2676 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2696 (*1 *1) (-4 *1 (-484))) (-3835 (*1 *1 *1) (-4 *1 (-484))) (-2443 (*1 *1 *1 *1) (-4 *1 (-484))) (-2050 (*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-2049 (*1 *1 *1 *1) (-4 *1 (-484))) (-2048 (*1 *1 *1 *1) (-4 *1 (-484))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485))))) (-2996 (*1 *1) (-4 *1 (-484))) (-2996 (*1 *1 *1) (-4 *1 (-484))) (-3402 (*1 *1 *1) (-4 *1 (-484))) (-2047 (*1 *1 *1) (-4 *1 (-484))) (-2046 (*1 *1 *1) (-4 *1 (-484))) (-2045 (*1 *1 *1) (-4 *1 (-484))) (-2044 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-484))) (-2040 (*1 *1 *1 *1) (-4 *1 (-484))))
-(-13 (-1135) (-258) (-741) (-190) (-554 (-485)) (-951 (-485)) (-581 (-485)) (-554 (-474)) (-554 (-801 (-485))) (-797 (-485)) (-116) (-934) (-120) (-1067) (-10 -8 (-15 -2675 ((-85) $)) (-15 -2676 ((-85) $)) (-6 -3996) (-15 -2696 ($)) (-15 -3835 ($ $)) (-15 -2443 ($ $ $)) (-15 -2050 ((-85) $ $)) (-15 -2049 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $)) (-15 -2996 ($)) (-15 -2996 ($ $)) (-15 -3402 ($ $)) (-15 -2047 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $ $ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $)) (-6 -3995)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-116) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-474)) . T) ((-554 (-485)) . T) ((-554 (-801 (-485))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 $) . T) ((-581 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-741) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-485)) . T) ((-833) . T) ((-934) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) . T) ((-1130) . T) ((-1135) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 8 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 77 T ELT)) (-2064 (($ $) 78 T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 31 T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 71 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 45 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 53 T ELT) (((-631 (-485)) (-631 $)) 49 T ELT)) (-3469 (((-3 $ #1#) $) 74 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) 55 T ELT) (($ $) 56 T ELT)) (-2565 (($ $ $) 70 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 46 T ELT)) (-3188 (((-85) $) 22 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) 110 T ELT)) (-2411 (((-85) $) 9 T ELT)) (-2675 (((-85) $) 64 T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) 21 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 32 T ELT)) (-2533 (($ $ $) 67 T ELT)) (-2859 (($ $ $) 66 T ELT)) (-2045 (($ $) NIL T ELT)) (-3835 (($ $) 29 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) 44 T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2047 (($ $) 15 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 109 T ELT)) (-3146 (($ $ $) 75 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) 95 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) 65 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 69 T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 17 T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-485) $) 28 T ELT) (((-474) $) 41 T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3948 (((-773) $) 26 T ELT) (($ (-485)) 27 T ELT) (($ $) NIL T ELT) (($ (-485)) 27 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 12 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) 112 T ELT)) (-2044 (($ $ $ $) 30 T ELT)) (-3385 (($ $) 54 T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 11 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 59 T ELT)) (-2569 (((-85) $ $) 57 T ELT)) (-3058 (((-85) $ $) 7 T ELT)) (-2686 (((-85) $ $) 58 T ELT)) (-2687 (((-85) $ $) 20 T ELT)) (-3839 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3841 (($ $ $) 14 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 63 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-485) $) 61 T ELT)))
-(((-485) (-13 (-484) (-10 -7 (-6 -3984) (-6 -3989) (-6 -3985)))) (T -485))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-486) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -486))
-((-3726 (*1 *1) (-5 *1 (-486))))
-((-485) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-487) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -487))
-((-3726 (*1 *1) (-5 *1 (-487))))
-((-485) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-488) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -488))
-((-3726 (*1 *1) (-5 *1 (-488))))
-((-485) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-489) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954)))) (T -489))
-((-3726 (*1 *1) (-5 *1 (-489))))
-((-485) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-490 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) (-1108 |#1| |#2|)) (T -490))
-NIL
-((-2051 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 50 T ELT)))
-(((-491 |#1| |#2|) (-10 -7 (-15 -2051 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-496) (-13 (-27) (-364 |#1|))) (T -491))
-((-2051 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3)) (-5 *1 (-491 *6 *3)))))
-((-2053 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2054 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2052 (((-520 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
-(((-492 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2052 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-520 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2054 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-496) (-951 (-485))) (-13 (-27) (-364 |#1|)) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -492))
-((-2054 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2053 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7))) (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
-((-2057 (((-85) (-485) (-485)) 12 T ELT)) (-2055 (((-485) (-485)) 7 T ELT)) (-2056 (((-485) (-485) (-485)) 10 T ELT)))
-(((-493) (-10 -7 (-15 -2055 ((-485) (-485))) (-15 -2056 ((-485) (-485) (-485))) (-15 -2057 ((-85) (-485) (-485))))) (T -493))
-((-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))) (-2056 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))) (-2055 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2606 ((|#1| $) 77 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3494 (($ $) 107 T ELT)) (-3641 (($ $) 90 T ELT)) (-2485 ((|#1| $) 78 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 89 T ELT)) (-3492 (($ $) 106 T ELT)) (-3640 (($ $) 91 T ELT)) (-3496 (($ $) 105 T ELT)) (-3639 (($ $) 92 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) "failed") $) 85 T ELT)) (-3158 (((-485) $) 86 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2060 (($ |#1| |#1|) 82 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-3629 (($) 117 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 88 T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2533 (($ $ $) 118 T ELT)) (-2859 (($ $ $) 119 T ELT)) (-3944 (($ $) 114 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2061 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-485))) 80 T ELT)) (-2059 ((|#1| $) 79 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3945 (($ $) 115 T ELT)) (-3497 (($ $) 104 T ELT)) (-3638 (($ $) 93 T ELT)) (-3495 (($ $) 103 T ELT)) (-3637 (($ $) 94 T ELT)) (-3493 (($ $) 102 T ELT)) (-3636 (($ $) 95 T ELT)) (-2058 (((-85) $ |#1|) 74 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-485)) 84 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 113 T ELT)) (-3488 (($ $) 101 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3498 (($ $) 112 T ELT)) (-3486 (($ $) 100 T ELT)) (-3502 (($ $) 111 T ELT)) (-3490 (($ $) 99 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 110 T ELT)) (-3491 (($ $) 98 T ELT)) (-3501 (($ $) 109 T ELT)) (-3489 (($ $) 97 T ELT)) (-3499 (($ $) 108 T ELT)) (-3487 (($ $) 96 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 120 T ELT)) (-2569 (((-85) $ $) 122 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 121 T ELT)) (-2687 (((-85) $ $) 123 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-485))) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-494 |#1|) (-113) (-13 (-347) (-1116))) (T -494))
-((-2061 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2061 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-3189 (*1 *2 *1) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))) (-2058 (*1 *2 *1 *3) (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))))
-(-13 (-392) (-757) (-1116) (-916) (-951 (-485)) (-10 -8 (-6 -3772) (-15 -2061 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2061 ($ |t#1|)) (-15 -2061 ($ (-350 (-485)))) (-15 -2059 (|t#1| $)) (-15 -2485 (|t#1| $)) (-15 -2606 (|t#1| $)) (-15 -3188 ((-85) $)) (-15 -3189 ((-85) $)) (-15 -2058 ((-85) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-757) . T) ((-760) . T) ((-916) . T) ((-951 (-485)) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) . T) ((-1119) . T) ((-1130) . T))
-((-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 9 T ELT)) (-2064 (($ $) 11 T ELT)) (-2062 (((-85) $) 20 T ELT)) (-3469 (((-3 $ "failed") $) 16 T ELT)) (-2063 (((-85) $ $) 22 T ELT)))
-(((-495 |#1|) (-10 -7 (-15 -2062 ((-85) |#1|)) (-15 -2063 ((-85) |#1| |#1|)) (-15 -2064 (|#1| |#1|)) (-15 -2065 ((-2 (|:| -1776 |#1|) (|:| -3984 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3469 ((-3 |#1| "failed") |#1|))) (-496)) (T -495))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-496) (-113)) (T -496))
-((-3468 (*1 *1 *1 *1) (|partial| -4 *1 (-496))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1776 *1) (|:| -3984 *1) (|:| |associate| *1))) (-4 *1 (-496)))) (-2064 (*1 *1 *1) (-4 *1 (-496))) (-2063 (*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
-(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3468 ((-3 $ "failed") $ $)) (-15 -2065 ((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $)) (-15 -2064 ($ $)) (-15 -2063 ((-85) $ $)) (-15 -2062 ((-85) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2067 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1091) (-584 |#2|)) 38 T ELT)) (-2069 (((-520 |#2|) |#2| (-1091)) 63 T ELT)) (-2068 (((-3 |#2| #1#) |#2| (-1091)) 156 T ELT)) (-2070 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))) 159 T ELT)) (-2066 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) |#2|) 41 T ELT)))
-(((-497 |#1| |#2|) (-10 -7 (-15 -2066 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1091) |#2|)) (-15 -2067 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1091) (-584 |#2|))) (-15 -2068 ((-3 |#2| #1#) |#2| (-1091))) (-15 -2069 ((-520 |#2|) |#2| (-1091))) (-15 -2070 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1091) (-551 |#2|) (-584 (-551 |#2|))))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -497))
-((-2070 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))) (-2069 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2068 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-2067 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-497 *6 *3)))) (-2066 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
-((-3973 (((-348 |#1|) |#1|) 17 T ELT)) (-3734 (((-348 |#1|) |#1|) 32 T ELT)) (-2072 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2071 (((-348 |#1|) |#1|) 59 T ELT)))
-(((-498 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -2071 ((-348 |#1|) |#1|)) (-15 -2072 ((-3 |#1| "failed") |#1|))) (-484)) (T -498))
-((-2072 (*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3973 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
-((-3085 (((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|)) 35 T ELT)) (-2075 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|)) 115 T ELT)) (-2073 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 85 T ELT) (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 55 T ELT)) (-2074 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|)) 114 T ELT)) (-2076 (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|)) 116 T ELT)) (-2077 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))) 133 (|has| |#3| (-601 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|)) 132 (|has| |#3| (-601 |#2|)) ELT)) (-3086 ((|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|) 53 T ELT)) (-3081 (((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|)) 34 T ELT)))
-(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2073 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2074 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2| (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) |#2| (-1086 |#2|))) (-15 -2075 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) |#2| (-1086 |#2|))) (-15 -2076 ((-3 |#2| #1#) |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)) (-551 |#2|) |#2| (-350 (-1086 |#2|)))) (-15 -3085 ((-1086 (-350 (-1086 |#2|))) |#2| (-551 |#2|) (-551 |#2|) (-1086 |#2|))) (-15 -3086 (|#2| (-1086 (-350 (-1086 |#2|))) (-551 |#2|) |#2|)) (-15 -3081 ((-1086 (-350 (-1086 |#2|))) (-1086 |#2|) (-551 |#2|))) (IF (|has| |#3| (-601 |#2|)) (PROGN (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) |#2| (-1086 |#2|))) (-15 -2077 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-551 |#2|) |#2| (-350 (-1086 |#2|))))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -499))
-((-2077 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2077 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-3081 (*1 *2 *3 *4) (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1014)))) (-3086 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014)))) (-3085 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1091))) (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2076 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1091))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2075 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2074 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))) (-2073 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
-((-2087 (((-485) (-485) (-695)) 87 T ELT)) (-2086 (((-485) (-485)) 85 T ELT)) (-2085 (((-485) (-485)) 82 T ELT)) (-2084 (((-485) (-485)) 89 T ELT)) (-2807 (((-485) (-485) (-485)) 67 T ELT)) (-2083 (((-485) (-485) (-485)) 64 T ELT)) (-2082 (((-350 (-485)) (-485)) 29 T ELT)) (-2081 (((-485) (-485)) 34 T ELT)) (-2080 (((-485) (-485)) 76 T ELT)) (-2804 (((-485) (-485)) 47 T ELT)) (-2079 (((-584 (-485)) (-485)) 81 T ELT)) (-2078 (((-485) (-485) (-485) (-485) (-485)) 60 T ELT)) (-2800 (((-350 (-485)) (-485)) 56 T ELT)))
-(((-500) (-10 -7 (-15 -2800 ((-350 (-485)) (-485))) (-15 -2078 ((-485) (-485) (-485) (-485) (-485))) (-15 -2079 ((-584 (-485)) (-485))) (-15 -2804 ((-485) (-485))) (-15 -2080 ((-485) (-485))) (-15 -2081 ((-485) (-485))) (-15 -2082 ((-350 (-485)) (-485))) (-15 -2083 ((-485) (-485) (-485))) (-15 -2807 ((-485) (-485) (-485))) (-15 -2084 ((-485) (-485))) (-15 -2085 ((-485) (-485))) (-15 -2086 ((-485) (-485))) (-15 -2087 ((-485) (-485) (-695))))) (T -500))
-((-2087 (*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2807 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2083 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2082 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2081 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2804 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2079 (*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))) (-2078 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-((-2088 (((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
-(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| |#4|) (|:| -2136 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -501))
-((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3))) (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))))
-((-2088 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
-(((-502 |#1| |#2|) (-10 -7 (-15 -2088 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2136 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -502))
-((-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6)))))
-((-2091 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|)) 195 T ELT)) (-2089 (((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|)) 97 T ELT)) (-2090 (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-551 |#2|) (-551 |#2|) |#2|) 191 T ELT)) (-2092 (((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091))) 200 T ELT)) (-2093 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091)) 209 (|has| |#3| (-601 |#2|)) ELT)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2089 ((-520 |#2|) |#2| (-551 |#2|) (-551 |#2|))) (-15 -2090 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-551 |#2|) (-551 |#2|) |#2|)) (-15 -2091 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-551 |#2|) (-551 |#2|) (-584 |#2|))) (-15 -2092 ((-3 |#2| #1#) |#2| |#2| |#2| (-551 |#2|) (-551 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1091)))) (IF (|has| |#3| (-601 |#2|)) (-15 -2093 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2013 (-584 |#2|))) |#3| |#2| (-551 |#2|) (-551 |#2|) (-1091))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-120) (-581 (-485))) (-13 (-364 |#1|) (-27) (-1116)) (-1014)) (T -503))
-((-2093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116))) (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))) (-2092 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091))) (-4 *2 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))) (-2091 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116))) (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))) (-2090 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))) (-2089 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116))) (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3)) (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
-((-2094 (((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64 T ELT)) (-2096 (((-3 |#2| #1="failed") |#2| (-1091) (-751 |#2|) (-751 |#2|)) 174 (-12 (|has| |#2| (-1054)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 145 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)) (-2095 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)) 156 (-12 (|has| |#2| (-570)) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-797 (-485)))) ELT)))
-(((-504 |#1| |#2|) (-10 -7 (-15 -2094 ((-2 (|:| -2339 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (PROGN (IF (|has| |#2| (-570)) (PROGN (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1091))) (-15 -2096 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2096 ((-3 |#2| #1#) |#2| (-1091) (-751 |#2|) (-751 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-951 (-485)) (-392) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -504))
-((-2096 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *1 (-504 *5 *2)))) (-2096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485)))) (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485)))) (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
-((-2099 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-584 (-350 |#2|))) 41 T ELT)) (-3814 (((-520 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2097 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2098 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT)))
-(((-505 |#1| |#2|) (-10 -7 (-15 -3814 ((-520 (-350 |#2|)) (-350 |#2|))) (-15 -2097 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2099 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -505))
-((-2099 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-505 *5 *6)))) (-2098 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))) (-2097 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))) (-3814 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))))
-((-2100 (((-3 (-485) "failed") |#1|) 14 T ELT)) (-3261 (((-85) |#1|) 13 T ELT)) (-3257 (((-485) |#1|) 9 T ELT)))
-(((-506 |#1|) (-10 -7 (-15 -3257 ((-485) |#1|)) (-15 -3261 ((-85) |#1|)) (-15 -2100 ((-3 (-485) "failed") |#1|))) (-951 (-485))) (T -506))
-((-2100 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))) (-3261 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485))))) (-3257 (*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
-((-2103 (((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1="failed") (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|)))) 48 T ELT)) (-2101 (((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091)) 28 T ELT)) (-2102 (((-3 (-350 (-858 |#1|)) #1#) (-350 (-858 |#1|)) (-1091)) 23 T ELT)) (-2104 (((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 35 T ELT)))
-(((-507 |#1|) (-10 -7 (-15 -2101 ((-520 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2102 ((-3 (-350 (-858 |#1|)) #1="failed") (-350 (-858 |#1|)) (-1091))) (-15 -2103 ((-3 (-2 (|:| |mainpart| (-350 (-858 |#1|))) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 (-858 |#1|))) (|:| |logand| (-350 (-858 |#1|))))))) #1#) (-350 (-858 |#1|)) (-1091) (-584 (-350 (-858 |#1|))))) (-15 -2104 ((-3 (-2 (|:| -2137 (-350 (-858 |#1|))) (|:| |coeff| (-350 (-858 |#1|)))) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))))) (-13 (-496) (-951 (-485)) (-120))) (T -507))
-((-2104 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5))))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))) (-2103 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-507 *6)))) (-2102 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120))) (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
-((-2570 (((-85) $ $) 77 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-2606 ((|#1| $) 39 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) 81 T ELT)) (-3494 (($ $) 142 T ELT)) (-3641 (($ $) 120 T ELT)) (-2485 ((|#1| $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL T ELT)) (-3492 (($ $) 144 T ELT)) (-3640 (($ $) 116 T ELT)) (-3496 (($ $) 146 T ELT)) (-3639 (($ $) 124 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 95 T ELT)) (-3158 (((-485) $) 97 T ELT)) (-3469 (((-3 $ #1#) $) 80 T ELT)) (-2060 (($ |#1| |#1|) 35 T ELT)) (-3188 (((-85) $) 44 T ELT)) (-3629 (($) 106 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 56 T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 46 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3944 (($ $) 108 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2061 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-485))) 94 T ELT)) (-2059 ((|#1| $) 36 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 83 T ELT) (($ (-584 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 82 T ELT)) (-3945 (($ $) 110 T ELT)) (-3497 (($ $) 150 T ELT)) (-3638 (($ $) 122 T ELT)) (-3495 (($ $) 152 T ELT)) (-3637 (($ $) 126 T ELT)) (-3493 (($ $) 148 T ELT)) (-3636 (($ $) 118 T ELT)) (-2058 (((-85) $ |#1|) 42 T ELT)) (-3948 (((-773) $) 102 T ELT) (($ (-485)) 85 T ELT) (($ $) NIL T ELT) (($ (-485)) 85 T ELT)) (-3128 (((-695)) 104 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 164 T ELT)) (-3488 (($ $) 132 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3498 (($ $) 162 T ELT)) (-3486 (($ $) 128 T ELT)) (-3502 (($ $) 160 T ELT)) (-3490 (($ $) 140 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 158 T ELT)) (-3491 (($ $) 138 T ELT)) (-3501 (($ $) 156 T ELT)) (-3489 (($ $) 134 T ELT)) (-3499 (($ $) 154 T ELT)) (-3487 (($ $) 130 T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 50 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 48 T ELT)) (-3839 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3841 (($ $ $) 53 T ELT)) (** (($ $ (-831)) 73 T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-485))) 166 T ELT)) (* (($ (-831) $) 67 T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 62 T ELT)))
-(((-508 |#1|) (-494 |#1|) (-13 (-347) (-1116))) (T -508))
-NIL
-((-2706 (((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485))) 27 T ELT)))
-(((-509) (-10 -7 (-15 -2706 ((-3 (-584 (-1086 (-485))) "failed") (-584 (-1086 (-485))) (-1086 (-485)))))) (T -509))
-((-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485))) (-5 *1 (-509)))))
-((-2105 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091)) 19 T ELT)) (-2108 (((-584 (-551 |#2|)) (-584 |#2|) (-1091)) 23 T ELT)) (-3236 (((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|))) 11 T ELT)) (-2109 ((|#2| |#2| (-1091)) 59 (|has| |#1| (-496)) ELT)) (-2110 ((|#2| |#2| (-1091)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2107 (((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091)) 25 T ELT)) (-2106 (((-551 |#2|) (-584 (-551 |#2|))) 24 T ELT)) (-2111 (((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-570)) (|has| |#2| (-951 (-1091))) (|has| |#1| (-554 (-801 (-485)))) (|has| |#1| (-392)) (|has| |#1| (-797 (-485)))) ELT)))
-(((-510 |#1| |#2|) (-10 -7 (-15 -2105 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-1091))) (-15 -2106 ((-551 |#2|) (-584 (-551 |#2|)))) (-15 -2107 ((-551 |#2|) (-551 |#2|) (-584 (-551 |#2|)) (-1091))) (-15 -3236 ((-584 (-551 |#2|)) (-584 (-551 |#2|)) (-584 (-551 |#2|)))) (-15 -2108 ((-584 (-551 |#2|)) (-584 |#2|) (-1091))) (IF (|has| |#1| (-496)) (-15 -2109 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2110 (|#2| |#2| (-1091))) (IF (|has| |#1| (-554 (-801 (-485)))) (IF (|has| |#1| (-797 (-485))) (IF (|has| |#2| (-570)) (IF (|has| |#2| (-951 (-1091))) (-15 -2111 ((-520 |#2|) |#2| (-1091) (-1 (-520 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1014) (-364 |#1|)) (T -510))
-((-2111 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-520 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392)) (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3)) (-5 *1 (-510 *7 *3)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))) (-3236 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014)) (-5 *1 (-510 *3 *4)))) (-2107 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5)) (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))) (-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
-((-2114 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1="failed") (-485) |#1| |#1|)) 199 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|))) 174 T ELT)) (-2120 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|))) 171 T ELT)) (-2121 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2112 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2119 (((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2123 (((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2124 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2118 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|))) 178 T ELT)) (-2122 (((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 166 T ELT)) (-2113 (((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|)) 189 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|)) 210 T ELT)))
-(((-511 |#1| |#2|) (-10 -7 (-15 -2112 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2113 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2114 ((-2 (|:| |answer| (-520 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-584 |#1|) #1#) (-485) |#1| |#1|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-350 |#2|))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-584 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|) (-584 (-350 |#2|)))) (-15 -2119 ((-3 (-2 (|:| -2137 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2120 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-584 (-350 |#2|)))) (-15 -2121 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2122 ((-3 (-563 |#1| |#2|) #1#) (-563 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3139 |#1|) (|:| |sol?| (-85))) (-485) |#1|))) (-15 -2123 ((-2 (|:| |ir| (-520 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2124 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -511))
-((-2124 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2122 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-563 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))) (-2121 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-511 *6 *7)))) (-2119 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))) (-2118 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-511 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
-((-2125 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10 T ELT)))
-(((-512 |#1| |#2|) (-10 -7 (-15 -2125 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-1054) (-29 |#1|))) (T -512))
-((-2125 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4))))))
-((-2557 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-695) $ (-102)) 28 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-513) (-113)) (T -513))
-NIL
-(-13 (-466) (-771))
-(((-147) . T) ((-466) . T) ((-771) . T))
-((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) NIL T ELT)) (-2559 (((-633 (-101)) $ (-101)) NIL T ELT)) (-2001 (((-633 (-1139)) $) NIL T ELT)) (-1997 (((-633 (-1137)) $) NIL T ELT)) (-1999 (((-633 (-1136)) $) NIL T ELT)) (-2002 (((-633 (-489)) $) NIL T ELT)) (-1998 (((-633 (-487)) $) NIL T ELT)) (-2000 (((-633 (-486)) $) NIL T ELT)) (-1996 (((-695) $ (-102)) NIL T ELT)) (-2003 (((-633 (-101)) $) NIL T ELT)) (-2560 (((-85) $) NIL T ELT)) (-2126 (($ (-338)) 14 T ELT) (($ (-1074)) 16 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)))
-(((-514) (-13 (-513) (-553 (-773)) (-10 -8 (-15 -2126 ($ (-338))) (-15 -2126 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -514))
-((-2126 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3462 (($) 7 T CONST)) (-3244 (((-1074) $) NIL T ELT)) (-2129 (($) 6 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT)) (-2127 (($) 9 T CONST)) (-2128 (($) 8 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)))
-(((-515) (-13 (-1014) (-10 -8 (-15 -2129 ($) -3954) (-15 -3462 ($) -3954) (-15 -2128 ($) -3954) (-15 -2127 ($) -3954)))) (T -515))
-((-2129 (*1 *1) (-5 *1 (-515))) (-3462 (*1 *1) (-5 *1 (-515))) (-2128 (*1 *1) (-5 *1 (-515))) (-2127 (*1 *1) (-5 *1 (-515))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2130 (((-633 $) (-431)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2132 (($ (-1074)) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 33 T ELT)) (-2131 (((-166 4 (-101)) $) 24 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 26 T ELT)))
-(((-516) (-13 (-1014) (-10 -8 (-15 -2132 ($ (-1074))) (-15 -2131 ((-166 4 (-101)) $)) (-15 -2130 ((-633 $) (-431)))))) (T -516))
-((-2132 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) 73 T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 79 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 64 T ELT)) (-2614 (($ $) 43 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) 37 T ELT)) (-2615 (((-485) $) 41 T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) 24 T ELT)) (-3468 (((-3 $ #1#) $ $) 70 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) 17 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 T ELT)) (-2617 (((-1070 (-485)) $) 19 T ELT)) (-2893 (($ $) 26 T ELT)) (-3948 (((-773) $) 100 T ELT) (($ (-485)) 59 T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) 15 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) 46 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 44 T CONST)) (-2668 (($) 21 T CONST)) (-3058 (((-85) $ $) 51 T ELT)) (-3839 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3841 (($ $ $) 57 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 60 T ELT) (($ $ $) 61 T ELT)))
-(((-517 |#1| |#2|) (-780 |#1|) (-485) (-85)) (T -517))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 30 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) 95 T ELT)) (-3158 (($ $) 94 T ELT)) (-1796 (($ (-1180 $)) 93 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 47 T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) 61 T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1768 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) 49 (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3134 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) 104 T ELT)) (-2011 (((-831) $) 67 T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) 60 T ELT)) (-3933 (((-85) $) 87 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 28 (|has| $ (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 54 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-831)) 86 T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3950 (((-831) $) 85 T ELT) (((-744 (-831)) $) NIL T ELT)) (-3187 (((-1086 $)) 102 T ELT)) (-1675 (($) 66 T ELT)) (-1630 (($) 50 (|has| $ (-320)) ELT)) (-3226 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) 91 T ELT)) (-3974 (((-485) $) 42 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3128 (((-695)) 51 T CONST)) (-1266 (((-85) $ $) 107 T ELT)) (-2013 (((-1180 $) (-831)) 97 T ELT) (((-1180 $)) 96 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) 31 T CONST)) (-2668 (($) 27 T CONST)) (-3930 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 34 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-518 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -518))
-NIL
-((-2133 (((-1186) (-1074)) 10 T ELT)))
-(((-519) (-10 -7 (-15 -2133 ((-1186) (-1074))))) (T -519))
-((-2133 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 77 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2137 ((|#1| $) 30 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2135 (((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2138 (($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2136 (((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2834 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1091)) 49 (|has| |#1| (-951 (-1091))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2134 (((-85) $) 35 T ELT)) (-3760 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1091)) 90 (|has| |#1| (-810 (-1091))) ELT)) (-3948 (((-773) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 86 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 16 T ELT) (($ (-350 (-485)) $) 41 T ELT) (($ $ (-350 (-485))) NIL T ELT)))
-(((-520 |#1|) (-13 (-655 (-350 (-485))) (-951 |#1|) (-10 -8 (-15 -2138 ($ |#1| (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2137 (|#1| $)) (-15 -2136 ((-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -2135 ((-584 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2134 ((-85) $)) (-15 -2834 ($ |#1| |#1|)) (-15 -3760 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-810 (-1091))) (-15 -3760 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-951 (-1091))) (-15 -2834 ($ |#1| (-1091))) |%noBranch|))) (-312)) (T -520))
-((-2138 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-520 *2)))) (-2137 (*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))) (-2834 (*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312)))) (-3760 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091)))) (-2834 (*1 *1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312)))))
-((-3960 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|)) 30 T ELT)))
-(((-521 |#1| |#2|) (-10 -7 (-15 -3960 ((-520 |#2|) (-1 |#2| |#1|) (-520 |#1|))) (-15 -3960 ((-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2137 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3960 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3960 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -521))
-((-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-521 *5 *6)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-521 *5 *2)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6))) (-5 *1 (-521 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6)))))
-((-3420 (((-520 |#2|) (-520 |#2|)) 42 T ELT)) (-3965 (((-584 |#2|) (-520 |#2|)) 44 T ELT)) (-2149 ((|#2| (-520 |#2|)) 50 T ELT)))
-(((-522 |#1| |#2|) (-10 -7 (-15 -3420 ((-520 |#2|) (-520 |#2|))) (-15 -3965 ((-584 |#2|) (-520 |#2|))) (-15 -2149 (|#2| (-520 |#2|)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-29 |#1|) (-1116))) (T -522))
-((-2149 (*1 *2 *3) (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5)) (-5 *1 (-522 *4 *5)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2141 (($ (-447) (-533)) 14 T ELT)) (-2139 (($ (-447) (-533) $) 16 T ELT)) (-2140 (($ (-447) (-533)) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) 7 T ELT) (((-1096) $) 6 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-523) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2141 ($ (-447) (-533))) (-15 -2140 ($ (-447) (-533))) (-15 -2139 ($ (-447) (-533) $))))) (T -523))
-((-2141 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))) (-2139 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-((-2145 (((-85) |#1|) 16 T ELT)) (-2146 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2143 (((-2 (|:| -2696 |#1|) (|:| -2402 (-695))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-695)) 18 T ELT)) (-2142 (((-85) |#1| (-695)) 19 T ELT)) (-2147 ((|#1| |#1|) 41 T ELT)) (-2144 ((|#1| |#1| (-695)) 44 T ELT)))
-(((-524 |#1|) (-10 -7 (-15 -2142 ((-85) |#1| (-695))) (-15 -2143 ((-3 |#1| #1="failed") |#1| (-695))) (-15 -2143 ((-2 (|:| -2696 |#1|) (|:| -2402 (-695))) |#1|)) (-15 -2144 (|#1| |#1| (-695))) (-15 -2145 ((-85) |#1|)) (-15 -2146 ((-3 |#1| #1#) |#1|)) (-15 -2147 (|#1| |#1|))) (-484)) (T -524))
-((-2147 (*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2146 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2144 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3)) (-4 *3 (-484)))) (-2143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-((-2148 (((-1086 |#1|) (-831)) 44 T ELT)))
-(((-525 |#1|) (-10 -7 (-15 -2148 ((-1086 |#1|) (-831)))) (-299)) (T -525))
-((-2148 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299)))))
-((-3420 (((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|)))) 27 T ELT)) (-3814 (((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 33 (|has| |#1| (-120)) ELT)) (-3965 (((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|)))) 19 T ELT)) (-2150 (((-265 |#1|) (-350 (-858 |#1|)) (-1091)) 31 (|has| |#1| (-120)) ELT)) (-2149 (((-265 |#1|) (-520 (-350 (-858 |#1|)))) 21 T ELT)))
-(((-526 |#1|) (-10 -7 (-15 -3420 ((-520 (-350 (-858 |#1|))) (-520 (-350 (-858 |#1|))))) (-15 -3965 ((-584 (-265 |#1|)) (-520 (-350 (-858 |#1|))))) (-15 -2149 ((-265 |#1|) (-520 (-350 (-858 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3814 ((-3 (-265 |#1|) (-584 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -2150 ((-265 |#1|) (-350 (-858 |#1|)) (-1091)))) |%noBranch|)) (-13 (-392) (-951 (-485)) (-581 (-485)))) (T -526))
-((-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5)) (-5 *1 (-526 *5)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4)) (-5 *1 (-526 *4)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-520 (-350 (-858 *4)))) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4))) (-5 *1 (-526 *4)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-520 (-350 (-858 *3)))) (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3)))))
-((-2152 (((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-831))) 81 T ELT) (((-631 (-485)) (-584 (-831)) (-814 (-485))) 74 T ELT)) (-2151 (((-695) (-584 (-831))) 71 T ELT)))
-(((-527) (-10 -7 (-15 -2151 ((-695) (-584 (-831)))) (-15 -2152 ((-631 (-485)) (-584 (-831)) (-814 (-485)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -2152 ((-584 (-631 (-485))) (-584 (-831)) (-584 (-814 (-485))))))) (T -527))
-((-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-527)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
-((-3215 (((-584 |#5|) |#5| (-85)) 97 T ELT)) (-2153 (((-85) |#5| (-584 |#5|)) 34 T ELT)))
-(((-528 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3215 ((-584 |#5|) |#5| (-85))) (-15 -2153 ((-85) |#5| (-584 |#5|)))) (-13 (-258) (-120)) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -528))
-((-2153 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3)) (-4 *3 (-1021 *5 *6 *7 *8)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-529) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -529))
-((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529)))))
-((-3534 (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|)) 32 T ELT)))
-(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2| (-1002 |#4|))) (-15 -3534 ((-2 (|:| |num| |#4|) (|:| |den| (-485))) |#4| |#2|))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|)) (T -530))
-((-3534 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-3534 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757)) (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *6 *4 *7 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 71 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 58 T ELT) (($ $ (-485) (-485)) 59 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 65 T ELT)) (-2184 (($ $) 109 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2182 (((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485))) 232 T ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 36 T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3774 (((-485) $) 63 T ELT) (((-485) $ (-485)) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3779 (($ $ (-831)) 83 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 80 T ELT)) (-3939 (((-85) $) 26 T ELT)) (-2895 (($ |#1| (-485)) 22 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2188 (($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 13 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2185 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2183 (($ $ $) 116 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2186 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 15 T ELT)) (-2187 (((-940 (-751 (-485))) $) 14 T ELT)) (-3771 (($ $ (-485)) 47 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-3802 ((|#1| $ (-485)) 62 T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3950 (((-485) $) NIL T ELT)) (-2893 (($ $) 48 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 29 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ (-485)) 61 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 39 T CONST)) (-3775 ((|#1| $) NIL T ELT)) (-2163 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2175 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2165 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2177 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2161 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2173 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2180 (($ $ (-350 (-485))) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2181 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2178 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2179 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2160 (($ $) 195 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2172 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2162 (($ $) 193 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2174 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2164 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2176 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2157 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2169 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2159 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2171 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2155 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2167 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2154 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2166 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2156 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2168 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2158 (($ $) 199 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2170 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 40 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 73 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3841 (($ $ $) 88 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 111 T ELT)) (* (($ (-831) $) 98 T ELT) (($ (-695) $) 96 T ELT) (($ (-485) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-531 |#1|) (-13 (-1159 |#1| (-485)) (-10 -8 (-15 -2188 ($ (-940 (-751 (-485))) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -2187 ((-940 (-751 (-485))) $)) (-15 -2186 ((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $)) (-15 -3820 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))))) (-15 -3939 ((-85) $)) (-15 -3817 ($ (-1 |#1| (-485)) $)) (-15 -2185 ((-3 $ "failed") $ $ (-85))) (-15 -2184 ($ $)) (-15 -2183 ($ $ $)) (-15 -2182 ((-773) (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) (-940 (-751 (-485))) (-1091) |#1| (-350 (-485)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (-15 -2181 ($ $ |#1|)) (-15 -2180 ($ $ (-350 (-485)))) (-15 -2179 ($ $)) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $))) |%noBranch|))) (-962)) (T -531))
-((-3939 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2188 (*1 *1 *2 *3) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962)) (-5 *1 (-531 *4)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3)))) (-2185 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2183 (*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))) (-2182 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6)))) (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485))) (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))) (-3814 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2181 (*1 *1 *1 *2) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2)) (-4 *3 (-962)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 62 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3820 (($ (-1070 |#1|)) 9 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 44 T ELT)) (-2894 (((-85) $) 56 T ELT)) (-3774 (((-695) $) 61 T ELT) (((-695) $ (-695)) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 46 (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-1070 |#1|) $) 25 T ELT)) (-3128 (((-695)) 55 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2668 (($) 14 T CONST)) (-3058 (((-85) $ $) 24 T ELT)) (-3839 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3841 (($ $ $) 27 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-485)) 38 T ELT)))
-(((-532 |#1|) (-13 (-962) (-82 |#1| |#1|) (-10 -8 (-15 -3819 ((-1070 |#1|) $)) (-15 -3820 ($ (-1070 |#1|))) (-15 -2894 ((-85) $)) (-15 -3774 ((-695) $)) (-15 -3774 ((-695) $ (-695))) (-15 * ($ $ (-485))) (IF (|has| |#1| (-496)) (-6 (-496)) |%noBranch|))) (-962)) (T -532))
-((-3819 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (-3774 (*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2191 (($) 8 T CONST)) (-2192 (($) 7 T CONST)) (-2189 (($ $ (-584 $)) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2193 (($) 6 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) 15 T ELT) (((-1096) $) 10 T ELT)) (-2190 (($) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-533) (-13 (-1014) (-430 (-1096)) (-10 -8 (-15 -2193 ($) -3954) (-15 -2192 ($) -3954) (-15 -2191 ($) -3954) (-15 -2190 ($) -3954) (-15 -2189 ($ $ (-584 $)))))) (T -533))
-((-2193 (*1 *1) (-5 *1 (-533))) (-2192 (*1 *1) (-5 *1 (-533))) (-2191 (*1 *1) (-5 *1 (-533))) (-2190 (*1 *1) (-5 *1 (-533))) (-2189 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
-((-3960 (((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|)) 15 T ELT)))
-(((-534 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3960 ((-537 |#2|) (-1 |#2| |#1|) (-537 |#1|))))) (-1130) (-1130)) (T -534))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6)))))
-((-3960 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)) 20 T ELT) (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|)) 19 T ELT) (((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|)) 18 T ELT)))
-(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-537 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-537 |#2|))) (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-537 |#2|))) (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-537 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -535))
-((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-535 *6 *7 *8)))) (-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8)) (-5 *1 (-535 *6 *7 *8)))))
-((-2198 ((|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))) 57 T ELT)) (-2197 (((-142 |#2|) |#3|) 122 T ELT)) (-2194 ((|#3| (-142 |#2|)) 46 T ELT)) (-2195 ((|#2| |#3|) 21 T ELT)) (-2196 ((|#3| |#2|) 35 T ELT)))
-(((-536 |#1| |#2| |#3|) (-10 -7 (-15 -2194 (|#3| (-142 |#2|))) (-15 -2195 (|#2| |#3|)) (-15 -2196 (|#3| |#2|)) (-15 -2197 ((-142 |#2|) |#3|)) (-15 -2198 (|#3| |#3| (-584 (-551 |#3|)) (-584 (-1091))))) (-496) (-13 (-364 |#1|) (-916) (-1116)) (-13 (-364 (-142 |#1|)) (-916) (-1116))) (T -536))
-((-2198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091))) (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496)) (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116))))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2)))))
-((-3712 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3459 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3532 (((-1070 |#1|) $) 20 T ELT)) (-3948 (((-773) $) 25 T ELT)))
-(((-537 |#1|) (-13 (-553 (-773)) (-10 -8 (-15 -3960 ($ (-1 |#1| |#1|) $)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3712 ($ (-1 (-85) |#1|) $)) (-15 -3459 ($ (-1 |#1| |#1|) |#1|)) (-15 -3532 ((-1070 |#1|) $)))) (-1130)) (T -537))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130)))))
-((-2199 (((-1186) $ |#2| |#2|) 35 T ELT)) (-2201 ((|#2| $) 23 T ELT)) (-2202 ((|#2| $) 21 T ELT)) (-3328 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3960 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3803 ((|#3| $) 26 T ELT)) (-2200 (($ $ |#3|) 33 T ELT)) (-2203 (((-85) |#3| $) 17 T ELT)) (-2206 (((-584 |#3|) $) 15 T ELT)) (-3802 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
-(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2199 ((-1186) |#1| |#2| |#2|)) (-15 -2200 (|#1| |#1| |#3|)) (-15 -3803 (|#3| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 (|#2| |#1|)) (-15 -2203 ((-85) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -3802 (|#3| |#1| |#2|)) (-15 -3802 (|#3| |#1| |#2| |#3|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|))) (-539 |#2| |#3|) (-1014) (-1130)) (T -538))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2199 (((-1186) $ |#1| |#1|) 35 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 47 (|has| $ (-6 -3998)) ELT)) (-3726 (($) 6 T CONST)) (-1577 ((|#2| $ |#1| |#2|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 46 T ELT)) (-2201 ((|#1| $) 38 (|has| |#1| (-757)) ELT)) (-2202 ((|#1| $) 39 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#2| |#2|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#2| (-1014)) ELT)) (-2204 (((-584 |#1|) $) 41 T ELT)) (-2205 (((-85) |#1| $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) 37 (|has| |#1| (-757)) ELT)) (-2200 (($ $ |#2|) 36 (|has| $ (-6 -3998)) ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#2| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#2| (-72)) ELT)))
-(((-539 |#1| |#2|) (-113) (-1014) (-1130)) (T -539))
-((-2206 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))) (-2205 (*1 *2 *3 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-2204 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))) (-2203 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130)))) (-2200 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -3998)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130)))) (-2199 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -3998)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-1186)))))
-(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2206 ((-584 |t#2|) $)) (-15 -2205 ((-85) |t#1| $)) (-15 -2204 ((-584 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-318 |t#2|)) (-15 -2203 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-757)) (PROGN (-15 -2202 (|t#1| $)) (-15 -2201 (|t#1| $)) (-15 -3803 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -3998)) (PROGN (-15 -2200 ($ $ |t#2|)) (-15 -2199 ((-1186) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) |has| |#2| (-1014)) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 15 T ELT) (($ (-584 (-1131))) 14 T ELT)) (-2207 (((-584 (-1131)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-540) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3948 ($ (-584 (-1131)))) (-15 -2207 ((-584 (-1131)) $))))) (T -540))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1796 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3802 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3226 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3974 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1896 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3948 (((-773) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-541 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3948 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -541))
-((-3948 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-542) (-13 (-1014) (-430 (-101)))) (T -542))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2209 (($) 10 T CONST)) (-2231 (($) 8 T CONST)) (-2208 (($) 11 T CONST)) (-2227 (($) 9 T CONST)) (-2224 (($) 12 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-543) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2227 ($) -3954) (-15 -2209 ($) -3954) (-15 -2208 ($) -3954) (-15 -2224 ($) -3954)))) (T -543))
-((-2231 (*1 *1) (-5 *1 (-543))) (-2227 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))) (-2208 (*1 *1) (-5 *1 (-543))) (-2224 (*1 *1) (-5 *1 (-543))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2220 (($) 11 T CONST)) (-2214 (($) 17 T CONST)) (-2210 (($) 21 T CONST)) (-2212 (($) 19 T CONST)) (-2217 (($) 14 T CONST)) (-2211 (($) 20 T CONST)) (-2219 (($) 12 T CONST)) (-2218 (($) 13 T CONST)) (-2213 (($) 18 T CONST)) (-2216 (($) 15 T CONST)) (-2215 (($) 16 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-544) (-13 (-1014) (-553 (-101)) (-10 -8 (-15 -2220 ($) -3954) (-15 -2219 ($) -3954) (-15 -2218 ($) -3954) (-15 -2217 ($) -3954) (-15 -2216 ($) -3954) (-15 -2215 ($) -3954) (-15 -2214 ($) -3954) (-15 -2213 ($) -3954) (-15 -2212 ($) -3954) (-15 -2211 ($) -3954) (-15 -2210 ($) -3954)))) (T -544))
-((-2220 (*1 *1) (-5 *1 (-544))) (-2219 (*1 *1) (-5 *1 (-544))) (-2218 (*1 *1) (-5 *1 (-544))) (-2217 (*1 *1) (-5 *1 (-544))) (-2216 (*1 *1) (-5 *1 (-544))) (-2215 (*1 *1) (-5 *1 (-544))) (-2214 (*1 *1) (-5 *1 (-544))) (-2213 (*1 *1) (-5 *1 (-544))) (-2212 (*1 *1) (-5 *1 (-544))) (-2211 (*1 *1) (-5 *1 (-544))) (-2210 (*1 *1) (-5 *1 (-544))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2222 (($) 13 T CONST)) (-2221 (($) 14 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2227 (($) 12 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-545) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2230 ($) -3954) (-15 -2229 ($) -3954) (-15 -2228 ($) -3954) (-15 -2227 ($) -3954) (-15 -2222 ($) -3954) (-15 -2221 ($) -3954)))) (T -545))
-((-2231 (*1 *1) (-5 *1 (-545))) (-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))) (-2221 (*1 *1) (-5 *1 (-545))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2226 (($) 13 T CONST)) (-2223 (($) 16 T CONST)) (-2228 (($) 11 T CONST)) (-2231 (($) 8 T CONST)) (-2229 (($) 10 T CONST)) (-2230 (($) 9 T CONST)) (-2225 (($) 14 T CONST)) (-2227 (($) 12 T CONST)) (-2224 (($) 15 T CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-546) (-13 (-1014) (-605) (-10 -8 (-15 -2231 ($) -3954) (-15 -2230 ($) -3954) (-15 -2229 ($) -3954) (-15 -2228 ($) -3954) (-15 -2227 ($) -3954) (-15 -2226 ($) -3954) (-15 -2225 ($) -3954) (-15 -2224 ($) -3954) (-15 -2223 ($) -3954)))) (T -546))
-((-2231 (*1 *1) (-5 *1 (-546))) (-2230 (*1 *1) (-5 *1 (-546))) (-2229 (*1 *1) (-5 *1 (-546))) (-2228 (*1 *1) (-5 *1 (-546))) (-2227 (*1 *1) (-5 *1 (-546))) (-2226 (*1 *1) (-5 *1 (-546))) (-2225 (*1 *1) (-5 *1 (-546))) (-2224 (*1 *1) (-5 *1 (-546))) (-2223 (*1 *1) (-5 *1 (-546))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 19 T ELT) (($ (-542)) 12 T ELT) (((-542) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-547) (-13 (-1014) (-430 (-542)) (-430 (-101)))) (T -547))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1698 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) 40 T ELT)) (-3601 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#1| $ (-1074) |#1|) 50 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) 53 T ELT)) (-3726 (($) NIL T CONST)) (-1702 (($ $ (-1074)) 25 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3407 (((-3 |#1| #1#) (-1074) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3408 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-1699 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2272 (($ $) 55 T ELT)) (-1703 (($ (-338)) 23 T ELT) (($ (-338) (-1074)) 22 T ELT)) (-3544 (((-338) $) 41 T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2233 (((-584 (-1074)) $) 46 T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1700 (((-1074) $) 42 T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 44 T ELT)) (-3802 ((|#1| $ (-1074) |#1|) NIL T ELT) ((|#1| $ (-1074)) 49 T ELT)) (-1467 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1731 (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1701 (($ $) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-3959 (((-695) $) 48 T ELT)))
-(((-548 |#1|) (-13 (-314 (-338) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-1108 (-1074) |#1|) (-10 -8 (-15 -2272 ($ $)))) (-1014)) (T -548))
-((-2272 (*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014)))))
-((-2233 (((-584 |#2|) $) 19 T ELT)) (-2234 (((-85) |#2| $) 12 T ELT)) (-3802 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT)))
-(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2233 ((-584 |#2|) |#1|)) (-15 -2234 ((-85) |#2| |#1|)) (-15 -3802 (|#3| |#1| |#2| |#3|)) (-15 -3802 (|#3| |#1| |#2|))) (-550 |#2| |#3|) (-1014) (-1014)) (T -549))
-NIL
-((-2570 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2199 (((-1186) $ |#1| |#1|) 79 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| "failed") |#1| $) 56 T ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 57 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-1577 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 68 T ELT)) (-2201 ((|#1| $) 76 (|has| |#1| (-757)) ELT)) (-2202 ((|#1| $) 75 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 58 T ELT)) (-2234 (((-85) |#1| $) 59 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2204 (((-584 |#1|) $) 73 T ELT)) (-2205 (((-85) |#1| $) 72 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 77 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2200 (($ $ |#2|) 78 (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 71 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3948 (((-773) $) 15 (OR (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-3058 (((-85) $ $) 16 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)))
-(((-550 |#1| |#2|) (-113) (-1014) (-1014)) (T -550))
-((-2234 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))) (-2233 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))) (-3407 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2232 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(-13 (-183 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-539 |t#1| |t#2|) (-10 -8 (-15 -2234 ((-85) |t#1| $)) (-15 -2233 ((-584 |t#1|) $)) (-15 -3407 ((-3 |t#2| "failed") |t#1| $)) (-15 -2232 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2235 (((-3 (-1091) "failed") $) 46 T ELT)) (-1314 (((-1186) $ (-695)) 22 T ELT)) (-3421 (((-695) $) 20 T ELT)) (-3597 (((-86) $) 9 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2236 (($ (-86) (-584 |#1|) (-695)) 32 T ELT) (($ (-1091)) 33 T ELT)) (-2635 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1091)) 13 T ELT)) (-2605 (((-695) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-801 (-485)) $) 99 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 106 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 92 (|has| |#1| (-554 (-474))) ELT)) (-3948 (((-773) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2237 (((-584 |#1|) $) 19 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 51 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 53 T ELT)))
-(((-551 |#1|) (-13 (-105) (-757) (-795 |#1|) (-10 -8 (-15 -3597 ((-86) $)) (-15 -2237 ((-584 |#1|) $)) (-15 -2605 ((-695) $)) (-15 -2236 ($ (-86) (-584 |#1|) (-695))) (-15 -2236 ($ (-1091))) (-15 -2235 ((-3 (-1091) "failed") $)) (-15 -2635 ((-85) $ (-86))) (-15 -2635 ((-85) $ (-1091))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-1014)) (T -551))
-((-3597 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2236 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014)) (-5 *1 (-551 *5)))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2235 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))) (-2635 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014)))))
-((-2238 (((-551 |#2|) |#1|) 17 T ELT)) (-2239 (((-3 |#1| "failed") (-551 |#2|)) 21 T ELT)))
-(((-552 |#1| |#2|) (-10 -7 (-15 -2238 ((-551 |#2|) |#1|)) (-15 -2239 ((-3 |#1| "failed") (-551 |#2|)))) (-1014) (-1014)) (T -552))
-((-2239 (*1 *2 *3) (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-552 *2 *4)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-((-3948 ((|#1| $) 6 T ELT)))
-(((-553 |#1|) (-113) (-1130)) (T -553))
-((-3948 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130)))))
-(-13 (-10 -8 (-15 -3948 (|t#1| $))))
-((-3974 ((|#1| $) 6 T ELT)))
-(((-554 |#1|) (-113) (-1130)) (T -554))
-((-3974 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130)))))
-(-13 (-10 -8 (-15 -3974 (|t#1| $))))
-((-2240 (((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT)))
-(((-555 |#1| |#2|) (-10 -7 (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2240 ((-3 (-1086 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -555))
-((-2240 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))) (-2240 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5)) (-5 *3 (-350 *5)))))
-((-3948 (($ |#1|) 6 T ELT)))
-(((-556 |#1|) (-113) (-1130)) (T -556))
-((-3948 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130)))))
-(-13 (-10 -8 (-15 -3948 ($ |t#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-2241 (($) 11 T CONST)) (-2857 (($) 13 T CONST)) (-3138 (((-695)) 36 T ELT)) (-2996 (($) NIL T ELT)) (-2563 (($ $ $) 25 T ELT)) (-2562 (($ $) 23 T ELT)) (-2011 (((-831) $) 43 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 42 T ELT)) (-2855 (($ $ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 9 T CONST)) (-2854 (($ $ $) 27 T ELT)) (-3948 (((-773) $) 34 T ELT)) (-3568 (((-85) $ (|[\|\|]| -2856)) 20 T ELT) (((-85) $ (|[\|\|]| -2241)) 22 T ELT) (((-85) $ (|[\|\|]| -2857)) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 24 T ELT)) (-2312 (($ $ $) NIL T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-557) (-13 (-881) (-320) (-10 -8 (-15 -2241 ($) -3954) (-15 -3568 ((-85) $ (|[\|\|]| -2856))) (-15 -3568 ((-85) $ (|[\|\|]| -2241))) (-15 -3568 ((-85) $ (|[\|\|]| -2857)))))) (T -557))
-((-2241 (*1 *1) (-5 *1 (-557))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-557)))))
-((-3974 (($ |#1|) 6 T ELT)))
-(((-558 |#1|) (-113) (-1130)) (T -558))
-((-3974 (*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130)))))
-(-13 (-10 -8 (-15 -3974 ($ |t#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3000 ((|#1| $) 13 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#3| $) 15 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3128 (((-695)) 20 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3951 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-559 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (-15 -3951 ($ $ |#3|)) (-15 -3951 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -559))
-((-3951 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3951 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4)))))
-((-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-560 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-561 |#2|) (-962)) (T -560))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT)))
-(((-561 |#1|) (-113) (-962)) (T -561))
-((-3948 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962)))))
-(-13 (-962) (-591 |t#1|) (-10 -8 (-15 -3948 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-664) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2242 ((|#2| |#2| (-1091) (-1091)) 16 T ELT)))
-(((-562 |#1| |#2|) (-10 -7 (-15 -2242 (|#2| |#2| (-1091) (-1091)))) (-13 (-258) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-872) (-29 |#1|))) (T -562))
-((-2242 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4))))))
-((-2570 (((-85) $ $) 64 T ELT)) (-3190 (((-85) $) 58 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2243 ((|#1| $) 55 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3753 (((-2 (|:| -1766 $) (|:| -1765 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 27 T ELT)) (-3469 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3774 (((-485) $) 22 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 40 T ELT)) (-2895 (($ |#1| (-485)) 24 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) 93 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 115 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3950 (((-485) $) 38 T ELT)) (-3974 (((-350 |#2|) $) 47 T ELT)) (-3948 (((-773) $) 69 T ELT) (($ (-485)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3679 ((|#1| $ (-485)) 72 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 32 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 9 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-3839 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 90 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 29 T ELT) (($ $ $) 49 T ELT)))
-(((-563 |#1| |#2|) (-13 (-184 |#2|) (-496) (-554 (-350 |#2|)) (-355 |#1|) (-951 |#2|) (-10 -8 (-15 -3939 ((-85) $)) (-15 -3950 ((-485) $)) (-15 -3774 ((-485) $)) (-15 -3961 ($ $)) (-15 -3176 (|#1| $)) (-15 -2243 (|#1| $)) (-15 -3679 (|#1| $ (-485))) (-15 -2895 ($ |#1| (-485))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3753 ((-2 (|:| -1766 $) (|:| -1765 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-496) (-1156 |#1|)) (T -563))
-((-3939 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3)))) (-3961 (*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-2243 (*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2)))) (-3753 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -1766 (-563 *4 *5)) (|:| -1765 (-350 *5)))) (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5)))))
-((-3684 (((-584 |#6|) (-584 |#4|) (-85)) 54 T ELT)) (-2244 ((|#6| |#6|) 48 T ELT)))
-(((-564 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2244 (|#6| |#6|)) (-15 -3684 ((-584 |#6|) (-584 |#4|) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|) (-1021 |#1| |#2| |#3| |#4|)) (T -564))
-((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10)) (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *10 (-1021 *5 *6 *7 *8)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *2 (-1021 *3 *4 *5 *6)))))
-((-2245 (((-85) |#3| (-695) (-584 |#3|)) 30 T ELT)) (-2246 (((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1783 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)) 68 T ELT)))
-(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2245 ((-85) |#3| (-695) (-584 |#3|))) (-15 -2246 ((-3 (-2 (|:| |polfac| (-584 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-584 (-1086 |#3|)))) "failed") |#3| (-584 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1783 (-584 (-2 (|:| |irr| |#4|) (|:| -2396 (-485)))))) (-584 |#3|) (-584 |#1|) (-584 |#3|)))) (-757) (-718) (-258) (-862 |#3| |#2| |#1|)) (T -565))
-((-2246 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1783 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485))))))) (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258)) (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718)) (-5 *2 (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3) (|:| |corrfact| (-584 (-1086 *3))))) (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))) (-2245 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757)) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8)) (-4 *8 (-862 *3 *7 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 (((-1050) $) 12 T ELT)) (-3531 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-566) (-13 (-996) (-10 -8 (-15 -3531 ((-1050) $)) (-15 -3530 ((-1050) $))))) (T -566))
-((-3531 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3938 (($ $) 77 T ELT)) (-3944 (((-607 |#1| |#2|) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 81 T ELT)) (-2247 (((-584 (-249 |#2|)) $ $) 42 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3945 (($ (-607 |#1| |#2|)) 56 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 66 T ELT) (((-1196 |#1| |#2|) $) NIL T ELT) (((-1201 |#1| |#2|) $) 74 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 61 T CONST)) (-2248 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2249 (((-584 (-607 |#1| |#2|)) (-584 |#1|)) 73 T ELT)) (-2667 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3058 (((-85) $ $) 62 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
-(((-567 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3945 ($ (-607 |#1| |#2|))) (-15 -3944 ((-607 |#1| |#2|) $)) (-15 -2667 ((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $)) (-15 -3948 ((-1196 |#1| |#2|) $)) (-15 -3948 ((-1201 |#1| |#2|) $)) (-15 -3938 ($ $)) (-15 -3936 ((-584 |#1|) $)) (-15 -2249 ((-584 (-607 |#1| |#2|)) (-584 |#1|))) (-15 -2248 ((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $)) (-15 -2247 ((-584 (-249 |#2|)) $ $)))) (-757) (-13 (-146) (-655 (-350 (-485)))) (-831)) (T -567))
-((-3945 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-831)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485))))) (-14 *6 (-831)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))) (-2247 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757)) (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
-((-3684 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 103 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 77 T ELT)) (-2250 (((-85) (-584 (-704 |#1| (-774 |#2|)))) 26 T ELT)) (-2254 (((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)) 102 T ELT)) (-2253 (((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85)) 76 T ELT)) (-2252 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) 30 T ELT)) (-2251 (((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|)))) 29 T ELT)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2250 ((-85) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2251 ((-3 (-584 (-704 |#1| (-774 |#2|))) "failed") (-584 (-704 |#1| (-774 |#2|))))) (-15 -2252 ((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))))) (-15 -2253 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -2254 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3684 ((-584 (-959 |#1| |#2|)) (-584 (-704 |#1| (-774 |#2|))) (-85))) (-15 -3684 ((-584 (-1061 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|)))) (-584 (-704 |#1| (-774 |#2|))) (-85)))) (-392) (-584 (-1091))) (T -568))
-((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6))))) (-5 *1 (-568 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2251 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392)) (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392)) (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
-((-3597 (((-86) (-86)) 88 T ELT)) (-2258 ((|#2| |#2|) 28 T ELT)) (-2834 ((|#2| |#2| (-1005 |#2|)) 84 T ELT) ((|#2| |#2| (-1091)) 50 T ELT)) (-2256 ((|#2| |#2|) 27 T ELT)) (-2257 ((|#2| |#2|) 29 T ELT)) (-2255 (((-85) (-86)) 33 T ELT)) (-2260 ((|#2| |#2|) 24 T ELT)) (-2261 ((|#2| |#2|) 26 T ELT)) (-2259 ((|#2| |#2|) 25 T ELT)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -2255 ((-85) (-86))) (-15 -3597 ((-86) (-86))) (-15 -2261 (|#2| |#2|)) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2834 (|#2| |#2| (-1091))) (-15 -2834 (|#2| |#2| (-1005 |#2|)))) (-496) (-13 (-364 |#1|) (-916) (-1116))) (T -569))
-((-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)))) (-2834 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-2261 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2)) (-4 *2 (-13 (-364 *3) (-916) (-1116))))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4)) (-4 *4 (-13 (-364 *3) (-916) (-1116))))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))))))
-((-3494 (($ $) 38 T ELT)) (-3641 (($ $) 21 T ELT)) (-3492 (($ $) 37 T ELT)) (-3640 (($ $) 22 T ELT)) (-3496 (($ $) 36 T ELT)) (-3639 (($ $) 23 T ELT)) (-3629 (($) 48 T ELT)) (-3944 (($ $) 45 T ELT)) (-2258 (($ $) 17 T ELT)) (-2834 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)) (-3945 (($ $) 46 T ELT)) (-2256 (($ $) 15 T ELT)) (-2257 (($ $) 16 T ELT)) (-3497 (($ $) 35 T ELT)) (-3638 (($ $) 24 T ELT)) (-3495 (($ $) 34 T ELT)) (-3637 (($ $) 25 T ELT)) (-3493 (($ $) 33 T ELT)) (-3636 (($ $) 26 T ELT)) (-3500 (($ $) 44 T ELT)) (-3488 (($ $) 32 T ELT)) (-3498 (($ $) 43 T ELT)) (-3486 (($ $) 31 T ELT)) (-3502 (($ $) 42 T ELT)) (-3490 (($ $) 30 T ELT)) (-3503 (($ $) 41 T ELT)) (-3491 (($ $) 29 T ELT)) (-3501 (($ $) 40 T ELT)) (-3489 (($ $) 28 T ELT)) (-3499 (($ $) 39 T ELT)) (-3487 (($ $) 27 T ELT)) (-2260 (($ $) 19 T ELT)) (-2261 (($ $) 20 T ELT)) (-2259 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
-(((-570) (-113)) (T -570))
-((-2261 (*1 *1 *1) (-4 *1 (-570))) (-2260 (*1 *1 *1) (-4 *1 (-570))) (-2259 (*1 *1 *1) (-4 *1 (-570))) (-2258 (*1 *1 *1) (-4 *1 (-570))) (-2257 (*1 *1 *1) (-4 *1 (-570))) (-2256 (*1 *1 *1) (-4 *1 (-570))))
-(-13 (-872) (-1116) (-10 -8 (-15 -2261 ($ $)) (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-872) . T) ((-1116) . T) ((-1119) . T))
-((-2271 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2264 (((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 90 T ELT)) (-2265 (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|)) 91 T ELT)) (-2262 (((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|))) 136 T ELT)) (-2269 (((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 105 T ELT)) (-2263 (((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|))) 147 T ELT)) (-2267 (((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|))) 70 T ELT)) (-2266 (((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|))) 47 T ELT)) (-2270 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 61 T ELT)) (-2268 (((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|))) 113 T ELT)))
-(((-571 |#1| |#2|) (-10 -7 (-15 -2262 ((-2 (|:| |gblist| (-584 (-206 |#1| |#2|))) (|:| |gvlist| (-584 (-485)))) (-584 (-421 |#1| |#2|)))) (-15 -2263 ((-2 (|:| |glbase| (-584 (-206 |#1| |#2|))) (|:| |glval| (-584 (-485)))) (-584 (-206 |#1| |#2|)))) (-15 -2264 ((-584 (-206 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2265 ((-421 |#1| |#2|) (-584 (-421 |#1| |#2|)) (-774 |#1|))) (-15 -2266 ((-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2267 ((-1180 |#2|) (-421 |#1| |#2|) (-584 (-421 |#1| |#2|)))) (-15 -2268 ((-206 |#1| |#2|) (-584 |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2269 ((-584 (-421 |#1| |#2|)) (-774 |#1|) (-584 (-421 |#1| |#2|)) (-584 (-421 |#1| |#2|)))) (-15 -2270 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-584 (-206 |#1| |#2|)))) (-15 -2271 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-584 (-1091)) (-392)) (T -571))
-((-2271 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))) (-2270 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2269 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))) (-2268 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091))) (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-571 *3 *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2265 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091))) (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2263 (*1 *2 *3) (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485))))) (-5 *1 (-571 *4 *5)))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3998)) ELT)) (-3790 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -3998)) ELT) (((-51) $ (-1091) (-51)) 16 T ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-2232 (((-3 (-51) #1="failed") (-1074) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1074) $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1577 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -3998)) ELT)) (-3114 (((-51) $ (-1074)) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2273 (($ (-338)) 8 T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-51) (-1014)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-3803 (((-51) $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2200 (($ $ (-51)) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-51)) (-584 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-51) $) NIL (-12 (|has| $ (-318 (-51))) (|has| (-51) (-72))) ELT)) (-2206 (((-584 (-51)) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 (((-51) $ (-1074)) NIL T ELT) (((-51) $ (-1074) (-51)) NIL T ELT) (((-51) $ (-1091)) 14 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-553 (-773))) (|has| (-51) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-572) (-13 (-1108 (-1074) (-51)) (-241 (-1091) (-51)) (-10 -8 (-15 -2273 ($ (-338))) (-15 -2272 ($ $)) (-15 -3790 ((-51) $ (-1091) (-51)))))) (T -572))
-((-2273 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))) (-2272 (*1 *1 *1) (-5 *1 (-572))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 (-631 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1730 (((-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1792 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1904 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1796 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1180 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-3110 (((-831)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1705 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1793 (((-631 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1791 (((-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2406 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1908 (((-1086 (-858 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1707 (((-1086 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-1795 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1725 (((-1086 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3802 ((|#1| $ (-485)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3226 (((-631 |#1|) (-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1180 |#1|) $ (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3974 (($ (-1180 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1180 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1896 (((-584 (-858 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-584 (-858 |#1|)) (-1180 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3948 (((-773) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1708 (((-584 (-1180 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-496))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-496)))) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2547 (($ (-631 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-573 |#1| |#2|) (-13 (-684 |#1|) (-553 |#2|) (-10 -8 (-15 -3948 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-684 |#1|)) (T -573))
-((-3948 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3)))))
-((-3951 (($ $ |#2|) 10 T ELT)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -3951 (|#1| |#1| |#2|))) (-575 |#2|) (-146)) (T -574))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3532 (($ $ $) 40 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-575 |#1|) (-113) (-146)) (T -575))
-((-3532 (*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(-13 (-655 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3532 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2275 (((-3 (-751 |#2|) #1="failed") |#2| (-249 |#2|) (-1074)) 105 T ELT) (((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|))) 130 T ELT)) (-2274 (((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|))) 135 T ELT)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -2275 ((-3 (-751 |#2|) (-2 (|:| |leftHandLimit| (-3 (-751 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-751 |#2|) #1#))) #1#) |#2| (-249 (-751 |#2|)))) (-15 -2274 ((-3 (-744 |#2|) #1#) |#2| (-249 (-744 |#2|)))) (-15 -2275 ((-3 (-751 |#2|) #1#) |#2| (-249 |#2|) (-1074)))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -576))
-((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3)) (-5 *1 (-576 *6 *3)))) (-2274 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-744 *3))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) "failed")) (-5 *1 (-576 *5 *3)))))
-((-2275 (((-3 (-751 (-350 (-858 |#1|))) #1="failed") (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)) 86 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 20 T ELT) (((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|)))) 35 T ELT)) (-2274 (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 23 T ELT) (((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|)))) 43 T ELT)))
-(((-577 |#1|) (-10 -7 (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-751 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 |#1|))) #1#))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-744 (-858 |#1|))))) (-15 -2274 ((-744 (-350 (-858 |#1|))) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -2275 ((-3 (-751 (-350 (-858 |#1|))) #1#) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))) (-1074)))) (-392)) (T -577))
-((-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074)) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3)) (-5 *1 (-577 *6)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-751 *3) (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-751 *3) #1#))) #2="failed")) (-5 *1 (-577 *5)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-751 (-350 (-858 *5))) (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #1#)) (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #1#))) #2#)) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 11 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2853 (($ (-168 |#1|)) 12 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-774 |#1|)) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-578 |#1|) (-13 (-753) (-556 (-774 |#1|)) (-10 -8 (-15 -2853 ($ (-168 |#1|))))) (-584 (-1091))) (T -578))
-((-2853 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3)))))
-((-2278 (((-3 (-1180 (-350 |#1|)) #1="failed") (-1180 |#2|) |#2|) 64 (-2562 (|has| |#1| (-312))) ELT) (((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2276 (((-85) (-1180 |#2|)) 33 T ELT)) (-2277 (((-3 (-1180 |#1|) #1#) (-1180 |#2|)) 40 T ELT)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -2276 ((-85) (-1180 |#2|))) (-15 -2277 ((-3 (-1180 |#1|) #1="failed") (-1180 |#2|))) (IF (|has| |#1| (-312)) (-15 -2278 ((-3 (-1180 |#1|) #1#) (-1180 |#2|) |#2|)) (-15 -2278 ((-3 (-1180 (-350 |#1|)) #1#) (-1180 |#2|) |#2|)))) (-496) (-13 (-962) (-581 |#1|))) (T -579))
-((-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5))) (-5 *1 (-579 *5 *4)))) (-2278 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5))) (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4)))) (-2277 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3776 (((-584 (-454 |#1| (-578 |#2|))) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2895 (($ |#1| (-578 |#2|)) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2279 (($ (-584 |#1|)) 25 T ELT)) (-1984 (((-578 |#2|) $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3913 (((-107)) 16 T ELT)) (-3226 (((-1180 |#1|) $) 44 T ELT)) (-3974 (($ (-584 (-454 |#1| (-578 |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-578 |#2|)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 20 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 17 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-580 |#1| |#2|) (-13 (-1188 |#1|) (-556 (-578 |#2|)) (-450 |#1| (-578 |#2|)) (-10 -8 (-15 -2279 ($ (-584 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -580))
-((-2279 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4)) (-14 *4 (-584 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091))))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2280 (((-631 |#1|) (-631 $)) 36 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 35 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2281 (((-631 |#1|) (-1180 $)) 38 T ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 37 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-581 |#1|) (-113) (-962)) (T -581))
-((-2281 (*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2281 (*1 *2 *3 *1) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4)))))) (-2280 (*1 *2 *3) (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962)) (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5)))))))
-(-13 (-591 |t#1|) (-10 -8 (-15 -2281 ((-631 |t#1|) (-1180 $))) (-15 -2281 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-1180 $) $)) (-15 -2280 ((-631 |t#1|) (-631 $))) (-15 -2280 ((-2 (|:| |mat| (-631 |t#1|)) (|:| |vec| (-1180 |t#1|))) (-631 $) (-1180 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1215 (((-85) $ $) NIL T ELT)) (-2282 (($ (-584 |#1|)) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ (-580 |#1| |#2|)) 46 T ELT)) (-3913 (((-107)) 13 T ELT)) (-3226 (((-1180 |#1|) $) 42 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 14 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-582 |#1| |#2|) (-13 (-1188 |#1|) (-241 (-580 |#1| |#2|) |#1|) (-10 -8 (-15 -2282 ($ (-584 |#1|))) (-15 -3226 ((-1180 |#1|) $)))) (-312) (-584 (-1091))) (T -582))
-((-2282 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4)) (-14 *4 (-584 (-1091))))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312)) (-14 *4 (-584 (-1091))))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
-(((-583 |#1|) (-113) (-1026)) (T -583))
-NIL
-(-13 (-589 |t#1|) (-964 |t#1|))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 |#1|) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 68 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) NIL (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1734 (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 26 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 24 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-2285 (($ $ $) 74 (|has| |#1| (-1014)) ELT)) (-2284 (($ $ $) 75 (|has| |#1| (-1014)) ELT)) (-2283 (($ $ $) 79 (|has| |#1| (-1014)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) 31 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 32 T ELT)) (-3801 (($ $) 21 T ELT) (($ $ (-695)) 35 T ELT)) (-2369 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 73 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3408 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3421 (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) NIL T ELT)) (-2287 (((-85) $) 9 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($) 7 T CONST)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) 34 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3520 (($ $ $) NIL (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2610 (((-584 |#1|) $) 30 T ELT)) (-3247 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3536 (($ |#1|) NIL T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) 59 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3611 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 16 T ELT) (($ $ (-695)) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3446 (((-85) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 15 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) 20 T ELT)) (-3567 (($) 19 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 78 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-1572 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3794 (($ $) NIL T ELT)) (-3792 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) 40 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 36 T ELT)) (-3974 (((-474) $) 87 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 29 T ELT)) (-3463 (($ |#1| $) 10 T ELT)) (-3793 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3804 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-584 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3948 (((-773) $) 51 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2286 (($ $ $) 11 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 13 T ELT)))
-(((-584 |#1|) (-13 (-609 |#1|) (-10 -8 (-15 -2288 ($) -3954) (-15 -2287 ((-85) $)) (-15 -3463 ($ |#1| $)) (-15 -2286 ($ $ $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -2285 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $))) |%noBranch|))) (-1130)) (T -584))
-((-2288 (*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2287 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2286 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-((-3843 (((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|) 18 T ELT)) (-3960 (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 13 T ELT)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3843 ((-584 |#2|) (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-584 |#1|) |#2|)) (-15 -3960 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)))) (-1130) (-1130)) (T -585))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-585 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5)))))
-((-3424 ((|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|) 17 T ELT) ((|#2| (-584 |#1|) (-584 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|)) 12 T ELT)))
-(((-586 |#1| |#2|) (-10 -7 (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|))) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1|)) (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) |#2|)) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1| |#2|)) (-15 -3424 ((-1 |#2| |#1|) (-584 |#1|) (-584 |#2|) (-1 |#2| |#1|))) (-15 -3424 (|#2| (-584 |#1|) (-584 |#2|) |#1| (-1 |#2| |#1|)))) (-1014) (-1130)) (T -586))
-((-3424 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-586 *5 *6)))) (-3424 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130)) (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5)))) (-3424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130)) (-5 *1 (-586 *5 *2)))) (-3424 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6)))))
-((-3960 (((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)) 21 T ELT)))
-(((-587 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-584 |#3|) (-1 |#3| |#1| |#2|) (-584 |#1|) (-584 |#2|)))) (-1130) (-1130) (-1130)) (T -587))
-((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8)) (-5 *1 (-587 *6 *7 *8)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-588 |#1|) (-13 (-996) (-553 |#1|)) (-1014)) (T -588))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
-(((-589 |#1|) (-113) (-1026)) (T -589))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026)))))
-(-13 (-1014) (-10 -8 (-15 * ($ |t#1| $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2289 (($ |#1| |#1| $) 45 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2369 (($ $) 47 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 58 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2610 (((-584 |#1|) $) 9 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 49 T ELT)) (-3611 (($ |#1| $) 30 T ELT) (($ |#1| $ (-695)) 44 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 52 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 23 T ELT)) (-3567 (($) 29 T ELT)) (-2290 (((-85) $) 56 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 69 T ELT)) (-1467 (($) 26 T ELT) (($ (-584 |#1|)) 19 T ELT)) (-1731 (((-695) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 20 T ELT)) (-3974 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3948 (((-773) $) 14 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 17 T ELT)))
-(((-590 |#1|) (-13 (-635 |#1|) (-318 |#1|) (-10 -8 (-15 -2290 ((-85) $)) (-15 -2289 ($ |#1| |#1| $)))) (-1014)) (T -590))
-((-2290 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))) (-2289 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
-(((-591 |#1|) (-113) (-971)) (T -591))
-NIL
-(-13 (-21) (-589 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695) $) 17 T ELT)) (-2296 (($ $ |#1|) 68 T ELT)) (-2298 (($ $) 39 T ELT)) (-2299 (($ $) 37 T ELT)) (-3159 (((-3 |#1| "failed") $) 60 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2294 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3535 (((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485)) 55 T ELT)) (-2300 ((|#1| $ (-485)) 35 T ELT)) (-2301 ((|#2| $ (-485)) 34 T ELT)) (-2291 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2292 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2297 (($) 13 T ELT)) (-2303 (($ |#1| |#2|) 24 T ELT)) (-2302 (($ (-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|)))) 25 T ELT)) (-2304 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $) 14 T ELT)) (-2295 (($ |#1| $) 69 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2293 (((-85) $ $) 74 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 27 T ELT)))
-(((-592 |#1| |#2| |#3|) (-13 (-1014) (-951 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-1 (-773) (-773) (-773)) (-1 (-773) (-773) (-773)) (-485))) (-15 -2304 ((-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))) $)) (-15 -2303 ($ |#1| |#2|)) (-15 -2302 ($ (-584 (-2 (|:| |gen| |#1|) (|:| -3945 |#2|))))) (-15 -2301 (|#2| $ (-485))) (-15 -2300 (|#1| $ (-485))) (-15 -2299 ($ $)) (-15 -2298 ($ $)) (-15 -3138 ((-695) $)) (-15 -2297 ($)) (-15 -2296 ($ $ |#1|)) (-15 -2295 ($ |#1| $)) (-15 -2294 ($ |#1| |#2| $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-85) $ $)) (-15 -2292 ($ (-1 |#2| |#2|) $)) (-15 -2291 ($ (-1 |#1| |#1|) $)))) (-1014) (-23) |#2|) (T -592))
-((-3535 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773)) (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2303 (*1 *1 *2 *3) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))) (-2301 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014)) (-14 *5 *2))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2299 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-3138 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2297 (*1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2296 (*1 *1 *1 *2) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))) (-2292 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-((-2202 (((-485) $) 30 T ELT)) (-2305 (($ |#2| $ (-485)) 26 T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) 12 T ELT)) (-2205 (((-85) (-485) $) 17 T ELT)) (-3804 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)))
-(((-593 |#1| |#2|) (-10 -7 (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -2202 ((-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2205 ((-85) (-485) |#1|))) (-594 |#2|) (-1130)) (T -593))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-594 |#1|) (-113) (-1130)) (T -594))
-((-3616 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3804 (*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-2305 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))) (-2305 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3998)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))))
-(-13 (-539 (-485) |t#1|) (-124 |t#1|) (-241 (-1147 (-485)) $) (-10 -8 (-15 -3616 ($ (-695) |t#1|)) (-15 -3804 ($ $ |t#1|)) (-15 -3804 ($ |t#1| $)) (-15 -3804 ($ $ $)) (-15 -3804 ($ (-584 $))) (-15 -3960 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2306 ($ $ (-485))) (-15 -2306 ($ $ (-1147 (-485)))) (-15 -2305 ($ |t#1| $ (-485))) (-15 -2305 ($ $ $ (-485))) (IF (|has| $ (-6 -3998)) (-15 -3790 (|t#1| $ (-1147 (-485)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 15 T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-715)) ELT)) (-3726 (($) NIL T CONST)) (-3188 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3000 ((|#1| $) 23 T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-715)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-715)) ELT)) (-3244 (((-1074) $) 48 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2999 ((|#3| $) 24 T ELT)) (-3948 (((-773) $) 43 T ELT)) (-1266 (((-85) $ $) 22 T ELT)) (-3385 (($ $) NIL (|has| |#1| (-715)) ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-3058 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-715)) ELT)) (-2687 (((-85) $ $) 26 (|has| |#1| (-715)) ELT)) (-3951 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3839 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 29 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-595 |#1| |#2| |#3|) (-13 (-655 |#2|) (-10 -8 (IF (|has| |#1| (-715)) (-6 (-715)) |%noBranch|) (-15 -3951 ($ $ |#3|)) (-15 -3951 ($ |#1| |#3|)) (-15 -3000 (|#1| $)) (-15 -2999 (|#3| $)))) (-655 |#2|) (-146) (|SubsetCategory| (-664) |#2|)) (T -595))
-((-3951 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)) (-4 *2 (|SubsetCategory| (-664) *4)))) (-3951 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4)) (-4 *3 (|SubsetCategory| (-664) *4)))) (-3000 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-664) *3)))) (-2999 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4)))))
-((-3575 (((-3 |#2| #1="failed") |#3| |#2| (-1091) |#2| (-584 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1#) |#3| |#2| (-1091)) 44 T ELT)))
-(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) #1="failed") |#3| |#2| (-1091))) (-15 -3575 ((-3 |#2| #1#) |#3| |#2| (-1091) |#2| (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -596))
-((-3575 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 31 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) 24 T ELT)) (-2311 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 8 T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-597 |#1| |#2|) (-601 |#1|) (-962) (-1 |#1| |#1|)) (T -597))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-598 |#1|) (-601 |#1|) (-190)) (T -598))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2307 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) NIL (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2311 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-599 |#1| |#2|) (-13 (-601 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-591 |#1|) (-10 -8 (-15 -3760 ($ $))))) (T -599))
-NIL
-((-2307 (($ $) 29 T ELT)) (-2522 (($ $) 27 T ELT)) (-2671 (($) 13 T ELT)))
-(((-600 |#1| |#2|) (-10 -7 (-15 -2307 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -2671 (|#1|))) (-601 |#2|) (-962)) (T -600))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2307 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2309 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2310 (($ $ (-695)) 97 (|has| |#1| (-312)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #2="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #2#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3961 (($ $) 77 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 75 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3802 ((|#1| $ |#1|) 101 T ELT)) (-2311 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3950 (((-695) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3819 (((-584 |#1|) $) 74 T ELT)) (-3679 ((|#1| $ (-695)) 76 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2522 (($ $) 99 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($) 100 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-601 |#1|) (-113) (-962)) (T -601))
-((-2671 (*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2522 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)))) (-2309 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312)))) (-2307 (*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2311 (*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(-13 (-762 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2671 ($)) (-15 -2522 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2309 ($ $ $)) (-15 -2310 ($ $ (-695))) (-15 -2307 ($ $)) (-15 -2311 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-762 |#1|) . T))
-((-2308 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3734 (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 19 T ELT)))
-(((-602 |#1| |#2|) (-10 -7 (-15 -3734 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3734 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|)))) (-15 -2308 ((-584 (-598 (-350 |#2|))) (-598 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -602))
-((-2308 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5)) (-5 *3 (-598 (-350 *5))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6)) (-5 *3 (-598 (-350 *6))))))
-((-2309 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2310 ((|#2| |#2| (-695) (-1 |#1| |#1|)) 45 T ELT)) (-2311 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -2309 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| (-695) (-1 |#1| |#1|))) (-15 -2311 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -603))
-((-2311 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))) (-2310 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2)) (-4 *2 (-601 *5)))) (-2309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2)) (-4 *2 (-601 *4)))))
-((-2312 (($ $ $) 9 T ELT)))
-(((-604 |#1|) (-10 -7 (-15 -2312 (|#1| |#1| |#1|))) (-605)) (T -604))
-NIL
-((-2314 (($ $) 8 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-2313 (($ $ $) 7 T ELT)))
-(((-605) (-113)) (T -605))
-((-2314 (*1 *1 *1) (-4 *1 (-605))) (-2313 (*1 *1 *1 *1) (-4 *1 (-605))) (-2312 (*1 *1 *1 *1) (-4 *1 (-605))))
-(-13 (-1130) (-10 -8 (-15 -2314 ($ $)) (-15 -2313 ($ $ $)) (-15 -2312 ($ $ $))))
-(((-13) . T) ((-1130) . T))
-((-2315 (((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)) 33 T ELT)))
-(((-606 |#1|) (-10 -7 (-15 -2315 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|)))) (-822)) (T -606))
-((-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822)) (-5 *1 (-606 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 85 T ELT)) (-3949 (($ $ (-695)) 95 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 50 T ELT)) (-3159 (((-3 (-615 |#1|) #1#) $) NIL T ELT)) (-3158 (((-615 |#1|) $) NIL T ELT)) (-3961 (($ $) 94 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-615 |#1|) |#2|) 70 T ELT)) (-3938 (($ $) 90 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (((-1205 |#1| |#2|) (-1205 |#1| |#2|) $) 49 T ELT)) (-1753 (((-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-615 |#1|) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ |#1| $) 32 T ELT) (($ $ (-584 |#1|) (-584 $)) 34 T ELT)) (-3950 (((-695) $) 92 T ELT)) (-3532 (($ $ $) 20 T ELT) (($ (-615 |#1|) (-615 |#1|)) 79 T ELT) (($ (-615 |#1|) $) 77 T ELT) (($ $ (-615 |#1|)) 78 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1196 |#1| |#2|) $) 60 T ELT) (((-1205 |#1| |#2|) $) 43 T ELT) (($ (-615 |#1|)) 27 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-615 |#1|)) NIL T ELT)) (-3956 ((|#2| (-1205 |#1| |#2|) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-615 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3947 (((-3 $ #1#) (-1196 |#1| |#2|)) 62 T ELT)) (-1737 (($ (-615 |#1|)) 14 T ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-615 |#1|)) NIL T ELT)))
-(((-607 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-615 |#1|)) (-10 -8 (-15 -3947 ((-3 $ "failed") (-1196 |#1| |#2|))) (-15 -3532 ($ (-615 |#1|) (-615 |#1|))) (-15 -3532 ($ (-615 |#1|) $)) (-15 -3532 ($ $ (-615 |#1|))))) (-757) (-146)) (T -607))
-((-3947 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-607 *3 *4)))) (-3532 (*1 *1 *2 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3532 (*1 *1 *2 *1) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146)))))
-((-1736 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1734 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1571 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2298 (($ $) 65 T ELT)) (-2369 (($ $) 74 T ELT)) (-3407 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3421 (((-485) |#2| $ (-485)) 71 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) (-1 (-85) |#2|) $) 54 T ELT)) (-3616 (($ (-695) |#2|) 63 T ELT)) (-2858 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3520 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3536 (($ |#2|) 15 T ELT)) (-3611 (($ $ $ (-485)) 42 T ELT) (($ |#2| $ (-485)) 40 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1572 (($ $ (-1147 (-485))) 51 T ELT) (($ $ (-485)) 44 T ELT)) (-1735 (($ $ $ (-485)) 70 T ELT)) (-3402 (($ $) 68 T ELT)) (-2687 (((-85) $ $) 76 T ELT)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -3536 (|#1| |#2|)) (-15 -1572 (|#1| |#1| (-485))) (-15 -1572 (|#1| |#1| (-1147 (-485)))) (-15 -3407 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3611 (|#1| |#2| |#1| (-485))) (-15 -3611 (|#1| |#1| |#1| (-485))) (-15 -2858 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1571 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3407 (|#1| |#2| |#1|)) (-15 -2369 (|#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1736 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3520 (|#1| |#1| |#1|)) (-15 -1736 ((-85) |#1|)) (-15 -1735 (|#1| |#1| |#1| (-485))) (-15 -2298 (|#1| |#1|)) (-15 -1734 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1734 (|#1| |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3616 (|#1| (-695) |#2|)) (-15 -3960 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#1| |#1|))) (-609 |#2|) (-1130)) (T -608))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3797 ((|#1| $) 62 T ELT)) (-3799 (($ $) 64 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 99 (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-1736 (((-85) $) 154 (|has| |#1| (-757)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-1734 (($ $) 158 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 157 (|has| $ (-1036 |#1|)) ELT)) (-2911 (($ $) 153 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-3444 (((-85) $ (-695)) 82 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 116 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 131 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) 63 T ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 156 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 146 T ELT)) (-3801 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-2369 (($ $) 133 (|has| |#1| (-72)) ELT)) (-1354 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 132 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 127 T ELT)) (-3408 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 138 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-72)) ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 89 T ELT)) (-3445 (((-85) $) 85 T ELT)) (-3421 (((-485) |#1| $ (-485)) 151 (|has| |#1| (-72)) ELT) (((-485) |#1| $) 150 (|has| |#1| (-72)) ELT) (((-485) (-1 (-85) |#1|) $) 149 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 108 T ELT)) (-3721 (((-85) $ (-695)) 83 T ELT)) (-2201 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 164 (|has| |#1| (-757)) ELT)) (-2858 (($ $ $) 134 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 130 T ELT)) (-3520 (($ $ $) 152 (|has| |#1| (-757)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 145 T ELT)) (-2610 (((-584 |#1|) $) 140 T ELT)) (-3247 (((-85) |#1| $) 136 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 163 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3536 (($ |#1|) 124 T ELT)) (-3718 (((-85) $ (-695)) 84 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-3611 (($ $ $ (-485)) 129 T ELT) (($ |#1| $ (-485)) 128 T ELT)) (-2305 (($ $ $ (-485)) 115 T ELT) (($ |#1| $ (-485)) 114 T ELT)) (-2204 (((-584 (-485)) $) 94 T ELT)) (-2205 (((-85) (-485) $) 93 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2200 (($ $ |#1|) 98 (|has| $ (-6 -3998)) ELT)) (-3446 (((-85) $) 86 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 142 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 92 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 107 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-1572 (($ $ (-1147 (-485))) 126 T ELT) (($ $ (-485)) 125 T ELT)) (-2306 (($ $ (-1147 (-485))) 113 T ELT) (($ $ (-485)) 112 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3794 (($ $) 59 T ELT)) (-3792 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 60 T ELT)) (-3796 (($ $) 61 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 141 T ELT) (((-695) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-1735 (($ $ $ (-485)) 155 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 106 T ELT)) (-3793 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3804 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-2568 (((-85) $ $) 162 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 160 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 161 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 159 (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 144 T ELT)))
-(((-609 |#1|) (-113) (-1130)) (T -609))
-((-3536 (*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130)))))
-(-13 (-1065 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3536 ($ |t#1|))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-924 |#1|) . T) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T))
-((-3575 (((-584 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|))) |#4| |#3|) 60 T ELT)) (-3110 (((-695) |#4| |#3|) 18 T ELT)) (-3342 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2316 (((-85) |#4| |#3|) 14 T ELT)))
-(((-610 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3575 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|)) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2013 (-584 |#3|)))) |#4| (-584 |#3|))) (-15 -3342 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2316 ((-85) |#4| |#3|)) (-15 -3110 ((-695) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-10 -7 (-6 -3998))) (-13 (-324 |#1|) (-10 -7 (-6 -3998))) (-628 |#1| |#2| |#3|)) (T -610))
-((-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-695)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-2316 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-85)) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3342 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3998)))) (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))) (-5 *1 (-610 *4 *5 *2 *3)) (-4 *3 (-628 *4 *5 *2)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2013 (-584 *7))))) (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
-((-3575 (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|))) 22 T ELT) (((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 14 T ELT)) (-3110 (((-695) (-631 |#1|) (-1180 |#1|)) 30 T ELT)) (-3342 (((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|)) 24 T ELT)) (-2316 (((-85) (-631 |#1|) (-1180 |#1|)) 27 T ELT)))
-(((-611 |#1|) (-10 -7 (-15 -3575 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|))) (-15 -3575 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-584 (-584 |#1|)) (-1180 |#1|))) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-631 |#1|) (-584 (-1180 |#1|)))) (-15 -3575 ((-584 (-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|))))) (-584 (-584 |#1|)) (-584 (-1180 |#1|)))) (-15 -3342 ((-3 (-1180 |#1|) #1#) (-631 |#1|) (-1180 |#1|))) (-15 -2316 ((-85) (-631 |#1|) (-1180 |#1|))) (-15 -3110 ((-695) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -611))
-((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-611 *5)))) (-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-611 *5)))) (-3342 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *1 (-611 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1="failed")) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5)))))) (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *5) #1#)) (|:| -2013 (-584 (-1180 *5))))) (-5 *1 (-611 *5)) (-5 *4 (-1180 *5)))))
-((-2317 (((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)) 51 T ELT)))
-(((-612 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2317 ((-2 (|:| |particular| (-3 (-1180 (-350 |#4|)) "failed")) (|:| -2013 (-584 (-1180 (-350 |#4|))))) (-584 |#4|) (-584 |#3|)))) (-496) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -612))
-((-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed")) (|:| -2013 (-584 (-1180 (-350 *8)))))) (-5 *1 (-612 *5 *6 *7 *8)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1776 (((-3 $ #1="failed")) NIL (|has| |#2| (-496)) ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-3225 (((-1180 (-631 |#2|))) NIL T ELT) (((-1180 (-631 |#2|)) (-1180 $)) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-1730 (((-1180 $)) 41 T ELT)) (-3335 (($ |#2|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1792 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1790 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1904 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2408 (($ $ (-831)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1794 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1724 (((-1086 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-1796 (($ (-1180 |#2|)) NIL T ELT) (($ (-1180 |#2|) (-1180 $)) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-695) $) NIL (|has| |#2| (-496)) ELT) (((-831)) 42 T ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2435 (($ $ (-831)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3109 (((-695) $) NIL (|has| |#2| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#2| $) NIL (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#2|))) NIL T ELT)) (-3328 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3596 (((-584 (-584 |#2|)) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-1911 (((-3 (-2 (|:| |particular| $) (|:| -2013 (-584 $))) #1#)) NIL (|has| |#2| (-496)) ELT)) (-1705 (((-3 $ #1#)) NIL (|has| |#2| (-496)) ELT)) (-1793 (((-631 |#2|)) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1729 ((|#2| $) NIL T ELT)) (-1791 (((-631 |#2|) $) NIL T ELT) (((-631 |#2|) $ (-1180 $)) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2406 (((-3 $ #1#) $) NIL (|has| |#2| (-496)) ELT)) (-1908 (((-1086 (-858 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-831)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1707 (((-1086 |#2|) $) NIL (|has| |#2| (-496)) ELT)) (-1795 ((|#2|) NIL T ELT) ((|#2| (-1180 $)) NIL T ELT)) (-1725 (((-1086 |#2|) $) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-3592 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) 27 T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3334 (($ (-584 |#2|)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3333 (((-197 |#1| |#2|) $) NIL T ELT)) (-3330 ((|#2| $) NIL (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3226 (((-631 |#2|) (-1180 $)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT) (((-631 |#2|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#2|) $ (-1180 $)) 30 T ELT)) (-3974 (($ (-1180 |#2|)) NIL T ELT) (((-1180 |#2|) $) NIL T ELT)) (-1896 (((-584 (-858 |#2|))) NIL T ELT) (((-584 (-858 |#2|)) (-1180 $)) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-1723 (((-85)) NIL T ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 40 T ELT)) (-1708 (((-584 (-1180 |#2|))) NIL (|has| |#2| (-496)) ELT)) (-2438 (($ $ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-2547 (($ (-631 |#2|) $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-613 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-361 |#2|)) (-831) (-146)) (T -613))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3250 (((-584 (-1050)) $) 12 T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-614) (-13 (-996) (-10 -8 (-15 -3250 ((-584 (-1050)) $))))) (T -614))
-((-3250 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) NIL T ELT)) (-3139 (($ $) 62 T ELT)) (-2666 (((-85) $) NIL T ELT)) (-3159 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2320 (((-3 $ #1#) (-740 |#1|)) 28 T ELT)) (-2322 (((-85) (-740 |#1|)) 18 T ELT)) (-2321 (($ (-740 |#1|)) 29 T ELT)) (-2513 (((-85) $ $) 36 T ELT)) (-3835 (((-831) $) 43 T ELT)) (-3140 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3734 (((-584 $) (-740 |#1|)) 20 T ELT)) (-3948 (((-773) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-740 |#1|) $) 47 T ELT) (((-619 |#1|) $) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2319 (((-58 (-584 $)) (-584 |#1|) (-831)) 67 T ELT)) (-2318 (((-584 $) (-584 |#1|) (-831)) 70 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 63 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 46 T ELT)))
-(((-615 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 -2666 ((-85) $)) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3835 ((-831) $)) (-15 -2513 ((-85) $ $)) (-15 -3948 ((-740 |#1|) $)) (-15 -3948 ((-619 |#1|) $)) (-15 -3734 ((-584 $) (-740 |#1|))) (-15 -2322 ((-85) (-740 |#1|))) (-15 -2321 ($ (-740 |#1|))) (-15 -2320 ((-3 $ "failed") (-740 |#1|))) (-15 -3936 ((-584 |#1|) $)) (-15 -2319 ((-58 (-584 $)) (-584 |#1|) (-831))) (-15 -2318 ((-584 $) (-584 |#1|) (-831))))) (-757)) (T -615))
-((-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4))) (-5 *1 (-615 *4)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-2320 (*1 *1 *2) (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5))) (-5 *1 (-615 *5)))))
-((-3404 ((|#2| $) 96 T ELT)) (-3799 (($ $) 117 T ELT)) (-3444 (((-85) $ (-695)) 35 T ELT)) (-3801 (($ $) 105 T ELT) (($ $ (-695)) 108 T ELT)) (-3445 (((-85) $) 118 T ELT)) (-3033 (((-584 $) $) 92 T ELT)) (-3029 (((-85) $ $) 88 T ELT)) (-3721 (((-85) $ (-695)) 33 T ELT)) (-2201 (((-485) $) 62 T ELT)) (-2202 (((-485) $) 61 T ELT)) (-3718 (((-85) $ (-695)) 31 T ELT)) (-3529 (((-85) $) 94 T ELT)) (-3800 ((|#2| $) 109 T ELT) (($ $ (-695)) 113 T ELT)) (-2305 (($ $ $ (-485)) 79 T ELT) (($ |#2| $ (-485)) 78 T ELT)) (-2204 (((-584 (-485)) $) 60 T ELT)) (-2205 (((-85) (-485) $) 55 T ELT)) (-3803 ((|#2| $) NIL T ELT) (($ $ (-695)) 104 T ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3446 (((-85) $) 120 T ELT)) (-2206 (((-584 |#2|) $) 42 T ELT)) (-3802 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1147 (-485))) 75 T ELT) ((|#2| $ (-485)) 53 T ELT) ((|#2| $ (-485) |#2|) 54 T ELT)) (-3031 (((-485) $ $) 87 T ELT)) (-2306 (($ $ (-1147 (-485))) 74 T ELT) (($ $ (-485)) 68 T ELT)) (-3635 (((-85) $) 83 T ELT)) (-3794 (($ $) 101 T ELT)) (-3795 (((-695) $) 100 T ELT)) (-3796 (($ $) 99 T ELT)) (-3532 (($ (-584 |#2|)) 49 T ELT)) (-2893 (($ $) 122 T ELT)) (-3524 (((-584 $) $) 86 T ELT)) (-3030 (((-85) $ $) 85 T ELT)) (-3058 (((-85) $ $) 20 T ELT)))
-(((-616 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-485))) (-15 -3444 ((-85) |#1| (-695))) (-15 -3721 ((-85) |#1| (-695))) (-15 -3718 ((-85) |#1| (-695))) (-15 -3445 ((-85) |#1|)) (-15 -3446 ((-85) |#1|)) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -2206 ((-584 |#2|) |#1|)) (-15 -2205 ((-85) (-485) |#1|)) (-15 -2204 ((-584 (-485)) |#1|)) (-15 -2202 ((-485) |#1|)) (-15 -2201 ((-485) |#1|)) (-15 -3532 (|#1| (-584 |#2|))) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -3794 (|#1| |#1|)) (-15 -3795 ((-695) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| "last")) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3802 (|#1| |#1| "rest")) (-15 -3801 (|#1| |#1|)) (-15 -3803 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| "first")) (-15 -3803 (|#2| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3031 ((-485) |#1| |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| "value")) (-15 -3404 (|#2| |#1|)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-617 |#2|) (-1130)) (T -616))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3797 ((|#1| $) 62 T ELT)) (-3799 (($ $) 64 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 99 (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) 82 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 116 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 103 T ELT)) (-3798 ((|#1| $) 63 T ELT)) (-3726 (($) 6 T CONST)) (-2324 (($ $) 124 T ELT)) (-3801 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-1354 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 104 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 89 T ELT)) (-3445 (((-85) $) 85 T ELT)) (-2323 (((-695) $) 123 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 108 T ELT)) (-3721 (((-85) $ (-695)) 83 T ELT)) (-2201 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3718 (((-85) $ (-695)) 84 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-2326 (($ $) 126 T ELT)) (-2327 (((-85) $) 127 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-2305 (($ $ $ (-485)) 115 T ELT) (($ |#1| $ (-485)) 114 T ELT)) (-2204 (((-584 (-485)) $) 94 T ELT)) (-2205 (((-85) (-485) $) 93 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2325 ((|#1| $) 125 T ELT)) (-3803 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2200 (($ $ |#1|) 98 (|has| $ (-6 -3998)) ELT)) (-3771 (($ $ (-485)) 122 T ELT)) (-3446 (((-85) $) 86 T ELT)) (-2328 (((-85) $) 128 T ELT)) (-2329 (((-85) $) 129 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 92 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 107 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-2306 (($ $ (-1147 (-485))) 113 T ELT) (($ $ (-485)) 112 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3794 (($ $) 59 T ELT)) (-3792 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 60 T ELT)) (-3796 (($ $) 61 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 106 T ELT)) (-3793 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-2893 (($ $) 121 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-617 |#1|) (-113) (-1130)) (T -617))
-((-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-3712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-2326 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2324 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(-13 (-1065 |t#1|) (-10 -8 (-15 -3408 ($ (-1 (-85) |t#1|) $)) (-15 -3712 ($ (-1 (-85) |t#1|) $)) (-15 -2329 ((-85) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ($ $)) (-15 -2325 (|t#1| $)) (-15 -2324 ($ $)) (-15 -2323 ((-695) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1065 |#1|) . T) ((-1130) . T) ((-1169 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3180 (((-423) $) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-618) (-13 (-996) (-10 -8 (-15 -3180 ((-423) $)) (-15 -3235 ((-1050) $))))) (T -618))
-((-3180 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 15 T ELT)) (-3139 (($ $) 19 T ELT)) (-2666 (((-85) $) 20 T ELT)) (-3159 (((-3 |#1| "failed") $) 23 T ELT)) (-3158 ((|#1| $) 21 T ELT)) (-3801 (($ $) 37 T ELT)) (-3938 (($ $) 25 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2513 (((-85) $ $) 46 T ELT)) (-3835 (((-831) $) 40 T ELT)) (-3140 (($ $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) 36 T ELT)) (-3948 (((-773) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-740 |#1|) $) 28 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
-(((-619 |#1|) (-13 (-757) (-951 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3948 ((-740 |#1|) $)) (-15 -3803 (|#1| $)) (-15 -3140 ($ $)) (-15 -3835 ((-831) $)) (-15 -2513 ((-85) $ $)) (-15 -3938 ($ $)) (-15 -3801 ($ $)) (-15 -2666 ((-85) $)) (-15 -3139 ($ $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -619))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3803 (*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3140 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757)))))
-((-2338 ((|#1| (-1 |#1| (-695) |#1|) (-695) |#1|) 11 T ELT)) (-2330 ((|#1| (-1 |#1| |#1|) (-695) |#1|) 9 T ELT)))
-(((-620 |#1|) (-10 -7 (-15 -2330 (|#1| (-1 |#1| |#1|) (-695) |#1|)) (-15 -2338 (|#1| (-1 |#1| (-695) |#1|) (-695) |#1|))) (-1014)) (T -620))
-((-2338 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))) (-2330 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
-((-2332 ((|#2| |#1| |#2|) 9 T ELT)) (-2331 ((|#1| |#1| |#2|) 8 T ELT)))
-(((-621 |#1| |#2|) (-10 -7 (-15 -2331 (|#1| |#1| |#2|)) (-15 -2332 (|#2| |#1| |#2|))) (-1014) (-1014)) (T -621))
-((-2332 (*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))) (-2331 (*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-((-2333 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
-(((-622 |#1| |#2| |#3|) (-10 -7 (-15 -2333 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1014) (-1014) (-1014)) (T -622))
-((-2333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 22 T ELT)) (-3319 (((-584 (-1131)) $) 20 T ELT)) (-2334 (($ (-584 (-1131)) (-1131)) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 30 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT) (((-1131) $) 23 T ELT) (($ (-1029)) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-623) (-13 (-996) (-553 (-1131)) (-10 -8 (-15 -3948 ($ (-1029))) (-15 -2334 ($ (-584 (-1131)) (-1131))) (-15 -3319 ((-584 (-1131)) $)) (-15 -3320 ((-1131) $))))) (T -623))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623)))) (-2334 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623)))))
-((-2338 (((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)) 26 T ELT)) (-2335 (((-1 |#1|) |#1|) 8 T ELT)) (-2337 ((|#1| |#1|) 19 T ELT)) (-2336 (((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3948 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-695)) 23 T ELT)))
-(((-624 |#1|) (-10 -7 (-15 -2335 ((-1 |#1|) |#1|)) (-15 -3948 ((-1 |#1|) |#1|)) (-15 -2336 (|#1| (-1 |#1| |#1|))) (-15 -2336 ((-584 |#1|) (-1 (-584 |#1|) (-584 |#1|)) (-485))) (-15 -2337 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-695))) (-15 -2338 ((-1 |#1| (-695) |#1|) (-1 |#1| (-695) |#1|)))) (-1014)) (T -624))
-((-2338 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4)))) (-2337 (*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5)) (-5 *1 (-624 *5)) (-4 *5 (-1014)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))) (-2335 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
-((-2341 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2340 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3954 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2339 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
-(((-625 |#1| |#2|) (-10 -7 (-15 -2339 ((-1 |#2| |#1|) |#2|)) (-15 -2340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3954 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2341 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1014) (-1014)) (T -625))
-((-2341 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5)) (-4 *4 (-1014)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5)) (-5 *1 (-625 *4 *5)))) (-2339 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014)) (-4 *3 (-1014)))))
-((-2346 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2342 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2343 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2345 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
-(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2342 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2343 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2345 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2346 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1014) (-1014) (-1014)) (T -626))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
-((-3840 (($ (-695) (-695)) 42 T ELT)) (-2351 (($ $ $) 73 T ELT)) (-3416 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3122 (((-85) $) 36 T ELT)) (-2350 (($ $ (-485) (-485)) 84 T ELT)) (-2349 (($ $ (-485) (-485)) 85 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 90 T ELT)) (-2353 (($ $) 71 T ELT)) (-3124 (((-85) $) 15 T ELT)) (-2347 (($ $ (-485) (-485) $) 91 T ELT)) (-3790 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 89 T ELT)) (-3335 (($ (-695) |#2|) 55 T ELT)) (-3125 (($ (-584 (-584 |#2|))) 51 T ELT) (($ (-695) (-695) (-1 |#2| (-485) (-485))) 53 T ELT)) (-3596 (((-584 (-584 |#2|)) $) 80 T ELT)) (-2352 (($ $ $) 72 T ELT)) (-3468 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3802 ((|#2| $ (-485) (-485)) NIL T ELT) ((|#2| $ (-485) (-485) |#2|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) 88 T ELT)) (-3334 (($ (-584 |#2|)) 56 T ELT) (($ (-584 $)) 58 T ELT)) (-3123 (((-85) $) 28 T ELT)) (-3948 (($ |#4|) 63 T ELT) (((-773) $) NIL T ELT)) (-3121 (((-85) $) 38 T ELT)) (-3951 (($ $ |#2|) 124 T ELT)) (-3839 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3841 (($ $ $) 93 T ELT)) (** (($ $ (-695)) 111 T ELT) (($ $ (-485)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-485) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
-(((-627 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3951 (|#1| |#1| |#2|)) (-15 -3468 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-695))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -2347 (|#1| |#1| (-485) (-485) |#1|)) (-15 -2348 (|#1| |#1| (-485) (-485) (-485) (-485))) (-15 -2349 (|#1| |#1| (-485) (-485))) (-15 -2350 (|#1| |#1| (-485) (-485))) (-15 -3790 (|#1| |#1| (-584 (-485)) (-584 (-485)) |#1|)) (-15 -3802 (|#1| |#1| (-584 (-485)) (-584 (-485)))) (-15 -3596 ((-584 (-584 |#2|)) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1|)) (-15 -3416 (|#1| |#1|)) (-15 -3416 (|#1| |#3|)) (-15 -3948 (|#1| |#4|)) (-15 -3334 (|#1| (-584 |#1|))) (-15 -3334 (|#1| (-584 |#2|))) (-15 -3335 (|#1| (-695) |#2|)) (-15 -3125 (|#1| (-695) (-695) (-1 |#2| (-485) (-485)))) (-15 -3125 (|#1| (-584 (-584 |#2|)))) (-15 -3840 (|#1| (-695) (-695))) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|)) (-15 -3790 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) (-485)))) (-628 |#2| |#3| |#4|) (-962) (-324 |#2|) (-324 |#2|)) (T -627))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) 106 T ELT)) (-2351 (($ $ $) 95 T ELT)) (-3416 (($ |#2|) 99 T ELT) (($ $) 98 T ELT)) (-3122 (((-85) $) 108 T ELT)) (-2350 (($ $ (-485) (-485)) 91 T ELT)) (-2349 (($ $ (-485) (-485)) 90 T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) 89 T ELT)) (-2353 (($ $) 97 T ELT)) (-3124 (((-85) $) 110 T ELT)) (-2347 (($ $ (-485) (-485) $) 88 T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) 51 T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) 92 T ELT)) (-1258 (($ $ (-485) |#2|) 49 T ELT)) (-1257 (($ $ (-485) |#3|) 48 T ELT)) (-3335 (($ (-695) |#1|) 103 T ELT)) (-3726 (($) 6 T CONST)) (-3111 (($ $) 75 (|has| |#1| (-258)) ELT)) (-3113 ((|#2| $ (-485)) 53 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) 74 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 50 T ELT)) (-3114 ((|#1| $ (-485) (-485)) 55 T ELT)) (-3109 (((-695) $) 73 (|has| |#1| (-496)) ELT)) (-3108 (((-584 |#3|) $) 72 (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) 58 T ELT)) (-3616 (($ (-695) (-695) |#1|) 64 T ELT)) (-3115 (((-695) $) 57 T ELT)) (-3329 ((|#1| $) 70 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) 62 T ELT)) (-3118 (((-485) $) 60 T ELT)) (-2610 (((-584 |#1|) $) 39 T ELT)) (-3247 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 61 T ELT)) (-3117 (((-485) $) 59 T ELT)) (-3125 (($ (-584 (-584 |#1|))) 105 T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) 104 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3596 (((-584 (-584 |#1|)) $) 94 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ "failed") $) 69 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) 96 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) 63 T ELT)) (-3468 (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) (-485)) 56 T ELT) ((|#1| $ (-485) (-485) |#1|) 54 T ELT) (($ $ (-584 (-485)) (-584 (-485))) 93 T ELT)) (-3334 (($ (-584 |#1|)) 102 T ELT) (($ (-584 $)) 101 T ELT)) (-3123 (((-85) $) 109 T ELT)) (-3330 ((|#1| $) 71 (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 40 T ELT) (((-695) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3112 ((|#3| $ (-485)) 52 T ELT)) (-3948 (($ |#3|) 100 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3121 (((-85) $) 107 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) 76 (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) 86 T ELT) (($ $) 85 T ELT)) (-3841 (($ $ $) 87 T ELT)) (** (($ $ (-695)) 78 T ELT) (($ $ (-485)) 68 (|has| |#1| (-312)) ELT)) (* (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ (-485) $) 81 T ELT) ((|#3| $ |#3|) 80 T ELT) ((|#2| |#2| $) 79 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-628 |#1| |#2| |#3|) (-113) (-962) (-324 |t#1|) (-324 |t#1|)) (T -628))
-((-3124 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3840 (*1 *1 *2 *2) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3125 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962)) (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3335 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3416 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3416 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2353 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3))))) (-3802 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3790 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2350 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-496)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3999 #1="*"))) (-4 *2 (-962)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3999 #1#))) (-4 *2 (-962)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3840 ($ (-695) (-695))) (-15 -3125 ($ (-584 (-584 |t#1|)))) (-15 -3125 ($ (-695) (-695) (-1 |t#1| (-485) (-485)))) (-15 -3335 ($ (-695) |t#1|)) (-15 -3334 ($ (-584 |t#1|))) (-15 -3334 ($ (-584 $))) (-15 -3948 ($ |t#3|)) (-15 -3416 ($ |t#2|)) (-15 -3416 ($ $)) (-15 -2353 ($ $)) (-15 -2352 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -3596 ((-584 (-584 |t#1|)) $)) (-15 -3802 ($ $ (-584 (-485)) (-584 (-485)))) (-15 -3790 ($ $ (-584 (-485)) (-584 (-485)) $)) (-15 -2350 ($ $ (-485) (-485))) (-15 -2349 ($ $ (-485) (-485))) (-15 -2348 ($ $ (-485) (-485) (-485) (-485))) (-15 -2347 ($ $ (-485) (-485) $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3839 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-485) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-695))) (IF (|has| |t#1| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3951 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3110 ((-695) $)) (-15 -3109 ((-695) $)) (-15 -3108 ((-584 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3999 "*"))) (PROGN (-15 -3330 (|t#1| $)) (-15 -3329 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3592 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1130) . T))
-((-3844 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3960 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
-(((-629 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3960 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3960 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3844 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-962) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|) (-962) (-324 |#5|) (-324 |#5|) (-628 |#5| |#6| |#7|)) (T -629))
-((-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7)) (-4 *10 (-628 *2 *8 *9)))) (-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10)) (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))))
-((-3111 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3110 (((-695) |#4|) 92 (|has| |#1| (-496)) ELT)) (-3109 (((-695) |#4|) 94 (|has| |#1| (-496)) ELT)) (-3108 (((-584 |#3|) |#4|) 101 (|has| |#1| (-496)) ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3329 ((|#1| |#4|) 52 T ELT)) (-2358 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-496)) ELT)) (-3592 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2357 ((|#4| |#4|) 76 (|has| |#1| (-496)) ELT)) (-2355 ((|#4| |#4| |#1| (-485) (-485)) 60 T ELT)) (-2354 ((|#4| |#4| (-485) (-485)) 55 T ELT)) (-2356 ((|#4| |#4| |#1| (-485) (-485)) 65 T ELT)) (-3330 ((|#1| |#4|) 96 T ELT)) (-2522 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-496)) ELT)))
-(((-630 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3330 (|#1| |#4|)) (-15 -3329 (|#1| |#4|)) (-15 -2354 (|#4| |#4| (-485) (-485))) (-15 -2355 (|#4| |#4| |#1| (-485) (-485))) (-15 -2356 (|#4| |#4| |#1| (-485) (-485))) (IF (|has| |#1| (-496)) (PROGN (-15 -3110 ((-695) |#4|)) (-15 -3109 ((-695) |#4|)) (-15 -3108 ((-584 |#3|) |#4|)) (-15 -2357 (|#4| |#4|)) (-15 -2358 ((-3 |#4| #1="failed") |#4|)) (-15 -2522 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3111 (|#4| |#4|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3592 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -630))
-((-3592 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-630 *3 *4 *5 *6)) (-4 *6 (-628 *3 *4 *5)))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2522 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2358 (*1 *2 *2) (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-2357 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-2356 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695) (-695)) 63 T ELT)) (-2351 (($ $ $) NIL T ELT)) (-3416 (($ (-1180 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-2350 (($ $ (-485) (-485)) 21 T ELT)) (-2349 (($ $ (-485) (-485)) NIL T ELT)) (-2348 (($ $ (-485) (-485) (-485) (-485)) NIL T ELT)) (-2353 (($ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-2347 (($ $ (-485) (-485) $) NIL T ELT)) (-3790 ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485)) $) NIL T ELT)) (-1258 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-1257 (($ $ (-485) (-1180 |#1|)) NIL T ELT)) (-3335 (($ (-695) |#1|) 37 T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3113 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3110 (((-695) $) 48 (|has| |#1| (-496)) ELT)) (-1577 ((|#1| $ (-485) (-485) |#1|) 68 T ELT)) (-3114 ((|#1| $ (-485) (-485)) NIL T ELT)) (-3109 (((-695) $) 50 (|has| |#1| (-496)) ELT)) (-3108 (((-584 (-1180 |#1|)) $) 53 (|has| |#1| (-496)) ELT)) (-3116 (((-695) $) 31 T ELT)) (-3616 (($ (-695) (-695) |#1|) 27 T ELT)) (-3115 (((-695) $) 32 T ELT)) (-3329 ((|#1| $) 44 (|has| |#1| (-6 (-3999 #1="*"))) ELT)) (-3120 (((-485) $) 9 T ELT)) (-3118 (((-485) $) 10 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3119 (((-485) $) 13 T ELT)) (-3117 (((-485) $) 64 T ELT)) (-3125 (($ (-584 (-584 |#1|))) NIL T ELT) (($ (-695) (-695) (-1 |#1| (-485) (-485))) NIL T ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3596 (((-584 (-584 |#1|)) $) 75 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3592 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2352 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-2200 (($ $ |#1|) NIL T ELT)) (-3468 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) (-485)) NIL T ELT) ((|#1| $ (-485) (-485) |#1|) NIL T ELT) (($ $ (-584 (-485)) (-584 (-485))) NIL T ELT)) (-3334 (($ (-584 |#1|)) NIL T ELT) (($ (-584 $)) NIL T ELT) (($ (-1180 |#1|)) 69 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3330 ((|#1| $) 42 (|has| |#1| (-6 (-3999 #1#))) ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) NIL T ELT) (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 79 (|has| |#1| (-554 (-474))) ELT)) (-3112 (((-1180 |#1|) $ (-485)) NIL T ELT)) (-3948 (($ (-1180 |#1|)) NIL T ELT) (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) 38 T ELT) (($ $ (-485)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-485) $) NIL T ELT) (((-1180 |#1|) $ (-1180 |#1|)) NIL T ELT) (((-1180 |#1|) (-1180 |#1|) $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-631 |#1|) (-13 (-628 |#1| (-1180 |#1|) (-1180 |#1|)) (-10 -8 (-15 -3334 ($ (-1180 |#1|))) (IF (|has| |#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3592 ((-3 $ "failed") $)) |%noBranch|))) (-962)) (T -631))
-((-3592 (*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3)))))
-((-2364 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 37 T ELT)) (-2363 (((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|) 32 T ELT)) (-2365 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695)) 43 T ELT)) (-2360 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 25 T ELT)) (-2361 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|)) 29 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 27 T ELT)) (-2362 (((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|)) 31 T ELT)) (-2359 (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 23 T ELT)) (** (((-631 |#1|) (-631 |#1|) (-695)) 46 T ELT)))
-(((-632 |#1|) (-10 -7 (-15 -2359 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2360 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2361 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2362 ((-631 |#1|) (-631 |#1|) |#1| (-631 |#1|))) (-15 -2363 ((-631 |#1|) (-631 |#1|) (-631 |#1|) |#1|)) (-15 -2364 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -2365 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-631 |#1|) (-695))) (-15 ** ((-631 |#1|) (-631 |#1|) (-695)))) (-962)) (T -632))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2365 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))) (-2364 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2363 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2362 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2361 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))) (-2359 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-((-3159 (((-3 |#1| "failed") $) 18 T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-2366 (($) 7 T CONST)) (-2367 (($ |#1|) 8 T ELT)) (-3948 (($ |#1|) 16 T ELT) (((-773) $) 23 T ELT)) (-3568 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2366)) 11 T ELT)) (-3574 ((|#1| $) 15 T ELT)))
-(((-633 |#1|) (-13 (-1176) (-951 |#1|) (-553 (-773)) (-10 -8 (-15 -2367 ($ |#1|)) (-15 -3568 ((-85) $ (|[\|\|]| |#1|))) (-15 -3568 ((-85) $ (|[\|\|]| -2366))) (-15 -3574 (|#1| $)) (-15 -2366 ($) -3954))) (-553 (-773))) (T -633))
-((-2367 (*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85)) (-5 *1 (-633 *4)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4)) (-4 *4 (-553 (-773))))) (-3574 (*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))) (-2366 (*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
-((-3743 (((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)) 20 T ELT)) (-3741 ((|#1| (-631 |#2|)) 9 T ELT)) (-3742 (((-631 |#1|) (-631 |#2|)) 18 T ELT)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -3741 (|#1| (-631 |#2|))) (-15 -3742 ((-631 |#1|) (-631 |#2|))) (-15 -3743 ((-2 (|:| |num| (-631 |#1|)) (|:| |den| |#1|)) (-631 |#2|)))) (-496) (-905 |#1|)) (T -634))
-((-3743 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4)) (-5 *1 (-634 *4 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-634 *2 *4)))))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-635 |#1|) (-113) (-1014)) (T -635))
-((-3611 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2369 (*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1731 (-695))))))))
-(-13 (-193 |t#1|) (-10 -8 (-15 -3611 ($ |t#1| $ (-695))) (-15 -2369 ($ $)) (-15 -2368 ((-584 (-2 (|:| |entry| |t#1|) (|:| -1731 (-695)))) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2372 (((-584 |#1|) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) (-485)) 66 T ELT)) (-2370 ((|#1| |#1| (-485)) 63 T ELT)) (-3146 ((|#1| |#1| |#1| (-485)) 46 T ELT)) (-3734 (((-584 |#1|) |#1| (-485)) 49 T ELT)) (-2373 ((|#1| |#1| (-485) |#1| (-485)) 40 T ELT)) (-2371 (((-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) |#1| (-485)) 62 T ELT)))
-(((-636 |#1|) (-10 -7 (-15 -3146 (|#1| |#1| |#1| (-485))) (-15 -2370 (|#1| |#1| (-485))) (-15 -3734 ((-584 |#1|) |#1| (-485))) (-15 -2371 ((-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) |#1| (-485))) (-15 -2372 ((-584 |#1|) (-584 (-2 (|:| -3734 |#1|) (|:| -3950 (-485)))) (-485))) (-15 -2373 (|#1| |#1| (-485) |#1| (-485)))) (-1156 (-485))) (T -636))
-((-2373 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| -3734 *5) (|:| -3950 (-485))))) (-5 *4 (-485)) (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -3950 *4)))) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))) (-2370 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))) (-3146 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
-((-2377 (((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2374 (((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 53 T ELT) (((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 55 T ELT) (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 57 T ELT)) (-2376 (((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221))) NIL T ELT)) (-2375 (((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221))) 58 T ELT)))
-(((-637) (-10 -7 (-15 -2374 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2374 ((-1048 (-179)) (-1048 (-179)) (-1 (-855 (-179)) (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2375 ((-1048 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1002 (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2376 ((-1048 (-179)) (-265 (-485)) (-265 (-485)) (-265 (-485)) (-1 (-179) (-179)) (-1002 (-179)) (-584 (-221)))) (-15 -2377 ((-1 (-855 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -637))
-((-2377 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))) (-2376 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2375 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))) (-2374 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))))
-((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT)))
-(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|)) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-299) (-862 |#3| |#2| |#1|)) (T -638))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2380 (((-631 |#1|) (-631 |#1|) |#1| |#1|) 85 T ELT)) (-3111 (((-631 |#1|) (-631 |#1|) |#1|) 66 T ELT)) (-2379 (((-631 |#1|) (-631 |#1|) |#1|) 86 T ELT)) (-2378 (((-631 |#1|) (-631 |#1|)) 67 T ELT)) (-2381 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 84 T ELT)))
-(((-639 |#1|) (-10 -7 (-15 -2378 ((-631 |#1|) (-631 |#1|))) (-15 -3111 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2379 ((-631 |#1|) (-631 |#1|) |#1|)) (-15 -2380 ((-631 |#1|) (-631 |#1|) |#1| |#1|)) (-15 -2381 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|))) (-258)) (T -639))
-((-2381 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-639 *3)) (-4 *3 (-258)))) (-2380 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-3111 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))) (-2378 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
-((-2387 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19 T ELT)) (-2382 (((-1 |#4| |#2| |#3|) (-1091)) 12 T ELT)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2382 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2387 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-554 (-474)) (-1130) (-1130) (-1130)) (T -640))
-((-2387 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))))
-((-2383 (((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1091)) 48 T ELT)))
-(((-641 |#1|) (-10 -7 (-15 -2383 ((-1 (-179) (-179)) |#1| (-1091))) (-15 -2383 ((-1 (-179) (-179) (-179)) |#1| (-1091) (-1091)))) (-554 (-474))) (T -641))
-((-2383 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))) (-2383 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3)) (-4 *3 (-554 (-474))))))
-((-2384 (((-1091) |#1| (-1091) (-584 (-1091))) 10 T ELT) (((-1091) |#1| (-1091) (-1091) (-1091)) 13 T ELT) (((-1091) |#1| (-1091) (-1091)) 12 T ELT) (((-1091) |#1| (-1091)) 11 T ELT)))
-(((-642 |#1|) (-10 -7 (-15 -2384 ((-1091) |#1| (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2384 ((-1091) |#1| (-1091) (-584 (-1091))))) (-554 (-474))) (T -642))
-((-2384 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))) (-2384 (*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474))))))
-((-2385 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
-(((-643 |#1| |#2|) (-10 -7 (-15 -2385 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1130) (-1130)) (T -643))
-((-2385 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4)) (-4 *3 (-1130)) (-4 *4 (-1130)))))
-((-2386 (((-1 |#3| |#2|) (-1091)) 11 T ELT)) (-2387 (((-1 |#3| |#2|) |#1| (-1091)) 21 T ELT)))
-(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -2386 ((-1 |#3| |#2|) (-1091))) (-15 -2387 ((-1 |#3| |#2|) |#1| (-1091)))) (-554 (-474)) (-1130) (-1130)) (T -644))
-((-2387 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6)) (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))) (-2386 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6)) (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
-((-2390 (((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|) 92 T ELT)) (-2389 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|) 110 T ELT)) (-2388 (((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|) 48 T ELT)))
-(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2388 ((-3 (-584 (-1086 |#4|)) #1="failed") (-1086 |#4|) (-584 |#2|) (-584 |#3|) (-584 (-695)) (-584 (-1086 |#4|)) (-1180 (-584 (-1086 |#3|))) |#3|)) (-15 -2389 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#3|)) (-584 |#3|) (-584 |#4|) (-584 (-695)) |#3|)) (-15 -2390 ((-3 (-584 (-1086 |#4|)) #1#) (-1086 |#4|) (-584 |#2|) (-584 (-1086 |#4|)) (-584 |#3|) (-584 |#4|) (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#4|)))) (-584 (-695)) (-1180 (-584 (-1086 |#3|))) |#3|))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -645))
-((-2390 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13)) (-5 *7 (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *13))))) (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757)) (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718)) (-5 *1 (-645 *11 *12 *10 *13)))) (-2389 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9)) (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258)) (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12))) (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-2388 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695))) (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258)) (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 56 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 54 T ELT)) (-2822 (((-695) $) 58 T ELT)) (-3176 ((|#1| $) 57 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 (((-695) $) 59 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ (-695)) 55 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT)))
-(((-646 |#1|) (-113) (-962)) (T -646))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962)))))
-(-13 (-962) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3950 ((-695) $)) (-15 -2822 ((-695) $)) (-15 -3176 (|t#1| $)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ (-695))) (-15 -2895 ($ |t#1| (-695)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3960 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
-(((-647 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 (|#6| (-1 |#4| |#1|) |#3|))) (-496) (-1156 |#1|) (-1156 (-350 |#2|)) (-496) (-1156 |#4|) (-1156 (-350 |#5|))) (T -647))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5)) (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2391 (((-1074) (-773)) 36 T ELT)) (-3619 (((-1186) (-1074)) 29 T ELT)) (-2393 (((-1074) (-773)) 26 T ELT)) (-2392 (((-1074) (-773)) 27 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-1074) (-773)) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-648) (-13 (-1014) (-10 -7 (-15 -3948 ((-1074) (-773))) (-15 -2393 ((-1074) (-773))) (-15 -2392 ((-1074) (-773))) (-15 -2391 ((-1074) (-773))) (-15 -3619 ((-1186) (-1074)))))) (T -648))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3844 (($ |#1| |#2|) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 ((|#2| $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-649 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3948 (|#1| $)) (-15 -3844 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -649))
-((-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 55 (|has| |#1| (-320)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-2400 ((|#2| |#2|) 51 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 72 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3844 (($ |#2|) 49 T ELT)) (-3469 (((-3 $ #1#) $) 98 T ELT)) (-2996 (($) 59 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-2396 (((-870 $)) 89 T ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 86 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2616 ((|#2|) 52 T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 48 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 35 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2394 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 39 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-2395 (((-870 $)) 43 T ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 69 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-995)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) 71 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 26 T CONST)) (-2399 (((-1180 |#1|) $) 84 T ELT)) (-2398 (($ (-1180 |#1|)) 58 T ELT)) (-2668 (($) 9 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2397 (((-1180 |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 77 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 40 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 93 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-650 |#1| |#2|) (-13 (-1156 |#1|) (-556 |#2|) (-10 -8 (-15 -2400 (|#2| |#2|)) (-15 -2616 (|#2|)) (-15 -3844 ($ |#2|)) (-15 -3081 (|#2| $)) (-15 -2399 ((-1180 |#1|) $)) (-15 -2398 ($ (-1180 |#1|))) (-15 -2397 ((-1180 |#1|) $)) (-15 -2396 ((-870 $))) (-15 -2395 ((-870 $))) (IF (|has| |#1| (-299)) (-15 -2394 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-962) (-1156 |#1|)) (T -650))
-((-2400 (*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-2616 (*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-3844 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962)))) (-2399 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2397 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2396 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4)) (-4 *4 (-1156 *3)))) (-2394 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2402 ((|#2| $) 12 T ELT)) (-3532 (($ |#1| |#2|) 16 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) 15 T ELT) (((-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 11 T ELT)))
-(((-651 |#1| |#2| |#3|) (-13 (-757) (-430 (-2 (|:| -2401 |#1|) (|:| -2402 |#2|))) (-10 -8 (-15 -2402 (|#2| $)) (-15 -2401 (|#1| $)) (-15 -3532 ($ |#1| |#2|)))) (-757) (-1014) (-1 (-85) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)) (-2 (|:| -2401 |#1|) (|:| -2402 |#2|)))) (T -651))
-((-2402 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2)) (-2 (|:| -2401 *3) (|:| -2402 *2)))))) (-2401 (*1 *2 *1) (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014)) (-14 *4 (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3)) (-2 (|:| -2401 *2) (|:| -2402 *3)))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 66 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3469 (((-3 $ #1#) $) 102 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#2| (-86) |#2|) 93 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2520 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3802 ((|#2| $ |#2|) 33 T ELT)) (-2521 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3948 (((-773) $) 73 T ELT) (($ (-485)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 37 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 83 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) 64 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
-(((-652 |#1| |#2|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#2| |#2|))) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#2| (-86) |#2|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-962) (-591 |#1|)) (T -652))
-((-2522 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2521 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5)) (-4 *5 (-591 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4)) (-4 *4 (-591 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 33 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ |#1| |#2|) 25 T ELT)) (-3469 (((-3 $ #1#) $) 51 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 35 T ELT)) (-2616 ((|#2| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 52 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2403 (((-3 $ #1#) $ $) 50 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-485)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3128 (((-695)) 28 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 16 T CONST)) (-2668 (($) 30 T CONST)) (-3058 (((-85) $ $) 41 T ELT)) (-3839 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3841 (($ $ $) 43 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 21 T ELT) (($ $ $) 20 T ELT)))
-(((-653 |#1| |#2| |#3| |#4| |#5|) (-13 (-962) (-10 -8 (-15 -2616 (|#2| $)) (-15 -3948 (|#1| $)) (-15 -3844 ($ |#1| |#2|)) (-15 -2403 ((-3 $ #1="failed") $ $)) (-15 -3469 ((-3 $ #1#) $)) (-15 -2486 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -653))
-((-3469 (*1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2616 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2403 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2486 (*1 *1 *1) (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
-((* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
-(((-654 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-655 |#2|) (-146)) (T -654))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-655 |#1|) (-113) (-146)) (T -655))
-NIL
-(-13 (-82 |t#1| |t#1|) (-583 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2443 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3849 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2404 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 16 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 ((|#1| $ |#1|) 24 T ELT) (((-744 |#1|) $ (-744 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-3948 (((-773) $) 39 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 9 T CONST)) (-3058 (((-85) $ $) 48 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
-(((-656 |#1|) (-13 (-413) (-10 -8 (-15 -2404 ($ |#1| |#1| |#1| |#1|)) (-15 -2443 ($ |#1|)) (-15 -3849 ($ |#1|)) (-15 -3469 ($)) (-15 -2443 ($ $ |#1|)) (-15 -3849 ($ $ |#1|)) (-15 -3469 ($ $)) (-15 -3770 (|#1| $ |#1|)) (-15 -3770 ((-744 |#1|) $ (-744 |#1|))))) (-312)) (T -656))
-((-2404 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3849 (*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3469 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-2443 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3849 (*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3469 (*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3770 (*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))) (-3770 (*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3)))))
-((-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 20 T ELT)) (** (($ $ (-831)) 10 T ELT)))
-(((-657 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-658)) (T -657))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-2408 (($ $ (-831)) 19 T ELT)) (-2407 (($ $ (-831)) 18 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-658) (-113)) (T -658))
-((* (*1 *1 *1 *1) (-4 *1 (-658))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831)))))
-(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 -2408 ($ $ (-831))) (-15 -2407 ($ $ (-831))) (-15 ** ($ $ (-831)))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2408 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 18 T ELT)) (-2411 (((-85) $) 10 T ELT)) (-2407 (($ $ (-831)) NIL T ELT) (($ $ (-695)) 19 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 16 T ELT)))
-(((-659 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-695))) (-15 -2407 (|#1| |#1| (-695))) (-15 -2408 (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 ** (|#1| |#1| (-831))) (-15 -2407 (|#1| |#1| (-831))) (-15 -2408 (|#1| |#1| (-831)))) (-660)) (T -659))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-2405 (((-3 $ "failed") $) 22 T ELT)) (-2408 (($ $ (-831)) 19 T ELT) (($ $ (-695)) 27 T ELT)) (-3469 (((-3 $ "failed") $) 24 T ELT)) (-2411 (((-85) $) 28 T ELT)) (-2406 (((-3 $ "failed") $) 23 T ELT)) (-2407 (($ $ (-831)) 18 T ELT) (($ $ (-695)) 26 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
-(((-660) (-113)) (T -660))
-((-2668 (*1 *1) (-4 *1 (-660))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85)))) (-2408 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))) (-3469 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2406 (*1 *1 *1) (|partial| -4 *1 (-660))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-660))))
-(-13 (-658) (-10 -8 (-15 -2668 ($) -3954) (-15 -2411 ((-85) $)) (-15 -2408 ($ $ (-695))) (-15 -2407 ($ $ (-695))) (-15 ** ($ $ (-695))) (-15 -3469 ((-3 $ "failed") $)) (-15 -2406 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-658) . T) ((-1014) . T) ((-1130) . T))
-((-3138 (((-695)) 39 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3844 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3469 (((-3 $ #1#) $) 69 T ELT)) (-2996 (($) 43 T ELT)) (-3134 ((|#2| $) 21 T ELT)) (-2410 (($) 18 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2409 (((-631 |#2|) (-1180 $) (-1 |#2| |#2|)) 64 T ELT)) (-3974 (((-1180 |#2|) $) NIL T ELT) (($ (-1180 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2451 ((|#3| $) 36 T ELT)) (-2013 (((-1180 $)) 33 T ELT)))
-(((-661 |#1| |#2| |#3|) (-10 -7 (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -2996 (|#1|)) (-15 -3138 ((-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2409 ((-631 |#2|) (-1180 |#1|) (-1 |#2| |#2|))) (-15 -3844 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3974 (|#1| |#3|)) (-15 -3844 (|#1| |#3|)) (-15 -2410 (|#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -3974 (|#1| (-1180 |#2|))) (-15 -3974 ((-1180 |#2|) |#1|)) (-15 -2013 ((-1180 |#1|))) (-15 -2451 (|#3| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3469 ((-3 |#1| #1#) |#1|))) (-662 |#2| |#3|) (-146) (-1156 |#2|)) (T -661))
-((-3138 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-662 *4 *5)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2064 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1786 (((-631 |#1|) (-1180 $)) 61 T ELT) (((-631 |#1|)) 77 T ELT)) (-3332 ((|#1| $) 67 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) 167 (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 108 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 194 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 192 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3158 (((-485) $) 193 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 191 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 190 T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) 63 T ELT) (($ (-1180 |#1|)) 80 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) 68 T ELT) (((-631 |#1|) $) 75 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 186 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 185 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 184 T ELT) (((-631 |#1|) (-631 $)) 183 T ELT)) (-3844 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-831)) 69 T ELT)) (-2996 (($) 111 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 123 (|has| |#1| (-312)) ELT)) (-2835 (($) 169 (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3774 (((-831) $) 172 (|has| |#1| (-299)) ELT) (((-744 (-831)) $) 158 (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 66 T ELT)) (-3447 (((-633 $) $) 162 (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 132 (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 110 (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 176 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 182 T ELT) (((-631 |#1|) (-1180 $)) 181 T ELT)) (-1895 (($ (-584 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3448 (($) 163 (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 109 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2410 (($) 180 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 122 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) 166 (|has| |#1| (-299)) ELT)) (-3734 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 124 (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) 126 (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3759 ((|#1| (-1180 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1769 (((-695) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-695) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-695)) 156 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 150 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 149 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 148 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 146 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 144 (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 179 T ELT)) (-1675 (($) 168 (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 65 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) 64 T ELT) (((-1180 |#1|) $) 82 T ELT) (((-631 |#1|) (-1180 $)) 81 T ELT)) (-3974 (((-1180 |#1|) $) 79 T ELT) (($ (-1180 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 165 (|has| |#1| (-299)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-485))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (($ $) 164 (|has| |#1| (-299)) ELT) (((-633 $) $) 58 (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 60 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2013 (((-1180 $)) 83 T ELT)) (-2063 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-695)) 157 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2564 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 153 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091) (-695)) 152 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091))) 151 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1091)) 147 (-2564 (|has| |#1| (-812 (-1091))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) 142 (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-485)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) 139 (|has| |#1| (-312)) ELT)))
-(((-662 |#1| |#2|) (-113) (-146) (-1156 |t#1|)) (T -662))
-((-2410 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))) (-3187 (*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3844 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3974 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3)))) (-3844 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-662 *3 *4)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5)))))
-(-13 (-353 |t#1| |t#2|) (-146) (-554 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2410 ($)) (-15 -3187 (|t#2|)) (-15 -3844 ($ |t#2|)) (-15 -3974 ($ |t#2|)) (-15 -3081 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3844 ((-3 $ "failed") (-350 |t#2|))) (-15 -2409 ((-631 |t#1|) (-1180 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) . T) ((-554 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-496) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-583 |#1|) . T) ((-583 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-655 |#1|) . T) ((-655 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-810 (-1091)) -12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091)))) ((-812 (-1091)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-810 (-1091))))) ((-833) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-299)) ((-1130) . T) ((-1135) OR (|has| |#1| (-299)) (|has| |#1| (-312))))
-((-3726 (($) 11 T CONST)) (-3469 (((-3 $ "failed") $) 14 T ELT)) (-2411 (((-85) $) 10 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 20 T ELT)))
-(((-663 |#1|) (-10 -7 (-15 -3469 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-695))) (-15 -2411 ((-85) |#1|)) (-15 -3726 (|#1|) -3954) (-15 ** (|#1| |#1| (-831)))) (-664)) (T -663))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-664) (-113)) (T -664))
-((-2668 (*1 *1) (-4 *1 (-664))) (-3726 (*1 *1) (-4 *1 (-664))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695)))) (-3469 (*1 *1 *1) (|partial| -4 *1 (-664))))
-(-13 (-1026) (-10 -8 (-15 -2668 ($) -3954) (-15 -3726 ($) -3954) (-15 -2411 ((-85) $)) (-15 ** ($ $ (-695))) (-15 -3469 ((-3 $ "failed") $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2413 ((|#1| $) 16 T ELT)) (-2412 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-1023 |#1|) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-665 |#1|) (-13 (-666 |#1|) (-1014) (-553 (-1023 |#1|)) (-10 -8 (-15 -2412 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -665))
-((-2412 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
-((-2413 ((|#1| $) 8 T ELT)) (-3802 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-666 |#1|) (-113) (-72)) (T -666))
-((-2413 (*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
-(-13 (-1024 |t#1|) (-10 -8 (-15 -2413 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3058 (|f| |x| (-2413 |f|)) |x|) (|exit| 1 (-3058 (|f| (-2413 |f|) |x|) |x|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1024 |#1|) . T) ((-1130) . T))
-((-2414 (((-2 (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3420 (((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2415 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3437 (((-2 (|:| |poly| |#2|) (|:| -3091 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
-(((-667 |#1| |#2|) (-10 -7 (-15 -3420 ((-2 (|:| -3091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2414 ((-2 (|:| -3091 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2415 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3437 ((-2 (|:| |poly| |#2|) (|:| -3091 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1156 |#1|)) (T -667))
-((-3437 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-667 *5 *3)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3)))))
-((-2416 ((|#7| (-584 |#5|) |#6|) NIL T ELT)) (-3960 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
-(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3960 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2416 (|#7| (-584 |#5|) |#6|))) (-757) (-718) (-718) (-962) (-962) (-862 |#4| |#2| |#1|) (-862 |#5| |#3| |#1|)) (T -668))
-((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
-((-3960 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
-(((-669 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3960 (|#7| (-1 |#2| |#1|) |#6|))) (-757) (-757) (-718) (-718) (-962) (-862 |#5| |#3| |#1|) (-862 |#5| |#4| |#2|)) (T -669))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718)) (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5)))))
-((-3734 (((-348 |#4|) |#4|) 42 T ELT)))
-(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-258) (-862 (-858 |#3|) |#1| |#2|)) (T -670))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-862 (-858 *6) *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-774 |#1|)) $) NIL T ELT)) (-3085 (((-1086 $) $ (-774 |#1|)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-774 |#1|))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-774 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-470 (-774 |#1|)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-774 |#1|) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#2|) (-774 |#1|)) NIL T ELT) (($ (-1086 $) (-774 |#1|)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-774 |#1|)) NIL T ELT)) (-2822 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-1626 (($ (-1 (-470 (-774 |#1|)) (-470 (-774 |#1|))) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3084 (((-3 (-774 |#1|) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-774 |#1|)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-774 |#1|) |#2|) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 |#2|)) NIL T ELT) (($ $ (-774 |#1|) $) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-774 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3950 (((-470 (-774 |#1|)) $) NIL T ELT) (((-695) $ (-774 |#1|)) NIL T ELT) (((-584 (-695)) $ (-584 (-774 |#1|))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-774 |#1|) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-774 |#1|) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-774 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-774 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-470 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-774 |#1|)) (-584 (-695))) NIL T ELT) (($ $ (-774 |#1|) (-695)) NIL T ELT) (($ $ (-584 (-774 |#1|))) NIL T ELT) (($ $ (-774 |#1|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-671 |#1| |#2|) (-862 |#2| (-470 (-774 |#1|)) (-774 |#1|)) (-584 (-1091)) (-962)) (T -671))
-NIL
-((-2417 (((-2 (|:| -2485 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|) 14 T ELT)) (-2988 ((|#4| |#4| |#2|) 33 T ELT)) (-2420 ((|#4| (-350 (-858 |#3|)) |#2|) 62 T ELT)) (-2419 ((|#4| (-1086 (-858 |#3|)) |#2|) 74 T ELT)) (-2418 ((|#4| (-1086 |#4|) |#2|) 49 T ELT)) (-2987 ((|#4| |#4| |#2|) 52 T ELT)) (-3734 (((-348 |#4|) |#4|) 40 T ELT)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2417 ((-2 (|:| -2485 (-858 |#3|)) (|:| -2059 (-858 |#3|))) |#4|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1086 |#4|) |#2|)) (-15 -2988 (|#4| |#4| |#2|)) (-15 -2419 (|#4| (-1086 (-858 |#3|)) |#2|)) (-15 -2420 (|#4| (-350 (-858 |#3|)) |#2|)) (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))) (-496) (-862 (-350 (-858 |#3|)) |#1| |#2|)) (T -672))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))) (-2420 (*1 *2 *3 *4) (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-5 *3 (-350 (-858 *6))) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))) (-2419 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2)) (-4 *2 (-862 (-350 (-858 *5)) *4 *3)))) (-2417 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-858 *6)) (|:| -2059 (-858 *6)))) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))))
-((-3734 (((-348 |#4|) |#4|) 54 T ELT)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|))) (-718) (-757) (-13 (-258) (-120)) (-862 (-350 |#3|) |#1| |#2|)) (T -673))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-862 (-350 *6) *4 *5)))))
-((-3960 (((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)) 18 T ELT)))
-(((-674 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-675 |#2| |#3|) (-1 |#2| |#1|) (-675 |#1| |#3|)))) (-962) (-962) (-664)) (T -674))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3776 (((-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))) $) 37 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3158 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) 99 (|has| |#2| (-757)) ELT)) (-3469 (((-3 $ #1#) $) 83 T ELT)) (-2996 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 70 T ELT)) (-2823 (((-584 $) $) 52 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) 17 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2011 (((-831) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2896 ((|#2| $) 98 (|has| |#2| (-757)) ELT)) (-3176 ((|#1| $) 97 (|has| |#2| (-757)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 96 T ELT) (($ (-485)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|)))) 11 T ELT)) (-3819 (((-584 |#1|) $) 54 T ELT)) (-3679 ((|#1| $ |#2|) 114 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 44 T CONST)) (-3058 (((-85) $ $) 104 T ELT)) (-3839 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 33 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-675 |#1| |#2|) (-13 (-962) (-951 |#2|) (-951 |#1|) (-10 -8 (-15 -2895 ($ |#1| |#2|)) (-15 -3679 (|#1| $ |#2|)) (-15 -3948 ($ (-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))))) (-15 -3776 ((-584 (-2 (|:| -3956 |#1|) (|:| -3940 |#2|))) $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (-15 -3939 ((-85) $)) (-15 -3819 ((-584 |#1|) $)) (-15 -2823 ((-584 $) $)) (-15 -2421 ((-695) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-757)) (PROGN (-15 -2896 (|#2| $)) (-15 -3176 (|#1| $)) (-15 -3961 ($ $))) |%noBranch|))) (-962) (-664)) (T -675))
-((-2895 (*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664)))) (-3679 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-4 *3 (-962)) (-4 *4 (-664)) (-5 *1 (-675 *3 *4)))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))) (-2896 (*1 *2 *1) (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962)))) (-3176 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2422 (((-584 |#1|) $) 38 T ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3238 (($ $ $) 99 T ELT)) (-3237 (((-85) $ $) 107 T ELT)) (-3241 (($ (-584 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2369 (($ $) 88 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 71 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-485)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 81 T ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-485)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-485)) 84 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3243 (((-85) $ $) 106 T ELT)) (-2423 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-584 |#1|)) 23 T ELT)) (-2610 (((-584 |#1|) $) 32 T ELT)) (-3247 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 97 T ELT)) (-1275 ((|#1| $) 63 T ELT)) (-3611 (($ |#1| $) 64 T ELT) (($ |#1| $ (-695)) 89 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1276 ((|#1| $) 62 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 57 T ELT)) (-3567 (($) 14 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 56 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1467 (($) 16 T ELT) (($ (-584 |#1|)) 25 T ELT)) (-1731 (((-695) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 82 T ELT)) (-3974 (((-474) $) 36 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 22 T ELT)) (-3948 (((-773) $) 50 T ELT)) (-3242 (($ (-584 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) 24 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 103 T ELT)) (-3959 (((-695) $) 68 T ELT)))
-(((-676 |#1|) (-13 (-677 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -2423 ($)) (-15 -2423 ($ |#1|)) (-15 -2423 ($ (-584 |#1|))) (-15 -2422 ((-584 |#1|) $)) (-15 -3408 ($ |#1| $ (-485))) (-15 -3408 ($ (-1 (-85) |#1|) $ (-485))) (-15 -3407 ($ |#1| $ (-485))) (-15 -3407 ($ (-1 (-85) |#1|) $ (-485))))) (-1014)) (T -676))
-((-2423 (*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2423 (*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-2423 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3408 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4)))))
-((-2570 (((-85) $ $) 17 T ELT)) (-3236 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3238 (($ $ $) 66 T ELT)) (-3237 (((-85) $ $) 67 T ELT)) (-3241 (($ (-584 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3243 (((-85) $ $) 58 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 63 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-3239 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-3242 (($ (-584 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3058 (((-85) $ $) 16 T ELT)))
-(((-677 |#1|) (-113) (-1014)) (T -677))
-NIL
-(-13 (-635 |t#1|) (-1012 |t#1|))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-2424 (((-1186) (-1074)) 8 T ELT)))
-(((-678) (-10 -7 (-15 -2424 ((-1186) (-1074))))) (T -678))
-((-2424 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678)))))
-((-2425 (((-584 |#1|) (-584 |#1|) (-584 |#1|)) 15 T ELT)))
-(((-679 |#1|) (-10 -7 (-15 -2425 ((-584 |#1|) (-584 |#1|) (-584 |#1|)))) (-757)) (T -679))
-((-2425 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#2|) $) 159 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 152 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 151 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 149 (|has| |#1| (-496)) ELT)) (-3494 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 91 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 107 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 93 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 143 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 121 T ELT) (((-858 |#1|) $ (-695) (-695)) 120 T ELT)) (-2894 (((-85) $) 160 T ELT)) (-3629 (($) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ |#2|) 123 T ELT) (((-695) $ |#2| (-695)) 122 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 89 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) 141 T ELT)) (-2895 (($ $ (-584 |#2|) (-584 (-470 |#2|))) 158 T ELT) (($ $ |#2| (-470 |#2|)) 157 T ELT) (($ |#1| (-470 |#2|)) 142 T ELT) (($ $ |#2| (-695)) 125 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 124 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3944 (($ $) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 138 T ELT)) (-3176 ((|#1| $) 137 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3814 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-695)) 126 T ELT)) (-3468 (((-3 $ "failed") $ $) 153 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ |#2| $) 134 T ELT) (($ $ (-584 |#2|) (-584 $)) 133 T ELT) (($ $ (-584 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-584 $) (-584 $)) 129 T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) 52 T ELT) (($ $ |#2| (-695)) 51 T ELT) (($ $ (-584 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3950 (((-470 |#2|) $) 139 T ELT)) (-3497 (($ $) 105 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 95 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 103 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 161 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3679 ((|#1| $ (-470 |#2|)) 144 T ELT) (($ $ |#2| (-695)) 128 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 127 T ELT)) (-2704 (((-633 $) $) 155 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 150 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 101 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 111 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 99 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 97 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) 55 T ELT) (($ $ |#2| (-695)) 54 T ELT) (($ $ (-584 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 148 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT)))
-(((-680 |#1| |#2|) (-113) (-962) (-757)) (T -680))
-((-3679 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3774 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)))) (-3816 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3816 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757)) (-5 *2 (-858 *4)))) (-3814 (*1 *1 *1 *2) (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757)) (-4 *3 (-38 (-350 (-485)))))))
-(-13 (-810 |t#2|) (-887 |t#1| (-470 |t#2|) |t#2|) (-456 |t#2| $) (-260 $) (-10 -8 (-15 -3679 ($ $ |t#2| (-695))) (-15 -3679 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3771 ($ $ (-695))) (-15 -2895 ($ $ |t#2| (-695))) (-15 -2895 ($ $ (-584 |t#2|) (-584 (-695)))) (-15 -3774 ((-695) $ |t#2|)) (-15 -3774 ((-695) $ |t#2| (-695))) (-15 -3816 ((-858 |t#1|) $ (-695))) (-15 -3816 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ |t#2|)) (-6 (-916)) (-6 (-1116))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-470 |#2|)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-246) |has| |#1| (-496)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 |#2| $) . T) ((-456 $ $) . T) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ |#2|) . T) ((-810 |#2|) . T) ((-812 |#2|) . T) ((-887 |#1| (-470 |#2|) |#2|) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T))
-((-3734 (((-348 (-1086 |#4|)) (-1086 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 |#4|) |#4|)) (-15 -3734 ((-348 (-1086 |#4|)) (-1086 |#4|)))) (-757) (-718) (-13 (-258) (-120)) (-862 |#3| |#2| |#1|)) (T -681))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2428 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2426 (((-348 |#4|) |#4|) NIL T ELT)) (-3973 (((-348 (-1086 |#4|)) (-1086 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2430 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 81 T ELT)) (-2434 (((-1086 |#3|) (-1086 |#3|) (-485)) 169 T ELT)) (-2433 (((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695)) 75 T ELT)) (-3081 (((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|)) 79 T ELT)) (-2431 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|))) 27 T ELT)) (-2429 (((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485)) 72 T ELT)) (-2427 (((-485) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) 165 T ELT)) (-2432 ((|#4| (-485) (-348 |#4|)) 73 T ELT)) (-3359 (((-85) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) NIL T ELT)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-348 |#4|) |#4|)) (-15 -3973 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2426 ((-348 |#4|) |#4|)) (-15 -2427 ((-485) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -2428 ((-348 |#4|) |#4| |#2|)) (-15 -2429 ((-2 (|:| -2005 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-485))) (-15 -2430 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 |#4|)) (|:| -2402 (-485)))))) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2431 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-584 |#3|)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-584 |#2|) (-584 (-584 |#3|)))) (-15 -2432 (|#4| (-485) (-348 |#4|))) (-15 -3359 ((-85) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))) (-584 (-2 (|:| -3734 (-1086 |#3|)) (|:| -2402 (-485)))))) (-15 -3081 ((-3 (-584 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-584 |#2|) (-584 (-695)) (-584 |#3|))) (-15 -2433 ((-584 (-695)) (-1086 |#4|) (-584 |#2|) (-695))) (-15 -2434 ((-1086 |#3|) (-1086 |#3|) (-485)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -682))
-((-2434 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))) (-3081 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695))) (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718)) (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5))) (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3359 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6)) (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))) (-2431 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8)) (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 *8)) (|:| -2402 (-485))))) (|:| |ctpol| *8))) (-5 *1 (-682 *6 *7 *8 *9)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 *9)) (|:| -2402 (-485))))))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2428 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485))))) (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
-((-2435 (($ $ (-831)) 17 T ELT)))
-(((-683 |#1| |#2|) (-10 -7 (-15 -2435 (|#1| |#1| (-831)))) (-684 |#2|) (-146)) (T -683))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-2435 (($ $ (-831)) 44 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
-(((-684 |#1|) (-113) (-146)) (T -684))
-((-2435 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
-(-13 (-686) (-655 |t#1|) (-10 -8 (-15 -2435 ($ $ (-831)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-658) . T) ((-686) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2437 (($ $ $) 10 T ELT)) (-2438 (($ $ $ $) 9 T ELT)) (-2436 (($ $ $) 12 T ELT)))
-(((-685 |#1|) (-10 -7 (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2438 (|#1| |#1| |#1| |#1|))) (-686)) (T -685))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2408 (($ $ (-831)) 37 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2407 (($ $ (-831)) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-686) (-113)) (T -686))
-((-2438 (*1 *1 *1 *1 *1) (-4 *1 (-686))) (-2437 (*1 *1 *1 *1) (-4 *1 (-686))) (-2436 (*1 *1 *1 *1) (-4 *1 (-686))))
-(-13 (-21) (-658) (-10 -8 (-15 -2438 ($ $ $ $)) (-15 -2437 ($ $ $)) (-15 -2436 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-1014) . T) ((-1130) . T))
-((-3948 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
-(((-687 |#1|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-688)) (T -687))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2405 (((-3 $ #1="failed") $) 49 T ELT)) (-2408 (($ $ (-831)) 37 T ELT) (($ $ (-695)) 44 T ELT)) (-3469 (((-3 $ #1#) $) 47 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 43 T ELT)) (-2406 (((-3 $ #1#) $) 48 T ELT)) (-2407 (($ $ (-831)) 38 T ELT) (($ $ (-695)) 45 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2437 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 40 T ELT)) (-3128 (((-695)) 41 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2438 (($ $ $ $) 35 T ELT)) (-2436 (($ $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 42 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 39 T ELT) (($ $ (-695)) 46 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 36 T ELT)))
-(((-688) (-113)) (T -688))
-((-3128 (*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688)))))
-(-13 (-686) (-660) (-10 -8 (-15 -3128 ((-695)) -3954) (-15 -3948 ($ (-485)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-658) . T) ((-660) . T) ((-686) . T) ((-1014) . T) ((-1130) . T))
-((-2440 (((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|) 33 T ELT)) (-2439 (((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|) 23 T ELT)) (-2451 (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091)) 20 T ELT) (((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485))))) 19 T ELT)))
-(((-689 |#1|) (-10 -7 (-15 -2451 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))))) (-15 -2451 ((-858 (-142 (-350 (-485)))) (-631 (-142 (-350 (-485)))) (-1091))) (-15 -2439 ((-584 (-142 |#1|)) (-631 (-142 (-350 (-485)))) |#1|)) (-15 -2440 ((-584 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 |#1|)))))) (-631 (-142 (-350 (-485)))) |#1|))) (-13 (-312) (-756))) (T -689))
-((-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 (-142 *4))))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091)) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5)) (-4 *5 (-13 (-312) (-756))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
-((-2618 (((-148 (-485)) |#1|) 27 T ELT)))
-(((-690 |#1|) (-10 -7 (-15 -2618 ((-148 (-485)) |#1|))) (-347)) (T -690))
-((-2618 (*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347)))))
-((-2544 ((|#1| |#1| |#1|) 28 T ELT)) (-2545 ((|#1| |#1| |#1|) 27 T ELT)) (-2534 ((|#1| |#1| |#1|) 38 T ELT)) (-2542 ((|#1| |#1| |#1|) 33 T ELT)) (-2543 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2550 (((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|) 26 T ELT)))
-(((-691 |#1| |#2|) (-10 -7 (-15 -2550 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|))) (-646 |#2|) (-312)) (T -691))
-((-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2542 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2543 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2545 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3)))) (-2550 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4)))))
-((-2557 (((-633 (-1139)) $ (-1139)) 27 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 26 T ELT)) (-2556 (((-695) $ (-102)) 28 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 25 T ELT)) (-2001 (((-633 (-1139)) $) 12 T ELT)) (-1997 (((-633 (-1137)) $) 8 T ELT)) (-1999 (((-633 (-1136)) $) 10 T ELT)) (-2002 (((-633 (-489)) $) 13 T ELT)) (-1998 (((-633 (-487)) $) 9 T ELT)) (-2000 (((-633 (-486)) $) 11 T ELT)) (-1996 (((-695) $ (-102)) 7 T ELT)) (-2003 (((-633 (-101)) $) 14 T ELT)) (-2441 (((-85) $) 32 T ELT)) (-2442 (((-633 $) |#1| (-866)) 33 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-692 |#1|) (-113) (-1014)) (T -692))
-((-2442 (*1 *2 *3 *4) (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(-13 (-513) (-10 -8 (-15 -2442 ((-633 $) |t#1| (-866))) (-15 -2441 ((-85) $))))
-(((-147) . T) ((-466) . T) ((-513) . T) ((-771) . T))
-((-3921 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)) 72 T ELT)) (-3920 (((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) 70 T ELT)) (-3759 (((-485)) 86 T ELT)))
-(((-693 |#1| |#2|) (-10 -7 (-15 -3759 ((-485))) (-15 -3920 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))))) (-15 -3921 ((-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485)))) (-485)))) (-1156 (-485)) (-353 (-485) |#1|)) (T -693))
-((-3921 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3920 (*1 *2) (-12 (-4 *3 (-1156 (-485))) (-5 *2 (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485)) (|:| |basisInv| (-631 (-485))))) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3)))) (-3759 (*1 *2) (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4)) (-4 *4 (-353 *2 *3)))))
-((-2510 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 19 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 18 T ELT)) (-3575 (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))) 21 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091))) 20 T ELT)))
-(((-694 |#1|) (-10 -7 (-15 -2510 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2510 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-858 |#1|))))) (-496)) (T -694))
-((-3575 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2485 (($ $ $) 10 T ELT)) (-1313 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2443 (($ $ (-485)) 11 T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 6 T CONST)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-695) (-13 (-718) (-664) (-10 -8 (-15 -2565 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -2881 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3468 ((-3 $ "failed") $ $)) (-15 -2443 ($ $ (-485))) (-15 -2996 ($ $)) (-6 (-3999 "*"))))) (T -695))
-((-2565 (*1 *1 *1 *1) (-5 *1 (-695))) (-2566 (*1 *1 *1 *1) (-5 *1 (-695))) (-3146 (*1 *1 *1 *1) (-5 *1 (-695))) (-2881 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2904 (-695)))) (-5 *1 (-695)))) (-3468 (*1 *1 *1 *1) (|partial| -5 *1 (-695))) (-2443 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))) (-2996 (*1 *1 *1) (-5 *1 (-695))))
-((-485) (|%not| (|%ilt| |#1| 0)))
-((-3575 (((-3 |#2| "failed") |#2| |#2| (-86) (-1091)) 37 T ELT)))
-(((-696 |#1| |#2|) (-10 -7 (-15 -3575 ((-3 |#2| "failed") |#2| |#2| (-86) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -696))
-((-3575 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2)) (-4 *2 (-13 (-29 *5) (-1116) (-872))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 7 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT)))
-(((-697) (-1014)) (T -697))
-NIL
-((-3948 (((-697) |#1|) 8 T ELT)))
-(((-698 |#1|) (-10 -7 (-15 -3948 ((-697) |#1|))) (-1130)) (T -698))
-((-3948 (*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130)))))
-((-3134 ((|#2| |#4|) 35 T ELT)))
-(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3134 (|#2| |#4|))) (-392) (-1156 |#1|) (-662 |#1| |#2|) (-1156 |#3|)) (T -699))
-((-3134 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5)))))
-((-3469 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2446 (((-1186) (-1074) (-1074) |#4| |#5|) 33 T ELT)) (-2444 ((|#4| |#4| |#5|) 74 T ELT)) (-2445 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 79 T ELT)) (-2447 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 16 T ELT)))
-(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3469 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2444 (|#4| |#4| |#5|)) (-15 -2445 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -2446 ((-1186) (-1074) (-1074) |#4| |#5|)) (-15 -2447 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -700))
-((-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2446 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5)) (-4 *5 (-984 *6 *7 *8 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-2444 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6)) (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-((-3159 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 53 T ELT)) (-2448 (((-584 |#4|) |#4|) 22 T ELT)) (-3930 ((|#4| |#4|) 17 T ELT)))
-(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-584 |#4|) |#4|)) (-15 -3159 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3930 (|#4| |#4|))) (-299) (-280 |#1|) (-1156 |#2|) (-1156 |#3|) (-831)) (T -701))
-((-3930 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4)) (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831)))) (-3159 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831)))) (-2448 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3)) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831)))))
-((-2449 (((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|)) 72 T ELT)) (-2450 (((-584 (-695)) |#1|) 20 T ELT)))
-(((-702 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-2 (|:| |deter| (-584 (-1086 |#5|))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-584 |#1|)) (|:| |nlead| (-584 |#5|))) (-1086 |#5|) (-584 |#1|) (-584 |#5|))) (-15 -2450 ((-584 (-695)) |#1|))) (-1156 |#4|) (-718) (-757) (-258) (-862 |#4| |#2| |#3|)) (T -702))
-((-2450 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695))) (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))) (-2449 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258)) (-4 *10 (-862 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-584 (-1086 *10))) (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *10))))) (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10)))) (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6)) (-5 *5 (-584 *10)))))
-((-2453 (((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|) 31 T ELT)) (-2452 (((-584 |#1|) (-631 (-350 (-485))) |#1|) 21 T ELT)) (-2451 (((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091)) 18 T ELT) (((-858 (-350 (-485))) (-631 (-350 (-485)))) 17 T ELT)))
-(((-703 |#1|) (-10 -7 (-15 -2451 ((-858 (-350 (-485))) (-631 (-350 (-485))))) (-15 -2451 ((-858 (-350 (-485))) (-631 (-350 (-485))) (-1091))) (-15 -2452 ((-584 |#1|) (-631 (-350 (-485))) |#1|)) (-15 -2453 ((-584 (-2 (|:| |outval| |#1|) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 |#1|))))) (-631 (-350 (-485))) |#1|))) (-13 (-312) (-756))) (T -703))
-((-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 (-2 (|:| |outval| *4) (|:| |outmult| (-485)) (|:| |outvect| (-584 (-631 *4)))))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091)) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 36 T ELT)) (-3083 (((-584 |#2|) $) NIL T ELT)) (-3085 (((-1086 $) $ |#2|) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) NIL T ELT)) (-3799 (($ $) 30 T ELT)) (-3168 (((-85) $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) 110 (|has| |#1| (-496)) ELT)) (-3150 (((-584 $) $ $) 123 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (((-3 $ #1#) (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (((-3 $ #1#) (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-905 (-485)))))) ELT) (((-3 (-1040 |#1| |#2|) #1#) $) 21 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (OR (-12 (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485))))) (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-484)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-905 (-485)))))) ELT) (((-1040 |#1| |#2|) $) NIL T ELT)) (-3758 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-496)) ELT)) (-3961 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 81 T ELT)) (-3145 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3157 (($ $) NIL (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3166 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 57 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3697 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3147 (($ $ $ $ $) 107 (|has| |#1| (-496)) ELT)) (-3182 ((|#2| $) 22 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) NIL T ELT) (($ (-1086 $) |#2|) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 38 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3161 (($ $ $) 63 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3175 (((-85) $) NIL T ELT)) (-2822 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) NIL T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3181 (((-695) $) 23 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 |#2| #1#) $) NIL T ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) NIL T ELT)) (-3173 (($ $) 39 T ELT)) (-3144 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) 43 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3172 (($ $) 41 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 96 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 78 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) NIL T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 125 (|has| |#1| (-496)) ELT)) (-3178 (((-584 $) $) 32 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3688 (($ $ $) NIL T ELT)) (-3448 (($ $) 24 T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-3694 (((-85) $ $) NIL T ELT) (((-85) $ (-584 $)) NIL T ELT)) (-3689 (($ $ $) NIL T ELT)) (-3180 (($ $) 26 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 56 T ELT)) (-1800 ((|#1| $) 58 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 129 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 128 (|has| |#1| (-496)) ELT) (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-584 |#2|) (-584 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-584 |#2|) (-584 $)) NIL T ELT)) (-3759 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3950 (((-470 |#2|) $) NIL T ELT) (((-695) $ |#2|) 45 T ELT) (((-584 (-695)) $ (-584 |#2|)) NIL T ELT)) (-3179 (($ $) NIL T ELT)) (-3177 (($ $) 35 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) NIL (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091)))) ELT) (($ (-858 (-485))) NIL (OR (-12 (|has| |#1| (-38 (-485))) (|has| |#2| (-554 (-1091))) (-2562 (|has| |#1| (-38 (-350 (-485)))))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#2| (-554 (-1091))))) ELT) (($ (-858 |#1|)) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1074) $) NIL (-12 (|has| |#1| (-951 (-485))) (|has| |#2| (-554 (-1091)))) ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT)) (-2819 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-858 |#1|) $) NIL (|has| |#2| (-554 (-1091))) ELT) (((-1040 |#1| |#2|) $) 18 T ELT) (($ (-1040 |#1| |#2|)) 19 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-3169 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2668 (($) 37 T CONST)) (-3148 (($ $ $ $ (-695)) 105 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-695)) 104 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3841 (($ $ $) 85 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 70 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-704 |#1| |#2|) (-13 (-978 |#1| (-470 |#2|) |#2|) (-553 (-1040 |#1| |#2|)) (-951 (-1040 |#1| |#2|))) (-962) (-757)) (T -704))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2457 (((-584 $) $ $) 54 (|has| |#1| (-496)) ELT)) (-3757 (($ $ $) 50 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT) (((-3 (-1086 |#1|) #1#) $) 10 T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) 87 (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) 86 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3161 (($ $ $) 27 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3483 (-695))) $ $) 37 T ELT)) (-2459 (($ $ $) 41 T ELT)) (-2458 (($ $ $) 47 T ELT)) (-3162 (((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 46 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3192 (($ $ $) 56 (|has| |#1| (-496)) ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-496)) ELT)) (-2454 (((-2 (|:| -3758 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2455 (((-2 (|:| -3758 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 13 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3740 (($ $ (-695) |#1| $) 26 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-496)) ELT)) (-2456 (((-2 (|:| -3758 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-496)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-995)) NIL T ELT) (((-1086 |#1|) $) 7 T ELT) (($ (-1086 |#1|)) 8 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 32 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-705 |#1|) (-13 (-1156 |#1|) (-553 (-1086 |#1|)) (-951 (-1086 |#1|)) (-10 -8 (-15 -3740 ($ $ (-695) |#1| $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3483 (-695))) $ $)) (-15 -2459 ($ $ $)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2458 ($ $ $)) (IF (|has| |#1| (-496)) (PROGN (-15 -2457 ((-584 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -2456 ((-2 (|:| -3758 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3758 |#1|) (|:| |coef1| $)) $ $)) (-15 -2454 ((-2 (|:| -3758 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-962)) (T -705))
-((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-3161 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3160 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3483 (-695)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2459 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-3162 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3956 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3)) (|:| -2904 (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-962)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))) (-2457 (*1 *2 *1 *1) (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3192 (*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962)))) (-3153 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
-((-3960 (((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)) 13 T ELT)))
-(((-706 |#1| |#2|) (-10 -7 (-15 -3960 ((-705 |#2|) (-1 |#2| |#1|) (-705 |#1|)))) (-962) (-962)) (T -706))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6)))))
-((-2461 ((|#1| (-695) |#1|) 33 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2803 ((|#1| (-695) |#1|) 23 T ELT)) (-2460 ((|#1| (-695) |#1|) 35 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-707 |#1|) (-10 -7 (-15 -2803 (|#1| (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -2460 (|#1| (-695) |#1|)) (-15 -2461 (|#1| (-695) |#1|))) |%noBranch|)) (-146)) (T -707))
-((-2461 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2803 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3690 ((|#4| |#4| $) 98 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 88 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3685 ((|#4| |#4| $) 93 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 113 T ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3701 (((-85) $ $) 116 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3771 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 112 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 94 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 87 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 86 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-708 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -708))
-NIL
-(-13 (-984 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-2464 (((-3 (-330) #1="failed") (-265 |#1|) (-831)) 60 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|)) (-831)) 39 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-350 (-858 |#1|))) 35 (|has| |#1| (-496)) ELT) (((-3 (-330) #1#) (-858 |#1|) (-831)) 30 (|has| |#1| (-962)) ELT) (((-3 (-330) #1#) (-858 |#1|)) 24 (|has| |#1| (-962)) ELT)) (-2462 (((-330) (-265 |#1|) (-831)) 92 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-330) (-350 (-858 |#1|)) (-831)) 84 (|has| |#1| (-496)) ELT) (((-330) (-350 (-858 |#1|))) 81 (|has| |#1| (-496)) ELT) (((-330) (-858 |#1|) (-831)) 80 (|has| |#1| (-962)) ELT) (((-330) (-858 |#1|)) 77 (|has| |#1| (-962)) ELT) (((-330) |#1| (-831)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2465 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)) 68 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-831)) 61 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831)) 44 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|)))) 43 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831)) 38 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-858 |#1|))) 37 (|has| |#1| (-496)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)) 28 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 |#1|)) 26 (|has| |#1| (-962)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-858 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2463 (((-142 (-330)) (-265 (-142 |#1|)) (-831)) 95 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|) (-831)) 93 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-496)) (|has| |#1| (-757))) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831)) 86 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 (-142 |#1|)))) 85 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|)) (-831)) 83 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-350 (-858 |#1|))) 82 (|has| |#1| (-496)) ELT) (((-142 (-330)) (-858 |#1|) (-831)) 79 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 |#1|)) 78 (|has| |#1| (-962)) ELT) (((-142 (-330)) (-858 (-142 |#1|)) (-831)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-858 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-831)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-831)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT)))
-(((-709 |#1|) (-10 -7 (-15 -2462 ((-330) |#1|)) (-15 -2462 ((-330) |#1| (-831))) (-15 -2463 ((-142 (-330)) |#1|)) (-15 -2463 ((-142 (-330)) |#1| (-831))) (IF (|has| |#1| (-146)) (PROGN (-15 -2463 ((-142 (-330)) (-142 |#1|))) (-15 -2463 ((-142 (-330)) (-142 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-858 (-142 |#1|)))) (-15 -2463 ((-142 (-330)) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2462 ((-330) (-858 |#1|))) (-15 -2462 ((-330) (-858 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-858 |#1|))) (-15 -2463 ((-142 (-330)) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2462 ((-330) (-350 (-858 |#1|)))) (-15 -2462 ((-330) (-350 (-858 |#1|)) (-831))) (-15 -2463 ((-142 (-330)) (-350 (-858 |#1|)))) (-15 -2463 ((-142 (-330)) (-350 (-858 |#1|)) (-831))) (-15 -2463 ((-142 (-330)) (-350 (-858 (-142 |#1|))))) (-15 -2463 ((-142 (-330)) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2462 ((-330) (-265 |#1|))) (-15 -2462 ((-330) (-265 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-265 |#1|))) (-15 -2463 ((-142 (-330)) (-265 |#1|) (-831))) (-15 -2463 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2463 ((-142 (-330)) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2465 ((-3 (-142 (-330)) #1="failed") (-858 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 (-142 |#1|)) (-831)))) |%noBranch|) (IF (|has| |#1| (-962)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-858 |#1|))) (-15 -2464 ((-3 (-330) #1#) (-858 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 |#1|))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-858 |#1|) (-831)))) |%noBranch|) (IF (|has| |#1| (-496)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-350 (-858 |#1|)))) (-15 -2464 ((-3 (-330) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 |#1|)) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-350 (-858 (-142 |#1|))) (-831))) (IF (|has| |#1| (-757)) (PROGN (-15 -2464 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-330) #1#) (-265 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-831))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2465 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-831)))) |%noBranch|)) |%noBranch|)) (-554 (-330))) (T -709))
-((-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2465 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2465 (*1 *2 *3) (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330))))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2)))))
-((-2469 (((-831) (-1074)) 90 T ELT)) (-2471 (((-3 (-330) "failed") (-1074)) 36 T ELT)) (-2470 (((-330) (-1074)) 34 T ELT)) (-2467 (((-831) (-1074)) 64 T ELT)) (-2468 (((-1074) (-831)) 74 T ELT)) (-2466 (((-1074) (-831)) 63 T ELT)))
-(((-710) (-10 -7 (-15 -2466 ((-1074) (-831))) (-15 -2467 ((-831) (-1074))) (-15 -2468 ((-1074) (-831))) (-15 -2469 ((-831) (-1074))) (-15 -2470 ((-330) (-1074))) (-15 -2471 ((-3 (-330) "failed") (-1074))))) (T -710))
-((-2471 (*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
-((-2474 (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 54 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 51 T ELT)) (-2475 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 61 T ELT)) (-2473 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 49 T ELT)) (-2472 (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330))) 63 T ELT) (((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330))) 62 T ELT)))
-(((-711) (-10 -7 (-15 -2472 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2472 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2473 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2474 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))) (-15 -2474 ((-1186) (-1180 (-330)) (-485) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))) (-330) (-1180 (-330)) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)) (-1180 (-330)))) (-15 -2475 ((-1186) (-1180 (-330)) (-485) (-330) (-330) (-485) (-1 (-1186) (-1180 (-330)) (-1180 (-330)) (-330)))))) (T -711))
-((-2475 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2474 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-485)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330)))) (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))) (-2472 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))))
-((-2484 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 65 T ELT)) (-2481 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 40 T ELT)) (-2483 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 64 T ELT)) (-2480 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 38 T ELT)) (-2482 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 63 T ELT)) (-2479 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485)) 24 T ELT)) (-2478 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 41 T ELT)) (-2477 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 39 T ELT)) (-2476 (((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485)) 37 T ELT)))
-(((-712) (-10 -7 (-15 -2476 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2477 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2478 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485) (-485))) (-15 -2479 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2480 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2481 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2482 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2483 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))) (-15 -2484 ((-2 (|:| -3404 (-330)) (|:| -1597 (-330)) (|:| |totalpts| (-485)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-485) (-485))))) (T -712))
-((-2484 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485)) (|:| |success| (-85)))) (-5 *1 (-712)) (-5 *5 (-485)))))
-((-3707 (((-1126 |#1|) |#1| (-179) (-485)) 69 T ELT)))
-(((-713 |#1|) (-10 -7 (-15 -3707 ((-1126 |#1|) |#1| (-179) (-485)))) (-888)) (T -713))
-((-3707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3)) (-4 *3 (-888)))))
-((-3625 (((-485) $) 17 T ELT)) (-3189 (((-85) $) 10 T ELT)) (-3385 (($ $) 19 T ELT)))
-(((-714 |#1|) (-10 -7 (-15 -3385 (|#1| |#1|)) (-15 -3625 ((-485) |#1|)) (-15 -3189 ((-85) |#1|))) (-715)) (T -714))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3625 (((-485) $) 38 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3385 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT)))
-(((-715) (-113)) (T -715))
-((-3189 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485)))) (-3385 (*1 *1 *1) (-4 *1 (-715))))
-(-13 (-722) (-21) (-10 -8 (-15 -3189 ((-85) $)) (-15 -3625 ((-485) $)) (-15 -3385 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-3188 (((-85) $) 10 T ELT)))
-(((-716 |#1|) (-10 -7 (-15 -3188 ((-85) |#1|))) (-717)) (T -716))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
+((-2005 (((-1085 |#1|) (-694)) 114 T ELT)) (-3331 (((-1179 |#1|) (-1179 |#1|) (-830)) 107 T ELT)) (-2003 (((-1185) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) |#1|) 122 T ELT)) (-2007 (((-1179 |#1|) (-1179 |#1|) (-694)) 53 T ELT)) (-2995 (((-1179 |#1|) (-830)) 109 T ELT)) (-2009 (((-1179 |#1|) (-1179 |#1|) (-484)) 30 T ELT)) (-2004 (((-1085 |#1|) (-1179 |#1|)) 115 T ELT)) (-2013 (((-1179 |#1|) (-830)) 136 T ELT)) (-2011 (((-85) (-1179 |#1|)) 119 T ELT)) (-3133 (((-1179 |#1|) (-1179 |#1|) (-830)) 99 T ELT)) (-2014 (((-1085 |#1|) (-1179 |#1|)) 130 T ELT)) (-2010 (((-830) (-1179 |#1|)) 95 T ELT)) (-2485 (((-1179 |#1|) (-1179 |#1|)) 38 T ELT)) (-2400 (((-1179 |#1|) (-830) (-830)) 139 T ELT)) (-2008 (((-1179 |#1|) (-1179 |#1|) (-1033) (-1033)) 29 T ELT)) (-2006 (((-1179 |#1|) (-1179 |#1|) (-694) (-1033)) 54 T ELT)) (-2012 (((-1179 (-1179 |#1|)) (-830)) 135 T ELT)) (-3950 (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 120 T ELT)) (** (((-1179 |#1|) (-1179 |#1|) (-484)) 67 T ELT)) (* (((-1179 |#1|) (-1179 |#1|) (-1179 |#1|)) 31 T ELT)))
+(((-466 |#1|) (-10 -7 (-15 -2003 ((-1185) (-1179 (-583 (-2 (|:| -3403 |#1|) (|:| -2400 (-1033))))) |#1|)) (-15 -2995 ((-1179 |#1|) (-830))) (-15 -2400 ((-1179 |#1|) (-830) (-830))) (-15 -2004 ((-1085 |#1|) (-1179 |#1|))) (-15 -2005 ((-1085 |#1|) (-694))) (-15 -2006 ((-1179 |#1|) (-1179 |#1|) (-694) (-1033))) (-15 -2007 ((-1179 |#1|) (-1179 |#1|) (-694))) (-15 -2008 ((-1179 |#1|) (-1179 |#1|) (-1033) (-1033))) (-15 -2009 ((-1179 |#1|) (-1179 |#1|) (-484))) (-15 ** ((-1179 |#1|) (-1179 |#1|) (-484))) (-15 * ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3950 ((-1179 |#1|) (-1179 |#1|) (-1179 |#1|))) (-15 -3133 ((-1179 |#1|) (-1179 |#1|) (-830))) (-15 -3331 ((-1179 |#1|) (-1179 |#1|) (-830))) (-15 -2485 ((-1179 |#1|) (-1179 |#1|))) (-15 -2010 ((-830) (-1179 |#1|))) (-15 -2011 ((-85) (-1179 |#1|))) (-15 -2012 ((-1179 (-1179 |#1|)) (-830))) (-15 -2013 ((-1179 |#1|) (-830))) (-15 -2014 ((-1085 |#1|) (-1179 |#1|)))) (-299)) (T -466))
+((-2014 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (-3331 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3133 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2008 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))) (-2006 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1179 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299)) (-5 *1 (-466 *5)))) (-2005 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))) (-2003 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))) (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-466 *4)))))
+((-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) 26 T ELT)) (-2015 (((-1033) $ (-1033)) 31 T ELT)) (-3420 (((-1033) $) 30 T ELT)) (-2559 (((-85) $) 20 T ELT)) (-2017 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-2016 (((-85) $) 27 T ELT)) (-3947 (((-772) $) 34 T ELT)) (-1700 (($ $) 28 T ELT)))
+(((-467) (-13 (-465) (-552 (-772)) (-10 -8 (-15 -2017 ($ (-338))) (-15 -2017 ($ (-1073))) (-15 -2016 ((-85) $)) (-15 -2559 ((-85) $)) (-15 -3420 ((-1033) $)) (-15 -2015 ((-1033) $ (-1033)))))) (T -467))
+((-2017 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-467)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-467)))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))) (-3420 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
+((-2019 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2018 (((-1 |#1| |#1|)) 10 T ELT)))
+(((-468 |#1|) (-10 -7 (-15 -2018 ((-1 |#1| |#1|))) (-15 -2019 ((-1 |#1| |#1|) |#1|))) (-13 (-663) (-25))) (T -468))
+((-2019 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))) (-2018 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 (-694) |#1|)) $) NIL T ELT)) (-2484 (($ $ $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ (-694) |#1|) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3959 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-1983 ((|#1| $) NIL T ELT)) (-3175 (((-694) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (($ (-583 (-453 (-694) |#1|))) NIL T ELT)) (-3947 (((-772) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT)))
+(((-469 |#1|) (-13 (-717) (-449 (-694) |#1|)) (-756)) (T -469))
+NIL
+((-2021 (((-583 |#2|) (-1085 |#1|) |#3|) 98 T ELT)) (-2022 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))) 114 T ELT)) (-2020 (((-1085 |#1|) (-630 |#1|)) 110 T ELT)))
+(((-470 |#1| |#2| |#3|) (-10 -7 (-15 -2020 ((-1085 |#1|) (-630 |#1|))) (-15 -2021 ((-583 |#2|) (-1085 |#1|) |#3|)) (-15 -2022 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#2|))))) (-630 |#1|) |#3| (-1 (-348 (-1085 |#1|)) (-1085 |#1|))))) (-312) (-312) (-13 (-312) (-755))) (T -470))
+((-2022 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6))) (-4 *6 (-312)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *7)))))) (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6)) (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4)) (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755))))))
+((-2556 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2555 (((-694) $ (-102)) 39 T ELT)) (-2558 (((-632 (-101)) $ (-101)) 40 T ELT)) (-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) 35 T ELT)) (-2002 (((-632 (-101)) $) 37 T ELT)) (-2440 (((-85) $) 27 T ELT)) (-2441 (((-632 $) (-515) (-865)) 18 T ELT) (((-632 $) (-431) (-865)) 24 T ELT)) (-3947 (((-772) $) 48 T ELT)) (-1700 (($ $) 42 T ELT)))
+(((-471) (-13 (-691 (-515)) (-552 (-772)) (-10 -8 (-15 -2441 ((-632 $) (-431) (-865)))))) (T -471))
+((-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-431)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471)))))
+((-2528 (((-750 (-484))) 12 T ELT)) (-2527 (((-750 (-484))) 14 T ELT)) (-2515 (((-743 (-484))) 9 T ELT)))
+(((-472) (-10 -7 (-15 -2515 ((-743 (-484)))) (-15 -2528 ((-750 (-484)))) (-15 -2527 ((-750 (-484)))))) (T -472))
+((-2527 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2528 (*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472)))) (-2515 (*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2026 (((-1073) $) 55 T ELT)) (-3261 (((-85) $) 51 T ELT)) (-3257 (((-1090) $) 52 T ELT)) (-3262 (((-85) $) 49 T ELT)) (-3536 (((-1073) $) 50 T ELT)) (-2025 (($ (-1073)) 56 T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2028 (($ $ (-583 (-1090))) 21 T ELT)) (-2031 (((-51) $) 23 T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2383 (($ $ (-583 (-1090)) (-1090)) 73 T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-2027 (($ $) 44 T ELT)) (-3254 (((-772) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3258 (((-583 $) $) 30 T ELT)) (-2024 (((-1090) (-583 $)) 57 T ELT)) (-3973 (($ (-1073)) NIL T ELT) (($ (-1090)) 19 T ELT) (($ (-484)) 8 T ELT) (($ (-179)) 28 T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) 65 T ELT) (((-1015) $) 12 T ELT) (($ (-1015)) 13 T ELT)) (-2023 (((-1090) (-1090) (-583 $)) 60 T ELT)) (-3947 (((-772) $) 54 T ELT)) (-3252 (($ $) 59 T ELT)) (-3253 (($ $) 58 T ELT)) (-2029 (($ $ (-583 $)) 66 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 29 T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 11 T CONST)) (-3057 (((-85) $ $) 74 T ELT)) (-3950 (($ $ $) 82 T ELT)) (-3840 (($ $ $) 75 T ELT)) (** (($ $ (-694)) 81 T ELT) (($ $ (-484)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-3958 (((-484) $) NIL T ELT)))
+(((-473) (-13 (-1016 (-1073) (-1090) (-484) (-179) (-772)) (-553 (-1015)) (-10 -8 (-15 -2031 ((-51) $)) (-15 -3973 ($ (-1015))) (-15 -2029 ($ $ (-583 $))) (-15 -2383 ($ $ (-583 (-1090)) (-1090))) (-15 -2028 ($ $ (-583 (-1090)))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ (-484))) (-15 -2661 ($) -3953) (-15 -2667 ($) -3953) (-15 -2027 ($ $)) (-15 -2026 ((-1073) $)) (-15 -2025 ($ (-1073))) (-15 -2024 ((-1090) (-583 $))) (-15 -2023 ((-1090) (-1090) (-583 $)))))) (T -473))
+((-2031 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))) (-2383 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1090)) (-5 *1 (-473)))) (-2028 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-473)))) (-3840 (*1 *1 *1 *1) (-5 *1 (-473))) (* (*1 *1 *1 *1) (-5 *1 (-473))) (-3950 (*1 *1 *1 *1) (-5 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473)))) (-2661 (*1 *1) (-5 *1 (-473))) (-2667 (*1 *1) (-5 *1 (-473))) (-2027 (*1 *1 *1) (-5 *1 (-473))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))) (-2025 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1090)) (-5 *1 (-473)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 (-473))) (-5 *1 (-473)))))
+((-2030 (((-473) (-1090)) 15 T ELT)) (-2031 ((|#1| (-473)) 20 T ELT)))
+(((-474 |#1|) (-10 -7 (-15 -2030 ((-473) (-1090))) (-15 -2031 (|#1| (-473)))) (-1129)) (T -474))
+((-2031 (*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1129)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1129)))))
+((-3454 ((|#2| |#2|) 17 T ELT)) (-3452 ((|#2| |#2|) 13 T ELT)) (-3455 ((|#2| |#2| (-484) (-484)) 20 T ELT)) (-3453 ((|#2| |#2|) 15 T ELT)))
+(((-475 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-484) (-484)))) (-13 (-495) (-120)) (-1172 |#1|)) (T -475))
+((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2)) (-4 *2 (-1172 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3)))))
+((-2034 (((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1090))) 32 T ELT)) (-2032 (((-583 |#2|) (-857 |#1|) |#3|) 54 T ELT) (((-583 |#2|) (-1085 |#1|) |#3|) 53 T ELT)) (-2033 (((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)) |#3|) 106 T ELT)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -2032 ((-583 |#2|) (-1085 |#1|) |#3|)) (-15 -2032 ((-583 |#2|) (-857 |#1|) |#3|)) (-15 -2033 ((-583 (-583 |#2|)) (-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)) |#3|)) (-15 -2034 ((-583 (-249 (-857 |#2|))) (-583 |#2|) (-583 (-1090))))) (-392) (-312) (-13 (-312) (-755))) (T -476))
+((-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1090))) (-4 *6 (-312)) (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-13 (-312) (-755))))) (-2033 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312)) (-4 *5 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6)) (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
+((-2037 ((|#2| |#2| |#1|) 17 T ELT)) (-2035 ((|#2| (-583 |#2|)) 30 T ELT)) (-2036 ((|#2| (-583 |#2|)) 51 T ELT)))
+(((-477 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2035 (|#2| (-583 |#2|))) (-15 -2036 (|#2| (-583 |#2|))) (-15 -2037 (|#2| |#2| |#1|))) (-258) (-1155 |#1|) |#1| (-1 |#1| |#1| (-694))) (T -477))
+((-2037 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694))) (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6)) (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
+((-3733 (((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 90 T ELT) (((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|))) 213 T ELT)))
+(((-478 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4| (-1 (-348 (-1085 |#3|)) (-1085 |#3|)))) (-15 -3733 ((-348 (-1085 |#4|)) (-1085 |#4|) (-1 (-348 (-1085 |#3|)) (-1085 |#3|))))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -478))
+((-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1085 *8)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-478 *5 *6 *7 *3)) (-4 *3 (-861 *7 *6 *5)))))
+((-3454 ((|#4| |#4|) 74 T ELT)) (-3452 ((|#4| |#4|) 70 T ELT)) (-3455 ((|#4| |#4| (-484) (-484)) 76 T ELT)) (-3453 ((|#4| |#4|) 72 T ELT)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3452 (|#4| |#4|)) (-15 -3453 (|#4| |#4|)) (-15 -3454 (|#4| |#4|)) (-15 -3455 (|#4| |#4| (-484) (-484)))) (-13 (-312) (-320) (-553 (-484))) (-1155 |#1|) (-661 |#1| |#2|) (-1172 |#3|)) (T -479))
+((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-4 *5 (-1155 *4)) (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3)) (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
+((-3454 ((|#2| |#2|) 27 T ELT)) (-3452 ((|#2| |#2|) 23 T ELT)) (-3455 ((|#2| |#2| (-484) (-484)) 29 T ELT)) (-3453 ((|#2| |#2|) 25 T ELT)))
+(((-480 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3454 (|#2| |#2|)) (-15 -3455 (|#2| |#2| (-484) (-484)))) (-13 (-312) (-320) (-553 (-484))) (-1172 |#1|)) (T -480))
+((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-5 *1 (-480 *4 *2)) (-4 *2 (-1172 *4)))) (-3454 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3)))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3)))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2)) (-4 *2 (-1172 *3)))))
+((-2038 (((-3 (-484) #1="failed") |#2| |#1| (-1 (-3 (-484) #1#) |#1|)) 18 T ELT) (((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|)) 14 T ELT) (((-3 (-484) #1#) |#2| (-484) (-1 (-3 (-484) #1#) |#1|)) 30 T ELT)))
+(((-481 |#1| |#2|) (-10 -7 (-15 -2038 ((-3 (-484) #1="failed") |#2| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-484) (-1 (-3 (-484) #1#) |#1|))) (-15 -2038 ((-3 (-484) #1#) |#2| |#1| (-1 (-3 (-484) #1#) |#1|)))) (-961) (-1155 |#1|)) (T -481))
+((-2038 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1="failed") *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))) (-2038 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))) (-2038 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-484) #1#) *5)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2047 (($ $ $) 87 T ELT)) (-3972 (((-348 $) $) 50 T ELT)) (-3158 (((-3 (-484) #1="failed") $) 62 T ELT)) (-3157 (((-484) $) 40 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 80 T ELT)) (-3024 (((-85) $) 24 T ELT)) (-3023 (((-350 (-484)) $) 78 T ELT)) (-3724 (((-85) $) 53 T ELT)) (-2040 (($ $ $ $) 94 T ELT)) (-1369 (($ $ $) 60 T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 75 T ELT)) (-3446 (((-632 $) $) 70 T ELT)) (-2044 (($ $) 22 T ELT)) (-2039 (($ $ $) 92 T ELT)) (-3447 (($) 63 T CONST)) (-1367 (($ $) 56 T ELT)) (-3733 (((-348 $) $) 48 T ELT)) (-2675 (((-85) $) 15 T ELT)) (-1607 (((-694) $) 30 T ELT)) (-3759 (($ $) 11 T ELT) (($ $ (-694)) NIL T ELT)) (-3401 (($ $) 16 T ELT)) (-3973 (((-484) $) NIL T ELT) (((-473) $) 39 T ELT) (((-800 (-484)) $) 43 T ELT) (((-330) $) 33 T ELT) (((-179) $) 36 T ELT)) (-3127 (((-694)) 9 T CONST)) (-2049 (((-85) $ $) 19 T ELT)) (-3102 (($ $ $) 58 T ELT)))
+(((-482 |#1|) (-10 -7 (-15 -2039 (|#1| |#1| |#1|)) (-15 -2040 (|#1| |#1| |#1| |#1|)) (-15 -2044 (|#1| |#1|)) (-15 -3401 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3023 ((-350 (-484)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -2047 (|#1| |#1| |#1|)) (-15 -2049 ((-85) |#1| |#1|)) (-15 -2675 ((-85) |#1|)) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-632 |#1|) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -1369 (|#1| |#1| |#1|)) (-15 -1367 (|#1| |#1|)) (-15 -3102 (|#1| |#1| |#1|)) (-15 -2797 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3973 ((-484) |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -1607 ((-694) |#1|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3724 ((-85) |#1|)) (-15 -3127 ((-694)) -3953)) (-483)) (T -482))
+((-3127 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-2047 (($ $ $) 102 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2042 (($ $ $ $) 91 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-1608 (((-85) $ $) 145 T ELT)) (-3624 (((-484) $) 134 T ELT)) (-2442 (($ $ $) 105 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) "failed") $) 126 T ELT)) (-3157 (((-484) $) 127 T ELT)) (-2565 (($ $ $) 149 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 124 T ELT) (((-630 (-484)) (-630 $)) 123 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3025 (((-3 (-350 (-484)) "failed") $) 99 T ELT)) (-3024 (((-85) $) 101 T ELT)) (-3023 (((-350 (-484)) $) 100 T ELT)) (-2995 (($) 98 T ELT) (($ $) 97 T ELT)) (-2564 (($ $ $) 148 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 143 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-2040 (($ $ $ $) 89 T ELT)) (-2048 (($ $ $) 103 T ELT)) (-3187 (((-85) $) 136 T ELT)) (-1369 (($ $ $) 114 T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2674 (((-85) $) 109 T ELT)) (-3446 (((-632 $) $) 111 T ELT)) (-3188 (((-85) $) 135 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 152 T ELT)) (-2041 (($ $ $ $) 90 T ELT)) (-2532 (($ $ $) 142 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-2044 (($ $) 93 T ELT)) (-3834 (($ $) 106 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 122 T ELT) (((-630 (-484)) (-1179 $)) 121 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2039 (($ $ $) 88 T ELT)) (-3447 (($) 110 T CONST)) (-2046 (($ $) 95 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1367 (($ $) 115 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 151 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 150 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 144 T ELT)) (-2675 (((-85) $) 108 T ELT)) (-1607 (((-694) $) 146 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 147 T ELT)) (-3759 (($ $) 132 T ELT) (($ $ (-694)) 130 T ELT)) (-2045 (($ $) 94 T ELT)) (-3401 (($ $) 96 T ELT)) (-3973 (((-484) $) 128 T ELT) (((-473) $) 119 T ELT) (((-800 (-484)) $) 118 T ELT) (((-330) $) 113 T ELT) (((-179) $) 112 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 125 T ELT)) (-3127 (((-694)) 40 T CONST)) (-2049 (((-85) $ $) 104 T ELT)) (-3102 (($ $ $) 116 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2695 (($) 107 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2043 (($ $ $ $) 92 T ELT)) (-3384 (($ $) 133 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $) 131 T ELT) (($ $ (-694)) 129 T ELT)) (-2567 (((-85) $ $) 140 T ELT)) (-2568 (((-85) $ $) 138 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 139 T ELT)) (-2686 (((-85) $ $) 137 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-484) $) 120 T ELT)))
+(((-483) (-113)) (T -483))
+((-2674 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2675 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2695 (*1 *1) (-4 *1 (-483))) (-3834 (*1 *1 *1) (-4 *1 (-483))) (-2442 (*1 *1 *1 *1) (-4 *1 (-483))) (-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-2048 (*1 *1 *1 *1) (-4 *1 (-483))) (-2047 (*1 *1 *1 *1) (-4 *1 (-483))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-350 (-484))))) (-2995 (*1 *1) (-4 *1 (-483))) (-2995 (*1 *1 *1) (-4 *1 (-483))) (-3401 (*1 *1 *1) (-4 *1 (-483))) (-2046 (*1 *1 *1) (-4 *1 (-483))) (-2045 (*1 *1 *1) (-4 *1 (-483))) (-2044 (*1 *1 *1) (-4 *1 (-483))) (-2043 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2042 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2041 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2040 (*1 *1 *1 *1 *1) (-4 *1 (-483))) (-2039 (*1 *1 *1 *1) (-4 *1 (-483))))
+(-13 (-1134) (-258) (-740) (-190) (-553 (-484)) (-950 (-484)) (-580 (-484)) (-553 (-473)) (-553 (-800 (-484))) (-796 (-484)) (-116) (-933) (-120) (-1066) (-10 -8 (-15 -2674 ((-85) $)) (-15 -2675 ((-85) $)) (-6 -3995) (-15 -2695 ($)) (-15 -3834 ($ $)) (-15 -2442 ($ $ $)) (-15 -2049 ((-85) $ $)) (-15 -2048 ($ $ $)) (-15 -2047 ($ $ $)) (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $)) (-15 -2995 ($)) (-15 -2995 ($ $)) (-15 -3401 ($ $)) (-15 -2046 ($ $)) (-15 -2045 ($ $)) (-15 -2044 ($ $)) (-15 -2043 ($ $ $ $)) (-15 -2042 ($ $ $ $)) (-15 -2041 ($ $ $ $)) (-15 -2040 ($ $ $ $)) (-15 -2039 ($ $ $)) (-6 -3994)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-116) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-473)) . T) ((-553 (-484)) . T) ((-553 (-800 (-484))) . T) ((-186 $) . T) ((-190) . T) ((-189) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 $) . T) ((-580 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-740) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-484)) . T) ((-832) . T) ((-933) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 8 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 77 T ELT)) (-2063 (($ $) 78 T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 31 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL T ELT)) (-2442 (($ $ $) 71 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL T ELT)) (-2565 (($ $ $) 45 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 53 T ELT) (((-630 (-484)) (-630 $)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 74 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-484)) $) NIL T ELT)) (-2995 (($) 55 T ELT) (($ $) 56 T ELT)) (-2564 (($ $ $) 70 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 46 T ELT)) (-3187 (((-85) $) 22 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1214 (((-85) $ $) 110 T ELT)) (-2410 (((-85) $) 9 T ELT)) (-2674 (((-85) $) 64 T ELT)) (-3446 (((-632 $) $) NIL T ELT)) (-3188 (((-85) $) 21 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 32 T ELT)) (-2532 (($ $ $) 67 T ELT)) (-2858 (($ $ $) 66 T ELT)) (-2044 (($ $) NIL T ELT)) (-3834 (($ $) 29 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) 44 T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2046 (($ $) 15 T ELT)) (-3244 (((-1033) $) 19 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 109 T ELT)) (-3145 (($ $ $) 75 T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3733 (((-348 $) $) 95 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2675 (((-85) $) 65 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 69 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 17 T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-484) $) 28 T ELT) (((-473) $) 41 T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) 35 T ELT) (((-179) $) 38 T ELT)) (-3947 (((-772) $) 26 T ELT) (($ (-484)) 27 T ELT) (($ $) NIL T ELT) (($ (-484)) 27 T ELT)) (-3127 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) 12 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) 112 T ELT)) (-2043 (($ $ $ $) 30 T ELT)) (-3384 (($ $) 54 T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 11 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2567 (((-85) $ $) 59 T ELT)) (-2568 (((-85) $ $) 57 T ELT)) (-3057 (((-85) $ $) 7 T ELT)) (-2685 (((-85) $ $) 58 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-3838 (($ $) 42 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 14 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 63 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 61 T ELT) (($ $ $) 60 T ELT) (($ (-484) $) 61 T ELT)))
+(((-484) (-13 (-483) (-10 -7 (-6 -3983) (-6 -3988) (-6 -3984)))) (T -484))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-485) (-13 (-752) (-10 -8 (-15 -3725 ($) -3953)))) (T -485))
+((-3725 (*1 *1) (-5 *1 (-485))))
+((-484) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-486) (-13 (-752) (-10 -8 (-15 -3725 ($) -3953)))) (T -486))
+((-3725 (*1 *1) (-5 *1 (-486))))
+((-484) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-487) (-13 (-752) (-10 -8 (-15 -3725 ($) -3953)))) (T -487))
+((-3725 (*1 *1) (-5 *1 (-487))))
+((-484) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-488) (-13 (-752) (-10 -8 (-15 -3725 ($) -3953)))) (T -488))
+((-3725 (*1 *1) (-5 *1 (-488))))
+((-484) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-489 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) (-1107 |#1| |#2|)) (T -489))
+NIL
+((-2050 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))) 50 T ELT)))
+(((-490 |#1| |#2|) (-10 -7 (-15 -2050 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-1 (-1085 |#2|) (-1085 |#2|))))) (-495) (-13 (-27) (-364 |#1|))) (T -490))
+((-2050 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3))) (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3)) (-5 *1 (-490 *6 *3)))))
+((-2052 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2053 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2051 (((-519 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT)))
+(((-491 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2051 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2052 ((-519 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2053 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-495) (-950 (-484))) (-13 (-27) (-364 |#1|)) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -491))
+((-2053 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *7 (-1155 (-350 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2)) (-4 *2 (-291 *5 *6 *7)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))) (-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7))) (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+((-2056 (((-85) (-484) (-484)) 12 T ELT)) (-2054 (((-484) (-484)) 7 T ELT)) (-2055 (((-484) (-484) (-484)) 10 T ELT)))
+(((-492) (-10 -7 (-15 -2054 ((-484) (-484))) (-15 -2055 ((-484) (-484) (-484))) (-15 -2056 ((-85) (-484) (-484))))) (T -492))
+((-2056 (*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))) (-2055 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))) (-2054 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2605 ((|#1| $) 77 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3493 (($ $) 107 T ELT)) (-3640 (($ $) 90 T ELT)) (-2484 ((|#1| $) 78 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 89 T ELT)) (-3491 (($ $) 106 T ELT)) (-3639 (($ $) 91 T ELT)) (-3495 (($ $) 105 T ELT)) (-3638 (($ $) 92 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) "failed") $) 85 T ELT)) (-3157 (((-484) $) 86 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2059 (($ |#1| |#1|) 82 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-3628 (($) 117 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 88 T ELT)) (-3188 (((-85) $) 75 T ELT)) (-2532 (($ $ $) 118 T ELT)) (-2858 (($ $ $) 119 T ELT)) (-3943 (($ $) 114 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2060 (($ |#1| |#1|) 83 T ELT) (($ |#1|) 81 T ELT) (($ (-350 (-484))) 80 T ELT)) (-2058 ((|#1| $) 79 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3944 (($ $) 115 T ELT)) (-3496 (($ $) 104 T ELT)) (-3637 (($ $) 93 T ELT)) (-3494 (($ $) 103 T ELT)) (-3636 (($ $) 94 T ELT)) (-3492 (($ $) 102 T ELT)) (-3635 (($ $) 95 T ELT)) (-2057 (((-85) $ |#1|) 74 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-484)) 84 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 113 T ELT)) (-3487 (($ $) 101 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3497 (($ $) 112 T ELT)) (-3485 (($ $) 100 T ELT)) (-3501 (($ $) 111 T ELT)) (-3489 (($ $) 99 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 110 T ELT)) (-3490 (($ $) 98 T ELT)) (-3500 (($ $) 109 T ELT)) (-3488 (($ $) 97 T ELT)) (-3498 (($ $) 108 T ELT)) (-3486 (($ $) 96 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 120 T ELT)) (-2568 (((-85) $ $) 122 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 121 T ELT)) (-2686 (((-85) $ $) 123 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 116 T ELT) (($ $ (-350 (-484))) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-493 |#1|) (-113) (-13 (-347) (-1115))) (T -493))
+((-2060 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2059 (*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2060 (*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2060 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))) (-2057 (*1 *2 *1 *3) (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))))
+(-13 (-392) (-756) (-1115) (-915) (-950 (-484)) (-10 -8 (-6 -3771) (-15 -2060 ($ |t#1| |t#1|)) (-15 -2059 ($ |t#1| |t#1|)) (-15 -2060 ($ |t#1|)) (-15 -2060 ($ (-350 (-484)))) (-15 -2058 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -2605 (|t#1| $)) (-15 -3187 ((-85) $)) (-15 -3188 ((-85) $)) (-15 -2057 ((-85) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-66) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-239) . T) ((-246) . T) ((-392) . T) ((-433) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-756) . T) ((-759) . T) ((-915) . T) ((-950 (-484)) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) . T) ((-1118) . T) ((-1129) . T))
+((-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 9 T ELT)) (-2063 (($ $) 11 T ELT)) (-2061 (((-85) $) 20 T ELT)) (-3468 (((-3 $ "failed") $) 16 T ELT)) (-2062 (((-85) $ $) 22 T ELT)))
+(((-494 |#1|) (-10 -7 (-15 -2061 ((-85) |#1|)) (-15 -2062 ((-85) |#1| |#1|)) (-15 -2063 (|#1| |#1|)) (-15 -2064 ((-2 (|:| -1775 |#1|) (|:| -3983 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3468 ((-3 |#1| "failed") |#1|))) (-495)) (T -494))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-495) (-113)) (T -495))
+((-3467 (*1 *1 *1 *1) (|partial| -4 *1 (-495))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1775 *1) (|:| -3983 *1) (|:| |associate| *1))) (-4 *1 (-495)))) (-2063 (*1 *1 *1) (-4 *1 (-495))) (-2062 (*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
+(-13 (-146) (-38 $) (-246) (-10 -8 (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2064 ((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $)) (-15 -2063 ($ $)) (-15 -2062 ((-85) $ $)) (-15 -2061 ((-85) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2066 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1090) (-583 |#2|)) 38 T ELT)) (-2068 (((-519 |#2|) |#2| (-1090)) 63 T ELT)) (-2067 (((-3 |#2| #1#) |#2| (-1090)) 156 T ELT)) (-2069 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-550 |#2|) (-583 (-550 |#2|))) 159 T ELT)) (-2065 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) |#2|) 41 T ELT)))
+(((-496 |#1| |#2|) (-10 -7 (-15 -2065 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1090) |#2|)) (-15 -2066 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1090) (-583 |#2|))) (-15 -2067 ((-3 |#2| #1#) |#2| (-1090))) (-15 -2068 ((-519 |#2|) |#2| (-1090))) (-15 -2069 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1090) (-550 |#2|) (-583 (-550 |#2|))))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -496))
+((-2069 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *7))) (-4 *7 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2067 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-2066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-496 *6 *3)))) (-2065 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+((-3972 (((-348 |#1|) |#1|) 17 T ELT)) (-3733 (((-348 |#1|) |#1|) 32 T ELT)) (-2071 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2070 (((-348 |#1|) |#1|) 59 T ELT)))
+(((-497 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -2070 ((-348 |#1|) |#1|)) (-15 -2071 ((-3 |#1| "failed") |#1|))) (-483)) (T -497))
+((-2071 (*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
+((-3084 (((-1085 (-350 (-1085 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1085 |#2|)) 35 T ELT)) (-2074 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1085 |#2|)) 115 T ELT)) (-2072 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 85 T ELT) (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|)) 55 T ELT)) (-2073 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-350 (-1085 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1085 |#2|)) 114 T ELT)) (-2075 (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|)) 116 T ELT)) (-2076 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))) 133 (|has| |#3| (-600 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|)) 132 (|has| |#3| (-600 |#2|)) ELT)) (-3085 ((|#2| (-1085 (-350 (-1085 |#2|))) (-550 |#2|) |#2|) 53 T ELT)) (-3080 (((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-550 |#2|)) 34 T ELT)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|))) (-15 -2072 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2| |#2| (-1085 |#2|))) (-15 -2073 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2| (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) |#2| (-1085 |#2|))) (-15 -2074 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) |#2| (-1085 |#2|))) (-15 -2075 ((-3 |#2| #1#) |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)) (-550 |#2|) |#2| (-350 (-1085 |#2|)))) (-15 -3084 ((-1085 (-350 (-1085 |#2|))) |#2| (-550 |#2|) (-550 |#2|) (-1085 |#2|))) (-15 -3085 (|#2| (-1085 (-350 (-1085 |#2|))) (-550 |#2|) |#2|)) (-15 -3080 ((-1085 (-350 (-1085 |#2|))) (-1085 |#2|) (-550 |#2|))) (IF (|has| |#3| (-600 |#2|)) (PROGN (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) |#2| (-1085 |#2|))) (-15 -2076 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-550 |#2|) |#2| (-350 (-1085 |#2|))))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-120) (-580 (-484))) (-13 (-364 |#1|) (-27) (-1115)) (-1013)) (T -498))
+((-2076 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-350 (-1085 *4))) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2076 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1085 *4)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-3080 (*1 *2 *3 *4) (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1085 *6)) (-4 *7 (-1013)))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-550 *2)) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013)))) (-3084 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1085 *3)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1090))) (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2075 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1090))) (-5 *5 (-1085 *2)) (-4 *2 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2074 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1085 *3)) (-4 *3 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2073 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3))) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))) (-2072 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
+((-2086 (((-484) (-484) (-694)) 87 T ELT)) (-2085 (((-484) (-484)) 85 T ELT)) (-2084 (((-484) (-484)) 82 T ELT)) (-2083 (((-484) (-484)) 89 T ELT)) (-2806 (((-484) (-484) (-484)) 67 T ELT)) (-2082 (((-484) (-484) (-484)) 64 T ELT)) (-2081 (((-350 (-484)) (-484)) 29 T ELT)) (-2080 (((-484) (-484)) 34 T ELT)) (-2079 (((-484) (-484)) 76 T ELT)) (-2803 (((-484) (-484)) 47 T ELT)) (-2078 (((-583 (-484)) (-484)) 81 T ELT)) (-2077 (((-484) (-484) (-484) (-484) (-484)) 60 T ELT)) (-2799 (((-350 (-484)) (-484)) 56 T ELT)))
+(((-499) (-10 -7 (-15 -2799 ((-350 (-484)) (-484))) (-15 -2077 ((-484) (-484) (-484) (-484) (-484))) (-15 -2078 ((-583 (-484)) (-484))) (-15 -2803 ((-484) (-484))) (-15 -2079 ((-484) (-484))) (-15 -2080 ((-484) (-484))) (-15 -2081 ((-350 (-484)) (-484))) (-15 -2082 ((-484) (-484) (-484))) (-15 -2806 ((-484) (-484) (-484))) (-15 -2083 ((-484) (-484))) (-15 -2084 ((-484) (-484))) (-15 -2085 ((-484) (-484))) (-15 -2086 ((-484) (-484) (-694))))) (T -499))
+((-2086 (*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2083 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2806 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2081 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2080 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2079 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2078 (*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))) (-2077 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+((-2087 (((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
+(((-500 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| |#4|) (|:| -2135 |#4|)) |#4| (-1 |#2| |#2|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -500))
+((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3))) (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7)))))
+((-2087 (((-2 (|:| |answer| (-350 |#2|)) (|:| -2135 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
+(((-501 |#1| |#2|) (-10 -7 (-15 -2087 ((-2 (|:| |answer| (-350 |#2|)) (|:| -2135 (-350 |#2|)) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -501))
+((-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| (-350 *6)) (|:| -2135 (-350 *6)) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-501 *5 *6)) (-5 *3 (-350 *6)))))
+((-2090 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|)) 195 T ELT)) (-2088 (((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|)) 97 T ELT)) (-2089 (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-550 |#2|) (-550 |#2|) |#2|) 191 T ELT)) (-2091 (((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090))) 200 T ELT)) (-2092 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1090)) 209 (|has| |#3| (-600 |#2|)) ELT)))
+(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -2088 ((-519 |#2|) |#2| (-550 |#2|) (-550 |#2|))) (-15 -2089 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-550 |#2|) (-550 |#2|) |#2|)) (-15 -2090 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-550 |#2|) (-550 |#2|) (-583 |#2|))) (-15 -2091 ((-3 |#2| #1#) |#2| |#2| |#2| (-550 |#2|) (-550 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1090)))) (IF (|has| |#3| (-600 |#2|)) (-15 -2092 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2012 (-583 |#2|))) |#3| |#2| (-550 |#2|) (-550 |#2|) (-1090))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-120) (-580 (-484))) (-13 (-364 |#1|) (-27) (-1115)) (-1013)) (T -502))
+((-2092 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-550 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115))) (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))) (-2091 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090))) (-4 *2 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))) (-2090 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115))) (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))) (-2089 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))) (-2088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115))) (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3)) (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
+((-2093 (((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1090)) 64 T ELT)) (-2095 (((-3 |#2| #1="failed") |#2| (-1090) (-750 |#2|) (-750 |#2|)) 174 (-12 (|has| |#2| (-1053)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 145 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)) (-2094 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)) 156 (-12 (|has| |#2| (-569)) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-796 (-484)))) ELT)))
+(((-503 |#1| |#2|) (-10 -7 (-15 -2093 ((-2 (|:| -2338 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2094 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1090))) (-15 -2095 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1053)) (-15 -2095 ((-3 |#2| #1#) |#2| (-1090) (-750 |#2|) (-750 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-950 (-484)) (-392) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -503))
+((-2095 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-750 *2)) (-4 *2 (-1053)) (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *1 (-503 *5 *2)))) (-2095 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2094 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484)))) (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2093 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484)))) (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+((-2098 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1="failed") (-350 |#2|) (-583 (-350 |#2|))) 41 T ELT)) (-3813 (((-519 (-350 |#2|)) (-350 |#2|)) 28 T ELT)) (-2096 (((-3 (-350 |#2|) #1#) (-350 |#2|)) 17 T ELT)) (-2097 (((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|)) 48 T ELT)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -3813 ((-519 (-350 |#2|)) (-350 |#2|))) (-15 -2096 ((-3 (-350 |#2|) #1="failed") (-350 |#2|))) (-15 -2097 ((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-350 |#2|))) (-15 -2098 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-583 (-350 |#2|))))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -504))
+((-2098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-504 *5 *6)))) (-2097 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2136 (-350 *5)) (|:| |coeff| (-350 *5)))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5)))) (-2096 (*1 *2 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-519 (-350 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5)))))
+((-2099 (((-3 (-484) "failed") |#1|) 14 T ELT)) (-3260 (((-85) |#1|) 13 T ELT)) (-3256 (((-484) |#1|) 9 T ELT)))
+(((-505 |#1|) (-10 -7 (-15 -3256 ((-484) |#1|)) (-15 -3260 ((-85) |#1|)) (-15 -2099 ((-3 (-484) "failed") |#1|))) (-950 (-484))) (T -505))
+((-2099 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))) (-3260 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484))))) (-3256 (*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))))
+((-2102 (((-3 (-2 (|:| |mainpart| (-350 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 (-857 |#1|))) (|:| |logand| (-350 (-857 |#1|))))))) #1="failed") (-350 (-857 |#1|)) (-1090) (-583 (-350 (-857 |#1|)))) 48 T ELT)) (-2100 (((-519 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-1090)) 28 T ELT)) (-2101 (((-3 (-350 (-857 |#1|)) #1#) (-350 (-857 |#1|)) (-1090)) 23 T ELT)) (-2103 (((-3 (-2 (|:| -2136 (-350 (-857 |#1|))) (|:| |coeff| (-350 (-857 |#1|)))) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))) 35 T ELT)))
+(((-506 |#1|) (-10 -7 (-15 -2100 ((-519 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -2101 ((-3 (-350 (-857 |#1|)) #1="failed") (-350 (-857 |#1|)) (-1090))) (-15 -2102 ((-3 (-2 (|:| |mainpart| (-350 (-857 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 (-857 |#1|))) (|:| |logand| (-350 (-857 |#1|))))))) #1#) (-350 (-857 |#1|)) (-1090) (-583 (-350 (-857 |#1|))))) (-15 -2103 ((-3 (-2 (|:| -2136 (-350 (-857 |#1|))) (|:| |coeff| (-350 (-857 |#1|)))) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))))) (-13 (-495) (-950 (-484)) (-120))) (T -506))
+((-2103 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| -2136 (-350 (-857 *5))) (|:| |coeff| (-350 (-857 *5))))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5))))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 (-350 (-857 *6)))) (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-506 *6)))) (-2101 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120))) (-5 *2 (-519 (-350 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5))))))
+((-2569 (((-85) $ $) 77 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-2605 ((|#1| $) 39 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) 81 T ELT)) (-3493 (($ $) 142 T ELT)) (-3640 (($ $) 120 T ELT)) (-2484 ((|#1| $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL T ELT)) (-3491 (($ $) 144 T ELT)) (-3639 (($ $) 116 T ELT)) (-3495 (($ $) 146 T ELT)) (-3638 (($ $) 124 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) 95 T ELT)) (-3157 (((-484) $) 97 T ELT)) (-3468 (((-3 $ #1#) $) 80 T ELT)) (-2059 (($ |#1| |#1|) 35 T ELT)) (-3187 (((-85) $) 44 T ELT)) (-3628 (($) 106 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 56 T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-3188 (((-85) $) 46 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3943 (($ $) 108 T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2060 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-350 (-484))) 94 T ELT)) (-2058 ((|#1| $) 36 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) 83 T ELT) (($ (-583 $)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 82 T ELT)) (-3944 (($ $) 110 T ELT)) (-3496 (($ $) 150 T ELT)) (-3637 (($ $) 122 T ELT)) (-3494 (($ $) 152 T ELT)) (-3636 (($ $) 126 T ELT)) (-3492 (($ $) 148 T ELT)) (-3635 (($ $) 118 T ELT)) (-2057 (((-85) $ |#1|) 42 T ELT)) (-3947 (((-772) $) 102 T ELT) (($ (-484)) 85 T ELT) (($ $) NIL T ELT) (($ (-484)) 85 T ELT)) (-3127 (((-694)) 104 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 164 T ELT)) (-3487 (($ $) 132 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3497 (($ $) 162 T ELT)) (-3485 (($ $) 128 T ELT)) (-3501 (($ $) 160 T ELT)) (-3489 (($ $) 140 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 158 T ELT)) (-3490 (($ $) 138 T ELT)) (-3500 (($ $) 156 T ELT)) (-3488 (($ $) 134 T ELT)) (-3498 (($ $) 154 T ELT)) (-3486 (($ $) 130 T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 50 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 48 T ELT)) (-3838 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-3840 (($ $ $) 53 T ELT)) (** (($ $ (-830)) 73 T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-350 (-484))) 166 T ELT)) (* (($ (-830) $) 67 T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 62 T ELT)))
+(((-507 |#1|) (-493 |#1|) (-13 (-347) (-1115))) (T -507))
+NIL
+((-2705 (((-3 (-583 (-1085 (-484))) "failed") (-583 (-1085 (-484))) (-1085 (-484))) 27 T ELT)))
+(((-508) (-10 -7 (-15 -2705 ((-3 (-583 (-1085 (-484))) "failed") (-583 (-1085 (-484))) (-1085 (-484)))))) (T -508))
+((-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 (-484)))) (-5 *3 (-1085 (-484))) (-5 *1 (-508)))))
+((-2104 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1090)) 19 T ELT)) (-2107 (((-583 (-550 |#2|)) (-583 |#2|) (-1090)) 23 T ELT)) (-3235 (((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|))) 11 T ELT)) (-2108 ((|#2| |#2| (-1090)) 59 (|has| |#1| (-495)) ELT)) (-2109 ((|#2| |#2| (-1090)) 87 (-12 (|has| |#2| (-239)) (|has| |#1| (-392))) ELT)) (-2106 (((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1090)) 25 T ELT)) (-2105 (((-550 |#2|) (-583 (-550 |#2|))) 24 T ELT)) (-2110 (((-519 |#2|) |#2| (-1090) (-1 (-519 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) 115 (-12 (|has| |#2| (-239)) (|has| |#2| (-569)) (|has| |#2| (-950 (-1090))) (|has| |#1| (-553 (-800 (-484)))) (|has| |#1| (-392)) (|has| |#1| (-796 (-484)))) ELT)))
+(((-509 |#1| |#2|) (-10 -7 (-15 -2104 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-1090))) (-15 -2105 ((-550 |#2|) (-583 (-550 |#2|)))) (-15 -2106 ((-550 |#2|) (-550 |#2|) (-583 (-550 |#2|)) (-1090))) (-15 -3235 ((-583 (-550 |#2|)) (-583 (-550 |#2|)) (-583 (-550 |#2|)))) (-15 -2107 ((-583 (-550 |#2|)) (-583 |#2|) (-1090))) (IF (|has| |#1| (-495)) (-15 -2108 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-392)) (IF (|has| |#2| (-239)) (PROGN (-15 -2109 (|#2| |#2| (-1090))) (IF (|has| |#1| (-553 (-800 (-484)))) (IF (|has| |#1| (-796 (-484))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-950 (-1090))) (-15 -2110 ((-519 |#2|) |#2| (-1090) (-1 (-519 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1013) (-364 |#1|)) (T -509))
+((-2110 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-519 *3) *3 (-1090))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-364 *7)) (-5 *4 (-1090)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-392)) (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3)) (-5 *1 (-509 *7 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-239)) (-4 *2 (-364 *4)))) (-2108 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2)) (-4 *2 (-364 *4)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))) (-3235 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1013)) (-5 *1 (-509 *3 *4)))) (-2106 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1090)) (-5 *2 (-550 *6)) (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5)) (-5 *1 (-509 *4 *5)) (-4 *5 (-364 *4)))) (-2104 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
+((-2113 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1="failed") (-484) |#1| |#1|)) 199 T ELT)) (-2116 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-350 |#2|))) 174 T ELT)) (-2119 (((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-583 (-350 |#2|))) 171 T ELT)) (-2120 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2111 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2118 (((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|)) 202 T ELT)) (-2114 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|)) 205 T ELT)) (-2122 (((-2 (|:| |ir| (-519 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2123 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2117 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-350 |#2|))) 178 T ELT)) (-2121 (((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 166 T ELT)) (-2112 (((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|)) 189 T ELT)) (-2115 (((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-350 |#2|)) 210 T ELT)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -2111 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2112 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2113 ((-2 (|:| |answer| (-519 (-350 |#2|))) (|:| |a0| |#1|)) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) #1#) (-484) |#1| |#1|))) (-15 -2114 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-350 |#2|))) (-15 -2115 ((-3 (-2 (|:| |answer| (-350 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-350 |#2|))) (-15 -2116 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-583 (-350 |#2|)))) (-15 -2117 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|))))))) (|:| |a0| |#1|)) #1#) (-350 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|) (-583 (-350 |#2|)))) (-15 -2118 ((-3 (-2 (|:| -2136 (-350 |#2|)) (|:| |coeff| (-350 |#2|))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-350 |#2|))) (-15 -2119 ((-3 (-2 (|:| |mainpart| (-350 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-350 |#2|)) (|:| |logand| (-350 |#2|)))))) #1#) (-350 |#2|) (-1 |#2| |#2|) (-583 (-350 |#2|)))) (-15 -2120 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2121 ((-3 (-562 |#1| |#2|) #1#) (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3138 |#1|) (|:| |sol?| (-85))) (-484) |#1|))) (-15 -2122 ((-2 (|:| |ir| (-519 (-350 |#2|))) (|:| |specpart| (-350 |#2|)) (|:| |polypart| |#2|)) (-350 |#2|) (-1 |#2| |#2|))) (-15 -2123 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -510))
+((-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |ir| (-519 (-350 *6))) (|:| |specpart| (-350 *6)) (|:| |polypart| *6))) (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))) (-2121 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-484) *4)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-510 *4 *5)))) (-2120 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1155 *4)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-350 *7))) (-4 *7 (-1155 *6)) (-5 *3 (-350 *7)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *7)))) (-2118 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -2136 (-350 *6)) (|:| |coeff| (-350 *6)))) (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))) (-2117 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-484) *7)) (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2116 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-510 *7 *8)))) (-2115 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2114 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6)) (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed")) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2112 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-484) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6))) (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
+((-2124 (((-3 |#2| "failed") |#2| (-1090) (-1090)) 10 T ELT)))
+(((-511 |#1| |#2|) (-10 -7 (-15 -2124 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-1053) (-29 |#1|))) (T -511))
+((-2124 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-1053) (-29 *4))))))
+((-2556 (((-632 (-1138)) $ (-1138)) 27 T ELT)) (-2557 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2555 (((-694) $ (-102)) 28 T ELT)) (-2558 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-512) (-113)) (T -512))
+NIL
+(-13 (-465) (-770))
+(((-147) . T) ((-465) . T) ((-770) . T))
+((-2556 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2555 (((-694) $ (-102)) NIL T ELT)) (-2558 (((-632 (-101)) $ (-101)) NIL T ELT)) (-2000 (((-632 (-1138)) $) NIL T ELT)) (-1996 (((-632 (-1136)) $) NIL T ELT)) (-1998 (((-632 (-1135)) $) NIL T ELT)) (-2001 (((-632 (-488)) $) NIL T ELT)) (-1997 (((-632 (-486)) $) NIL T ELT)) (-1999 (((-632 (-485)) $) NIL T ELT)) (-1995 (((-694) $ (-102)) NIL T ELT)) (-2002 (((-632 (-101)) $) NIL T ELT)) (-2559 (((-85) $) NIL T ELT)) (-2125 (($ (-338)) 14 T ELT) (($ (-1073)) 16 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1700 (($ $) NIL T ELT)))
+(((-513) (-13 (-512) (-552 (-772)) (-10 -8 (-15 -2125 ($ (-338))) (-15 -2125 ($ (-1073))) (-15 -2559 ((-85) $))))) (T -513))
+((-2125 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-513)))) (-2125 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-513)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3461 (($) 7 T CONST)) (-3243 (((-1073) $) NIL T ELT)) (-2128 (($) 6 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 15 T ELT)) (-2126 (($) 9 T CONST)) (-2127 (($) 8 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-514) (-13 (-1013) (-10 -8 (-15 -2128 ($) -3953) (-15 -3461 ($) -3953) (-15 -2127 ($) -3953) (-15 -2126 ($) -3953)))) (T -514))
+((-2128 (*1 *1) (-5 *1 (-514))) (-3461 (*1 *1) (-5 *1 (-514))) (-2127 (*1 *1) (-5 *1 (-514))) (-2126 (*1 *1) (-5 *1 (-514))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2129 (((-632 $) (-431)) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2131 (($ (-1073)) 16 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 33 T ELT)) (-2130 (((-166 4 (-101)) $) 24 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-515) (-13 (-1013) (-10 -8 (-15 -2131 ($ (-1073))) (-15 -2130 ((-166 4 (-101)) $)) (-15 -2129 ((-632 $) (-431)))))) (T -515))
+((-2131 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-515)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-632 (-515))) (-5 *1 (-515)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-484)) 73 T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1085 (-484)) (-484)) 79 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2613 (($ $) 43 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3773 (((-694) $) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2615 (((-484)) 37 T ELT)) (-2614 (((-484) $) 41 T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-484)) 24 T ELT)) (-3467 (((-3 $ #1#) $ $) 70 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) 17 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 71 T ELT)) (-2616 (((-1069 (-484)) $) 19 T ELT)) (-2892 (($ $) 26 T ELT)) (-3947 (((-772) $) 100 T ELT) (($ (-484)) 59 T ELT) (($ $) NIL T ELT)) (-3127 (((-694)) 15 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-484) $ (-484)) 46 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 44 T CONST)) (-2667 (($) 21 T CONST)) (-3057 (((-85) $ $) 51 T ELT)) (-3838 (($ $) 58 T ELT) (($ $ $) 48 T ELT)) (-3840 (($ $ $) 57 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 60 T ELT) (($ $ $) 61 T ELT)))
+(((-516 |#1| |#2|) (-779 |#1|) (-484) (-85)) (T -516))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 30 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) 95 T ELT)) (-3157 (($ $) 94 T ELT)) (-1795 (($ (-1179 $)) 93 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) 61 T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1767 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) 49 (|has| $ (-320)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3446 (((-632 $) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 $) $ (-830)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) 104 T ELT)) (-2010 (((-830) $) 67 T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2400 (($ (-830)) 60 T ELT)) (-3932 (((-85) $) 87 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) 28 (|has| $ (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 54 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-830)) 86 T ELT) (((-743 (-830))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3949 (((-830) $) 85 T ELT) (((-743 (-830)) $) NIL T ELT)) (-3186 (((-1085 $)) 102 T ELT)) (-1674 (($) 66 T ELT)) (-1629 (($) 50 (|has| $ (-320)) ELT)) (-3225 (((-630 $) (-1179 $)) NIL T ELT) (((-1179 $) $) 91 T ELT)) (-3973 (((-484) $) 42 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) 45 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT)) (-2703 (((-632 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3127 (((-694)) 51 T CONST)) (-1265 (((-85) $ $) 107 T ELT)) (-2012 (((-1179 $) (-830)) 97 T ELT) (((-1179 $)) 96 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) 31 T CONST)) (-2667 (($) 27 T CONST)) (-3929 (($ $ (-694)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 34 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-517 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -517))
+NIL
+((-2132 (((-1185) (-1073)) 10 T ELT)))
+(((-518) (-10 -7 (-15 -2132 ((-1185) (-1073))))) (T -518))
+((-2132 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-518)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 77 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2136 ((|#1| $) 30 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2134 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2137 (($ |#1| (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2135 (((-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2833 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1090)) 49 (|has| |#1| (-950 (-1090))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2133 (((-85) $) 35 T ELT)) (-3759 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1090)) 90 (|has| |#1| (-809 (-1090))) ELT)) (-3947 (((-772) $) 113 T ELT) (($ |#1|) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 86 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 16 T ELT) (($ (-350 (-484)) $) 41 T ELT) (($ $ (-350 (-484))) NIL T ELT)))
+(((-519 |#1|) (-13 (-654 (-350 (-484))) (-950 |#1|) (-10 -8 (-15 -2137 ($ |#1| (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2136 (|#1| $)) (-15 -2135 ((-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 |#1|)) (|:| |logand| (-1085 |#1|)))) $)) (-15 -2134 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2133 ((-85) $)) (-15 -2833 ($ |#1| |#1|)) (-15 -3759 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-809 (-1090))) (-15 -3759 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-950 (-1090))) (-15 -2833 ($ |#1| (-1090))) |%noBranch|))) (-312)) (T -519))
+((-2137 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *2)) (|:| |logand| (-1085 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312)) (-5 *1 (-519 *2)))) (-2136 (*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-2135 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *3)) (|:| |logand| (-1085 *3))))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))) (-2833 (*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312)))) (-3759 (*1 *2 *1 *3) (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1090)))) (-2833 (*1 *1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312)))))
+((-3959 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|)) 30 T ELT)))
+(((-520 |#1| |#2|) (-10 -7 (-15 -3959 ((-519 |#2|) (-1 |#2| |#1|) (-519 |#1|))) (-15 -3959 ((-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2136 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -3959 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -3959 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-312) (-312)) (T -520))
+((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-520 *5 *6)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-520 *5 *2)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6))) (-5 *1 (-520 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312)) (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6)))))
+((-3419 (((-519 |#2|) (-519 |#2|)) 42 T ELT)) (-3964 (((-583 |#2|) (-519 |#2|)) 44 T ELT)) (-2148 ((|#2| (-519 |#2|)) 50 T ELT)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -3419 ((-519 |#2|) (-519 |#2|))) (-15 -3964 ((-583 |#2|) (-519 |#2|))) (-15 -2148 (|#2| (-519 |#2|)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-29 |#1|) (-1115))) (T -521))
+((-2148 (*1 *2 *3) (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-521 *4 *2)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1115))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5)) (-5 *1 (-521 *4 *5)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1115))) (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2140 (($ (-446) (-532)) 14 T ELT)) (-2138 (($ (-446) (-532) $) 16 T ELT)) (-2139 (($ (-446) (-532)) 15 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-1095)) 7 T ELT) (((-1095) $) 6 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-522) (-13 (-1013) (-430 (-1095)) (-10 -8 (-15 -2140 ($ (-446) (-532))) (-15 -2139 ($ (-446) (-532))) (-15 -2138 ($ (-446) (-532) $))))) (T -522))
+((-2140 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2139 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))) (-2138 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
+((-2144 (((-85) |#1|) 16 T ELT)) (-2145 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2142 (((-2 (|:| -2695 |#1|) (|:| -2401 (-694))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-694)) 18 T ELT)) (-2141 (((-85) |#1| (-694)) 19 T ELT)) (-2146 ((|#1| |#1|) 41 T ELT)) (-2143 ((|#1| |#1| (-694)) 44 T ELT)))
+(((-523 |#1|) (-10 -7 (-15 -2141 ((-85) |#1| (-694))) (-15 -2142 ((-3 |#1| #1="failed") |#1| (-694))) (-15 -2142 ((-2 (|:| -2695 |#1|) (|:| -2401 (-694))) |#1|)) (-15 -2143 (|#1| |#1| (-694))) (-15 -2144 ((-85) |#1|)) (-15 -2145 ((-3 |#1| #1#) |#1|)) (-15 -2146 (|#1| |#1|))) (-483)) (T -523))
+((-2146 (*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2145 (*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2144 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2143 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2142 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3)) (-4 *3 (-483)))) (-2142 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+((-2147 (((-1085 |#1|) (-830)) 44 T ELT)))
+(((-524 |#1|) (-10 -7 (-15 -2147 ((-1085 |#1|) (-830)))) (-299)) (T -524))
+((-2147 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299)))))
+((-3419 (((-519 (-350 (-857 |#1|))) (-519 (-350 (-857 |#1|)))) 27 T ELT)) (-3813 (((-3 (-265 |#1|) (-583 (-265 |#1|))) (-350 (-857 |#1|)) (-1090)) 33 (|has| |#1| (-120)) ELT)) (-3964 (((-583 (-265 |#1|)) (-519 (-350 (-857 |#1|)))) 19 T ELT)) (-2149 (((-265 |#1|) (-350 (-857 |#1|)) (-1090)) 31 (|has| |#1| (-120)) ELT)) (-2148 (((-265 |#1|) (-519 (-350 (-857 |#1|)))) 21 T ELT)))
+(((-525 |#1|) (-10 -7 (-15 -3419 ((-519 (-350 (-857 |#1|))) (-519 (-350 (-857 |#1|))))) (-15 -3964 ((-583 (-265 |#1|)) (-519 (-350 (-857 |#1|))))) (-15 -2148 ((-265 |#1|) (-519 (-350 (-857 |#1|))))) (IF (|has| |#1| (-120)) (PROGN (-15 -3813 ((-3 (-265 |#1|) (-583 (-265 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -2149 ((-265 |#1|) (-350 (-857 |#1|)) (-1090)))) |%noBranch|)) (-13 (-392) (-950 (-484)) (-580 (-484)))) (T -525))
+((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5)) (-5 *1 (-525 *5)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-519 (-350 (-857 *4)))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4)) (-5 *1 (-525 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-519 (-350 (-857 *4)))) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4))) (-5 *1 (-525 *4)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-519 (-350 (-857 *3)))) (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3)))))
+((-2151 (((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-830))) 81 T ELT) (((-630 (-484)) (-583 (-830)) (-813 (-484))) 74 T ELT)) (-2150 (((-694) (-583 (-830))) 71 T ELT)))
+(((-526) (-10 -7 (-15 -2150 ((-694) (-583 (-830)))) (-15 -2151 ((-630 (-484)) (-583 (-830)) (-813 (-484)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -2151 ((-583 (-630 (-484))) (-583 (-830)) (-583 (-813 (-484))))))) (T -526))
+((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-526)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526)))))
+((-3214 (((-583 |#5|) |#5| (-85)) 97 T ELT)) (-2152 (((-85) |#5| (-583 |#5|)) 34 T ELT)))
+(((-527 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3214 ((-583 |#5|) |#5| (-85))) (-15 -2152 ((-85) |#5| (-583 |#5|)))) (-13 (-258) (-120)) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -527))
+((-2152 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3)) (-4 *3 (-1020 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1049) $) 12 T ELT)) (-3530 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-528) (-13 (-995) (-10 -8 (-15 -3530 ((-1049) $)) (-15 -3529 ((-1049) $))))) (T -528))
+((-3530 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528)))))
+((-3533 (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|)) 32 T ELT)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2| (-1001 |#4|))) (-15 -3533 ((-2 (|:| |num| |#4|) (|:| |den| (-484))) |#4| |#2|))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|)) (T -529))
+((-3533 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-3533 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756)) (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *6 *4 *7 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 71 T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-484)) 58 T ELT) (($ $ (-484) (-484)) 59 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 65 T ELT)) (-2183 (($ $) 109 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2181 (((-772) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1090) |#1| (-350 (-484))) 232 T ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 36 T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3773 (((-484) $) 63 T ELT) (((-484) $ (-484)) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3778 (($ $ (-830)) 83 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 80 T ELT)) (-3938 (((-85) $) 26 T ELT)) (-2894 (($ |#1| (-484)) 22 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2187 (($ (-939 (-750 (-484))) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 13 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3813 (($ $) 120 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2184 (((-3 $ #1#) $ $ (-85)) 108 T ELT)) (-2182 (($ $ $) 116 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2185 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 15 T ELT)) (-2186 (((-939 (-750 (-484))) $) 14 T ELT)) (-3770 (($ $ (-484)) 47 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-3801 ((|#1| $ (-484)) 62 T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT)) (-3759 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3949 (((-484) $) NIL T ELT)) (-2892 (($ $) 48 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) 29 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 28 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-484)) 61 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 39 T CONST)) (-3774 ((|#1| $) NIL T ELT)) (-2162 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2174 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2164 (($ $) 189 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2176 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2160 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2172 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2179 (($ $ (-350 (-484))) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2180 (($ $ |#1|) 128 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2177 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2178 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2159 (($ $) 195 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2171 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2161 (($ $) 193 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2173 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2163 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2175 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2156 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2168 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2158 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2170 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2154 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2166 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2153 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2165 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2155 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2167 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2157 (($ $) 199 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2169 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3771 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 40 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3057 (((-85) $ $) 73 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-3840 (($ $ $) 88 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 111 T ELT)) (* (($ (-830) $) 98 T ELT) (($ (-694) $) 96 T ELT) (($ (-484) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-530 |#1|) (-13 (-1158 |#1| (-484)) (-10 -8 (-15 -2187 ($ (-939 (-750 (-484))) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -2186 ((-939 (-750 (-484))) $)) (-15 -2185 ((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $)) (-15 -3819 ($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))))) (-15 -3938 ((-85) $)) (-15 -3816 ($ (-1 |#1| (-484)) $)) (-15 -2184 ((-3 $ "failed") $ $ (-85))) (-15 -2183 ($ $)) (-15 -2182 ($ $ $)) (-15 -2181 ((-772) (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) (-939 (-750 (-484))) (-1090) |#1| (-350 (-484)))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $)) (-15 -2180 ($ $ |#1|)) (-15 -2179 ($ $ (-350 (-484)))) (-15 -2178 ($ $)) (-15 -2177 ($ $)) (-15 -2176 ($ $)) (-15 -2175 ($ $)) (-15 -2174 ($ $)) (-15 -2173 ($ $)) (-15 -2172 ($ $)) (-15 -2171 ($ $)) (-15 -2170 ($ $)) (-15 -2169 ($ $)) (-15 -2168 ($ $)) (-15 -2167 ($ $)) (-15 -2166 ($ $)) (-15 -2165 ($ $)) (-15 -2164 ($ $)) (-15 -2163 ($ $)) (-15 -2162 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $)) (-15 -2157 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $))) |%noBranch|))) (-961)) (T -530))
+((-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-530 *4)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3)))) (-2184 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))) (-2183 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2182 (*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))) (-2181 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *6)))) (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1090)) (-5 *7 (-350 (-484))) (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))) (-3813 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2180 (*1 *1 *1 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2179 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2)) (-4 *3 (-961)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2176 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2175 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2167 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2165 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2164 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2163 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2162 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2160 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2157 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2156 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2155 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2154 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 62 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3819 (($ (-1069 |#1|)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 44 T ELT)) (-2893 (((-85) $) 56 T ELT)) (-3773 (((-694) $) 61 T ELT) (((-694) $ (-694)) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 46 (|has| |#1| (-495)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-1069 |#1|) $) 25 T ELT)) (-3127 (((-694)) 55 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2667 (($) 14 T CONST)) (-3057 (((-85) $ $) 24 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-3840 (($ $ $) 27 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-484)) 38 T ELT)))
+(((-531 |#1|) (-13 (-961) (-82 |#1| |#1|) (-10 -8 (-15 -3818 ((-1069 |#1|) $)) (-15 -3819 ($ (-1069 |#1|))) (-15 -2893 ((-85) $)) (-15 -3773 ((-694) $)) (-15 -3773 ((-694) $ (-694))) (-15 * ($ $ (-484))) (IF (|has| |#1| (-495)) (-6 (-495)) |%noBranch|))) (-961)) (T -531))
+((-3818 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3)))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (-3773 (*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2190 (($) 8 T CONST)) (-2191 (($) 7 T CONST)) (-2188 (($ $ (-583 $)) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2192 (($) 6 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-1095)) 15 T ELT) (((-1095) $) 10 T ELT)) (-2189 (($) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-532) (-13 (-1013) (-430 (-1095)) (-10 -8 (-15 -2192 ($) -3953) (-15 -2191 ($) -3953) (-15 -2190 ($) -3953) (-15 -2189 ($) -3953) (-15 -2188 ($ $ (-583 $)))))) (T -532))
+((-2192 (*1 *1) (-5 *1 (-532))) (-2191 (*1 *1) (-5 *1 (-532))) (-2190 (*1 *1) (-5 *1 (-532))) (-2189 (*1 *1) (-5 *1 (-532))) (-2188 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532)))))
+((-3959 (((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|)) 15 T ELT)))
+(((-533 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3959 ((-536 |#2|) (-1 |#2| |#1|) (-536 |#1|))))) (-1129) (-1129)) (T -533))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6)))))
+((-3959 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1069 |#2|)) 20 T ELT) (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-536 |#2|)) 19 T ELT) (((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|)) 18 T ELT)))
+(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-536 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-536 |#2|))) (-15 -3959 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-536 |#2|))) (-15 -3959 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-536 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -534))
+((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-534 *6 *7 *8)))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-536 *8)) (-5 *1 (-534 *6 *7 *8)))))
+((-2197 ((|#3| |#3| (-583 (-550 |#3|)) (-583 (-1090))) 57 T ELT)) (-2196 (((-142 |#2|) |#3|) 122 T ELT)) (-2193 ((|#3| (-142 |#2|)) 46 T ELT)) (-2194 ((|#2| |#3|) 21 T ELT)) (-2195 ((|#3| |#2|) 35 T ELT)))
+(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -2193 (|#3| (-142 |#2|))) (-15 -2194 (|#2| |#3|)) (-15 -2195 (|#3| |#2|)) (-15 -2196 ((-142 |#2|) |#3|)) (-15 -2197 (|#3| |#3| (-583 (-550 |#3|)) (-583 (-1090))))) (-495) (-13 (-364 |#1|) (-915) (-1115)) (-13 (-364 (-142 |#1|)) (-915) (-1115))) (T -535))
+((-2197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1090))) (-4 *2 (-13 (-364 (-142 *5)) (-915) (-1115))) (-4 *5 (-495)) (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-915) (-1115))))) (-2196 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-915) (-1115))))) (-2194 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))) (-2193 (*1 *2 *3) (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *5 *2)))))
+((-3711 (($ (-1 (-85) |#1|) $) 19 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3458 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 15 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 17 T ELT)) (-3531 (((-1069 |#1|) $) 20 T ELT)) (-3947 (((-772) $) 25 T ELT)))
+(((-536 |#1|) (-13 (-552 (-772)) (-10 -8 (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)) (-15 -3711 ($ (-1 (-85) |#1|) $)) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3531 ((-1069 |#1|) $)))) (-1129)) (T -536))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1129)))))
+((-2198 (((-1185) $ |#2| |#2|) 35 T ELT)) (-2200 ((|#2| $) 23 T ELT)) (-2201 ((|#2| $) 21 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3959 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3802 ((|#3| $) 26 T ELT)) (-2199 (($ $ |#3|) 33 T ELT)) (-2202 (((-85) |#3| $) 17 T ELT)) (-2205 (((-583 |#3|) $) 15 T ELT)) (-3801 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
+(((-537 |#1| |#2| |#3|) (-10 -7 (-15 -2198 ((-1185) |#1| |#2| |#2|)) (-15 -2199 (|#1| |#1| |#3|)) (-15 -3802 (|#3| |#1|)) (-15 -2200 (|#2| |#1|)) (-15 -2201 (|#2| |#1|)) (-15 -2202 ((-85) |#3| |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -3801 (|#3| |#1| |#2|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|))) (-538 |#2| |#3|) (-1013) (-1129)) (T -537))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#2| (-72)) ELT)) (-2198 (((-1185) $ |#1| |#1|) 35 (|has| $ (-1035 |#2|)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 47 (|has| $ (-6 -3997)) ELT)) (-3725 (($) 6 T CONST)) (-1576 ((|#2| $ |#1| |#2|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 46 T ELT)) (-2200 ((|#1| $) 38 (|has| |#1| (-756)) ELT)) (-2201 ((|#1| $) 39 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#2| (-1013)) ELT)) (-2203 (((-583 |#1|) $) 41 T ELT)) (-2204 (((-85) |#1| $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#2| (-1013)) ELT)) (-3802 ((|#2| $) 37 (|has| |#1| (-756)) ELT)) (-2199 (($ $ |#2|) 36 (|has| $ (-1035 |#2|)) ELT)) (-3769 (($ $ (-583 (-249 |#2|))) 24 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 23 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 22 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 21 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#2| $) 40 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#2| $ |#1| |#2|) 45 T ELT) ((|#2| $ |#1|) 44 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#2| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#2| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#2| (-72)) ELT)))
+(((-538 |#1| |#2|) (-113) (-1013) (-1129)) (T -538))
+((-2205 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *4)))) (-2204 (*1 *2 *3 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *3)))) (-2202 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-2200 (*1 *2 *1) (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1129)))) (-2199 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129)))) (-2198 (*1 *2 *1 *3 *3) (-12 (-4 *1 (-1035 *4)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-1185)))))
+(-13 (-429 |t#2|) (-243 |t#1| |t#2|) (-10 -8 (-15 -2205 ((-583 |t#2|) $)) (-15 -2204 ((-85) |t#1| $)) (-15 -2203 ((-583 |t#1|) $)) (IF (|has| |t#2| (-72)) (IF (|has| $ (-318 |t#2|)) (-15 -2202 ((-85) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-756)) (PROGN (-15 -2201 (|t#1| $)) (-15 -2200 (|t#1| $)) (-15 -3802 (|t#2| $))) |%noBranch|) (IF (|has| $ (-1035 |t#2|)) (PROGN (-15 -2199 ($ $ |t#2|)) (-15 -2198 ((-1185) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-429 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) |has| |#2| (-1013)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 15 T ELT) (($ (-583 (-1130))) 14 T ELT)) (-2206 (((-583 (-1130)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-539) (-13 (-995) (-552 (-1130)) (-10 -8 (-15 -3947 ($ (-583 (-1130)))) (-15 -2206 ((-583 (-1130)) $))))) (T -539))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1775 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-630 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-630 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1791 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1789 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1793 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1795 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-3109 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1792 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1907 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-484)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1895 (((-583 (-857 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-583 (-857 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-772) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-540 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -540))
+((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-101)) 6 T ELT) (((-101) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-541) (-13 (-1013) (-430 (-101)))) (T -541))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2208 (($) 10 T CONST)) (-2230 (($) 8 T CONST)) (-2207 (($) 11 T CONST)) (-2226 (($) 9 T CONST)) (-2223 (($) 12 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-542) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3953) (-15 -2226 ($) -3953) (-15 -2208 ($) -3953) (-15 -2207 ($) -3953) (-15 -2223 ($) -3953)))) (T -542))
+((-2230 (*1 *1) (-5 *1 (-542))) (-2226 (*1 *1) (-5 *1 (-542))) (-2208 (*1 *1) (-5 *1 (-542))) (-2207 (*1 *1) (-5 *1 (-542))) (-2223 (*1 *1) (-5 *1 (-542))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2219 (($) 11 T CONST)) (-2213 (($) 17 T CONST)) (-2209 (($) 21 T CONST)) (-2211 (($) 19 T CONST)) (-2216 (($) 14 T CONST)) (-2210 (($) 20 T CONST)) (-2218 (($) 12 T CONST)) (-2217 (($) 13 T CONST)) (-2212 (($) 18 T CONST)) (-2215 (($) 15 T CONST)) (-2214 (($) 16 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (((-101) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-543) (-13 (-1013) (-552 (-101)) (-10 -8 (-15 -2219 ($) -3953) (-15 -2218 ($) -3953) (-15 -2217 ($) -3953) (-15 -2216 ($) -3953) (-15 -2215 ($) -3953) (-15 -2214 ($) -3953) (-15 -2213 ($) -3953) (-15 -2212 ($) -3953) (-15 -2211 ($) -3953) (-15 -2210 ($) -3953) (-15 -2209 ($) -3953)))) (T -543))
+((-2219 (*1 *1) (-5 *1 (-543))) (-2218 (*1 *1) (-5 *1 (-543))) (-2217 (*1 *1) (-5 *1 (-543))) (-2216 (*1 *1) (-5 *1 (-543))) (-2215 (*1 *1) (-5 *1 (-543))) (-2214 (*1 *1) (-5 *1 (-543))) (-2213 (*1 *1) (-5 *1 (-543))) (-2212 (*1 *1) (-5 *1 (-543))) (-2211 (*1 *1) (-5 *1 (-543))) (-2210 (*1 *1) (-5 *1 (-543))) (-2209 (*1 *1) (-5 *1 (-543))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2221 (($) 13 T CONST)) (-2220 (($) 14 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2226 (($) 12 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-544) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2227 ($) -3953) (-15 -2226 ($) -3953) (-15 -2221 ($) -3953) (-15 -2220 ($) -3953)))) (T -544))
+((-2230 (*1 *1) (-5 *1 (-544))) (-2229 (*1 *1) (-5 *1 (-544))) (-2228 (*1 *1) (-5 *1 (-544))) (-2227 (*1 *1) (-5 *1 (-544))) (-2226 (*1 *1) (-5 *1 (-544))) (-2221 (*1 *1) (-5 *1 (-544))) (-2220 (*1 *1) (-5 *1 (-544))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2225 (($) 13 T CONST)) (-2222 (($) 16 T CONST)) (-2227 (($) 11 T CONST)) (-2230 (($) 8 T CONST)) (-2228 (($) 10 T CONST)) (-2229 (($) 9 T CONST)) (-2224 (($) 14 T CONST)) (-2226 (($) 12 T CONST)) (-2223 (($) 15 T CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-545) (-13 (-1013) (-604) (-10 -8 (-15 -2230 ($) -3953) (-15 -2229 ($) -3953) (-15 -2228 ($) -3953) (-15 -2227 ($) -3953) (-15 -2226 ($) -3953) (-15 -2225 ($) -3953) (-15 -2224 ($) -3953) (-15 -2223 ($) -3953) (-15 -2222 ($) -3953)))) (T -545))
+((-2230 (*1 *1) (-5 *1 (-545))) (-2229 (*1 *1) (-5 *1 (-545))) (-2228 (*1 *1) (-5 *1 (-545))) (-2227 (*1 *1) (-5 *1 (-545))) (-2226 (*1 *1) (-5 *1 (-545))) (-2225 (*1 *1) (-5 *1 (-545))) (-2224 (*1 *1) (-5 *1 (-545))) (-2223 (*1 *1) (-5 *1 (-545))) (-2222 (*1 *1) (-5 *1 (-545))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 19 T ELT) (($ (-541)) 12 T ELT) (((-541) $) 11 T ELT) (($ (-101)) NIL T ELT) (((-101) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-546) (-13 (-1013) (-430 (-541)) (-430 (-101)))) (T -546))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1697 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) 40 T ELT)) (-3600 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1073) |#1|) 50 (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-2231 (((-3 |#1| #1="failed") (-1073) $) 53 T ELT)) (-3725 (($) NIL T CONST)) (-1701 (($ $ (-1073)) 25 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72))) ELT)) (-3406 (((-3 |#1| #1#) (-1073) $) 54 T ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-3407 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT) (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72))) ELT)) (-3843 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-1698 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) 39 T ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-1073)) NIL T ELT)) (-2271 (($ $) 55 T ELT)) (-1702 (($ (-338)) 23 T ELT) (($ (-338) (-1073)) 22 T ELT)) (-3543 (((-338) $) 41 T ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2232 (((-583 (-1073)) $) 46 T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1699 (((-1073) $) 42 T ELT)) (-1274 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 44 T ELT)) (-3801 ((|#1| $ (-1073) |#1|) NIL T ELT) ((|#1| $ (-1073)) 49 T ELT)) (-1466 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT) (($) NIL T ELT)) (-1730 (((-694) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (((-694) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-772) $) 21 T ELT)) (-1700 (($ $) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-3958 (((-694) $) 48 T ELT)))
+(((-547 |#1|) (-13 (-314 (-338) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) (-1107 (-1073) |#1|) (-10 -8 (-15 -2271 ($ $)))) (-1013)) (T -547))
+((-2271 (*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013)))))
+((-2232 (((-583 |#2|) $) 19 T ELT)) (-2233 (((-85) |#2| $) 12 T ELT)) (-3801 ((|#3| $ |#2|) 20 T ELT) ((|#3| $ |#2| |#3|) 21 T ELT)))
+(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -2232 ((-583 |#2|) |#1|)) (-15 -2233 ((-85) |#2| |#1|)) (-15 -3801 (|#3| |#1| |#2| |#3|)) (-15 -3801 (|#3| |#1| |#2|))) (-549 |#2| |#3|) (-1013) (-1013)) (T -548))
+NIL
+((-2569 (((-85) $ $) 17 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-2198 (((-1185) $ |#1| |#1|) 79 (|has| $ (-1035 |#2|)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| "failed") |#1| $) 56 T ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 50 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| "failed") |#1| $) 57 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-1576 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 68 T ELT)) (-2200 ((|#1| $) 76 (|has| |#1| (-756)) ELT)) (-2201 ((|#1| $) 75 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT)) (-3243 (((-1073) $) 20 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 58 T ELT)) (-2233 (((-85) |#1| $) 59 T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2203 (((-583 |#1|) $) 73 T ELT)) (-2204 (((-85) |#1| $) 72 T ELT)) (-3244 (((-1033) $) 19 (OR (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3802 ((|#2| $) 77 (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2199 (($ $ |#2|) 78 (|has| $ (-1035 |#2|)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) 71 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3947 (((-772) $) 15 (OR (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) 18 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-3057 (((-85) $ $) 16 (OR (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)))
+(((-549 |#1| |#2|) (-113) (-1013) (-1013)) (T -549))
+((-2233 (*1 *2 *3 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))) (-3406 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2231 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(-13 (-183 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-538 |t#1| |t#2|) (-10 -8 (-15 -2233 ((-85) |t#1| $)) (-15 -2232 ((-583 |t#1|) $)) (-15 -3406 ((-3 |t#2| "failed") |t#1| $)) (-15 -2231 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-1013) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2234 (((-3 (-1090) "failed") $) 46 T ELT)) (-1313 (((-1185) $ (-694)) 22 T ELT)) (-3420 (((-694) $) 20 T ELT)) (-3596 (((-86) $) 9 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2235 (($ (-86) (-583 |#1|) (-694)) 32 T ELT) (($ (-1090)) 33 T ELT)) (-2634 (((-85) $ (-86)) 15 T ELT) (((-85) $ (-1090)) 13 T ELT)) (-2604 (((-694) $) 17 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (((-800 (-484)) $) 99 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 106 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) 92 (|has| |#1| (-553 (-473))) ELT)) (-3947 (((-772) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2236 (((-583 |#1|) $) 19 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 51 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 53 T ELT)))
+(((-550 |#1|) (-13 (-105) (-756) (-794 |#1|) (-10 -8 (-15 -3596 ((-86) $)) (-15 -2236 ((-583 |#1|) $)) (-15 -2604 ((-694) $)) (-15 -2235 ($ (-86) (-583 |#1|) (-694))) (-15 -2235 ($ (-1090))) (-15 -2234 ((-3 (-1090) "failed") $)) (-15 -2634 ((-85) $ (-86))) (-15 -2634 ((-85) $ (-1090))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-1013)) (T -550))
+((-3596 (*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2235 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013)) (-5 *1 (-550 *5)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))) (-2634 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013)))))
+((-2237 (((-550 |#2|) |#1|) 17 T ELT)) (-2238 (((-3 |#1| "failed") (-550 |#2|)) 21 T ELT)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -2237 ((-550 |#2|) |#1|)) (-15 -2238 ((-3 |#1| "failed") (-550 |#2|)))) (-1013) (-1013)) (T -551))
+((-2238 (*1 *2 *3) (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-551 *2 *4)))) (-2237 (*1 *2 *3) (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+((-3947 ((|#1| $) 6 T ELT)))
+(((-552 |#1|) (-113) (-1129)) (T -552))
+((-3947 (*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3947 (|t#1| $))))
+((-3973 ((|#1| $) 6 T ELT)))
+(((-553 |#1|) (-113) (-1129)) (T -553))
+((-3973 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3973 (|t#1| $))))
+((-2239 (((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)) 15 T ELT) (((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 16 T ELT)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 (-1085 (-350 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|))) (-15 -2239 ((-3 (-1085 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 (-348 |#2|) |#2|)))) (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -554))
+((-2239 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-1085 (-350 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-350 *6)))) (-2239 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-350 *5)))))
+((-3947 (($ |#1|) 6 T ELT)))
+(((-555 |#1|) (-113) (-1129)) (T -555))
+((-3947 (*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3947 ($ |t#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-2240 (($) 11 T CONST)) (-2856 (($) 13 T CONST)) (-3137 (((-694)) 36 T ELT)) (-2995 (($) NIL T ELT)) (-2562 (($ $ $) 25 T ELT)) (-2561 (($ $) 23 T ELT)) (-2010 (((-830) $) 43 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 42 T ELT)) (-2854 (($ $ $) 26 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2855 (($) 9 T CONST)) (-2853 (($ $ $) 27 T ELT)) (-3947 (((-772) $) 34 T ELT)) (-3567 (((-85) $ (|[\|\|]| -2855)) 20 T ELT) (((-85) $ (|[\|\|]| -2240)) 22 T ELT) (((-85) $ (|[\|\|]| -2856)) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 24 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3057 (((-85) $ $) 16 T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-556) (-13 (-880) (-320) (-10 -8 (-15 -2240 ($) -3953) (-15 -3567 ((-85) $ (|[\|\|]| -2855))) (-15 -3567 ((-85) $ (|[\|\|]| -2240))) (-15 -3567 ((-85) $ (|[\|\|]| -2856)))))) (T -556))
+((-2240 (*1 *1) (-5 *1 (-556))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-556)))))
+((-3973 (($ |#1|) 6 T ELT)))
+(((-557 |#1|) (-113) (-1129)) (T -557))
+((-3973 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1129)))))
+(-13 (-10 -8 (-15 -3973 ($ |t#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2999 ((|#1| $) 13 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2998 ((|#3| $) 15 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3127 (((-694)) 20 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3950 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-558 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-38 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -558))
+((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4)))))
+((-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-560 |#2|) (-961)) (T -559))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 49 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#1| $) 50 T ELT)))
+(((-560 |#1|) (-113) (-961)) (T -560))
+((-3947 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-590 |t#1|) (-10 -8 (-15 -3947 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-663) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2241 ((|#2| |#2| (-1090) (-1090)) 16 T ELT)))
+(((-561 |#1| |#2|) (-10 -7 (-15 -2241 (|#2| |#2| (-1090) (-1090)))) (-13 (-258) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-871) (-29 |#1|))) (T -561))
+((-2241 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-29 *4))))))
+((-2569 (((-85) $ $) 64 T ELT)) (-3189 (((-85) $) 58 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2242 ((|#1| $) 55 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3752 (((-2 (|:| -1765 $) (|:| -1764 (-350 |#2|))) (-350 |#2|)) 111 (|has| |#1| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 27 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-484) $) 22 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 40 T ELT)) (-2894 (($ |#1| (-484)) 24 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 101 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) 93 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) 115 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 114 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3949 (((-484) $) 38 T ELT)) (-3973 (((-350 |#2|) $) 47 T ELT)) (-3947 (((-772) $) 69 T ELT) (($ (-484)) 35 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-3678 ((|#1| $ (-484)) 72 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 32 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 9 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-3838 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 29 T ELT) (($ $ $) 49 T ELT)))
+(((-562 |#1| |#2|) (-13 (-184 |#2|) (-495) (-553 (-350 |#2|)) (-355 |#1|) (-950 |#2|) (-10 -8 (-15 -3938 ((-85) $)) (-15 -3949 ((-484) $)) (-15 -3773 ((-484) $)) (-15 -3960 ($ $)) (-15 -3175 (|#1| $)) (-15 -2242 (|#1| $)) (-15 -3678 (|#1| $ (-484))) (-15 -2894 ($ |#1| (-484))) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-6 (-258)) (-15 -3752 ((-2 (|:| -1765 $) (|:| -1764 (-350 |#2|))) (-350 |#2|)))) |%noBranch|))) (-495) (-1155 |#1|)) (T -562))
+((-3938 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3)))) (-3960 (*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -1765 (-562 *4 *5)) (|:| -1764 (-350 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-350 *5)))))
+((-3683 (((-583 |#6|) (-583 |#4|) (-85)) 54 T ELT)) (-2243 ((|#6| |#6|) 48 T ELT)))
+(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2243 (|#6| |#6|)) (-15 -3683 ((-583 |#6|) (-583 |#4|) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|) (-1020 |#1| |#2| |#3| |#4|)) (T -563))
+((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *10 (-1020 *5 *6 *7 *8)))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *2 (-1020 *3 *4 *5 *6)))))
+((-2244 (((-85) |#3| (-694) (-583 |#3|)) 30 T ELT)) (-2245 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1085 |#3|)))) "failed") |#3| (-583 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1782 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 68 T ELT)))
+(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 ((-85) |#3| (-694) (-583 |#3|))) (-15 -2245 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1085 |#3|)))) "failed") |#3| (-583 (-1085 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1782 (-583 (-2 (|:| |irr| |#4|) (|:| -2395 (-484)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-756) (-717) (-258) (-861 |#3| |#2| |#1|)) (T -564))
+((-2245 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1782 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258)) (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1085 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1085 *3))))) (-2244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756)) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-861 *3 *7 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 (((-1049) $) 12 T ELT)) (-3530 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-565) (-13 (-995) (-10 -8 (-15 -3530 ((-1049) $)) (-15 -3529 ((-1049) $))))) (T -565))
+((-3530 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565)))) (-3529 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-583 |#1|) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3937 (($ $) 77 T ELT)) (-3943 (((-606 |#1| |#2|) $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 81 T ELT)) (-2246 (((-583 (-249 |#2|)) $ $) 42 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3944 (($ (-606 |#1| |#2|)) 56 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) 66 T ELT) (((-1195 |#1| |#2|) $) NIL T ELT) (((-1200 |#1| |#2|) $) 74 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 61 T CONST)) (-2247 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2248 (((-583 (-606 |#1| |#2|)) (-583 |#1|)) 73 T ELT)) (-2666 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3057 (((-85) $ $) 62 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
+(((-566 |#1| |#2| |#3|) (-13 (-413) (-10 -8 (-15 -3944 ($ (-606 |#1| |#2|))) (-15 -3943 ((-606 |#1| |#2|) $)) (-15 -2666 ((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $)) (-15 -3947 ((-1195 |#1| |#2|) $)) (-15 -3947 ((-1200 |#1| |#2|) $)) (-15 -3937 ($ $)) (-15 -3935 ((-583 |#1|) $)) (-15 -2248 ((-583 (-606 |#1| |#2|)) (-583 |#1|))) (-15 -2247 ((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $)) (-15 -2246 ((-583 (-249 |#2|)) $ $)))) (-756) (-13 (-146) (-654 (-350 (-484)))) (-830)) (T -566))
+((-3944 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-5 *1 (-566 *3 *4 *5)) (-14 *5 (-830)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-13 (-146) (-654 (-350 (-484))))) (-14 *4 (-830)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5))) (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-350 (-484))))) (-14 *6 (-830)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4)))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))) (-2246 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756)) (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))))
+((-3683 (((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 103 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 77 T ELT)) (-2249 (((-85) (-583 (-703 |#1| (-773 |#2|)))) 26 T ELT)) (-2253 (((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)) 102 T ELT)) (-2252 (((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85)) 76 T ELT)) (-2251 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) 30 T ELT)) (-2250 (((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|)))) 29 T ELT)))
+(((-567 |#1| |#2|) (-10 -7 (-15 -2249 ((-85) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2250 ((-3 (-583 (-703 |#1| (-773 |#2|))) "failed") (-583 (-703 |#1| (-773 |#2|))))) (-15 -2251 ((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))))) (-15 -2252 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -2253 ((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3683 ((-583 (-958 |#1| |#2|)) (-583 (-703 |#1| (-773 |#2|))) (-85))) (-15 -3683 ((-583 (-1060 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|)))) (-583 (-703 |#1| (-773 |#2|))) (-85)))) (-392) (-583 (-1090))) (T -567))
+((-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6))))) (-5 *1 (-567 *5 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))) (-2250 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392)) (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))) (-2249 (*1 *2 *3) (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-392)) (-14 *5 (-583 (-1090))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
+((-3596 (((-86) (-86)) 88 T ELT)) (-2257 ((|#2| |#2|) 28 T ELT)) (-2833 ((|#2| |#2| (-1004 |#2|)) 84 T ELT) ((|#2| |#2| (-1090)) 50 T ELT)) (-2255 ((|#2| |#2|) 27 T ELT)) (-2256 ((|#2| |#2|) 29 T ELT)) (-2254 (((-85) (-86)) 33 T ELT)) (-2259 ((|#2| |#2|) 24 T ELT)) (-2260 ((|#2| |#2|) 26 T ELT)) (-2258 ((|#2| |#2|) 25 T ELT)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -2254 ((-85) (-86))) (-15 -3596 ((-86) (-86))) (-15 -2260 (|#2| |#2|)) (-15 -2259 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2255 (|#2| |#2|)) (-15 -2256 (|#2| |#2|)) (-15 -2833 (|#2| |#2| (-1090))) (-15 -2833 (|#2| |#2| (-1004 |#2|)))) (-495) (-13 (-364 |#1|) (-915) (-1115))) (T -568))
+((-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)))) (-2833 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))))) (-2256 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2255 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2259 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-2260 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2)) (-4 *2 (-13 (-364 *3) (-915) (-1115))))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4)) (-4 *4 (-13 (-364 *3) (-915) (-1115))))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115))))))
+((-3493 (($ $) 38 T ELT)) (-3640 (($ $) 21 T ELT)) (-3491 (($ $) 37 T ELT)) (-3639 (($ $) 22 T ELT)) (-3495 (($ $) 36 T ELT)) (-3638 (($ $) 23 T ELT)) (-3628 (($) 48 T ELT)) (-3943 (($ $) 45 T ELT)) (-2257 (($ $) 17 T ELT)) (-2833 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT)) (-3944 (($ $) 46 T ELT)) (-2255 (($ $) 15 T ELT)) (-2256 (($ $) 16 T ELT)) (-3496 (($ $) 35 T ELT)) (-3637 (($ $) 24 T ELT)) (-3494 (($ $) 34 T ELT)) (-3636 (($ $) 25 T ELT)) (-3492 (($ $) 33 T ELT)) (-3635 (($ $) 26 T ELT)) (-3499 (($ $) 44 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 43 T ELT)) (-3485 (($ $) 31 T ELT)) (-3501 (($ $) 42 T ELT)) (-3489 (($ $) 30 T ELT)) (-3502 (($ $) 41 T ELT)) (-3490 (($ $) 29 T ELT)) (-3500 (($ $) 40 T ELT)) (-3488 (($ $) 28 T ELT)) (-3498 (($ $) 39 T ELT)) (-3486 (($ $) 27 T ELT)) (-2259 (($ $) 19 T ELT)) (-2260 (($ $) 20 T ELT)) (-2258 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
+(((-569) (-113)) (T -569))
+((-2260 (*1 *1 *1) (-4 *1 (-569))) (-2259 (*1 *1 *1) (-4 *1 (-569))) (-2258 (*1 *1 *1) (-4 *1 (-569))) (-2257 (*1 *1 *1) (-4 *1 (-569))) (-2256 (*1 *1 *1) (-4 *1 (-569))) (-2255 (*1 *1 *1) (-4 *1 (-569))))
+(-13 (-871) (-1115) (-10 -8 (-15 -2260 ($ $)) (-15 -2259 ($ $)) (-15 -2258 ($ $)) (-15 -2257 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-871) . T) ((-1115) . T) ((-1118) . T))
+((-2270 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 65 T ELT)) (-2263 (((-583 (-206 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 90 T ELT)) (-2264 (((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-773 |#1|)) 92 T ELT) (((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)) (-773 |#1|)) 91 T ELT)) (-2261 (((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-421 |#1| |#2|))) 136 T ELT)) (-2268 (((-583 (-421 |#1| |#2|)) (-773 |#1|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 105 T ELT)) (-2262 (((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|))) 147 T ELT)) (-2266 (((-1179 |#2|) (-421 |#1| |#2|) (-583 (-421 |#1| |#2|))) 70 T ELT)) (-2265 (((-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|))) 47 T ELT)) (-2269 (((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 61 T ELT)) (-2267 (((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|))) 113 T ELT)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -2261 ((-2 (|:| |gblist| (-583 (-206 |#1| |#2|))) (|:| |gvlist| (-583 (-484)))) (-583 (-421 |#1| |#2|)))) (-15 -2262 ((-2 (|:| |glbase| (-583 (-206 |#1| |#2|))) (|:| |glval| (-583 (-484)))) (-583 (-206 |#1| |#2|)))) (-15 -2263 ((-583 (-206 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2264 ((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)) (-773 |#1|))) (-15 -2264 ((-421 |#1| |#2|) (-583 (-421 |#1| |#2|)) (-773 |#1|))) (-15 -2265 ((-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2266 ((-1179 |#2|) (-421 |#1| |#2|) (-583 (-421 |#1| |#2|)))) (-15 -2267 ((-206 |#1| |#2|) (-583 |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2268 ((-583 (-421 |#1| |#2|)) (-773 |#1|) (-583 (-421 |#1| |#2|)) (-583 (-421 |#1| |#2|)))) (-15 -2269 ((-206 |#1| |#2|) (-206 |#1| |#2|) (-583 (-206 |#1| |#2|)))) (-15 -2270 ((-421 |#1| |#2|) (-206 |#1| |#2|)))) (-583 (-1090)) (-392)) (T -570))
+((-2270 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-421 *4 *5)) (-5 *1 (-570 *4 *5)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))) (-2268 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))) (-2267 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-392)) (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1090))) (-5 *1 (-570 *5 *6)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-583 (-1090))) (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-570 *5 *6)))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-583 (-421 *3 *4))) (-14 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-570 *3 *4)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))) (-2264 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090))) (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))) (-2262 (*1 *2 *3) (-12 (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484))))) (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484))))) (-5 *1 (-570 *4 *5)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3997)) ELT) (((-51) $ (-1090) (-51)) 16 T ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) ELT)) (-2231 (((-3 (-51) #1="failed") (-1073) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) ELT) (((-3 (-51) #1#) (-1073) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) ELT)) (-3843 (((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72)) ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) NIL T ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-1576 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-51) $ (-1073)) NIL T ELT)) (-2271 (($ $) NIL T ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2272 (($ (-338)) 8 T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-2232 (((-583 (-1073)) $) NIL T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-51) (-1013)) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-3802 (((-51) $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) #1#) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-2199 (($ $ (-51)) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-249 (-51))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-249 (-51)))) NIL (-12 (|has| (-51) (-260 (-51))) (|has| (-51) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-51) $) NIL (-12 (|has| $ (-318 (-51))) (|has| (-51) (-72))) ELT)) (-2205 (((-583 (-51)) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 (((-51) $ (-1073)) NIL T ELT) (((-51) $ (-1073) (-51)) NIL T ELT) (((-51) $ (-1090)) 14 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-552 (-772))) (|has| (-51) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| (-51)))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-51) (-72)) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| (-51))) (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-571) (-13 (-1107 (-1073) (-51)) (-241 (-1090) (-51)) (-10 -8 (-15 -2272 ($ (-338))) (-15 -2271 ($ $)) (-15 -3789 ((-51) $ (-1090) (-51)))))) (T -571))
+((-2272 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-571)))) (-2271 (*1 *1 *1) (-5 *1 (-571))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-571)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1775 (((-3 $ #1="failed")) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-630 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 (-630 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1729 (((-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1703 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1791 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1727 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1789 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2404 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1903 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1705 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1793 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1723 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1717 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1795 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (($ (-1179 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-3109 (((-830)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1714 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-1710 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1708 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1712 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1704 (((-3 $ #1#)) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1792 (((-630 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1728 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1790 (((-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2405 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1907 (((-1085 (-857 |#1|))) NIL (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-312))) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#1| $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1706 (((-1085 |#1|) $) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-1794 ((|#1|) NIL (|has| |#2| (-361 |#1|)) ELT) ((|#1| (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1724 (((-1085 |#1|) $) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1718 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1711 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1713 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3801 ((|#1| $ (-484)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-3225 (((-630 |#1|) (-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT) (((-1179 |#1|) $ (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3973 (($ (-1179 |#1|)) NIL (|has| |#2| (-361 |#1|)) ELT) (((-1179 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1895 (((-583 (-857 |#1|))) NIL (|has| |#2| (-361 |#1|)) ELT) (((-583 (-857 |#1|)) (-1179 $)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-3947 (((-772) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL (|has| |#2| (-361 |#1|)) ELT)) (-1707 (((-583 (-1179 |#1|))) NIL (OR (-12 (|has| |#2| (-316 |#1|)) (|has| |#1| (-495))) (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-495)))) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2546 (($ (-630 |#1|) $) NIL (|has| |#2| (-361 |#1|)) ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1719 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-1715 (((-85)) NIL (|has| |#2| (-316 |#1|)) ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-572 |#1| |#2|) (-13 (-683 |#1|) (-552 |#2|) (-10 -8 (-15 -3947 ($ |#2|)) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|) (IF (|has| |#2| (-316 |#1|)) (-6 (-316 |#1|)) |%noBranch|))) (-146) (-683 |#1|)) (T -572))
+((-3947 (*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3)))))
+((-3950 (($ $ |#2|) 10 T ELT)))
+(((-573 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-574 |#2|) (-146)) (T -573))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3531 (($ $ $) 40 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 39 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-574 |#1|) (-113) (-146)) (T -574))
+((-3531 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(-13 (-654 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3531 ($ $ $)) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2274 (((-3 (-750 |#2|) #1="failed") |#2| (-249 |#2|) (-1073)) 105 T ELT) (((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|))) 130 T ELT)) (-2273 (((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|))) 135 T ELT)))
+(((-575 |#1| |#2|) (-10 -7 (-15 -2274 ((-3 (-750 |#2|) (-2 (|:| |leftHandLimit| (-3 (-750 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-750 |#2|) #1#))) #1#) |#2| (-249 (-750 |#2|)))) (-15 -2273 ((-3 (-743 |#2|) #1#) |#2| (-249 (-743 |#2|)))) (-15 -2274 ((-3 (-750 |#2|) #1#) |#2| (-249 |#2|) (-1073)))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -575))
+((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3)) (-5 *1 (-575 *6 *3)))) (-2273 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-249 (-743 *3))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3)) (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) "failed")) (-5 *1 (-575 *5 *3)))))
+((-2274 (((-3 (-750 (-350 (-857 |#1|))) #1="failed") (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))) (-1073)) 86 T ELT) (((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 20 T ELT) (((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-750 (-857 |#1|)))) 35 T ELT)) (-2273 (((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 23 T ELT) (((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-743 (-857 |#1|)))) 43 T ELT)))
+(((-576 |#1|) (-10 -7 (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-750 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 |#1|))) #1#))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -2273 ((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-743 (-857 |#1|))))) (-15 -2273 ((-743 (-350 (-857 |#1|))) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -2274 ((-3 (-750 (-350 (-857 |#1|))) #1#) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))) (-1073)))) (-392)) (T -576))
+((-2274 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-249 (-350 (-857 *6)))) (-5 *5 (-1073)) (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-750 *3)) (-5 *1 (-576 *6)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-743 (-350 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5))))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392)) (-5 *2 (-3 (-750 *3) (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-750 *3) #1#))) #2="failed")) (-5 *1 (-576 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-392)) (-5 *2 (-3 (-750 (-350 (-857 *5))) (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 *5))) #1#)) (|:| |rightHandLimit| (-3 (-750 (-350 (-857 *5))) #1#))) #2#)) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 11 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2852 (($ (-168 |#1|)) 12 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-773 |#1|)) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-577 |#1|) (-13 (-752) (-555 (-773 |#1|)) (-10 -8 (-15 -2852 ($ (-168 |#1|))))) (-583 (-1090))) (T -577))
+((-2852 (*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-577 *3)))))
+((-2277 (((-3 (-1179 (-350 |#1|)) #1="failed") (-1179 |#2|) |#2|) 64 (-2561 (|has| |#1| (-312))) ELT) (((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|) 49 (|has| |#1| (-312)) ELT)) (-2275 (((-85) (-1179 |#2|)) 33 T ELT)) (-2276 (((-3 (-1179 |#1|) #1#) (-1179 |#2|)) 40 T ELT)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -2275 ((-85) (-1179 |#2|))) (-15 -2276 ((-3 (-1179 |#1|) #1="failed") (-1179 |#2|))) (IF (|has| |#1| (-312)) (-15 -2277 ((-3 (-1179 |#1|) #1#) (-1179 |#2|) |#2|)) (-15 -2277 ((-3 (-1179 (-350 |#1|)) #1#) (-1179 |#2|) |#2|)))) (-495) (-13 (-961) (-580 |#1|))) (T -578))
+((-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-2561 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1179 (-350 *5))) (-5 *1 (-578 *5 *4)))) (-2277 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5))) (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1179 *5)) (-5 *1 (-578 *5 *4)))) (-2276 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-1179 *4)) (-5 *1 (-578 *4 *5)))) (-2275 (*1 *2 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3775 (((-583 (-453 |#1| (-577 |#2|))) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2894 (($ |#1| (-577 |#2|)) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2278 (($ (-583 |#1|)) 25 T ELT)) (-1983 (((-577 |#2|) $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3912 (((-107)) 16 T ELT)) (-3225 (((-1179 |#1|) $) 44 T ELT)) (-3973 (($ (-583 (-453 |#1| (-577 |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-577 |#2|)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 20 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 17 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-579 |#1| |#2|) (-13 (-1187 |#1|) (-555 (-577 |#2|)) (-449 |#1| (-577 |#2|)) (-10 -8 (-15 -2278 ($ (-583 |#1|))) (-15 -3225 ((-1179 |#1|) $)))) (-312) (-583 (-1090))) (T -579))
+((-2278 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4)) (-14 *4 (-583 (-1090))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1090))))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2279 (((-630 |#1|) (-630 $)) 36 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 35 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2280 (((-630 |#1|) (-1179 $)) 38 T ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 37 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-580 |#1|) (-113) (-961)) (T -580))
+((-2280 (*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2280 (*1 *2 *3 *1) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1179 *4)))))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 *5)))))))
+(-13 (-590 |t#1|) (-10 -8 (-15 -2280 ((-630 |t#1|) (-1179 $))) (-15 -2280 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-1179 $) $)) (-15 -2279 ((-630 |t#1|) (-630 $))) (-15 -2279 ((-2 (|:| |mat| (-630 |t#1|)) (|:| |vec| (-1179 |t#1|))) (-630 $) (-1179 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1214 (((-85) $ $) NIL T ELT)) (-2281 (($ (-583 |#1|)) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $ (-579 |#1| |#2|)) 46 T ELT)) (-3912 (((-107)) 13 T ELT)) (-3225 (((-1179 |#1|) $) 42 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 14 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-581 |#1| |#2|) (-13 (-1187 |#1|) (-241 (-579 |#1| |#2|) |#1|) (-10 -8 (-15 -2281 ($ (-583 |#1|))) (-15 -3225 ((-1179 |#1|) $)))) (-312) (-583 (-1090))) (T -581))
+((-2281 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4)) (-14 *4 (-583 (-1090))))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1179 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312)) (-14 *4 (-583 (-1090))))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT)))
+(((-582 |#1|) (-113) (-1025)) (T -582))
+NIL
+(-13 (-588 |t#1|) (-963 |t#1|))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 |#1|) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3786 (($ $ (-484)) 68 (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) $) NIL (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-1733 (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT) (($ (-1 (-85) |#1| |#1|) $) 65 (|has| $ (-1035 |#1|)) ELT)) (-2910 (($ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) NIL T ELT)) (-3443 (((-85) $ (-694)) NIL T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 26 (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 24 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 25 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) 27 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-2284 (($ $ $) 74 (|has| |#1| (-1013)) ELT)) (-2283 (($ $ $) 75 (|has| |#1| (-1013)) ELT)) (-2282 (($ $ $) 79 (|has| |#1| (-1013)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) 31 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 32 T ELT)) (-3800 (($ $) 21 T ELT) (($ $ (-694)) 35 T ELT)) (-2368 (($ $) 63 (|has| |#1| (-72)) ELT)) (-1353 (($ $) 73 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) NIL (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) NIL T ELT)) (-3407 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3420 (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) (-1 (-85) |#1|) $) NIL T ELT)) (-2286 (((-85) $) 9 T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2287 (($) 7 T CONST)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-3720 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) 34 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 66 T ELT)) (-3519 (($ $ $) NIL (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT)) (-2609 (((-583 |#1|) $) 30 T ELT)) (-3246 (((-85) |#1| $) 61 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3535 (($ |#1|) NIL T ELT)) (-3717 (((-85) $ (-694)) NIL T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) 59 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3610 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 16 T ELT) (($ $ (-694)) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3445 (((-85) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 15 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 20 T ELT)) (-3566 (($) 19 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 18 T ELT) (($ $ #3#) 23 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) 78 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-1571 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3793 (($ $) NIL T ELT)) (-3791 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) NIL T ELT)) (-3795 (($ $) 40 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 36 T ELT)) (-3973 (((-473) $) 87 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 29 T ELT)) (-3462 (($ |#1| $) 10 T ELT)) (-3792 (($ $ $) 62 T ELT) (($ $ |#1|) NIL T ELT)) (-3803 (($ $ $) 72 T ELT) (($ |#1| $) 14 T ELT) (($ (-583 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3947 (((-772) $) 51 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2285 (($ $ $) 11 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 55 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 13 T ELT)))
+(((-583 |#1|) (-13 (-608 |#1|) (-10 -8 (-15 -2287 ($) -3953) (-15 -2286 ((-85) $)) (-15 -3462 ($ |#1| $)) (-15 -2285 ($ $ $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -2284 ($ $ $)) (-15 -2283 ($ $ $)) (-15 -2282 ($ $ $))) |%noBranch|))) (-1129)) (T -583))
+((-2287 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1129)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2285 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))) (-2284 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))) (-2283 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))) (-2282 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))))
+((-3842 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18 T ELT)) (-3959 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13 T ELT)))
+(((-584 |#1| |#2|) (-10 -7 (-15 -3842 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3959 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1129) (-1129)) (T -584))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-584 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5)))))
+((-3423 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17 T ELT) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12 T ELT)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3423 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -3423 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -3423 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -3423 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -3423 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -3423 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1013) (-1129)) (T -585))
+((-3423 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3423 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-585 *5 *6)))) (-3423 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1129)) (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129)) (-5 *1 (-585 *5 *2)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6)))))
+((-3959 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 21 T ELT)))
+(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1129) (-1129) (-1129)) (T -586))
+((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-583 *8)) (-5 *1 (-586 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 11 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-587 |#1|) (-13 (-995) (-552 |#1|)) (-1013)) (T -587))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT)))
+(((-588 |#1|) (-113) (-1025)) (T -588))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025)))))
+(-13 (-1013) (-10 -8 (-15 * ($ |t#1| $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2288 (($ |#1| |#1| $) 45 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 61 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2368 (($ $) 47 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) 58 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 60 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-2609 (((-583 |#1|) $) 9 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 49 T ELT)) (-3610 (($ |#1| $) 30 T ELT) (($ |#1| $ (-694)) 44 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 52 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 23 T ELT)) (-3566 (($) 29 T ELT)) (-2289 (((-85) $) 56 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1730 (-694)))) $) 69 T ELT)) (-1466 (($) 26 T ELT) (($ (-583 |#1|)) 19 T ELT)) (-1730 (((-694) |#1| $) 65 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 20 T ELT)) (-3973 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3947 (((-772) $) 14 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 24 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 71 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 17 T ELT)))
+(((-589 |#1|) (-13 (-634 |#1|) (-318 |#1|) (-10 -8 (-15 -2289 ((-85) $)) (-15 -2288 ($ |#1| |#1| $)))) (-1013)) (T -589))
+((-2289 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))) (-2288 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT)))
+(((-590 |#1|) (-113) (-970)) (T -590))
+NIL
+(-13 (-21) (-588 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694) $) 17 T ELT)) (-2295 (($ $ |#1|) 68 T ELT)) (-2297 (($ $) 39 T ELT)) (-2298 (($ $) 37 T ELT)) (-3158 (((-3 |#1| "failed") $) 60 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2293 (($ |#1| |#2| $) 77 T ELT) (($ $ $) 79 T ELT)) (-3534 (((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484)) 55 T ELT)) (-2299 ((|#1| $ (-484)) 35 T ELT)) (-2300 ((|#2| $ (-484)) 34 T ELT)) (-2290 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2291 (($ (-1 |#2| |#2|) $) 46 T ELT)) (-2296 (($) 13 T ELT)) (-2302 (($ |#1| |#2|) 24 T ELT)) (-2301 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|)))) 25 T ELT)) (-2303 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $) 14 T ELT)) (-2294 (($ |#1| $) 69 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2292 (((-85) $ $) 74 T ELT)) (-3947 (((-772) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 27 T ELT)))
+(((-591 |#1| |#2| |#3|) (-13 (-1013) (-950 |#1|) (-10 -8 (-15 -3534 ((-772) $ (-1 (-772) (-772) (-772)) (-1 (-772) (-772) (-772)) (-484))) (-15 -2303 ((-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))) $)) (-15 -2302 ($ |#1| |#2|)) (-15 -2301 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -3944 |#2|))))) (-15 -2300 (|#2| $ (-484))) (-15 -2299 (|#1| $ (-484))) (-15 -2298 ($ $)) (-15 -2297 ($ $)) (-15 -3137 ((-694) $)) (-15 -2296 ($)) (-15 -2295 ($ $ |#1|)) (-15 -2294 ($ |#1| $)) (-15 -2293 ($ |#1| |#2| $)) (-15 -2293 ($ $ $)) (-15 -2292 ((-85) $ $)) (-15 -2291 ($ (-1 |#2| |#2|) $)) (-15 -2290 ($ (-1 |#1| |#1|) $)))) (-1013) (-23) |#2|) (T -591))
+((-3534 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772)) (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2302 (*1 *1 *2 *3) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013)) (-14 *5 *2))) (-2299 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-3137 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2296 (*1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2295 (*1 *1 *1 *2) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2294 (*1 *1 *2 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2293 (*1 *1 *1 *1) (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))) (-2291 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)))) (-2290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+((-2201 (((-484) $) 30 T ELT)) (-2304 (($ |#2| $ (-484)) 26 T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) 12 T ELT)) (-2204 (((-85) (-484) $) 17 T ELT)) (-3803 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)))
+(((-592 |#1| |#2|) (-10 -7 (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -3803 (|#1| (-583 |#1|))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 -2201 ((-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2204 ((-85) (-484) |#1|))) (-593 |#2|) (-1129)) (T -592))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-1035 |#1|)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-593 |#1|) (-113) (-1129)) (T -593))
+((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2305 (*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-2304 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1129)))) (-2304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1146 (-484))) (-4 *1 (-1035 *2)) (-4 *1 (-593 *2)) (-4 *2 (-1129)))))
+(-13 (-538 (-484) |t#1|) (-124 |t#1|) (-241 (-1146 (-484)) $) (-10 -8 (-15 -3615 ($ (-694) |t#1|)) (-15 -3803 ($ $ |t#1|)) (-15 -3803 ($ |t#1| $)) (-15 -3803 ($ $ $)) (-15 -3803 ($ (-583 $))) (-15 -3959 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2305 ($ $ (-484))) (-15 -2305 ($ $ (-1146 (-484)))) (-15 -2304 ($ |t#1| $ (-484))) (-15 -2304 ($ $ $ (-484))) (IF (|has| $ (-1035 |t#1|)) (-15 -3789 (|t#1| $ (-1146 (-484)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 15 T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| |#1| (-714)) ELT)) (-3725 (($) NIL T CONST)) (-3187 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2999 ((|#1| $) 23 T ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-714)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-714)) ELT)) (-3243 (((-1073) $) 48 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2998 ((|#3| $) 24 T ELT)) (-3947 (((-772) $) 43 T ELT)) (-1265 (((-85) $ $) 22 T ELT)) (-3384 (($ $) NIL (|has| |#1| (-714)) ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-3057 (((-85) $ $) 20 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-714)) ELT)) (-2686 (((-85) $ $) 26 (|has| |#1| (-714)) ELT)) (-3950 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-3838 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-594 |#1| |#2| |#3|) (-13 (-654 |#2|) (-10 -8 (IF (|has| |#1| (-714)) (-6 (-714)) |%noBranch|) (-15 -3950 ($ $ |#3|)) (-15 -3950 ($ |#1| |#3|)) (-15 -2999 (|#1| $)) (-15 -2998 (|#3| $)))) (-654 |#2|) (-146) (|SubsetCategory| (-663) |#2|)) (T -594))
+((-3950 (*1 *1 *1 *2) (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)) (-4 *2 (|SubsetCategory| (-663) *4)))) (-3950 (*1 *1 *2 *3) (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4)) (-4 *3 (|SubsetCategory| (-663) *4)))) (-2999 (*1 *2 *1) (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-663) *3)))) (-2998 (*1 *2 *1) (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4)))))
+((-3574 (((-3 |#2| #1="failed") |#3| |#2| (-1090) |#2| (-583 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1#) |#3| |#2| (-1090)) 44 T ELT)))
+(((-595 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) #1="failed") |#3| |#2| (-1090))) (-15 -3574 ((-3 |#2| #1#) |#3| |#2| (-1090) |#2| (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871)) (-600 |#2|)) (T -595))
+((-3574 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 28 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 31 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) NIL T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3801 ((|#1| $ |#1|) 24 T ELT)) (-2310 (($ $ $) 33 (|has| |#1| (-312)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 8 T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-596 |#1| |#2|) (-600 |#1|) (-961) (-1 |#1| |#1|)) (T -596))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) NIL T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-597 |#1|) (-600 |#1|) (-190)) (T -597))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2306 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) NIL (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) NIL T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2310 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-598 |#1| |#2|) (-13 (-600 |#1|) (-241 |#2| |#2|)) (-190) (-13 (-590 |#1|) (-10 -8 (-15 -3759 ($ $))))) (T -598))
+NIL
+((-2306 (($ $) 29 T ELT)) (-2521 (($ $) 27 T ELT)) (-2670 (($) 13 T ELT)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -2306 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2670 (|#1|))) (-600 |#2|) (-961)) (T -599))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2306 (($ $) 96 (|has| |#1| (-312)) ELT)) (-2308 (($ $ $) 98 (|has| |#1| (-312)) ELT)) (-2309 (($ $ (-694)) 97 (|has| |#1| (-312)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1="failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #2="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #2#) $) 85 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #2#) $) 82 T ELT)) (-3157 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 84 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-694)) 75 T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ #1#) $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3801 ((|#1| $ |#1|) 101 T ELT)) (-2310 (($ $ $) 95 (|has| |#1| (-312)) ELT)) (-3949 (((-694) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 86 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-583 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-694)) 76 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2521 (($ $) 99 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($) 100 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
+(((-600 |#1|) (-113) (-961)) (T -600))
+((-2670 (*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)))) (-2308 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2310 (*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(-13 (-761 |t#1|) (-241 |t#1| |t#1|) (-10 -8 (-15 -2670 ($)) (-15 -2521 ($ $)) (IF (|has| |t#1| (-312)) (PROGN (-15 -2308 ($ $ $)) (-15 -2309 ($ $ (-694))) (-15 -2306 ($ $)) (-15 -2310 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-355 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-761 |#1|) . T))
+((-2307 (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-3733 (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 19 T ELT)))
+(((-601 |#1| |#2|) (-10 -7 (-15 -3733 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3733 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|)))) (-15 -2307 ((-583 (-597 (-350 |#2|))) (-597 (-350 |#2|))))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -601))
+((-2307 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-350 *5))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5)) (-5 *3 (-597 (-350 *5))))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-597 (-350 *6)))) (-5 *1 (-601 *5 *6)) (-5 *3 (-597 (-350 *6))))))
+((-2308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2309 ((|#2| |#2| (-694) (-1 |#1| |#1|)) 45 T ELT)) (-2310 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
+(((-602 |#1| |#2|) (-10 -7 (-15 -2308 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2309 (|#2| |#2| (-694) (-1 |#1| |#1|))) (-15 -2310 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -602))
+((-2310 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))) (-2309 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2)) (-4 *2 (-600 *5)))) (-2308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2)) (-4 *2 (-600 *4)))))
+((-2311 (($ $ $) 9 T ELT)))
+(((-603 |#1|) (-10 -7 (-15 -2311 (|#1| |#1| |#1|))) (-604)) (T -603))
+NIL
+((-2313 (($ $) 8 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2312 (($ $ $) 7 T ELT)))
+(((-604) (-113)) (T -604))
+((-2313 (*1 *1 *1) (-4 *1 (-604))) (-2312 (*1 *1 *1 *1) (-4 *1 (-604))) (-2311 (*1 *1 *1 *1) (-4 *1 (-604))))
+(-13 (-1129) (-10 -8 (-15 -2313 ($ $)) (-15 -2312 ($ $ $)) (-15 -2311 ($ $ $))))
+(((-13) . T) ((-1129) . T))
+((-2314 (((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|)) 33 T ELT)))
+(((-605 |#1|) (-10 -7 (-15 -2314 ((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|)))) (-821)) (T -605))
+((-2314 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-821)) (-5 *1 (-605 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-583 |#1|) $) 85 T ELT)) (-3948 (($ $ (-694)) 95 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 50 T ELT)) (-3158 (((-3 (-614 |#1|) #1#) $) NIL T ELT)) (-3157 (((-614 |#1|) $) NIL T ELT)) (-3960 (($ $) 94 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-614 |#1|) |#2|) 70 T ELT)) (-3937 (($ $) 90 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (((-1204 |#1| |#2|) (-1204 |#1| |#2|) $) 49 T ELT)) (-1752 (((-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-614 |#1|) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3769 (($ $ |#1| $) 32 T ELT) (($ $ (-583 |#1|) (-583 $)) 34 T ELT)) (-3949 (((-694) $) 92 T ELT)) (-3531 (($ $ $) 20 T ELT) (($ (-614 |#1|) (-614 |#1|)) 79 T ELT) (($ (-614 |#1|) $) 77 T ELT) (($ $ (-614 |#1|)) 78 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1195 |#1| |#2|) $) 60 T ELT) (((-1204 |#1| |#2|) $) 43 T ELT) (($ (-614 |#1|)) 27 T ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-614 |#1|)) NIL T ELT)) (-3955 ((|#2| (-1204 |#1| |#2|) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2666 (((-583 (-2 (|:| |k| (-614 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 $ #1#) (-1195 |#1| |#2|)) 62 T ELT)) (-1736 (($ (-614 |#1|)) 14 T ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-614 |#1|)) NIL T ELT)))
+(((-606 |#1| |#2|) (-13 (-326 |#1| |#2|) (-335 |#2| (-614 |#1|)) (-10 -8 (-15 -3946 ((-3 $ "failed") (-1195 |#1| |#2|))) (-15 -3531 ($ (-614 |#1|) (-614 |#1|))) (-15 -3531 ($ (-614 |#1|) $)) (-15 -3531 ($ $ (-614 |#1|))))) (-756) (-146)) (T -606))
+((-3946 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-606 *3 *4)))) (-3531 (*1 *1 *2 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *2 *1) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))) (-3531 (*1 *1 *1 *2) (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146)))))
+((-1735 (((-85) $) NIL T ELT) (((-85) (-1 (-85) |#2| |#2|) $) 59 T ELT)) (-1733 (($ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $) 12 T ELT)) (-1570 (($ (-1 (-85) |#2|) $) 29 T ELT)) (-2297 (($ $) 65 T ELT)) (-2368 (($ $) 74 T ELT)) (-3406 (($ |#2| $) NIL T ELT) (($ (-1 (-85) |#2|) $) 43 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3420 (((-484) |#2| $ (-484)) 71 T ELT) (((-484) |#2| $) NIL T ELT) (((-484) (-1 (-85) |#2|) $) 54 T ELT)) (-3615 (($ (-694) |#2|) 63 T ELT)) (-2857 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 31 T ELT)) (-3519 (($ $ $) NIL T ELT) (($ (-1 (-85) |#2| |#2|) $ $) 24 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3535 (($ |#2|) 15 T ELT)) (-3610 (($ $ $ (-484)) 42 T ELT) (($ |#2| $ (-484)) 40 T ELT)) (-1354 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 53 T ELT)) (-1571 (($ $ (-1146 (-484))) 51 T ELT) (($ $ (-484)) 44 T ELT)) (-1734 (($ $ $ (-484)) 70 T ELT)) (-3401 (($ $) 68 T ELT)) (-2686 (((-85) $ $) 76 T ELT)))
+(((-607 |#1| |#2|) (-10 -7 (-15 -3535 (|#1| |#2|)) (-15 -1571 (|#1| |#1| (-484))) (-15 -1571 (|#1| |#1| (-1146 (-484)))) (-15 -3406 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3610 (|#1| |#2| |#1| (-484))) (-15 -3610 (|#1| |#1| |#1| (-484))) (-15 -2857 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1570 (|#1| (-1 (-85) |#2|) |#1|)) (-15 -3406 (|#1| |#2| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3843 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3519 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1735 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3420 ((-484) (-1 (-85) |#2|) |#1|)) (-15 -3420 ((-484) |#2| |#1|)) (-15 -3420 ((-484) |#2| |#1| (-484))) (-15 -3519 (|#1| |#1| |#1|)) (-15 -1735 ((-85) |#1|)) (-15 -1734 (|#1| |#1| |#1| (-484))) (-15 -2297 (|#1| |#1|)) (-15 -1733 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -1354 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3615 (|#1| (-694) |#2|)) (-15 -3959 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3401 (|#1| |#1|))) (-608 |#2|) (-1129)) (T -607))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3796 ((|#1| $) 62 T ELT)) (-3798 (($ $) 64 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 99 (|has| $ (-1035 |#1|)) ELT)) (-3786 (($ $ (-484)) 49 (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) $) 154 (|has| |#1| (-756)) ELT) (((-85) (-1 (-85) |#1| |#1|) $) 148 T ELT)) (-1733 (($ $) 158 (-12 (|has| |#1| (-756)) (|has| $ (-1035 |#1|))) ELT) (($ (-1 (-85) |#1| |#1|) $) 157 (|has| $ (-1035 |#1|)) ELT)) (-2910 (($ $) 153 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $) 147 T ELT)) (-3443 (((-85) $ (-694)) 82 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 53 (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) 51 (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 116 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-484) |#1|) 88 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 131 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3797 ((|#1| $) 63 T ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 156 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 146 T ELT)) (-3800 (($ $) 70 T ELT) (($ $ (-694)) 68 T ELT)) (-2368 (($ $) 133 (|has| |#1| (-72)) ELT)) (-1353 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 132 (|has| |#1| (-72)) ELT) (($ (-1 (-85) |#1|) $) 127 T ELT)) (-3407 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 139 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 138 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 135 (|has| |#1| (-72)) ELT)) (-1576 ((|#1| $ (-484) |#1|) 87 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 89 T ELT)) (-3444 (((-85) $) 85 T ELT)) (-3420 (((-484) |#1| $ (-484)) 151 (|has| |#1| (-72)) ELT) (((-484) |#1| $) 150 (|has| |#1| (-72)) ELT) (((-484) (-1 (-85) |#1|) $) 149 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 108 T ELT)) (-3720 (((-85) $ (-694)) 83 T ELT)) (-2200 (((-484) $) 97 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 164 (|has| |#1| (-756)) ELT)) (-2857 (($ $ $) 134 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 130 T ELT)) (-3519 (($ $ $) 152 (|has| |#1| (-756)) ELT) (($ (-1 (-85) |#1| |#1|) $ $) 145 T ELT)) (-2609 (((-583 |#1|) $) 140 T ELT)) (-3246 (((-85) |#1| $) 136 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 96 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 163 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3535 (($ |#1|) 124 T ELT)) (-3717 (((-85) $ (-694)) 84 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) 67 T ELT) (($ $ (-694)) 65 T ELT)) (-3610 (($ $ $ (-484)) 129 T ELT) (($ |#1| $ (-484)) 128 T ELT)) (-2304 (($ $ $ (-484)) 115 T ELT) (($ |#1| $ (-484)) 114 T ELT)) (-2203 (((-583 (-484)) $) 94 T ELT)) (-2204 (((-85) (-484) $) 93 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 73 T ELT) (($ $ (-694)) 71 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2199 (($ $ |#1|) 98 (|has| $ (-1035 |#1|)) ELT)) (-3445 (((-85) $) 86 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 142 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 92 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1146 (-484))) 107 T ELT) ((|#1| $ (-484)) 91 T ELT) ((|#1| $ (-484) |#1|) 90 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-1571 (($ $ (-1146 (-484))) 126 T ELT) (($ $ (-484)) 125 T ELT)) (-2305 (($ $ (-1146 (-484))) 113 T ELT) (($ $ (-484)) 112 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3793 (($ $) 59 T ELT)) (-3791 (($ $) 56 (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) 60 T ELT)) (-3795 (($ $) 61 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) 141 T ELT) (((-694) |#1| $) 137 (|has| |#1| (-72)) ELT)) (-1734 (($ $ $ (-484)) 155 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 100 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 106 T ELT)) (-3792 (($ $ $) 58 T ELT) (($ $ |#1|) 57 T ELT)) (-3803 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-583 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 143 T ELT)) (-2567 (((-85) $ $) 162 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 160 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 161 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 159 (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 144 T ELT)))
+(((-608 |#1|) (-113) (-1129)) (T -608))
+((-3535 (*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1129)))))
+(-13 (-1064 |t#1|) (-324 |t#1|) (-237 |t#1|) (-10 -8 (-15 -3535 ($ |t#1|))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-237 |#1|) . T) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-923 |#1|) . T) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T))
+((-3574 (((-583 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|))) |#4| |#3|) 60 T ELT)) (-3109 (((-694) |#4| |#3|) 18 T ELT)) (-3341 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2315 (((-85) |#4| |#3|) 14 T ELT)))
+(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|)) (-15 -3574 ((-583 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2012 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -3341 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2315 ((-85) |#4| |#3|)) (-15 -3109 ((-694) |#4| |#3|))) (-312) (-13 (-324 |#1|) (-1035 |#1|)) (-13 (-324 |#1|) (-1035 |#1|)) (-627 |#1| |#2| |#3|)) (T -609))
+((-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5))) (-4 *4 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-2315 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5))) (-4 *4 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1035 *4))) (-4 *2 (-13 (-324 *4) (-1035 *4))) (-5 *1 (-609 *4 *5 *2 *3)) (-4 *3 (-627 *4 *5 *2)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5))) (-4 *7 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2012 (-583 *7))))) (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7)))) (-3574 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5))) (-4 *4 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
+((-3574 (((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|))))) (-583 (-583 |#1|)) (-583 (-1179 |#1|))) 22 T ELT) (((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-630 |#1|) (-583 (-1179 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-583 (-583 |#1|)) (-1179 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)) 14 T ELT)) (-3109 (((-694) (-630 |#1|) (-1179 |#1|)) 30 T ELT)) (-3341 (((-3 (-1179 |#1|) #1#) (-630 |#1|) (-1179 |#1|)) 24 T ELT)) (-2315 (((-85) (-630 |#1|) (-1179 |#1|)) 27 T ELT)))
+(((-610 |#1|) (-10 -7 (-15 -3574 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|))) (-15 -3574 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-583 (-583 |#1|)) (-1179 |#1|))) (-15 -3574 ((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-630 |#1|) (-583 (-1179 |#1|)))) (-15 -3574 ((-583 (-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|))))) (-583 (-583 |#1|)) (-583 (-1179 |#1|)))) (-15 -3341 ((-3 (-1179 |#1|) #1#) (-630 |#1|) (-1179 |#1|))) (-15 -2315 ((-85) (-630 |#1|) (-1179 |#1|))) (-15 -3109 ((-694) (-630 |#1|) (-1179 |#1|)))) (-312)) (T -610))
+((-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-610 *5)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85)) (-5 *1 (-610 *5)))) (-3341 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *1 (-610 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1179 *5) #1="failed")) (|:| -2012 (-583 (-1179 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5)))))) (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1179 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *5) #1#)) (|:| -2012 (-583 (-1179 *5))))) (-5 *1 (-610 *5)) (-5 *4 (-1179 *5)))))
+((-2316 (((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2012 (-583 (-1179 (-350 |#4|))))) (-583 |#4|) (-583 |#3|)) 51 T ELT)))
+(((-611 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1179 (-350 |#4|)) "failed")) (|:| -2012 (-583 (-1179 (-350 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-495) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -611))
+((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed")) (|:| -2012 (-583 (-1179 (-350 *8)))))) (-5 *1 (-611 *5 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1775 (((-3 $ #1="failed")) NIL (|has| |#2| (-495)) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-3224 (((-1179 (-630 |#2|))) NIL T ELT) (((-1179 (-630 |#2|)) (-1179 $)) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-1729 (((-1179 $)) 41 T ELT)) (-3334 (($ |#2|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-1909 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1703 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1791 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1727 ((|#2| $) NIL T ELT)) (-1789 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1179 $)) NIL T ELT)) (-2404 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1903 (((-1085 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2407 (($ $ (-830)) NIL T ELT)) (-1725 ((|#2| $) NIL T ELT)) (-1705 (((-1085 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1793 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1723 (((-1085 |#2|) $) NIL T ELT)) (-1717 (((-85)) NIL T ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-1795 (($ (-1179 |#2|)) NIL T ELT) (($ (-1179 |#2|) (-1179 $)) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-694) $) NIL (|has| |#2| (-495)) ELT) (((-830)) 42 T ELT)) (-3113 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1714 (((-85)) NIL T ELT)) (-2434 (($ $ (-830)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3108 (((-694) $) NIL (|has| |#2| (-495)) ELT)) (-3107 (((-583 (-197 |#1| |#2|)) $) NIL (|has| |#2| (-495)) ELT)) (-3115 (((-694) $) NIL T ELT)) (-1710 (((-85)) NIL T ELT)) (-3114 (((-694) $) NIL T ELT)) (-3328 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-484) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-2609 (((-583 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3124 (($ (-583 (-583 |#2|))) NIL T ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-583 (-583 |#2|)) $) NIL T ELT)) (-1708 (((-85)) NIL T ELT)) (-1712 (((-85)) NIL T ELT)) (-1910 (((-3 (-2 (|:| |particular| $) (|:| -2012 (-583 $))) #1#)) NIL (|has| |#2| (-495)) ELT)) (-1704 (((-3 $ #1#)) NIL (|has| |#2| (-495)) ELT)) (-1792 (((-630 |#2|)) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1728 ((|#2| $) NIL T ELT)) (-1790 (((-630 |#2|) $) NIL T ELT) (((-630 |#2|) $ (-1179 $)) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2405 (((-3 $ #1#) $) NIL (|has| |#2| (-495)) ELT)) (-1907 (((-1085 (-857 |#2|))) NIL (|has| |#2| (-312)) ELT)) (-2406 (($ $ (-830)) NIL T ELT)) (-1726 ((|#2| $) NIL T ELT)) (-1706 (((-1085 |#2|) $) NIL (|has| |#2| (-495)) ELT)) (-1794 ((|#2|) NIL T ELT) ((|#2| (-1179 $)) NIL T ELT)) (-1724 (((-1085 |#2|) $) NIL T ELT)) (-1718 (((-85)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1709 (((-85)) NIL T ELT)) (-1711 (((-85)) NIL T ELT)) (-1713 (((-85)) NIL T ELT)) (-3591 (((-3 $ #1#) $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1716 (((-85)) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) 27 T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-583 |#2|)) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) NIL (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1730 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3225 (((-630 |#2|) (-1179 $)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT) (((-630 |#2|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#2|) $ (-1179 $)) 30 T ELT)) (-3973 (($ (-1179 |#2|)) NIL T ELT) (((-1179 |#2|) $) NIL T ELT)) (-1895 (((-583 (-857 |#2|))) NIL T ELT) (((-583 (-857 |#2|)) (-1179 $)) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-1722 (((-85)) NIL T ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 40 T ELT)) (-1707 (((-583 (-1179 |#2|))) NIL (|has| |#2| (-495)) ELT)) (-2437 (($ $ $ $) NIL T ELT)) (-1720 (((-85)) NIL T ELT)) (-2546 (($ (-630 |#2|) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2435 (($ $ $) NIL T ELT)) (-1721 (((-85)) NIL T ELT)) (-1719 (((-85)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1715 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) NIL T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-612 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-361 |#2|)) (-830) (-146)) (T -612))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3249 (((-583 (-1049)) $) 12 T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-613) (-13 (-995) (-10 -8 (-15 -3249 ((-583 (-1049)) $))))) (T -613))
+((-3249 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-613)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-583 |#1|) $) NIL T ELT)) (-3138 (($ $) 62 T ELT)) (-2665 (((-85) $) NIL T ELT)) (-3158 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2319 (((-3 $ #1#) (-739 |#1|)) 28 T ELT)) (-2321 (((-85) (-739 |#1|)) 18 T ELT)) (-2320 (($ (-739 |#1|)) 29 T ELT)) (-2512 (((-85) $ $) 36 T ELT)) (-3834 (((-830) $) 43 T ELT)) (-3139 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3733 (((-583 $) (-739 |#1|)) 20 T ELT)) (-3947 (((-772) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-739 |#1|) $) 47 T ELT) (((-618 |#1|) $) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2318 (((-58 (-583 $)) (-583 |#1|) (-830)) 67 T ELT)) (-2317 (((-583 $) (-583 |#1|) (-830)) 70 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 63 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 46 T ELT)))
+(((-614 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 -2665 ((-85) $)) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3834 ((-830) $)) (-15 -2512 ((-85) $ $)) (-15 -3947 ((-739 |#1|) $)) (-15 -3947 ((-618 |#1|) $)) (-15 -3733 ((-583 $) (-739 |#1|))) (-15 -2321 ((-85) (-739 |#1|))) (-15 -2320 ($ (-739 |#1|))) (-15 -2319 ((-3 $ "failed") (-739 |#1|))) (-15 -3935 ((-583 |#1|) $)) (-15 -2318 ((-58 (-583 $)) (-583 |#1|) (-830))) (-15 -2317 ((-583 $) (-583 |#1|) (-830))))) (-756)) (T -614))
+((-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-3733 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4))) (-5 *1 (-614 *4)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-2319 (*1 *1 *2) (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756)))) (-2318 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))) (-2317 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5))) (-5 *1 (-614 *5)))))
+((-3403 ((|#2| $) 96 T ELT)) (-3798 (($ $) 117 T ELT)) (-3443 (((-85) $ (-694)) 35 T ELT)) (-3800 (($ $) 105 T ELT) (($ $ (-694)) 108 T ELT)) (-3444 (((-85) $) 118 T ELT)) (-3032 (((-583 $) $) 92 T ELT)) (-3028 (((-85) $ $) 88 T ELT)) (-3720 (((-85) $ (-694)) 33 T ELT)) (-2200 (((-484) $) 62 T ELT)) (-2201 (((-484) $) 61 T ELT)) (-3717 (((-85) $ (-694)) 31 T ELT)) (-3528 (((-85) $) 94 T ELT)) (-3799 ((|#2| $) 109 T ELT) (($ $ (-694)) 113 T ELT)) (-2304 (($ $ $ (-484)) 79 T ELT) (($ |#2| $ (-484)) 78 T ELT)) (-2203 (((-583 (-484)) $) 60 T ELT)) (-2204 (((-85) (-484) $) 55 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-694)) 104 T ELT)) (-3770 (($ $ (-484)) 121 T ELT)) (-3445 (((-85) $) 120 T ELT)) (-2205 (((-583 |#2|) $) 42 T ELT)) (-3801 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 103 T ELT) (($ $ "rest") 107 T ELT) ((|#2| $ "last") 116 T ELT) (($ $ (-1146 (-484))) 75 T ELT) ((|#2| $ (-484)) 53 T ELT) ((|#2| $ (-484) |#2|) 54 T ELT)) (-3030 (((-484) $ $) 87 T ELT)) (-2305 (($ $ (-1146 (-484))) 74 T ELT) (($ $ (-484)) 68 T ELT)) (-3634 (((-85) $) 83 T ELT)) (-3793 (($ $) 101 T ELT)) (-3794 (((-694) $) 100 T ELT)) (-3795 (($ $) 99 T ELT)) (-3531 (($ (-583 |#2|)) 49 T ELT)) (-2892 (($ $) 122 T ELT)) (-3523 (((-583 $) $) 86 T ELT)) (-3029 (((-85) $ $) 85 T ELT)) (-3057 (((-85) $ $) 20 T ELT)))
+(((-615 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -3770 (|#1| |#1| (-484))) (-15 -3443 ((-85) |#1| (-694))) (-15 -3720 ((-85) |#1| (-694))) (-15 -3717 ((-85) |#1| (-694))) (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3801 (|#2| |#1| (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484))) (-15 -2205 ((-583 |#2|) |#1|)) (-15 -2204 ((-85) (-484) |#1|)) (-15 -2203 ((-583 (-484)) |#1|)) (-15 -2201 ((-484) |#1|)) (-15 -2200 ((-484) |#1|)) (-15 -3531 (|#1| (-583 |#2|))) (-15 -3801 (|#1| |#1| (-1146 (-484)))) (-15 -2305 (|#1| |#1| (-484))) (-15 -2305 (|#1| |#1| (-1146 (-484)))) (-15 -2304 (|#1| |#2| |#1| (-484))) (-15 -2304 (|#1| |#1| |#1| (-484))) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-694) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-694))) (-15 -3801 (|#2| |#1| "last")) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3801 (|#1| |#1| "rest")) (-15 -3800 (|#1| |#1|)) (-15 -3802 (|#1| |#1| (-694))) (-15 -3801 (|#2| |#1| "first")) (-15 -3802 (|#2| |#1|)) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3030 ((-484) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| "value")) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-583 |#1|) |#1|)) (-15 -3523 ((-583 |#1|) |#1|))) (-616 |#2|) (-1129)) (T -615))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3796 ((|#1| $) 62 T ELT)) (-3798 (($ $) 64 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 99 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-484)) 49 (|has| $ (-1035 |#1|)) ELT)) (-3443 (((-85) $ (-694)) 82 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 53 (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) 51 (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 116 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-484) |#1|) 88 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 103 T ELT)) (-3797 ((|#1| $) 63 T ELT)) (-3725 (($) 6 T CONST)) (-2323 (($ $) 124 T ELT)) (-3800 (($ $) 70 T ELT) (($ $ (-694)) 68 T ELT)) (-1353 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 104 T ELT)) (-1576 ((|#1| $ (-484) |#1|) 87 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 89 T ELT)) (-3444 (((-85) $) 85 T ELT)) (-2322 (((-694) $) 123 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 108 T ELT)) (-3720 (((-85) $ (-694)) 83 T ELT)) (-2200 (((-484) $) 97 (|has| (-484) (-756)) ELT)) (-2201 (((-484) $) 96 (|has| (-484) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3717 (((-85) $ (-694)) 84 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-2325 (($ $) 126 T ELT)) (-2326 (((-85) $) 127 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) 67 T ELT) (($ $ (-694)) 65 T ELT)) (-2304 (($ $ $ (-484)) 115 T ELT) (($ |#1| $ (-484)) 114 T ELT)) (-2203 (((-583 (-484)) $) 94 T ELT)) (-2204 (((-85) (-484) $) 93 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-2324 ((|#1| $) 125 T ELT)) (-3802 ((|#1| $) 73 T ELT) (($ $ (-694)) 71 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2199 (($ $ |#1|) 98 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-484)) 122 T ELT)) (-3445 (((-85) $) 86 T ELT)) (-2327 (((-85) $) 128 T ELT)) (-2328 (((-85) $) 129 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 92 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1146 (-484))) 107 T ELT) ((|#1| $ (-484)) 91 T ELT) ((|#1| $ (-484) |#1|) 90 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-2305 (($ $ (-1146 (-484))) 113 T ELT) (($ $ (-484)) 112 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3793 (($ $) 59 T ELT)) (-3791 (($ $) 56 (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) 60 T ELT)) (-3795 (($ $) 61 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 100 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 106 T ELT)) (-3792 (($ $ $) 58 (|has| $ (-1035 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1035 |#1|)) ELT)) (-3803 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-583 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-2892 (($ $) 121 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-616 |#1|) (-113) (-1129)) (T -616))
+((-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-3711 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-2325 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2323 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))) (-2322 (*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1129)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))))
+(-13 (-1064 |t#1|) (-10 -8 (-15 -3407 ($ (-1 (-85) |t#1|) $)) (-15 -3711 ($ (-1 (-85) |t#1|) $)) (-15 -2328 ((-85) $)) (-15 -2327 ((-85) $)) (-15 -2326 ((-85) $)) (-15 -2325 ($ $)) (-15 -2324 (|t#1| $)) (-15 -2323 ($ $)) (-15 -2322 ((-694) $)) (-15 -3770 ($ $ (-484))) (-15 -2892 ($ $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1064 |#1|) . T) ((-1129) . T) ((-1168 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3179 (((-423) $) 15 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-617) (-13 (-995) (-10 -8 (-15 -3179 ((-423) $)) (-15 -3234 ((-1049) $))))) (T -617))
+((-3179 (*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-617)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-617)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-583 |#1|) $) 15 T ELT)) (-3138 (($ $) 19 T ELT)) (-2665 (((-85) $) 20 T ELT)) (-3158 (((-3 |#1| "failed") $) 23 T ELT)) (-3157 ((|#1| $) 21 T ELT)) (-3800 (($ $) 37 T ELT)) (-3937 (($ $) 25 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2512 (((-85) $ $) 46 T ELT)) (-3834 (((-830) $) 40 T ELT)) (-3139 (($ $) 18 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 ((|#1| $) 36 T ELT)) (-3947 (((-772) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-739 |#1|) $) 28 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 13 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
+(((-618 |#1|) (-13 (-756) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3947 ((-739 |#1|) $)) (-15 -3802 (|#1| $)) (-15 -3139 ($ $)) (-15 -3834 ((-830) $)) (-15 -2512 ((-85) $ $)) (-15 -3937 ($ $)) (-15 -3800 ($ $)) (-15 -2665 ((-85) $)) (-15 -3138 ($ $)) (-15 -3935 ((-583 |#1|) $)))) (-756)) (T -618))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3802 (*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3139 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756)))) (-3138 (*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756)))))
+((-2337 ((|#1| (-1 |#1| (-694) |#1|) (-694) |#1|) 11 T ELT)) (-2329 ((|#1| (-1 |#1| |#1|) (-694) |#1|) 9 T ELT)))
+(((-619 |#1|) (-10 -7 (-15 -2329 (|#1| (-1 |#1| |#1|) (-694) |#1|)) (-15 -2337 (|#1| (-1 |#1| (-694) |#1|) (-694) |#1|))) (-1013)) (T -619))
+((-2337 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))) (-2329 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))))
+((-2331 ((|#2| |#1| |#2|) 9 T ELT)) (-2330 ((|#1| |#1| |#2|) 8 T ELT)))
+(((-620 |#1| |#2|) (-10 -7 (-15 -2330 (|#1| |#1| |#2|)) (-15 -2331 (|#2| |#1| |#2|))) (-1013) (-1013)) (T -620))
+((-2331 (*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+((-2332 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
+(((-621 |#1| |#2| |#3|) (-10 -7 (-15 -2332 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1013) (-1013) (-1013)) (T -621))
+((-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 22 T ELT)) (-3318 (((-583 (-1130)) $) 20 T ELT)) (-2333 (($ (-583 (-1130)) (-1130)) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 30 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT) (((-1130) $) 23 T ELT) (($ (-1028)) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-622) (-13 (-995) (-552 (-1130)) (-10 -8 (-15 -3947 ($ (-1028))) (-15 -2333 ($ (-583 (-1130)) (-1130))) (-15 -3318 ((-583 (-1130)) $)) (-15 -3319 ((-1130) $))))) (T -622))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622)))) (-2333 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1130))) (-5 *3 (-1130)) (-5 *1 (-622)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-622)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-622)))))
+((-2337 (((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)) 26 T ELT)) (-2334 (((-1 |#1|) |#1|) 8 T ELT)) (-2336 ((|#1| |#1|) 19 T ELT)) (-2335 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3947 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-694)) 23 T ELT)))
+(((-623 |#1|) (-10 -7 (-15 -2334 ((-1 |#1|) |#1|)) (-15 -3947 ((-1 |#1|) |#1|)) (-15 -2335 (|#1| (-1 |#1| |#1|))) (-15 -2335 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-484))) (-15 -2336 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-694))) (-15 -2337 ((-1 |#1| (-694) |#1|) (-1 |#1| (-694) |#1|)))) (-1013)) (T -623))
+((-2337 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4)))) (-2336 (*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-2335 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5)) (-5 *1 (-623 *5)) (-4 *5 (-1013)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))) (-2334 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))))
+((-2340 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2339 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3953 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2338 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
+(((-624 |#1| |#2|) (-10 -7 (-15 -2338 ((-1 |#2| |#1|) |#2|)) (-15 -2339 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3953 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2340 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1013) (-1013)) (T -624))
+((-2340 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5)) (-4 *4 (-1013)))) (-2339 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5)) (-5 *1 (-624 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013)) (-4 *3 (-1013)))))
+((-2345 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2341 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2342 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2343 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2344 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
+(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2341 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2342 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2343 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2344 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2345 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1013) (-1013) (-1013)) (T -625))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7)))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))) (-2341 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
+((-3839 (($ (-694) (-694)) 42 T ELT)) (-2350 (($ $ $) 73 T ELT)) (-3415 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3121 (((-85) $) 36 T ELT)) (-2349 (($ $ (-484) (-484)) 84 T ELT)) (-2348 (($ $ (-484) (-484)) 85 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 90 T ELT)) (-2352 (($ $) 71 T ELT)) (-3123 (((-85) $) 15 T ELT)) (-2346 (($ $ (-484) (-484) $) 91 T ELT)) (-3789 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 89 T ELT)) (-3334 (($ (-694) |#2|) 55 T ELT)) (-3124 (($ (-583 (-583 |#2|))) 51 T ELT) (($ (-694) (-694) (-1 |#2| (-484) (-484))) 53 T ELT)) (-3595 (((-583 (-583 |#2|)) $) 80 T ELT)) (-2351 (($ $ $) 72 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3801 ((|#2| $ (-484) (-484)) NIL T ELT) ((|#2| $ (-484) (-484) |#2|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) 88 T ELT)) (-3333 (($ (-583 |#2|)) 56 T ELT) (($ (-583 $)) 58 T ELT)) (-3122 (((-85) $) 28 T ELT)) (-3947 (($ |#4|) 63 T ELT) (((-772) $) NIL T ELT)) (-3120 (((-85) $) 38 T ELT)) (-3950 (($ $ |#2|) 124 T ELT)) (-3838 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-3840 (($ $ $) 93 T ELT)) (** (($ $ (-694)) 111 T ELT) (($ $ (-484)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-484) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
+(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 ((-772) |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3950 (|#1| |#1| |#2|)) (-15 -3467 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-694))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| (-484) (-484) |#1|)) (-15 -2347 (|#1| |#1| (-484) (-484) (-484) (-484))) (-15 -2348 (|#1| |#1| (-484) (-484))) (-15 -2349 (|#1| |#1| (-484) (-484))) (-15 -3789 (|#1| |#1| (-583 (-484)) (-583 (-484)) |#1|)) (-15 -3801 (|#1| |#1| (-583 (-484)) (-583 (-484)))) (-15 -3595 ((-583 (-583 |#2|)) |#1|)) (-15 -2350 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3415 (|#1| |#1|)) (-15 -3415 (|#1| |#3|)) (-15 -3947 (|#1| |#4|)) (-15 -3333 (|#1| (-583 |#1|))) (-15 -3333 (|#1| (-583 |#2|))) (-15 -3334 (|#1| (-694) |#2|)) (-15 -3124 (|#1| (-694) (-694) (-1 |#2| (-484) (-484)))) (-15 -3124 (|#1| (-583 (-583 |#2|)))) (-15 -3839 (|#1| (-694) (-694))) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484) (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484) (-484)))) (-627 |#2| |#3| |#4|) (-961) (-324 |#2|) (-324 |#2|)) (T -626))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3839 (($ (-694) (-694)) 106 T ELT)) (-2350 (($ $ $) 95 T ELT)) (-3415 (($ |#2|) 99 T ELT) (($ $) 98 T ELT)) (-3121 (((-85) $) 108 T ELT)) (-2349 (($ $ (-484) (-484)) 91 T ELT)) (-2348 (($ $ (-484) (-484)) 90 T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) 89 T ELT)) (-2352 (($ $) 97 T ELT)) (-3123 (((-85) $) 110 T ELT)) (-2346 (($ $ (-484) (-484) $) 88 T ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) 51 T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) 92 T ELT)) (-1257 (($ $ (-484) |#2|) 49 T ELT)) (-1256 (($ $ (-484) |#3|) 48 T ELT)) (-3334 (($ (-694) |#1|) 103 T ELT)) (-3725 (($) 6 T CONST)) (-3110 (($ $) 75 (|has| |#1| (-258)) ELT)) (-3112 ((|#2| $ (-484)) 53 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 38 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 37 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 34 (|has| |#1| (-72)) ELT)) (-3109 (((-694) $) 74 (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 50 T ELT)) (-3113 ((|#1| $ (-484) (-484)) 55 T ELT)) (-3108 (((-694) $) 73 (|has| |#1| (-495)) ELT)) (-3107 (((-583 |#3|) $) 72 (|has| |#1| (-495)) ELT)) (-3115 (((-694) $) 58 T ELT)) (-3615 (($ (-694) (-694) |#1|) 64 T ELT)) (-3114 (((-694) $) 57 T ELT)) (-3328 ((|#1| $) 70 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-484) $) 62 T ELT)) (-3117 (((-484) $) 60 T ELT)) (-2609 (((-583 |#1|) $) 39 T ELT)) (-3246 (((-85) |#1| $) 35 (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) 61 T ELT)) (-3116 (((-484) $) 59 T ELT)) (-3124 (($ (-583 (-583 |#1|))) 105 T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) 104 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 47 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 46 T ELT)) (-3595 (((-583 (-583 |#1|)) $) 94 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3591 (((-3 $ "failed") $) 69 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) 96 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) 63 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 41 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) (-484)) 56 T ELT) ((|#1| $ (-484) (-484) |#1|) 54 T ELT) (($ $ (-583 (-484)) (-583 (-484))) 93 T ELT)) (-3333 (($ (-583 |#1|)) 102 T ELT) (($ (-583 $)) 101 T ELT)) (-3122 (((-85) $) 109 T ELT)) (-3329 ((|#1| $) 71 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) 40 T ELT) (((-694) |#1| $) 36 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 9 T ELT)) (-3111 ((|#3| $ (-484)) 52 T ELT)) (-3947 (($ |#3|) 100 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 42 T ELT)) (-3120 (((-85) $) 107 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) 76 (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) 86 T ELT) (($ $) 85 T ELT)) (-3840 (($ $ $) 87 T ELT)) (** (($ $ (-694)) 78 T ELT) (($ $ (-484)) 68 (|has| |#1| (-312)) ELT)) (* (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ (-484) $) 81 T ELT) ((|#3| $ |#3|) 80 T ELT) ((|#2| |#2| $) 79 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-627 |#1| |#2| |#3|) (-113) (-961) (-324 |t#1|) (-324 |t#1|)) (T -627))
+((-3123 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-85)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3124 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961)) (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (-3415 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (-3415 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-2350 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-583 (-583 *3))))) (-3801 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3789 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2349 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2348 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2347 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-2346 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *2 (-324 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-324 *3)) (-4 *4 (-324 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-495)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-961)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-961)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2)) (-4 *2 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-4 *3 (-312)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3839 ($ (-694) (-694))) (-15 -3124 ($ (-583 (-583 |t#1|)))) (-15 -3124 ($ (-694) (-694) (-1 |t#1| (-484) (-484)))) (-15 -3334 ($ (-694) |t#1|)) (-15 -3333 ($ (-583 |t#1|))) (-15 -3333 ($ (-583 $))) (-15 -3947 ($ |t#3|)) (-15 -3415 ($ |t#2|)) (-15 -3415 ($ $)) (-15 -2352 ($ $)) (-15 -2351 ($ $ $)) (-15 -2350 ($ $ $)) (-15 -3595 ((-583 (-583 |t#1|)) $)) (-15 -3801 ($ $ (-583 (-484)) (-583 (-484)))) (-15 -3789 ($ $ (-583 (-484)) (-583 (-484)) $)) (-15 -2349 ($ $ (-484) (-484))) (-15 -2348 ($ $ (-484) (-484))) (-15 -2347 ($ $ (-484) (-484) (-484) (-484))) (-15 -2346 ($ $ (-484) (-484) $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-484) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-694))) (IF (|has| |t#1| (-495)) (-15 -3467 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -3950 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3109 ((-694) $)) (-15 -3108 ((-694) $)) (-15 -3107 ((-583 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-3998 "*"))) (PROGN (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-57 |#1| |#2| |#3|) . T) ((-1129) . T))
+((-3843 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3959 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
+(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3959 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3959 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -3843 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|) (-961) (-324 |#5|) (-324 |#5|) (-627 |#5| |#6| |#7|)) (T -628))
+((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7)) (-4 *10 (-627 *2 *8 *9)))) (-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7)) (-4 *9 (-324 *8)) (-4 *10 (-324 *8)))))
+((-3110 ((|#4| |#4|) 90 (|has| |#1| (-258)) ELT)) (-3109 (((-694) |#4|) 92 (|has| |#1| (-495)) ELT)) (-3108 (((-694) |#4|) 94 (|has| |#1| (-495)) ELT)) (-3107 (((-583 |#3|) |#4|) 101 (|has| |#1| (-495)) ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 124 (|has| |#1| (-258)) ELT)) (-3328 ((|#1| |#4|) 52 T ELT)) (-2357 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-495)) ELT)) (-3591 (((-3 |#4| #1#) |#4|) 98 (|has| |#1| (-312)) ELT)) (-2356 ((|#4| |#4|) 76 (|has| |#1| (-495)) ELT)) (-2354 ((|#4| |#4| |#1| (-484) (-484)) 60 T ELT)) (-2353 ((|#4| |#4| (-484) (-484)) 55 T ELT)) (-2355 ((|#4| |#4| |#1| (-484) (-484)) 65 T ELT)) (-3329 ((|#1| |#4|) 96 T ELT)) (-2521 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 80 (|has| |#1| (-495)) ELT)))
+(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3329 (|#1| |#4|)) (-15 -3328 (|#1| |#4|)) (-15 -2353 (|#4| |#4| (-484) (-484))) (-15 -2354 (|#4| |#4| |#1| (-484) (-484))) (-15 -2355 (|#4| |#4| |#1| (-484) (-484))) (IF (|has| |#1| (-495)) (PROGN (-15 -3109 ((-694) |#4|)) (-15 -3108 ((-694) |#4|)) (-15 -3107 ((-583 |#3|) |#4|)) (-15 -2356 (|#4| |#4|)) (-15 -2357 ((-3 |#4| #1="failed") |#4|)) (-15 -2521 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-258)) (PROGN (-15 -3110 (|#4| |#4|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-146) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -629))
+((-3591 (*1 *2 *2) (|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2380 (*1 *2 *3 *3) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-629 *3 *4 *5 *6)) (-4 *6 (-627 *3 *4 *5)))) (-3110 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2357 (*1 *2 *2) (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3107 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3108 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-2355 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2354 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3)) (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))) (-2353 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146)) (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-694) (-694)) 63 T ELT)) (-2350 (($ $ $) NIL T ELT)) (-3415 (($ (-1179 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2349 (($ $ (-484) (-484)) 21 T ELT)) (-2348 (($ $ (-484) (-484)) NIL T ELT)) (-2347 (($ $ (-484) (-484) (-484) (-484)) NIL T ELT)) (-2352 (($ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-2346 (($ $ (-484) (-484) $) NIL T ELT)) (-3789 ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484)) $) NIL T ELT)) (-1257 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-1256 (($ $ (-484) (-1179 |#1|)) NIL T ELT)) (-3334 (($ (-694) |#1|) 37 T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#1| (-258)) ELT)) (-3112 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT)) (-3109 (((-694) $) 48 (|has| |#1| (-495)) ELT)) (-1576 ((|#1| $ (-484) (-484) |#1|) 68 T ELT)) (-3113 ((|#1| $ (-484) (-484)) NIL T ELT)) (-3108 (((-694) $) 50 (|has| |#1| (-495)) ELT)) (-3107 (((-583 (-1179 |#1|)) $) 53 (|has| |#1| (-495)) ELT)) (-3115 (((-694) $) 31 T ELT)) (-3615 (($ (-694) (-694) |#1|) 27 T ELT)) (-3114 (((-694) $) 32 T ELT)) (-3328 ((|#1| $) 44 (|has| |#1| (-6 (-3998 #1="*"))) ELT)) (-3119 (((-484) $) 9 T ELT)) (-3117 (((-484) $) 10 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3118 (((-484) $) 13 T ELT)) (-3116 (((-484) $) 64 T ELT)) (-3124 (($ (-583 (-583 |#1|))) NIL T ELT) (($ (-694) (-694) (-1 |#1| (-484) (-484))) NIL T ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3595 (((-583 (-583 |#1|)) $) 75 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3591 (((-3 $ #2="failed") $) 57 (|has| |#1| (-312)) ELT)) (-2351 (($ $ $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-2199 (($ $ |#1|) NIL T ELT)) (-3467 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) (-484)) NIL T ELT) ((|#1| $ (-484) (-484) |#1|) NIL T ELT) (($ $ (-583 (-484)) (-583 (-484))) NIL T ELT)) (-3333 (($ (-583 |#1|)) NIL T ELT) (($ (-583 $)) NIL T ELT) (($ (-1179 |#1|)) 69 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3329 ((|#1| $) 42 (|has| |#1| (-6 (-3998 #1#))) ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) NIL T ELT) (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) 79 (|has| |#1| (-553 (-473))) ELT)) (-3111 (((-1179 |#1|) $ (-484)) NIL T ELT)) (-3947 (($ (-1179 |#1|)) NIL T ELT) (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) 38 T ELT) (($ $ (-484)) 61 (|has| |#1| (-312)) ELT)) (* (($ $ $) 23 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-484) $) NIL T ELT) (((-1179 |#1|) $ (-1179 |#1|)) NIL T ELT) (((-1179 |#1|) (-1179 |#1|) $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-630 |#1|) (-13 (-627 |#1| (-1179 |#1|) (-1179 |#1|)) (-10 -8 (-15 -3333 ($ (-1179 |#1|))) (IF (|has| |#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3591 ((-3 $ "failed") $)) |%noBranch|))) (-961)) (T -630))
+((-3591 (*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3)))))
+((-2363 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 37 T ELT)) (-2362 (((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|) 32 T ELT)) (-2364 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694)) 43 T ELT)) (-2359 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 25 T ELT)) (-2360 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|)) 29 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 27 T ELT)) (-2361 (((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|)) 31 T ELT)) (-2358 (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 23 T ELT)) (** (((-630 |#1|) (-630 |#1|) (-694)) 46 T ELT)))
+(((-631 |#1|) (-10 -7 (-15 -2358 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2359 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2360 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2361 ((-630 |#1|) (-630 |#1|) |#1| (-630 |#1|))) (-15 -2362 ((-630 |#1|) (-630 |#1|) (-630 |#1|) |#1|)) (-15 -2363 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -2364 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-630 |#1|) (-694))) (-15 ** ((-630 |#1|) (-630 |#1|) (-694)))) (-961)) (T -631))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2364 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))) (-2363 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2362 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2361 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2360 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2359 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))) (-2358 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+((-3158 (((-3 |#1| "failed") $) 18 T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-2365 (($) 7 T CONST)) (-2366 (($ |#1|) 8 T ELT)) (-3947 (($ |#1|) 16 T ELT) (((-772) $) 23 T ELT)) (-3567 (((-85) $ (|[\|\|]| |#1|)) 14 T ELT) (((-85) $ (|[\|\|]| -2365)) 11 T ELT)) (-3573 ((|#1| $) 15 T ELT)))
+(((-632 |#1|) (-13 (-1175) (-950 |#1|) (-552 (-772)) (-10 -8 (-15 -2366 ($ |#1|)) (-15 -3567 ((-85) $ (|[\|\|]| |#1|))) (-15 -3567 ((-85) $ (|[\|\|]| -2365))) (-15 -3573 (|#1| $)) (-15 -2365 ($) -3953))) (-552 (-772))) (T -632))
+((-2366 (*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85)) (-5 *1 (-632 *4)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4)) (-4 *4 (-552 (-772))))) (-3573 (*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))) (-2365 (*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
+((-3742 (((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)) 20 T ELT)) (-3740 ((|#1| (-630 |#2|)) 9 T ELT)) (-3741 (((-630 |#1|) (-630 |#2|)) 18 T ELT)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -3740 (|#1| (-630 |#2|))) (-15 -3741 ((-630 |#1|) (-630 |#2|))) (-15 -3742 ((-2 (|:| |num| (-630 |#1|)) (|:| |den| |#1|)) (-630 |#2|)))) (-495) (-904 |#1|)) (T -633))
+((-3742 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4)) (-5 *1 (-633 *4 *5)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-633 *2 *4)))))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2368 (($ $) 54 T ELT)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT) (($ |#1| $ (-694)) 55 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1730 (-694)))) $) 53 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-634 |#1|) (-113) (-1013)) (T -634))
+((-3610 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2368 (*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1730 (-694))))))))
+(-13 (-193 |t#1|) (-10 -8 (-15 -3610 ($ |t#1| $ (-694))) (-15 -2368 ($ $)) (-15 -2367 ((-583 (-2 (|:| |entry| |t#1|) (|:| -1730 (-694)))) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2371 (((-583 |#1|) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))) (-484)) 66 T ELT)) (-2369 ((|#1| |#1| (-484)) 63 T ELT)) (-3145 ((|#1| |#1| |#1| (-484)) 46 T ELT)) (-3733 (((-583 |#1|) |#1| (-484)) 49 T ELT)) (-2372 ((|#1| |#1| (-484) |#1| (-484)) 40 T ELT)) (-2370 (((-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))) |#1| (-484)) 62 T ELT)))
+(((-635 |#1|) (-10 -7 (-15 -3145 (|#1| |#1| |#1| (-484))) (-15 -2369 (|#1| |#1| (-484))) (-15 -3733 ((-583 |#1|) |#1| (-484))) (-15 -2370 ((-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))) |#1| (-484))) (-15 -2371 ((-583 |#1|) (-583 (-2 (|:| -3733 |#1|) (|:| -3949 (-484)))) (-484))) (-15 -2372 (|#1| |#1| (-484) |#1| (-484)))) (-1155 (-484))) (T -635))
+((-2372 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3733 *5) (|:| -3949 (-484))))) (-5 *4 (-484)) (-4 *5 (-1155 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3733 *3) (|:| -3949 *4)))) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))) (-2369 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))) (-3145 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))))
+((-2376 (((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179))) 17 T ELT)) (-2373 (((-1047 (-179)) (-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 53 T ELT) (((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 55 T ELT) (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 57 T ELT)) (-2375 (((-1047 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221))) NIL T ELT)) (-2374 (((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221))) 58 T ELT)))
+(((-636) (-10 -7 (-15 -2373 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined") (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2373 ((-1047 (-179)) (-1047 (-179)) (-1 (-854 (-179)) (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2374 ((-1047 (-179)) (-1 (-179) (-179) (-179)) (-3 (-1 (-179) (-179) (-179) (-179)) #1#) (-1001 (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2375 ((-1047 (-179)) (-265 (-484)) (-265 (-484)) (-265 (-484)) (-1 (-179) (-179)) (-1001 (-179)) (-583 (-221)))) (-15 -2376 ((-1 (-854 (-179)) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179)) (-1 (-179) (-179) (-179) (-179)))))) (T -636))
+((-2376 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1 (-179) (-179) (-179) (-179))) (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))) (-2375 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2374 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1="undefined")) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))) (-2373 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) #1#)) (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))))
+((-3733 (((-348 (-1085 |#4|)) (-1085 |#4|)) 87 T ELT) (((-348 |#4|) |#4|) 270 T ELT)))
+(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|)) (-15 -3733 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-756) (-717) (-299) (-861 |#3| |#2| |#1|)) (T -637))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
+((-2379 (((-630 |#1|) (-630 |#1|) |#1| |#1|) 85 T ELT)) (-3110 (((-630 |#1|) (-630 |#1|) |#1|) 66 T ELT)) (-2378 (((-630 |#1|) (-630 |#1|) |#1|) 86 T ELT)) (-2377 (((-630 |#1|) (-630 |#1|)) 67 T ELT)) (-2380 (((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 84 T ELT)))
+(((-638 |#1|) (-10 -7 (-15 -2377 ((-630 |#1|) (-630 |#1|))) (-15 -3110 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2378 ((-630 |#1|) (-630 |#1|) |#1|)) (-15 -2379 ((-630 |#1|) (-630 |#1|) |#1| |#1|)) (-15 -2380 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|))) (-258)) (T -638))
+((-2380 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-638 *3)) (-4 *3 (-258)))) (-2379 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2378 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-3110 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
+((-2386 (((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)) 19 T ELT)) (-2381 (((-1 |#4| |#2| |#3|) (-1090)) 12 T ELT)))
+(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2381 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -2386 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) (-553 (-473)) (-1129) (-1129) (-1129)) (T -639))
+((-2386 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7)) (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7)) (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))))
+((-2382 (((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)) 43 T ELT) (((-1 (-179) (-179)) |#1| (-1090)) 48 T ELT)))
+(((-640 |#1|) (-10 -7 (-15 -2382 ((-1 (-179) (-179)) |#1| (-1090))) (-15 -2382 ((-1 (-179) (-179) (-179)) |#1| (-1090) (-1090)))) (-553 (-473))) (T -640))
+((-2382 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))) (-2382 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3)) (-4 *3 (-553 (-473))))))
+((-2383 (((-1090) |#1| (-1090) (-583 (-1090))) 10 T ELT) (((-1090) |#1| (-1090) (-1090) (-1090)) 13 T ELT) (((-1090) |#1| (-1090) (-1090)) 12 T ELT) (((-1090) |#1| (-1090)) 11 T ELT)))
+(((-641 |#1|) (-10 -7 (-15 -2383 ((-1090) |#1| (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -2383 ((-1090) |#1| (-1090) (-583 (-1090))))) (-553 (-473))) (T -641))
+((-2383 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1090))) (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))) (-2383 (*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473))))))
+((-2384 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
+(((-642 |#1| |#2|) (-10 -7 (-15 -2384 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1129) (-1129)) (T -642))
+((-2384 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4)) (-4 *3 (-1129)) (-4 *4 (-1129)))))
+((-2385 (((-1 |#3| |#2|) (-1090)) 11 T ELT)) (-2386 (((-1 |#3| |#2|) |#1| (-1090)) 21 T ELT)))
+(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2385 ((-1 |#3| |#2|) (-1090))) (-15 -2386 ((-1 |#3| |#2|) |#1| (-1090)))) (-553 (-473)) (-1129) (-1129)) (T -643))
+((-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6)) (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6)) (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
+((-2389 (((-3 (-583 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1179 (-583 (-1085 |#3|))) |#3|) 92 T ELT)) (-2388 (((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|) 110 T ELT)) (-2387 (((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1085 |#4|)) (-1179 (-583 (-1085 |#3|))) |#3|) 48 T ELT)))
+(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2387 ((-3 (-583 (-1085 |#4|)) #1="failed") (-1085 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-694)) (-583 (-1085 |#4|)) (-1179 (-583 (-1085 |#3|))) |#3|)) (-15 -2388 ((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-694)) |#3|)) (-15 -2389 ((-3 (-583 (-1085 |#4|)) #1#) (-1085 |#4|) (-583 |#2|) (-583 (-1085 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| |#4|)))) (-583 (-694)) (-1179 (-583 (-1085 |#3|))) |#3|))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -644))
+((-2389 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1085 *13))) (-5 *3 (-1085 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-694))) (-5 *9 (-1179 (-583 (-1085 *10)))) (-4 *12 (-756)) (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717)) (-5 *1 (-644 *11 *12 *10 *13)))) (-2388 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1085 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258)) (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1085 *12))) (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))) (-2387 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1085 *11))) (-5 *3 (-1085 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694))) (-5 *7 (-1179 (-583 (-1085 *8)))) (-4 *10 (-756)) (-4 *8 (-258)) (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 56 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-694)) 54 T ELT)) (-2821 (((-694) $) 58 T ELT)) (-3175 ((|#1| $) 57 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3949 (((-694) $) 59 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ (-694)) 55 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 61 T ELT) (($ |#1| $) 60 T ELT)))
+(((-645 |#1|) (-113) (-961)) (T -645))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-82 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3949 ((-694) $)) (-15 -2821 ((-694) $)) (-15 -3175 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-694))) (-15 -2894 ($ |t#1| (-694)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3959 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
+(((-646 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 (|#6| (-1 |#4| |#1|) |#3|))) (-495) (-1155 |#1|) (-1155 (-350 |#2|)) (-495) (-1155 |#4|) (-1155 (-350 |#5|))) (T -646))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1155 *5)) (-4 *2 (-1155 (-350 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2390 (((-1073) (-772)) 36 T ELT)) (-3618 (((-1185) (-1073)) 29 T ELT)) (-2392 (((-1073) (-772)) 26 T ELT)) (-2391 (((-1073) (-772)) 27 T ELT)) (-3947 (((-772) $) NIL T ELT) (((-1073) (-772)) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-647) (-13 (-1013) (-10 -7 (-15 -3947 ((-1073) (-772))) (-15 -2392 ((-1073) (-772))) (-15 -2391 ((-1073) (-772))) (-15 -2390 ((-1073) (-772))) (-15 -3618 ((-1185) (-1073)))))) (T -647))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2392 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))) (-3618 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-647)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3843 (($ |#1| |#2|) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2615 ((|#2| $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-312) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -648))
+((-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-3768 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3766 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-694)) 55 (|has| |#1| (-320)) ELT)) (-3762 (($ $ (-694)) NIL T ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-2399 ((|#2| |#2|) 51 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3757 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) NIL (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 72 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3843 (($ |#2|) 49 T ELT)) (-3468 (((-3 $ #1#) $) 98 T ELT)) (-2995 (($) 59 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-2395 (((-869 $)) 89 T ELT)) (-1624 (($ $ |#1| (-694) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3778 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) 86 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2615 ((|#2|) 52 T ELT)) (-2821 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-994) #1#) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 48 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 35 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1066)) CONST)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2393 (($ $) 88 (|has| |#1| (-299)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 97 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3765 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 99 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3949 (((-694) $) 39 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-2394 (((-869 $)) 43 T ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-772) $) 69 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 66 T ELT) (($ (-994)) NIL T ELT) (($ |#2|) 76 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) 71 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 26 T CONST)) (-2398 (((-1179 |#1|) $) 84 T ELT)) (-2397 (($ (-1179 |#1|)) 58 T ELT)) (-2667 (($) 9 T CONST)) (-2670 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-2396 (((-1179 |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 77 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 80 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 40 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 93 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 65 T ELT) (($ $ $) 83 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 63 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-649 |#1| |#2|) (-13 (-1155 |#1|) (-555 |#2|) (-10 -8 (-15 -2399 (|#2| |#2|)) (-15 -2615 (|#2|)) (-15 -3843 ($ |#2|)) (-15 -3080 (|#2| $)) (-15 -2398 ((-1179 |#1|) $)) (-15 -2397 ($ (-1179 |#1|))) (-15 -2396 ((-1179 |#1|) $)) (-15 -2395 ((-869 $))) (-15 -2394 ((-869 $))) (IF (|has| |#1| (-299)) (-15 -2393 ($ $)) |%noBranch|) (IF (|has| |#1| (-320)) (-6 (-320)) |%noBranch|))) (-961) (-1155 |#1|)) (T -649))
+((-2399 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))) (-2615 (*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961)))) (-2398 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2396 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2395 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2394 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4)) (-4 *4 (-1155 *3)))) (-2393 (*1 *1 *1) (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 ((|#1| $) 13 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2401 ((|#2| $) 12 T ELT)) (-3531 (($ |#1| |#2|) 16 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) 15 T ELT) (((-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 11 T ELT)))
+(((-650 |#1| |#2| |#3|) (-13 (-756) (-430 (-2 (|:| -2400 |#1|) (|:| -2401 |#2|))) (-10 -8 (-15 -2401 (|#2| $)) (-15 -2400 (|#1| $)) (-15 -3531 ($ |#1| |#2|)))) (-756) (-1013) (-1 (-85) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)) (-2 (|:| -2400 |#1|) (|:| -2401 |#2|)))) (T -650))
+((-2401 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2)) (-2 (|:| -2400 *3) (|:| -2401 *2)))))) (-2400 (*1 *2 *1) (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013)) (-14 *4 (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3)) (-2 (|:| -2400 *2) (|:| -2401 *3)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 66 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-86) #1#) $) 107 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) 39 T ELT)) (-3468 (((-3 $ #1#) $) 102 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2517 ((|#2| (-86) |#2|) 93 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2518 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2519 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3801 ((|#2| $ |#2|) 33 T ELT)) (-2520 ((|#1| |#1|) 112 (|has| |#1| (-146)) ELT)) (-3947 (((-772) $) 73 T ELT) (($ (-484)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-86)) 23 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 37 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) 111 (|has| |#1| (-146)) ELT) (($ $ $) 115 (|has| |#1| (-146)) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 83 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) 64 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-146)) ELT) (($ $ |#1|) 109 (|has| |#1| (-146)) ELT)))
+(((-651 |#1| |#2|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#2| |#2|))) (-15 -2518 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2517 (|#2| (-86) |#2|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-961) (-590 |#1|)) (T -651))
+((-2521 (*1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2520 (*1 *2 *2) (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5)) (-4 *5 (-590 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4)) (-4 *4 (-590 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 33 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#1| |#2|) 25 T ELT)) (-3468 (((-3 $ #1#) $) 51 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 35 T ELT)) (-2615 ((|#2| $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 52 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2402 (((-3 $ #1#) $ $) 50 T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-484)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3127 (((-694)) 28 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 16 T CONST)) (-2667 (($) 30 T CONST)) (-3057 (((-85) $ $) 41 T ELT)) (-3838 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-3840 (($ $ $) 43 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 21 T ELT) (($ $ $) 20 T ELT)))
+(((-652 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -2615 (|#2| $)) (-15 -3947 (|#1| $)) (-15 -3843 ($ |#1| |#2|)) (-15 -2402 ((-3 $ #1="failed") $ $)) (-15 -3468 ((-3 $ #1#) $)) (-15 -2485 ($ $)))) (-146) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -652))
+((-3468 (*1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-3843 (*1 *1 *2 *3) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2402 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2485 (*1 *1 *1) (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))))
+((* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
+(((-653 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-654 |#2|) (-146)) (T -653))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-654 |#1|) (-113) (-146)) (T -654))
+NIL
+(-13 (-82 |t#1| |t#1|) (-582 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2442 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-3848 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2403 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 16 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3769 ((|#1| $ |#1|) 24 T ELT) (((-743 |#1|) $ (-743 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-3947 (((-772) $) 39 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 9 T CONST)) (-3057 (((-85) $ $) 48 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
+(((-655 |#1|) (-13 (-413) (-10 -8 (-15 -2403 ($ |#1| |#1| |#1| |#1|)) (-15 -2442 ($ |#1|)) (-15 -3848 ($ |#1|)) (-15 -3468 ($)) (-15 -2442 ($ $ |#1|)) (-15 -3848 ($ $ |#1|)) (-15 -3468 ($ $)) (-15 -3769 (|#1| $ |#1|)) (-15 -3769 ((-743 |#1|) $ (-743 |#1|))))) (-312)) (T -655))
+((-2403 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3468 (*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))) (-3769 (*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3)))))
+((-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 20 T ELT)) (** (($ $ (-830)) 10 T ELT)))
+(((-656 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-657)) (T -656))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2407 (($ $ (-830)) 19 T ELT)) (-2406 (($ $ (-830)) 18 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-657) (-113)) (T -657))
+((* (*1 *1 *1 *1) (-4 *1 (-657))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 -2407 ($ $ (-830))) (-15 -2406 ($ $ (-830))) (-15 ** ($ $ (-830)))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2407 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 18 T ELT)) (-2410 (((-85) $) 10 T ELT)) (-2406 (($ $ (-830)) NIL T ELT) (($ $ (-694)) 19 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 16 T ELT)))
+(((-658 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-694))) (-15 -2406 (|#1| |#1| (-694))) (-15 -2407 (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 ** (|#1| |#1| (-830))) (-15 -2406 (|#1| |#1| (-830))) (-15 -2407 (|#1| |#1| (-830)))) (-659)) (T -658))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2404 (((-3 $ "failed") $) 22 T ELT)) (-2407 (($ $ (-830)) 19 T ELT) (($ $ (-694)) 27 T ELT)) (-3468 (((-3 $ "failed") $) 24 T ELT)) (-2410 (((-85) $) 28 T ELT)) (-2405 (((-3 $ "failed") $) 23 T ELT)) (-2406 (($ $ (-830)) 18 T ELT) (($ $ (-694)) 26 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 25 T ELT)) (* (($ $ $) 20 T ELT)))
+(((-659) (-113)) (T -659))
+((-2667 (*1 *1) (-4 *1 (-659))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-2406 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2405 (*1 *1 *1) (|partial| -4 *1 (-659))) (-2404 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-657) (-10 -8 (-15 -2667 ($) -3953) (-15 -2410 ((-85) $)) (-15 -2407 ($ $ (-694))) (-15 -2406 ($ $ (-694))) (-15 ** ($ $ (-694))) (-15 -3468 ((-3 $ "failed") $)) (-15 -2405 ((-3 $ "failed") $)) (-15 -2404 ((-3 $ "failed") $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-657) . T) ((-1013) . T) ((-1129) . T))
+((-3137 (((-694)) 39 T ELT)) (-3158 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-3843 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-350 |#3|)) 49 T ELT)) (-3468 (((-3 $ #1#) $) 69 T ELT)) (-2995 (($) 43 T ELT)) (-3133 ((|#2| $) 21 T ELT)) (-2409 (($) 18 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2408 (((-630 |#2|) (-1179 $) (-1 |#2| |#2|)) 64 T ELT)) (-3973 (((-1179 |#2|) $) NIL T ELT) (($ (-1179 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2450 ((|#3| $) 36 T ELT)) (-2012 (((-1179 $)) 33 T ELT)))
+(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -2995 (|#1|)) (-15 -3137 ((-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2408 ((-630 |#2|) (-1179 |#1|) (-1 |#2| |#2|))) (-15 -3843 ((-3 |#1| #1="failed") (-350 |#3|))) (-15 -3973 (|#1| |#3|)) (-15 -3843 (|#1| |#3|)) (-15 -2409 (|#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3973 (|#3| |#1|)) (-15 -3973 (|#1| (-1179 |#2|))) (-15 -3973 ((-1179 |#2|) |#1|)) (-15 -2012 ((-1179 |#1|))) (-15 -2450 (|#3| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1|))) (-661 |#2| |#3|) (-146) (-1155 |#2|)) (T -660))
+((-3137 (*1 *2) (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5)) (-4 *3 (-661 *4 *5)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 114 (|has| |#1| (-312)) ELT)) (-2063 (($ $) 115 (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) 117 (|has| |#1| (-312)) ELT)) (-1785 (((-630 |#1|) (-1179 $)) 61 T ELT) (((-630 |#1|)) 77 T ELT)) (-3331 ((|#1| $) 67 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) 167 (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 134 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 135 (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) 125 (|has| |#1| (-312)) ELT)) (-3137 (((-694)) 108 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 194 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 192 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 189 T ELT)) (-3157 (((-484) $) 193 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 191 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 190 T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) 63 T ELT) (($ (-1179 |#1|)) 80 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) 173 (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) 129 (|has| |#1| (-312)) ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) 68 T ELT) (((-630 |#1|) $) 75 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 186 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 185 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 184 T ELT) (((-630 |#1|) (-630 $)) 183 T ELT)) (-3843 (($ |#2|) 178 T ELT) (((-3 $ "failed") (-350 |#2|)) 175 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-830)) 69 T ELT)) (-2995 (($) 111 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) 128 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 123 (|has| |#1| (-312)) ELT)) (-2834 (($) 169 (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) 170 (|has| |#1| (-299)) ELT)) (-1767 (($ $ (-694)) 161 (|has| |#1| (-299)) ELT) (($ $) 160 (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) 136 (|has| |#1| (-312)) ELT)) (-3773 (((-830) $) 172 (|has| |#1| (-299)) ELT) (((-743 (-830)) $) 158 (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 66 T ELT)) (-3446 (((-632 $) $) 162 (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 132 (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 59 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 110 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 176 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 182 T ELT) (((-630 |#1|) (-1179 $)) 181 T ELT)) (-1894 (($ (-583 $)) 121 (|has| |#1| (-312)) ELT) (($ $ $) 120 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 137 (|has| |#1| (-312)) ELT)) (-3447 (($) 163 (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 109 (|has| |#1| (-320)) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2409 (($) 180 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 122 (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) 119 (|has| |#1| (-312)) ELT) (($ $ $) 118 (|has| |#1| (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) 166 (|has| |#1| (-299)) ELT)) (-3733 (((-348 $) $) 133 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 131 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 130 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ $) 113 (|has| |#1| (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 124 (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) 126 (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 127 (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1179 $)) 62 T ELT) ((|#1|) 76 T ELT)) (-1768 (((-694) $) 171 (|has| |#1| (-299)) ELT) (((-3 (-694) "failed") $ $) 159 (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-694)) 156 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 154 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 150 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-694)) 149 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090))) 148 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 146 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 145 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 144 (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) 174 (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 179 T ELT)) (-1674 (($) 168 (|has| |#1| (-299)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 65 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) 64 T ELT) (((-1179 |#1|) $) 82 T ELT) (((-630 |#1|) (-1179 $)) 81 T ELT)) (-3973 (((-1179 |#1|) $) 79 T ELT) (($ (-1179 |#1|)) 78 T ELT) ((|#2| $) 195 T ELT) (($ |#2|) 177 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 165 (|has| |#1| (-299)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ $) 112 (|has| |#1| (-312)) ELT) (($ (-350 (-484))) 107 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (($ $) 164 (|has| |#1| (-299)) ELT) (((-632 $) $) 58 (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 60 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2012 (((-1179 $)) 83 T ELT)) (-2062 (((-85) $ $) 116 (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-694)) 157 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) 155 (OR (-2563 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 153 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090) (-694)) 152 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090))) 151 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1090)) 147 (-2563 (|has| |#1| (-811 (-1090))) (|has| |#1| (-312))) ELT) (($ $ (-1 |#1| |#1|)) 143 (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) 142 (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 141 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 138 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ (-350 (-484)) $) 140 (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) 139 (|has| |#1| (-312)) ELT)))
+(((-661 |#1| |#2|) (-113) (-146) (-1155 |t#1|)) (T -661))
+((-2409 (*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1155 *2)))) (-3186 (*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3843 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-3973 (*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3)))) (-3843 (*1 *1 *2) (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312)) (-4 *3 (-146)) (-4 *1 (-661 *3 *4)))) (-2408 (*1 *2 *3 *4) (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *5)))))
+(-13 (-353 |t#1| |t#2|) (-146) (-553 |t#2|) (-355 |t#1|) (-329 |t#1|) (-10 -8 (-15 -2409 ($)) (-15 -3186 (|t#2|)) (-15 -3843 ($ |t#2|)) (-15 -3973 ($ |t#2|)) (-15 -3080 (|t#2| $)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-312)) (-6 (-184 |t#1|)) (-15 -3843 ((-3 $ "failed") (-350 |t#2|))) (-15 -2408 ((-630 |t#1|) (-1179 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-299)) (-6 (-299)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-38 |#1|) . T) ((-38 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-299)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-299)) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) . T) ((-553 |#2|) . T) ((-186 $) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-184 |#1|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-189) OR (|has| |#1| (-299)) (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (-12 (|has| |#1| (-190)) (|has| |#1| (-312)))) ((-225 |#1|) |has| |#1| (-312)) ((-201) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-246) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-258) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-312) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-345) |has| |#1| (-299)) ((-320) OR (|has| |#1| (-299)) (|has| |#1| (-320))) ((-299) |has| |#1| (-299)) ((-322 |#1| |#2|) . T) ((-353 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-495) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-582 |#1|) . T) ((-582 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-654 |#1|) . T) ((-654 $) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))))) ((-809 (-1090)) -12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090)))) ((-811 (-1090)) OR (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#1| (-809 (-1090))))) ((-832) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) OR (|has| |#1| (-299)) (|has| |#1| (-312))) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-299)) ((-1129) . T) ((-1134) OR (|has| |#1| (-299)) (|has| |#1| (-312))))
+((-3725 (($) 11 T CONST)) (-3468 (((-3 $ "failed") $) 14 T ELT)) (-2410 (((-85) $) 10 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 20 T ELT)))
+(((-662 |#1|) (-10 -7 (-15 -3468 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-694))) (-15 -2410 ((-85) |#1|)) (-15 -3725 (|#1|) -3953) (-15 ** (|#1| |#1| (-830)))) (-663)) (T -662))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-663) (-113)) (T -663))
+((-2667 (*1 *1) (-4 *1 (-663))) (-3725 (*1 *1) (-4 *1 (-663))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694)))) (-3468 (*1 *1 *1) (|partial| -4 *1 (-663))))
+(-13 (-1025) (-10 -8 (-15 -2667 ($) -3953) (-15 -3725 ($) -3953) (-15 -2410 ((-85) $)) (-15 ** ($ $ (-694))) (-15 -3468 ((-3 $ "failed") $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2412 ((|#1| $) 16 T ELT)) (-2411 (($ (-1 |#1| |#1| |#1|) |#1|) 11 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) 14 T ELT)) (-3947 (((-772) $) NIL T ELT) (((-1022 |#1|) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-664 |#1|) (-13 (-665 |#1|) (-1013) (-552 (-1022 |#1|)) (-10 -8 (-15 -2411 ($ (-1 |#1| |#1| |#1|) |#1|)))) (-72)) (T -664))
+((-2411 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
+((-2412 ((|#1| $) 8 T ELT)) (-3801 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-665 |#1|) (-113) (-72)) (T -665))
+((-2412 (*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
+(-13 (-1023 |t#1|) (-10 -8 (-15 -2412 (|t#1| $)) (-6 (|%Rule| |neutrality| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|)) (SEQ (-3057 (|f| |x| (-2412 |f|)) |x|) (|exit| 1 (-3057 (|f| (-2412 |f|) |x|) |x|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1023 |#1|) . T) ((-1129) . T))
+((-2413 (((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3419 (((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2414 ((|#2| (-350 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3436 (((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
+(((-666 |#1| |#2|) (-10 -7 (-15 -3419 ((-2 (|:| -3090 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2413 ((-2 (|:| -3090 (-348 |#2|)) (|:| |special| (-348 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2414 (|#2| (-350 |#2|) (-1 |#2| |#2|))) (-15 -3436 ((-2 (|:| |poly| |#2|) (|:| -3090 (-350 |#2|)) (|:| |special| (-350 |#2|))) (-350 |#2|) (-1 |#2| |#2|)))) (-312) (-1155 |#1|)) (T -666))
+((-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6)))) (-5 *1 (-666 *5 *6)) (-5 *3 (-350 *6)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3)))) (-5 *1 (-666 *5 *3)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3)))))
+((-2415 ((|#7| (-583 |#5|) |#6|) NIL T ELT)) (-3959 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
+(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2415 (|#7| (-583 |#5|) |#6|))) (-756) (-717) (-717) (-961) (-961) (-861 |#4| |#2| |#1|) (-861 |#5| |#3| |#1|)) (T -667))
+((-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
+((-3959 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
+(((-668 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3959 (|#7| (-1 |#2| |#1|) |#6|))) (-756) (-756) (-717) (-717) (-961) (-861 |#5| |#3| |#1|) (-861 |#5| |#4| |#2|)) (T -668))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717)) (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5)))))
+((-3733 (((-348 |#4|) |#4|) 42 T ELT)))
+(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))) (-258) (-861 (-857 |#3|) |#1| |#2|)) (T -669))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090)))))) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-669 *4 *5 *6 *3)) (-4 *3 (-861 (-857 *6) *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-773 |#1|)) $) NIL T ELT)) (-3084 (((-1085 $) $ (-773 |#1|)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-773 |#1|))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-773 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-469 (-773 |#1|)) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-773 |#1|) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#2|) (-773 |#1|)) NIL T ELT) (($ (-1085 $) (-773 |#1|)) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-773 |#1|)) NIL T ELT)) (-2821 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-1625 (($ (-1 (-469 (-773 |#1|)) (-469 (-773 |#1|))) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3083 (((-3 (-773 |#1|) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-773 |#1|)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-773 |#1|) |#2|) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 |#2|)) NIL T ELT) (($ $ (-773 |#1|) $) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 $)) NIL T ELT)) (-3758 (($ $ (-773 |#1|)) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3949 (((-469 (-773 |#1|)) $) NIL T ELT) (((-694) $ (-773 |#1|)) NIL T ELT) (((-583 (-694)) $ (-583 (-773 |#1|))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-773 |#1|) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-773 |#1|) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-773 |#1|)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-773 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-495)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-469 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-773 |#1|)) (-583 (-694))) NIL T ELT) (($ $ (-773 |#1|) (-694)) NIL T ELT) (($ $ (-583 (-773 |#1|))) NIL T ELT) (($ $ (-773 |#1|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-670 |#1| |#2|) (-861 |#2| (-469 (-773 |#1|)) (-773 |#1|)) (-583 (-1090)) (-961)) (T -670))
+NIL
+((-2416 (((-2 (|:| -2484 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|) 14 T ELT)) (-2987 ((|#4| |#4| |#2|) 33 T ELT)) (-2419 ((|#4| (-350 (-857 |#3|)) |#2|) 62 T ELT)) (-2418 ((|#4| (-1085 (-857 |#3|)) |#2|) 74 T ELT)) (-2417 ((|#4| (-1085 |#4|) |#2|) 49 T ELT)) (-2986 ((|#4| |#4| |#2|) 52 T ELT)) (-3733 (((-348 |#4|) |#4|) 40 T ELT)))
+(((-671 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2416 ((-2 (|:| -2484 (-857 |#3|)) (|:| -2058 (-857 |#3|))) |#4|)) (-15 -2986 (|#4| |#4| |#2|)) (-15 -2417 (|#4| (-1085 |#4|) |#2|)) (-15 -2987 (|#4| |#4| |#2|)) (-15 -2418 (|#4| (-1085 (-857 |#3|)) |#2|)) (-15 -2419 (|#4| (-350 (-857 |#3|)) |#2|)) (-15 -3733 ((-348 |#4|) |#4|))) (-717) (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)))) (-495) (-861 (-350 (-857 |#3|)) |#1| |#2|)) (T -671))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *6 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5)))) (-2419 (*1 *2 *3 *4) (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-5 *3 (-350 (-857 *6))) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 (-857 *6))) (-4 *6 (-495)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *6 (-495)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2)) (-4 *2 (-861 (-350 (-857 *5)) *4 *3)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *6 (-495)) (-5 *2 (-2 (|:| -2484 (-857 *6)) (|:| -2058 (-857 *6)))) (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5)))))
+((-3733 (((-348 |#4|) |#4|) 54 T ELT)))
+(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|))) (-717) (-756) (-13 (-258) (-120)) (-861 (-350 |#3|) |#1| |#2|)) (T -672))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-861 (-350 *6) *4 *5)))))
+((-3959 (((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)) 18 T ELT)))
+(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-674 |#2| |#3|) (-1 |#2| |#1|) (-674 |#1| |#3|)))) (-961) (-961) (-663)) (T -673))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3775 (((-583 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $) 37 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694)) 22 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3157 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 99 (|has| |#2| (-756)) ELT)) (-3468 (((-3 $ #1#) $) 83 T ELT)) (-2995 (($) 48 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 70 T ELT)) (-2822 (((-583 $) $) 52 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) 17 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2010 (((-830) $) 43 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-2895 ((|#2| $) 98 (|has| |#2| (-756)) ELT)) (-3175 ((|#1| $) 97 (|has| |#2| (-756)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 35 (-12 (|has| |#2| (-320)) (|has| |#1| (-320))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 96 T ELT) (($ (-484)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-583 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|)))) 11 T ELT)) (-3818 (((-583 |#1|) $) 54 T ELT)) (-3678 ((|#1| $ |#2|) 114 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 44 T CONST)) (-3057 (((-85) $ $) 104 T ELT)) (-3838 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 33 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-674 |#1| |#2|) (-13 (-961) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -2894 ($ |#1| |#2|)) (-15 -3678 (|#1| $ |#2|)) (-15 -3947 ($ (-583 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))))) (-15 -3775 ((-583 (-2 (|:| -3955 |#1|) (|:| -3939 |#2|))) $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (-15 -3938 ((-85) $)) (-15 -3818 ((-583 |#1|) $)) (-15 -2822 ((-583 $) $)) (-15 -2420 ((-694) $)) (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-756)) (PROGN (-15 -2895 (|#2| $)) (-15 -3175 (|#1| $)) (-15 -3960 ($ $))) |%noBranch|))) (-961) (-663)) (T -674))
+((-2894 (*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663)))) (-3678 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-961)) (-4 *4 (-663)) (-5 *1 (-674 *3 *4)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2822 (*1 *2 *1) (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))) (-2895 (*1 *2 *1) (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961)))) (-3175 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2421 (((-583 |#1|) $) 38 T ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3237 (($ $ $) 99 T ELT)) (-3236 (((-85) $ $) 107 T ELT)) (-3240 (($ (-583 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 86 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2368 (($ $) 88 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) 71 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 80 (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-484)) 78 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 81 T ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT) (($ |#1| $ (-484)) 83 T ELT) (($ (-1 (-85) |#1|) $ (-484)) 84 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3242 (((-85) $ $) 106 T ELT)) (-2422 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-583 |#1|)) 23 T ELT)) (-2609 (((-583 |#1|) $) 32 T ELT)) (-3246 (((-85) |#1| $) 66 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 91 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 97 T ELT)) (-1274 ((|#1| $) 63 T ELT)) (-3610 (($ |#1| $) 64 T ELT) (($ |#1| $ (-694)) 89 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-1275 ((|#1| $) 62 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 57 T ELT)) (-3566 (($) 14 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1730 (-694)))) $) 56 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1466 (($) 16 T ELT) (($ (-583 |#1|)) 25 T ELT)) (-1730 (((-694) |#1| $) 69 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 82 T ELT)) (-3973 (((-473) $) 36 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 22 T ELT)) (-3947 (((-772) $) 50 T ELT)) (-3241 (($ (-583 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 |#1|)) 24 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 103 T ELT)) (-3958 (((-694) $) 68 T ELT)))
+(((-675 |#1|) (-13 (-676 |#1|) (-318 |#1|) (-1035 |#1|) (-10 -8 (-15 -2422 ($)) (-15 -2422 ($ |#1|)) (-15 -2422 ($ (-583 |#1|))) (-15 -2421 ((-583 |#1|) $)) (-15 -3407 ($ |#1| $ (-484))) (-15 -3407 ($ (-1 (-85) |#1|) $ (-484))) (-15 -3406 ($ |#1| $ (-484))) (-15 -3406 ($ (-1 (-85) |#1|) $ (-484))))) (-1013)) (T -675))
+((-2422 (*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2422 (*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3407 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013)))) (-3406 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4)))))
+((-2569 (((-85) $ $) 17 T ELT)) (-3235 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (($ $ $) 66 T ELT)) (-3236 (((-85) $ $) 67 T ELT)) (-3240 (($ (-583 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2368 (($ $) 54 T ELT)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3242 (((-85) $ $) 58 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 T ELT)) (-3239 (($ $ $) 63 T ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT) (($ |#1| $ (-694)) 55 T ELT)) (-3244 (((-1033) $) 19 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1730 (-694)))) $) 53 T ELT)) (-3238 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-3947 (((-772) $) 15 T ELT)) (-3241 (($ (-583 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1265 (((-85) $ $) 18 T ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3057 (((-85) $ $) 16 T ELT)))
+(((-676 |#1|) (-113) (-1013)) (T -676))
+NIL
+(-13 (-634 |t#1|) (-1011 |t#1|))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T))
+((-2423 (((-1185) (-1073)) 8 T ELT)))
+(((-677) (-10 -7 (-15 -2423 ((-1185) (-1073))))) (T -677))
+((-2423 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-677)))))
+((-2424 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 15 T ELT)))
+(((-678 |#1|) (-10 -7 (-15 -2424 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-756)) (T -678))
+((-2424 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 |#2|) $) 159 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 152 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 151 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 149 (|has| |#1| (-495)) ELT)) (-3493 (($ $) 108 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 91 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 90 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 107 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 92 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3495 (($ $) 106 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 93 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 143 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3815 (((-857 |#1|) $ (-694)) 121 T ELT) (((-857 |#1|) $ (-694) (-694)) 120 T ELT)) (-2893 (((-85) $) 160 T ELT)) (-3628 (($) 118 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $ |#2|) 123 T ELT) (((-694) $ |#2| (-694)) 122 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 89 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3938 (((-85) $) 141 T ELT)) (-2894 (($ $ (-583 |#2|) (-583 (-469 |#2|))) 158 T ELT) (($ $ |#2| (-469 |#2|)) 157 T ELT) (($ |#1| (-469 |#2|)) 142 T ELT) (($ $ |#2| (-694)) 125 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 124 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 140 T ELT)) (-3943 (($ $) 115 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) 138 T ELT)) (-3175 ((|#1| $) 137 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3813 (($ $ |#2|) 119 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3770 (($ $ (-694)) 126 T ELT)) (-3467 (((-3 $ "failed") $ $) 153 (|has| |#1| (-495)) ELT)) (-3944 (($ $) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (($ $ |#2| $) 134 T ELT) (($ $ (-583 |#2|) (-583 $)) 133 T ELT) (($ $ (-583 (-249 $))) 132 T ELT) (($ $ (-249 $)) 131 T ELT) (($ $ $ $) 130 T ELT) (($ $ (-583 $) (-583 $)) 129 T ELT)) (-3759 (($ $ (-583 |#2|) (-583 (-694))) 52 T ELT) (($ $ |#2| (-694)) 51 T ELT) (($ $ (-583 |#2|)) 50 T ELT) (($ $ |#2|) 48 T ELT)) (-3949 (((-469 |#2|) $) 139 T ELT)) (-3496 (($ $) 105 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 94 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 104 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 95 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 103 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 96 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 161 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 156 (|has| |#1| (-146)) ELT) (($ $) 154 (|has| |#1| (-495)) ELT) (($ (-350 (-484))) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3678 ((|#1| $ (-469 |#2|)) 144 T ELT) (($ $ |#2| (-694)) 128 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 127 T ELT)) (-2703 (((-632 $) $) 155 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 114 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 150 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 113 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 101 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 100 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 111 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 99 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 110 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 109 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 97 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 |#2|) (-583 (-694))) 55 T ELT) (($ $ |#2| (-694)) 54 T ELT) (($ $ (-583 |#2|)) 53 T ELT) (($ $ |#2|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 145 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ $) 117 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 88 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 148 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 136 T ELT) (($ $ |#1|) 135 T ELT)))
+(((-679 |#1| |#2|) (-113) (-961) (-756)) (T -679))
+((-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3773 (*1 *2 *1 *3) (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3773 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756)) (-5 *2 (-857 *4)))) (-3813 (*1 *1 *1 *2) (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756)) (-4 *3 (-38 (-350 (-484)))))))
+(-13 (-809 |t#2|) (-886 |t#1| (-469 |t#2|) |t#2|) (-455 |t#2| $) (-260 $) (-10 -8 (-15 -3678 ($ $ |t#2| (-694))) (-15 -3678 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3770 ($ $ (-694))) (-15 -2894 ($ $ |t#2| (-694))) (-15 -2894 ($ $ (-583 |t#2|) (-583 (-694)))) (-15 -3773 ((-694) $ |t#2|)) (-15 -3773 ((-694) $ |t#2| (-694))) (-15 -3815 ((-857 |t#1|) $ (-694))) (-15 -3815 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $ |t#2|)) (-6 (-915)) (-6 (-1115))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-469 |#2|)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-246) |has| |#1| (-495)) ((-260 $) . T) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-455 |#2| $) . T) ((-455 $ $) . T) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ |#2|) . T) ((-809 |#2|) . T) ((-811 |#2|) . T) ((-886 |#1| (-469 |#2|) |#2|) . T) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T))
+((-3733 (((-348 (-1085 |#4|)) (-1085 |#4|)) 30 T ELT) (((-348 |#4|) |#4|) 26 T ELT)))
+(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 |#4|) |#4|)) (-15 -3733 ((-348 (-1085 |#4|)) (-1085 |#4|)))) (-756) (-717) (-13 (-258) (-120)) (-861 |#3| |#2| |#1|)) (T -680))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
+((-2427 (((-348 |#4|) |#4| |#2|) 142 T ELT)) (-2425 (((-348 |#4|) |#4|) NIL T ELT)) (-3972 (((-348 (-1085 |#4|)) (-1085 |#4|)) 129 T ELT) (((-348 |#4|) |#4|) 52 T ELT)) (-2429 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3733 (-1085 |#4|)) (|:| -2401 (-484)))))) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 81 T ELT)) (-2433 (((-1085 |#3|) (-1085 |#3|) (-484)) 169 T ELT)) (-2432 (((-583 (-694)) (-1085 |#4|) (-583 |#2|) (-694)) 75 T ELT)) (-3080 (((-3 (-583 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|)) 79 T ELT)) (-2430 (((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 27 T ELT)) (-2428 (((-2 (|:| -2004 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-484)) 72 T ELT)) (-2426 (((-484) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484))))) 165 T ELT)) (-2431 ((|#4| (-484) (-348 |#4|)) 73 T ELT)) (-3358 (((-85) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484))))) NIL T ELT)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-348 |#4|) |#4|)) (-15 -3972 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2425 ((-348 |#4|) |#4|)) (-15 -2426 ((-484) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484)))))) (-15 -2427 ((-348 |#4|) |#4| |#2|)) (-15 -2428 ((-2 (|:| -2004 (-1085 |#4|)) (|:| |polval| (-1085 |#3|))) (-1085 |#4|) (-1085 |#3|) (-484))) (-15 -2429 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3733 (-1085 |#4|)) (|:| -2401 (-484)))))) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2430 ((-2 (|:| |upol| (-1085 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484))))) (|:| |ctpol| |#3|)) (-1085 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2431 (|#4| (-484) (-348 |#4|))) (-15 -3358 ((-85) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484)))) (-583 (-2 (|:| -3733 (-1085 |#3|)) (|:| -2401 (-484)))))) (-15 -3080 ((-3 (-583 (-1085 |#4|)) "failed") (-1085 |#4|) (-1085 |#3|) (-1085 |#3|) |#4| (-583 |#2|) (-583 (-694)) (-583 |#3|))) (-15 -2432 ((-583 (-694)) (-1085 |#4|) (-583 |#2|) (-694))) (-15 -2433 ((-1085 |#3|) (-1085 |#3|) (-484)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -681))
+((-2433 (*1 *2 *2 *3) (-12 (-5 *2 (-1085 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))) (-3080 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694))) (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717)) (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1085 *5))) (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1085 *5)))) (-3358 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3733 (-1085 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2431 (*1 *2 *3 *4) (-12 (-5 *3 (-484)) (-5 *4 (-348 *2)) (-4 *2 (-861 *7 *5 *6)) (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))) (-2430 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3733 (-1085 *8)) (|:| -2401 (-484))))) (|:| |ctpol| *8))) (-5 *1 (-681 *6 *7 *8 *9)))) (-2429 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3733 (-1085 *9)) (|:| -2401 (-484))))))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))) (-2428 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-5 *2 (-2 (|:| -2004 (-1085 *9)) (|:| |polval| (-1085 *8)))) (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))) (-2427 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3733 (-1085 *6)) (|:| -2401 (-484))))) (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-2425 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
+((-2434 (($ $ (-830)) 17 T ELT)))
+(((-682 |#1| |#2|) (-10 -7 (-15 -2434 (|#1| |#1| (-830)))) (-683 |#2|) (-146)) (T -682))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-2434 (($ $ (-830)) 44 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+(((-683 |#1|) (-113) (-146)) (T -683))
+((-2434 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
+(-13 (-685) (-654 |t#1|) (-10 -8 (-15 -2434 ($ $ (-830)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-657) . T) ((-685) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2436 (($ $ $) 10 T ELT)) (-2437 (($ $ $ $) 9 T ELT)) (-2435 (($ $ $) 12 T ELT)))
+(((-684 |#1|) (-10 -7 (-15 -2435 (|#1| |#1| |#1|)) (-15 -2436 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1| |#1|))) (-685)) (T -684))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2407 (($ $ (-830)) 37 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2406 (($ $ (-830)) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((-685) (-113)) (T -685))
+((-2437 (*1 *1 *1 *1 *1) (-4 *1 (-685))) (-2436 (*1 *1 *1 *1) (-4 *1 (-685))) (-2435 (*1 *1 *1 *1) (-4 *1 (-685))))
+(-13 (-21) (-657) (-10 -8 (-15 -2437 ($ $ $ $)) (-15 -2436 ($ $ $)) (-15 -2435 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-1013) . T) ((-1129) . T))
+((-3947 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT)))
+(((-686 |#1|) (-10 -7 (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-687)) (T -686))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2404 (((-3 $ #1="failed") $) 49 T ELT)) (-2407 (($ $ (-830)) 37 T ELT) (($ $ (-694)) 44 T ELT)) (-3468 (((-3 $ #1#) $) 47 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 43 T ELT)) (-2405 (((-3 $ #1#) $) 48 T ELT)) (-2406 (($ $ (-830)) 38 T ELT) (($ $ (-694)) 45 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2436 (($ $ $) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 40 T ELT)) (-3127 (((-694)) 41 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2437 (($ $ $ $) 35 T ELT)) (-2435 (($ $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 42 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 39 T ELT) (($ $ (-694)) 46 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 36 T ELT)))
+(((-687) (-113)) (T -687))
+((-3127 (*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687)))))
+(-13 (-685) (-659) (-10 -8 (-15 -3127 ((-694)) -3953) (-15 -3947 ($ (-484)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-657) . T) ((-659) . T) ((-685) . T) ((-1013) . T) ((-1129) . T))
+((-2439 (((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-350 (-484)))) |#1|) 33 T ELT)) (-2438 (((-583 (-142 |#1|)) (-630 (-142 (-350 (-484)))) |#1|) 23 T ELT)) (-2450 (((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))) (-1090)) 20 T ELT) (((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484))))) 19 T ELT)))
+(((-688 |#1|) (-10 -7 (-15 -2450 ((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))))) (-15 -2450 ((-857 (-142 (-350 (-484)))) (-630 (-142 (-350 (-484)))) (-1090))) (-15 -2438 ((-583 (-142 |#1|)) (-630 (-142 (-350 (-484)))) |#1|)) (-15 -2439 ((-583 (-2 (|:| |outval| (-142 |#1|)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 |#1|)))))) (-630 (-142 (-350 (-484)))) |#1|))) (-13 (-312) (-755))) (T -688))
+((-2439 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 (-142 *4))))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2438 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-142 *4))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *4 (-1090)) (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *5)) (-4 *5 (-13 (-312) (-755))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
+((-2617 (((-148 (-484)) |#1|) 27 T ELT)))
+(((-689 |#1|) (-10 -7 (-15 -2617 ((-148 (-484)) |#1|))) (-347)) (T -689))
+((-2617 (*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-347)))))
+((-2543 ((|#1| |#1| |#1|) 28 T ELT)) (-2544 ((|#1| |#1| |#1|) 27 T ELT)) (-2533 ((|#1| |#1| |#1|) 38 T ELT)) (-2541 ((|#1| |#1| |#1|) 33 T ELT)) (-2542 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2549 (((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|) 26 T ELT)))
+(((-690 |#1| |#2|) (-10 -7 (-15 -2549 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2533 (|#1| |#1| |#1|))) (-645 |#2|) (-312)) (T -690))
+((-2533 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2542 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2543 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2544 (*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3)))) (-2549 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4)))))
+((-2556 (((-632 (-1138)) $ (-1138)) 27 T ELT)) (-2557 (((-632 (-488)) $ (-488)) 26 T ELT)) (-2555 (((-694) $ (-102)) 28 T ELT)) (-2558 (((-632 (-101)) $ (-101)) 25 T ELT)) (-2000 (((-632 (-1138)) $) 12 T ELT)) (-1996 (((-632 (-1136)) $) 8 T ELT)) (-1998 (((-632 (-1135)) $) 10 T ELT)) (-2001 (((-632 (-488)) $) 13 T ELT)) (-1997 (((-632 (-486)) $) 9 T ELT)) (-1999 (((-632 (-485)) $) 11 T ELT)) (-1995 (((-694) $ (-102)) 7 T ELT)) (-2002 (((-632 (-101)) $) 14 T ELT)) (-2440 (((-85) $) 32 T ELT)) (-2441 (((-632 $) |#1| (-865)) 33 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-691 |#1|) (-113) (-1013)) (T -691))
+((-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-512) (-10 -8 (-15 -2441 ((-632 $) |t#1| (-865))) (-15 -2440 ((-85) $))))
+(((-147) . T) ((-465) . T) ((-512) . T) ((-770) . T))
+((-3920 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)) 72 T ELT)) (-3919 (((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) 70 T ELT)) (-3758 (((-484)) 86 T ELT)))
+(((-692 |#1| |#2|) (-10 -7 (-15 -3758 ((-484))) (-15 -3919 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))))) (-15 -3920 ((-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484)))) (-484)))) (-1155 (-484)) (-353 (-484) |#1|)) (T -692))
+((-3920 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-692 *4 *5)) (-4 *5 (-353 *3 *4)))) (-3919 (*1 *2) (-12 (-4 *3 (-1155 (-484))) (-5 *2 (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484)) (|:| |basisInv| (-630 (-484))))) (-5 *1 (-692 *3 *4)) (-4 *4 (-353 (-484) *3)))) (-3758 (*1 *2) (-12 (-4 *3 (-1155 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4)) (-4 *4 (-353 *2 *3)))))
+((-2509 (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))) 19 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090))) 18 T ELT)) (-3574 (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))) 21 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090))) 20 T ELT)))
+(((-693 |#1|) (-10 -7 (-15 -2509 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2509 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-857 |#1|))))) (-495)) (T -693))
+((-3574 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2484 (($ $ $) 10 T ELT)) (-1312 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2442 (($ $ (-484)) 11 T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 6 T CONST)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-694) (-13 (-717) (-663) (-10 -8 (-15 -2564 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3145 ($ $ $)) (-15 -2880 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -3467 ((-3 $ "failed") $ $)) (-15 -2442 ($ $ (-484))) (-15 -2995 ($ $)) (-6 (-3998 "*"))))) (T -694))
+((-2564 (*1 *1 *1 *1) (-5 *1 (-694))) (-2565 (*1 *1 *1 *1) (-5 *1 (-694))) (-3145 (*1 *1 *1 *1) (-5 *1 (-694))) (-2880 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2903 (-694)))) (-5 *1 (-694)))) (-3467 (*1 *1 *1 *1) (|partial| -5 *1 (-694))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))) (-2995 (*1 *1 *1) (-5 *1 (-694))))
+((-484) (|%not| (|%ilt| |#1| 0)))
+((-3574 (((-3 |#2| "failed") |#2| |#2| (-86) (-1090)) 37 T ELT)))
+(((-695 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 |#2| "failed") |#2| |#2| (-86) (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -695))
+((-3574 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2)) (-4 *2 (-13 (-29 *5) (-1115) (-871))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 7 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-696) (-1013)) (T -696))
+NIL
+((-3947 (((-696) |#1|) 8 T ELT)))
+(((-697 |#1|) (-10 -7 (-15 -3947 ((-696) |#1|))) (-1129)) (T -697))
+((-3947 (*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1129)))))
+((-3133 ((|#2| |#4|) 35 T ELT)))
+(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3133 (|#2| |#4|))) (-392) (-1155 |#1|) (-661 |#1| |#2|) (-1155 |#3|)) (T -698))
+((-3133 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1155 *5)))))
+((-3468 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2445 (((-1185) (-1073) (-1073) |#4| |#5|) 33 T ELT)) (-2443 ((|#4| |#4| |#5|) 74 T ELT)) (-2444 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 79 T ELT)) (-2446 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 16 T ELT)))
+(((-699 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3468 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2443 (|#4| |#4| |#5|)) (-15 -2444 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -2445 ((-1185) (-1073) (-1073) |#4| |#5|)) (-15 -2446 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -699))
+((-2446 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2445 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-699 *6 *7 *8 *4 *5)) (-4 *5 (-983 *6 *7 *8 *4)))) (-2444 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6)) (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))) (-3468 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+((-3158 (((-3 (-1085 (-1085 |#1|)) "failed") |#4|) 53 T ELT)) (-2447 (((-583 |#4|) |#4|) 22 T ELT)) (-3929 ((|#4| |#4|) 17 T ELT)))
+(((-700 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2447 ((-583 |#4|) |#4|)) (-15 -3158 ((-3 (-1085 (-1085 |#1|)) "failed") |#4|)) (-15 -3929 (|#4| |#4|))) (-299) (-280 |#1|) (-1155 |#2|) (-1155 |#3|) (-830)) (T -700))
+((-3929 (*1 *2 *2) (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4)) (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-830)))) (-3158 (*1 *2 *3) (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830)))) (-2447 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-583 *3)) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830)))))
+((-2448 (((-2 (|:| |deter| (-583 (-1085 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1085 |#5|) (-583 |#1|) (-583 |#5|)) 72 T ELT)) (-2449 (((-583 (-694)) |#1|) 20 T ELT)))
+(((-701 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2448 ((-2 (|:| |deter| (-583 (-1085 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1085 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -2449 ((-583 (-694)) |#1|))) (-1155 |#4|) (-717) (-756) (-258) (-861 |#4| |#2| |#3|)) (T -701))
+((-2449 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694))) (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-861 *6 *4 *5)))) (-2448 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1155 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258)) (-4 *10 (-861 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1085 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+((-2452 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-350 (-484))) |#1|) 31 T ELT)) (-2451 (((-583 |#1|) (-630 (-350 (-484))) |#1|) 21 T ELT)) (-2450 (((-857 (-350 (-484))) (-630 (-350 (-484))) (-1090)) 18 T ELT) (((-857 (-350 (-484))) (-630 (-350 (-484)))) 17 T ELT)))
+(((-702 |#1|) (-10 -7 (-15 -2450 ((-857 (-350 (-484))) (-630 (-350 (-484))))) (-15 -2450 ((-857 (-350 (-484))) (-630 (-350 (-484))) (-1090))) (-15 -2451 ((-583 |#1|) (-630 (-350 (-484))) |#1|)) (-15 -2452 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 |#1|))))) (-630 (-350 (-484))) |#1|))) (-13 (-312) (-755))) (T -702))
+((-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-484)) (|:| |outvect| (-583 (-630 *4)))))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))) (-2450 (*1 *2 *3 *4) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *4 (-1090)) (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 36 T ELT)) (-3082 (((-583 |#2|) $) NIL T ELT)) (-3084 (((-1085 $) $ |#2|) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) NIL T ELT)) (-3798 (($ $) 30 T ELT)) (-3167 (((-85) $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 110 (|has| |#1| (-495)) ELT)) (-3149 (((-583 $) $ $) 123 (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (((-3 $ #1#) (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (((-3 $ #1#) (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-904 (-484)))))) ELT) (((-3 (-1039 |#1| |#2|) #1#) $) 21 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT) (($ (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (($ (-857 |#1|)) NIL (OR (-12 (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-38 (-484))))) (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-483)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-904 (-484)))))) ELT) (((-1039 |#1| |#2|) $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT) (($ $ $) 121 (|has| |#1| (-495)) ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3695 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3173 (((-85) $) NIL T ELT)) (-3753 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 81 T ELT)) (-3144 (($ $) 136 (|has| |#1| (-392)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-3155 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3156 (($ $) NIL (|has| |#1| (-495)) ELT)) (-3166 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3165 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1624 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 57 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3696 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3146 (($ $ $ $ $) 107 (|has| |#1| (-495)) ELT)) (-3181 ((|#2| $) 22 T ELT)) (-3085 (($ (-1085 |#1|) |#2|) NIL T ELT) (($ (-1085 $) |#2|) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 38 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3160 (($ $ $) 63 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3174 (((-85) $) NIL T ELT)) (-2821 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) NIL T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3180 (((-694) $) 23 T ELT)) (-1625 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 |#2| #1#) $) NIL T ELT)) (-3141 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3142 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3169 (((-583 $) $) NIL T ELT)) (-3172 (($ $) 39 T ELT)) (-3143 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3170 (((-583 $) $) 43 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3171 (($ $) 41 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-694))) $ $) 96 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $) 78 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $) NIL T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-3164 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3163 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3191 (($ $ $) 125 (|has| |#1| (-495)) ELT)) (-3177 (((-583 $) $) 32 T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3692 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3687 (($ $ $) NIL T ELT)) (-3447 (($ $) 24 T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-3693 (((-85) $ $) NIL T ELT) (((-85) $ (-583 $)) NIL T ELT)) (-3688 (($ $ $) NIL T ELT)) (-3179 (($ $) 26 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-495)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-495)) ELT)) (-1800 (((-85) $) 56 T ELT)) (-1799 ((|#1| $) 58 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 133 (|has| |#1| (-392)) ELT) (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-495)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 129 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3154 (($ $ |#1|) 128 (|has| |#1| (-495)) ELT) (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-583 |#2|) (-583 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-583 |#2|) (-583 $)) NIL T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3949 (((-469 |#2|) $) NIL T ELT) (((-694) $ |#2|) 45 T ELT) (((-583 (-694)) $ (-583 |#2|)) NIL T ELT)) (-3178 (($ $) NIL T ELT)) (-3176 (($ $) 35 T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT) (($ (-857 (-350 (-484)))) NIL (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090)))) ELT) (($ (-857 (-484))) NIL (OR (-12 (|has| |#1| (-38 (-484))) (|has| |#2| (-553 (-1090))) (-2561 (|has| |#1| (-38 (-350 (-484)))))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#2| (-553 (-1090))))) ELT) (($ (-857 |#1|)) NIL (|has| |#2| (-553 (-1090))) ELT) (((-1073) $) NIL (-12 (|has| |#1| (-950 (-484))) (|has| |#2| (-553 (-1090)))) ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1090))) ELT)) (-2818 ((|#1| $) 132 (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-857 |#1|) $) NIL (|has| |#2| (-553 (-1090))) ELT) (((-1039 |#1| |#2|) $) 18 T ELT) (($ (-1039 |#1| |#2|)) 19 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-3168 (((-3 (-85) #1#) $ $) NIL T ELT)) (-2667 (($) 37 T CONST)) (-3147 (($ $ $ $ (-694)) 105 (|has| |#1| (-495)) ELT)) (-3148 (($ $ $ (-694)) 104 (|has| |#1| (-495)) ELT)) (-2670 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-3840 (($ $ $) 85 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 70 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-703 |#1| |#2|) (-13 (-977 |#1| (-469 |#2|) |#2|) (-552 (-1039 |#1| |#2|)) (-950 (-1039 |#1| |#2|))) (-961) (-756)) (T -703))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-3768 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3766 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2456 (((-583 $) $ $) 54 (|has| |#1| (-495)) ELT)) (-3756 (($ $ $) 50 (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-694)) NIL T ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT) (((-3 (-1085 |#1|) #1#) $) 10 T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-3757 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 58 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) 87 (|has| |#1| (-495)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1972 $) (|:| -2903 $)) $ $) 86 (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3778 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3160 (($ $ $) 27 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-694))) $ $) 37 T ELT)) (-2458 (($ $ $) 41 T ELT)) (-2457 (($ $ $) 47 T ELT)) (-3161 (((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $) 46 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3191 (($ $ $) 56 (|has| |#1| (-495)) ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-495)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-495)) ELT)) (-2453 (((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2454 (((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-495)) ELT)) (-1800 (((-85) $) 13 T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3739 (($ $ (-694) |#1| $) 26 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-495)) ELT)) (-2455 (((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-495)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3765 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3949 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-994)) NIL T ELT) (((-1085 |#1|) $) 7 T ELT) (($ (-1085 |#1|)) 8 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 32 T CONST)) (-2670 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-704 |#1|) (-13 (-1155 |#1|) (-552 (-1085 |#1|)) (-950 (-1085 |#1|)) (-10 -8 (-15 -3739 ($ $ (-694) |#1| $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3482 (-694))) $ $)) (-15 -2458 ($ $ $)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -2457 ($ $ $)) (IF (|has| |#1| (-495)) (PROGN (-15 -2456 ((-583 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -2455 ((-2 (|:| -3757 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2454 ((-2 (|:| -3757 |#1|) (|:| |coef1| $)) $ $)) (-15 -2453 ((-2 (|:| -3757 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-961)) (T -704))
+((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-3160 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3159 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3482 (-694)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-3161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3955 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3)) (|:| -2903 (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-961)))) (-2457 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))) (-2456 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3191 (*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961)))) (-3152 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3151 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-704 *3)) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-3150 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3145 (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2454 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))) (-2453 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
+((-3959 (((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)) 13 T ELT)))
+(((-705 |#1| |#2|) (-10 -7 (-15 -3959 ((-704 |#2|) (-1 |#2| |#1|) (-704 |#1|)))) (-961) (-961)) (T -705))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6)))))
+((-2460 ((|#1| (-694) |#1|) 33 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2802 ((|#1| (-694) |#1|) 23 T ELT)) (-2459 ((|#1| (-694) |#1|) 35 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-706 |#1|) (-10 -7 (-15 -2802 (|#1| (-694) |#1|)) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -2459 (|#1| (-694) |#1|)) (-15 -2460 (|#1| (-694) |#1|))) |%noBranch|)) (-146)) (T -706))
+((-2460 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2459 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3683 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-583 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3698 (((-583 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-3949 (((-694) $) 112 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3679 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3190 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-583 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-707 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -707))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1035 |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-2463 (((-3 (-330) #1="failed") (-265 |#1|) (-830)) 60 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-330) #1#) (-265 |#1|)) 52 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-330) #1#) (-350 (-857 |#1|)) (-830)) 39 (|has| |#1| (-495)) ELT) (((-3 (-330) #1#) (-350 (-857 |#1|))) 35 (|has| |#1| (-495)) ELT) (((-3 (-330) #1#) (-857 |#1|) (-830)) 30 (|has| |#1| (-961)) ELT) (((-3 (-330) #1#) (-857 |#1|)) 24 (|has| |#1| (-961)) ELT)) (-2461 (((-330) (-265 |#1|) (-830)) 92 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-330) (-265 |#1|)) 87 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-330) (-350 (-857 |#1|)) (-830)) 84 (|has| |#1| (-495)) ELT) (((-330) (-350 (-857 |#1|))) 81 (|has| |#1| (-495)) ELT) (((-330) (-857 |#1|) (-830)) 80 (|has| |#1| (-961)) ELT) (((-330) (-857 |#1|)) 77 (|has| |#1| (-961)) ELT) (((-330) |#1| (-830)) 73 T ELT) (((-330) |#1|) 22 T ELT)) (-2464 (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-830)) 68 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 (-142 |#1|))) 58 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|) (-830)) 61 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-265 |#1|)) 59 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))) (-830)) 44 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|)))) 43 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)) (-830)) 38 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-350 (-857 |#1|))) 37 (|has| |#1| (-495)) ELT) (((-3 (-142 (-330)) #1#) (-857 |#1|) (-830)) 28 (|has| |#1| (-961)) ELT) (((-3 (-142 (-330)) #1#) (-857 |#1|)) 26 (|has| |#1| (-961)) ELT) (((-3 (-142 (-330)) #1#) (-857 (-142 |#1|)) (-830)) 18 (|has| |#1| (-146)) ELT) (((-3 (-142 (-330)) #1#) (-857 (-142 |#1|))) 15 (|has| |#1| (-146)) ELT)) (-2462 (((-142 (-330)) (-265 (-142 |#1|)) (-830)) 95 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 (-142 |#1|))) 94 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 |#1|) (-830)) 93 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-265 |#1|)) 91 (-12 (|has| |#1| (-495)) (|has| |#1| (-756))) ELT) (((-142 (-330)) (-350 (-857 (-142 |#1|))) (-830)) 86 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 (-142 |#1|)))) 85 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 |#1|)) (-830)) 83 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-350 (-857 |#1|))) 82 (|has| |#1| (-495)) ELT) (((-142 (-330)) (-857 |#1|) (-830)) 79 (|has| |#1| (-961)) ELT) (((-142 (-330)) (-857 |#1|)) 78 (|has| |#1| (-961)) ELT) (((-142 (-330)) (-857 (-142 |#1|)) (-830)) 75 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-857 (-142 |#1|))) 74 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|) (-830)) 17 (|has| |#1| (-146)) ELT) (((-142 (-330)) (-142 |#1|)) 13 (|has| |#1| (-146)) ELT) (((-142 (-330)) |#1| (-830)) 27 T ELT) (((-142 (-330)) |#1|) 25 T ELT)))
+(((-708 |#1|) (-10 -7 (-15 -2461 ((-330) |#1|)) (-15 -2461 ((-330) |#1| (-830))) (-15 -2462 ((-142 (-330)) |#1|)) (-15 -2462 ((-142 (-330)) |#1| (-830))) (IF (|has| |#1| (-146)) (PROGN (-15 -2462 ((-142 (-330)) (-142 |#1|))) (-15 -2462 ((-142 (-330)) (-142 |#1|) (-830))) (-15 -2462 ((-142 (-330)) (-857 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2461 ((-330) (-857 |#1|))) (-15 -2461 ((-330) (-857 |#1|) (-830))) (-15 -2462 ((-142 (-330)) (-857 |#1|))) (-15 -2462 ((-142 (-330)) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2461 ((-330) (-350 (-857 |#1|)))) (-15 -2461 ((-330) (-350 (-857 |#1|)) (-830))) (-15 -2462 ((-142 (-330)) (-350 (-857 |#1|)))) (-15 -2462 ((-142 (-330)) (-350 (-857 |#1|)) (-830))) (-15 -2462 ((-142 (-330)) (-350 (-857 (-142 |#1|))))) (-15 -2462 ((-142 (-330)) (-350 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2461 ((-330) (-265 |#1|))) (-15 -2461 ((-330) (-265 |#1|) (-830))) (-15 -2462 ((-142 (-330)) (-265 |#1|))) (-15 -2462 ((-142 (-330)) (-265 |#1|) (-830))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)))) (-15 -2462 ((-142 (-330)) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-15 -2464 ((-3 (-142 (-330)) #1="failed") (-857 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-857 (-142 |#1|)) (-830)))) |%noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-857 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-857 |#1|) (-830))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-857 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-857 |#1|) (-830)))) |%noBranch|) (IF (|has| |#1| (-495)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-350 (-857 |#1|)))) (-15 -2463 ((-3 (-330) #1#) (-350 (-857 |#1|)) (-830))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-857 |#1|)) (-830))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-350 (-857 (-142 |#1|))) (-830))) (IF (|has| |#1| (-756)) (PROGN (-15 -2463 ((-3 (-330) #1#) (-265 |#1|))) (-15 -2463 ((-3 (-330) #1#) (-265 |#1|) (-830))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 |#1|) (-830))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)))) (-15 -2464 ((-3 (-142 (-330)) #1#) (-265 (-142 |#1|)) (-830)))) |%noBranch|)) |%noBranch|)) (-553 (-330))) (T -708))
+((-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2463 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2464 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2464 (*1 *2 *3) (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330))))) (-2462 (*1 *2 *3) (-12 (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330))))) (-2461 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))) (-2461 (*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2)))))
+((-2468 (((-830) (-1073)) 90 T ELT)) (-2470 (((-3 (-330) "failed") (-1073)) 36 T ELT)) (-2469 (((-330) (-1073)) 34 T ELT)) (-2466 (((-830) (-1073)) 64 T ELT)) (-2467 (((-1073) (-830)) 74 T ELT)) (-2465 (((-1073) (-830)) 63 T ELT)))
+(((-709) (-10 -7 (-15 -2465 ((-1073) (-830))) (-15 -2466 ((-830) (-1073))) (-15 -2467 ((-1073) (-830))) (-15 -2468 ((-830) (-1073))) (-15 -2469 ((-330) (-1073))) (-15 -2470 ((-3 (-330) "failed") (-1073))))) (T -709))
+((-2470 (*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709)))))
+((-2473 (((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 54 T ELT) (((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 51 T ELT)) (-2474 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 61 T ELT)) (-2472 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 49 T ELT)) (-2471 (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330))) 63 T ELT) (((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330))) 62 T ELT)))
+(((-710) (-10 -7 (-15 -2471 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2471 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2472 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2473 ((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))) (-15 -2473 ((-1185) (-1179 (-330)) (-484) (-330) (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))) (-330) (-1179 (-330)) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)) (-1179 (-330)))) (-15 -2474 ((-1185) (-1179 (-330)) (-484) (-330) (-330) (-484) (-1 (-1185) (-1179 (-330)) (-1179 (-330)) (-330)))))) (T -710))
+((-2474 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2473 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-484)) (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330)))) (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2472 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2471 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))) (-2471 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))))
+((-2483 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 65 T ELT)) (-2480 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 40 T ELT)) (-2482 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 64 T ELT)) (-2479 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 38 T ELT)) (-2481 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 63 T ELT)) (-2478 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484)) 24 T ELT)) (-2477 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 41 T ELT)) (-2476 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 39 T ELT)) (-2475 (((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484)) 37 T ELT)))
+(((-711) (-10 -7 (-15 -2475 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2476 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2477 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484) (-484))) (-15 -2478 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2479 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2480 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2481 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2482 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))) (-15 -2483 ((-2 (|:| -3403 (-330)) (|:| -1596 (-330)) (|:| |totalpts| (-484)) (|:| |success| (-85))) (-1 (-330) (-330)) (-330) (-330) (-330) (-330) (-484) (-484))))) (T -711))
+((-2483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2482 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2480 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2479 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2478 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2477 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2476 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))) (-2475 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330)) (-5 *2 (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484)) (|:| |success| (-85)))) (-5 *1 (-711)) (-5 *5 (-484)))))
+((-3706 (((-1125 |#1|) |#1| (-179) (-484)) 69 T ELT)))
+(((-712 |#1|) (-10 -7 (-15 -3706 ((-1125 |#1|) |#1| (-179) (-484)))) (-887)) (T -712))
+((-3706 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1125 *3)) (-5 *1 (-712 *3)) (-4 *3 (-887)))))
+((-3624 (((-484) $) 17 T ELT)) (-3188 (((-85) $) 10 T ELT)) (-3384 (($ $) 19 T ELT)))
+(((-713 |#1|) (-10 -7 (-15 -3384 (|#1| |#1|)) (-15 -3624 ((-484) |#1|)) (-15 -3188 ((-85) |#1|))) (-714)) (T -713))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-484) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3384 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT)))
+(((-714) (-113)) (T -714))
+((-3188 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484)))) (-3384 (*1 *1 *1) (-4 *1 (-714))))
+(-13 (-721) (-21) (-10 -8 (-15 -3188 ((-85) $)) (-15 -3624 ((-484) $)) (-15 -3384 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-3187 (((-85) $) 10 T ELT)))
+(((-715 |#1|) (-10 -7 (-15 -3187 ((-85) |#1|))) (-716)) (T -715))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
+(((-716) (-113)) (T -716))
+((-3187 (*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85)))))
+(-13 (-718) (-23) (-10 -8 (-15 -3187 ((-85) $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-2484 (($ $ $) 36 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
(((-717) (-113)) (T -717))
-((-3188 (*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85)))))
-(-13 (-719) (-23) (-10 -8 (-15 -3188 ((-85) $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-2485 (($ $ $) 36 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
+((-2484 (*1 *1 *1 *1) (-4 *1 (-717))))
+(-13 (-721) (-10 -8 (-15 -2484 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT)))
(((-718) (-113)) (T -718))
-((-2485 (*1 *1 *1 *1) (-4 *1 (-718))))
-(-13 (-722) (-10 -8 (-15 -2485 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT)))
-(((-719) (-113)) (T -719))
-NIL
-(-13 (-757) (-25))
-(((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-3190 (((-85) $) 42 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-350 (-485)) $) 76 T ELT)) (-3134 ((|#2| $) 26 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2486 (($ $) 58 T ELT)) (-3974 (((-474) $) 67 T ELT)) (-3011 (($ $) 21 T ELT)) (-3948 (((-773) $) 53 T ELT) (($ (-485)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 10 T CONST)) (-3385 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 30 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3839 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 31 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
-(((-720 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -2486 (|#1| |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-721 |#2|) (-146)) (T -720))
-((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3138 (((-695)) 67 (|has| |#1| (-320)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 104 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 93 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 80 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 82 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 81 (|has| |#1| (-484)) ELT)) (-2996 (($) 70 (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3134 ((|#1| $) 85 T ELT)) (-2533 (($ $ $) 71 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 72 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2011 (((-831) $) 69 (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) 68 (|has| |#1| (-320)) ELT)) (-2488 ((|#1| $) 90 T ELT)) (-2489 ((|#1| $) 91 T ELT)) (-2490 ((|#1| $) 92 T ELT)) (-3008 ((|#1| $) 86 T ELT)) (-3009 ((|#1| $) 87 T ELT)) (-3010 ((|#1| $) 88 T ELT)) (-2487 ((|#1| $) 89 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 97 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 96 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3974 (((-474) $) 77 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 94 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 107 (|has| |#1| (-951 (-350 (-485)))) ELT)) (-2704 (((-633 $) $) 78 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 ((|#1| $) 83 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 73 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 75 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 74 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 76 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
-(((-721 |#1|) (-113) (-146)) (T -721))
-((-3011 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-2491 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3645 (|t#1| $)) (-15 -2490 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -2491 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2486 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3726 (($) 30 T CONST)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 29 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3841 (($ $ $) 25 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT)))
-(((-722) (-113)) (T -722))
-NIL
-(-13 (-717) (-104))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-717) . T) ((-719) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-910 |#1|) #1#) $) 35 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3158 ((|#1| $) NIL T ELT) (((-910 |#1|) $) 33 T ELT) (((-485) $) NIL (OR (|has| (-910 |#1|) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 16 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2491 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-910 |#1|) (-910 |#1|)) 29 T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-2488 ((|#1| $) 22 T ELT)) (-2489 ((|#1| $) 20 T ELT)) (-2490 ((|#1| $) 18 T ELT)) (-3008 ((|#1| $) 26 T ELT)) (-3009 ((|#1| $) 25 T ELT)) (-3010 ((|#1| $) 24 T ELT)) (-2487 ((|#1| $) 23 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-910 |#1|)) 30 T ELT) (($ (-350 (-485))) NIL (OR (|has| (-910 |#1|) (-951 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 12 T CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-723 |#1|) (-13 (-721 |#1|) (-355 (-910 |#1|)) (-10 -8 (-15 -2491 ($ (-910 |#1|) (-910 |#1|))))) (-146)) (T -723))
-((-2491 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
-((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
-(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-721 |#2|) (-146) (-721 |#4|) (-146)) (T -724))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6)) (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5)))))
-((-2492 (((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)) 19 T ELT)))
-(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2492 ((-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#3| |#2| (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872)) (-601 |#2|)) (T -725))
-((-2492 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-4 *4 (-13 (-29 *6) (-1116) (-872))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4)))) (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
-((-3575 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-584 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091)) 26 T ELT) (((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-631 |#2|) (-1180 |#2|) (-1091)) 35 T ELT)))
-(((-726 |#1| |#2|) (-10 -7 (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1="failed") (-631 |#2|) (-1180 |#2|) (-1091))) (-15 -3575 ((-3 (-584 (-1180 |#2|)) #1#) (-631 |#2|) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 (-249 |#2|)) (-584 (-86)) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#2|)) (|:| -2013 (-584 (-1180 |#2|)))) #1#) (-584 |#2|) (-584 (-86)) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1091))) (-15 -3575 ((-3 (-2 (|:| |particular| |#2|) (|:| -2013 (-584 |#2|))) |#2| #1#) |#2| (-86) (-1091))) (-15 -3575 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-584 |#2|))) (-15 -3575 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-584 |#2|)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -726))
-((-3575 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-726 *6 *2)))) (-3575 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2)) (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #1="failed")) (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872))))) (-3575 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #1#)) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)))) (-3575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091)) (-4 *6 (-13 (-29 *5) (-1116) (-872))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1116) (-872))) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7))))) (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7)))))
-((-3472 ((|#2| |#2| (-1091)) 17 T ELT)) (-2493 ((|#2| |#2| (-1091)) 56 T ELT)) (-2494 (((-1 |#2| |#2|) (-1091)) 11 T ELT)))
-(((-727 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2| (-1091))) (-15 -2493 (|#2| |#2| (-1091))) (-15 -2494 ((-1 |#2| |#2|) (-1091)))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)) (-13 (-29 |#1|) (-1116) (-872))) (T -727))
-((-2494 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5)) (-4 *5 (-13 (-29 *4) (-1116) (-872))))) (-2493 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))))
-((-2495 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|) 33 T ELT)))
-(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2013 (-584 |#4|))) (-598 |#4|) |#4|))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -728))
-((-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-728 *5 *6 *7 *4)))))
-((-3743 (((-2 (|:| -3268 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))) 53 T ELT)) (-2497 (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4| |#2|) 62 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4|) 61 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3| |#2|) 20 T ELT) (((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3|) 21 T ELT)) (-2498 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2496 ((|#2| |#3| (-584 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2496 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2496 (|#2| |#3| (-584 (-350 |#2|)))) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#3| |#2|)) (-15 -2498 (|#2| |#3| |#1|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4|)) (-15 -2497 ((-584 (-2 (|:| -3775 |#2|) (|:| -3228 |#2|))) |#4| |#2|)) (-15 -2498 (|#2| |#4| |#1|)) (-15 -3743 ((-2 (|:| -3268 |#3|) (|:| |rh| (-584 (-350 |#2|)))) |#4| (-584 (-350 |#2|))))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -729))
-((-3743 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-584 (-350 *6))))) (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6)) (-4 *3 (-601 (-350 *6))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2)) (-4 *3 (-601 (-350 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *6 *3)) (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5))))) (-2498 (*1 *2 *3 *4) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *3 *6)) (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4))))) (-2497 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 (-350 *2))))) (-2496 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *6 (-601 *4)))))
-((-2506 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2507 (((-584 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 52 T ELT)) (-2500 (((-584 (-2 (|:| |deg| (-695)) (|:| -3268 |#2|))) |#3|) 123 T ELT)) (-2499 ((|#2| |#3|) 42 T ELT)) (-2501 (((-584 (-2 (|:| -3954 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|)) 100 T ELT)) (-2502 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2499 (|#2| |#3|)) (-15 -2500 ((-584 (-2 (|:| |deg| (-695)) (|:| -3268 |#2|))) |#3|)) (-15 -2501 ((-584 (-2 (|:| -3954 |#1|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2507 ((-584 (-2 (|:| |poly| |#2|) (|:| -3268 |#3|))) |#3| (-1 (-584 |#1|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 |#3|))) |#3| (-1 (-584 |#2|) |#2| (-1086 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2502 (|#3| |#3| |#2|)) (-15 -2502 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-951 (-350 (-485)))) (-1156 |#1|) (-601 |#2|) (-601 (-350 |#2|))) (T -730))
-((-2502 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5)) (-4 *6 (-601 *3)))) (-2502 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4)) (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3))))) (-2506 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3268 *3)))) (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| -3954 *5) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))) (-2500 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3268 *5)))) (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))) (-2499 (*1 *2 *3) (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2)) (-4 *5 (-601 (-350 *2))))))
-((-2503 (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2504 ((|#2| (-599 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-598 (-350 |#2|))) 89 T ELT)))
-(((-731 |#1| |#2|) (-10 -7 (-15 -2503 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2013 (-584 (-350 |#2|)))) (-598 (-350 |#2|)) (-350 |#2|))) (-15 -2503 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-598 (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2503 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2013 (-584 (-350 |#2|)))) (-599 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2503 ((-2 (|:| -2013 (-584 (-350 |#2|))) (|:| |mat| (-631 |#1|))) (-599 |#2| (-350 |#2|)) (-584 (-350 |#2|)))) (-15 -2504 (|#2| (-598 (-350 |#2|)))) (-15 -2504 (|#2| (-599 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -731))
-((-2504 (*1 *2 *3) (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5)))) (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4)))) (-5 *1 (-731 *5 *6)))))
-((-2505 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|) 49 T ELT)))
-(((-732 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2505 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) |#5| |#4|))) (-312) (-601 |#1|) (-1156 |#1|) (-662 |#1| |#3|) (-601 |#4|)) (T -732))
-((-2505 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
-((-2506 (((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2508 (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 39 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 37 T ELT)) (-2507 (((-584 (-2 (|:| |poly| |#2|) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|)) 96 T ELT)))
-(((-733 |#1| |#2|) (-10 -7 (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-584 (-2 (|:| |frac| (-350 |#2|)) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-584 (-2 (|:| |poly| |#2|) (|:| -3268 (-599 |#2| (-350 |#2|))))) (-599 |#2| (-350 |#2|)) (-1 (-584 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)))) (-15 -2508 ((-584 (-350 |#2|)) (-598 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)))) (-15 -2508 ((-584 (-350 |#2|)) (-599 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))) (-1156 |#1|)) (T -733))
-((-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3) (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3268 (-599 *6 (-350 *6)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))) (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))))
-((-2509 (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|)) 110 T ELT) (((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|)) 15 T ELT)) (-2510 (((-2 (|:| |particular| (-3 (-1180 |#1|) #1="failed")) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)) 116 T ELT)) (-3575 (((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1#) (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -2509 ((-2 (|:| A (-631 |#1|)) (|:| |eqs| (-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)) (|:| -3268 |#2|) (|:| |rh| |#1|))))) (-631 |#1|) (-1180 |#1|))) (-15 -2509 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#1|))) (-631 |#2|) (-1180 |#1|))) (-15 -3575 ((-3 (-2 (|:| |particular| (-1180 |#1|)) (|:| -2013 (-631 |#1|))) #1="failed") (-631 |#1|) (-1180 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2013 (-584 |#1|))) #1#) |#2| |#1|))) (-15 -2510 ((-2 (|:| |particular| (-3 (-1180 |#1|) #1#)) (|:| -2013 (-584 (-1180 |#1|)))) (-631 |#2|) (-1180 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2013 (-584 |#1|))) |#2| |#1|)))) (-312) (-601 |#1|)) (T -734))
-((-2510 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1180 *6) "failed")) (|:| -2013 (-584 (-1180 *6))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))) (-3575 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-601 *6)) (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6)))) (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-601 *5)) (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5)))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-631 *5)) (|:| |eqs| (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6) (|:| |rh| *5)))))) (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *6 (-601 *5)))))
-((-2511 (((-631 |#1|) (-584 |#1|) (-695)) 14 T ELT) (((-631 |#1|) (-584 |#1|)) 15 T ELT)) (-2512 (((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|)) 39 T ELT)) (-3342 (((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
-(((-735 |#1| |#2|) (-10 -7 (-15 -2511 ((-631 |#1|) (-584 |#1|))) (-15 -2511 ((-631 |#1|) (-584 |#1|) (-695))) (-15 -2512 ((-3 (-1180 |#1|) #1="failed") |#2| |#1| (-584 |#1|))) (-15 -3342 ((-3 |#1| #1#) |#2| |#1| (-584 |#1|) (-1 |#1| |#1|)))) (-312) (-601 |#1|)) (T -735))
-((-3342 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2)))) (-2512 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4)) (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5)) (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5)) (-4 *5 (-601 *4)))))
-((-2570 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#2| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) NIL (|has| |#2| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#2| (-320)) ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) ((|#2| $) NIL (|has| |#2| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-631 $)) NIL (|has| |#2| (-962)) ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#2| (-962)) ELT)) (-2996 (($) NIL (|has| |#2| (-320)) ELT)) (-1577 ((|#2| $ (-485) |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ (-485)) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#2| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3328 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#2| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#2| (-581 (-485))) (|has| |#2| (-962))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#2| (-962)) ELT) (((-631 |#2|) (-1180 $)) NIL (|has| |#2| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#2| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#2| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#2| (-1014)) ELT)) (-3803 ((|#2| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT)) (-3838 ((|#2| $ $) NIL (|has| |#2| (-962)) ELT)) (-1469 (($ (-1180 |#2|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-1731 (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-695) (-1 (-85) |#2|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#2|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#2| (-951 (-485))) (|has| |#2| (-1014))) (|has| |#2| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#2| (-951 (-350 (-485)))) (|has| |#2| (-1014))) ELT) (($ |#2|) NIL (|has| |#2| (-1014)) ELT) (((-773) $) NIL (|has| |#2| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#2| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#2| (-962)) ELT)) (-2662 (($) NIL (|has| |#2| (-23)) CONST)) (-2668 (($) NIL (|has| |#2| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#2| (-812 (-1091))) (|has| |#2| (-962))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-962)) ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#2| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) 11 (|has| |#2| (-757)) ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#2| (-962)) ELT) (($ $ (-831)) NIL (|has| |#2| (-962)) ELT)) (* (($ $ $) NIL (|has| |#2| (-962)) ELT) (($ $ |#2|) NIL (|has| |#2| (-664)) ELT) (($ |#2| $) NIL (|has| |#2| (-664)) ELT) (($ (-485) $) NIL (|has| |#2| (-21)) ELT) (($ (-695) $) NIL (|has| |#2| (-23)) ELT) (($ (-831) $) NIL (|has| |#2| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-736 |#1| |#2| |#3|) (-196 |#1| |#2|) (-695) (-718) (-1 (-85) (-1180 |#2|) (-1180 |#2|))) (T -736))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3083 (((-584 (-739 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-739 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-739 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-739 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3758 (($ $ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-739 (-1091))) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-739 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-739 (-1091))) NIL T ELT) (($ (-1086 $) (-739 (-1091))) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-739 (-1091))) NIL T ELT)) (-2822 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-739 (-1091))) (-470 (-739 (-1091)))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-739 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-739 (-1091)) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-739 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-739 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-739 (-1091)) $) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ (-739 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3950 (((-470 (-739 (-1091))) $) NIL T ELT) (((-695) $ (-739 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-739 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-739 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-739 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-739 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-739 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-739 (-1091)))) NIL T ELT) (($ $ (-739 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-737 |#1|) (-13 (-213 |#1| (-1091) (-739 (-1091)) (-470 (-739 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -737))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $) 13 T ELT) (($ $ (-695)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ $ (-485)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-312)) ELT)))
-(((-738 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1014) (-810 |#1|) |#1|) (T -738))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3833 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3774 (((-695) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-739 |#1|) (-228 |#1|) (-757)) (T -739))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 39 T ELT)) (-3138 (((-695) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3941 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3159 (((-3 |#1| #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3801 (($ $) 43 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1754 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2300 ((|#1| $ (-485)) NIL T ELT)) (-2301 (((-695) $ (-485)) NIL T ELT)) (-3938 (($ $) 55 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2291 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2292 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3942 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2513 (((-85) $ $) 52 T ELT)) (-3835 (((-695) $) 35 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1755 (($ $ $) NIL T ELT)) (-1756 (($ $ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 ((|#1| $) 42 T ELT)) (-1783 (((-584 (-2 (|:| |gen| |#1|) (|:| -3945 (-695)))) $) NIL T ELT)) (-2881 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2567 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 7 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 54 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ |#1| (-695)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-740 |#1|) (-13 (-336 |#1|) (-755) (-10 -8 (-15 -3803 (|#1| $)) (-15 -3801 ($ $)) (-15 -3938 ($ $)) (-15 -2513 ((-85) $ $)) (-15 -3942 ((-3 $ #1="failed") $ |#1|)) (-15 -3941 ((-3 $ #1#) $ |#1|)) (-15 -2567 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3835 ((-695) $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -740))
-((-3803 (*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2513 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3942 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-3941 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757)))) (-2567 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3)))) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3625 (((-485) $) 69 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3188 (((-85) $) 67 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3189 (((-85) $) 68 T ELT)) (-2533 (($ $ $) 61 T ELT)) (-2859 (($ $ $) 62 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 70 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 63 T ELT)) (-2569 (((-85) $ $) 65 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 64 T ELT)) (-2687 (((-85) $ $) 66 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-741) (-113)) (T -741))
-NIL
-(-13 (-496) (-756))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2514 ((|#1| $) 10 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2515 (($ |#1|) 9 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) NIL T ELT)) (-2822 (((-695) $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-695)) NIL (|has| |#1| (-190)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-742 |#1| |#2|) (-13 (-646 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2515 ($ |#1|)) (-15 -2514 (|#1| $)))) (-646 |#2|) (-962)) (T -742))
-((-2515 (*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))) (-2514 (*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
-((-2570 (((-85) $ $) 17 T ELT)) (-3236 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3238 (($ $ $) 66 T ELT)) (-3237 (((-85) $ $) 67 T ELT)) (-3241 (($ (-584 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2369 (($ $) 54 T ELT)) (-1354 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 78 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 77 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-72)) ELT)) (-3243 (((-85) $ $) 58 T ELT)) (-2533 ((|#1| $) 73 T ELT)) (-2858 (($ $ $) 86 T ELT)) (-3520 (($ $ $) 85 T ELT)) (-2610 (((-584 |#1|) $) 79 T ELT)) (-3247 (((-85) |#1| $) 75 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 84 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 T ELT)) (-3240 (($ $ $) 63 T ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT) (($ |#1| $ (-695)) 55 T ELT)) (-3245 (((-1034) $) 19 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 81 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-2368 (((-584 (-2 (|:| |entry| |#1|) (|:| -1731 (-695)))) $) 53 T ELT)) (-3239 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 |#1|)) 43 T ELT)) (-1731 (((-695) (-1 (-85) |#1|) $) 80 T ELT) (((-695) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 45 T ELT)) (-3948 (((-773) $) 15 T ELT)) (-3242 (($ (-584 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1266 (((-85) $ $) 18 T ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 82 T ELT)) (-3058 (((-85) $ $) 16 T ELT)) (-3959 (((-695) $) 83 T ELT)))
-(((-743 |#1|) (-113) (-757)) (T -743))
-((-2533 (*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))))
-(-13 (-677 |t#1|) (-882 |t#1|) (-10 -8 (-15 -2533 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-635 |#1|) . T) ((-677 |#1|) . T) ((-882 |#1|) . T) ((-1012 |#1|) . T) ((-1014) . T) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3469 (((-3 $ #1#) $) 42 (|has| |#1| (-756)) ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 51 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 46 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 48 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2516 (($) 13 T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3128 (((-695)) 36 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) 23 (|has| |#1| (-21)) CONST)) (-2668 (($) 33 (|has| |#1| (-756)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) 45 (|has| |#1| (-756)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 39 (|has| |#1| (-756)) ELT) (($ (-485) $) 27 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
-(((-744 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2516 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -744))
-((-2516 (*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
-((-3960 (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)) 12 T ELT) (((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|)) 13 T ELT)))
-(((-745 |#1| |#2|) (-10 -7 (-15 -3960 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|))) (-15 -3960 ((-744 |#2|) (-1 |#2| |#1|) (-744 |#1|) (-744 |#2|)))) (-1014) (-1014)) (T -745))
-((-3960 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-745 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2518 ((|#1| (-86) |#1|) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2517 (($ |#1| (-310 (-86))) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2520 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3802 ((|#1| $ |#1|) NIL T ELT)) (-2521 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2522 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ (-86) (-485)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-746 |#1|) (-13 (-962) (-951 |#1|) (-951 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2522 ($ $)) (-15 -2522 ($ $ $)) (-15 -2521 (|#1| |#1|))) |%noBranch|) (-15 -2520 ($ $ (-1 |#1| |#1|))) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-485))) (-15 ** ($ $ (-485))) (-15 -2518 (|#1| (-86) |#1|)) (-15 -2517 ($ |#1| (-310 (-86)))))) (-962)) (T -746))
-((-2522 (*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2522 (*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2521 (*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))) (-2520 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))) (-2517 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
-((-2635 (((-85) $ |#2|) 14 T ELT)) (-3948 (((-773) $) 11 T ELT)))
-(((-747 |#1| |#2|) (-10 -7 (-15 -2635 ((-85) |#1| |#2|)) (-15 -3948 ((-773) |#1|))) (-748 |#2|) (-1014)) (T -747))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3544 ((|#1| $) 19 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2635 (((-85) $ |#1|) 17 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2523 (((-55) $) 18 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-748 |#1|) (-113) (-1014)) (T -748))
-((-3544 (*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))) (-2635 (*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(-13 (-1014) (-10 -8 (-15 -3544 (|t#1| $)) (-15 -2523 ((-55) $)) (-15 -2635 ((-85) $ |t#1|))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2524 (((-167 (-442)) (-1074)) 9 T ELT)))
-(((-749) (-10 -7 (-15 -2524 ((-167 (-442)) (-1074))))) (T -749))
-((-2524 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3321 (((-1029) $) 10 T ELT)) (-3544 (((-447) $) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ (-447)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3532 (($ (-447) (-1029)) 8 T ELT)) (-3948 (((-773) $) 25 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 20 T ELT)) (-3058 (((-85) $ $) 12 T ELT)))
-(((-750) (-13 (-748 (-447)) (-10 -8 (-15 -3321 ((-1029) $)) (-15 -3532 ($ (-447) (-1029)))))) (T -750))
-((-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750)))) (-3532 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2525 (((-1034) $) 31 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3625 (((-485) $) NIL (|has| |#1| (-756)) ELT)) (-3726 (($) NIL (|has| |#1| (-21)) CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 9 T ELT)) (-3469 (((-3 $ #1#) $) 57 (|has| |#1| (-756)) ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 65 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 60 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 63 (|has| |#1| (-484)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2529 (($) 14 T ELT)) (-1215 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2411 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-2528 (($) 16 T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2526 (((-85) $) 12 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2527 (((-85) $) 11 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 8 T ELT) (($ (-485)) NIL (OR (|has| |#1| (-756)) (|has| |#1| (-951 (-485)))) ELT)) (-3128 (((-695)) 50 (|has| |#1| (-756)) CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3385 (($ $) NIL (|has| |#1| (-756)) ELT)) (-2662 (($) 37 (|has| |#1| (-21)) CONST)) (-2668 (($) 47 (|has| |#1| (-756)) CONST)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3058 (((-85) $ $) 35 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2687 (((-85) $ $) 59 (|has| |#1| (-756)) ELT)) (-3839 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-831)) NIL (|has| |#1| (-756)) ELT) (($ $ (-695)) NIL (|has| |#1| (-756)) ELT)) (* (($ $ $) 54 (|has| |#1| (-756)) ELT) (($ (-485) $) 41 (|has| |#1| (-21)) ELT) (($ (-695) $) NIL (|has| |#1| (-21)) ELT) (($ (-831) $) NIL (|has| |#1| (-21)) ELT)))
-(((-751 |#1|) (-13 (-1014) (-355 |#1|) (-10 -8 (-15 -2529 ($)) (-15 -2528 ($)) (-15 -2527 ((-85) $)) (-15 -2526 ((-85) $)) (-15 -2525 ((-1034) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|))) (-1014)) (T -751))
-((-2529 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2528 (*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))) (-2527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))) (-3026 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014)))))
-((-3960 (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)) 13 T ELT) (((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|)) 14 T ELT)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -3960 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|))) (-15 -3960 ((-751 |#2|) (-1 |#2| |#1|) (-751 |#1|) (-751 |#2|) (-751 |#2|)))) (-1014) (-1014)) (T -752))
-((-3960 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *1 (-752 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3138 (((-695)) 27 T ELT)) (-2996 (($) 30 T ELT)) (-2533 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2859 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)))
-(((-753) (-113)) (T -753))
-((-2533 (*1 *1) (-4 *1 (-753))) (-2859 (*1 *1) (-4 *1 (-753))))
-(-13 (-757) (-320) (-10 -8 (-15 -2533 ($) -3954) (-15 -2859 ($) -3954)))
-(((-72) . T) ((-553 (-773)) . T) ((-320) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2531 (((-85) (-1180 |#2|) (-1180 |#2|)) 19 T ELT)) (-2532 (((-85) (-1180 |#2|) (-1180 |#2|)) 20 T ELT)) (-2530 (((-85) (-1180 |#2|) (-1180 |#2|)) 16 T ELT)))
-(((-754 |#1| |#2|) (-10 -7 (-15 -2530 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2531 ((-85) (-1180 |#2|) (-1180 |#2|))) (-15 -2532 ((-85) (-1180 |#2|) (-1180 |#2|)))) (-695) (-717)) (T -754))
-((-2532 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5)) (-14 *4 (-695)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3726 (($) 29 T CONST)) (-3469 (((-3 $ "failed") $) 32 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 28 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT) (($ $ (-695)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
+NIL
+(-13 (-756) (-25))
+(((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-3189 (((-85) $) 42 T ELT)) (-3158 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-484)) $) 76 T ELT)) (-3133 ((|#2| $) 26 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2485 (($ $) 58 T ELT)) (-3973 (((-473) $) 67 T ELT)) (-3010 (($ $) 21 T ELT)) (-3947 (((-772) $) 53 T ELT) (($ (-484)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3127 (((-694)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 30 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 31 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
+(((-719 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3025 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3023 ((-350 (-484)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-694)) -3953) (-15 -3947 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-720 |#2|) (-146)) (T -719))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3137 (((-694)) 67 (|has| |#1| (-320)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 109 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 103 T ELT)) (-3157 (((-484) $) 108 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 104 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 93 T ELT)) (-3025 (((-3 (-350 (-484)) "failed") $) 80 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 82 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 81 (|has| |#1| (-483)) ELT)) (-2995 (($) 70 (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 84 T ELT)) (-3133 ((|#1| $) 85 T ELT)) (-2532 (($ $ $) 71 (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) 72 (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 95 T ELT)) (-2010 (((-830) $) 69 (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 79 (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) 68 (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 90 T ELT)) (-2488 ((|#1| $) 91 T ELT)) (-2489 ((|#1| $) 92 T ELT)) (-3007 ((|#1| $) 86 T ELT)) (-3008 ((|#1| $) 87 T ELT)) (-3009 ((|#1| $) 88 T ELT)) (-2486 ((|#1| $) 89 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) 101 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 100 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 99 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 98 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 97 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 96 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3801 (($ $ |#1|) 102 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-473) $) 77 (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) 94 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 107 (|has| |#1| (-950 (-350 (-484)))) ELT)) (-2703 (((-632 $) $) 78 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 83 (|has| |#1| (-973)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 73 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 75 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 74 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 76 (|has| |#1| (-756)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT)))
+(((-720 |#1|) (-113) (-146)) (T -720))
+((-3010 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-2490 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-2485 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(-13 (-38 |t#1|) (-355 |t#1|) (-288 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3644 (|t#1| $)) (-15 -2489 (|t#1| $)) (-15 -2488 (|t#1| $)) (-15 -2487 (|t#1| $)) (-15 -2486 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -2490 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-320)) (-6 (-320)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-312)) (-15 -2485 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-320) |has| |#1| (-320)) ((-288 |#1|) . T) ((-355 |#1|) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3725 (($) 30 T CONST)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 29 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3840 (($ $ $) 25 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT)))
+(((-721) (-113)) (T -721))
+NIL
+(-13 (-716) (-104))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-716) . T) ((-718) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-909 |#1|) #1#) $) 35 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3157 ((|#1| $) NIL T ELT) (((-909 |#1|) $) 33 T ELT) (((-484) $) NIL (OR (|has| (-909 |#1|) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT) (((-350 (-484)) $) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 16 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2490 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-909 |#1|) (-909 |#1|)) 29 T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-2487 ((|#1| $) 22 T ELT)) (-2488 ((|#1| $) 20 T ELT)) (-2489 ((|#1| $) 18 T ELT)) (-3007 ((|#1| $) 26 T ELT)) (-3008 ((|#1| $) 25 T ELT)) (-3009 ((|#1| $) 24 T ELT)) (-2486 ((|#1| $) 23 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-909 |#1|)) 30 T ELT) (($ (-350 (-484))) NIL (OR (|has| (-909 |#1|) (-950 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 12 T CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-722 |#1|) (-13 (-720 |#1|) (-355 (-909 |#1|)) (-10 -8 (-15 -2490 ($ (-909 |#1|) (-909 |#1|))))) (-146)) (T -722))
+((-2490 (*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
+((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
+(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-720 |#2|) (-146) (-720 |#4|) (-146)) (T -723))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6)) (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5)))))
+((-2491 (((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1090)) 19 T ELT)))
+(((-724 |#1| |#2| |#3|) (-10 -7 (-15 -2491 ((-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#3| |#2| (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871)) (-600 |#2|)) (T -724))
+((-2491 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-4 *4 (-13 (-29 *6) (-1115) (-871))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4)))) (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
+((-3574 (((-3 |#2| #1="failed") |#2| (-86) (-249 |#2|) (-583 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1090)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1090)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1090)) 26 T ELT) (((-3 (-583 (-1179 |#2|)) #1#) (-630 |#2|) (-1090)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-630 |#2|) (-1179 |#2|) (-1090)) 35 T ELT)))
+(((-725 |#1| |#2|) (-10 -7 (-15 -3574 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1="failed") (-630 |#2|) (-1179 |#2|) (-1090))) (-15 -3574 ((-3 (-583 (-1179 |#2|)) #1#) (-630 |#2|) (-1090))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 (-249 |#2|)) (-583 (-86)) (-1090))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1179 |#2|)) (|:| -2012 (-583 (-1179 |#2|)))) #1#) (-583 |#2|) (-583 (-86)) (-1090))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) (-249 |#2|) (-86) (-1090))) (-15 -3574 ((-3 (-2 (|:| |particular| |#2|) (|:| -2012 (-583 |#2|))) |#2| #1#) |#2| (-86) (-1090))) (-15 -3574 ((-3 |#2| #1#) (-249 |#2|) (-86) (-249 |#2|) (-583 |#2|))) (-15 -3574 ((-3 |#2| #1#) |#2| (-86) (-249 |#2|) (-583 |#2|)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -725))
+((-3574 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-725 *6 *2)))) (-3574 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-5 *1 (-725 *6 *2)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #1="failed")) (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-871))))) (-3574 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #1#)) (-5 *1 (-725 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)))) (-3574 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1090)) (-4 *6 (-13 (-29 *5) (-1115) (-871))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-1179 *6))) (-5 *1 (-725 *5 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1115) (-871))) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7))))) (-5 *1 (-725 *6 *7)) (-5 *4 (-1179 *7)))))
+((-3471 ((|#2| |#2| (-1090)) 17 T ELT)) (-2492 ((|#2| |#2| (-1090)) 56 T ELT)) (-2493 (((-1 |#2| |#2|) (-1090)) 11 T ELT)))
+(((-726 |#1| |#2|) (-10 -7 (-15 -3471 (|#2| |#2| (-1090))) (-15 -2492 (|#2| |#2| (-1090))) (-15 -2493 ((-1 |#2| |#2|) (-1090)))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)) (-13 (-29 |#1|) (-1115) (-871))) (T -726))
+((-2493 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5)) (-4 *5 (-13 (-29 *4) (-1115) (-871))))) (-2492 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871))))) (-3471 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871))))))
+((-2494 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|) 33 T ELT)))
+(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2494 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2012 (-583 |#4|))) (-597 |#4|) |#4|))) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|)) (T -727))
+((-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-727 *5 *6 *7 *4)))))
+((-3742 (((-2 (|:| -3267 |#3|) (|:| |rh| (-583 (-350 |#2|)))) |#4| (-583 (-350 |#2|))) 53 T ELT)) (-2496 (((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4| |#2|) 62 T ELT) (((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4|) 61 T ELT) (((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3| |#2|) 20 T ELT) (((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3|) 21 T ELT)) (-2497 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2495 ((|#2| |#3| (-583 (-350 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-350 |#2|)) 105 T ELT)))
+(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2495 ((-3 |#2| "failed") |#3| (-350 |#2|))) (-15 -2495 (|#2| |#3| (-583 (-350 |#2|)))) (-15 -2496 ((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3|)) (-15 -2496 ((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#3| |#2|)) (-15 -2497 (|#2| |#3| |#1|)) (-15 -2496 ((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4|)) (-15 -2496 ((-583 (-2 (|:| -3774 |#2|) (|:| -3227 |#2|))) |#4| |#2|)) (-15 -2497 (|#2| |#4| |#1|)) (-15 -3742 ((-2 (|:| -3267 |#3|) (|:| |rh| (-583 (-350 |#2|)))) |#4| (-583 (-350 |#2|))))) (-13 (-312) (-120) (-950 (-350 (-484)))) (-1155 |#1|) (-600 |#2|) (-600 (-350 |#2|))) (T -728))
+((-3742 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-583 (-350 *6))))) (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-350 *6))) (-4 *7 (-600 *6)) (-4 *3 (-600 (-350 *6))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *5 *3)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-600 *2)) (-4 *3 (-600 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-728 *5 *4 *6 *3)) (-4 *6 (-600 *4)) (-4 *3 (-600 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 (-350 *5))))) (-2497 (*1 *2 *3 *4) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-350 *2))))) (-2496 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-728 *5 *4 *3 *6)) (-4 *3 (-600 *4)) (-4 *6 (-600 (-350 *4))))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-728 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))) (-2495 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 (-350 *2))))) (-2495 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *6 (-600 *4)))))
+((-2505 (((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|)) 156 T ELT)) (-2506 (((-583 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 52 T ELT)) (-2499 (((-583 (-2 (|:| |deg| (-694)) (|:| -3267 |#2|))) |#3|) 123 T ELT)) (-2498 ((|#2| |#3|) 42 T ELT)) (-2500 (((-583 (-2 (|:| -3953 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 100 T ELT)) (-2501 ((|#3| |#3| (-350 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 (|#2| |#3|)) (-15 -2499 ((-583 (-2 (|:| |deg| (-694)) (|:| -3267 |#2|))) |#3|)) (-15 -2500 ((-583 (-2 (|:| -3953 |#1|) (|:| -3267 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2506 ((-583 (-2 (|:| |poly| |#2|) (|:| -3267 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1085 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2501 (|#3| |#3| |#2|)) (-15 -2501 (|#3| |#3| (-350 |#2|)))) (-13 (-312) (-120) (-950 (-350 (-484)))) (-1155 |#1|) (-600 |#2|) (-600 (-350 |#2|))) (T -729))
+((-2501 (*1 *2 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5)) (-4 *6 (-600 *3)))) (-2501 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-1155 *4)) (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-350 *3))))) (-2505 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3)))) (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-350 *7))))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3267 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))) (-2500 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| -3953 *5) (|:| -3267 *3)))) (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))) (-2499 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3267 *5)))) (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))) (-2498 (*1 *2 *3) (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2)) (-4 *5 (-600 (-350 *2))))))
+((-2502 (((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-350 |#2|)) (-583 (-350 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2012 (-583 (-350 |#2|)))) (-598 |#2| (-350 |#2|)) (-350 |#2|)) 145 T ELT) (((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-350 |#2|)) (-583 (-350 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2012 (-583 (-350 |#2|)))) (-597 (-350 |#2|)) (-350 |#2|)) 138 T ELT)) (-2503 ((|#2| (-598 |#2| (-350 |#2|))) 86 T ELT) ((|#2| (-597 (-350 |#2|))) 89 T ELT)))
+(((-730 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1="failed")) (|:| -2012 (-583 (-350 |#2|)))) (-597 (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-597 (-350 |#2|)) (-583 (-350 |#2|)))) (-15 -2502 ((-2 (|:| |particular| (-3 (-350 |#2|) #1#)) (|:| -2012 (-583 (-350 |#2|)))) (-598 |#2| (-350 |#2|)) (-350 |#2|))) (-15 -2502 ((-2 (|:| -2012 (-583 (-350 |#2|))) (|:| |mat| (-630 |#1|))) (-598 |#2| (-350 |#2|)) (-583 (-350 |#2|)))) (-15 -2503 (|#2| (-597 (-350 |#2|)))) (-15 -2503 (|#2| (-598 |#2| (-350 |#2|))))) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -730))
+((-2503 (*1 *2 *3) (-12 (-5 *3 (-598 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))) (-2503 (*1 *2 *3) (-12 (-5 *3 (-597 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5)))) (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4)))) (-5 *1 (-730 *5 *6)))))
+((-2504 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|) 49 T ELT)))
+(((-731 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2504 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) |#5| |#4|))) (-312) (-600 |#1|) (-1155 |#1|) (-661 |#1| |#3|) (-600 |#4|)) (T -731))
+((-2504 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-661 *5 *7)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
+((-2505 (((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 47 T ELT)) (-2507 (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 163 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-348 |#2|) |#2|)) 165 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 38 T ELT) (((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 39 T ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|)) 36 T ELT) (((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 37 T ELT)) (-2506 (((-583 (-2 (|:| |poly| |#2|) (|:| -3267 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|)) 96 T ELT)))
+(((-732 |#1| |#2|) (-10 -7 (-15 -2507 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2507 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -2507 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-348 |#2|) |#2|))) (-15 -2505 ((-583 (-2 (|:| |frac| (-350 |#2|)) (|:| -3267 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2506 ((-583 (-2 (|:| |poly| |#2|) (|:| -3267 (-598 |#2| (-350 |#2|))))) (-598 |#2| (-350 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2507 ((-583 (-350 |#2|)) (-597 (-350 |#2|)))) (-15 -2507 ((-583 (-350 |#2|)) (-597 (-350 |#2|)) (-1 (-348 |#2|) |#2|))) (-15 -2507 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)))) (-15 -2507 ((-583 (-350 |#2|)) (-598 |#2| (-350 |#2|)) (-1 (-348 |#2|) |#2|)))) |%noBranch|)) (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))) (-1155 |#1|)) (T -732))
+((-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-598 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-597 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5)))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3267 (-598 *6 (-350 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))) (-2505 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-5 *2 (-583 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-598 *6 (-350 *6)))))) (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *7 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))) (-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-350 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-348 *7) *7)) (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))) (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))))
+((-2508 (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) (-630 |#2|) (-1179 |#1|)) 110 T ELT) (((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1179 |#1|)) 15 T ELT)) (-2509 (((-2 (|:| |particular| (-3 (-1179 |#1|) #1="failed")) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)) 116 T ELT)) (-3574 (((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2012 (-630 |#1|))) #1#) (-630 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|)) 54 T ELT)))
+(((-733 |#1| |#2|) (-10 -7 (-15 -2508 ((-2 (|:| A (-630 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)) (|:| -3267 |#2|) (|:| |rh| |#1|))))) (-630 |#1|) (-1179 |#1|))) (-15 -2508 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#1|))) (-630 |#2|) (-1179 |#1|))) (-15 -3574 ((-3 (-2 (|:| |particular| (-1179 |#1|)) (|:| -2012 (-630 |#1|))) #1="failed") (-630 |#1|) (-1179 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2012 (-583 |#1|))) #1#) |#2| |#1|))) (-15 -2509 ((-2 (|:| |particular| (-3 (-1179 |#1|) #1#)) (|:| -2012 (-583 (-1179 |#1|)))) (-630 |#2|) (-1179 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2012 (-583 |#1|))) |#2| |#1|)))) (-312) (-600 |#1|)) (T -733))
+((-2509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1179 *6) "failed")) (|:| -2012 (-583 (-1179 *6))))) (-5 *1 (-733 *6 *7)) (-5 *4 (-1179 *6)))) (-3574 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6)) (-4 *6 (-312)) (-4 *7 (-600 *6)) (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2012 (-630 *6)))) (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *6)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-4 *6 (-600 *5)) (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5)))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *5)))) (-2508 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| A (-630 *5)) (|:| |eqs| (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5)) (|:| -3267 *6) (|:| |rh| *5)))))) (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *6 (-600 *5)))))
+((-2510 (((-630 |#1|) (-583 |#1|) (-694)) 14 T ELT) (((-630 |#1|) (-583 |#1|)) 15 T ELT)) (-2511 (((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-583 |#1|)) 39 T ELT)) (-3341 (((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -2510 ((-630 |#1|) (-583 |#1|))) (-15 -2510 ((-630 |#1|) (-583 |#1|) (-694))) (-15 -2511 ((-3 (-1179 |#1|) #1="failed") |#2| |#1| (-583 |#1|))) (-15 -3341 ((-3 |#1| #1#) |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-312) (-600 |#1|)) (T -734))
+((-3341 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312)) (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2)))) (-2511 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4)) (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5)) (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5)) (-4 *5 (-600 *4)))))
+((-2569 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-23)) ELT)) (-3708 (($ (-830)) NIL (|has| |#2| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#2| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-104)) ELT)) (-3137 (((-694)) NIL (|has| |#2| (-320)) ELT)) (-3789 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1013)) ELT)) (-3157 (((-484) $) NIL (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) ((|#2| $) NIL (|has| |#2| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-630 $)) NIL (|has| |#2| (-961)) ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#2| (-961)) ELT)) (-2995 (($) NIL (|has| |#2| (-320)) ELT)) (-1576 ((|#2| $ (-484) |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ (-484)) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-717)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#2| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#2| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2609 (((-583 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#2| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#2| (-580 (-484))) (|has| |#2| (-961))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#2| (-961)) ELT) (((-630 |#2|) (-1179 $)) NIL (|has| |#2| (-961)) ELT)) (-3243 (((-1073) $) NIL (|has| |#2| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#2| (-320)) ELT)) (-3244 (((-1033) $) NIL (|has| |#2| (-1013)) ELT)) (-3802 ((|#2| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-484) |#2|) NIL T ELT) ((|#2| $ (-484)) NIL T ELT)) (-3837 ((|#2| $ $) NIL (|has| |#2| (-961)) ELT)) (-1468 (($ (-1179 |#2|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-1730 (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT) (((-694) (-1 (-85) |#2|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#2|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#2| (-950 (-484))) (|has| |#2| (-1013))) (|has| |#2| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#2| (-950 (-350 (-484)))) (|has| |#2| (-1013))) ELT) (($ |#2|) NIL (|has| |#2| (-1013)) ELT) (((-772) $) NIL (|has| |#2| (-552 (-772))) ELT)) (-3127 (((-694)) NIL (|has| |#2| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#2| (-961)) ELT)) (-2661 (($) NIL (|has| |#2| (-23)) CONST)) (-2667 (($) NIL (|has| |#2| (-961)) CONST)) (-2670 (($ $ (-694)) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $) NIL (-12 (|has| |#2| (-189)) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#2| (-811 (-1090))) (|has| |#2| (-961))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)) ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#2| (-961)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#2| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2686 (((-85) $ $) 11 (|has| |#2| (-756)) ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#2| (-961)) ELT) (($ $ (-830)) NIL (|has| |#2| (-961)) ELT)) (* (($ $ $) NIL (|has| |#2| (-961)) ELT) (($ $ |#2|) NIL (|has| |#2| (-663)) ELT) (($ |#2| $) NIL (|has| |#2| (-663)) ELT) (($ (-484) $) NIL (|has| |#2| (-21)) ELT) (($ (-694) $) NIL (|has| |#2| (-23)) ELT) (($ (-830) $) NIL (|has| |#2| (-25)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-735 |#1| |#2| |#3|) (-196 |#1| |#2|) (-694) (-717) (-1 (-85) (-1179 |#2|) (-1179 |#2|))) (T -735))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1090)) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3082 (((-583 (-738 (-1090))) $) NIL T ELT)) (-3084 (((-1085 $) $ (-738 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-738 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-738 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-738 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3757 (($ $ $ (-738 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-738 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-738 (-1090))) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-738 (-1090)) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-738 (-1090)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ (-1090)) NIL T ELT) (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-738 (-1090))) NIL T ELT) (($ (-1085 $) (-738 (-1090))) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-469 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-738 (-1090))) NIL T ELT)) (-2821 (((-469 (-738 (-1090))) $) NIL T ELT) (((-694) $ (-738 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-469 (-738 (-1090))) (-469 (-738 (-1090)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) (-1090)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-738 (-1090)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 (((-738 (-1090)) $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-738 (-1090))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-738 (-1090)) |#1|) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 |#1|)) NIL T ELT) (($ $ (-738 (-1090)) $) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-738 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 (-1090)) $) NIL T ELT)) (-3949 (((-469 (-738 (-1090))) $) NIL T ELT) (((-694) $ (-738 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-738 (-1090)))) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-738 (-1090)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-738 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-738 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-469 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-738 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-738 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-738 (-1090)))) NIL T ELT) (($ $ (-738 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-736 |#1|) (-13 (-213 |#1| (-1090) (-738 (-1090)) (-469 (-738 (-1090)))) (-950 (-1039 |#1| (-1090)))) (-961)) (T -736))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#2| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-312)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 20 (|has| |#2| (-312)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-312)) ELT) (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-1607 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $) 13 T ELT) (($ $ (-694)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-312)) ELT) (($ $) NIL (|has| |#2| (-312)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) 15 (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ $ (-484)) 18 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-312)) ELT)))
+(((-737 |#1| |#2| |#3|) (-13 (-82 $ $) (-190) (-430 |#2|) (-10 -7 (IF (|has| |#2| (-312)) (-6 (-312)) |%noBranch|))) (-1013) (-809 |#1|) |#1|) (T -737))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3773 (((-694) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-694)) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-738 |#1|) (-228 |#1|) (-756)) (T -738))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-583 |#1|) $) 39 T ELT)) (-3137 (((-694) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3940 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 29 T ELT)) (-3158 (((-3 |#1| #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3800 (($ $) 43 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1753 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2299 ((|#1| $ (-484)) NIL T ELT)) (-2300 (((-694) $ (-484)) NIL T ELT)) (-3937 (($ $) 55 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2290 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2291 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3941 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 26 T ELT)) (-2512 (((-85) $ $) 52 T ELT)) (-3834 (((-694) $) 35 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1754 (($ $ $) NIL T ELT)) (-1755 (($ $ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 ((|#1| $) 42 T ELT)) (-1782 (((-583 (-2 (|:| |gen| |#1|) (|:| -3944 (-694)))) $) NIL T ELT)) (-2880 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2566 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 7 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 54 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ |#1| (-694)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-739 |#1|) (-13 (-336 |#1|) (-754) (-10 -8 (-15 -3802 (|#1| $)) (-15 -3800 ($ $)) (-15 -3937 ($ $)) (-15 -2512 ((-85) $ $)) (-15 -3941 ((-3 $ #1="failed") $ |#1|)) (-15 -3940 ((-3 $ #1#) $ |#1|)) (-15 -2566 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -3834 ((-694) $)) (-15 -3935 ((-583 |#1|) $)))) (-756)) (T -739))
+((-3802 (*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2512 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3941 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-3940 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756)))) (-2566 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3)))) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3624 (((-484) $) 69 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3187 (((-85) $) 67 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3188 (((-85) $) 68 T ELT)) (-2532 (($ $ $) 61 T ELT)) (-2858 (($ $ $) 62 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 70 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 63 T ELT)) (-2568 (((-85) $ $) 65 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 64 T ELT)) (-2686 (((-85) $ $) 66 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-740) (-113)) (T -740))
+NIL
+(-13 (-495) (-755))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2513 ((|#1| $) 10 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2514 (($ |#1|) 9 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-694)) NIL T ELT)) (-2821 (((-694) $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3759 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-3947 (((-772) $) 17 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-146)) ELT)) (-3678 ((|#2| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL (|has| |#1| (-190)) ELT) (($ $ (-694)) NIL (|has| |#1| (-190)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-741 |#1| |#2|) (-13 (-645 |#2|) (-10 -8 (IF (|has| |#1| (-190)) (-6 (-190)) |%noBranch|) (-15 -2514 ($ |#1|)) (-15 -2513 (|#1| $)))) (-645 |#2|) (-961)) (T -741))
+((-2514 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
+((-2569 (((-85) $ $) 17 T ELT)) (-3235 (($ |#1| $) 70 T ELT) (($ $ |#1|) 69 T ELT) (($ $ $) 68 T ELT)) (-3237 (($ $ $) 66 T ELT)) (-3236 (((-85) $ $) 67 T ELT)) (-3240 (($ (-583 |#1|)) 62 T ELT) (($) 61 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) 40 (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 48 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2368 (($ $) 54 T ELT)) (-1353 (($ $) 50 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3406 (($ |#1| $) 42 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) 41 (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $) 78 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 77 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 74 (|has| |#1| (-72)) ELT)) (-3242 (((-85) $ $) 58 T ELT)) (-2532 ((|#1| $) 73 T ELT)) (-2857 (($ $ $) 86 T ELT)) (-3519 (($ $ $) 85 T ELT)) (-2609 (((-583 |#1|) $) 79 T ELT)) (-3246 (((-85) |#1| $) 75 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 84 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 T ELT)) (-3239 (($ $ $) 63 T ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT) (($ |#1| $ (-694)) 55 T ELT)) (-3244 (((-1033) $) 19 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 46 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 81 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-2367 (((-583 (-2 (|:| |entry| |#1|) (|:| -1730 (-694)))) $) 53 T ELT)) (-3238 (($ $ |#1|) 65 T ELT) (($ $ $) 64 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 |#1|)) 43 T ELT)) (-1730 (((-694) (-1 (-85) |#1|) $) 80 T ELT) (((-694) |#1| $) 76 (|has| |#1| (-72)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 45 T ELT)) (-3947 (((-772) $) 15 T ELT)) (-3241 (($ (-583 |#1|)) 60 T ELT) (($) 59 T ELT)) (-1265 (((-85) $ $) 18 T ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 82 T ELT)) (-3057 (((-85) $ $) 16 T ELT)) (-3958 (((-694) $) 83 T ELT)))
+(((-742 |#1|) (-113) (-756)) (T -742))
+((-2532 (*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))))
+(-13 (-676 |t#1|) (-881 |t#1|) (-10 -8 (-15 -2532 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-193 |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-634 |#1|) . T) ((-676 |#1|) . T) ((-881 |#1|) . T) ((-1011 |#1|) . T) ((-1013) . T) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 42 (|has| |#1| (-755)) ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 51 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 46 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 48 (|has| |#1| (-483)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2515 (($) 13 T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3127 (((-694)) 36 (|has| |#1| (-755)) CONST)) (-1265 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2661 (($) 23 (|has| |#1| (-21)) CONST)) (-2667 (($) 33 (|has| |#1| (-755)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2686 (((-85) $ $) 45 (|has| |#1| (-755)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 39 (|has| |#1| (-755)) ELT) (($ (-484) $) 27 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
+(((-743 |#1|) (-13 (-1013) (-355 |#1|) (-10 -8 (-15 -2515 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -743))
+((-2515 (*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
+((-3959 (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)) 12 T ELT) (((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|)) 13 T ELT)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -3959 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|))) (-15 -3959 ((-743 |#2|) (-1 |#2| |#1|) (-743 |#1|) (-743 |#2|)))) (-1013) (-1013)) (T -744))
+((-3959 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-744 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-86) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-86) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2517 ((|#1| (-86) |#1|) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2516 (($ |#1| (-310 (-86))) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2518 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2519 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3801 ((|#1| $ |#1|) NIL T ELT)) (-2520 ((|#1| |#1|) NIL (|has| |#1| (-146)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-86)) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2521 (($ $) NIL (|has| |#1| (-146)) ELT) (($ $ $) NIL (|has| |#1| (-146)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ (-86) (-484)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-745 |#1|) (-13 (-961) (-950 |#1|) (-950 (-86)) (-241 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |#1| (-146)) (PROGN (-6 (-38 |#1|)) (-15 -2521 ($ $)) (-15 -2521 ($ $ $)) (-15 -2520 (|#1| |#1|))) |%noBranch|) (-15 -2519 ($ $ (-1 |#1| |#1|))) (-15 -2518 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-86) (-484))) (-15 ** ($ $ (-484))) (-15 -2517 (|#1| (-86) |#1|)) (-15 -2516 ($ |#1| (-310 (-86)))))) (-961)) (T -745))
+((-2521 (*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2521 (*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2520 (*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))) (-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961)))) (-2517 (*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))) (-2516 (*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
+((-2634 (((-85) $ |#2|) 14 T ELT)) (-3947 (((-772) $) 11 T ELT)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -2634 ((-85) |#1| |#2|)) (-15 -3947 ((-772) |#1|))) (-747 |#2|) (-1013)) (T -746))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3543 ((|#1| $) 19 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2634 (((-85) $ |#1|) 17 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2522 (((-55) $) 18 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-747 |#1|) (-113) (-1013)) (T -747))
+((-3543 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013)))) (-2522 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))) (-2634 (*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-1013) (-10 -8 (-15 -3543 (|t#1| $)) (-15 -2522 ((-55) $)) (-15 -2634 ((-85) $ |t#1|))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2523 (((-167 (-441)) (-1073)) 9 T ELT)))
+(((-748) (-10 -7 (-15 -2523 ((-167 (-441)) (-1073))))) (T -748))
+((-2523 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-441))) (-5 *1 (-748)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3320 (((-1028) $) 10 T ELT)) (-3543 (((-446) $) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ (-446)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3531 (($ (-446) (-1028)) 8 T ELT)) (-3947 (((-772) $) 25 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 20 T ELT)) (-3057 (((-85) $ $) 12 T ELT)))
+(((-749) (-13 (-747 (-446)) (-10 -8 (-15 -3320 ((-1028) $)) (-15 -3531 ($ (-446) (-1028)))))) (T -749))
+((-3320 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (|has| |#1| (-21)) ELT)) (-2524 (((-1033) $) 31 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-3624 (((-484) $) NIL (|has| |#1| (-755)) ELT)) (-3725 (($) NIL (|has| |#1| (-21)) CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 9 T ELT)) (-3468 (((-3 $ #1#) $) 57 (|has| |#1| (-755)) ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 65 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 60 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 63 (|has| |#1| (-483)) ELT)) (-3187 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2528 (($) 14 T ELT)) (-1214 (((-85) $ $) NIL (|has| |#1| (-21)) ELT)) (-2410 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-3188 (((-85) $) NIL (|has| |#1| (-755)) ELT)) (-2527 (($) 16 T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-755)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2525 (((-85) $) 12 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2526 (((-85) $) 11 T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 8 T ELT) (($ (-484)) NIL (OR (|has| |#1| (-755)) (|has| |#1| (-950 (-484)))) ELT)) (-3127 (((-694)) 50 (|has| |#1| (-755)) CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3384 (($ $) NIL (|has| |#1| (-755)) ELT)) (-2661 (($) 37 (|has| |#1| (-21)) CONST)) (-2667 (($) 47 (|has| |#1| (-755)) CONST)) (-2567 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-3057 (((-85) $ $) 35 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-755)) ELT)) (-2686 (((-85) $ $) 59 (|has| |#1| (-755)) ELT)) (-3838 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-830)) NIL (|has| |#1| (-755)) ELT) (($ $ (-694)) NIL (|has| |#1| (-755)) ELT)) (* (($ $ $) 54 (|has| |#1| (-755)) ELT) (($ (-484) $) 41 (|has| |#1| (-21)) ELT) (($ (-694) $) NIL (|has| |#1| (-21)) ELT) (($ (-830) $) NIL (|has| |#1| (-21)) ELT)))
+(((-750 |#1|) (-13 (-1013) (-355 |#1|) (-10 -8 (-15 -2528 ($)) (-15 -2527 ($)) (-15 -2526 ((-85) $)) (-15 -2525 ((-85) $)) (-15 -2524 ((-1033) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-755)) |%noBranch|) (IF (|has| |#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|))) (-1013)) (T -750))
+((-2528 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2527 (*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))) (-3025 (*1 *2 *1) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013)))))
+((-3959 (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)) 13 T ELT) (((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|)) 14 T ELT)))
+(((-751 |#1| |#2|) (-10 -7 (-15 -3959 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|))) (-15 -3959 ((-750 |#2|) (-1 |#2| |#1|) (-750 |#1|) (-750 |#2|) (-750 |#2|)))) (-1013) (-1013)) (T -751))
+((-3959 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *1 (-751 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3137 (((-694)) 27 T ELT)) (-2995 (($) 30 T ELT)) (-2532 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-2858 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
+(((-752) (-113)) (T -752))
+((-2532 (*1 *1) (-4 *1 (-752))) (-2858 (*1 *1) (-4 *1 (-752))))
+(-13 (-756) (-320) (-10 -8 (-15 -2532 ($) -3953) (-15 -2858 ($) -3953)))
+(((-72) . T) ((-552 (-772)) . T) ((-320) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-2530 (((-85) (-1179 |#2|) (-1179 |#2|)) 19 T ELT)) (-2531 (((-85) (-1179 |#2|) (-1179 |#2|)) 20 T ELT)) (-2529 (((-85) (-1179 |#2|) (-1179 |#2|)) 16 T ELT)))
+(((-753 |#1| |#2|) (-10 -7 (-15 -2529 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2530 ((-85) (-1179 |#2|) (-1179 |#2|))) (-15 -2531 ((-85) (-1179 |#2|) (-1179 |#2|)))) (-694) (-716)) (T -753))
+((-2531 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2530 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))) (-2529 (*1 *2 *3 *3) (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5)) (-14 *4 (-694)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3725 (($) 29 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 28 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT) (($ $ (-694)) 31 T ELT)) (* (($ $ $) 25 T ELT)))
+(((-754) (-113)) (T -754))
+NIL
+(-13 (-766) (-663))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-766) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 31 T ELT)) (-1312 (((-3 $ "failed") $ $) 35 T ELT)) (-3624 (((-484) $) 38 T ELT)) (-3725 (($) 30 T CONST)) (-3468 (((-3 $ "failed") $) 55 T ELT)) (-3187 (((-85) $) 28 T ELT)) (-1214 (((-85) $ $) 33 T ELT)) (-2410 (((-85) $) 53 T ELT)) (-3188 (((-85) $) 39 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 56 T ELT)) (-3127 (((-694)) 57 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 51 T ELT)) (-3384 (($ $) 37 T ELT)) (-2661 (($) 29 T CONST)) (-2667 (($) 52 T CONST)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (-3838 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3840 (($ $ $) 25 T ELT)) (** (($ $ (-694)) 54 T ELT) (($ $ (-830)) 49 T ELT)) (* (($ (-830) $) 26 T ELT) (($ (-694) $) 32 T ELT) (($ (-484) $) 40 T ELT) (($ $ $) 50 T ELT)))
(((-755) (-113)) (T -755))
NIL
-(-13 (-767) (-664))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-767) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 31 T ELT)) (-1313 (((-3 $ "failed") $ $) 35 T ELT)) (-3625 (((-485) $) 38 T ELT)) (-3726 (($) 30 T CONST)) (-3469 (((-3 $ "failed") $) 55 T ELT)) (-3188 (((-85) $) 28 T ELT)) (-1215 (((-85) $ $) 33 T ELT)) (-2411 (((-85) $) 53 T ELT)) (-3189 (((-85) $) 39 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 56 T ELT)) (-3128 (((-695)) 57 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 51 T ELT)) (-3385 (($ $) 37 T ELT)) (-2662 (($) 29 T CONST)) (-2668 (($) 52 T CONST)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (-3839 (($ $ $) 42 T ELT) (($ $) 41 T ELT)) (-3841 (($ $ $) 25 T ELT)) (** (($ $ (-695)) 54 T ELT) (($ $ (-831)) 49 T ELT)) (* (($ (-831) $) 26 T ELT) (($ (-695) $) 32 T ELT) (($ (-485) $) 40 T ELT) (($ $ $) 50 T ELT)))
+(-13 (-714) (-120) (-663))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-756) . T) ((-759) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)))
(((-756) (-113)) (T -756))
NIL
-(-13 (-715) (-120) (-664))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-757) . T) ((-760) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)))
-(((-757) (-113)) (T -757))
-NIL
-(-13 (-1014) (-760))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-760) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3948 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT)))
-(((-758 |#1| |#2|) (-13 (-760) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|))) (-1130) (-1 (-85) |#1| |#1|)) (T -758))
-NIL
-((-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 15 T ELT)) (-1266 (((-85) $ $) 17 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 9 T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) 11 T ELT)))
-(((-759 |#1|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2859 (|#1| |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -2686 ((-85) |#1| |#1|)) (-15 -2569 ((-85) |#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-760)) (T -759))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 10 T ELT)) (-2859 (($ $ $) 11 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 12 T ELT)) (-2569 (((-85) $ $) 14 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 13 T ELT)) (-2687 (((-85) $ $) 15 T ELT)))
-(((-760) (-113)) (T -760))
-((-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2569 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85)))) (-2859 (*1 *1 *1 *1) (-4 *1 (-760))) (-2533 (*1 *1 *1 *1) (-4 *1 (-760))))
-(-13 (-72) (-10 -8 (-15 -2687 ((-85) $ $)) (-15 -2569 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2859 ($ $ $)) (-15 -2533 ($ $ $))))
-(((-72) . T) ((-13) . T) ((-1130) . T))
-((-2538 (($ $ $) 49 T ELT)) (-2539 (($ $ $) 48 T ELT)) (-2540 (($ $ $) 46 T ELT)) (-2536 (($ $ $) 55 T ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 50 T ELT)) (-2537 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3505 (($ $) 39 T ELT)) (-2544 (($ $ $) 43 T ELT)) (-2545 (($ $ $) 42 T ELT)) (-2534 (($ $ $) 51 T ELT)) (-2542 (($ $ $) 57 T ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 45 T ELT)) (-2543 (((-3 $ #1#) $ $) 52 T ELT)) (-3468 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2819 ((|#2| $) 36 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3819 (((-584 |#2|) $) 21 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
-(((-761 |#1| |#2|) (-10 -7 (-15 -2534 (|#1| |#1| |#1|)) (-15 -2535 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2536 (|#1| |#1| |#1|)) (-15 -2537 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 (|#1| |#1| |#1|)) (-15 -2541 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2410 |#1|)) |#1| |#1|)) (-15 -2542 (|#1| |#1| |#1|)) (-15 -2543 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -2545 (|#1| |#1| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3468 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3819 ((-584 |#2|) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3948 ((-773) |#1|))) (-762 |#2|) (-962)) (T -761))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-2538 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1="failed") $) 88 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 85 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3158 (((-485) $) 87 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 84 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 83 T ELT)) (-3961 (($ $) 77 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2895 (($ |#1| (-695)) 75 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 70 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 71 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) 79 T ELT)) (-2544 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) 78 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-496)) ELT)) (-3950 (((-695) $) 80 T ELT)) (-2819 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 86 (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) 81 T ELT)) (-3819 (((-584 |#1|) $) 74 T ELT)) (-3679 ((|#1| $ (-695)) 76 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2547 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
-(((-762 |#1|) (-113) (-962)) (T -762))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3961 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-2895 (*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3)))) (-2547 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2545 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2541 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2540 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2551 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-762 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-2535 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1))) (-4 *1 (-762 *3)))) (-2534 (*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(-13 (-962) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3950 ((-695) $)) (-15 -2822 ((-695) $)) (-15 -3176 (|t#1| $)) (-15 -3961 ($ $)) (-15 -3679 (|t#1| $ (-695))) (-15 -2895 ($ |t#1| (-695))) (-15 -3819 ((-584 |t#1|) $)) (-15 -2547 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3468 ((-3 $ "failed") $ |t#1|)) (-15 -2548 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2549 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2819 (|t#1| $)) (-15 -3505 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2545 ($ $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ((-3 $ "failed") $ $)) (-15 -2542 ($ $ $)) (-15 -2541 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2540 ($ $ $)) (-15 -2551 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ((-3 $ "failed") $ $)) (-15 -2536 ($ $ $)) (-15 -2535 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $)) (-15 -2534 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-355 |#1|) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2546 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2551 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-496)) ELT)) (-2550 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2547 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
-(((-763 |#1| |#2|) (-10 -7 (-15 -2546 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2547 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-496)) (PROGN (-15 -2548 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2549 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2550 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2551 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-962) (-762 |#1|)) (T -763))
-((-2551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3)) (-4 *3 (-762 *5)))) (-2547 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3)) (-4 *3 (-762 *2)))) (-2546 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2)) (-4 *2 (-762 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3535 (((-773) $ (-773)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) NIL T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 30 (|has| |#1| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 28 (|has| |#1| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (($ |#1|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 23 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 19 T ELT) (($ $ (-695)) 24 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-764 |#1| |#2| |#3|) (-13 (-762 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-773))))) (-962) (-69 |#1|) (-1 |#1| |#1|)) (T -764))
-((-3535 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2537 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2551 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) 17 T ELT)) (-2549 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2548 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2822 (((-695) $) NIL T ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2545 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2543 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-3950 (((-695) $) NIL T ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (($ (-1177 |#1|)) 19 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2547 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 13 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-765 |#1| |#2| |#3| |#4|) (-13 (-762 |#2|) (-556 (-1177 |#1|))) (-1091) (-962) (-69 |#2|) (-1 |#2| |#2|)) (T -765))
-NIL
-((-2554 ((|#1| (-695) |#1|) 45 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2553 ((|#1| (-695) (-695) |#1|) 36 T ELT) ((|#1| (-695) |#1|) 24 T ELT)) (-2552 ((|#1| (-695) |#1|) 40 T ELT)) (-2802 ((|#1| (-695) |#1|) 38 T ELT)) (-2801 ((|#1| (-695) |#1|) 37 T ELT)))
-(((-766 |#1|) (-10 -7 (-15 -2801 (|#1| (-695) |#1|)) (-15 -2802 (|#1| (-695) |#1|)) (-15 -2552 (|#1| (-695) |#1|)) (-15 -2553 (|#1| (-695) |#1|)) (-15 -2553 (|#1| (-695) (-695) |#1|)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -2554 (|#1| (-695) |#1|)) |%noBranch|)) (-146)) (T -766))
-((-2554 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-2533 (($ $ $) 23 T ELT)) (-2859 (($ $ $) 22 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2568 (((-85) $ $) 21 T ELT)) (-2569 (((-85) $ $) 19 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 20 T ELT)) (-2687 (((-85) $ $) 18 T ELT)) (** (($ $ (-831)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
-(((-767) (-113)) (T -767))
-NIL
-(-13 (-757) (-1026))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-757) . T) ((-760) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3404 (((-485) $) 14 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-485)) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 10 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 12 T ELT)))
-(((-768) (-13 (-757) (-10 -8 (-15 -3948 ($ (-485))) (-15 -3404 ((-485) $))))) (T -768))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768)))))
-((-2555 (((-1186) (-584 (-51))) 23 T ELT)) (-3462 (((-1186) (-1074) (-773)) 13 T ELT) (((-1186) (-773)) 8 T ELT) (((-1186) (-1074)) 10 T ELT)))
-(((-769) (-10 -7 (-15 -3462 ((-1186) (-1074))) (-15 -3462 ((-1186) (-773))) (-15 -3462 ((-1186) (-1074) (-773))) (-15 -2555 ((-1186) (-584 (-51)))))) (T -769))
-((-2555 (*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769)))))
-((-2557 (((-633 (-1139)) $ (-1139)) 15 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 12 T ELT)) (-2556 (((-695) $ (-102)) 30 T ELT)))
-(((-770 |#1|) (-10 -7 (-15 -2556 ((-695) |#1| (-102))) (-15 -2557 ((-633 (-1139)) |#1| (-1139))) (-15 -2558 ((-633 (-489)) |#1| (-489)))) (-771)) (T -770))
-NIL
-((-2557 (((-633 (-1139)) $ (-1139)) 8 T ELT)) (-2558 (((-633 (-489)) $ (-489)) 9 T ELT)) (-2556 (((-695) $ (-102)) 7 T ELT)) (-2559 (((-633 (-101)) $ (-101)) 10 T ELT)) (-1701 (($ $) 6 T ELT)))
-(((-771) (-113)) (T -771))
-((-2559 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))) (-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
-(-13 (-147) (-10 -8 (-15 -2559 ((-633 (-101)) $ (-101))) (-15 -2558 ((-633 (-489)) $ (-489))) (-15 -2557 ((-633 (-1139)) $ (-1139))) (-15 -2556 ((-695) $ (-102)))))
+(-13 (-1013) (-759))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-759) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3947 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT)))
+(((-757 |#1| |#2|) (-13 (-759) (-430 |#1|) (-10 -7 (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|))) (-1129) (-1 (-85) |#1| |#1|)) (T -757))
+NIL
+((-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 15 T ELT)) (-1265 (((-85) $ $) 17 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 9 T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) 11 T ELT)))
+(((-758 |#1|) (-10 -7 (-15 -2532 (|#1| |#1| |#1|)) (-15 -2858 (|#1| |#1| |#1|)) (-15 -2567 ((-85) |#1| |#1|)) (-15 -2685 ((-85) |#1| |#1|)) (-15 -2568 ((-85) |#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-759)) (T -758))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 10 T ELT)) (-2858 (($ $ $) 11 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 12 T ELT)) (-2568 (((-85) $ $) 14 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 13 T ELT)) (-2686 (((-85) $ $) 15 T ELT)))
+(((-759) (-113)) (T -759))
+((-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2685 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2567 (*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85)))) (-2858 (*1 *1 *1 *1) (-4 *1 (-759))) (-2532 (*1 *1 *1 *1) (-4 *1 (-759))))
+(-13 (-72) (-10 -8 (-15 -2686 ((-85) $ $)) (-15 -2568 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2567 ((-85) $ $)) (-15 -2858 ($ $ $)) (-15 -2532 ($ $ $))))
+(((-72) . T) ((-13) . T) ((-1129) . T))
+((-2537 (($ $ $) 49 T ELT)) (-2538 (($ $ $) 48 T ELT)) (-2539 (($ $ $) 46 T ELT)) (-2535 (($ $ $) 55 T ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 50 T ELT)) (-2536 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3158 (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3504 (($ $) 39 T ELT)) (-2543 (($ $ $) 43 T ELT)) (-2544 (($ $ $) 42 T ELT)) (-2533 (($ $ $) 51 T ELT)) (-2541 (($ $ $) 57 T ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 45 T ELT)) (-2542 (((-3 $ #1#) $ $) 52 T ELT)) (-3467 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-2818 ((|#2| $) 36 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3818 (((-583 |#2|) $) 21 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -2533 (|#1| |#1| |#1|)) (-15 -2534 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -2536 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2537 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2539 (|#1| |#1| |#1|)) (-15 -2540 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2409 |#1|)) |#1| |#1|)) (-15 -2541 (|#1| |#1| |#1|)) (-15 -2542 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2543 (|#1| |#1| |#1|)) (-15 -2544 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3467 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3818 ((-583 |#2|) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3947 (|#1| (-484))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3947 ((-772) |#1|))) (-761 |#2|) (-961)) (T -760))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-2537 (($ $ $) 58 (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) 59 (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) 61 (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) 56 (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 55 (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ "failed") $ $) 57 (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 60 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #1="failed") $) 88 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 85 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 82 T ELT)) (-3157 (((-484) $) 87 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 84 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 83 T ELT)) (-3960 (($ $) 77 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 68 (|has| |#1| (-392)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2894 (($ |#1| (-694)) 75 T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 70 (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 71 (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) 79 T ELT)) (-2543 (($ $ $) 65 (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) 66 (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) 54 (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) 63 (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 62 (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ "failed") $ $) 64 (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 67 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) 78 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#1|) 72 (|has| |#1| (-495)) ELT)) (-3949 (((-694) $) 80 T ELT)) (-2818 ((|#1| $) 69 (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 86 (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) 81 T ELT)) (-3818 (((-583 |#1|) $) 74 T ELT)) (-3678 ((|#1| $ (-694)) 76 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2546 ((|#1| $ |#1| |#1|) 73 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 90 T ELT) (($ |#1| $) 89 T ELT)))
+(((-761 |#1|) (-113) (-961)) (T -761))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-2894 (*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-2546 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-2547 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-761 *3)))) (-2548 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-761 *3)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) (-3504 (*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392)))) (-2549 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-761 *3)))) (-2544 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2543 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2542 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2541 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2539 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-761 *3)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2537 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2536 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2535 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-2534 (*1 *2 *1 *1) (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1))) (-4 *1 (-761 *3)))) (-2533 (*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(-13 (-961) (-82 |t#1| |t#1|) (-355 |t#1|) (-10 -8 (-15 -3949 ((-694) $)) (-15 -2821 ((-694) $)) (-15 -3175 (|t#1| $)) (-15 -3960 ($ $)) (-15 -3678 (|t#1| $ (-694))) (-15 -2894 ($ |t#1| (-694))) (-15 -3818 ((-583 |t#1|) $)) (-15 -2546 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3467 ((-3 $ "failed") $ |t#1|)) (-15 -2547 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -2548 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -2818 (|t#1| $)) (-15 -3504 ($ $))) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -2544 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2542 ((-3 $ "failed") $ $)) (-15 -2541 ($ $ $)) (-15 -2540 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2539 ($ $ $)) (-15 -2550 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -2538 ($ $ $)) (-15 -2537 ($ $ $)) (-15 -2536 ((-3 $ "failed") $ $)) (-15 -2535 ($ $ $)) (-15 -2534 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $)) (-15 -2533 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-355 |#1|) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2545 ((|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2550 (((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 46 (|has| |#1| (-312)) ELT)) (-2548 (((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 43 (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 42 (|has| |#1| (-495)) ELT)) (-2549 (((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)) 45 (|has| |#1| (-312)) ELT)) (-2546 ((|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -2545 (|#2| |#2| |#2| (-69 |#1|) (-1 |#1| |#1|))) (-15 -2546 (|#1| |#2| |#1| |#1| (-69 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-495)) (PROGN (-15 -2547 ((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2548 ((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -2549 ((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|))) (-15 -2550 ((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2| (-69 |#1|)))) |%noBranch|)) (-961) (-761 |#1|)) (T -762))
+((-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2549 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2547 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3)) (-4 *3 (-761 *5)))) (-2546 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3)) (-4 *3 (-761 *2)))) (-2545 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2)) (-4 *2 (-761 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 34 (|has| |#1| (-312)) ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3534 (((-772) $ (-772)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) NIL T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 30 (|has| |#1| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 28 (|has| |#1| (-495)) ELT)) (-2821 (((-694) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 32 (|has| |#1| (-312)) ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (($ |#1|) NIL T ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 23 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 19 T ELT) (($ $ (-694)) 24 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-763 |#1| |#2| |#3|) (-13 (-761 |#1|) (-10 -8 (-15 -3534 ((-772) $ (-772))))) (-961) (-69 |#1|) (-1 |#1| |#1|)) (T -763))
+((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3)) (-14 *5 (-1 *3 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2537 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2538 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2539 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2535 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2534 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2536 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2550 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-694)) 17 T ELT)) (-2548 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2547 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2821 (((-694) $) NIL T ELT)) (-2543 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2544 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2541 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-2540 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-2542 (((-3 $ #1#) $ $) NIL (|has| |#2| (-312)) ELT)) (-2549 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-3949 (((-694) $) NIL T ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (($ (-1176 |#1|)) 19 T ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-694)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2546 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 13 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-764 |#1| |#2| |#3| |#4|) (-13 (-761 |#2|) (-555 (-1176 |#1|))) (-1090) (-961) (-69 |#2|) (-1 |#2| |#2|)) (T -764))
+NIL
+((-2553 ((|#1| (-694) |#1|) 45 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2552 ((|#1| (-694) (-694) |#1|) 36 T ELT) ((|#1| (-694) |#1|) 24 T ELT)) (-2551 ((|#1| (-694) |#1|) 40 T ELT)) (-2801 ((|#1| (-694) |#1|) 38 T ELT)) (-2800 ((|#1| (-694) |#1|) 37 T ELT)))
+(((-765 |#1|) (-10 -7 (-15 -2800 (|#1| (-694) |#1|)) (-15 -2801 (|#1| (-694) |#1|)) (-15 -2551 (|#1| (-694) |#1|)) (-15 -2552 (|#1| (-694) |#1|)) (-15 -2552 (|#1| (-694) (-694) |#1|)) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -2553 (|#1| (-694) |#1|)) |%noBranch|)) (-146)) (T -765))
+((-2553 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2552 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))) (-2800 (*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2532 (($ $ $) 23 T ELT)) (-2858 (($ $ $) 22 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2567 (((-85) $ $) 21 T ELT)) (-2568 (((-85) $ $) 19 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 20 T ELT)) (-2686 (((-85) $ $) 18 T ELT)) (** (($ $ (-830)) 26 T ELT)) (* (($ $ $) 25 T ELT)))
+(((-766) (-113)) (T -766))
+NIL
+(-13 (-756) (-1025))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-756) . T) ((-759) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3403 (((-484) $) 14 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-484)) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 10 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 12 T ELT)))
+(((-767) (-13 (-756) (-10 -8 (-15 -3947 ($ (-484))) (-15 -3403 ((-484) $))))) (T -767))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767)))))
+((-2554 (((-1185) (-583 (-51))) 23 T ELT)) (-3461 (((-1185) (-1073) (-772)) 13 T ELT) (((-1185) (-772)) 8 T ELT) (((-1185) (-1073)) 10 T ELT)))
+(((-768) (-10 -7 (-15 -3461 ((-1185) (-1073))) (-15 -3461 ((-1185) (-772))) (-15 -3461 ((-1185) (-1073) (-772))) (-15 -2554 ((-1185) (-583 (-51)))))) (T -768))
+((-2554 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3461 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-768)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-768)))))
+((-2556 (((-632 (-1138)) $ (-1138)) 15 T ELT)) (-2557 (((-632 (-488)) $ (-488)) 12 T ELT)) (-2555 (((-694) $ (-102)) 30 T ELT)))
+(((-769 |#1|) (-10 -7 (-15 -2555 ((-694) |#1| (-102))) (-15 -2556 ((-632 (-1138)) |#1| (-1138))) (-15 -2557 ((-632 (-488)) |#1| (-488)))) (-770)) (T -769))
+NIL
+((-2556 (((-632 (-1138)) $ (-1138)) 8 T ELT)) (-2557 (((-632 (-488)) $ (-488)) 9 T ELT)) (-2555 (((-694) $ (-102)) 7 T ELT)) (-2558 (((-632 (-101)) $ (-101)) 10 T ELT)) (-1700 (($ $) 6 T ELT)))
+(((-770) (-113)) (T -770))
+((-2558 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))) (-2557 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))) (-2556 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1138))) (-5 *3 (-1138)))) (-2555 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
+(-13 (-147) (-10 -8 (-15 -2558 ((-632 (-101)) $ (-101))) (-15 -2557 ((-632 (-488)) $ (-488))) (-15 -2556 ((-632 (-1138)) $ (-1138))) (-15 -2555 ((-694) $ (-102)))))
(((-147) . T))
-((-2557 (((-633 (-1139)) $ (-1139)) NIL T ELT)) (-2558 (((-633 (-489)) $ (-489)) NIL T ELT)) (-2556 (((-695) $ (-102)) NIL T ELT)) (-2559 (((-633 (-101)) $ (-101)) 22 T ELT)) (-2561 (($ (-338)) 12 T ELT) (($ (-1074)) 14 T ELT)) (-2560 (((-85) $) 19 T ELT)) (-3948 (((-773) $) 26 T ELT)) (-1701 (($ $) 23 T ELT)))
-(((-772) (-13 (-771) (-553 (-773)) (-10 -8 (-15 -2561 ($ (-338))) (-15 -2561 ($ (-1074))) (-15 -2560 ((-85) $))))) (T -772))
-((-2561 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))) (-2561 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
-((-2570 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2591 (($ $ $) 125 T ELT)) (-2606 (((-485) $) 31 T ELT) (((-485)) 36 T ELT)) (-2601 (($ (-485)) 53 T ELT)) (-2598 (($ $ $) 54 T ELT) (($ (-584 $)) 84 T ELT)) (-2582 (($ $ (-584 $)) 82 T ELT)) (-2603 (((-485) $) 34 T ELT)) (-2585 (($ $ $) 73 T ELT)) (-3534 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2604 (((-485) $) 33 T ELT)) (-2586 (($ $ $) 72 T ELT)) (-3537 (($ $) 114 T ELT)) (-2589 (($ $ $) 129 T ELT)) (-2572 (($ (-584 $)) 61 T ELT)) (-3542 (($ $ (-584 $)) 79 T ELT)) (-2600 (($ (-485) (-485)) 55 T ELT)) (-2613 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3139 (($ $ (-485)) 43 T ELT) (($ $) 46 T ELT)) (-2566 (($ $ $) 97 T ELT)) (-2587 (($ $ $) 132 T ELT)) (-2581 (($ $) 115 T ELT)) (-2565 (($ $ $) 98 T ELT)) (-2577 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2839 (((-1186) $) 10 T ELT)) (-2580 (($ $) 118 T ELT) (($ $ (-695)) 122 T ELT)) (-2583 (($ $ $) 75 T ELT)) (-2584 (($ $ $) 74 T ELT)) (-2597 (($ $ (-584 $)) 110 T ELT)) (-2595 (($ $ $) 113 T ELT)) (-2574 (($ (-584 $)) 59 T ELT)) (-2575 (($ $) 70 T ELT) (($ (-584 $)) 71 T ELT)) (-2578 (($ $ $) 123 T ELT)) (-2579 (($ $) 116 T ELT)) (-2590 (($ $ $) 128 T ELT)) (-3535 (($ (-485)) 21 T ELT) (($ (-1091)) 23 T ELT) (($ (-1074)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2563 (($ $ $) 101 T ELT)) (-2562 (($ $) 102 T ELT)) (-2608 (((-1186) (-1074)) 15 T ELT)) (-2609 (($ (-1074)) 14 T ELT)) (-3125 (($ (-584 (-584 $))) 58 T ELT)) (-3140 (($ $ (-485)) 42 T ELT) (($ $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2593 (($ $ $) 131 T ELT)) (-3472 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2594 (((-85) $) 108 T ELT)) (-2596 (($ $ (-584 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2602 (($ (-485)) 39 T ELT)) (-2605 (((-485) $) 32 T ELT) (((-485)) 35 T ELT)) (-2599 (($ $ $) 40 T ELT) (($ (-584 $)) 83 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (($ $ $) 99 T ELT)) (-3567 (($) 13 T ELT)) (-3802 (($ $ (-584 $)) 109 T ELT)) (-2607 (((-1074) (-1074)) 8 T ELT)) (-3838 (($ $) 117 T ELT) (($ $ (-695)) 121 T ELT)) (-2567 (($ $ $) 96 T ELT)) (-3760 (($ $ (-695)) 139 T ELT)) (-2573 (($ (-584 $)) 60 T ELT)) (-3948 (((-773) $) 19 T ELT)) (-3775 (($ $ (-485)) 41 T ELT) (($ $) 44 T ELT)) (-2576 (($ $) 68 T ELT) (($ (-584 $)) 69 T ELT)) (-3242 (($ $) 66 T ELT) (($ (-584 $)) 67 T ELT)) (-2592 (($ $) 124 T ELT)) (-2571 (($ (-584 $)) 65 T ELT)) (-3103 (($ $ $) 105 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2588 (($ $ $) 130 T ELT)) (-2564 (($ $ $) 100 T ELT)) (-3739 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2568 (($ $ $) 89 T ELT)) (-2569 (($ $ $) 87 T ELT)) (-3058 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2686 (($ $ $) 88 T ELT)) (-2687 (($ $ $) 86 T ELT)) (-3951 (($ $ $) 94 T ELT)) (-3839 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3841 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
-(((-773) (-13 (-1014) (-10 -8 (-15 -2839 ((-1186) $)) (-15 -2609 ($ (-1074))) (-15 -2608 ((-1186) (-1074))) (-15 -3535 ($ (-485))) (-15 -3535 ($ (-1091))) (-15 -3535 ($ (-1074))) (-15 -3535 ($ (-179))) (-15 -3567 ($)) (-15 -2607 ((-1074) (-1074))) (-15 -2606 ((-485) $)) (-15 -2605 ((-485) $)) (-15 -2606 ((-485))) (-15 -2605 ((-485))) (-15 -2604 ((-485) $)) (-15 -2603 ((-485) $)) (-15 -2602 ($ (-485))) (-15 -2601 ($ (-485))) (-15 -2600 ($ (-485) (-485))) (-15 -3140 ($ $ (-485))) (-15 -3139 ($ $ (-485))) (-15 -3775 ($ $ (-485))) (-15 -3140 ($ $)) (-15 -3139 ($ $)) (-15 -3775 ($ $)) (-15 -2599 ($ $ $)) (-15 -2598 ($ $ $)) (-15 -2599 ($ (-584 $))) (-15 -2598 ($ (-584 $))) (-15 -2597 ($ $ (-584 $))) (-15 -2596 ($ $ (-584 $))) (-15 -2596 ($ $ $ $)) (-15 -2595 ($ $ $)) (-15 -2594 ((-85) $)) (-15 -3802 ($ $ (-584 $))) (-15 -3537 ($ $)) (-15 -2593 ($ $ $)) (-15 -2592 ($ $)) (-15 -3125 ($ (-584 (-584 $)))) (-15 -2591 ($ $ $)) (-15 -2613 ($ $)) (-15 -2613 ($ $ $)) (-15 -2590 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -3760 ($ $ (-695))) (-15 -3103 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -3542 ($ $ (-584 $))) (-15 -2582 ($ $ (-584 $))) (-15 -2581 ($ $)) (-15 -3838 ($ $)) (-15 -3838 ($ $ (-695))) (-15 -2580 ($ $)) (-15 -2580 ($ $ (-695))) (-15 -2579 ($ $)) (-15 -2578 ($ $ $)) (-15 -3534 ($ $)) (-15 -3534 ($ $ $)) (-15 -3534 ($ $ $ $)) (-15 -2577 ($ $)) (-15 -2577 ($ $ $)) (-15 -2577 ($ $ $ $)) (-15 -3472 ($ $)) (-15 -3472 ($ $ $)) (-15 -3472 ($ $ $ $)) (-15 -3242 ($ $)) (-15 -3242 ($ (-584 $))) (-15 -2576 ($ $)) (-15 -2576 ($ (-584 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-584 $))) (-15 -2574 ($ (-584 $))) (-15 -2573 ($ (-584 $))) (-15 -2572 ($ (-584 $))) (-15 -2571 ($ (-584 $))) (-15 -3058 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -2687 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -3841 ($ $ $)) (-15 -3839 ($ $ $)) (-15 -3839 ($ $)) (-15 * ($ $ $)) (-15 -3951 ($ $ $)) (-15 ** ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -3468 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $)) (-15 -3739 ($ $ $)) (-15 -3739 ($ $))))) (T -773))
-((-2839 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773)))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773)))) (-3567 (*1 *1) (-5 *1 (-773))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2606 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2605 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-2600 (*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3775 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))) (-3140 (*1 *1 *1) (-5 *1 (-773))) (-3139 (*1 *1 *1) (-5 *1 (-773))) (-3775 (*1 *1 *1) (-5 *1 (-773))) (-2599 (*1 *1 *1 *1) (-5 *1 (-773))) (-2598 (*1 *1 *1 *1) (-5 *1 (-773))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2597 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2596 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2595 (*1 *1 *1 *1) (-5 *1 (-773))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3537 (*1 *1 *1) (-5 *1 (-773))) (-2593 (*1 *1 *1 *1) (-5 *1 (-773))) (-2592 (*1 *1 *1) (-5 *1 (-773))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773)))) (-2591 (*1 *1 *1 *1) (-5 *1 (-773))) (-2613 (*1 *1 *1) (-5 *1 (-773))) (-2613 (*1 *1 *1 *1) (-5 *1 (-773))) (-2590 (*1 *1 *1 *1) (-5 *1 (-773))) (-2589 (*1 *1 *1 *1) (-5 *1 (-773))) (-2588 (*1 *1 *1 *1) (-5 *1 (-773))) (-2587 (*1 *1 *1 *1) (-5 *1 (-773))) (-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-3103 (*1 *1 *1 *1) (-5 *1 (-773))) (-2586 (*1 *1 *1 *1) (-5 *1 (-773))) (-2585 (*1 *1 *1 *1) (-5 *1 (-773))) (-2584 (*1 *1 *1 *1) (-5 *1 (-773))) (-2583 (*1 *1 *1 *1) (-5 *1 (-773))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2582 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2581 (*1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1) (-5 *1 (-773))) (-3838 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2580 (*1 *1 *1) (-5 *1 (-773))) (-2580 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773)))) (-2579 (*1 *1 *1) (-5 *1 (-773))) (-2578 (*1 *1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1 *1) (-5 *1 (-773))) (-3534 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1) (-5 *1 (-773))) (-2577 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1 *1) (-5 *1 (-773))) (-3472 (*1 *1 *1 *1 *1) (-5 *1 (-773))) (-3242 (*1 *1 *1) (-5 *1 (-773))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2576 (*1 *1 *1) (-5 *1 (-773))) (-2576 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2575 (*1 *1 *1) (-5 *1 (-773))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))) (-3058 (*1 *1 *1 *1) (-5 *1 (-773))) (-2570 (*1 *1 *1 *1) (-5 *1 (-773))) (-2687 (*1 *1 *1 *1) (-5 *1 (-773))) (-2569 (*1 *1 *1 *1) (-5 *1 (-773))) (-2686 (*1 *1 *1 *1) (-5 *1 (-773))) (-2568 (*1 *1 *1 *1) (-5 *1 (-773))) (-3841 (*1 *1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1 *1) (-5 *1 (-773))) (-3839 (*1 *1 *1) (-5 *1 (-773))) (* (*1 *1 *1 *1) (-5 *1 (-773))) (-3951 (*1 *1 *1 *1) (-5 *1 (-773))) (** (*1 *1 *1 *1) (-5 *1 (-773))) (-2567 (*1 *1 *1 *1) (-5 *1 (-773))) (-2566 (*1 *1 *1 *1) (-5 *1 (-773))) (-2565 (*1 *1 *1 *1) (-5 *1 (-773))) (-3468 (*1 *1 *1 *1) (-5 *1 (-773))) (-2564 (*1 *1 *1 *1) (-5 *1 (-773))) (-2563 (*1 *1 *1 *1) (-5 *1 (-773))) (-2562 (*1 *1 *1) (-5 *1 (-773))) (-3739 (*1 *1 *1 *1) (-5 *1 (-773))) (-3739 (*1 *1 *1) (-5 *1 (-773))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3833 (((-3 $ "failed") (-1091)) 36 T ELT)) (-3138 (((-695)) 32 T ELT)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) 29 T ELT)) (-3244 (((-1074) $) 43 T ELT)) (-2401 (($ (-831)) 28 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-1091) $) 13 T ELT) (((-474) $) 19 T ELT) (((-801 (-330)) $) 26 T ELT) (((-801 (-485)) $) 22 T ELT)) (-3948 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT)))
-(((-774 |#1|) (-13 (-753) (-554 (-1091)) (-554 (-474)) (-554 (-801 (-330))) (-554 (-801 (-485))) (-10 -8 (-15 -3833 ((-3 $ "failed") (-1091))))) (-584 (-1091))) (T -774))
-((-3833 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-447) $) 12 T ELT)) (-2610 (((-584 (-381)) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)))
-(((-775) (-13 (-1014) (-10 -8 (-15 -3544 ((-447) $)) (-15 -2610 ((-584 (-381)) $))))) (T -775))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT) (((-858 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3925 (((-1186) (-695)) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-776 |#1| |#2| |#3| |#4|) (-13 (-962) (-430 (-858 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3951 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3925 ((-1186) (-695))))) (-962) (-584 (-1091)) (-584 (-695)) (-695)) (T -776))
-((-3951 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962)) (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3))))
-((-2611 (((-3 (-148 |#3|) #1="failed") (-695) (-695) |#2| |#2|) 38 T ELT)) (-2612 (((-3 (-350 |#3|) #1#) (-695) (-695) |#2| |#2|) 29 T ELT)))
-(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-350 |#3|) #1="failed") (-695) (-695) |#2| |#2|)) (-15 -2611 ((-3 (-148 |#3|) #1#) (-695) (-695) |#2| |#2|))) (-312) (-1173 |#1|) (-1156 |#1|)) (T -777))
-((-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))))
-((-2612 (((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) 28 T ELT)))
-(((-778 |#1| |#2| |#3|) (-10 -7 (-15 -2612 ((-3 (-350 (-1149 |#2| |#1|)) #1="failed") (-695) (-695) (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (-15 -2612 ((-3 (-350 (-1149 |#2| |#1|)) #1#) (-695) (-695) (-1170 |#1| |#2| |#3|)))) (-312) (-1091) |#1|) (T -778))
-((-2612 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))) (-2612 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5))) (-5 *1 (-778 *5 *6 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2613 (($ (-1086 (-485)) (-485)) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2614 (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3774 (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2616 (((-485)) NIL T ELT)) (-2615 (((-485) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2617 (((-1070 (-485)) $) NIL T ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-485) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-779 |#1|) (-780 |#1|) (-485)) (T -779))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $ (-485)) 78 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-2613 (($ (-1086 (-485)) (-485)) 77 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2614 (($ $) 80 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3774 (((-695) $) 85 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-2616 (((-485)) 82 T ELT)) (-2615 (((-485) $) 81 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3771 (($ $ (-485)) 84 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-2617 (((-1070 (-485)) $) 86 T ELT)) (-2893 (($ $) 83 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3772 (((-485) $ (-485)) 79 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-780 |#1|) (-113) (-485)) (T -780))
-((-2617 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2893 (*1 *1 *1) (-4 *1 (-780 *2))) (-2616 (*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2614 (*1 *1 *1) (-4 *1 (-780 *2))) (-3772 (*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
-(-13 (-258) (-120) (-10 -8 (-15 -2617 ((-1070 (-485)) $)) (-15 -3774 ((-695) $)) (-15 -3771 ($ $ (-485))) (-15 -2893 ($ $)) (-15 -2616 ((-485))) (-15 -2615 ((-485) $)) (-15 -2614 ($ $)) (-15 -3772 ((-485) $ (-485))) (-15 -3039 ($ $ (-485))) (-15 -2613 ($ (-1086 (-485)) (-485)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-779 |#1|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3158 (((-779 |#1|) $) NIL T ELT) (((-1091) $) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-779 |#1|) (-951 (-485))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-779 |#1|)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-779 |#1|) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-779 |#1|) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-779 |#1|) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| (-779 |#1|) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3960 (($ (-1 (-779 |#1|) (-779 |#1|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-779 |#1|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-779 |#1|))) (|:| |vec| (-1180 (-779 |#1|)))) (-1180 $) $) NIL T ELT) (((-631 (-779 |#1|)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-779 |#1|) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-779 |#1|) (-258)) ELT)) (-3132 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-779 |#1|) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-779 |#1|)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-779 |#1|) (-779 |#1|)) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-249 (-779 |#1|))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-249 (-779 |#1|)))) NIL (|has| (-779 |#1|) (-260 (-779 |#1|))) ELT) (($ $ (-584 (-1091)) (-584 (-779 |#1|))) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT) (($ $ (-1091) (-779 |#1|)) NIL (|has| (-779 |#1|) (-456 (-1091) (-779 |#1|))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-779 |#1|)) NIL (|has| (-779 |#1|) (-241 (-779 |#1|) (-779 |#1|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-779 |#1|) $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-779 |#1|) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-779 |#1|) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-779 |#1|) (-934)) ELT) (((-179) $) NIL (|has| (-779 |#1|) (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-779 |#1|)) NIL T ELT) (($ (-1091)) NIL (|has| (-779 |#1|) (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-779 |#1|) (-822))) (|has| (-779 |#1|) (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 (((-779 |#1|) $) NIL (|has| (-779 |#1|) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-779 |#1|) (-741)) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-779 |#1|) (-779 |#1|))) NIL T ELT) (($ $ (-1 (-779 |#1|) (-779 |#1|)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-779 |#1|) (-812 (-1091))) ELT) (($ $) NIL (|has| (-779 |#1|) (-189)) ELT) (($ $ (-695)) NIL (|has| (-779 |#1|) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| (-779 |#1|) (-757)) ELT)) (-3951 (($ $ $) NIL T ELT) (($ (-779 |#1|) (-779 |#1|)) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-779 |#1|) $) NIL T ELT) (($ $ (-779 |#1|)) NIL T ELT)))
-(((-781 |#1|) (-13 (-905 (-779 |#1|)) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485)) (T -781))
-((-3772 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485)))) (-3732 (*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| |#2| (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) NIL (|has| |#2| (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT)) (-3732 (($ $) 35 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 64 T ELT)) (-2996 (($) NIL (|has| |#2| (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| |#2| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| |#2| (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 ((|#2| $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| |#2| (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#2| (-757)) ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 60 T ELT)) (-3448 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3132 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 |#2|) (-584 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT) (($ $ (-1091) |#2|) NIL (|has| |#2| (-456 (-1091) |#2|)) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| |#2| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| |#2| (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| |#2| (-554 (-474))) ELT) (((-330) $) NIL (|has| |#2| (-934)) ELT) (((-179) $) NIL (|has| |#2| (-934)) ELT)) (-2618 (((-148 (-350 (-485))) $) 78 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3948 (((-773) $) 105 T ELT) (($ (-485)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1091)) NIL (|has| |#2| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3133 ((|#2| $) NIL (|has| |#2| (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ (-485)) 71 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| |#2| (-741)) ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3058 (((-85) $ $) 46 T ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#2| (-757)) ELT)) (-3951 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3839 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3841 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) 61 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-782 |#1| |#2|) (-13 (-905 |#2|) (-10 -8 (-15 -3772 ((-350 (-485)) $ (-485))) (-15 -2618 ((-148 (-350 (-485))) $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)))) (-485) (-780 |#1|)) (T -782))
-((-3772 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485)) (-4 *5 (-780 *4)))) (-2618 (*1 *2 *1) (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))) (-3732 (*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3)))))
-((-2570 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3798 ((|#2| $) 12 T ELT)) (-2619 (($ |#1| |#2|) 9 T ELT)) (-3244 (((-1074) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3245 (((-1034) $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#1| $) 11 T ELT)) (-3532 (($ |#1| |#2|) 10 T ELT)) (-3948 (((-773) $) 18 (OR (-12 (|has| |#1| (-553 (-773))) (|has| |#2| (-553 (-773)))) (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014)))) ELT)) (-1266 (((-85) $ $) NIL (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)) (-3058 (((-85) $ $) 23 (-12 (|has| |#1| (-1014)) (|has| |#2| (-1014))) ELT)))
-(((-783 |#1| |#2|) (-13 (-1130) (-10 -8 (IF (|has| |#1| (-553 (-773))) (IF (|has| |#2| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1014)) (IF (|has| |#2| (-1014)) (-6 (-1014)) |%noBranch|) |%noBranch|) (-15 -2619 ($ |#1| |#2|)) (-15 -3532 ($ |#1| |#2|)) (-15 -3803 (|#1| $)) (-15 -3798 (|#2| $)))) (-1130) (-1130)) (T -783))
-((-2619 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))) (-3803 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130)))) (-3798 (*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2959 (((-485) $) 16 T ELT)) (-2621 (($ (-130)) 13 T ELT)) (-2620 (($ (-130)) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2958 (((-130) $) 15 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2623 (($ (-130)) 11 T ELT)) (-2624 (($ (-130)) 10 T ELT)) (-3948 (((-773) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2622 (($ (-130)) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-784) (-13 (-1014) (-556 (-130)) (-10 -8 (-15 -2624 ($ (-130))) (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2958 ((-130) $)) (-15 -2959 ((-485) $))))) (T -784))
-((-2624 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784)))))
-((-3948 (((-265 (-485)) (-350 (-858 (-48)))) 23 T ELT) (((-265 (-485)) (-858 (-48))) 18 T ELT)))
-(((-785) (-10 -7 (-15 -3948 ((-265 (-485)) (-858 (-48)))) (-15 -3948 ((-265 (-485)) (-350 (-858 (-48))))))) (T -785))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))) (-3948 (*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3568 (((-85) $ (|[\|\|]| (-447))) 9 T ELT) (((-85) $ (|[\|\|]| (-1074))) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-447) $) 10 T ELT) (((-1074) $) 14 T ELT)) (-3058 (((-85) $ $) 15 T ELT)))
-(((-786) (-13 (-996) (-1176) (-10 -8 (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3574 ((-447) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3574 ((-1074) $))))) (T -786))
-((-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786)))))
-((-3960 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 15 T ELT)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -3960 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)))) (-1130) (-1130)) (T -787))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
-((-3373 (($ |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT)))
-(((-788 |#1|) (-10 -8 (-15 -3373 ($ |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -788))
-((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130)))) (-3373 (*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130)))))
-((-3960 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 15 T ELT)))
-(((-789 |#1| |#2|) (-10 -7 (-15 -3960 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)))) (-1130) (-1130)) (T -789))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
-((-3373 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT)))
-(((-790 |#1|) (-10 -8 (-15 -3373 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -790))
-((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130)))) (-3373 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130)))))
-((-2625 (((-584 (-1096)) (-1074)) 9 T ELT)))
-(((-791) (-10 -7 (-15 -2625 ((-584 (-1096)) (-1074))))) (T -791))
-((-2625 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791)))))
-((-3960 (((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)) 15 T ELT)))
-(((-792 |#1| |#2|) (-10 -7 (-15 -3960 ((-793 |#2|) (-1 |#2| |#1|) (-793 |#1|)))) (-1130) (-1130)) (T -792))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6)))))
-((-2626 (($ |#1| |#1| |#1|) 8 T ELT)) (-2627 ((|#1| $ (-695)) 15 T ELT)))
-(((-793 |#1|) (-10 -8 (-15 -2626 ($ |#1| |#1| |#1|)) (-15 -2627 (|#1| $ (-695)))) (-1130)) (T -793))
-((-2627 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))) (-2626 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-((-2630 (((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485)))) 41 T ELT)) (-2629 (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 31 T ELT)) (-2631 (((-1070 (-584 (-485))) (-584 (-485))) 53 T ELT) (((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485))) 50 T ELT)) (-2632 (((-1070 (-584 (-485))) (-485)) 55 T ELT)) (-2628 (((-1070 (-584 (-831))) (-1070 (-584 (-831)))) 22 T ELT)) (-3011 (((-584 (-831)) (-584 (-831))) 18 T ELT)))
-(((-794) (-10 -7 (-15 -3011 ((-584 (-831)) (-584 (-831)))) (-15 -2628 ((-1070 (-584 (-831))) (-1070 (-584 (-831))))) (-15 -2629 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2630 ((-1070 (-584 (-485))) (-584 (-485)) (-1070 (-584 (-485))))) (-15 -2631 ((-1070 (-584 (-485))) (-584 (-485)) (-584 (-485)))) (-15 -2631 ((-1070 (-584 (-485))) (-584 (-485)))) (-15 -2632 ((-1070 (-584 (-485))) (-485))))) (T -794))
-((-2632 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2631 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2630 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))) (-2629 (*1 *2 *3 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))) (-3011 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794)))))
-((-3974 (((-801 (-330)) $) 9 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-801 (-485)) $) 8 (|has| |#1| (-554 (-801 (-485)))) ELT)))
-(((-795 |#1|) (-113) (-1130)) (T -795))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|)))
-(((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3616 (($) 14 T ELT)) (-2634 (($ (-799 |#1| |#2|) (-799 |#1| |#3|)) 28 T ELT)) (-2633 (((-799 |#1| |#3|) $) 16 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2642 (((-85) $) 22 T ELT)) (-2641 (($) 19 T ELT)) (-3948 (((-773) $) 31 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2852 (((-799 |#1| |#2|) $) 15 T ELT)) (-3058 (((-85) $ $) 26 T ELT)))
-(((-796 |#1| |#2| |#3|) (-13 (-1014) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3616 ($)) (-15 -2634 ($ (-799 |#1| |#2|) (-799 |#1| |#3|))) (-15 -2852 ((-799 |#1| |#2|) $)) (-15 -2633 ((-799 |#1| |#3|) $)))) (-1014) (-1014) (-609 |#2|)) (T -796))
-((-2642 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2641 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-3616 (*1 *1) (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014)) (-4 *4 (-609 *3)))) (-2634 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))) (-2852 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))) (-2633 (*1 *2 *1) (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-2798 (((-799 |#1| $) $ (-801 |#1|) (-799 |#1| $)) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-797 |#1|) (-113) (-1014)) (T -797))
-((-2798 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4)) (-4 *4 (-1014)))))
-(-13 (-1014) (-10 -8 (-15 -2798 ((-799 |t#1| $) $ (-801 |t#1|) (-799 |t#1| $)))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2635 (((-85) (-584 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2636 (((-799 |#1| |#2|) |#2| |#3|) 45 (-12 (-2562 (|has| |#2| (-951 (-1091)))) (-2562 (|has| |#2| (-962)))) ELT) (((-584 (-249 (-858 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-962)) (-2562 (|has| |#2| (-951 (-1091))))) ELT) (((-584 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-951 (-1091))) ELT) (((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|) 21 T ELT)))
-(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -2635 ((-85) |#2| |#3|)) (-15 -2635 ((-85) (-584 |#2|) |#3|)) (-15 -2636 ((-796 |#1| |#2| (-584 |#2|)) (-584 |#2|) |#3|)) (IF (|has| |#2| (-951 (-1091))) (-15 -2636 ((-584 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-962)) (-15 -2636 ((-584 (-249 (-858 |#2|))) |#2| |#3|)) (-15 -2636 ((-799 |#1| |#2|) |#2| |#3|))))) (-1014) (-797 |#1|) (-554 (-801 |#1|))) (T -798))
-((-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4)) (-2562 (-4 *3 (-951 (-1091)))) (-2562 (-4 *3 (-962))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-962)) (-2562 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))) (-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6))) (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3236 (($ $ $) 40 T ELT)) (-2663 (((-3 (-85) #1="failed") $ (-801 |#1|)) 37 T ELT)) (-3616 (($) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2638 (($ (-801 |#1|) |#2| $) 20 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2640 (((-3 |#2| #1#) (-801 |#1|) $) 51 T ELT)) (-2642 (((-85) $) 15 T ELT)) (-2641 (($) 13 T ELT)) (-3259 (((-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|)))) 23 T ELT)) (-3948 (((-773) $) 45 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2637 (($ (-801 |#1|) |#2| $ |#2|) 49 T ELT)) (-2639 (($ (-801 |#1|) |#2| $) 48 T ELT)) (-3058 (((-85) $ $) 42 T ELT)))
-(((-799 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -2642 ((-85) $)) (-15 -2641 ($)) (-15 -3616 ($)) (-15 -3236 ($ $ $)) (-15 -2640 ((-3 |#2| #1="failed") (-801 |#1|) $)) (-15 -2639 ($ (-801 |#1|) |#2| $)) (-15 -2638 ($ (-801 |#1|) |#2| $)) (-15 -2637 ($ (-801 |#1|) |#2| $ |#2|)) (-15 -3259 ((-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))) $)) (-15 -3532 ($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| |#2|))))) (-15 -2663 ((-3 (-85) #1#) $ (-801 |#1|))))) (-1014) (-1014)) (T -799))
-((-2642 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-2641 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3616 (*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3236 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2640 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014)) (-5 *1 (-799 *4 *2)))) (-2639 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-2637 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)))) (-2663 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-799 *4 *5)) (-4 *5 (-1014)))))
-((-3960 (((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)) 22 T ELT)))
-(((-800 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-799 |#1| |#3|) (-1 |#3| |#2|) (-799 |#1| |#2|)))) (-1014) (-1014) (-1014)) (T -800))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2650 (($ $ (-584 (-51))) 74 T ELT)) (-3083 (((-584 $) $) 139 T ELT)) (-2647 (((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $) 30 T ELT)) (-3262 (((-85) $) 35 T ELT)) (-2648 (($ $ (-584 (-1091)) (-51)) 31 T ELT)) (-2651 (($ $ (-584 (-51))) 73 T ELT)) (-3159 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1091) #1#) $) 167 T ELT)) (-3158 ((|#1| $) 68 T ELT) (((-1091) $) NIL T ELT)) (-2645 (($ $) 126 T ELT)) (-2657 (((-85) $) 55 T ELT)) (-2652 (((-584 (-51)) $) 50 T ELT)) (-2649 (($ (-1091) (-85) (-85) (-85)) 75 T ELT)) (-2643 (((-3 (-584 $) #1#) (-584 $)) 82 T ELT)) (-2654 (((-85) $) 58 T ELT)) (-2655 (((-85) $) 57 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) 41 T ELT)) (-2660 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2827 (((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $) 97 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 40 T ELT)) (-2661 (((-3 (-584 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 $))) #1#) $) 107 T ELT)) (-2659 (((-3 (-584 $) #1#) $) 42 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $) 45 T ELT)) (-2658 (((-85) $) 34 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2646 (((-85) $) 28 T ELT)) (-2653 (((-85) $) 52 T ELT)) (-2644 (((-584 (-51)) $) 130 T ELT)) (-2656 (((-85) $) 56 T ELT)) (-3802 (($ (-86) (-584 $)) 104 T ELT)) (-3324 (((-695) $) 33 T ELT)) (-3402 (($ $) 72 T ELT)) (-3974 (($ (-584 $)) 69 T ELT)) (-3955 (((-85) $) 32 T ELT)) (-3948 (((-773) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1091)) 76 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2664 (($ $ (-51)) 129 T ELT)) (-2662 (($) 103 T CONST)) (-2668 (($) 83 T CONST)) (-3058 (((-85) $ $) 93 T ELT)) (-3951 (($ $ $) 117 T ELT)) (-3841 (($ $ $) 121 T ELT)) (** (($ $ (-695)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
-(((-801 |#1|) (-13 (-1014) (-951 |#1|) (-951 (-1091)) (-10 -8 (-15 -2662 ($) -3954) (-15 -2668 ($) -3954) (-15 -2824 ((-3 (-584 $) #1="failed") $)) (-15 -2825 ((-3 (-584 $) #1#) $)) (-15 -2661 ((-3 (-584 $) #1#) $ (-86))) (-15 -2661 ((-3 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 $))) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2402 (-695))) #1#) $)) (-15 -2660 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2659 ((-3 (-584 $) #1#) $)) (-15 -2827 ((-3 (-2 (|:| |val| $) (|:| -2402 $)) #1#) $)) (-15 -3802 ($ (-86) (-584 $))) (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))) (-15 ** ($ $ $)) (-15 -3951 ($ $ $)) (-15 -3324 ((-695) $)) (-15 -3974 ($ (-584 $))) (-15 -3402 ($ $)) (-15 -2658 ((-85) $)) (-15 -2657 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3955 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-584 (-51)) $)) (-15 -2651 ($ $ (-584 (-51)))) (-15 -2650 ($ $ (-584 (-51)))) (-15 -2649 ($ (-1091) (-85) (-85) (-85))) (-15 -2648 ($ $ (-584 (-1091)) (-51))) (-15 -2647 ((-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))) $)) (-15 -2646 ((-85) $)) (-15 -2645 ($ $)) (-15 -2664 ($ $ (-51))) (-15 -2644 ((-584 (-51)) $)) (-15 -3083 ((-584 $) $)) (-15 -2643 ((-3 (-584 $) #1#) (-584 $))))) (-1014)) (T -801))
-((-2662 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2668 (*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2661 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2661 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 (-801 *3))))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2827 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3802 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-3841 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3951 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-3324 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3402 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3262 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2651 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2649 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2648 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51)))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))) (-2643 (*1 *2 *2) (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-((-3211 (((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|))) 32 T ELT) (((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|))) 46 T ELT) (((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2663 (((-85) (-584 |#2|) (-801 |#1|)) 42 T ELT) (((-85) |#2| (-801 |#1|)) 36 T ELT)) (-3533 (((-1 (-85) |#2|) (-801 |#1|)) 16 T ELT)) (-2665 (((-584 |#2|) (-801 |#1|)) 24 T ELT)) (-2664 (((-801 |#1|) (-801 |#1|) |#2|) 20 T ELT)))
-(((-802 |#1| |#2|) (-10 -7 (-15 -3211 ((-801 |#1|) (-801 |#1|) (-1 (-85) |#2|))) (-15 -3211 ((-801 |#1|) (-801 |#1|) (-584 (-1 (-85) |#2|)))) (-15 -3211 ((-801 |#1|) (-801 |#1|) (-584 (-1091)) (-1 (-85) (-584 |#2|)))) (-15 -3533 ((-1 (-85) |#2|) (-801 |#1|))) (-15 -2663 ((-85) |#2| (-801 |#1|))) (-15 -2663 ((-85) (-584 |#2|) (-801 |#1|))) (-15 -2664 ((-801 |#1|) (-801 |#1|) |#2|)) (-15 -2665 ((-584 |#2|) (-801 |#1|)))) (-1014) (-1130)) (T -802))
-((-2665 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-2664 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3)) (-4 *3 (-1130)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-802 *4 *5)) (-4 *5 (-1130)))) (-3211 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6))) (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130)) (-5 *1 (-802 *4 *5)))))
-((-3960 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 19 T ELT)))
-(((-803 |#1| |#2|) (-10 -7 (-15 -3960 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1014) (-1014)) (T -803))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3936 (((-584 |#1|) $) 20 T ELT)) (-2666 (((-85) $) 49 T ELT)) (-3159 (((-3 (-615 |#1|) "failed") $) 55 T ELT)) (-3158 (((-615 |#1|) $) 53 T ELT)) (-3801 (($ $) 24 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3835 (((-695) $) 60 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-615 |#1|) $) 22 T ELT)) (-3948 (((-773) $) 47 T ELT) (($ (-615 |#1|)) 27 T ELT) (((-740 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 11 T CONST)) (-2667 (((-584 (-615 |#1|)) $) 28 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 66 T ELT)))
-(((-804 |#1|) (-13 (-757) (-951 (-615 |#1|)) (-10 -8 (-15 -2668 ($) -3954) (-15 -3948 ((-740 |#1|) $)) (-15 -3948 ($ |#1|)) (-15 -3803 ((-615 |#1|) $)) (-15 -3835 ((-695) $)) (-15 -2667 ((-584 (-615 |#1|)) $)) (-15 -3801 ($ $)) (-15 -2666 ((-85) $)) (-15 -3936 ((-584 |#1|) $)))) (-757)) (T -804))
-((-2668 (*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3948 (*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-2667 (*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))) (-3936 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
-((-3476 ((|#1| |#1| |#1|) 19 T ELT)))
-(((-805 |#1| |#2|) (-10 -7 (-15 -3476 (|#1| |#1| |#1|))) (-1156 |#2|) (-962)) (T -805))
-((-3476 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3)))))
-((-2671 ((|#2| $ |#3|) 10 T ELT)))
-(((-806 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#2| |#1| |#3|))) (-807 |#2| |#3|) (-1130) (-1130)) (T -806))
-NIL
-((-3760 ((|#1| $ |#2|) 7 T ELT)) (-2671 ((|#1| $ |#2|) 6 T ELT)))
-(((-807 |#1| |#2|) (-113) (-1130) (-1130)) (T -807))
-((-3760 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130)))))
-(-13 (-1130) (-10 -8 (-15 -3760 (|t#1| $ |t#2|)) (-15 -2671 (|t#1| $ |t#2|))))
-(((-13) . T) ((-1130) . T))
-((-2670 ((|#1| |#1| (-695)) 26 T ELT)) (-2669 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3437 (((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1#) |#1| (-695) (-695)) 29 T ELT) (((-584 |#1|) |#1|) 38 T ELT)))
-(((-808 |#1| |#2|) (-10 -7 (-15 -3437 ((-584 |#1|) |#1|)) (-15 -3437 ((-3 (-2 (|:| -3140 |#1|) (|:| -3139 |#1|)) #1="failed") |#1| (-695) (-695))) (-15 -2669 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2670 (|#1| |#1| (-695)))) (-1156 |#2|) (-312)) (T -808))
-((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))) (-2669 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))) (-3437 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-808 *3 *5)) (-4 *3 (-1156 *5)))) (-3437 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) 45 T ELT) (($ $ |#2| (-695)) 44 T ELT) (($ $ (-584 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) 48 T ELT) (($ $ |#2| (-695)) 47 T ELT) (($ $ (-584 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-809 |#1| |#2|) (-113) (-962) (-1014)) (T -809))
-NIL
-(-13 (-82 |t#1| |t#1|) (-812 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-655 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-807 $ |#2|) . T) ((-812 |#2|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3760 (($ $ (-584 |#1|) (-584 (-695))) 52 T ELT) (($ $ |#1| (-695)) 51 T ELT) (($ $ (-584 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#1|) (-584 (-695))) 55 T ELT) (($ $ |#1| (-695)) 54 T ELT) (($ $ (-584 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-810 |#1|) (-113) (-1014)) (T -810))
-NIL
-(-13 (-962) (-812 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-807 $ |#1|) . T) ((-812 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3760 (($ $ |#2|) NIL T ELT) (($ $ (-584 |#2|)) 10 T ELT) (($ $ |#2| (-695)) 12 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 15 T ELT)) (-2671 (($ $ |#2|) 16 T ELT) (($ $ (-584 |#2|)) 18 T ELT) (($ $ |#2| (-695)) 19 T ELT) (($ $ (-584 |#2|) (-584 (-695))) 21 T ELT)))
-(((-811 |#1| |#2|) (-10 -7 (-15 -2671 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -2671 (|#1| |#1| |#2| (-695))) (-15 -2671 (|#1| |#1| (-584 |#2|))) (-15 -3760 (|#1| |#1| (-584 |#2|) (-584 (-695)))) (-15 -3760 (|#1| |#1| |#2| (-695))) (-15 -3760 (|#1| |#1| (-584 |#2|))) (-15 -2671 (|#1| |#1| |#2|)) (-15 -3760 (|#1| |#1| |#2|))) (-812 |#2|) (-1014)) (T -811))
-NIL
-((-3760 (($ $ |#1|) 7 T ELT) (($ $ (-584 |#1|)) 15 T ELT) (($ $ |#1| (-695)) 14 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 13 T ELT)) (-2671 (($ $ |#1|) 6 T ELT) (($ $ (-584 |#1|)) 12 T ELT) (($ $ |#1| (-695)) 11 T ELT) (($ $ (-584 |#1|) (-584 (-695))) 10 T ELT)))
-(((-812 |#1|) (-113) (-1014)) (T -812))
-((-3760 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-3760 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014)))) (-2671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4)) (-4 *4 (-1014)))))
-(-13 (-807 $ |t#1|) (-10 -8 (-15 -3760 ($ $ (-584 |t#1|))) (-15 -3760 ($ $ |t#1| (-695))) (-15 -3760 ($ $ (-584 |t#1|) (-584 (-695)))) (-15 -2671 ($ $ (-584 |t#1|))) (-15 -2671 ($ $ |t#1| (-695))) (-15 -2671 ($ $ (-584 |t#1|) (-584 (-695))))))
-(((-13) . T) ((-807 $ |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 26 T ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-1295 (($ $ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3139 (($ $) 25 T ELT)) (-2672 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3140 (($ $) 23 T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) 20 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1117 |#1|) $) 9 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)))
-(((-813 |#1|) (-13 (-92 |#1|) (-553 (-1117 |#1|)) (-10 -8 (-15 -2672 ($ |#1|)) (-15 -2672 ($ $ $)))) (-1014)) (T -813))
-((-2672 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))) (-2672 (*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2688 (((-1010 |#1|) $) 61 T ELT)) (-2911 (((-584 $) (-584 $)) 104 T ELT)) (-3625 (((-485) $) 84 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-3774 (((-695) $) 81 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 71 T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2675 (((-85) $) 89 T ELT)) (-2677 (((-695) $) 85 T ELT)) (-2533 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2859 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2681 (((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $) 56 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 131 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2674 (((-1010 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2676 (((-85) $) 82 T ELT)) (-3802 ((|#1| $ |#1|) 69 T ELT)) (-3950 (((-695) $) 63 T ELT)) (-2683 (($ (-584 (-584 |#1|))) 119 T ELT)) (-2678 (((-885) $) 75 T ELT)) (-2684 (($ (-584 |#1|)) 32 T ELT)) (-3011 (($ $ $) NIL T ELT)) (-2437 (($ $ $) NIL T ELT)) (-2680 (($ (-584 (-584 |#1|))) 58 T ELT)) (-2679 (($ (-584 (-584 |#1|))) 124 T ELT)) (-2673 (($ (-584 |#1|)) 133 T ELT)) (-3948 (((-773) $) 118 T ELT) (($ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 |#1|)) 93 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2569 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-3058 (((-85) $ $) 67 T ELT)) (-2686 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-757))) ELT)) (-2687 (((-85) $ $) 91 T ELT)) (-3951 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
-(((-814 |#1|) (-13 (-816 |#1|) (-10 -8 (-15 -2681 ((-2 (|:| |preimage| (-584 |#1|)) (|:| |image| (-584 |#1|))) $)) (-15 -2680 ($ (-584 (-584 |#1|)))) (-15 -3948 ($ (-584 (-584 |#1|)))) (-15 -3948 ($ (-584 |#1|))) (-15 -2679 ($ (-584 (-584 |#1|)))) (-15 -3950 ((-695) $)) (-15 -2678 ((-885) $)) (-15 -3774 ((-695) $)) (-15 -2677 ((-695) $)) (-15 -3625 ((-485) $)) (-15 -2676 ((-85) $)) (-15 -2675 ((-85) $)) (-15 -2911 ((-584 $) (-584 $))) (IF (|has| |#1| (-320)) (-15 -2674 ((-1010 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-484)) (-15 -2673 ($ (-584 |#1|))) (IF (|has| |#1| (-320)) (-15 -2673 ($ (-584 |#1|))) |%noBranch|)))) (-1014)) (T -814))
-((-2681 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2680 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2911 (*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-((-2682 ((|#2| (-1057 |#1| |#2|)) 48 T ELT)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -2682 (|#2| (-1057 |#1| |#2|)))) (-831) (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (T -815))
-((-2682 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831)) (-4 *2 (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (-5 *1 (-815 *4 *2)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-2688 (((-1010 |#1|) $) 42 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 20 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 41 T ELT)) (-2411 (((-85) $) 22 T ELT)) (-2533 (($ $ $) 35 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2859 (($ $ $) 36 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3802 ((|#1| $ |#1|) 45 T ELT)) (-2683 (($ (-584 (-584 |#1|))) 43 T ELT)) (-2684 (($ (-584 |#1|)) 44 T ELT)) (-3011 (($ $ $) 27 T ELT)) (-2437 (($ $ $) 26 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2668 (($) 24 T CONST)) (-2568 (((-85) $ $) 37 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2569 (((-85) $ $) 39 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 38 (OR (|has| |#1| (-757)) (|has| |#1| (-320))) ELT)) (-2687 (((-85) $ $) 40 T ELT)) (-3951 (($ $ $) 29 T ELT)) (** (($ $ (-831)) 17 T ELT) (($ $ (-695)) 21 T ELT) (($ $ (-485)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-816 |#1|) (-113) (-1014)) (T -816))
-((-2684 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2683 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))) (-2688 (*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3)))) (-2687 (*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2684 ($ (-584 |t#1|))) (-15 -2683 ($ (-584 (-584 |t#1|)))) (-15 -2688 ((-1010 |t#1|) $)) (-15 -2692 ((-1010 |t#1|) $ |t#1|)) (-15 -2687 ((-85) $ $)) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-757)) |%noBranch|)))
-(((-72) . T) ((-553 (-773)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-664) . T) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-320))) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2694 (((-584 (-584 (-695))) $) 163 T ELT)) (-2690 (((-584 (-695)) (-814 |#1|) $) 191 T ELT)) (-2689 (((-584 (-695)) (-814 |#1|) $) 192 T ELT)) (-2688 (((-1010 |#1|) $) 155 T ELT)) (-2695 (((-584 (-814 |#1|)) $) 152 T ELT)) (-2996 (((-814 |#1|) $ (-485)) 157 T ELT) (((-814 |#1|) $) 158 T ELT)) (-2693 (($ (-584 (-814 |#1|))) 165 T ELT)) (-3774 (((-695) $) 159 T ELT)) (-2691 (((-1010 (-1010 |#1|)) $) 189 T ELT)) (-2692 (((-1010 |#1|) $ |#1|) 180 T ELT) (((-1010 (-1010 |#1|)) $ (-1010 |#1|)) 201 T ELT) (((-1010 (-584 |#1|)) $ (-584 |#1|)) 204 T ELT)) (-3247 (((-85) (-814 |#1|) $) 140 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2685 (((-1186) $) 145 T ELT) (((-1186) $ (-485) (-485)) 205 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2697 (((-584 (-814 |#1|)) $) 146 T ELT)) (-3802 (((-814 |#1|) $ (-695)) 153 T ELT)) (-3950 (((-695) $) 160 T ELT)) (-3948 (((-773) $) 177 T ELT) (((-584 (-814 |#1|)) $) 28 T ELT) (($ (-584 (-814 |#1|))) 164 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (((-584 |#1|) $) 162 T ELT)) (-3058 (((-85) $ $) 198 T ELT)) (-2686 (((-85) $ $) 195 T ELT)) (-2687 (((-85) $ $) 194 T ELT)))
-(((-817 |#1|) (-13 (-1014) (-10 -8 (-15 -3948 ((-584 (-814 |#1|)) $)) (-15 -2697 ((-584 (-814 |#1|)) $)) (-15 -3802 ((-814 |#1|) $ (-695))) (-15 -2996 ((-814 |#1|) $ (-485))) (-15 -2996 ((-814 |#1|) $)) (-15 -3774 ((-695) $)) (-15 -3950 ((-695) $)) (-15 -2696 ((-584 |#1|) $)) (-15 -2695 ((-584 (-814 |#1|)) $)) (-15 -2694 ((-584 (-584 (-695))) $)) (-15 -3948 ($ (-584 (-814 |#1|)))) (-15 -2693 ($ (-584 (-814 |#1|)))) (-15 -2692 ((-1010 |#1|) $ |#1|)) (-15 -2691 ((-1010 (-1010 |#1|)) $)) (-15 -2692 ((-1010 (-1010 |#1|)) $ (-1010 |#1|))) (-15 -2692 ((-1010 (-584 |#1|)) $ (-584 |#1|))) (-15 -3247 ((-85) (-814 |#1|) $)) (-15 -2690 ((-584 (-695)) (-814 |#1|) $)) (-15 -2689 ((-584 (-695)) (-814 |#1|) $)) (-15 -2688 ((-1010 |#1|) $)) (-15 -2687 ((-85) $ $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-1186) $)) (-15 -2685 ((-1186) $ (-485) (-485))))) (-1014)) (T -817))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2996 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2693 (*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))) (-2692 (*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4)) (-5 *3 (-1010 *4)))) (-2692 (*1 *2 *1 *3) (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4)) (-5 *3 (-584 *4)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4)))) (-2690 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695))) (-5 *1 (-817 *4)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2687 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))) (-2685 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-3931 (((-695)) NIL T ELT)) (-3332 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 $ #1#) $) NIL T ELT)) (-3158 (($ $) NIL T ELT)) (-1796 (($ (-1180 $)) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-2835 (($) NIL T ELT)) (-1681 (((-85) $) NIL T ELT)) (-1768 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3774 (((-744 (-831)) $) NIL T ELT) (((-831) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2014 (($) NIL (|has| $ (-320)) ELT)) (-2012 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3134 (($ $ (-831)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2015 (((-1086 $) $ (-831)) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL T ELT)) (-2011 (((-831) $) NIL T ELT)) (-1628 (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1627 (((-3 (-1086 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1086 $) $) NIL (|has| $ (-320)) ELT)) (-1629 (($ $ (-1086 $)) NIL (|has| $ (-320)) ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) NIL (|has| $ (-320)) ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-3932 (((-831)) NIL T ELT) (((-744 (-831))) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-1769 (((-3 (-695) #1#) $ $) NIL T ELT) (((-695) $) NIL T ELT)) (-3913 (((-107)) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3950 (((-831) $) NIL T ELT) (((-744 (-831)) $) NIL T ELT)) (-3187 (((-1086 $)) NIL T ELT)) (-1675 (($) NIL T ELT)) (-1630 (($) NIL (|has| $ (-320)) ELT)) (-3226 (((-631 $) (-1180 $)) NIL T ELT) (((-1180 $) $) NIL T ELT)) (-3974 (((-485) $) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $) (-831)) NIL T ELT) (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3935 (((-85) $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3930 (($ $ (-695)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-818 |#1|) (-13 (-299) (-280 $) (-554 (-485))) (-831)) (T -818))
-NIL
-((-2699 (((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|)) 164 T ELT)) (-2702 ((|#1|) 101 T ELT)) (-2701 (((-348 (-1086 |#4|)) (-1086 |#4|)) 173 T ELT)) (-2703 (((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)) 83 T ELT)) (-2700 (((-348 (-1086 |#4|)) (-1086 |#4|)) 183 T ELT)) (-2698 (((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|) 117 T ELT)))
-(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2699 ((-3 (-584 (-1086 |#4|)) #1="failed") (-584 (-1086 |#4|)) (-1086 |#4|))) (-15 -2700 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2701 ((-348 (-1086 |#4|)) (-1086 |#4|))) (-15 -2702 (|#1|)) (-15 -2698 ((-3 (-584 (-1086 |#4|)) #1#) (-584 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -2703 ((-348 (-1086 |#4|)) (-584 |#3|) (-1086 |#4|)))) (-822) (-718) (-757) (-862 |#1| |#2| |#3|)) (T -819))
-((-2703 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2698 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757)) (-5 *1 (-819 *5 *6 *4 *7)))) (-2702 (*1 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5)) (-4 *5 (-862 *2 *3 *4)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-819 *4 *5 *6 *7)))))
-((-2699 (((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|)) 39 T ELT)) (-2702 ((|#1|) 71 T ELT)) (-2701 (((-348 (-1086 |#2|)) (-1086 |#2|)) 125 T ELT)) (-2703 (((-348 (-1086 |#2|)) (-1086 |#2|)) 109 T ELT)) (-2700 (((-348 (-1086 |#2|)) (-1086 |#2|)) 136 T ELT)))
-(((-820 |#1| |#2|) (-10 -7 (-15 -2699 ((-3 (-584 (-1086 |#2|)) "failed") (-584 (-1086 |#2|)) (-1086 |#2|))) (-15 -2700 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2701 ((-348 (-1086 |#2|)) (-1086 |#2|))) (-15 -2702 (|#1|)) (-15 -2703 ((-348 (-1086 |#2|)) (-1086 |#2|)))) (-822) (-1156 |#1|)) (T -820))
-((-2703 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2702 (*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5))) (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))) (-2699 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
-((-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 46 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 18 T ELT)) (-2704 (((-633 $) $) 40 T ELT)))
-(((-821 |#1|) (-10 -7 (-15 -2704 ((-633 |#1|) |#1|)) (-15 -2706 ((-3 (-584 (-1086 |#1|)) "failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-822)) (T -821))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 75 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-2706 (((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $)) 72 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 73 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 74 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2705 (((-3 (-1180 $) "failed") (-631 $)) 71 (|has| $ (-118)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-2704 (((-633 $) $) 70 (|has| $ (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-822) (-113)) (T -822))
-((-2710 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822)))) (-2709 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))) (-2705 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822)) (-5 *2 (-1180 *1)))) (-2704 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
-(-13 (-1135) (-10 -8 (-15 -2709 ((-348 (-1086 $)) (-1086 $))) (-15 -2708 ((-348 (-1086 $)) (-1086 $))) (-15 -2707 ((-348 (-1086 $)) (-1086 $))) (-15 -2710 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2706 ((-3 (-584 (-1086 $)) "failed") (-584 (-1086 $)) (-1086 $))) (IF (|has| $ (-118)) (PROGN (-15 -2705 ((-3 (-1180 $) "failed") (-631 $))) (-15 -2704 ((-633 $) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2712 (((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2711 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3774 (((-3 (-695) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT)))
-(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3774 ((-3 (-695) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2712 ((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-496) (-951 (-485))) (-364 |#1|) (-1156 |#2|) (-1156 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -823))
-((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *8))) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6 *7 *8)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695)) (-5 *1 (-823 *4 *5 *6 *7 *8)))))
-((-2712 (((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#3|)) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|)) 64 T ELT)) (-2711 (((-85) (-283 (-350 (-485)) |#1| |#2| |#3|)) 16 T ELT)) (-3774 (((-3 (-695) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)) 14 T ELT)))
-(((-824 |#1| |#2| |#3|) (-10 -7 (-15 -3774 ((-3 (-695) #1="failed") (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2711 ((-85) (-283 (-350 (-485)) |#1| |#2| |#3|))) (-15 -2712 ((-3 (-2 (|:| -3774 (-695)) (|:| -2384 |#3|)) #1#) (-283 (-350 (-485)) |#1| |#2| |#3|)))) (-1156 (-350 (-485))) (-1156 (-350 |#1|)) (-291 (-350 (-485)) |#1| |#2|)) (T -824))
-((-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-824 *4 *5 *6)))) (-3774 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6)))))
-((-2717 ((|#2| |#2|) 26 T ELT)) (-2715 (((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) 15 T ELT)) (-2713 (((-831) (-485)) 38 T ELT)) (-2716 (((-485) |#2|) 45 T ELT)) (-2714 (((-485) |#2|) 21 T ELT) (((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|) 20 T ELT)))
-(((-825 |#1| |#2|) (-10 -7 (-15 -2713 ((-831) (-485))) (-15 -2714 ((-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))) |#1|)) (-15 -2714 ((-485) |#2|)) (-15 -2715 ((-485) (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))) (-15 -2716 ((-485) |#2|)) (-15 -2717 (|#2| |#2|))) (-1156 (-350 (-485))) (-1156 (-350 |#1|))) (T -825))
-((-2717 (*1 *2 *2) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2)) (-4 *2 (-1156 (-350 *3))))) (-2716 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485))))) (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1156 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4)) (-4 *4 (-1156 (-350 *3))))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 ((|#1| $) 99 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2566 (($ $ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 93 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2725 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2719 (((-1086 |#1|) |#1| |#1|) 52 T ELT)) (-2718 (($ $) 60 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2720 (((-485) $) 96 T ELT)) (-2721 (($ $ (-485)) 98 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-2722 ((|#1| $) 95 T ELT)) (-2723 (((-348 |#1|) $) 94 T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) 92 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2724 (($ $) 49 T ELT)) (-3948 (((-773) $) 123 T ELT) (($ (-485)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3128 (((-695)) 70 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 86 T ELT)) (-3951 (($ $ $) NIL T ELT)) (-3839 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 48 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-826 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3948 ((-350 |#1|) $)) (-15 -3948 ($ (-350 (-348 |#1|)))) (-15 -2724 ($ $)) (-15 -2723 ((-348 |#1|) $)) (-15 -2722 (|#1| $)) (-15 -2721 ($ $ (-485))) (-15 -2720 ((-485) $)) (-15 -2719 ((-1086 |#1|) |#1| |#1|)) (-15 -2718 ($ $)) (-15 -2725 ($ |#1| (-348 |#1|))) (-15 -3131 (|#1| $)))) (-258)) (T -826))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3)))) (-2724 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))) (-2718 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2)))) (-3131 (*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
-((-2725 (((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)) 17 T ELT) (((-51) (-350 (-858 |#1|)) (-1091)) 18 T ELT)))
-(((-827 |#1|) (-10 -7 (-15 -2725 ((-51) (-350 (-858 |#1|)) (-1091))) (-15 -2725 ((-51) (-858 |#1|) (-348 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -827))
-((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))) (-2725 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *5)))))
-((-2726 ((|#4| (-584 |#4|)) 148 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3146 (((-1086 |#4|) (-584 (-1086 |#4|))) 141 T ELT) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 61 T ELT) ((|#4| (-584 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
-(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3146 (|#4| |#4| |#4|)) (-15 -3146 (|#4| (-584 |#4|))) (-15 -3146 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3146 ((-1086 |#4|) (-584 (-1086 |#4|)))) (-15 -2726 (|#4| |#4| |#4|)) (-15 -2726 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2726 (|#4| (-584 |#4|)))) (-718) (-757) (-258) (-862 |#3| |#1| |#2|)) (T -828))
-((-2726 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-2726 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-2726 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2)) (-4 *2 (-862 *5 *3 *4)))))
-((-2739 (((-817 (-485)) (-885)) 38 T ELT) (((-817 (-485)) (-584 (-485))) 34 T ELT)) (-2727 (((-817 (-485)) (-584 (-485))) 66 T ELT) (((-817 (-485)) (-831)) 67 T ELT)) (-2738 (((-817 (-485))) 39 T ELT)) (-2736 (((-817 (-485))) 53 T ELT) (((-817 (-485)) (-584 (-485))) 52 T ELT)) (-2735 (((-817 (-485))) 51 T ELT) (((-817 (-485)) (-584 (-485))) 50 T ELT)) (-2734 (((-817 (-485))) 49 T ELT) (((-817 (-485)) (-584 (-485))) 48 T ELT)) (-2733 (((-817 (-485))) 47 T ELT) (((-817 (-485)) (-584 (-485))) 46 T ELT)) (-2732 (((-817 (-485))) 45 T ELT) (((-817 (-485)) (-584 (-485))) 44 T ELT)) (-2737 (((-817 (-485))) 55 T ELT) (((-817 (-485)) (-584 (-485))) 54 T ELT)) (-2731 (((-817 (-485)) (-584 (-485))) 71 T ELT) (((-817 (-485)) (-831)) 73 T ELT)) (-2730 (((-817 (-485)) (-584 (-485))) 68 T ELT) (((-817 (-485)) (-831)) 69 T ELT)) (-2728 (((-817 (-485)) (-584 (-485))) 64 T ELT) (((-817 (-485)) (-831)) 65 T ELT)) (-2729 (((-817 (-485)) (-584 (-831))) 57 T ELT)))
-(((-829) (-10 -7 (-15 -2727 ((-817 (-485)) (-831))) (-15 -2727 ((-817 (-485)) (-584 (-485)))) (-15 -2728 ((-817 (-485)) (-831))) (-15 -2728 ((-817 (-485)) (-584 (-485)))) (-15 -2729 ((-817 (-485)) (-584 (-831)))) (-15 -2730 ((-817 (-485)) (-831))) (-15 -2730 ((-817 (-485)) (-584 (-485)))) (-15 -2731 ((-817 (-485)) (-831))) (-15 -2731 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)) (-584 (-485)))) (-15 -2732 ((-817 (-485)))) (-15 -2733 ((-817 (-485)) (-584 (-485)))) (-15 -2733 ((-817 (-485)))) (-15 -2734 ((-817 (-485)) (-584 (-485)))) (-15 -2734 ((-817 (-485)))) (-15 -2735 ((-817 (-485)) (-584 (-485)))) (-15 -2735 ((-817 (-485)))) (-15 -2736 ((-817 (-485)) (-584 (-485)))) (-15 -2736 ((-817 (-485)))) (-15 -2737 ((-817 (-485)) (-584 (-485)))) (-15 -2737 ((-817 (-485)))) (-15 -2738 ((-817 (-485)))) (-15 -2739 ((-817 (-485)) (-584 (-485)))) (-15 -2739 ((-817 (-485)) (-885))))) (T -829))
-((-2739 (*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2738 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-((-2741 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 14 T ELT)) (-2740 (((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))) 13 T ELT)))
-(((-830 |#1|) (-10 -7 (-15 -2740 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2741 ((-584 (-858 |#1|)) (-584 (-858 |#1|)) (-584 (-1091))))) (-392)) (T -830))
-((-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))) (-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392)) (-5 *1 (-830 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ "failed") $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3146 (($ $ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-831) (-13 (-719) (-664) (-10 -8 (-15 -3146 ($ $ $)) (-6 (-3999 "*"))))) (T -831))
-((-3146 (*1 *1 *1 *1) (-5 *1 (-831))))
-((-695) (|%ilt| 0 |#1|))
-((-3948 (((-265 |#1|) (-417)) 16 T ELT)))
-(((-832 |#1|) (-10 -7 (-15 -3948 ((-265 |#1|) (-417)))) (-496)) (T -832))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-833) (-113)) (T -833))
-((-2743 (*1 *2 *3) (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3956 (-584 *1)) (|:| -2410 *1))) (-5 *3 (-584 *1)))) (-2742 (*1 *2 *3 *1) (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
-(-13 (-392) (-10 -8 (-15 -2743 ((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $))) (-15 -2742 ((-633 (-584 $)) (-584 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3107 (((-1086 |#2|) (-584 |#2|) (-584 |#2|)) 17 T ELT) (((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|)) 13 T ELT)))
-(((-834 |#1| |#2|) (-10 -7 (-15 -3107 ((-1149 |#1| |#2|) (-1149 |#1| |#2|) (-584 |#2|) (-584 |#2|))) (-15 -3107 ((-1086 |#2|) (-584 |#2|) (-584 |#2|)))) (-1091) (-312)) (T -834))
-((-3107 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5)) (-14 *4 (-1091)))) (-3107 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312)) (-5 *1 (-834 *4 *5)))))
-((-2744 ((|#2| (-584 |#1|) (-584 |#1|)) 28 T ELT)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -2744 (|#2| (-584 |#1|) (-584 |#1|)))) (-312) (-1156 |#1|)) (T -835))
-((-2744 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4)) (-5 *1 (-835 *4 *2)))))
-((-2746 (((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 175 T ELT)) (-2765 ((|#4| |#4|) 194 T ELT)) (-2750 (((-584 (-350 (-858 |#1|))) (-584 (-1091))) 146 T ELT)) (-2764 (((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485)) 88 T ELT)) (-2754 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|)) 69 T ELT)) (-2763 (((-631 |#4|) (-631 |#4|) (-584 |#4|)) 65 T ELT)) (-2747 (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074)) 187 T ELT)) (-2745 (((-485) (-631 |#4|) (-831) (-1074)) 167 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074)) 166 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074)) 165 T ELT) (((-485) (-631 |#4|) (-1074)) 154 T ELT) (((-485) (-631 |#4|) (-584 (-1091)) (-1074)) 153 T ELT) (((-485) (-631 |#4|) (-584 |#4|) (-1074)) 152 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831)) 151 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831)) 150 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831)) 149 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|)) 148 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091))) 147 T ELT) (((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|)) 143 T ELT)) (-2751 ((|#4| (-858 |#1|)) 80 T ELT)) (-2761 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 191 T ELT)) (-2760 (((-584 (-584 (-485))) (-485) (-485)) 161 T ELT)) (-2759 (((-584 (-584 |#4|)) (-584 (-584 |#4|))) 106 T ELT)) (-2758 (((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 100 T ELT)) (-2757 (((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|))))) 99 T ELT)) (-2766 (((-85) (-584 (-858 |#1|))) 19 T ELT) (((-85) (-584 |#4|)) 15 T ELT)) (-2752 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|)) 84 T ELT)) (-2756 (((-584 |#4|) |#4|) 57 T ELT)) (-2749 (((-584 (-350 (-858 |#1|))) (-584 |#4|)) 142 T ELT) (((-631 (-350 (-858 |#1|))) (-631 |#4|)) 66 T ELT) (((-350 (-858 |#1|)) |#4|) 139 T ELT)) (-2748 (((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485)) 112 T ELT)) (-2753 (((-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695)) 98 T ELT)) (-2762 (((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695)) 121 T ELT)) (-2755 (((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) 56 T ELT)))
-(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 |#4|) (-831))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-584 (-1091)) (-831))) (-15 -2745 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-631 |#4|) (-831))) (-15 -2745 ((-485) (-631 |#4|) (-584 |#4|) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 (-1091)) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 |#4|) (-831) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-584 (-1091)) (-831) (-1074))) (-15 -2745 ((-485) (-631 |#4|) (-831) (-1074))) (-15 -2746 ((-485) (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2747 ((-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|))))))))) (-1074))) (-15 -2748 ((-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))))) (|:| |rgsz| (-485))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-695) (-1074) (-485))) (-15 -2749 ((-350 (-858 |#1|)) |#4|)) (-15 -2749 ((-631 (-350 (-858 |#1|))) (-631 |#4|))) (-15 -2749 ((-584 (-350 (-858 |#1|))) (-584 |#4|))) (-15 -2750 ((-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -2751 (|#4| (-858 |#1|))) (-15 -2752 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-584 |#4|)) (|:| |n0| (-584 |#4|))) (-584 |#4|) (-584 |#4|))) (-15 -2753 ((-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))) (-631 |#4|) (-695))) (-15 -2754 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-584 |#4|))) (-15 -2755 ((-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))) (-2 (|:| |mat| (-631 (-350 (-858 |#1|)))) (|:| |vec| (-584 (-350 (-858 |#1|)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-15 -2756 ((-584 |#4|) |#4|)) (-15 -2757 ((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2758 ((-695) (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 |#4|)))))) (-15 -2759 ((-584 (-584 |#4|)) (-584 (-584 |#4|)))) (-15 -2760 ((-584 (-584 (-485))) (-485) (-485))) (-15 -2761 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2762 ((-584 (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-631 |#4|) (-695))) (-15 -2763 ((-631 |#4|) (-631 |#4|) (-584 |#4|))) (-15 -2764 ((-2 (|:| |eqzro| (-584 |#4|)) (|:| |neqzro| (-584 |#4|)) (|:| |wcond| (-584 (-858 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 |#1|)))) (|:| -2013 (-584 (-1180 (-350 (-858 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))) (-631 |#4|) (-584 (-350 (-858 |#1|))) (-584 (-584 |#4|)) (-695) (-695) (-485))) (-15 -2765 (|#4| |#4|)) (-15 -2766 ((-85) (-584 |#4|))) (-15 -2766 ((-85) (-584 (-858 |#1|))))) (-13 (-258) (-120)) (-13 (-757) (-554 (-1091))) (-718) (-862 |#1| |#3| |#2|)) (T -836))
-((-2766 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))) (-2764 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12))) (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091)))) (-4 *11 (-718)) (-5 *2 (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12)) (|:| |wcond| (-584 (-858 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *9)))) (|:| -2013 (-584 (-1180 (-350 (-858 *9))))))))) (-5 *1 (-836 *9 *10 *11 *12)))) (-2763 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))) (-2759 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091)))) (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *7) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *7))))) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2755 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4)))) (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2754 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))) (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| -3110 (-695)) (|:| |eqns| (-584 (-2 (|:| |det| *8) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))) (|:| |fgb| (-584 *8))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7)))) (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3)) (-4 *3 (-862 *4 *6 *5)))) (-2748 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695)) (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9)) (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718)) (-5 *2 (-2 (|:| |rgl| (-584 (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11)) (|:| |wcond| (-584 (-858 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *8)))) (|:| -2013 (-584 (-1180 (-350 (-858 *8)))))))))) (|:| |rgsz| (-485)))) (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))) (-2746 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6)) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074)) (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *7 *8 *9 *10)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)))) (-2745 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9)) (|:| |wcond| (-584 (-858 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *6)))) (|:| -2013 (-584 (-1180 (-350 (-858 *6)))))))))) (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7)) (|:| |wcond| (-584 (-858 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *4)))) (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))))) (-5 *1 (-836 *4 *5 *6 *7)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-584 (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8)) (|:| |wcond| (-584 (-858 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1180 (-350 (-858 *5)))) (|:| -2013 (-584 (-1180 (-350 (-858 *5)))))))))) (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
-((-3876 (($ $ (-1002 (-179))) 125 T ELT) (($ $ (-1002 (-179)) (-1002 (-179))) 126 T ELT)) (-2898 (((-1002 (-179)) $) 73 T ELT)) (-2899 (((-1002 (-179)) $) 72 T ELT)) (-2790 (((-1002 (-179)) $) 74 T ELT)) (-2771 (((-485) (-485)) 66 T ELT)) (-2775 (((-485) (-485)) 61 T ELT)) (-2773 (((-485) (-485)) 64 T ELT)) (-2769 (((-85) (-85)) 68 T ELT)) (-2772 (((-485)) 65 T ELT)) (-3136 (($ $ (-1002 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2792 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 148 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 149 T ELT)) (-2778 (($ (-1 (-179) (-179)) (-1002 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1002 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179))) 145 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179))) 153 T ELT) (($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 147 T ELT) (($ $ (-1002 (-179))) 131 T ELT)) (-2777 (((-85) $) 69 T ELT)) (-2768 (((-485)) 70 T ELT)) (-2776 (((-485)) 59 T ELT)) (-2774 (((-485)) 62 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 35 T ELT)) (-2767 (((-85) (-85)) 71 T ELT)) (-3948 (((-773) $) 174 T ELT)) (-2770 (((-85)) 67 T ELT)))
-(((-837) (-13 (-867) (-10 -8 (-15 -2791 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)))) (-15 -2791 ($ (-584 (-1 (-179) (-179))) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2778 ($ (-1 (-179) (-179)))) (-15 -2791 ($ $ (-1002 (-179)))) (-15 -2777 ((-85) $)) (-15 -3876 ($ $ (-1002 (-179)))) (-15 -3876 ($ $ (-1002 (-179)) (-1002 (-179)))) (-15 -3136 ($ $ (-1002 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1002 (-179)) $)) (-15 -2776 ((-485))) (-15 -2775 ((-485) (-485))) (-15 -2774 ((-485))) (-15 -2773 ((-485) (-485))) (-15 -2772 ((-485))) (-15 -2771 ((-485) (-485))) (-15 -2770 ((-85))) (-15 -2769 ((-85) (-85))) (-15 -2768 ((-485))) (-15 -2767 ((-85) (-85)))))) (T -837))
-((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2792 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2778 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-3876 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3876 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-3136 (*1 *1 *1) (-5 *1 (-837))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837)))) (-2776 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2775 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2774 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2773 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2772 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2771 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2770 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2769 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))) (-2768 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
-((-2778 (((-837) |#1| (-1091)) 17 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 21 T ELT)) (-2791 (((-837) |#1| |#1| (-1091) (-1002 (-179))) 19 T ELT) (((-837) |#1| (-1091) (-1002 (-179))) 15 T ELT)))
-(((-838 |#1|) (-10 -7 (-15 -2791 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2791 ((-837) |#1| |#1| (-1091) (-1002 (-179)))) (-15 -2778 ((-837) |#1| (-1091) (-1002 (-179)))) (-15 -2778 ((-837) |#1| (-1091)))) (-554 (-474))) (T -838))
-((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2791 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))) (-2791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
-((-3876 (($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 123 T ELT)) (-2897 (((-1002 (-179)) $) 64 T ELT)) (-2898 (((-1002 (-179)) $) 63 T ELT)) (-2899 (((-1002 (-179)) $) 62 T ELT)) (-2789 (((-584 (-584 (-179))) $) 69 T ELT)) (-2790 (((-1002 (-179)) $) 65 T ELT)) (-2783 (((-485) (-485)) 57 T ELT)) (-2787 (((-485) (-485)) 52 T ELT)) (-2785 (((-485) (-485)) 55 T ELT)) (-2781 (((-85) (-85)) 59 T ELT)) (-2784 (((-485)) 56 T ELT)) (-3136 (($ $ (-1002 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2792 (($ (-1 (-855 (-179)) (-179)) (-1002 (-179))) 133 T ELT) (($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 134 T ELT)) (-2791 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179))) 141 T ELT) (($ $ (-1002 (-179))) 129 T ELT)) (-2780 (((-485)) 60 T ELT)) (-2788 (((-485)) 50 T ELT)) (-2786 (((-485)) 53 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 157 T ELT)) (-2779 (((-85) (-85)) 61 T ELT)) (-3948 (((-773) $) 155 T ELT)) (-2782 (((-85)) 58 T ELT)))
-(((-839) (-13 (-888) (-10 -8 (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)))) (-15 -2792 ($ (-1 (-855 (-179)) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)))) (-15 -2791 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -2791 ($ $ (-1002 (-179)))) (-15 -3876 ($ $ (-1002 (-179)) (-1002 (-179)) (-1002 (-179)))) (-15 -3136 ($ $ (-1002 (-179)))) (-15 -3136 ($ $)) (-15 -2790 ((-1002 (-179)) $)) (-15 -2789 ((-584 (-584 (-179))) $)) (-15 -2788 ((-485))) (-15 -2787 ((-485) (-485))) (-15 -2786 ((-485))) (-15 -2785 ((-485) (-485))) (-15 -2784 ((-485))) (-15 -2783 ((-485) (-485))) (-15 -2782 ((-85))) (-15 -2781 ((-85) (-85))) (-15 -2780 ((-485))) (-15 -2779 ((-85) (-85)))))) (T -839))
-((-2792 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2792 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3876 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-3136 (*1 *1 *1) (-5 *1 (-839))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))) (-2788 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2786 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2785 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2784 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2782 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2781 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))) (-2780 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))) (-2779 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
-((-2793 (((-584 (-1002 (-179))) (-584 (-584 (-855 (-179))))) 34 T ELT)))
-(((-840) (-10 -7 (-15 -2793 ((-584 (-1002 (-179))) (-584 (-584 (-855 (-179)))))))) (T -840))
-((-2793 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179)))) (-5 *1 (-840)))))
-((-2795 (((-265 (-485)) (-1091)) 16 T ELT)) (-2796 (((-265 (-485)) (-1091)) 14 T ELT)) (-3954 (((-265 (-485)) (-1091)) 12 T ELT)) (-2794 (((-265 (-485)) (-1091) (-447)) 19 T ELT)))
-(((-841) (-10 -7 (-15 -2794 ((-265 (-485)) (-1091) (-447))) (-15 -3954 ((-265 (-485)) (-1091))) (-15 -2795 ((-265 (-485)) (-1091))) (-15 -2796 ((-265 (-485)) (-1091))))) (T -841))
-((-2796 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2795 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841)))))
-((-2795 ((|#2| |#2|) 28 T ELT)) (-2796 ((|#2| |#2|) 29 T ELT)) (-3954 ((|#2| |#2|) 27 T ELT)) (-2794 ((|#2| |#2| (-447)) 26 T ELT)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -2794 (|#2| |#2| (-447))) (-15 -3954 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2796 (|#2| |#2|))) (-1014) (-364 |#1|)) (T -842))
-((-2796 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-3954 (*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4)))))
-((-2798 (((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)) (-2797 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
-(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2798 ((-799 |#1| |#3|) |#2| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-797 |#1|) (-13 (-1014) (-951 |#2|))) (T -843))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
-((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 30 T ELT)))
-(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|)) (-13 (-364 |#2|) (-554 (-801 |#1|)) (-797 |#1|) (-951 (-551 $)))) (T -844))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $)))) (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3)))))
-((-2798 (((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)) 13 T ELT)))
-(((-845 |#1|) (-10 -7 (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|)))) (-484)) (T -845))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484)) (-5 *1 (-845 *3)))))
-((-2798 (((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)) 57 T ELT)))
-(((-846 |#1| |#2|) (-10 -7 (-15 -2798 ((-799 |#1| |#2|) (-551 |#2|) (-801 |#1|) (-799 |#1| |#2|)))) (-1014) (-13 (-1014) (-951 (-551 $)) (-554 (-801 |#1|)) (-797 |#1|))) (T -846))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014)) (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5)) (-5 *1 (-846 *5 *6)))))
-((-2798 (((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)) 17 T ELT)))
-(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-796 |#1| |#2| |#3|) |#3| (-801 |#1|) (-796 |#1| |#2| |#3|)))) (-1014) (-797 |#1|) (-609 |#2|)) (T -847))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3)))))
-((-2798 (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|)) 17 (|has| |#3| (-797 |#1|)) ELT) (((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|))) 16 T ELT)))
-(((-848 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2798 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|) (-1 (-799 |#1| |#5|) |#3| (-801 |#1|) (-799 |#1| |#5|)))) (IF (|has| |#3| (-797 |#1|)) (-15 -2798 ((-799 |#1| |#5|) |#5| (-801 |#1|) (-799 |#1| |#5|))) |%noBranch|)) (-1014) (-718) (-757) (-13 (-962) (-797 |#1|)) (-13 (-862 |#4| |#2| |#3|) (-554 (-801 |#1|)))) (T -848))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5))) (-5 *1 (-848 *5 *6 *7 *8 *3)))) (-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757)) (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014)) (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718)) (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3)))))
-((-3211 (((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-485)) (-1091) (-1 (-85) |#1|)) 15 T ELT)))
-(((-849 |#1|) (-10 -7 (-15 -3211 ((-265 (-485)) (-1091) (-1 (-85) |#1|))) (-15 -3211 ((-265 (-485)) (-1091) (-584 (-1 (-85) |#1|))))) (-1130)) (T -849))
-((-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130)) (-5 *2 (-265 (-485))) (-5 *1 (-849 *5)))))
-((-3211 ((|#2| |#2| (-584 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
-(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -3211 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3211 (|#2| |#2| (-584 (-1 (-85) |#3|))))) (-1014) (-364 |#1|) (-1130)) (T -850))
-((-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3211 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014)) (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4)))))
-((-2798 (((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)) 25 T ELT)))
-(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-1014) (-13 (-496) (-797 |#1|) (-554 (-801 |#1|))) (-905 |#2|)) (T -851))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6)) (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5)) (-5 *1 (-851 *5 *6 *3)))))
-((-2798 (((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))) 18 T ELT)))
-(((-852 |#1|) (-10 -7 (-15 -2798 ((-799 |#1| (-1091)) (-1091) (-801 |#1|) (-799 |#1| (-1091))))) (-1014)) (T -852))
-((-2798 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *1 (-852 *5)))))
-((-2799 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 34 T ELT)) (-2798 (((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))) 33 T ELT)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2798 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-1 |#3| (-584 |#3|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|)))) (-15 -2799 ((-799 |#1| |#3|) (-584 |#3|) (-584 (-801 |#1|)) (-799 |#1| |#3|) (-1 (-799 |#1| |#3|) |#3| (-801 |#1|) (-799 |#1| |#3|))))) (-1014) (-962) (-13 (-962) (-554 (-801 |#1|)) (-951 |#2|))) (T -853))
-((-2799 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6))) (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014)) (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8)) (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))) (-2798 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9))) (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014)) (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9)) (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
-((-2807 (((-1086 (-350 (-485))) (-485)) 80 T ELT)) (-2806 (((-1086 (-485)) (-485)) 83 T ELT)) (-3336 (((-1086 (-485)) (-485)) 77 T ELT)) (-2805 (((-485) (-1086 (-485))) 73 T ELT)) (-2804 (((-1086 (-350 (-485))) (-485)) 66 T ELT)) (-2803 (((-1086 (-485)) (-485)) 49 T ELT)) (-2802 (((-1086 (-485)) (-485)) 85 T ELT)) (-2801 (((-1086 (-485)) (-485)) 84 T ELT)) (-2800 (((-1086 (-350 (-485))) (-485)) 68 T ELT)))
-(((-854) (-10 -7 (-15 -2800 ((-1086 (-350 (-485))) (-485))) (-15 -2801 ((-1086 (-485)) (-485))) (-15 -2802 ((-1086 (-485)) (-485))) (-15 -2803 ((-1086 (-485)) (-485))) (-15 -2804 ((-1086 (-350 (-485))) (-485))) (-15 -2805 ((-485) (-1086 (-485)))) (-15 -3336 ((-1086 (-485)) (-485))) (-15 -2806 ((-1086 (-485)) (-485))) (-15 -2807 ((-1086 (-350 (-485))) (-485))))) (T -854))
-((-2807 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2806 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-3336 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))) (-2804 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3708 (($ (-584 |#1|)) 9 T ELT)) (-3837 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3771 (($ $ (-584 |#1|)) 25 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 18 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3838 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-3913 (((-831) $) 13 T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3836 (($ $ $) 23 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 14 T ELT)) (-3532 (($ (-584 |#1|)) NIL T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 11 T ELT)))
-(((-855 |#1|) (-894 |#1|) (-962)) (T -855))
-NIL
-((-2810 (((-421 |#1| |#2|) (-858 |#2|)) 22 T ELT)) (-2813 (((-206 |#1| |#2|) (-858 |#2|)) 35 T ELT)) (-2811 (((-858 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2809 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2812 (((-858 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2808 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -2808 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2809 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2810 ((-421 |#1| |#2|) (-858 |#2|))) (-15 -2811 ((-858 |#2|) (-421 |#1| |#2|))) (-15 -2812 ((-858 |#2|) (-206 |#1| |#2|))) (-15 -2813 ((-206 |#1| |#2|) (-858 |#2|)))) (-584 (-1091)) (-962)) (T -856))
-((-2813 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962)) (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
-((-2814 (((-584 |#2|) |#2| |#2|) 10 T ELT)) (-2817 (((-695) (-584 |#1|)) 47 (|has| |#1| (-756)) ELT)) (-2815 (((-584 |#2|) |#2|) 11 T ELT)) (-2818 (((-695) (-584 |#1|) (-485) (-485)) 45 (|has| |#1| (-756)) ELT)) (-2816 ((|#1| |#2|) 37 (|has| |#1| (-756)) ELT)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -2814 ((-584 |#2|) |#2| |#2|)) (-15 -2815 ((-584 |#2|) |#2|)) (IF (|has| |#1| (-756)) (PROGN (-15 -2816 (|#1| |#2|)) (-15 -2817 ((-695) (-584 |#1|))) (-15 -2818 ((-695) (-584 |#1|) (-485) (-485)))) |%noBranch|)) (-312) (-1156 |#1|)) (T -857))
-((-2818 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))) (-2816 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))) (-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-1091)) $) 16 T ELT)) (-3085 (((-1086 $) $ (-1091)) 21 T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1091))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1091) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1091) $) NIL T ELT)) (-3758 (($ $ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1091)) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1091) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1091) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1091)) NIL T ELT) (($ (-1086 $) (-1091)) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-1091)) NIL T ELT)) (-2822 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1091)) (-470 (-1091))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3084 (((-3 (-1091) #1#) $) 19 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1091)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $ (-1091)) 29 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1091) |#1|) NIL T ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL T ELT) (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT)) (-3759 (($ $ (-1091)) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3950 (((-470 (-1091)) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT) (((-584 (-695)) $ (-584 (-1091))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1091) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1091) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 25 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1091)) 27 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-858 |#1|) (-13 (-862 |#1| (-470 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1091))) |%noBranch|))) (-962)) (T -858))
-((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))))
-((-3960 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 19 T ELT)))
-(((-859 |#1| |#2|) (-10 -7 (-15 -3960 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-962) (-962)) (T -859))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6)))))
-((-3085 (((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)) 18 T ELT)))
-(((-860 |#1| |#2|) (-10 -7 (-15 -3085 ((-1149 |#1| (-858 |#2|)) (-858 |#2|) (-1177 |#1|)))) (-1091) (-962)) (T -860))
-((-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962)) (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6)))))
-((-2821 (((-695) $) 88 T ELT) (((-695) $ (-584 |#4|)) 93 T ELT)) (-3777 (($ $) 214 T ELT)) (-3973 (((-348 $) $) 206 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 141 T ELT)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3758 (($ $ $ |#4|) 95 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 131 T ELT) (((-631 |#2|) (-631 $)) 121 T ELT)) (-3505 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2820 (((-584 $) $) 77 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 240 T ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 233 T ELT)) (-2823 (((-584 $) $) 34 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-695)) NIL T ELT) (($ $ (-584 |#4|) (-584 (-695))) 71 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#4|) 203 T ELT)) (-2825 (((-3 (-584 $) #1#) $) 52 T ELT)) (-2824 (((-3 (-584 $) #1#) $) 39 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) $) 57 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 134 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 147 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 145 T ELT)) (-3734 (((-348 $) $) 165 T ELT)) (-3770 (($ $ (-584 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-584 |#4|) (-584 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-584 |#4|) (-584 $)) NIL T ELT)) (-3759 (($ $ |#4|) 97 T ELT)) (-3974 (((-801 (-330)) $) 254 T ELT) (((-801 (-485)) $) 247 T ELT) (((-474) $) 262 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 185 T ELT)) (-3679 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-695)) 62 T ELT) (($ $ (-584 |#4|) (-584 (-695))) 69 T ELT)) (-2704 (((-633 $) $) 195 T ELT)) (-1266 (((-85) $ $) 227 T ELT)))
-(((-861 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -2704 ((-633 |#1|) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1="failed") (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2705 ((-3 (-1180 |#1|) #1#) (-631 |#1|))) (-15 -3505 (|#1| |#1| |#4|)) (-15 -2819 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#1| |#4|)) (-15 -2820 ((-584 |#1|) |#1|)) (-15 -2821 ((-695) |#1| (-584 |#4|))) (-15 -2821 ((-695) |#1|)) (-15 -2826 ((-3 (-2 (|:| |var| |#4|) (|:| -2402 (-695))) #1#) |#1|)) (-15 -2825 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2824 ((-3 (-584 |#1|) #1#) |#1|)) (-15 -2895 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -2895 (|#1| |#1| |#4| (-695))) (-15 -3765 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -2823 ((-584 |#1|) |#1|)) (-15 -3679 (|#1| |#1| (-584 |#4|) (-584 (-695)))) (-15 -3679 (|#1| |#1| |#4| (-695))) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#4| |#1|)) (-15 -3770 (|#1| |#1| (-584 |#4|) (-584 |#2|))) (-15 -3770 (|#1| |#1| |#4| |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3679 (|#2| |#1| |#3|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3505 (|#1| |#1|)) (-15 -1266 ((-85) |#1| |#1|))) (-862 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -861))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| "failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2825 (((-3 (-584 $) "failed") $) 127 T ELT)) (-2824 (((-3 (-584 $) "failed") $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) "failed") $) 126 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3950 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-496)) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-862 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -862))
-((-3505 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3950 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-2823 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3085 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-1086 *3)))) (-3084 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-2822 (*1 *2 *1 *3) (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-695)))) (-2822 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-695))))) (-3765 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-862 *4 *5 *3)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718)) (-4 *3 (-757)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-2826 (*1 *2 *1) (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695)))))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-862 *3 *4 *5)))) (-3758 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-146)))) (-2819 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3505 (*1 *1 *1 *2) (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *3 (-392)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5)))))
-(-13 (-810 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-456 |t#3| |t#1|) (-456 |t#3| $) (-951 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3950 ((-695) $ |t#3|)) (-15 -3950 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3679 ($ $ |t#3| (-695))) (-15 -3679 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -2823 ((-584 $) $)) (-15 -3085 ((-1086 $) $ |t#3|)) (-15 -3085 ((-1086 |t#1|) $)) (-15 -3084 ((-3 |t#3| "failed") $)) (-15 -2822 ((-695) $ |t#3|)) (-15 -2822 ((-584 (-695)) $ (-584 |t#3|))) (-15 -3765 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -2895 ($ $ |t#3| (-695))) (-15 -2895 ($ $ (-584 |t#3|) (-584 (-695)))) (-15 -3086 ($ (-1086 |t#1|) |t#3|)) (-15 -3086 ($ (-1086 $) |t#3|)) (-15 -2824 ((-3 (-584 $) "failed") $)) (-15 -2825 ((-3 (-584 $) "failed") $)) (-15 -2826 ((-3 (-2 (|:| |var| |t#3|) (|:| -2402 (-695))) "failed") $)) (-15 -2821 ((-695) $)) (-15 -2821 ((-695) $ (-584 |t#3|))) (-15 -3083 ((-584 |t#3|) $)) (-15 -2820 ((-584 $) $)) (IF (|has| |t#1| (-554 (-474))) (IF (|has| |t#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-485)))) (IF (|has| |t#3| (-554 (-801 (-485)))) (-6 (-554 (-801 (-485)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-554 (-801 (-330)))) (IF (|has| |t#3| (-554 (-801 (-330)))) (-6 (-554 (-801 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-485))) (IF (|has| |t#3| (-797 (-485))) (-6 (-797 (-485))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797 (-330))) (IF (|has| |t#3| (-797 (-330))) (-6 (-797 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3758 ($ $ $ |t#3|)) (-15 -3759 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2819 ($ $ |t#3|)) (-15 -3505 ($ $)) (-15 -3505 ($ $ |t#3|)) (-15 -3973 ((-348 $) $)) (-15 -3777 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3995)) (-6 -3995) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-3083 (((-584 |#2|) |#5|) 40 T ELT)) (-3085 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23 T ELT) (((-350 (-1086 |#5|)) |#5| |#2|) 16 T ELT)) (-3086 ((|#5| (-350 (-1086 |#5|)) |#2|) 30 T ELT)) (-3084 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2825 (((-3 (-584 |#5|) #1#) |#5|) 64 T ELT)) (-2827 (((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|) 53 T ELT)) (-2824 (((-3 (-584 |#5|) #1#) |#5|) 66 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|) 56 T ELT)))
-(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3083 ((-584 |#2|) |#5|)) (-15 -3084 ((-3 |#2| #1="failed") |#5|)) (-15 -3085 ((-350 (-1086 |#5|)) |#5| |#2|)) (-15 -3086 (|#5| (-350 (-1086 |#5|)) |#2|)) (-15 -3085 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -2824 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-584 |#5|) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-485))) #1#) |#5|)) (-15 -2827 ((-3 (-2 (|:| |val| |#5|) (|:| -2402 (-485))) #1#) |#5|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -863))
-((-2827 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485)))) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3085 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-5 *1 (-863 *5 *4 *6 *7 *3)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))) (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))) (-3084 (*1 *2 *3) (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2)) (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $))))))) (-3083 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
-((-3960 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
-(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3960 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-718) (-757) (-962) (-862 |#3| |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (T -864))
-((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962)) (-4 *6 (-718)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695)))))) (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7)))))
-((-2828 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#3| (-695)) 48 T ELT)) (-2829 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695)) 43 T ELT)) (-2831 (((-2 (|:| -2402 (-695)) (|:| -3956 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)) 64 T ELT)) (-2830 (((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#5| (-695)) 73 (|has| |#3| (-392)) ELT)))
-(((-865 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2828 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#3| (-695))) (-15 -2829 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) (-350 (-485)) (-695))) (IF (|has| |#3| (-392)) (-15 -2830 ((-2 (|:| -2402 (-695)) (|:| -3956 |#5|) (|:| |radicand| |#5|)) |#5| (-695))) |%noBranch|) (-15 -2831 ((-2 (|:| -2402 (-695)) (|:| -3956 |#4|) (|:| |radicand| (-584 |#4|))) |#4| (-695)))) (-718) (-757) (-496) (-862 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3948 ($ |#4|)) (-15 -3000 (|#4| $)) (-15 -2999 (|#4| $))))) (T -865))
-((-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| (-584 *3)))) (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3948 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $))))))) (-2830 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *3))) (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *8 (-862 *7 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *9) (|:| |radicand| *9))) (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6)) (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *8) (|:| |radicand| *8))) (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2832 (($ (-1034)) 8 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 15 T ELT) (((-1034) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 11 T ELT)))
-(((-866) (-13 (-1014) (-553 (-1034)) (-10 -8 (-15 -2832 ($ (-1034)))))) (T -866))
-((-2832 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866)))))
-((-2898 (((-1002 (-179)) $) 8 T ELT)) (-2899 (((-1002 (-179)) $) 9 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 10 T ELT)) (-3948 (((-773) $) 6 T ELT)))
-(((-867) (-113)) (T -867))
-((-2900 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179))))))
-(-13 (-553 (-773)) (-10 -8 (-15 -2900 ((-584 (-584 (-855 (-179)))) $)) (-15 -2899 ((-1002 (-179)) $)) (-15 -2898 ((-1002 (-179)) $))))
-(((-553 (-773)) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 80 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 81 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) 32 T ELT)) (-3469 (((-3 $ #1#) $) 43 T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| |#2| $) 64 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 18 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| |#2|) NIL T ELT)) (-2822 ((|#2| $) 25 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) 29 T ELT)) (-3176 ((|#1| $) 27 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 52 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-3740 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-496))) ELT)) (-3468 (((-3 $ #1#) $ $) 92 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 23 T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 47 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ |#2|) 38 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 15 T CONST)) (-1624 (($ $ $ (-695)) 76 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 86 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 28 T CONST)) (-2668 (($) 12 T CONST)) (-3058 (((-85) $ $) 85 T ELT)) (-3951 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) 71 T ELT) (($ $ (-695)) 69 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-868 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| |#2| (-104)) (-15 -3740 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-717)) (T -868))
-((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962)) (-4 *2 (-717)))))
-((-2833 (((-3 (-631 |#1|) "failed") |#2| (-831)) 18 T ELT)))
-(((-869 |#1| |#2|) (-10 -7 (-15 -2833 ((-3 (-631 |#1|) "failed") |#2| (-831)))) (-496) (-601 |#1|)) (T -869))
-((-2833 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5)) (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 18 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) 17 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 15 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 14 T ELT)) (-2201 (((-485) $) 10 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 23 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 22 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) 19 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) 11 T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) 16 T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 20 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 13 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3959 (((-695) $) 8 T ELT)))
-(((-870 |#1|) (-19 |#1|) (-1130)) (T -870))
-NIL
-((-3843 (((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 16 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|) 18 T ELT)) (-3960 (((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)) 13 T ELT)))
-(((-871 |#1| |#2|) (-10 -7 (-15 -3843 ((-870 |#2|) (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-870 |#1|) |#2|)) (-15 -3960 ((-870 |#2|) (-1 |#2| |#1|) (-870 |#1|)))) (-1130) (-1130)) (T -871))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-871 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5)))))
-((-2834 (($ $ (-1005 $)) 7 T ELT) (($ $ (-1091)) 6 T ELT)))
-(((-872) (-113)) (T -872))
-((-2834 (*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))) (-2834 (*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091)))))
-(-13 (-10 -8 (-15 -2834 ($ $ (-1091))) (-15 -2834 ($ $ (-1005 $)))))
-((-2835 (((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)) 26 T ELT) (((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091))) 27 T ELT) (((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091)) 49 T ELT)))
-(((-873 |#1|) (-10 -7 (-15 -2835 ((-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 |#1|))) (-858 |#1|) (-1091) (-858 |#1|) (-1091))) (-15 -2835 ((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)))) (-15 -2835 ((-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-584 (-858 |#1|)) (-584 (-1091)) (-1091)))) (-13 (-312) (-120))) (T -873))
-((-2835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-873 *6)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))) (-2835 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5)))) (-5 *1 (-873 *5)))))
-((-2838 (((-584 |#1|) |#1| |#1|) 47 T ELT)) (-3725 (((-85) |#1|) 44 T ELT)) (-2837 ((|#1| |#1|) 80 T ELT)) (-2836 ((|#1| |#1|) 79 T ELT)))
-(((-874 |#1|) (-10 -7 (-15 -3725 ((-85) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 (|#1| |#1|)) (-15 -2838 ((-584 |#1|) |#1| |#1|))) (-484)) (T -874))
-((-2838 (*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))) (-2837 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))) (-3725 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
-((-2839 (((-1186) (-773)) 9 T ELT)))
-(((-875) (-10 -7 (-15 -2839 ((-1186) (-773))))) (T -875))
-((-2839 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2485 (($ $ $) 65 (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1313 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-3138 (((-695)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2840 ((|#2| $) 22 T ELT)) (-2841 ((|#1| $) 21 T ELT)) (-3726 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-3469 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) ELT)) (-1215 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (-2411 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2842 (($ |#1| |#2|) 20 T ELT)) (-2011 (((-831) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2401 (($ (-831)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3011 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2437 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3948 (((-773) $) 14 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) CONST)) (-2668 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) CONST)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3058 (((-85) $ $) 19 T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-2687 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-718)) (|has| |#2| (-718))) (-12 (|has| |#1| (-757)) (|has| |#2| (-757)))) ELT)) (-3951 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3839 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3841 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT)) (** (($ $ (-485)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-695)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT) (($ $ (-831)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)) (* (($ (-485) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-695) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ (-831) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-718)) (|has| |#2| (-718)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-664)) (|has| |#2| (-664)))) ELT)))
-(((-876 |#1| |#2|) (-13 (-1014) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-664)) (IF (|has| |#2| (-664)) (-6 (-664)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-718)) (IF (|has| |#2| (-718)) (-6 (-718)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-757)) (IF (|has| |#2| (-757)) (-6 (-757)) |%noBranch|) |%noBranch|) (-15 -2842 ($ |#1| |#2|)) (-15 -2841 (|#1| $)) (-15 -2840 (|#2| $)))) (-1014) (-1014)) (T -876))
-((-2842 (*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-2841 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
-((-3404 (((-1016) $) 13 T ELT)) (-2843 (($ (-447) (-1016)) 15 T ELT)) (-3544 (((-447) $) 11 T ELT)) (-3948 (((-773) $) 25 T ELT)))
-(((-877) (-13 (-553 (-773)) (-10 -8 (-15 -3544 ((-447) $)) (-15 -3404 ((-1016) $)) (-15 -2843 ($ (-447) (-1016)))))) (T -877))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877)))) (-2843 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 29 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) NIL T ELT)) (-2562 (($ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2848 (((-633 (-783 $ $)) $) 62 T ELT)) (-2850 (((-633 $) $) 52 T ELT)) (-2847 (((-633 (-783 $ $)) $) 63 T ELT)) (-2846 (((-633 (-783 $ $)) $) 64 T ELT)) (-2851 (((-633 |#1|) $) 43 T ELT)) (-2849 (((-633 (-783 $ $)) $) 61 T ELT)) (-2855 (($ $ $) 38 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 39 T ELT)) (-2844 (($ $ $) 36 T ELT)) (-2845 (($ $ $) 34 T ELT)) (-3948 (((-773) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2312 (($ $ $) 37 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 35 T ELT)))
-(((-878 |#1|) (-13 (-881) (-556 |#1|) (-10 -8 (-15 -2851 ((-633 |#1|) $)) (-15 -2850 ((-633 $) $)) (-15 -2849 ((-633 (-783 $ $)) $)) (-15 -2848 ((-633 (-783 $ $)) $)) (-15 -2847 ((-633 (-783 $ $)) $)) (-15 -2846 ((-633 (-783 $ $)) $)) (-15 -2845 ($ $ $)) (-15 -2844 ($ $ $)))) (-1014)) (T -878))
-((-2851 (*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-((-3651 (((-878 |#1|) (-878 |#1|)) 46 T ELT)) (-2853 (((-878 |#1|) (-878 |#1|)) 22 T ELT)) (-2852 (((-1010 |#1|) (-878 |#1|)) 41 T ELT)))
-(((-879 |#1|) (-13 (-1130) (-10 -7 (-15 -2853 ((-878 |#1|) (-878 |#1|))) (-15 -2852 ((-1010 |#1|) (-878 |#1|))) (-15 -3651 ((-878 |#1|) (-878 |#1|))))) (-1014)) (T -879))
-((-2853 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
-((-3960 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 29 T ELT)))
-(((-880 |#1| |#2|) (-13 (-1130) (-10 -7 (-15 -3960 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))) (-1014) (-1014)) (T -880))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6)))))
-((-2570 (((-85) $ $) 19 T ELT)) (-2314 (($ $) 8 T ELT)) (-2857 (($) 17 T CONST)) (-2563 (($ $ $) 9 T ELT)) (-2562 (($ $) 11 T ELT)) (-3244 (((-1074) $) 23 T ELT)) (-2855 (($ $ $) 15 T ELT)) (-3245 (((-1034) $) 22 T ELT)) (-2856 (($) 16 T CONST)) (-2854 (($ $ $) 14 T ELT)) (-3948 (((-773) $) 21 T ELT)) (-1266 (((-85) $ $) 20 T ELT)) (-2564 (($ $ $) 10 T ELT)) (-2312 (($ $ $) 6 T ELT)) (-3058 (((-85) $ $) 18 T ELT)) (-2313 (($ $ $) 7 T ELT)))
-(((-881) (-113)) (T -881))
-((-2857 (*1 *1) (-4 *1 (-881))) (-2856 (*1 *1) (-4 *1 (-881))) (-2855 (*1 *1 *1 *1) (-4 *1 (-881))) (-2854 (*1 *1 *1 *1) (-4 *1 (-881))))
-(-13 (-84) (-1014) (-10 -8 (-15 -2857 ($) -3954) (-15 -2856 ($) -3954) (-15 -2855 ($ $ $)) (-15 -2854 ($ $ $))))
-(((-72) . T) ((-84) . T) ((-553 (-773)) . T) ((-13) . T) ((-605) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 51 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 48 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 47 T ELT)) (-2858 (($ $ $) 39 T ELT)) (-3520 (($ $ $) 40 T ELT)) (-2610 (((-584 |#1|) $) 46 T ELT)) (-3247 (((-85) |#1| $) 50 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 41 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-1731 (((-695) |#1| $) 49 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 45 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 42 T ELT)))
-(((-882 |#1|) (-113) (-757)) (T -882))
-((-2859 (*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))) (-2858 (*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2859 (|t#1| $)) (-15 -3520 ($ $ $)) (-15 -2858 ($ $ $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2871 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 105 T ELT)) (-3757 ((|#2| |#2| |#2|) 103 T ELT)) (-2872 (((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 107 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|) 109 T ELT)) (-2880 (((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2887 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 56 T ELT)) (-2861 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 80 T ELT)) (-2862 (((-2 (|:| |coef1| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 82 T ELT)) (-2870 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2865 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 89 T ELT)) (-2875 (((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|) 121 T ELT)) (-2868 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 92 T ELT)) (-2877 (((-584 (-695)) |#2| |#2|) 102 T ELT)) (-2885 ((|#1| |#2| |#2|) 50 T ELT)) (-2879 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2878 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2886 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 54 T ELT)) (-2860 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|) 79 T ELT)) (-3758 ((|#1| |#2| |#2|) 76 T ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 41 T ELT)) (-2884 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2869 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3192 ((|#2| |#2| |#2|) 93 T ELT)) (-2864 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 87 T ELT)) (-2863 ((|#2| |#2| |#2| (-695)) 85 T ELT)) (-3146 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3468 (((-1180 |#2|) (-1180 |#2|) |#1|) 22 T ELT)) (-2881 (((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|) 46 T ELT)) (-2874 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|) 119 T ELT)) (-3759 ((|#1| |#2|) 116 T ELT)) (-2867 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695)) 91 T ELT)) (-2866 ((|#2| |#2| |#2| (-695)) 90 T ELT)) (-2876 (((-584 |#2|) |#2| |#2|) 99 T ELT)) (-2883 ((|#2| |#2| |#1| |#1| (-695)) 62 T ELT)) (-2882 ((|#1| |#1| |#1| (-695)) 61 T ELT)) (* (((-1180 |#2|) |#1| (-1180 |#2|)) 17 T ELT)))
-(((-883 |#1| |#2|) (-10 -7 (-15 -3758 (|#1| |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2862 ((-2 (|:| |coef1| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2863 (|#2| |#2| |#2| (-695))) (-15 -2864 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2865 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2866 (|#2| |#2| |#2| (-695))) (-15 -2867 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -2868 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-695))) (-15 -3192 (|#2| |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3757 (|#2| |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef2| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| -3146 |#2|)) |#2| |#2|)) (-15 -3759 (|#1| |#2|)) (-15 -2874 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|)) (-15 -2875 ((-2 (|:| |coef2| |#2|) (|:| -3759 |#1|)) |#2|)) (-15 -2876 ((-584 |#2|) |#2| |#2|)) (-15 -2877 ((-584 (-695)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2878 (|#1| |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| |coef2| |#2|) (|:| -2878 |#1|)) |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1180 |#2|) |#1| (-1180 |#2|))) (-15 -3468 ((-1180 |#2|) (-1180 |#2|) |#1|)) (-15 -3754 ((-2 (|:| -3956 |#1|) (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2881 ((-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) |#2| |#2|)) (-15 -2882 (|#1| |#1| |#1| (-695))) (-15 -2883 (|#2| |#2| |#1| |#1| (-695))) (-15 -2884 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2885 (|#1| |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|)) (-15 -2887 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2| |#2|))) (-496) (-1156 |#1|)) (T -883))
-((-2887 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2884 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2883 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2882 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))) (-2881 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3754 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3956 *4) (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496)) (-5 *1 (-883 *3 *4)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2875 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3759 (*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))) (-2873 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3192 (*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))) (-2868 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2866 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2865 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))) (-2863 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))) (-2862 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-884) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -884))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 40 T ELT)) (-1313 (((-3 $ "failed") $ $) 54 T ELT)) (-3726 (($) NIL T CONST)) (-2889 (((-584 (-783 (-831) (-831))) $) 64 T ELT)) (-3188 (((-85) $) NIL T ELT)) (-2888 (((-831) $) 91 T ELT)) (-2891 (((-584 (-831)) $) 17 T ELT)) (-2890 (((-1070 $) (-695)) 39 T ELT)) (-2892 (($ (-584 (-831))) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3011 (($ $) 67 T ELT)) (-3948 (((-773) $) 87 T ELT) (((-584 (-831)) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) 10 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 44 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 42 T ELT)) (-3841 (($ $ $) 46 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 49 T ELT)) (-3959 (((-695) $) 22 T ELT)))
-(((-885) (-13 (-722) (-553 (-584 (-831))) (-10 -8 (-15 -2892 ($ (-584 (-831)))) (-15 -2891 ((-584 (-831)) $)) (-15 -3959 ((-695) $)) (-15 -2890 ((-1070 $) (-695))) (-15 -2889 ((-584 (-783 (-831) (-831))) $)) (-15 -2888 ((-831) $)) (-15 -3011 ($ $))))) (T -885))
-((-2892 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))) (-3011 (*1 *1 *1) (-5 *1 (-885))))
-((-3951 (($ $ |#2|) 31 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-485)) $) 27 T ELT) (($ $ (-350 (-485))) 29 T ELT)))
-(((-886 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-485)))) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 -3951 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 * (|#1| (-831) |#1|))) (-887 |#2| |#3| |#4|) (-962) (-717) (-757)) (T -886))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 95 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-584 |#3|) (-584 |#2|)) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-887 |#1| |#2| |#3|) (-113) (-962) (-717) (-757)) (T -887))
-((-3176 (*1 *2 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962)))) (-2896 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))) (-2895 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-584 *5)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757)) (-5 *2 (-85)))) (-2893 (*1 *1 *1) (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2895 ($ $ |t#3| |t#2|)) (-15 -2895 ($ $ (-584 |t#3|) (-584 |t#2|))) (-15 -2896 ($ $)) (-15 -3176 (|t#1| $)) (-15 -3950 (|t#2| $)) (-15 -3083 ((-584 |t#3|) $)) (-15 -2894 ((-85) $)) (-15 -2893 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2897 (((-1002 (-179)) $) 8 T ELT)) (-2898 (((-1002 (-179)) $) 9 T ELT)) (-2899 (((-1002 (-179)) $) 10 T ELT)) (-2900 (((-584 (-584 (-855 (-179)))) $) 11 T ELT)) (-3948 (((-773) $) 6 T ELT)))
-(((-888) (-113)) (T -888))
-((-2900 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
-(-13 (-553 (-773)) (-10 -8 (-15 -2900 ((-584 (-584 (-855 (-179)))) $)) (-15 -2899 ((-1002 (-179)) $)) (-15 -2898 ((-1002 (-179)) $)) (-15 -2897 ((-1002 (-179)) $))))
-(((-553 (-773)) . T))
-((-3083 (((-584 |#4|) $) 23 T ELT)) (-2910 (((-85) $) 55 T ELT)) (-2901 (((-85) $) 54 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2906 (((-85) $) 56 T ELT)) (-2908 (((-85) $ $) 62 T ELT)) (-2907 (((-85) $ $) 65 T ELT)) (-2909 (((-85) $) 60 T ELT)) (-2902 (((-584 |#5|) (-584 |#5|) $) 98 T ELT)) (-2903 (((-584 |#5|) (-584 |#5|) $) 95 T ELT)) (-2904 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2916 (((-584 |#4|) $) 27 T ELT)) (-2915 (((-85) |#4| $) 34 T ELT)) (-2905 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2912 (($ $ |#4|) 39 T ELT)) (-2914 (($ $ |#4|) 38 T ELT)) (-2913 (($ $ |#4|) 40 T ELT)) (-3058 (((-85) $ $) 46 T ELT)))
-(((-889 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2901 ((-85) |#1|)) (-15 -2902 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2903 ((-584 |#5|) (-584 |#5|) |#1|)) (-15 -2904 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2906 ((-85) |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1| |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-85) |#1|)) (-15 -2911 ((-2 (|:| |under| |#1|) (|:| -3132 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -2915 ((-85) |#4| |#1|)) (-15 -2916 ((-584 |#4|) |#1|)) (-15 -3083 ((-584 |#4|) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-890 |#2| |#3| |#4| |#5|) (-962) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -889))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-890 |#1| |#2| |#3| |#4|) (-113) (-962) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -890))
-((-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-2915 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-2914 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)) (-4 *5 (-978 *3 *4 *2)))) (-2911 (*1 *2 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1))) (-4 *1 (-890 *4 *5 *3 *6)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2908 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2906 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))) (-2905 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2903 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
-(-13 (-1014) (-124 |t#4|) (-318 |t#4|) (-553 (-584 |t#4|)) (-10 -8 (-15 -3159 ((-3 $ "failed") (-584 |t#4|))) (-15 -3158 ($ (-584 |t#4|))) (-15 -3182 (|t#3| $)) (-15 -3083 ((-584 |t#3|) $)) (-15 -2916 ((-584 |t#3|) $)) (-15 -2915 ((-85) |t#3| $)) (-15 -2914 ($ $ |t#3|)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |t#3|)) (-15 -2910 ((-85) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -2909 ((-85) $)) (-15 -2908 ((-85) $ $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $)) (-15 -2905 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2904 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2902 ((-584 |t#4|) (-584 |t#4|) $)) (-15 -2901 ((-85) $))) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2918 (((-584 |#4|) |#4| |#4|) 135 T ELT)) (-2941 (((-584 |#4|) (-584 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-584 |#4|) (-584 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2928 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 44 T ELT)) (-2927 (((-85) |#4|) 43 T ELT)) (-2940 (((-584 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2923 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|)) 24 T ELT)) (-2924 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 30 T ELT)) (-2925 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|)) 31 T ELT)) (-2936 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|)) 90 T ELT)) (-2938 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2939 (((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2917 (((-584 |#4|) (-584 |#4|)) 126 T ELT)) (-2933 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85)) 59 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 61 T ELT)) (-2934 ((|#4| |#4| (-584 |#4|)) 60 T ELT)) (-2942 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2944 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2943 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2919 (((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|))) 105 T ELT) (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 107 T ELT) (((-584 |#4|) (-584 |#4|) |#4|) 139 T ELT) (((-584 |#4|) |#4| |#4|) 136 T ELT) (((-584 |#4|) (-584 |#4|)) 106 T ELT)) (-2947 (((-584 |#4|) (-584 |#4|) (-584 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2926 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 52 T ELT)) (-2922 (((-85) (-584 |#4|)) 79 T ELT)) (-2921 (((-85) (-584 |#4|) (-584 (-584 |#4|))) 67 T ELT)) (-2930 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 37 T ELT)) (-2929 (((-85) |#4|) 36 T ELT)) (-2946 (((-584 |#4|) (-584 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2945 (((-584 |#4|) (-584 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2935 (((-584 |#4|) (-584 |#4|)) 83 T ELT)) (-2937 (((-584 |#4|) (-584 |#4|)) 97 T ELT)) (-2920 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-2932 (((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|)) 50 T ELT)) (-2931 (((-85) |#4|) 45 T ELT)))
-(((-891 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2919 ((-584 |#4|) (-584 |#4|))) (-15 -2919 ((-584 |#4|) |#4| |#4|)) (-15 -2917 ((-584 |#4|) (-584 |#4|))) (-15 -2918 ((-584 |#4|) |#4| |#4|)) (-15 -2919 ((-584 |#4|) (-584 |#4|) |#4|)) (-15 -2919 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2919 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-1 (-584 |#4|) (-584 |#4|)))) (-15 -2920 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -2921 ((-85) (-584 |#4|) (-584 (-584 |#4|)))) (-15 -2922 ((-85) (-584 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-1 (-85) |#4|) (-584 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 (-1 (-85) |#4|)) (-584 |#4|))) (-15 -2926 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2927 ((-85) |#4|)) (-15 -2928 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2929 ((-85) |#4|)) (-15 -2930 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2931 ((-85) |#4|)) (-15 -2932 ((-2 (|:| |goodPols| (-584 |#4|)) (|:| |badPols| (-584 |#4|))) (-584 |#4|))) (-15 -2933 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2933 ((-584 |#4|) (-584 |#4|) (-584 |#4|) (-85))) (-15 -2934 (|#4| |#4| (-584 |#4|))) (-15 -2935 ((-584 |#4|) (-584 |#4|))) (-15 -2936 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|))) (-15 -2937 ((-584 |#4|) (-584 |#4|))) (-15 -2938 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2939 ((-584 |#4|) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2940 ((-584 |#4|) |#4|)) (-15 -2941 ((-584 |#4|) (-584 |#4|))) (-15 -2941 ((-584 |#4|) (-584 |#4|) (-85))) (-15 -2942 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2943 ((-584 |#4|) (-584 |#4|) (-584 |#4|))) (-15 -2944 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2945 ((-584 |#4|) (-584 |#4|))) (-15 -2946 ((-584 |#4|) (-584 |#4|))) (-15 -2947 ((-584 |#4|) (-584 |#4|) (-584 |#4|)))) |%noBranch|) |%noBranch|)) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -891))
-((-2947 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2946 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2941 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2940 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2939 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2938 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2936 (*1 *2 *3) (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3325 (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2934 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))) (-2933 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2933 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2932 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7)))) (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8)))) (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *5 *6 *7 *8)))) (-2920 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))) (-2919 (*1 *2 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2919 (*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
-((-2948 (((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2950 (((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)) 45 T ELT)) (-2949 (((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
-(((-892 |#1|) (-10 -7 (-15 -2948 ((-2 (|:| R (-631 |#1|)) (|:| A (-631 |#1|)) (|:| |Ainv| (-631 |#1|))) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-631 |#1|) (-631 |#1|) (-631 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2950 ((-584 (-2 (|:| C (-631 |#1|)) (|:| |g| (-1180 |#1|)))) (-631 |#1|) (-1180 |#1|)))) (-312)) (T -892))
-((-2950 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))) (-2949 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-892 *5)))) (-2948 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6)))) (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
-((-3973 (((-348 |#4|) |#4|) 61 T ELT)))
-(((-893 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-348 |#4|) |#4|))) (-757) (-718) (-392) (-862 |#3| |#2| |#1|)) (T -893))
-((-3973 (*1 *2 *3) (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1036 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 89 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 99 T ELT)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 96 T ELT) (((-485) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 94 (|has| |#1| (-72)) ELT)) (-3708 (($ (-584 |#1|)) 128 T ELT)) (-3837 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 105 T ELT)) (-3247 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 82 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-3771 (($ $ (-584 |#1|)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-3838 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-3913 (((-831) $) 127 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3836 (($ $ $) 114 T ELT)) (-1731 (((-695) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 104 T ELT)) (-1735 (($ $ $ (-485)) 90 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT) (($ (-584 |#1|)) 129 T ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2568 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 86 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 101 T ELT)))
-(((-894 |#1|) (-113) (-962)) (T -894))
-((-3708 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962)))))
-(-13 (-1179 |t#1|) (-558 (-584 |t#1|)) (-10 -8 (-15 -3708 ($ (-584 |t#1|))) (-15 -3913 ((-831) $)) (-15 -3836 ($ $ $)) (-15 -3771 ($ $ (-584 |t#1|)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-558 (-584 |#1|)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T) ((-1179 |#1|) . T))
-((-3960 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 17 T ELT)))
-(((-895 |#1| |#2|) (-10 -7 (-15 -3960 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-962) (-962)) (T -895))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6)))))
-((-2953 ((|#1| (-855 |#1|)) 14 T ELT)) (-2952 ((|#1| (-855 |#1|)) 13 T ELT)) (-2951 ((|#1| (-855 |#1|)) 12 T ELT)) (-2955 ((|#1| (-855 |#1|)) 16 T ELT)) (-2959 ((|#1| (-855 |#1|)) 24 T ELT)) (-2954 ((|#1| (-855 |#1|)) 15 T ELT)) (-2956 ((|#1| (-855 |#1|)) 17 T ELT)) (-2958 ((|#1| (-855 |#1|)) 23 T ELT)) (-2957 ((|#1| (-855 |#1|)) 22 T ELT)))
-(((-896 |#1|) (-10 -7 (-15 -2951 (|#1| (-855 |#1|))) (-15 -2952 (|#1| (-855 |#1|))) (-15 -2953 (|#1| (-855 |#1|))) (-15 -2954 (|#1| (-855 |#1|))) (-15 -2955 (|#1| (-855 |#1|))) (-15 -2956 (|#1| (-855 |#1|))) (-15 -2957 (|#1| (-855 |#1|))) (-15 -2958 (|#1| (-855 |#1|))) (-15 -2959 (|#1| (-855 |#1|)))) (-962)) (T -896))
-((-2959 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2958 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-((-2977 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2960 (((-3 |#1| "failed") |#1| (-695)) 1 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2976 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2986 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 11 T ELT)))
-(((-897 |#1|) (-113) (-1116)) (T -897))
-((-2986 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))) (-2960 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(-13 (-10 -7 (-15 -2960 ((-3 |t#1| "failed") |t#1| (-695))) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|)) (-15 -2986 ((-3 |t#1| "failed") |t#1|))))
-((-2988 ((|#4| |#4| (-584 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2987 ((|#4| |#4| (-584 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3960 ((|#4| (-1 |#4| (-858 |#1|)) |#4|) 33 T ELT)))
-(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-584 |#3|))) (-15 -2988 (|#4| |#4| |#3|)) (-15 -2988 (|#4| |#4| (-584 |#3|))) (-15 -3960 (|#4| (-1 |#4| (-858 |#1|)) |#4|))) (-962) (-718) (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))) (-862 (-858 |#1|) |#2| |#3|)) (T -898))
-((-3960 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6)) (-4 *5 (-718)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1="failed") (-1091)))))) (-5 *1 (-898 *4 *5 *6 *2)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2988 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-584 *6)) (-4 *6 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *2 (-862 (-858 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091)))))) (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3)))))
-((-2989 ((|#2| |#3|) 35 T ELT)) (-3921 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 79 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 100 T ELT)))
-(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|)) (-15 -2989 (|#2| |#3|))) (-299) (-1156 |#1|) (-1156 |#2|) (-662 |#2| |#3|)) (T -899))
-((-2989 (*1 *2 *3) (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))) (-3921 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5)))) (-3920 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3403 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3651 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2993 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2994 (($ (-584 |#4|) |#4|) 25 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2990 (($ $) 69 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3405 (((-85) $) 70 T ELT)) (-3567 (($) 30 T ELT)) (-2991 ((|#4| $) 74 T ELT)) (-2992 (((-584 |#4|) $) 73 T ELT)) (-3948 (((-773) $) 68 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-900 |#1| |#2| |#3| |#4|) (-13 (-1014) (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -2994 ($ (-584 |#4|) |#4|)) (-15 -3403 ((-3 (-85) #1="failed") $)) (-15 -2993 ($ $ (-3 (-85) #1#))) (-15 -3405 ((-85) $)) (-15 -2992 ((-584 |#4|) $)) (-15 -2991 (|#4| $)) (-15 -2990 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3651 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-757) (-718) (-862 |#1| |#3| |#2|)) (T -900))
-((-3567 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-2994 (*1 *1 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))) (-3403 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-3405 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6)) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)))) (-2990 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))) (-3651 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3)))))
-((-2995 (((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))) 82 T ELT)))
-(((-901 |#1| |#2|) (-10 -7 (-15 -2995 ((-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485)))) (-900 (-350 (-485)) (-774 |#1|) (-197 |#2| (-695)) (-206 |#1| (-350 (-485))))))) (-584 (-1091)) (-695)) (T -901))
-((-2995 (*1 *2 *2) (-12 (-5 *2 (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485))))) (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
-((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-584 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-584 |#5|) (-584 |#5|)) 100 T ELT)) (-3282 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 92 T ELT)) (-3283 (((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 122 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3277 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3701 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3272 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
-(((-902 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-584 |#5|) (-584 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3701 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-584 |#5|))) (-15 -3280 ((-584 |#5|) (-584 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -902))
-((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-902 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-902 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-3833 (((-1091) $) 15 T ELT)) (-3404 (((-1074) $) 16 T ELT)) (-3228 (($ (-1091) (-1074)) 14 T ELT)) (-3948 (((-773) $) 13 T ELT)))
-(((-903) (-13 (-553 (-773)) (-10 -8 (-15 -3228 ($ (-1091) (-1074))) (-15 -3833 ((-1091) $)) (-15 -3404 ((-1074) $))))) (T -903))
-((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903)))))
-((-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1091) #1#) $) 72 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) 102 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-1091) $) 67 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) 99 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#2|) (-631 $)) 35 T ELT)) (-2996 (($) 105 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 82 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 91 T ELT)) (-2998 (($ $) 10 T ELT)) (-3447 (((-633 $) $) 27 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3448 (($) 16 T CONST)) (-3130 (($ $) 61 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2997 (($ $) 12 T ELT)) (-3974 (((-801 (-485)) $) 77 T ELT) (((-801 (-330)) $) 86 T ELT) (((-474) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1091)) 64 T ELT)) (-3128 (((-695)) 38 T CONST)) (-2687 (((-85) $ $) 57 T ELT)))
-(((-904 |#1| |#2|) (-10 -7 (-15 -2687 ((-85) |#1| |#1|)) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3948 (|#1| (-1091))) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -2996 (|#1|)) (-15 -3130 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -2798 ((-799 (-485) |#1|) |#1| (-801 (-485)) (-799 (-485) |#1|))) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -2280 ((-631 |#2|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| |#1|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-905 |#2|) (-496)) (T -904))
-((-3128 (*1 *2) (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 164 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 167 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 154 (|has| |#1| (-741)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1091) #2#) $) 162 (|has| |#1| (-951 (-1091))) ELT) (((-3 (-350 (-485)) #2#) $) 145 (|has| |#1| (-951 (-485))) ELT) (((-3 (-485) #2#) $) 143 (|has| |#1| (-951 (-485))) ELT)) (-3158 ((|#1| $) 204 T ELT) (((-1091) $) 163 (|has| |#1| (-951 (-1091))) ELT) (((-350 (-485)) $) 146 (|has| |#1| (-951 (-485))) ELT) (((-485) $) 144 (|has| |#1| (-951 (-485))) ELT)) (-2566 (($ $ $) 71 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 188 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 187 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 186 T ELT) (((-631 |#1|) (-631 $)) 185 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2996 (($) 171 (|has| |#1| (-484)) ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 156 (|has| |#1| (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 180 (|has| |#1| (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 179 (|has| |#1| (-797 (-330))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2998 (($ $) 175 T ELT)) (-3000 ((|#1| $) 177 T ELT)) (-3447 (((-633 $) $) 142 (|has| |#1| (-1067)) ELT)) (-3189 (((-85) $) 155 (|has| |#1| (-741)) ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 147 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 148 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 190 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 189 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 184 T ELT) (((-631 |#1|) (-1180 $)) 183 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3448 (($) 141 (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3132 ((|#1| $) 169 (|has| |#1| (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 166 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 165 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 197 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 196 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-1608 (((-695) $) 74 T ELT)) (-3802 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-695)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 136 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 134 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 133 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 132 (|has| |#1| (-812 (-1091))) ELT)) (-2997 (($ $) 174 T ELT)) (-2999 ((|#1| $) 176 T ELT)) (-3974 (((-801 (-485)) $) 182 (|has| |#1| (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) 181 (|has| |#1| (-554 (-801 (-330)))) ELT) (((-474) $) 159 (|has| |#1| (-554 (-474))) ELT) (((-330) $) 158 (|has| |#1| (-934)) ELT) (((-179) $) 157 (|has| |#1| (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 168 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1091)) 161 (|has| |#1| (-951 (-1091))) ELT)) (-2704 (((-633 $) $) 160 (OR (|has| |#1| (-118)) (-2564 (|has| $ (-118)) (|has| |#1| (-822)))) ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 ((|#1| $) 170 (|has| |#1| (-484)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 153 (|has| |#1| (-741)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-695)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 135 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 131 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 130 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 129 (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) 149 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 151 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 150 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 152 (|has| |#1| (-757)) ELT)) (-3951 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT)))
-(((-905 |#1|) (-113) (-496)) (T -905))
-((-3951 (*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3000 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-3130 (*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258)))) (-2996 (*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484)))))
-(-13 (-312) (-38 |t#1|) (-951 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-795 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3951 ($ |t#1| |t#1|)) (-15 -3000 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2998 ($ $)) (-15 -2997 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-951 (-485))) (PROGN (-6 (-951 (-485))) (-6 (-951 (-350 (-485))))) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-951 (-1091))) (-6 (-951 (-1091))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3131 (|t#1| $)) (-15 -3130 ($ $))) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -2996 ($)) (-15 -3133 (|t#1| $)) (-15 -3132 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-822)) (-6 (-822)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-741)) (|has| |#1| (-120))) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 (-1091)) |has| |#1| (-951 (-1091))) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) |has| |#1| (-934)) ((-554 (-330)) |has| |#1| (-934)) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-554 (-801 (-330))) |has| |#1| (-554 (-801 (-330)))) ((-554 (-801 (-485))) |has| |#1| (-554 (-801 (-485)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-715) |has| |#1| (-741)) ((-717) |has| |#1| (-741)) ((-719) |has| |#1| (-741)) ((-722) |has| |#1| (-741)) ((-741) |has| |#1| (-741)) ((-756) |has| |#1| (-741)) ((-757) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-760) OR (|has| |#1| (-757)) (|has| |#1| (-741))) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) |has| |#1| (-797 (-330))) ((-797 (-485)) |has| |#1| (-797 (-485))) ((-795 |#1|) . T) ((-822) |has| |#1| (-822)) ((-833) . T) ((-934) |has| |#1| (-934)) ((-951 (-350 (-485))) |has| |#1| (-951 (-485))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-1091)) |has| |#1| (-951 (-1091))) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) . T))
-((-3960 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
-(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#2| |#1|) |#3|))) (-496) (-496) (-905 |#1|) (-905 |#2|)) (T -906))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6)) (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ "failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3001 (($ (-1057 |#1| |#2|)) 11 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3125 (((-1057 |#1| |#2|) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT)))
-(((-907 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3001 ($ (-1057 |#1| |#2|))) (-15 -3125 ((-1057 |#1| |#2|) $)))) (-831) (-312)) (T -907))
-((-3001 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)) (-5 *1 (-907 *3 *4)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 10 T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-908) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $))))) (T -908))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908)))))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3004 (($ $) 42 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-2610 (((-584 |#1|) $) 49 T ELT)) (-3247 (((-85) |#1| $) 53 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3835 (((-695) $) 41 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 40 T ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3006 ((|#1| |#1| $) 44 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3005 ((|#1| $) 43 T ELT)) (-1731 (((-695) |#1| $) 52 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 48 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-3002 ((|#1| $) 39 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 45 T ELT)))
-(((-909 |#1|) (-113) (-1130)) (T -909))
-((-3006 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3004 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3006 (|t#1| |t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3004 ($ $)) (-15 -3835 ((-695) $)) (-15 -3003 (|t#1| $)) (-15 -3002 (|t#1| $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3645 ((|#1| $) 12 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) NIL (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) NIL (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 15 T ELT)) (-3009 ((|#1| $) 14 T ELT)) (-3010 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 ((|#1| $) NIL (|has| |#1| (-974)) ELT)) (-2662 (($) 8 T CONST)) (-2668 (($) 10 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT)))
-(((-910 |#1|) (-912 |#1|) (-146)) (T -910))
-NIL
-((-3190 (((-85) $) 43 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) 78 T ELT)) (-3025 (((-85) $) 72 T ELT)) (-3024 (((-350 (-485)) $) 76 T ELT)) (-2411 (((-85) $) 42 T ELT)) (-3134 ((|#2| $) 22 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2486 (($ $) 58 T ELT)) (-3760 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-3974 (((-474) $) 67 T ELT)) (-3011 (($ $) 17 T ELT)) (-3948 (((-773) $) 53 T ELT) (($ (-485)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-485))) NIL T ELT)) (-3128 (((-695)) 10 T CONST)) (-3385 ((|#2| $) 71 T ELT)) (-3058 (((-85) $ $) 26 T ELT)) (-2687 (((-85) $ $) 69 T ELT)) (-3839 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) 27 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT)))
-(((-911 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| (-350 (-485)))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -2687 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-485)) |#1|)) (-15 * (|#1| |#1| (-350 (-485)))) (-15 -2486 (|#1| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3026 ((-3 (-350 (-485)) #1="failed") |#1|)) (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -3134 (|#2| |#1|)) (-15 -3011 (|#1| |#1|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -2411 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 * (|#1| (-695) |#1|)) (-15 -3190 ((-85) |#1|)) (-15 * (|#1| (-831) |#1|)) (-15 -3841 (|#1| |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-912 |#2|) (-146)) (T -911))
-((-3128 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 (-485) #1="failed") $) 143 (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 141 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3158 (((-485) $) 142 (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) 140 (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) 139 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 123 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 122 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 121 T ELT) (((-631 |#1|) (-631 $)) 120 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3645 ((|#1| $) 111 T ELT)) (-3026 (((-3 (-350 (-485)) "failed") $) 107 (|has| |#1| (-484)) ELT)) (-3025 (((-85) $) 109 (|has| |#1| (-484)) ELT)) (-3024 (((-350 (-485)) $) 108 (|has| |#1| (-484)) ELT)) (-3007 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3134 ((|#1| $) 113 T ELT)) (-2533 (($ $ $) 95 (|has| |#1| (-757)) ELT)) (-2859 (($ $ $) 96 (|has| |#1| (-757)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 125 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 124 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 119 T ELT) (((-631 |#1|) (-1180 $)) 118 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3008 ((|#1| $) 114 T ELT)) (-3009 ((|#1| $) 115 T ELT)) (-3010 ((|#1| $) 116 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) 128 (|has| |#1| (-456 (-1091) |#1|)) ELT) (($ $ (-1091) |#1|) 127 (|has| |#1| (-456 (-1091) |#1|)) ELT)) (-3802 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3760 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-695)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 90 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 88 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 87 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 86 (|has| |#1| (-812 (-1091))) ELT)) (-3974 (((-474) $) 105 (|has| |#1| (-554 (-474))) ELT)) (-3011 (($ $) 117 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-485))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (((-633 $) $) 106 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 ((|#1| $) 110 (|has| |#1| (-974)) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-695)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1091)) 89 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 85 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 84 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 83 (|has| |#1| (-812 (-1091))) ELT)) (-2568 (((-85) $ $) 97 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 99 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 98 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 100 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-485))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 101 (|has| |#1| (-312)) ELT)))
-(((-912 |#1|) (-113) (-146)) (T -912))
-((-3011 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3007 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))) (-3026 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485))))))
-(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3011 ($ $)) (-15 -3010 (|t#1| $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3134 (|t#1| $)) (-15 -3007 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3645 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-757)) (-6 (-757)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-974)) (-15 -3385 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-484)) (PROGN (-15 -3025 ((-85) $)) (-15 -3024 ((-350 (-485)) $)) (-15 -3026 ((-3 (-350 (-485)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-312))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-456 (-1091) |#1|) |has| |#1| (-456 (-1091) |#1|)) ((-456 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-312)) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-312)) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-312)) ((-583 |#1|) . T) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-312)) ((-655 |#1|) . T) ((-664) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-312)) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-969 (-350 (-485))) |has| |#1| (-312)) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3960 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-146) (-912 |#4|) (-146)) (T -913))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3726 (($) NIL T CONST)) (-3004 (($ $) 24 T ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3012 (($ (-584 |#1|)) 34 T ELT)) (-2610 (((-584 |#1|) $) NIL T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-695) $) 27 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 29 T ELT)) (-3611 (($ |#1| $) 18 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3003 ((|#1| $) 28 T ELT)) (-1276 ((|#1| $) 23 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3006 ((|#1| |#1| $) 17 T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) NIL T ELT)) (-3005 ((|#1| $) 22 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-3002 ((|#1| $) 31 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -3012 ($ (-584 |#1|))))) (-1014)) (T -914))
-((-3012 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
-((-3039 (($ $) 12 T ELT)) (-3013 (($ $ (-485)) 13 T ELT)))
-(((-915 |#1|) (-10 -7 (-15 -3039 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-485)))) (-916)) (T -915))
-NIL
-((-3039 (($ $) 6 T ELT)) (-3013 (($ $ (-485)) 7 T ELT)) (** (($ $ (-350 (-485))) 8 T ELT)))
-(((-916) (-113)) (T -916))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485))))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))) (-3039 (*1 *1 *1) (-4 *1 (-916))))
-(-13 (-10 -8 (-15 -3039 ($ $)) (-15 -3013 ($ $ (-485))) (-15 ** ($ $ (-350 (-485))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1648 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2064 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2062 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1786 (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|))) NIL T ELT)) (-3332 (((-350 |#2|) $) NIL T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3138 (((-695)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1662 (((-85)) NIL T ELT)) (-1661 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| (-350 |#2|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-350 |#2|) (-951 (-350 (-485)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1796 (($ (-1180 (-350 |#2|)) (-1180 $)) NIL T ELT) (($ (-1180 (-350 |#2|))) 79 T ELT) (($ (-1180 |#2|) |#2|) NIL T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2566 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-631 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-631 $)) NIL T ELT)) (-1653 (((-1180 $) (-1180 $)) NIL T ELT)) (-3844 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1640 (((-584 (-584 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1665 (((-85) |#1| |#1|) NIL T ELT)) (-3110 (((-831)) NIL T ELT)) (-2996 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1660 (((-85)) NIL T ELT)) (-1659 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3505 (($ $) NIL T ELT)) (-2835 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1681 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3725 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3774 (((-831) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-744 (-831)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3379 (((-695)) NIL T ELT)) (-1654 (((-1180 $) (-1180 $)) NIL T ELT)) (-3134 (((-350 |#2|) $) NIL T ELT)) (-1641 (((-584 (-858 |#1|)) (-1091)) NIL (|has| |#1| (-312)) ELT)) (-3447 (((-633 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2015 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2011 (((-831) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3081 ((|#3| $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-350 |#2|) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-350 |#2|))) (|:| |vec| (-1180 (-350 |#2|)))) (-1180 $) $) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1649 (((-631 (-350 |#2|))) 57 T ELT)) (-1651 (((-631 (-350 |#2|))) 56 T ELT)) (-2486 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1646 (($ (-1180 |#2|) |#2|) 80 T ELT)) (-1650 (((-631 (-350 |#2|))) 55 T ELT)) (-1652 (((-631 (-350 |#2|))) 54 T ELT)) (-1645 (((-2 (|:| |num| (-631 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1647 (((-2 (|:| |num| (-1180 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1658 (((-1180 $)) 51 T ELT)) (-3920 (((-1180 $)) 50 T ELT)) (-1657 (((-85) $) NIL T ELT)) (-1656 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3448 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2401 (($ (-831)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1643 (((-3 |#2| #1#)) 70 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1667 (((-695)) NIL T ELT)) (-2410 (($) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-695) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1644 (((-3 |#2| #1#)) 68 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3759 (((-350 |#2|) (-1180 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1769 (((-695) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3760 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2409 (((-631 (-350 |#2|)) (-1180 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3187 ((|#3|) 58 T ELT)) (-1675 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3226 (((-1180 (-350 |#2|)) $ (-1180 $)) NIL T ELT) (((-631 (-350 |#2|)) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 (-350 |#2|)) $) 81 T ELT) (((-631 (-350 |#2|)) (-1180 $)) NIL T ELT)) (-3974 (((-1180 (-350 |#2|)) $) NIL T ELT) (($ (-1180 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1655 (((-1180 $) (-1180 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2704 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-633 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2451 ((|#3| $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1664 (((-85)) 65 T ELT)) (-1663 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-1642 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1666 (((-85)) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-695)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-810 (-1091)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-812 (-1091))))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| (-350 |#2|) (-312)) ELT)))
-(((-917 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1135) (-1156 |#1|) (-1156 (-350 |#2|)) (-350 |#2|) (-695)) (T -917))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3019 (((-584 (-485)) $) 73 T ELT)) (-3015 (($ (-584 (-485))) 81 T ELT)) (-3131 (((-485) $) 48 (|has| (-485) (-258)) ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL (|has| (-485) (-741)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) 60 T ELT) (((-3 (-1091) #1#) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-3 (-350 (-485)) #1#) $) 57 (|has| (-485) (-951 (-485))) ELT) (((-3 (-485) #1#) $) 60 (|has| (-485) (-951 (-485))) ELT)) (-3158 (((-485) $) NIL T ELT) (((-1091) $) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) NIL (|has| (-485) (-951 (-485))) ELT) (((-485) $) NIL (|has| (-485) (-951 (-485))) ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2996 (($) NIL (|has| (-485) (-484)) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3017 (((-584 (-485)) $) 79 T ELT)) (-3188 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (|has| (-485) (-797 (-485))) ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (|has| (-485) (-797 (-330))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL T ELT)) (-3000 (((-485) $) 45 T ELT)) (-3447 (((-633 $) $) NIL (|has| (-485) (-1067)) ELT)) (-3189 (((-85) $) NIL (|has| (-485) (-741)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-485) (-757)) ELT)) (-3960 (($ (-1 (-485) (-485)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| (-485) (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL T ELT)) (-3448 (($) NIL (|has| (-485) (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3130 (($ $) NIL (|has| (-485) (-258)) ELT) (((-350 (-485)) $) 50 T ELT)) (-3018 (((-1070 (-485)) $) 78 T ELT)) (-3014 (($ (-584 (-485)) (-584 (-485))) 82 T ELT)) (-3132 (((-485) $) 64 (|has| (-485) (-484)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| (-485) (-822)) ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-3770 (($ $ (-584 (-485)) (-584 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-485) (-485)) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-249 (-485))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-249 (-485)))) NIL (|has| (-485) (-260 (-485))) ELT) (($ $ (-584 (-1091)) (-584 (-485))) NIL (|has| (-485) (-456 (-1091) (-485))) ELT) (($ $ (-1091) (-485)) NIL (|has| (-485) (-456 (-1091) (-485))) ELT)) (-1608 (((-695) $) NIL T ELT)) (-3802 (($ $ (-485)) NIL (|has| (-485) (-241 (-485) (-485))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) 15 (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-485) $) 47 T ELT)) (-3016 (((-584 (-485)) $) 80 T ELT)) (-3974 (((-801 (-485)) $) NIL (|has| (-485) (-554 (-801 (-485)))) ELT) (((-801 (-330)) $) NIL (|has| (-485) (-554 (-801 (-330)))) ELT) (((-474) $) NIL (|has| (-485) (-554 (-474))) ELT) (((-330) $) NIL (|has| (-485) (-934)) ELT) (((-179) $) NIL (|has| (-485) (-934)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-485) (-822))) ELT)) (-3948 (((-773) $) 108 T ELT) (($ (-485)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 27 T ELT) (($ (-485)) 51 T ELT) (($ (-1091)) NIL (|has| (-485) (-951 (-1091))) ELT) (((-350 (-485)) $) 25 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-485) (-822))) (|has| (-485) (-118))) ELT)) (-3128 (((-695)) 13 T CONST)) (-3133 (((-485) $) 62 (|has| (-485) (-484)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3385 (($ $) NIL (|has| (-485) (-741)) ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1 (-485) (-485))) NIL T ELT) (($ $ (-1 (-485) (-485)) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| (-485) (-812 (-1091))) ELT) (($ $) NIL (|has| (-485) (-189)) ELT) (($ $ (-695)) NIL (|has| (-485) (-189)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) NIL (|has| (-485) (-757)) ELT)) (-2687 (((-85) $ $) 40 (|has| (-485) (-757)) ELT)) (-3951 (($ $ $) 36 T ELT) (($ (-485) (-485)) 38 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3841 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ (-485) $) 32 T ELT) (($ $ (-485)) NIL T ELT)))
-(((-918 |#1|) (-13 (-905 (-485)) (-553 (-350 (-485))) (-10 -8 (-15 -3130 ((-350 (-485)) $)) (-15 -3019 ((-584 (-485)) $)) (-15 -3018 ((-1070 (-485)) $)) (-15 -3017 ((-584 (-485)) $)) (-15 -3016 ((-584 (-485)) $)) (-15 -3015 ($ (-584 (-485)))) (-15 -3014 ($ (-584 (-485)) (-584 (-485)))))) (-485)) (T -918))
-((-3130 (*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3015 (*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))) (-3014 (*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-((-3020 (((-51) (-350 (-485)) (-485)) 9 T ELT)))
-(((-919) (-10 -7 (-15 -3020 ((-51) (-350 (-485)) (-485))))) (T -919))
-((-3020 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919)))))
-((-3138 (((-485)) 21 T ELT)) (-3023 (((-485)) 26 T ELT)) (-3022 (((-1186) (-485)) 24 T ELT)) (-3021 (((-485) (-485)) 27 T ELT) (((-485)) 20 T ELT)))
-(((-920) (-10 -7 (-15 -3021 ((-485))) (-15 -3138 ((-485))) (-15 -3021 ((-485) (-485))) (-15 -3022 ((-1186) (-485))) (-15 -3023 ((-485))))) (T -920))
-((-3023 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3022 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3138 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))) (-3021 (*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
-((-3735 (((-348 |#1|) |#1|) 43 T ELT)) (-3734 (((-348 |#1|) |#1|) 41 T ELT)))
-(((-921 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|))) (-1156 (-350 (-485)))) (T -921))
-((-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485)))))))
-((-3026 (((-3 (-350 (-485)) "failed") |#1|) 15 T ELT)) (-3025 (((-85) |#1|) 14 T ELT)) (-3024 (((-350 (-485)) |#1|) 10 T ELT)))
-(((-922 |#1|) (-10 -7 (-15 -3024 ((-350 (-485)) |#1|)) (-15 -3025 ((-85) |#1|)) (-15 -3026 ((-3 (-350 (-485)) "failed") |#1|))) (-951 (-350 (-485)))) (T -922))
-((-3026 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))) (-3025 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
-((-3790 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3802 ((|#2| $ #1#) 10 T ELT)) (-3030 (((-85) $ $) 18 T ELT)))
-(((-923 |#1| |#2|) (-10 -7 (-15 -3790 (|#2| |#1| #1="value" |#2|)) (-15 -3030 ((-85) |#1| |#1|)) (-15 -3802 (|#2| |#1| #1#))) (-924 |#2|) (-1130)) (T -923))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ "value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ "value") 42 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-924 |#1|) (-113) (-1130)) (T -924))
-((-3524 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3033 (*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))) (-3529 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3635 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3031 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))) (-3027 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))))
-(-13 (-429 |t#1|) (-10 -8 (-15 -3524 ((-584 $) $)) (-15 -3033 ((-584 $) $)) (-15 -3529 ((-85) $)) (-15 -3404 (|t#1| $)) (-15 -3802 (|t#1| $ "value")) (-15 -3635 ((-85) $)) (-15 -3032 ((-584 |t#1|) $)) (-15 -3031 ((-485) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3030 ((-85) $ $)) (-15 -3029 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3028 ($ $ (-584 $))) (-15 -3790 (|t#1| $ "value" |t#1|)) (-15 -3027 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-3039 (($ $) 9 T ELT) (($ $ (-831)) 49 T ELT) (($ (-350 (-485))) 13 T ELT) (($ (-485)) 15 T ELT)) (-3185 (((-3 $ #1="failed") (-1086 $) (-831) (-773)) 24 T ELT) (((-3 $ #1#) (-1086 $) (-831)) 32 T ELT)) (-3013 (($ $ (-485)) 58 T ELT)) (-3128 (((-695)) 18 T CONST)) (-3186 (((-584 $) (-1086 $)) NIL T ELT) (((-584 $) (-1086 (-350 (-485)))) 63 T ELT) (((-584 $) (-1086 (-485))) 68 T ELT) (((-584 $) (-858 $)) 72 T ELT) (((-584 $) (-858 (-350 (-485)))) 76 T ELT) (((-584 $) (-858 (-485))) 80 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) 53 T ELT)))
-(((-925 |#1|) (-10 -7 (-15 -3039 (|#1| (-485))) (-15 -3039 (|#1| (-350 (-485)))) (-15 -3039 (|#1| |#1| (-831))) (-15 -3186 ((-584 |#1|) (-858 (-485)))) (-15 -3186 ((-584 |#1|) (-858 (-350 (-485))))) (-15 -3186 ((-584 |#1|) (-858 |#1|))) (-15 -3186 ((-584 |#1|) (-1086 (-485)))) (-15 -3186 ((-584 |#1|) (-1086 (-350 (-485))))) (-15 -3186 ((-584 |#1|) (-1086 |#1|))) (-15 -3185 ((-3 |#1| #1="failed") (-1086 |#1|) (-831))) (-15 -3185 ((-3 |#1| #1#) (-1086 |#1|) (-831) (-773))) (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3013 (|#1| |#1| (-485))) (-15 -3039 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3128 ((-695)) -3954) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831)))) (-926)) (T -925))
-((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 111 T ELT)) (-2064 (($ $) 112 T ELT)) (-2062 (((-85) $) 114 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 131 T ELT)) (-3973 (((-348 $) $) 132 T ELT)) (-3039 (($ $) 95 T ELT) (($ $ (-831)) 81 T ELT) (($ (-350 (-485))) 80 T ELT) (($ (-485)) 79 T ELT)) (-1609 (((-85) $ $) 122 T ELT)) (-3625 (((-485) $) 148 T ELT)) (-3726 (($) 23 T CONST)) (-3185 (((-3 $ "failed") (-1086 $) (-831) (-773)) 89 T ELT) (((-3 $ "failed") (-1086 $) (-831)) 88 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 108 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) 103 T ELT)) (-3158 (((-485) $) 107 (|has| (-350 (-485)) (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 104 T ELT)) (-3035 (($ $ (-773)) 78 T ELT)) (-3034 (($ $ (-773)) 77 T ELT)) (-2566 (($ $ $) 126 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 125 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 120 T ELT)) (-3725 (((-85) $) 133 T ELT)) (-3188 (((-85) $) 146 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 94 T ELT)) (-3189 (((-85) $) 147 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 129 T ELT)) (-2533 (($ $ $) 140 T ELT)) (-2859 (($ $ $) 141 T ELT)) (-3036 (((-3 (-1086 $) "failed") $) 90 T ELT)) (-3038 (((-3 (-773) "failed") $) 92 T ELT)) (-3037 (((-3 (-1086 $) "failed") $) 91 T ELT)) (-1895 (($ (-584 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 134 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 119 T ELT)) (-3146 (($ (-584 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3734 (((-348 $) $) 130 T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 127 T ELT)) (-3468 (((-3 $ "failed") $ $) 110 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 121 T ELT)) (-1608 (((-695) $) 123 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 124 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-485))) 102 T ELT) (($ (-485)) 101 T ELT) (($ (-350 (-485))) 98 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 113 T ELT)) (-3772 (((-350 (-485)) $ $) 76 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3186 (((-584 $) (-1086 $)) 87 T ELT) (((-584 $) (-1086 (-350 (-485)))) 86 T ELT) (((-584 $) (-1086 (-485))) 85 T ELT) (((-584 $) (-858 $)) 84 T ELT) (((-584 $) (-858 (-350 (-485)))) 83 T ELT) (((-584 $) (-858 (-485))) 82 T ELT)) (-3385 (($ $) 149 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 142 T ELT)) (-2569 (((-85) $ $) 144 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 143 T ELT)) (-2687 (((-85) $ $) 145 T ELT)) (-3951 (($ $ $) 139 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 135 T ELT) (($ $ (-350 (-485))) 93 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-485)) $) 137 T ELT) (($ $ (-350 (-485))) 136 T ELT) (($ (-485) $) 100 T ELT) (($ $ (-485)) 99 T ELT) (($ (-350 (-485)) $) 97 T ELT) (($ $ (-350 (-485))) 96 T ELT)))
-(((-926) (-113)) (T -926))
-((-3039 (*1 *1 *1) (-4 *1 (-926))) (-3038 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3037 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))) (-3185 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773)) (-4 *1 (-926)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3186 (*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926)))) (-3039 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926)))) (-3039 (*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926)))) (-3035 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))) (-3772 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485))))))
-(-13 (-120) (-756) (-146) (-312) (-355 (-350 (-485))) (-38 (-485)) (-38 (-350 (-485))) (-916) (-10 -8 (-15 -3038 ((-3 (-773) "failed") $)) (-15 -3037 ((-3 (-1086 $) "failed") $)) (-15 -3036 ((-3 (-1086 $) "failed") $)) (-15 -3185 ((-3 $ "failed") (-1086 $) (-831) (-773))) (-15 -3185 ((-3 $ "failed") (-1086 $) (-831))) (-15 -3186 ((-584 $) (-1086 $))) (-15 -3186 ((-584 $) (-1086 (-350 (-485))))) (-15 -3186 ((-584 $) (-1086 (-485)))) (-15 -3186 ((-584 $) (-858 $))) (-15 -3186 ((-584 $) (-858 (-350 (-485))))) (-15 -3186 ((-584 $) (-858 (-485)))) (-15 -3039 ($ $ (-831))) (-15 -3039 ($ $)) (-15 -3039 ($ (-350 (-485)))) (-15 -3039 ($ (-485))) (-15 -3035 ($ $ (-773))) (-15 -3034 ($ $ (-773))) (-15 -3772 ((-350 (-485)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 (-485)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 (-485) (-485)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-485))) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 (-485)) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 (-485)) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 (-485)) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-833) . T) ((-916) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) |has| (-350 (-485)) (-951 (-485))) ((-964 (-350 (-485))) . T) ((-964 (-485)) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 (-485)) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-3040 (((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -3040 ((-2 (|:| |ans| |#2|) (|:| -3139 |#2|) (|:| |sol?| (-85))) (-485) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -927))
-((-3040 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85)))) (-5 *1 (-927 *8 *4)))))
-((-3041 (((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-584 |#2|) #1="failed") (-485) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-584 |#2|)) (-1 (-3 (-2 (|:| -2137 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-951 (-485)) (-581 (-485))) (-13 (-1116) (-27) (-364 |#1|))) (T -928))
-((-3041 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-584 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1116) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485)) (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
-((-3044 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)) 39 T ELT)) (-3042 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3095 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3043 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -3042 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3095 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3043 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3044 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-485)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-485) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -929))
-((-3044 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3268 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-3043 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3042 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3095 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
-((-3045 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3095 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3046 (((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -3045 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3095 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3046 ((-3 (-584 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-951 (-485))) (-1156 |#1|)) (T -930))
-((-3046 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4)) (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))) (-3045 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-13 (-312) (-120) (-951 (-485)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3095 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6)))))
-((-3047 (((-1 |#1|) (-584 (-2 (|:| -3404 |#1|) (|:| -1523 (-485))))) 34 T ELT)) (-3102 (((-1 |#1|) (-1010 |#1|)) 42 T ELT)) (-3048 (((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)) 31 T ELT)))
-(((-931 |#1|) (-10 -7 (-15 -3102 ((-1 |#1|) (-1010 |#1|))) (-15 -3047 ((-1 |#1|) (-584 (-2 (|:| -3404 |#1|) (|:| -1523 (-485)))))) (-15 -3048 ((-1 |#1|) (-1180 |#1|) (-1180 (-485)) (-485)))) (-1014)) (T -931))
-((-3048 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3404 *4) (|:| -1523 (-485))))) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
-((-3774 (((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
-(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3774 ((-695) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1156 |#1|) (-1156 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -932))
-((-3774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3597 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-933) (-13 (-996) (-10 -8 (-15 -3597 ((-1050) $)) (-15 -3235 ((-1050) $))))) (T -933))
-((-3597 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933)))))
-((-3974 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT)))
-(((-934) (-113)) (T -934))
-NIL
-(-13 (-554 (-179)) (-554 (-330)))
-(((-554 (-179)) . T) ((-554 (-330)) . T))
-((-3136 (((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 32 T ELT) (((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 29 T ELT)) (-3051 (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 34 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 33 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|) 28 T ELT)) (-3050 (((-584 (-350 (-485))) (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) 20 T ELT)) (-3049 (((-350 (-485)) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 17 T ELT)))
-(((-935 |#1|) (-10 -7 (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|)) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3049 ((-350 (-485)) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3050 ((-584 (-350 (-485))) (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))))) (-1156 (-485))) (T -935))
-((-3050 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))))))
-((-3136 (((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 35 T ELT) (((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 32 T ELT)) (-3051 (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485))) 30 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485))) 26 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) 28 T ELT) (((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|) 24 T ELT)))
-(((-936 |#1|) (-10 -7 (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1|)) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-350 (-485)))) (-15 -3051 ((-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-350 (-485)))) (-15 -3136 ((-3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) "failed") |#1| (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))) (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-1156 (-350 (-485)))) (T -936))
-((-3136 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))) (-3136 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))) (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *5)) (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))) (-3051 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *4) (|:| -3139 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))) (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))) (-3051 (*1 *2 *3) (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))) (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485)))))))
-((-3575 (((-584 (-330)) (-858 (-485)) (-330)) 28 T ELT) (((-584 (-330)) (-858 (-350 (-485))) (-330)) 27 T ELT)) (-3971 (((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330)) 37 T ELT)))
-(((-937) (-10 -7 (-15 -3575 ((-584 (-330)) (-858 (-350 (-485))) (-330))) (-15 -3575 ((-584 (-330)) (-858 (-485)) (-330))) (-15 -3971 ((-584 (-584 (-330))) (-584 (-858 (-485))) (-584 (-1091)) (-330))))) (T -937))
-((-3971 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091))) (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937)) (-5 *4 (-330)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 75 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-3039 (($ $) NIL T ELT) (($ $ (-831)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) 70 T ELT)) (-3726 (($) NIL T CONST)) (-3185 (((-3 $ #1#) (-1086 $) (-831) (-773)) NIL T ELT) (((-3 $ #1#) (-1086 $) (-831)) 55 T ELT)) (-3159 (((-3 (-350 (-485)) #1#) $) NIL (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-485) #1#) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3158 (((-350 (-485)) $) 17 (|has| (-350 (-485)) (-951 (-350 (-485)))) ELT) (((-350 (-485)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-485) $) NIL (OR (|has| (-350 (-485)) (-951 (-485))) (|has| |#1| (-951 (-485)))) ELT)) (-3035 (($ $ (-773)) 47 T ELT)) (-3034 (($ $ (-773)) 48 T ELT)) (-2566 (($ $ $) NIL T ELT)) (-3184 (((-350 (-485)) $ $) 21 T ELT)) (-3469 (((-3 $ #1#) $) 88 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-3188 (((-85) $) 66 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL T ELT)) (-3189 (((-85) $) 69 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3036 (((-3 (-1086 $) #1#) $) 83 T ELT)) (-3038 (((-3 (-773) #1#) $) 82 T ELT)) (-3037 (((-3 (-1086 $) #1#) $) 80 T ELT)) (-3052 (((-3 (-975 $ (-1086 $)) #1#) $) 78 T ELT)) (-1895 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 89 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3948 (((-773) $) 87 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-485))) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3772 (((-350 (-485)) $ $) 27 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3186 (((-584 $) (-1086 $)) 61 T ELT) (((-584 $) (-1086 (-350 (-485)))) NIL T ELT) (((-584 $) (-1086 (-485))) NIL T ELT) (((-584 $) (-858 $)) NIL T ELT) (((-584 $) (-858 (-350 (-485)))) NIL T ELT) (((-584 $) (-858 (-485))) NIL T ELT)) (-3053 (($ (-975 $ (-1086 $)) (-773)) 46 T ELT)) (-3385 (($ $) 22 T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 39 T CONST)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 76 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 24 T ELT)) (-3951 (($ $ $) 37 T ELT)) (-3839 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3841 (($ $ $) 111 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ (-485) $) 71 T ELT) (($ $ (-485)) NIL T ELT) (($ (-350 (-485)) $) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-938 |#1|) (-13 (-926) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3053 ($ (-975 $ (-1086 $)) (-773))) (-15 -3052 ((-3 (-975 $ (-1086 $)) "failed") $)) (-15 -3184 ((-350 (-485)) $ $)))) (-13 (-756) (-312) (-934))) (T -938))
-((-3053 (*1 *1 *2 *3) (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773)) (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))) (-3052 (*1 *2 *1) (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))) (-3184 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3)) (-4 *3 (-13 (-756) (-312) (-934))))))
-((-3054 (((-2 (|:| -3268 |#2|) (|:| -2515 (-584 |#1|))) |#2| (-584 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
-(((-939 |#1| |#2|) (-10 -7 (-15 -3054 (|#2| |#2| |#1|)) (-15 -3054 ((-2 (|:| -3268 |#2|) (|:| -2515 (-584 |#1|))) |#2| (-584 |#1|)))) (-312) (-601 |#1|)) (T -939))
-((-3054 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-584 *5)))) (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))) (-3054 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3055 ((|#1| $ |#1|) 12 T ELT)) (-3057 (($ |#1|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3056 ((|#1| $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 9 T ELT)))
-(((-940 |#1|) (-13 (-1014) (-10 -8 (-15 -3057 ($ |#1|)) (-15 -3056 (|#1| $)) (-15 -3055 (|#1| $ |#1|)) (-15 -3058 ((-85) $ $)))) (-1130)) (T -940))
-((-3058 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))) (-3057 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3056 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))) (-3055 (*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 113 T ELT) (((-584 $) (-584 |#4|) (-85)) 114 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 112 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 107 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) 65 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3440 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 128 T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 105 T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3194 (((-584 $) |#4| $) 88 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3240 (((-584 $) |#4| $) 110 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 111 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3441 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3442 (($ |#4| $) 77 T ELT) (($ (-584 |#4|) $) 78 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3771 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 90 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 84 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3191 (((-584 $) |#4| $) 87 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3935 (((-85) |#3| $) 61 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-941 |#1| |#2| |#3| |#4|) (-13 (-984 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3442 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3441 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3440 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -941))
-((-3442 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-((-3059 (((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485))))) 67 T ELT)) (-3060 (((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485))))) 52 T ELT)) (-3061 (((-584 (-265 (-485))) (-631 (-350 (-858 (-485))))) 45 T ELT)) (-3065 (((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485))))) 85 T ELT)) (-3063 (((-631 (-265 (-485))) (-631 (-265 (-485)))) 38 T ELT)) (-3064 (((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485))))) 74 T ELT)) (-3062 (((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485))))) 82 T ELT)))
-(((-942) (-10 -7 (-15 -3059 ((-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485))))))) (-631 (-350 (-858 (-485)))))) (-15 -3060 ((-584 (-631 (-265 (-485)))) (-265 (-485)) (-631 (-350 (-858 (-485)))))) (-15 -3061 ((-584 (-265 (-485))) (-631 (-350 (-858 (-485)))))) (-15 -3062 ((-3 (-631 (-265 (-485))) "failed") (-631 (-350 (-858 (-485)))))) (-15 -3063 ((-631 (-265 (-485))) (-631 (-265 (-485))))) (-15 -3064 ((-584 (-631 (-265 (-485)))) (-584 (-631 (-265 (-485)))))) (-15 -3065 ((-584 (-631 (-265 (-485)))) (-631 (-350 (-858 (-485)))))))) (T -942))
-((-3065 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3062 (*1 *2 *3) (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485)))) (-5 *1 (-942)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)) (-5 *3 (-265 (-485))))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485)) (|:| |radvect| (-584 (-631 (-265 (-485)))))))) (-5 *1 (-942)))))
-((-3069 (((-584 (-631 |#1|)) (-584 (-631 |#1|))) 69 T ELT) (((-631 |#1|) (-631 |#1|)) 68 T ELT) (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 67 T ELT) (((-631 |#1|) (-631 |#1|) (-631 |#1|)) 64 T ELT)) (-3068 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 62 T ELT) (((-631 |#1|) (-631 |#1|) (-831)) 61 T ELT)) (-3070 (((-584 (-631 (-485))) (-584 (-584 (-485)))) 80 T ELT) (((-584 (-631 (-485))) (-584 (-814 (-485))) (-485)) 79 T ELT) (((-631 (-485)) (-584 (-485))) 76 T ELT) (((-631 (-485)) (-814 (-485)) (-485)) 74 T ELT)) (-3067 (((-631 (-858 |#1|)) (-695)) 94 T ELT)) (-3066 (((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831)) 48 (|has| |#1| (-6 (-3999 #1="*"))) ELT) (((-631 |#1|) (-631 |#1|) (-831)) 46 (|has| |#1| (-6 (-3999 #1#))) ELT)))
-(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3999 #1="*"))) (-15 -3066 ((-631 |#1|) (-631 |#1|) (-831))) |%noBranch|) (IF (|has| |#1| (-6 (-3999 #1#))) (-15 -3066 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) |%noBranch|) (-15 -3067 ((-631 (-858 |#1|)) (-695))) (-15 -3068 ((-631 |#1|) (-631 |#1|) (-831))) (-15 -3068 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-831))) (-15 -3069 ((-631 |#1|) (-631 |#1|) (-631 |#1|))) (-15 -3069 ((-584 (-631 |#1|)) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3069 ((-631 |#1|) (-631 |#1|))) (-15 -3069 ((-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3070 ((-631 (-485)) (-814 (-485)) (-485))) (-15 -3070 ((-631 (-485)) (-584 (-485)))) (-15 -3070 ((-584 (-631 (-485))) (-584 (-814 (-485))) (-485))) (-15 -3070 ((-584 (-631 (-485))) (-584 (-584 (-485)))))) (-962)) (T -943))
-((-3070 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4))) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5)) (-4 *5 (-962)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3068 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4)) (-4 *4 (-962)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*"))) (-4 *4 (-962)) (-5 *1 (-943 *4)))))
-((-3074 (((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3420 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3078 (((-1180 |#1|) (-584 (-1180 |#1|)) (-485)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3077 (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3076 (((-85) (-584 (-631 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-584 (-631 |#1|)) (-485)) 100 (|has| |#1| (-312)) ELT)) (-3073 (((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3072 (((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|)) 46 T ELT)) (-3071 (((-631 |#1|) (-1180 (-1180 |#1|))) 39 T ELT)) (-3075 (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485)) 93 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485)) 91 (|has| |#1| (-312)) ELT)))
-(((-944 |#1|) (-10 -7 (-15 -3071 ((-631 |#1|) (-1180 (-1180 |#1|)))) (-15 -3072 ((-631 |#1|) (-584 (-631 |#1|)) (-631 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3073 ((-1180 (-1180 |#1|)) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3074 ((-631 |#1|) (-584 (-631 |#1|)) (-1180 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-85) (-485))) (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3075 ((-631 |#1|) (-584 (-631 |#1|)) (-584 (-631 |#1|)) (-485))) (-15 -3076 ((-85) (-584 (-631 |#1|)) (-485))) (-15 -3076 ((-85) (-584 (-631 |#1|)))) (-15 -3420 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 |#1|))) (-15 -3420 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-1180 (-1180 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85) (-485) (-485))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-85))) (-15 -3077 ((-584 (-584 (-631 |#1|))) (-584 (-631 |#1|)) (-831))) (-15 -3078 ((-1180 |#1|) (-584 (-1180 |#1|)) (-485)))) |%noBranch|) |%noBranch|)) (-962)) (T -944))
-((-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3077 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3077 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962)) (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4))))) (-3077 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-584 (-631 *6))))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3420 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *4)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962)) (-5 *2 (-85)) (-5 *1 (-944 *5)))) (-3075 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))) (-3075 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)) (-4 *4 (-312)) (-4 *4 (-962)))) (-3075 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6)) (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962)) (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))) (-3072 (*1 *2 *3 *2) (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-944 *4)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4)) (-5 *1 (-944 *4)))))
-((-3079 ((|#1| (-831) |#1|) 18 T ELT)))
-(((-945 |#1|) (-10 -7 (-15 -3079 (|#1| (-831) |#1|))) (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $))))) (T -945))
-((-3079 (*1 *2 *3 *2) (-12 (-5 *3 (-831)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $))))))))
-((-3080 ((|#1| |#1| (-831)) 18 T ELT)))
-(((-946 |#1|) (-10 -7 (-15 -3080 (|#1| |#1| (-831)))) (-13 (-1014) (-10 -8 (-15 * ($ $ $))))) (T -946))
-((-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-831)) (-5 *1 (-946 *2)) (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
-((-3948 ((|#1| (-262)) 11 T ELT) (((-1186) |#1|) 9 T ELT)))
-(((-947 |#1|) (-10 -7 (-15 -3948 ((-1186) |#1|)) (-15 -3948 (|#1| (-262)))) (-1130)) (T -947))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3844 (($ |#4|) 24 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3081 ((|#4| $) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3128 (((-695)) 42 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 22 T CONST)) (-3058 (((-85) $ $) 39 T ELT)) (-3839 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 28 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-948 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3844 ($ |#4|)) (-15 -3948 ($ |#4|)) (-15 -3081 (|#4| $)))) (-312) (-718) (-757) (-862 |#1| |#2| |#3|) (-584 |#4|)) (T -948))
-((-3844 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-949) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $))))) (T -949))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949)))))
-((-3158 ((|#2| $) 10 T ELT)))
-(((-950 |#1| |#2|) (-10 -7 (-15 -3158 (|#2| |#1|))) (-951 |#2|) (-1130)) (T -950))
-NIL
-((-3159 (((-3 |#1| "failed") $) 9 T ELT)) (-3158 ((|#1| $) 8 T ELT)) (-3948 (($ |#1|) 6 T ELT)))
-(((-951 |#1|) (-113) (-1130)) (T -951))
-((-3159 (*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))) (-3158 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130)))))
-(-13 (-556 |t#1|) (-10 -8 (-15 -3159 ((-3 |t#1| "failed") $)) (-15 -3158 (|t#1| $))))
-(((-556 |#1|) . T))
-((-3082 (((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))) 38 T ELT)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -3082 ((-584 (-584 (-249 (-350 (-858 |#2|))))) (-584 (-858 |#2|)) (-584 (-1091))))) (-496) (-13 (-496) (-951 |#1|))) (T -952))
-((-3082 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
-((-3083 (((-584 (-1091)) (-350 (-858 |#1|))) 17 T ELT)) (-3085 (((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 24 T ELT)) (-3086 (((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091)) 26 T ELT)) (-3084 (((-3 (-1091) "failed") (-350 (-858 |#1|))) 20 T ELT)) (-3770 (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|))))) 32 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|)))) 33 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|)))) 28 T ELT) (((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|))) 29 T ELT)) (-3948 (((-350 (-858 |#1|)) |#1|) 11 T ELT)))
-(((-953 |#1|) (-10 -7 (-15 -3083 ((-584 (-1091)) (-350 (-858 |#1|)))) (-15 -3084 ((-3 (-1091) "failed") (-350 (-858 |#1|)))) (-15 -3085 ((-350 (-1086 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3086 ((-350 (-858 |#1|)) (-350 (-1086 (-350 (-858 |#1|)))) (-1091))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-1091)) (-584 (-350 (-858 |#1|))))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-249 (-350 (-858 |#1|))))) (-15 -3770 ((-350 (-858 |#1|)) (-350 (-858 |#1|)) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3948 ((-350 (-858 |#1|)) |#1|))) (-496)) (T -953))
-((-3948 (*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3770 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5)))) (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5)))) (-3770 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-953 *4)))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091)) (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5))))) (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))) (-3084 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091)) (-5 *1 (-953 *4)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091))) (-5 *1 (-953 *4)))))
-((-3087 (((-330)) 17 T ELT)) (-3102 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3095 (((-1 (-330)) (-695)) 48 T ELT)) (-3088 (((-330)) 37 T ELT)) (-3091 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3089 (((-330)) 29 T ELT)) (-3092 (((-1 (-330)) (-330)) 30 T ELT)) (-3090 (((-330) (-695)) 43 T ELT)) (-3093 (((-1 (-330)) (-695)) 44 T ELT)) (-3094 (((-1 (-330)) (-695) (-695)) 47 T ELT)) (-3386 (((-1 (-330)) (-695) (-695)) 45 T ELT)))
-(((-954) (-10 -7 (-15 -3087 ((-330))) (-15 -3088 ((-330))) (-15 -3089 ((-330))) (-15 -3090 ((-330) (-695))) (-15 -3102 ((-1 (-330)) (-330) (-330))) (-15 -3091 ((-1 (-330)) (-330) (-330))) (-15 -3092 ((-1 (-330)) (-330))) (-15 -3093 ((-1 (-330)) (-695))) (-15 -3386 ((-1 (-330)) (-695) (-695))) (-15 -3094 ((-1 (-330)) (-695) (-695))) (-15 -3095 ((-1 (-330)) (-695))))) (T -954))
-((-3095 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3094 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))) (-3092 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3102 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))) (-3090 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))) (-3089 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
-((-3734 (((-348 |#1|) |#1|) 33 T ELT)))
-(((-955 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|))) (-1156 (-350 (-858 (-485))))) (T -955))
-((-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1156 (-350 (-858 (-485))))))))
-((-3096 (((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))) 14 T ELT)))
-(((-956 |#1|) (-10 -7 (-15 -3096 ((-350 (-348 (-858 |#1|))) (-350 (-858 |#1|))))) (-258)) (T -956))
-((-3096 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4)))) (-5 *1 (-956 *4)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3948 (((-773) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
+((-2556 (((-632 (-1138)) $ (-1138)) NIL T ELT)) (-2557 (((-632 (-488)) $ (-488)) NIL T ELT)) (-2555 (((-694) $ (-102)) NIL T ELT)) (-2558 (((-632 (-101)) $ (-101)) 22 T ELT)) (-2560 (($ (-338)) 12 T ELT) (($ (-1073)) 14 T ELT)) (-2559 (((-85) $) 19 T ELT)) (-3947 (((-772) $) 26 T ELT)) (-1700 (($ $) 23 T ELT)))
+(((-771) (-13 (-770) (-552 (-772)) (-10 -8 (-15 -2560 ($ (-338))) (-15 -2560 ($ (-1073))) (-15 -2559 ((-85) $))))) (T -771))
+((-2560 (*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-771)))) (-2560 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-771)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
+((-2569 (((-85) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2590 (($ $ $) 125 T ELT)) (-2605 (((-484) $) 31 T ELT) (((-484)) 36 T ELT)) (-2600 (($ (-484)) 53 T ELT)) (-2597 (($ $ $) 54 T ELT) (($ (-583 $)) 84 T ELT)) (-2581 (($ $ (-583 $)) 82 T ELT)) (-2602 (((-484) $) 34 T ELT)) (-2584 (($ $ $) 73 T ELT)) (-3533 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-2603 (((-484) $) 33 T ELT)) (-2585 (($ $ $) 72 T ELT)) (-3536 (($ $) 114 T ELT)) (-2588 (($ $ $) 129 T ELT)) (-2571 (($ (-583 $)) 61 T ELT)) (-3541 (($ $ (-583 $)) 79 T ELT)) (-2599 (($ (-484) (-484)) 55 T ELT)) (-2612 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3138 (($ $ (-484)) 43 T ELT) (($ $) 46 T ELT)) (-2565 (($ $ $) 97 T ELT)) (-2586 (($ $ $) 132 T ELT)) (-2580 (($ $) 115 T ELT)) (-2564 (($ $ $) 98 T ELT)) (-2576 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2838 (((-1185) $) 10 T ELT)) (-2579 (($ $) 118 T ELT) (($ $ (-694)) 122 T ELT)) (-2582 (($ $ $) 75 T ELT)) (-2583 (($ $ $) 74 T ELT)) (-2596 (($ $ (-583 $)) 110 T ELT)) (-2594 (($ $ $) 113 T ELT)) (-2573 (($ (-583 $)) 59 T ELT)) (-2574 (($ $) 70 T ELT) (($ (-583 $)) 71 T ELT)) (-2577 (($ $ $) 123 T ELT)) (-2578 (($ $) 116 T ELT)) (-2589 (($ $ $) 128 T ELT)) (-3534 (($ (-484)) 21 T ELT) (($ (-1090)) 23 T ELT) (($ (-1073)) 30 T ELT) (($ (-179)) 25 T ELT)) (-2562 (($ $ $) 101 T ELT)) (-2561 (($ $) 102 T ELT)) (-2607 (((-1185) (-1073)) 15 T ELT)) (-2608 (($ (-1073)) 14 T ELT)) (-3124 (($ (-583 (-583 $))) 58 T ELT)) (-3139 (($ $ (-484)) 42 T ELT) (($ $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2592 (($ $ $) 131 T ELT)) (-3471 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2593 (((-85) $) 108 T ELT)) (-2595 (($ $ (-583 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2601 (($ (-484)) 39 T ELT)) (-2604 (((-484) $) 32 T ELT) (((-484)) 35 T ELT)) (-2598 (($ $ $) 40 T ELT) (($ (-583 $)) 83 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (($ $ $) 99 T ELT)) (-3566 (($) 13 T ELT)) (-3801 (($ $ (-583 $)) 109 T ELT)) (-2606 (((-1073) (-1073)) 8 T ELT)) (-3837 (($ $) 117 T ELT) (($ $ (-694)) 121 T ELT)) (-2566 (($ $ $) 96 T ELT)) (-3759 (($ $ (-694)) 139 T ELT)) (-2572 (($ (-583 $)) 60 T ELT)) (-3947 (((-772) $) 19 T ELT)) (-3774 (($ $ (-484)) 41 T ELT) (($ $) 44 T ELT)) (-2575 (($ $) 68 T ELT) (($ (-583 $)) 69 T ELT)) (-3241 (($ $) 66 T ELT) (($ (-583 $)) 67 T ELT)) (-2591 (($ $) 124 T ELT)) (-2570 (($ (-583 $)) 65 T ELT)) (-3102 (($ $ $) 105 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2587 (($ $ $) 130 T ELT)) (-2563 (($ $ $) 100 T ELT)) (-3738 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2567 (($ $ $) 89 T ELT)) (-2568 (($ $ $) 87 T ELT)) (-3057 (((-85) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2685 (($ $ $) 88 T ELT)) (-2686 (($ $ $) 86 T ELT)) (-3950 (($ $ $) 94 T ELT)) (-3838 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-3840 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
+(((-772) (-13 (-1013) (-10 -8 (-15 -2838 ((-1185) $)) (-15 -2608 ($ (-1073))) (-15 -2607 ((-1185) (-1073))) (-15 -3534 ($ (-484))) (-15 -3534 ($ (-1090))) (-15 -3534 ($ (-1073))) (-15 -3534 ($ (-179))) (-15 -3566 ($)) (-15 -2606 ((-1073) (-1073))) (-15 -2605 ((-484) $)) (-15 -2604 ((-484) $)) (-15 -2605 ((-484))) (-15 -2604 ((-484))) (-15 -2603 ((-484) $)) (-15 -2602 ((-484) $)) (-15 -2601 ($ (-484))) (-15 -2600 ($ (-484))) (-15 -2599 ($ (-484) (-484))) (-15 -3139 ($ $ (-484))) (-15 -3138 ($ $ (-484))) (-15 -3774 ($ $ (-484))) (-15 -3139 ($ $)) (-15 -3138 ($ $)) (-15 -3774 ($ $)) (-15 -2598 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2598 ($ (-583 $))) (-15 -2597 ($ (-583 $))) (-15 -2596 ($ $ (-583 $))) (-15 -2595 ($ $ (-583 $))) (-15 -2595 ($ $ $ $)) (-15 -2594 ($ $ $)) (-15 -2593 ((-85) $)) (-15 -3801 ($ $ (-583 $))) (-15 -3536 ($ $)) (-15 -2592 ($ $ $)) (-15 -2591 ($ $)) (-15 -3124 ($ (-583 (-583 $)))) (-15 -2590 ($ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2589 ($ $ $)) (-15 -2588 ($ $ $)) (-15 -2587 ($ $ $)) (-15 -2586 ($ $ $)) (-15 -3759 ($ $ (-694))) (-15 -3102 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -2584 ($ $ $)) (-15 -2583 ($ $ $)) (-15 -2582 ($ $ $)) (-15 -3541 ($ $ (-583 $))) (-15 -2581 ($ $ (-583 $))) (-15 -2580 ($ $)) (-15 -3837 ($ $)) (-15 -3837 ($ $ (-694))) (-15 -2579 ($ $)) (-15 -2579 ($ $ (-694))) (-15 -2578 ($ $)) (-15 -2577 ($ $ $)) (-15 -3533 ($ $)) (-15 -3533 ($ $ $)) (-15 -3533 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -3471 ($ $)) (-15 -3471 ($ $ $)) (-15 -3471 ($ $ $ $)) (-15 -3241 ($ $)) (-15 -3241 ($ (-583 $))) (-15 -2575 ($ $)) (-15 -2575 ($ (-583 $))) (-15 -2574 ($ $)) (-15 -2574 ($ (-583 $))) (-15 -2573 ($ (-583 $))) (-15 -2572 ($ (-583 $))) (-15 -2571 ($ (-583 $))) (-15 -2570 ($ (-583 $))) (-15 -3057 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -2686 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -2685 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -3840 ($ $ $)) (-15 -3838 ($ $ $)) (-15 -3838 ($ $)) (-15 * ($ $ $)) (-15 -3950 ($ $ $)) (-15 ** ($ $ $)) (-15 -2566 ($ $ $)) (-15 -2565 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -3467 ($ $ $)) (-15 -2563 ($ $ $)) (-15 -2562 ($ $ $)) (-15 -2561 ($ $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ $))))) (T -772))
+((-2838 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-772)))) (-2608 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-772)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-772)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772)))) (-3566 (*1 *1) (-5 *1 (-772))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2605 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2604 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2603 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2600 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-2599 (*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3138 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3774 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))) (-3139 (*1 *1 *1) (-5 *1 (-772))) (-3138 (*1 *1 *1) (-5 *1 (-772))) (-3774 (*1 *1 *1) (-5 *1 (-772))) (-2598 (*1 *1 *1 *1) (-5 *1 (-772))) (-2597 (*1 *1 *1 *1) (-5 *1 (-772))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2595 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2595 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2594 (*1 *1 *1 *1) (-5 *1 (-772))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3536 (*1 *1 *1) (-5 *1 (-772))) (-2592 (*1 *1 *1 *1) (-5 *1 (-772))) (-2591 (*1 *1 *1) (-5 *1 (-772))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772)))) (-2590 (*1 *1 *1 *1) (-5 *1 (-772))) (-2612 (*1 *1 *1) (-5 *1 (-772))) (-2612 (*1 *1 *1 *1) (-5 *1 (-772))) (-2589 (*1 *1 *1 *1) (-5 *1 (-772))) (-2588 (*1 *1 *1 *1) (-5 *1 (-772))) (-2587 (*1 *1 *1 *1) (-5 *1 (-772))) (-2586 (*1 *1 *1 *1) (-5 *1 (-772))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-3102 (*1 *1 *1 *1) (-5 *1 (-772))) (-2585 (*1 *1 *1 *1) (-5 *1 (-772))) (-2584 (*1 *1 *1 *1) (-5 *1 (-772))) (-2583 (*1 *1 *1 *1) (-5 *1 (-772))) (-2582 (*1 *1 *1 *1) (-5 *1 (-772))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2581 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2580 (*1 *1 *1) (-5 *1 (-772))) (-3837 (*1 *1 *1) (-5 *1 (-772))) (-3837 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2579 (*1 *1 *1) (-5 *1 (-772))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772)))) (-2578 (*1 *1 *1) (-5 *1 (-772))) (-2577 (*1 *1 *1 *1) (-5 *1 (-772))) (-3533 (*1 *1 *1) (-5 *1 (-772))) (-3533 (*1 *1 *1 *1) (-5 *1 (-772))) (-3533 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1 *1) (-5 *1 (-772))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3471 (*1 *1 *1) (-5 *1 (-772))) (-3471 (*1 *1 *1 *1) (-5 *1 (-772))) (-3471 (*1 *1 *1 *1 *1) (-5 *1 (-772))) (-3241 (*1 *1 *1) (-5 *1 (-772))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2575 (*1 *1 *1) (-5 *1 (-772))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2574 (*1 *1 *1) (-5 *1 (-772))) (-2574 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2572 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2571 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))) (-3057 (*1 *1 *1 *1) (-5 *1 (-772))) (-2569 (*1 *1 *1 *1) (-5 *1 (-772))) (-2686 (*1 *1 *1 *1) (-5 *1 (-772))) (-2568 (*1 *1 *1 *1) (-5 *1 (-772))) (-2685 (*1 *1 *1 *1) (-5 *1 (-772))) (-2567 (*1 *1 *1 *1) (-5 *1 (-772))) (-3840 (*1 *1 *1 *1) (-5 *1 (-772))) (-3838 (*1 *1 *1 *1) (-5 *1 (-772))) (-3838 (*1 *1 *1) (-5 *1 (-772))) (* (*1 *1 *1 *1) (-5 *1 (-772))) (-3950 (*1 *1 *1 *1) (-5 *1 (-772))) (** (*1 *1 *1 *1) (-5 *1 (-772))) (-2566 (*1 *1 *1 *1) (-5 *1 (-772))) (-2565 (*1 *1 *1 *1) (-5 *1 (-772))) (-2564 (*1 *1 *1 *1) (-5 *1 (-772))) (-3467 (*1 *1 *1 *1) (-5 *1 (-772))) (-2563 (*1 *1 *1 *1) (-5 *1 (-772))) (-2562 (*1 *1 *1 *1) (-5 *1 (-772))) (-2561 (*1 *1 *1) (-5 *1 (-772))) (-3738 (*1 *1 *1 *1) (-5 *1 (-772))) (-3738 (*1 *1 *1) (-5 *1 (-772))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3832 (((-3 $ "failed") (-1090)) 36 T ELT)) (-3137 (((-694)) 32 T ELT)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) 29 T ELT)) (-3243 (((-1073) $) 43 T ELT)) (-2400 (($ (-830)) 28 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (((-1090) $) 13 T ELT) (((-473) $) 19 T ELT) (((-800 (-330)) $) 26 T ELT) (((-800 (-484)) $) 22 T ELT)) (-3947 (((-772) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT)))
+(((-773 |#1|) (-13 (-752) (-553 (-1090)) (-553 (-473)) (-553 (-800 (-330))) (-553 (-800 (-484))) (-10 -8 (-15 -3832 ((-3 $ "failed") (-1090))))) (-583 (-1090))) (T -773))
+((-3832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-446) $) 12 T ELT)) (-2609 (((-583 (-381)) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-774) (-13 (-1013) (-10 -8 (-15 -3543 ((-446) $)) (-15 -2609 ((-583 (-381)) $))))) (T -774))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-583 (-381))) (-5 *1 (-774)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT) (((-857 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3924 (((-1185) (-694)) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-775 |#1| |#2| |#3| |#4|) (-13 (-961) (-430 (-857 |#1|)) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1185) (-694))))) (-961) (-583 (-1090)) (-583 (-694)) (-694)) (T -775))
+((-3950 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961)) (-14 *3 (-583 (-1090))) (-14 *4 (-583 (-694))) (-14 *5 (-694)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 *3)) (-14 *7 *3))))
+((-2610 (((-3 (-148 |#3|) #1="failed") (-694) (-694) |#2| |#2|) 38 T ELT)) (-2611 (((-3 (-350 |#3|) #1#) (-694) (-694) |#2| |#2|) 29 T ELT)))
+(((-776 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 |#3|) #1="failed") (-694) (-694) |#2| |#2|)) (-15 -2610 ((-3 (-148 |#3|) #1#) (-694) (-694) |#2| |#2|))) (-312) (-1172 |#1|) (-1155 |#1|)) (T -776))
+((-2610 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-350 *6)) (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+((-2611 (((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-694) (-694) (-1169 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-350 (-1148 |#2| |#1|)) #1#) (-694) (-694) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) 28 T ELT)))
+(((-777 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-3 (-350 (-1148 |#2| |#1|)) #1="failed") (-694) (-694) (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (-15 -2611 ((-3 (-350 (-1148 |#2| |#1|)) #1#) (-694) (-694) (-1169 |#1| |#2| |#3|)))) (-312) (-1090) |#1|) (T -777))
+((-2611 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-777 *5 *6 *7)))) (-2611 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5))) (-5 *1 (-777 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2612 (($ (-1085 (-484)) (-484)) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2613 (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3773 (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2615 (((-484)) NIL T ELT)) (-2614 (((-484) $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3770 (($ $ (-484)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2616 (((-1069 (-484)) $) NIL T ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-484) $ (-484)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-778 |#1|) (-779 |#1|) (-484)) (T -778))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $ (-484)) 78 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-2612 (($ (-1085 (-484)) (-484)) 77 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2613 (($ $) 80 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3773 (((-694) $) 85 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-2615 (((-484)) 82 T ELT)) (-2614 (((-484) $) 81 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3770 (($ $ (-484)) 84 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-2616 (((-1069 (-484)) $) 86 T ELT)) (-2892 (($ $) 83 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3771 (((-484) $ (-484)) 79 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-779 |#1|) (-113) (-484)) (T -779))
+((-2616 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1069 (-484))))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2892 (*1 *1 *1) (-4 *1 (-779 *2))) (-2615 (*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2613 (*1 *1 *1) (-4 *1 (-779 *2))) (-3771 (*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4)))))
+(-13 (-258) (-120) (-10 -8 (-15 -2616 ((-1069 (-484)) $)) (-15 -3773 ((-694) $)) (-15 -3770 ($ $ (-484))) (-15 -2892 ($ $)) (-15 -2615 ((-484))) (-15 -2614 ((-484) $)) (-15 -2613 ($ $)) (-15 -3771 ((-484) $ (-484))) (-15 -3038 ($ $ (-484))) (-15 -2612 ($ (-1085 (-484)) (-484)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-258) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-778 |#1|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3157 (((-778 |#1|) $) NIL T ELT) (((-1090) $) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-778 |#1|) (-950 (-484))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1179 (-778 |#1|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-778 |#1|)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-778 |#1|) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-778 |#1|) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-778 |#1|) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| (-778 |#1|) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3959 (($ (-1 (-778 |#1|) (-778 |#1|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-778 |#1|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-778 |#1|))) (|:| |vec| (-1179 (-778 |#1|)))) (-1179 $) $) NIL T ELT) (((-630 (-778 |#1|)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-778 |#1|) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-778 |#1|) (-258)) ELT)) (-3131 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-778 |#1|) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-778 |#1|)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-778 |#1|) (-778 |#1|)) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-249 (-778 |#1|))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-249 (-778 |#1|)))) NIL (|has| (-778 |#1|) (-260 (-778 |#1|))) ELT) (($ $ (-583 (-1090)) (-583 (-778 |#1|))) NIL (|has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) ELT) (($ $ (-1090) (-778 |#1|)) NIL (|has| (-778 |#1|) (-455 (-1090) (-778 |#1|))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-778 |#1|)) NIL (|has| (-778 |#1|) (-241 (-778 |#1|) (-778 |#1|))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-778 |#1|) $) NIL T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-778 |#1|) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-778 |#1|) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-778 |#1|) (-933)) ELT) (((-179) $) NIL (|has| (-778 |#1|) (-933)) ELT)) (-2617 (((-148 (-350 (-484))) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-778 |#1|)) NIL T ELT) (($ (-1090)) NIL (|has| (-778 |#1|) (-950 (-1090))) ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-778 |#1|) (-821))) (|has| (-778 |#1|) (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 (((-778 |#1|) $) NIL (|has| (-778 |#1|) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-484)) $ (-484)) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-778 |#1|) (-740)) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-778 |#1|) (-778 |#1|))) NIL T ELT) (($ $ (-1 (-778 |#1|) (-778 |#1|)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-778 |#1|) (-811 (-1090))) ELT) (($ $) NIL (|has| (-778 |#1|) (-189)) ELT) (($ $ (-694)) NIL (|has| (-778 |#1|) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-778 |#1|) (-756)) ELT)) (-3950 (($ $ $) NIL T ELT) (($ (-778 |#1|) (-778 |#1|)) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-778 |#1|) $) NIL T ELT) (($ $ (-778 |#1|)) NIL T ELT)))
+(((-780 |#1|) (-13 (-904 (-778 |#1|)) (-10 -8 (-15 -3771 ((-350 (-484)) $ (-484))) (-15 -2617 ((-148 (-350 (-484))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-484) $)))) (-484)) (T -780))
+((-3771 (*1 *2 *1 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#2| $) NIL (|has| |#2| (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| |#2| (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (|has| |#2| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1090) $) NIL (|has| |#2| (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT)) (-3731 (($ $) 35 T ELT) (($ (-484) $) 38 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 64 T ELT)) (-2995 (($) NIL (|has| |#2| (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| |#2| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| |#2| (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 ((|#2| $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| |#2| (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#2| (-756)) ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 60 T ELT)) (-3447 (($) NIL (|has| |#2| (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| |#2| (-258)) ELT)) (-3131 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-249 |#2|)) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-249 |#2|))) NIL (|has| |#2| (-260 |#2|)) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) NIL (|has| |#2| (-455 (-1090) |#2|)) ELT) (($ $ (-1090) |#2|) NIL (|has| |#2| (-455 (-1090) |#2|)) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ |#2|) NIL (|has| |#2| (-241 |#2| |#2|)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 ((|#2| $) NIL T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| |#2| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| |#2| (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| |#2| (-553 (-473))) ELT) (((-330) $) NIL (|has| |#2| (-933)) ELT) (((-179) $) NIL (|has| |#2| (-933)) ELT)) (-2617 (((-148 (-350 (-484))) $) 78 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3947 (((-772) $) 105 T ELT) (($ (-484)) 20 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1090)) NIL (|has| |#2| (-950 (-1090))) ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3132 ((|#2| $) NIL (|has| |#2| (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-484)) $ (-484)) 71 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| |#2| (-740)) ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3057 (((-85) $ $) 46 T ELT)) (-2685 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#2| (-756)) ELT)) (-3950 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) 61 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-781 |#1| |#2|) (-13 (-904 |#2|) (-10 -8 (-15 -3771 ((-350 (-484)) $ (-484))) (-15 -2617 ((-148 (-350 (-484))) $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-484) $)))) (-484) (-779 |#1|)) (T -781))
+((-3771 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-350 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484)) (-4 *5 (-779 *4)))) (-2617 (*1 *2 *1) (-12 (-14 *3 (-484)) (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))) (-3731 (*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3)))))
+((-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3797 ((|#2| $) 12 T ELT)) (-2618 (($ |#1| |#2|) 9 T ELT)) (-3243 (((-1073) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3244 (((-1033) $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#1| $) 11 T ELT)) (-3531 (($ |#1| |#2|) 10 T ELT)) (-3947 (((-772) $) 18 (OR (-12 (|has| |#1| (-552 (-772))) (|has| |#2| (-552 (-772)))) (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013)))) ELT)) (-1265 (((-85) $ $) NIL (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)) (-3057 (((-85) $ $) 23 (-12 (|has| |#1| (-1013)) (|has| |#2| (-1013))) ELT)))
+(((-782 |#1| |#2|) (-13 (-1129) (-10 -8 (IF (|has| |#1| (-552 (-772))) (IF (|has| |#2| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1013)) (IF (|has| |#2| (-1013)) (-6 (-1013)) |%noBranch|) |%noBranch|) (-15 -2618 ($ |#1| |#2|)) (-15 -3531 ($ |#1| |#2|)) (-15 -3802 (|#1| $)) (-15 -3797 (|#2| $)))) (-1129) (-1129)) (T -782))
+((-2618 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))) (-3802 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1129)))) (-3797 (*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2958 (((-484) $) 16 T ELT)) (-2620 (($ (-130)) 13 T ELT)) (-2619 (($ (-130)) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2957 (((-130) $) 15 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2622 (($ (-130)) 11 T ELT)) (-2623 (($ (-130)) 10 T ELT)) (-3947 (((-772) $) 24 T ELT) (($ (-130)) 17 T ELT)) (-2621 (($ (-130)) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-783) (-13 (-1013) (-555 (-130)) (-10 -8 (-15 -2623 ($ (-130))) (-15 -2622 ($ (-130))) (-15 -2621 ($ (-130))) (-15 -2620 ($ (-130))) (-15 -2619 ($ (-130))) (-15 -2957 ((-130) $)) (-15 -2958 ((-484) $))))) (T -783))
+((-2623 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2622 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2621 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2620 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783)))))
+((-3947 (((-265 (-484)) (-350 (-857 (-48)))) 23 T ELT) (((-265 (-484)) (-857 (-48))) 18 T ELT)))
+(((-784) (-10 -7 (-15 -3947 ((-265 (-484)) (-857 (-48)))) (-15 -3947 ((-265 (-484)) (-350 (-857 (-48))))))) (T -784))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3567 (((-85) $ (|[\|\|]| (-446))) 9 T ELT) (((-85) $ (|[\|\|]| (-1073))) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3573 (((-446) $) 10 T ELT) (((-1073) $) 14 T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-785) (-13 (-995) (-1175) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-446)))) (-15 -3573 ((-446) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3573 ((-1073) $))))) (T -785))
+((-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-785)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-785)))))
+((-3959 (((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)) 15 T ELT)))
+(((-786 |#1| |#2|) (-10 -7 (-15 -3959 ((-787 |#2|) (-1 |#2| |#1|) (-787 |#1|)))) (-1129) (-1129)) (T -786))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6)))))
+((-3372 (($ |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-694)) 15 T ELT)))
+(((-787 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1|)) (-15 -2626 (|#1| $ (-694)))) (-1129)) (T -787))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1129)))) (-3372 (*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1129)))))
+((-3959 (((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)) 15 T ELT)))
+(((-788 |#1| |#2|) (-10 -7 (-15 -3959 ((-789 |#2|) (-1 |#2| |#1|) (-789 |#1|)))) (-1129) (-1129)) (T -788))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6)))))
+((-3372 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-694)) 15 T ELT)))
+(((-789 |#1|) (-10 -8 (-15 -3372 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-694)))) (-1129)) (T -789))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1129)))) (-3372 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1129)))))
+((-2624 (((-583 (-1095)) (-1073)) 9 T ELT)))
+(((-790) (-10 -7 (-15 -2624 ((-583 (-1095)) (-1073))))) (T -790))
+((-2624 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-790)))))
+((-3959 (((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)) 15 T ELT)))
+(((-791 |#1| |#2|) (-10 -7 (-15 -3959 ((-792 |#2|) (-1 |#2| |#1|) (-792 |#1|)))) (-1129) (-1129)) (T -791))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6)))))
+((-2625 (($ |#1| |#1| |#1|) 8 T ELT)) (-2626 ((|#1| $ (-694)) 15 T ELT)))
+(((-792 |#1|) (-10 -8 (-15 -2625 ($ |#1| |#1| |#1|)) (-15 -2626 (|#1| $ (-694)))) (-1129)) (T -792))
+((-2626 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1129)))) (-2625 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1129)))))
+((-2629 (((-1069 (-583 (-484))) (-583 (-484)) (-1069 (-583 (-484)))) 41 T ELT)) (-2628 (((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484))) 31 T ELT)) (-2630 (((-1069 (-583 (-484))) (-583 (-484))) 53 T ELT) (((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484))) 50 T ELT)) (-2631 (((-1069 (-583 (-484))) (-484)) 55 T ELT)) (-2627 (((-1069 (-583 (-830))) (-1069 (-583 (-830)))) 22 T ELT)) (-3010 (((-583 (-830)) (-583 (-830))) 18 T ELT)))
+(((-793) (-10 -7 (-15 -3010 ((-583 (-830)) (-583 (-830)))) (-15 -2627 ((-1069 (-583 (-830))) (-1069 (-583 (-830))))) (-15 -2628 ((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2629 ((-1069 (-583 (-484))) (-583 (-484)) (-1069 (-583 (-484))))) (-15 -2630 ((-1069 (-583 (-484))) (-583 (-484)) (-583 (-484)))) (-15 -2630 ((-1069 (-583 (-484))) (-583 (-484)))) (-15 -2631 ((-1069 (-583 (-484))) (-484))))) (T -793))
+((-2631 (*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))) (-2630 (*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2630 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2629 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))) (-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))) (-2627 (*1 *2 *2) (-12 (-5 *2 (-1069 (-583 (-830)))) (-5 *1 (-793)))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793)))))
+((-3973 (((-800 (-330)) $) 9 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-800 (-484)) $) 8 (|has| |#1| (-553 (-800 (-484)))) ELT)))
+(((-794 |#1|) (-113) (-1129)) (T -794))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-330)))) (-6 (-553 (-800 (-330)))) |%noBranch|)))
+(((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3615 (($) 14 T ELT)) (-2633 (($ (-798 |#1| |#2|) (-798 |#1| |#3|)) 28 T ELT)) (-2632 (((-798 |#1| |#3|) $) 16 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2641 (((-85) $) 22 T ELT)) (-2640 (($) 19 T ELT)) (-3947 (((-772) $) 31 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2851 (((-798 |#1| |#2|) $) 15 T ELT)) (-3057 (((-85) $ $) 26 T ELT)))
+(((-795 |#1| |#2| |#3|) (-13 (-1013) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3615 ($)) (-15 -2633 ($ (-798 |#1| |#2|) (-798 |#1| |#3|))) (-15 -2851 ((-798 |#1| |#2|) $)) (-15 -2632 ((-798 |#1| |#3|) $)))) (-1013) (-1013) (-608 |#2|)) (T -795))
+((-2641 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2640 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-3615 (*1 *1) (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013)) (-4 *4 (-608 *3)))) (-2633 (*1 *1 *2 *3) (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))) (-2851 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))) (-2632 (*1 *2 *1) (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013)) (-4 *5 (-608 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2797 (((-798 |#1| $) $ (-800 |#1|) (-798 |#1| $)) 17 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-796 |#1|) (-113) (-1013)) (T -796))
+((-2797 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4)) (-4 *4 (-1013)))))
+(-13 (-1013) (-10 -8 (-15 -2797 ((-798 |t#1| $) $ (-800 |t#1|) (-798 |t#1| $)))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2634 (((-85) (-583 |#2|) |#3|) 23 T ELT) (((-85) |#2| |#3|) 18 T ELT)) (-2635 (((-798 |#1| |#2|) |#2| |#3|) 45 (-12 (-2561 (|has| |#2| (-950 (-1090)))) (-2561 (|has| |#2| (-961)))) ELT) (((-583 (-249 (-857 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-961)) (-2561 (|has| |#2| (-950 (-1090))))) ELT) (((-583 (-249 |#2|)) |#2| |#3|) 36 (|has| |#2| (-950 (-1090))) ELT) (((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 21 T ELT)))
+(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2634 ((-85) |#2| |#3|)) (-15 -2634 ((-85) (-583 |#2|) |#3|)) (-15 -2635 ((-795 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1090))) (-15 -2635 ((-583 (-249 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -2635 ((-583 (-249 (-857 |#2|))) |#2| |#3|)) (-15 -2635 ((-798 |#1| |#2|) |#2| |#3|))))) (-1013) (-796 |#1|) (-553 (-800 |#1|))) (T -797))
+((-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4)) (-2561 (-4 *3 (-950 (-1090)))) (-2561 (-4 *3 (-961))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-961)) (-2561 (-4 *3 (-950 (-1090)))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-950 (-1090))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))) (-2635 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6))) (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))) (-2634 (*1 *2 *3 *4) (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3235 (($ $ $) 40 T ELT)) (-2662 (((-3 (-85) #1="failed") $ (-800 |#1|)) 37 T ELT)) (-3615 (($) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2637 (($ (-800 |#1|) |#2| $) 20 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2639 (((-3 |#2| #1#) (-800 |#1|) $) 51 T ELT)) (-2641 (((-85) $) 15 T ELT)) (-2640 (($) 13 T ELT)) (-3258 (((-583 (-2 (|:| -3861 (-1090)) (|:| |entry| |#2|))) $) 25 T ELT)) (-3531 (($ (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| |#2|)))) 23 T ELT)) (-3947 (((-772) $) 45 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2636 (($ (-800 |#1|) |#2| $ |#2|) 49 T ELT)) (-2638 (($ (-800 |#1|) |#2| $) 48 T ELT)) (-3057 (((-85) $ $) 42 T ELT)))
+(((-798 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -2641 ((-85) $)) (-15 -2640 ($)) (-15 -3615 ($)) (-15 -3235 ($ $ $)) (-15 -2639 ((-3 |#2| #1="failed") (-800 |#1|) $)) (-15 -2638 ($ (-800 |#1|) |#2| $)) (-15 -2637 ($ (-800 |#1|) |#2| $)) (-15 -2636 ($ (-800 |#1|) |#2| $ |#2|)) (-15 -3258 ((-583 (-2 (|:| -3861 (-1090)) (|:| |entry| |#2|))) $)) (-15 -3531 ($ (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| |#2|))))) (-15 -2662 ((-3 (-85) #1#) $ (-800 |#1|))))) (-1013) (-1013)) (T -798))
+((-2641 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-2640 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3615 (*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3235 (*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2639 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013)) (-5 *1 (-798 *4 *2)))) (-2638 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2637 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-2636 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| *4)))) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1013)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)))) (-2662 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-798 *4 *5)) (-4 *5 (-1013)))))
+((-3959 (((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)) 22 T ELT)))
+(((-799 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-798 |#1| |#3|) (-1 |#3| |#2|) (-798 |#1| |#2|)))) (-1013) (-1013) (-1013)) (T -799))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2649 (($ $ (-583 (-51))) 74 T ELT)) (-3082 (((-583 $) $) 139 T ELT)) (-2646 (((-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51))) $) 30 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-2647 (($ $ (-583 (-1090)) (-51)) 31 T ELT)) (-2650 (($ $ (-583 (-51))) 73 T ELT)) (-3158 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1090) #1#) $) 167 T ELT)) (-3157 ((|#1| $) 68 T ELT) (((-1090) $) NIL T ELT)) (-2644 (($ $) 126 T ELT)) (-2656 (((-85) $) 55 T ELT)) (-2651 (((-583 (-51)) $) 50 T ELT)) (-2648 (($ (-1090) (-85) (-85) (-85)) 75 T ELT)) (-2642 (((-3 (-583 $) #1#) (-583 $)) 82 T ELT)) (-2653 (((-85) $) 58 T ELT)) (-2654 (((-85) $) 57 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) 41 T ELT)) (-2659 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-2826 (((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $) 97 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 40 T ELT)) (-2660 (((-3 (-583 $) #1#) $ (-86)) 124 T ELT) (((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-583 $))) #1#) $) 107 T ELT)) (-2658 (((-3 (-583 $) #1#) $) 42 T ELT)) (-2825 (((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $) 45 T ELT)) (-2657 (((-85) $) 34 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2645 (((-85) $) 28 T ELT)) (-2652 (((-85) $) 52 T ELT)) (-2643 (((-583 (-51)) $) 130 T ELT)) (-2655 (((-85) $) 56 T ELT)) (-3801 (($ (-86) (-583 $)) 104 T ELT)) (-3323 (((-694) $) 33 T ELT)) (-3401 (($ $) 72 T ELT)) (-3973 (($ (-583 $)) 69 T ELT)) (-3954 (((-85) $) 32 T ELT)) (-3947 (((-772) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1090)) 76 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2663 (($ $ (-51)) 129 T ELT)) (-2661 (($) 103 T CONST)) (-2667 (($) 83 T CONST)) (-3057 (((-85) $ $) 93 T ELT)) (-3950 (($ $ $) 117 T ELT)) (-3840 (($ $ $) 121 T ELT)) (** (($ $ (-694)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
+(((-800 |#1|) (-13 (-1013) (-950 |#1|) (-950 (-1090)) (-10 -8 (-15 -2661 ($) -3953) (-15 -2667 ($) -3953) (-15 -2823 ((-3 (-583 $) #1="failed") $)) (-15 -2824 ((-3 (-583 $) #1#) $)) (-15 -2660 ((-3 (-583 $) #1#) $ (-86))) (-15 -2660 ((-3 (-2 (|:| -2514 (-86)) (|:| |arg| (-583 $))) #1#) $)) (-15 -2825 ((-3 (-2 (|:| |val| $) (|:| -2401 (-694))) #1#) $)) (-15 -2659 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -2658 ((-3 (-583 $) #1#) $)) (-15 -2826 ((-3 (-2 (|:| |val| $) (|:| -2401 $)) #1#) $)) (-15 -3801 ($ (-86) (-583 $))) (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))) (-15 ** ($ $ $)) (-15 -3950 ($ $ $)) (-15 -3323 ((-694) $)) (-15 -3973 ($ (-583 $))) (-15 -3401 ($ $)) (-15 -2657 ((-85) $)) (-15 -2656 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3954 ((-85) $)) (-15 -2655 ((-85) $)) (-15 -2654 ((-85) $)) (-15 -2653 ((-85) $)) (-15 -2652 ((-85) $)) (-15 -2651 ((-583 (-51)) $)) (-15 -2650 ($ $ (-583 (-51)))) (-15 -2649 ($ $ (-583 (-51)))) (-15 -2648 ($ (-1090) (-85) (-85) (-85))) (-15 -2647 ($ $ (-583 (-1090)) (-51))) (-15 -2646 ((-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51))) $)) (-15 -2645 ((-85) $)) (-15 -2644 ($ $)) (-15 -2663 ($ $ (-51))) (-15 -2643 ((-583 (-51)) $)) (-15 -3082 ((-583 $) $)) (-15 -2642 ((-3 (-583 $) #1#) (-583 $))))) (-1013)) (T -800))
+((-2661 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2667 (*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2823 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2824 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2660 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2660 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-583 (-800 *3))))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2825 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2659 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2826 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3801 (*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-3840 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2649 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2648 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2647 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51)))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))) (-2663 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))) (-2642 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+((-3210 (((-800 |#1|) (-800 |#1|) (-583 (-1090)) (-1 (-85) (-583 |#2|))) 32 T ELT) (((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|))) 46 T ELT) (((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|)) 35 T ELT)) (-2662 (((-85) (-583 |#2|) (-800 |#1|)) 42 T ELT) (((-85) |#2| (-800 |#1|)) 36 T ELT)) (-3532 (((-1 (-85) |#2|) (-800 |#1|)) 16 T ELT)) (-2664 (((-583 |#2|) (-800 |#1|)) 24 T ELT)) (-2663 (((-800 |#1|) (-800 |#1|) |#2|) 20 T ELT)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -3210 ((-800 |#1|) (-800 |#1|) (-1 (-85) |#2|))) (-15 -3210 ((-800 |#1|) (-800 |#1|) (-583 (-1 (-85) |#2|)))) (-15 -3210 ((-800 |#1|) (-800 |#1|) (-583 (-1090)) (-1 (-85) (-583 |#2|)))) (-15 -3532 ((-1 (-85) |#2|) (-800 |#1|))) (-15 -2662 ((-85) |#2| (-800 |#1|))) (-15 -2662 ((-85) (-583 |#2|) (-800 |#1|))) (-15 -2663 ((-800 |#1|) (-800 |#1|) |#2|)) (-15 -2664 ((-583 |#2|) (-800 |#1|)))) (-1013) (-1129)) (T -801))
+((-2664 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1129)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1129)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))) (-2662 (*1 *2 *3 *4) (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3)) (-4 *3 (-1129)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-1129)))) (-3210 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1090))) (-5 *4 (-1 (-85) (-583 *6))) (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-801 *5 *6)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013)) (-4 *5 (-1129)) (-5 *1 (-801 *4 *5)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1129)) (-5 *1 (-801 *4 *5)))))
+((-3959 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 19 T ELT)))
+(((-802 |#1| |#2|) (-10 -7 (-15 -3959 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1013) (-1013)) (T -802))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3935 (((-583 |#1|) $) 20 T ELT)) (-2665 (((-85) $) 49 T ELT)) (-3158 (((-3 (-614 |#1|) "failed") $) 55 T ELT)) (-3157 (((-614 |#1|) $) 53 T ELT)) (-3800 (($ $) 24 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3834 (((-694) $) 60 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-614 |#1|) $) 22 T ELT)) (-3947 (((-772) $) 47 T ELT) (($ (-614 |#1|)) 27 T ELT) (((-739 |#1|) $) 36 T ELT) (($ |#1|) 26 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 11 T CONST)) (-2666 (((-583 (-614 |#1|)) $) 28 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 66 T ELT)))
+(((-803 |#1|) (-13 (-756) (-950 (-614 |#1|)) (-10 -8 (-15 -2667 ($) -3953) (-15 -3947 ((-739 |#1|) $)) (-15 -3947 ($ |#1|)) (-15 -3802 ((-614 |#1|) $)) (-15 -3834 ((-694) $)) (-15 -2666 ((-583 (-614 |#1|)) $)) (-15 -3800 ($ $)) (-15 -2665 ((-85) $)) (-15 -3935 ((-583 |#1|) $)))) (-756)) (T -803))
+((-2667 (*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3947 (*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3800 (*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))) (-2665 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
+((-3475 ((|#1| |#1| |#1|) 19 T ELT)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -3475 (|#1| |#1| |#1|))) (-1155 |#2|) (-961)) (T -804))
+((-3475 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1155 *3)))))
+((-2670 ((|#2| $ |#3|) 10 T ELT)))
+(((-805 |#1| |#2| |#3|) (-10 -7 (-15 -2670 (|#2| |#1| |#3|))) (-806 |#2| |#3|) (-1129) (-1129)) (T -805))
+NIL
+((-3759 ((|#1| $ |#2|) 7 T ELT)) (-2670 ((|#1| $ |#2|) 6 T ELT)))
+(((-806 |#1| |#2|) (-113) (-1129) (-1129)) (T -806))
+((-3759 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))) (-2670 (*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129)))))
+(-13 (-1129) (-10 -8 (-15 -3759 (|t#1| $ |t#2|)) (-15 -2670 (|t#1| $ |t#2|))))
+(((-13) . T) ((-1129) . T))
+((-2669 ((|#1| |#1| (-694)) 26 T ELT)) (-2668 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3436 (((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1#) |#1| (-694) (-694)) 29 T ELT) (((-583 |#1|) |#1|) 38 T ELT)))
+(((-807 |#1| |#2|) (-10 -7 (-15 -3436 ((-583 |#1|) |#1|)) (-15 -3436 ((-3 (-2 (|:| -3139 |#1|) (|:| -3138 |#1|)) #1="failed") |#1| (-694) (-694))) (-15 -2668 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2669 (|#1| |#1| (-694)))) (-1155 |#2|) (-312)) (T -807))
+((-2669 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1155 *4)))) (-2668 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1155 *3)))) (-3436 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-807 *3 *5)) (-4 *3 (-1155 *5)))) (-3436 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-583 |#2|) (-583 (-694))) 45 T ELT) (($ $ |#2| (-694)) 44 T ELT) (($ $ (-583 |#2|)) 43 T ELT) (($ $ |#2|) 41 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2670 (($ $ (-583 |#2|) (-583 (-694))) 48 T ELT) (($ $ |#2| (-694)) 47 T ELT) (($ $ (-583 |#2|)) 46 T ELT) (($ $ |#2|) 42 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-808 |#1| |#2|) (-113) (-961) (-1013)) (T -808))
+NIL
+(-13 (-82 |t#1| |t#1|) (-811 |t#2|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-654 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-806 $ |#2|) . T) ((-811 |#2|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3759 (($ $ (-583 |#1|) (-583 (-694))) 52 T ELT) (($ $ |#1| (-694)) 51 T ELT) (($ $ (-583 |#1|)) 50 T ELT) (($ $ |#1|) 48 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 |#1|) (-583 (-694))) 55 T ELT) (($ $ |#1| (-694)) 54 T ELT) (($ $ (-583 |#1|)) 53 T ELT) (($ $ |#1|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-809 |#1|) (-113) (-1013)) (T -809))
+NIL
+(-13 (-961) (-811 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-806 $ |#1|) . T) ((-811 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3759 (($ $ |#2|) NIL T ELT) (($ $ (-583 |#2|)) 10 T ELT) (($ $ |#2| (-694)) 12 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 15 T ELT)) (-2670 (($ $ |#2|) 16 T ELT) (($ $ (-583 |#2|)) 18 T ELT) (($ $ |#2| (-694)) 19 T ELT) (($ $ (-583 |#2|) (-583 (-694))) 21 T ELT)))
+(((-810 |#1| |#2|) (-10 -7 (-15 -2670 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -2670 (|#1| |#1| |#2| (-694))) (-15 -2670 (|#1| |#1| (-583 |#2|))) (-15 -3759 (|#1| |#1| (-583 |#2|) (-583 (-694)))) (-15 -3759 (|#1| |#1| |#2| (-694))) (-15 -3759 (|#1| |#1| (-583 |#2|))) (-15 -2670 (|#1| |#1| |#2|)) (-15 -3759 (|#1| |#1| |#2|))) (-811 |#2|) (-1013)) (T -810))
+NIL
+((-3759 (($ $ |#1|) 7 T ELT) (($ $ (-583 |#1|)) 15 T ELT) (($ $ |#1| (-694)) 14 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 13 T ELT)) (-2670 (($ $ |#1|) 6 T ELT) (($ $ (-583 |#1|)) 12 T ELT) (($ $ |#1| (-694)) 11 T ELT) (($ $ (-583 |#1|) (-583 (-694))) 10 T ELT)))
+(((-811 |#1|) (-113) (-1013)) (T -811))
+((-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-3759 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))) (-2670 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013)))) (-2670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4)) (-4 *4 (-1013)))))
+(-13 (-806 $ |t#1|) (-10 -8 (-15 -3759 ($ $ (-583 |t#1|))) (-15 -3759 ($ $ |t#1| (-694))) (-15 -3759 ($ $ (-583 |t#1|) (-583 (-694)))) (-15 -2670 ($ $ (-583 |t#1|))) (-15 -2670 ($ $ |t#1| (-694))) (-15 -2670 ($ $ (-583 |t#1|) (-583 (-694))))))
+(((-13) . T) ((-806 $ |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 26 T ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-1293 (($ $ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-1294 (($ $ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #2="left" $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $ #3="right" $) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3138 (($ $) 25 T ELT)) (-2671 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3139 (($ $) 23 T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) 20 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1116 |#1|) $) 9 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 21 (|has| |#1| (-72)) ELT)))
+(((-812 |#1|) (-13 (-92 |#1|) (-552 (-1116 |#1|)) (-10 -8 (-15 -2671 ($ |#1|)) (-15 -2671 ($ $ $)))) (-1013)) (T -812))
+((-2671 (*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))) (-2671 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2687 (((-1009 |#1|) $) 61 T ELT)) (-2910 (((-583 $) (-583 $)) 104 T ELT)) (-3624 (((-484) $) 84 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-3773 (((-694) $) 81 T ELT)) (-2691 (((-1009 |#1|) $ |#1|) 71 T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2674 (((-85) $) 89 T ELT)) (-2676 (((-694) $) 85 T ELT)) (-2532 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2858 (($ $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2680 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 56 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 131 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2673 (((-1009 |#1|) $) 136 (|has| |#1| (-320)) ELT)) (-2675 (((-85) $) 82 T ELT)) (-3801 ((|#1| $ |#1|) 69 T ELT)) (-3949 (((-694) $) 63 T ELT)) (-2682 (($ (-583 (-583 |#1|))) 119 T ELT)) (-2677 (((-884) $) 75 T ELT)) (-2683 (($ (-583 |#1|)) 32 T ELT)) (-3010 (($ $ $) NIL T ELT)) (-2436 (($ $ $) NIL T ELT)) (-2679 (($ (-583 (-583 |#1|))) 58 T ELT)) (-2678 (($ (-583 (-583 |#1|))) 124 T ELT)) (-2672 (($ (-583 |#1|)) 133 T ELT)) (-3947 (((-772) $) 118 T ELT) (($ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 |#1|)) 93 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2568 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-3057 (((-85) $ $) 67 T ELT)) (-2685 (((-85) $ $) NIL (OR (|has| |#1| (-320)) (|has| |#1| (-756))) ELT)) (-2686 (((-85) $ $) 91 T ELT)) (-3950 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
+(((-813 |#1|) (-13 (-815 |#1|) (-10 -8 (-15 -2680 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2679 ($ (-583 (-583 |#1|)))) (-15 -3947 ($ (-583 (-583 |#1|)))) (-15 -3947 ($ (-583 |#1|))) (-15 -2678 ($ (-583 (-583 |#1|)))) (-15 -3949 ((-694) $)) (-15 -2677 ((-884) $)) (-15 -3773 ((-694) $)) (-15 -2676 ((-694) $)) (-15 -3624 ((-484) $)) (-15 -2675 ((-85) $)) (-15 -2674 ((-85) $)) (-15 -2910 ((-583 $) (-583 $))) (IF (|has| |#1| (-320)) (-15 -2673 ((-1009 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-483)) (-15 -2672 ($ (-583 |#1|))) (IF (|has| |#1| (-320)) (-15 -2672 ($ (-583 |#1|))) |%noBranch|)))) (-1013)) (T -813))
+((-2680 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-2678 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2675 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2674 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-320)) (-4 *3 (-1013)))) (-2672 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
+((-2681 ((|#2| (-1056 |#1| |#2|)) 48 T ELT)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -2681 (|#2| (-1056 |#1| |#2|)))) (-830) (-13 (-961) (-10 -7 (-6 (-3998 "*"))))) (T -814))
+((-2681 (*1 *2 *3) (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-830)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-814 *4 *2)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-2687 (((-1009 |#1|) $) 42 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 20 T ELT)) (-2691 (((-1009 |#1|) $ |#1|) 41 T ELT)) (-2410 (((-85) $) 22 T ELT)) (-2532 (($ $ $) 35 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2858 (($ $ $) 36 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 30 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3801 ((|#1| $ |#1|) 45 T ELT)) (-2682 (($ (-583 (-583 |#1|))) 43 T ELT)) (-2683 (($ (-583 |#1|)) 44 T ELT)) (-3010 (($ $ $) 27 T ELT)) (-2436 (($ $ $) 26 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2667 (($) 24 T CONST)) (-2567 (((-85) $ $) 37 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2568 (((-85) $ $) 39 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 38 (OR (|has| |#1| (-756)) (|has| |#1| (-320))) ELT)) (-2686 (((-85) $ $) 40 T ELT)) (-3950 (($ $ $) 29 T ELT)) (** (($ $ (-830)) 17 T ELT) (($ $ (-694)) 21 T ELT) (($ $ (-484)) 28 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-815 |#1|) (-113) (-1013)) (T -815))
+((-2683 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))) (-2687 (*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3)))) (-2686 (*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(-13 (-413) (-241 |t#1| |t#1|) (-10 -8 (-15 -2683 ($ (-583 |t#1|))) (-15 -2682 ($ (-583 (-583 |t#1|)))) (-15 -2687 ((-1009 |t#1|) $)) (-15 -2691 ((-1009 |t#1|) $ |t#1|)) (-15 -2686 ((-85) $ $)) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-320)) (-6 (-756)) |%noBranch|)))
+(((-72) . T) ((-552 (-772)) . T) ((-241 |#1| |#1|) . T) ((-413) . T) ((-13) . T) ((-663) . T) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-320))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-320))) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2693 (((-583 (-583 (-694))) $) 163 T ELT)) (-2689 (((-583 (-694)) (-813 |#1|) $) 191 T ELT)) (-2688 (((-583 (-694)) (-813 |#1|) $) 192 T ELT)) (-2687 (((-1009 |#1|) $) 155 T ELT)) (-2694 (((-583 (-813 |#1|)) $) 152 T ELT)) (-2995 (((-813 |#1|) $ (-484)) 157 T ELT) (((-813 |#1|) $) 158 T ELT)) (-2692 (($ (-583 (-813 |#1|))) 165 T ELT)) (-3773 (((-694) $) 159 T ELT)) (-2690 (((-1009 (-1009 |#1|)) $) 189 T ELT)) (-2691 (((-1009 |#1|) $ |#1|) 180 T ELT) (((-1009 (-1009 |#1|)) $ (-1009 |#1|)) 201 T ELT) (((-1009 (-583 |#1|)) $ (-583 |#1|)) 204 T ELT)) (-3246 (((-85) (-813 |#1|) $) 140 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2684 (((-1185) $) 145 T ELT) (((-1185) $ (-484) (-484)) 205 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2696 (((-583 (-813 |#1|)) $) 146 T ELT)) (-3801 (((-813 |#1|) $ (-694)) 153 T ELT)) (-3949 (((-694) $) 160 T ELT)) (-3947 (((-772) $) 177 T ELT) (((-583 (-813 |#1|)) $) 28 T ELT) (($ (-583 (-813 |#1|))) 164 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (((-583 |#1|) $) 162 T ELT)) (-3057 (((-85) $ $) 198 T ELT)) (-2685 (((-85) $ $) 195 T ELT)) (-2686 (((-85) $ $) 194 T ELT)))
+(((-816 |#1|) (-13 (-1013) (-10 -8 (-15 -3947 ((-583 (-813 |#1|)) $)) (-15 -2696 ((-583 (-813 |#1|)) $)) (-15 -3801 ((-813 |#1|) $ (-694))) (-15 -2995 ((-813 |#1|) $ (-484))) (-15 -2995 ((-813 |#1|) $)) (-15 -3773 ((-694) $)) (-15 -3949 ((-694) $)) (-15 -2695 ((-583 |#1|) $)) (-15 -2694 ((-583 (-813 |#1|)) $)) (-15 -2693 ((-583 (-583 (-694))) $)) (-15 -3947 ($ (-583 (-813 |#1|)))) (-15 -2692 ($ (-583 (-813 |#1|)))) (-15 -2691 ((-1009 |#1|) $ |#1|)) (-15 -2690 ((-1009 (-1009 |#1|)) $)) (-15 -2691 ((-1009 (-1009 |#1|)) $ (-1009 |#1|))) (-15 -2691 ((-1009 (-583 |#1|)) $ (-583 |#1|))) (-15 -3246 ((-85) (-813 |#1|) $)) (-15 -2689 ((-583 (-694)) (-813 |#1|) $)) (-15 -2688 ((-583 (-694)) (-813 |#1|) $)) (-15 -2687 ((-1009 |#1|) $)) (-15 -2686 ((-85) $ $)) (-15 -2685 ((-85) $ $)) (-15 -2684 ((-1185) $)) (-15 -2684 ((-1185) $ (-484) (-484))))) (-1013)) (T -816))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2995 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2694 (*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2693 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2692 (*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))) (-2691 (*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4)) (-5 *3 (-1009 *4)))) (-2691 (*1 *2 *1 *3) (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4)) (-5 *3 (-583 *4)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2688 (*1 *2 *3 *1) (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694))) (-5 *1 (-816 *4)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2686 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2685 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))) (-2684 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-816 *4)) (-4 *4 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-3933 (((-85) $) NIL T ELT)) (-3930 (((-694)) NIL T ELT)) (-3331 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 $ #1#) $) NIL T ELT)) (-3157 (($ $) NIL T ELT)) (-1795 (($ (-1179 $)) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-2834 (($) NIL T ELT)) (-1680 (((-85) $) NIL T ELT)) (-1767 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3773 (((-743 (-830)) $) NIL T ELT) (((-830) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2013 (($) NIL (|has| $ (-320)) ELT)) (-2011 (((-85) $) NIL (|has| $ (-320)) ELT)) (-3133 (($ $ (-830)) NIL (|has| $ (-320)) ELT) (($ $) NIL T ELT)) (-3446 (((-632 $) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2014 (((-1085 $) $ (-830)) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL T ELT)) (-2010 (((-830) $) NIL T ELT)) (-1627 (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1626 (((-3 (-1085 $) #1#) $ $) NIL (|has| $ (-320)) ELT) (((-1085 $) $) NIL (|has| $ (-320)) ELT)) (-1628 (($ $ (-1085 $)) NIL (|has| $ (-320)) ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2400 (($ (-830)) NIL T ELT)) (-3932 (((-85) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) NIL (|has| $ (-320)) ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-3931 (((-830)) NIL T ELT) (((-743 (-830))) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-1768 (((-3 (-694) #1#) $ $) NIL T ELT) (((-694) $) NIL T ELT)) (-3912 (((-107)) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3949 (((-830) $) NIL T ELT) (((-743 (-830)) $) NIL T ELT)) (-3186 (((-1085 $)) NIL T ELT)) (-1674 (($) NIL T ELT)) (-1629 (($) NIL (|has| $ (-320)) ELT)) (-3225 (((-630 $) (-1179 $)) NIL T ELT) (((-1179 $) $) NIL T ELT)) (-3973 (((-484) $) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT)) (-2703 (((-632 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $) (-830)) NIL T ELT) (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3934 (((-85) $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3929 (($ $ (-694)) NIL (|has| $ (-320)) ELT) (($ $) NIL (|has| $ (-320)) ELT)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-817 |#1|) (-13 (-299) (-280 $) (-553 (-484))) (-830)) (T -817))
+NIL
+((-2698 (((-3 (-583 (-1085 |#4|)) #1="failed") (-583 (-1085 |#4|)) (-1085 |#4|)) 164 T ELT)) (-2701 ((|#1|) 101 T ELT)) (-2700 (((-348 (-1085 |#4|)) (-1085 |#4|)) 173 T ELT)) (-2702 (((-348 (-1085 |#4|)) (-583 |#3|) (-1085 |#4|)) 83 T ELT)) (-2699 (((-348 (-1085 |#4|)) (-1085 |#4|)) 183 T ELT)) (-2697 (((-3 (-583 (-1085 |#4|)) #1#) (-583 (-1085 |#4|)) (-1085 |#4|) |#3|) 117 T ELT)))
+(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2698 ((-3 (-583 (-1085 |#4|)) #1="failed") (-583 (-1085 |#4|)) (-1085 |#4|))) (-15 -2699 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2700 ((-348 (-1085 |#4|)) (-1085 |#4|))) (-15 -2701 (|#1|)) (-15 -2697 ((-3 (-583 (-1085 |#4|)) #1#) (-583 (-1085 |#4|)) (-1085 |#4|) |#3|)) (-15 -2702 ((-348 (-1085 |#4|)) (-583 |#3|) (-1085 |#4|)))) (-821) (-717) (-756) (-861 |#1| |#2| |#3|)) (T -818))
+((-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-818 *5 *6 *7 *8)) (-5 *4 (-1085 *8)))) (-2697 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756)) (-5 *1 (-818 *5 *6 *4 *7)))) (-2701 (*1 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5)) (-4 *5 (-861 *2 *3 *4)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-818 *4 *5 *6 *7)))))
+((-2698 (((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|)) 39 T ELT)) (-2701 ((|#1|) 71 T ELT)) (-2700 (((-348 (-1085 |#2|)) (-1085 |#2|)) 125 T ELT)) (-2702 (((-348 (-1085 |#2|)) (-1085 |#2|)) 109 T ELT)) (-2699 (((-348 (-1085 |#2|)) (-1085 |#2|)) 136 T ELT)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -2698 ((-3 (-583 (-1085 |#2|)) "failed") (-583 (-1085 |#2|)) (-1085 |#2|))) (-15 -2699 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2700 ((-348 (-1085 |#2|)) (-1085 |#2|))) (-15 -2701 (|#1|)) (-15 -2702 ((-348 (-1085 |#2|)) (-1085 |#2|)))) (-821) (-1155 |#1|)) (T -819))
+((-2702 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2701 (*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1155 *2)))) (-2700 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2699 (*1 *2 *3) (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5))) (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))) (-2698 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
+((-2705 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 46 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 18 T ELT)) (-2703 (((-632 $) $) 40 T ELT)))
+(((-820 |#1|) (-10 -7 (-15 -2703 ((-632 |#1|) |#1|)) (-15 -2705 ((-3 (-583 (-1085 |#1|)) "failed") (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|)))) (-821)) (T -820))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 75 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-2705 (((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $)) 72 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 73 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 74 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2704 (((-3 (-1179 $) "failed") (-630 $)) 71 (|has| $ (-118)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-2703 (((-632 $) $) 70 (|has| $ (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-821) (-113)) (T -821))
+((-2709 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-821)))) (-2708 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2707 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2706 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))) (-2705 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-821)))) (-2704 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821)) (-5 *2 (-1179 *1)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
+(-13 (-1134) (-10 -8 (-15 -2708 ((-348 (-1085 $)) (-1085 $))) (-15 -2707 ((-348 (-1085 $)) (-1085 $))) (-15 -2706 ((-348 (-1085 $)) (-1085 $))) (-15 -2709 ((-1085 $) (-1085 $) (-1085 $))) (-15 -2705 ((-3 (-583 (-1085 $)) "failed") (-583 (-1085 $)) (-1085 $))) (IF (|has| $ (-118)) (PROGN (-15 -2704 ((-3 (-1179 $) "failed") (-630 $))) (-15 -2703 ((-632 $) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-2711 (((-3 (-2 (|:| -3773 (-694)) (|:| -2383 |#5|)) #1="failed") (-283 |#2| |#3| |#4| |#5|)) 78 T ELT)) (-2710 (((-85) (-283 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3773 (((-3 (-694) #1#) (-283 |#2| |#3| |#4| |#5|)) 15 T ELT)))
+(((-822 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-3 (-694) #1="failed") (-283 |#2| |#3| |#4| |#5|))) (-15 -2710 ((-85) (-283 |#2| |#3| |#4| |#5|))) (-15 -2711 ((-3 (-2 (|:| -3773 (-694)) (|:| -2383 |#5|)) #1#) (-283 |#2| |#3| |#4| |#5|)))) (-13 (-495) (-950 (-484))) (-364 |#1|) (-1155 |#2|) (-1155 (-350 |#3|)) (-291 |#2| |#3| |#4|)) (T -822))
+((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-2 (|:| -3773 (-694)) (|:| -2383 *8))) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-822 *4 *5 *6 *7 *8)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694)) (-5 *1 (-822 *4 *5 *6 *7 *8)))))
+((-2711 (((-3 (-2 (|:| -3773 (-694)) (|:| -2383 |#3|)) #1="failed") (-283 (-350 (-484)) |#1| |#2| |#3|)) 64 T ELT)) (-2710 (((-85) (-283 (-350 (-484)) |#1| |#2| |#3|)) 16 T ELT)) (-3773 (((-3 (-694) #1#) (-283 (-350 (-484)) |#1| |#2| |#3|)) 14 T ELT)))
+(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3773 ((-3 (-694) #1="failed") (-283 (-350 (-484)) |#1| |#2| |#3|))) (-15 -2710 ((-85) (-283 (-350 (-484)) |#1| |#2| |#3|))) (-15 -2711 ((-3 (-2 (|:| -3773 (-694)) (|:| -2383 |#3|)) #1#) (-283 (-350 (-484)) |#1| |#2| |#3|)))) (-1155 (-350 (-484))) (-1155 (-350 |#1|)) (-291 (-350 (-484)) |#1| |#2|)) (T -823))
+((-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-2 (|:| -3773 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-85)) (-5 *1 (-823 *4 *5 *6)))) (-3773 (*1 *2 *3) (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6)))))
+((-2716 ((|#2| |#2|) 26 T ELT)) (-2714 (((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) 15 T ELT)) (-2712 (((-830) (-484)) 38 T ELT)) (-2715 (((-484) |#2|) 45 T ELT)) (-2713 (((-484) |#2|) 21 T ELT) (((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|) 20 T ELT)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -2712 ((-830) (-484))) (-15 -2713 ((-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))) |#1|)) (-15 -2713 ((-484) |#2|)) (-15 -2714 ((-484) (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))) (-15 -2715 ((-484) |#2|)) (-15 -2716 (|#2| |#2|))) (-1155 (-350 (-484))) (-1155 (-350 |#1|))) (T -824))
+((-2716 (*1 *2 *2) (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *1 (-824 *3 *2)) (-4 *2 (-1155 (-350 *3))))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484))))) (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1155 (-350 *4))))) (-2713 (*1 *2 *3) (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4)) (-4 *4 (-1155 (-350 *3))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-484)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-830)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 ((|#1| $) 99 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2565 (($ $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 93 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2724 (($ |#1| (-348 |#1|)) 91 T ELT)) (-2718 (((-1085 |#1|) |#1| |#1|) 52 T ELT)) (-2717 (($ $) 60 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2719 (((-484) $) 96 T ELT)) (-2720 (($ $ (-484)) 98 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-2721 ((|#1| $) 95 T ELT)) (-2722 (((-348 |#1|) $) 94 T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) 92 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2723 (($ $) 49 T ELT)) (-3947 (((-772) $) 123 T ELT) (($ (-484)) 72 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 40 T ELT) (((-350 |#1|) $) 77 T ELT) (($ (-350 (-348 |#1|))) 85 T ELT)) (-3127 (((-694)) 70 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 86 T ELT)) (-3950 (($ $ $) NIL T ELT)) (-3838 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 48 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-825 |#1|) (-13 (-312) (-38 |#1|) (-10 -8 (-15 -3947 ((-350 |#1|) $)) (-15 -3947 ($ (-350 (-348 |#1|)))) (-15 -2723 ($ $)) (-15 -2722 ((-348 |#1|) $)) (-15 -2721 (|#1| $)) (-15 -2720 ($ $ (-484))) (-15 -2719 ((-484) $)) (-15 -2718 ((-1085 |#1|) |#1| |#1|)) (-15 -2717 ($ $)) (-15 -2724 ($ |#1| (-348 |#1|))) (-15 -3130 (|#1| $)))) (-258)) (T -825))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3)))) (-2723 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2721 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2720 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))) (-2717 (*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))) (-2724 (*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2)))) (-3130 (*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
+((-2724 (((-51) (-857 |#1|) (-348 (-857 |#1|)) (-1090)) 17 T ELT) (((-51) (-350 (-857 |#1|)) (-1090)) 18 T ELT)))
+(((-826 |#1|) (-10 -7 (-15 -2724 ((-51) (-350 (-857 |#1|)) (-1090))) (-15 -2724 ((-51) (-857 |#1|) (-348 (-857 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -826))
+((-2724 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-348 (-857 *6))) (-5 *5 (-1090)) (-5 *3 (-857 *6)) (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *5)))))
+((-2725 ((|#4| (-583 |#4|)) 148 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3145 (((-1085 |#4|) (-583 (-1085 |#4|))) 141 T ELT) (((-1085 |#4|) (-1085 |#4|) (-1085 |#4|)) 61 T ELT) ((|#4| (-583 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT)))
+(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3145 (|#4| |#4| |#4|)) (-15 -3145 (|#4| (-583 |#4|))) (-15 -3145 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -3145 ((-1085 |#4|) (-583 (-1085 |#4|)))) (-15 -2725 (|#4| |#4| |#4|)) (-15 -2725 ((-1085 |#4|) (-1085 |#4|) (-1085 |#4|))) (-15 -2725 (|#4| (-583 |#4|)))) (-717) (-756) (-258) (-861 |#3| |#1| |#2|)) (T -827))
+((-2725 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-2725 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-2725 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-583 (-1085 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-1085 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))) (-3145 (*1 *2 *2 *2) (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2)) (-4 *2 (-861 *5 *3 *4)))))
+((-2738 (((-816 (-484)) (-884)) 38 T ELT) (((-816 (-484)) (-583 (-484))) 34 T ELT)) (-2726 (((-816 (-484)) (-583 (-484))) 66 T ELT) (((-816 (-484)) (-830)) 67 T ELT)) (-2737 (((-816 (-484))) 39 T ELT)) (-2735 (((-816 (-484))) 53 T ELT) (((-816 (-484)) (-583 (-484))) 52 T ELT)) (-2734 (((-816 (-484))) 51 T ELT) (((-816 (-484)) (-583 (-484))) 50 T ELT)) (-2733 (((-816 (-484))) 49 T ELT) (((-816 (-484)) (-583 (-484))) 48 T ELT)) (-2732 (((-816 (-484))) 47 T ELT) (((-816 (-484)) (-583 (-484))) 46 T ELT)) (-2731 (((-816 (-484))) 45 T ELT) (((-816 (-484)) (-583 (-484))) 44 T ELT)) (-2736 (((-816 (-484))) 55 T ELT) (((-816 (-484)) (-583 (-484))) 54 T ELT)) (-2730 (((-816 (-484)) (-583 (-484))) 71 T ELT) (((-816 (-484)) (-830)) 73 T ELT)) (-2729 (((-816 (-484)) (-583 (-484))) 68 T ELT) (((-816 (-484)) (-830)) 69 T ELT)) (-2727 (((-816 (-484)) (-583 (-484))) 64 T ELT) (((-816 (-484)) (-830)) 65 T ELT)) (-2728 (((-816 (-484)) (-583 (-830))) 57 T ELT)))
+(((-828) (-10 -7 (-15 -2726 ((-816 (-484)) (-830))) (-15 -2726 ((-816 (-484)) (-583 (-484)))) (-15 -2727 ((-816 (-484)) (-830))) (-15 -2727 ((-816 (-484)) (-583 (-484)))) (-15 -2728 ((-816 (-484)) (-583 (-830)))) (-15 -2729 ((-816 (-484)) (-830))) (-15 -2729 ((-816 (-484)) (-583 (-484)))) (-15 -2730 ((-816 (-484)) (-830))) (-15 -2730 ((-816 (-484)) (-583 (-484)))) (-15 -2731 ((-816 (-484)) (-583 (-484)))) (-15 -2731 ((-816 (-484)))) (-15 -2732 ((-816 (-484)) (-583 (-484)))) (-15 -2732 ((-816 (-484)))) (-15 -2733 ((-816 (-484)) (-583 (-484)))) (-15 -2733 ((-816 (-484)))) (-15 -2734 ((-816 (-484)) (-583 (-484)))) (-15 -2734 ((-816 (-484)))) (-15 -2735 ((-816 (-484)) (-583 (-484)))) (-15 -2735 ((-816 (-484)))) (-15 -2736 ((-816 (-484)) (-583 (-484)))) (-15 -2736 ((-816 (-484)))) (-15 -2737 ((-816 (-484)))) (-15 -2738 ((-816 (-484)) (-583 (-484)))) (-15 -2738 ((-816 (-484)) (-884))))) (T -828))
+((-2738 (*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2737 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2736 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2729 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))) (-2726 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+((-2740 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))) 14 T ELT)) (-2739 (((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))) 13 T ELT)))
+(((-829 |#1|) (-10 -7 (-15 -2739 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2740 ((-583 (-857 |#1|)) (-583 (-857 |#1|)) (-583 (-1090))))) (-392)) (T -829))
+((-2740 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-829 *4)))) (-2739 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392)) (-5 *1 (-829 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ "failed") $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3145 (($ $ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-830) (-13 (-718) (-663) (-10 -8 (-15 -3145 ($ $ $)) (-6 (-3998 "*"))))) (T -830))
+((-3145 (*1 *1 *1 *1) (-5 *1 (-830))))
+((-694) (|%ilt| 0 |#1|))
+((-3947 (((-265 |#1|) (-417)) 16 T ELT)))
+(((-831 |#1|) (-10 -7 (-15 -3947 ((-265 |#1|) (-417)))) (-495)) (T -831))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-832) (-113)) (T -832))
+((-2742 (*1 *2 *3) (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3955 (-583 *1)) (|:| -2409 *1))) (-5 *3 (-583 *1)))) (-2741 (*1 *2 *3 *1) (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
+(-13 (-392) (-10 -8 (-15 -2742 ((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $))) (-15 -2741 ((-632 (-583 $)) (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3106 (((-1085 |#2|) (-583 |#2|) (-583 |#2|)) 17 T ELT) (((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13 T ELT)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -3106 ((-1148 |#1| |#2|) (-1148 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -3106 ((-1085 |#2|) (-583 |#2|) (-583 |#2|)))) (-1090) (-312)) (T -833))
+((-3106 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-833 *4 *5)) (-14 *4 (-1090)))) (-3106 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1090)) (-4 *5 (-312)) (-5 *1 (-833 *4 *5)))))
+((-2743 ((|#2| (-583 |#1|) (-583 |#1|)) 28 T ELT)))
+(((-834 |#1| |#2|) (-10 -7 (-15 -2743 (|#2| (-583 |#1|) (-583 |#1|)))) (-312) (-1155 |#1|)) (T -834))
+((-2743 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4)) (-5 *1 (-834 *4 *2)))))
+((-2745 (((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073)) 175 T ELT)) (-2764 ((|#4| |#4|) 194 T ELT)) (-2749 (((-583 (-350 (-857 |#1|))) (-583 (-1090))) 146 T ELT)) (-2763 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484)) 88 T ELT)) (-2753 (((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-583 |#4|)) 69 T ELT)) (-2762 (((-630 |#4|) (-630 |#4|) (-583 |#4|)) 65 T ELT)) (-2746 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073)) 187 T ELT)) (-2744 (((-484) (-630 |#4|) (-830) (-1073)) 167 T ELT) (((-484) (-630 |#4|) (-583 (-1090)) (-830) (-1073)) 166 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-830) (-1073)) 165 T ELT) (((-484) (-630 |#4|) (-1073)) 154 T ELT) (((-484) (-630 |#4|) (-583 (-1090)) (-1073)) 153 T ELT) (((-484) (-630 |#4|) (-583 |#4|) (-1073)) 152 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-830)) 151 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)) (-830)) 150 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830)) 149 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|)) 148 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090))) 147 T ELT) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|)) 143 T ELT)) (-2750 ((|#4| (-857 |#1|)) 80 T ELT)) (-2760 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 191 T ELT)) (-2759 (((-583 (-583 (-484))) (-484) (-484)) 161 T ELT)) (-2758 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 106 T ELT)) (-2757 (((-694) (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 100 T ELT)) (-2756 (((-694) (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|))))) 99 T ELT)) (-2765 (((-85) (-583 (-857 |#1|))) 19 T ELT) (((-85) (-583 |#4|)) 15 T ELT)) (-2751 (((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 84 T ELT)) (-2755 (((-583 |#4|) |#4|) 57 T ELT)) (-2748 (((-583 (-350 (-857 |#1|))) (-583 |#4|)) 142 T ELT) (((-630 (-350 (-857 |#1|))) (-630 |#4|)) 66 T ELT) (((-350 (-857 |#1|)) |#4|) 139 T ELT)) (-2747 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-694) (-1073) (-484)) 112 T ELT)) (-2752 (((-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694)) 98 T ELT)) (-2761 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694)) 121 T ELT)) (-2754 (((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-350 (-857 |#1|)))) (|:| |vec| (-583 (-350 (-857 |#1|)))) (|:| -3109 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) 56 T ELT)))
+(((-835 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|))) (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)))) (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|))) (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 |#4|) (-830))) (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-583 (-1090)) (-830))) (-15 -2744 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-630 |#4|) (-830))) (-15 -2744 ((-484) (-630 |#4|) (-583 |#4|) (-1073))) (-15 -2744 ((-484) (-630 |#4|) (-583 (-1090)) (-1073))) (-15 -2744 ((-484) (-630 |#4|) (-1073))) (-15 -2744 ((-484) (-630 |#4|) (-583 |#4|) (-830) (-1073))) (-15 -2744 ((-484) (-630 |#4|) (-583 (-1090)) (-830) (-1073))) (-15 -2744 ((-484) (-630 |#4|) (-830) (-1073))) (-15 -2745 ((-484) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073))) (-15 -2746 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|))))))))) (-1073))) (-15 -2747 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))))) (|:| |rgsz| (-484))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-694) (-1073) (-484))) (-15 -2748 ((-350 (-857 |#1|)) |#4|)) (-15 -2748 ((-630 (-350 (-857 |#1|))) (-630 |#4|))) (-15 -2748 ((-583 (-350 (-857 |#1|))) (-583 |#4|))) (-15 -2749 ((-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -2750 (|#4| (-857 |#1|))) (-15 -2751 ((-2 (|:| |sysok| (-85)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -2752 ((-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))) (-630 |#4|) (-694))) (-15 -2753 ((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-583 |#4|))) (-15 -2754 ((-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))) (-2 (|:| |mat| (-630 (-350 (-857 |#1|)))) (|:| |vec| (-583 (-350 (-857 |#1|)))) (|:| -3109 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-15 -2755 ((-583 |#4|) |#4|)) (-15 -2756 ((-694) (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2757 ((-694) (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -2758 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2759 ((-583 (-583 (-484))) (-484) (-484))) (-15 -2760 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2761 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-630 |#4|) (-694))) (-15 -2762 ((-630 |#4|) (-630 |#4|) (-583 |#4|))) (-15 -2763 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-857 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 |#1|)))) (|:| -2012 (-583 (-1179 (-350 (-857 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))) (-630 |#4|) (-583 (-350 (-857 |#1|))) (-583 (-583 |#4|)) (-694) (-694) (-484))) (-15 -2764 (|#4| |#4|)) (-15 -2765 ((-85) (-583 |#4|))) (-15 -2765 ((-85) (-583 (-857 |#1|))))) (-13 (-258) (-120)) (-13 (-756) (-553 (-1090))) (-717) (-861 |#1| |#3| |#2|)) (T -835))
+((-2765 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))) (-2763 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-5 *4 (-630 *12)) (-5 *5 (-583 (-350 (-857 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120))) (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1090)))) (-4 *11 (-717)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-857 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *9)))) (|:| -2012 (-583 (-1179 (-350 (-857 *9))))))))) (-5 *1 (-835 *9 *10 *11 *12)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2759 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4)) (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090)))) (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2756 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2755 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2754 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |mat| (-630 (-350 (-857 *4)))) (|:| |vec| (-583 (-350 (-857 *4)))) (|:| -3109 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484))))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2753 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5)) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| -3109 (-694)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))) (-2751 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2750 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5)) (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-630 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-350 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3)) (-4 *3 (-861 *4 *6 *5)))) (-2747 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-350 (-857 *8)))) (-5 *5 (-694)) (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9)) (-4 *9 (-13 (-756) (-553 (-1090)))) (-4 *10 (-717)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-857 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *8)))) (|:| -2012 (-583 (-1179 (-350 (-857 *8)))))))))) (|:| |rgsz| (-484)))) (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6)) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-5 *6 (-1073)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1073)) (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120))) (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *7 *8 *9 *10)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-1073)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)))) (-2744 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-857 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *6)))) (|:| -2012 (-583 (-1179 (-350 (-857 *6)))))))))) (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-857 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *4)))) (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))))) (-5 *1 (-835 *4 *5 *6 *7)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1090))) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)))) (-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-857 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1179 (-350 (-857 *5)))) (|:| -2012 (-583 (-1179 (-350 (-857 *5)))))))))) (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+((-3875 (($ $ (-1001 (-179))) 125 T ELT) (($ $ (-1001 (-179)) (-1001 (-179))) 126 T ELT)) (-2897 (((-1001 (-179)) $) 73 T ELT)) (-2898 (((-1001 (-179)) $) 72 T ELT)) (-2789 (((-1001 (-179)) $) 74 T ELT)) (-2770 (((-484) (-484)) 66 T ELT)) (-2774 (((-484) (-484)) 61 T ELT)) (-2772 (((-484) (-484)) 64 T ELT)) (-2768 (((-85) (-85)) 68 T ELT)) (-2771 (((-484)) 65 T ELT)) (-3135 (($ $ (-1001 (-179))) 129 T ELT) (($ $) 130 T ELT)) (-2791 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 148 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 149 T ELT)) (-2777 (($ (-1 (-179) (-179)) (-1001 (-179))) 156 T ELT) (($ (-1 (-179) (-179))) 160 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1001 (-179))) 144 T ELT) (($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179))) 145 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179))) 153 T ELT) (($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179))) 154 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 146 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 147 T ELT) (($ $ (-1001 (-179))) 131 T ELT)) (-2776 (((-85) $) 69 T ELT)) (-2767 (((-484)) 70 T ELT)) (-2775 (((-484)) 59 T ELT)) (-2773 (((-484)) 62 T ELT)) (-2899 (((-583 (-583 (-854 (-179)))) $) 35 T ELT)) (-2766 (((-85) (-85)) 71 T ELT)) (-3947 (((-772) $) 174 T ELT)) (-2769 (((-85)) 67 T ELT)))
+(((-836) (-13 (-866) (-10 -8 (-15 -2790 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)))) (-15 -2790 ($ (-583 (-1 (-179) (-179))) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2791 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2791 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2777 ($ (-1 (-179) (-179)))) (-15 -2790 ($ $ (-1001 (-179)))) (-15 -2776 ((-85) $)) (-15 -3875 ($ $ (-1001 (-179)))) (-15 -3875 ($ $ (-1001 (-179)) (-1001 (-179)))) (-15 -3135 ($ $ (-1001 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1001 (-179)) $)) (-15 -2775 ((-484))) (-15 -2774 ((-484) (-484))) (-15 -2773 ((-484))) (-15 -2772 ((-484) (-484))) (-15 -2771 ((-484))) (-15 -2770 ((-484) (-484))) (-15 -2769 ((-85))) (-15 -2768 ((-85) (-85))) (-15 -2767 ((-484))) (-15 -2766 ((-85) (-85)))))) (T -836))
+((-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2791 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2777 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-3875 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3875 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-3135 (*1 *1 *1) (-5 *1 (-836))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836)))) (-2775 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2773 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2771 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2769 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))) (-2767 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
+((-2777 (((-836) |#1| (-1090)) 17 T ELT) (((-836) |#1| (-1090) (-1001 (-179))) 21 T ELT)) (-2790 (((-836) |#1| |#1| (-1090) (-1001 (-179))) 19 T ELT) (((-836) |#1| (-1090) (-1001 (-179))) 15 T ELT)))
+(((-837 |#1|) (-10 -7 (-15 -2790 ((-836) |#1| (-1090) (-1001 (-179)))) (-15 -2790 ((-836) |#1| |#1| (-1090) (-1001 (-179)))) (-15 -2777 ((-836) |#1| (-1090) (-1001 (-179)))) (-15 -2777 ((-836) |#1| (-1090)))) (-553 (-473))) (T -837))
+((-2777 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2790 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))) (-2790 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))))
+((-3875 (($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 123 T ELT)) (-2896 (((-1001 (-179)) $) 64 T ELT)) (-2897 (((-1001 (-179)) $) 63 T ELT)) (-2898 (((-1001 (-179)) $) 62 T ELT)) (-2788 (((-583 (-583 (-179))) $) 69 T ELT)) (-2789 (((-1001 (-179)) $) 65 T ELT)) (-2782 (((-484) (-484)) 57 T ELT)) (-2786 (((-484) (-484)) 52 T ELT)) (-2784 (((-484) (-484)) 55 T ELT)) (-2780 (((-85) (-85)) 59 T ELT)) (-2783 (((-484)) 56 T ELT)) (-3135 (($ $ (-1001 (-179))) 126 T ELT) (($ $) 127 T ELT)) (-2791 (($ (-1 (-854 (-179)) (-179)) (-1001 (-179))) 133 T ELT) (($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 134 T ELT)) (-2790 (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179))) 140 T ELT) (($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179))) 141 T ELT) (($ $ (-1001 (-179))) 129 T ELT)) (-2779 (((-484)) 60 T ELT)) (-2787 (((-484)) 50 T ELT)) (-2785 (((-484)) 53 T ELT)) (-2899 (((-583 (-583 (-854 (-179)))) $) 157 T ELT)) (-2778 (((-85) (-85)) 61 T ELT)) (-3947 (((-772) $) 155 T ELT)) (-2781 (((-85)) 58 T ELT)))
+(((-838) (-13 (-887) (-10 -8 (-15 -2791 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)))) (-15 -2791 ($ (-1 (-854 (-179)) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)))) (-15 -2790 ($ (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1 (-179) (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -2790 ($ $ (-1001 (-179)))) (-15 -3875 ($ $ (-1001 (-179)) (-1001 (-179)) (-1001 (-179)))) (-15 -3135 ($ $ (-1001 (-179)))) (-15 -3135 ($ $)) (-15 -2789 ((-1001 (-179)) $)) (-15 -2788 ((-583 (-583 (-179))) $)) (-15 -2787 ((-484))) (-15 -2786 ((-484) (-484))) (-15 -2785 ((-484))) (-15 -2784 ((-484) (-484))) (-15 -2783 ((-484))) (-15 -2782 ((-484) (-484))) (-15 -2781 ((-85))) (-15 -2780 ((-85) (-85))) (-15 -2779 ((-484))) (-15 -2778 ((-85) (-85)))))) (T -838))
+((-2791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2791 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))) (-2790 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3875 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-3135 (*1 *1 *1) (-5 *1 (-838))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))) (-2787 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2786 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2785 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2783 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2781 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))) (-2779 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))) (-2778 (*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
+((-2792 (((-583 (-1001 (-179))) (-583 (-583 (-854 (-179))))) 34 T ELT)))
+(((-839) (-10 -7 (-15 -2792 ((-583 (-1001 (-179))) (-583 (-583 (-854 (-179)))))))) (T -839))
+((-2792 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179)))) (-5 *1 (-839)))))
+((-2794 (((-265 (-484)) (-1090)) 16 T ELT)) (-2795 (((-265 (-484)) (-1090)) 14 T ELT)) (-3953 (((-265 (-484)) (-1090)) 12 T ELT)) (-2793 (((-265 (-484)) (-1090) (-446)) 19 T ELT)))
+(((-840) (-10 -7 (-15 -2793 ((-265 (-484)) (-1090) (-446))) (-15 -3953 ((-265 (-484)) (-1090))) (-15 -2794 ((-265 (-484)) (-1090))) (-15 -2795 ((-265 (-484)) (-1090))))) (T -840))
+((-2795 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840)))))
+((-2794 ((|#2| |#2|) 28 T ELT)) (-2795 ((|#2| |#2|) 29 T ELT)) (-3953 ((|#2| |#2|) 27 T ELT)) (-2793 ((|#2| |#2| (-446)) 26 T ELT)))
+(((-841 |#1| |#2|) (-10 -7 (-15 -2793 (|#2| |#2| (-446))) (-15 -3953 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2795 (|#2| |#2|))) (-1013) (-364 |#1|)) (T -841))
+((-2795 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-3953 (*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-364 *4)))))
+((-2797 (((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)) (-2796 (((-1 (-85) |#2|) (-1 (-85) |#3|)) 13 T ELT)))
+(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2796 ((-1 (-85) |#2|) (-1 (-85) |#3|))) (-15 -2797 ((-798 |#1| |#3|) |#2| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-796 |#1|) (-13 (-1013) (-950 |#2|))) (T -842))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
+((-2797 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 30 T ELT)))
+(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|)) (-13 (-364 |#2|) (-553 (-800 |#1|)) (-796 |#1|) (-950 (-550 $)))) (T -843))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-364 *6) (-553 *4) (-796 *5) (-950 (-550 $)))) (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3)))))
+((-2797 (((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)) 13 T ELT)))
+(((-844 |#1|) (-10 -7 (-15 -2797 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|)))) (-483)) (T -844))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483)) (-5 *1 (-844 *3)))))
+((-2797 (((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)) 57 T ELT)))
+(((-845 |#1| |#2|) (-10 -7 (-15 -2797 ((-798 |#1| |#2|) (-550 |#2|) (-800 |#1|) (-798 |#1| |#2|)))) (-1013) (-13 (-1013) (-950 (-550 $)) (-553 (-800 |#1|)) (-796 |#1|))) (T -845))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013)) (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5)) (-5 *1 (-845 *5 *6)))))
+((-2797 (((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)) 17 T ELT)))
+(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-795 |#1| |#2| |#3|) |#3| (-800 |#1|) (-795 |#1| |#2| |#3|)))) (-1013) (-796 |#1|) (-608 |#2|)) (T -846))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3)))))
+((-2797 (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|)) 17 (|has| |#3| (-796 |#1|)) ELT) (((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|))) 16 T ELT)))
+(((-847 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2797 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|) (-1 (-798 |#1| |#5|) |#3| (-800 |#1|) (-798 |#1| |#5|)))) (IF (|has| |#3| (-796 |#1|)) (-15 -2797 ((-798 |#1| |#5|) |#5| (-800 |#1|) (-798 |#1| |#5|))) |%noBranch|)) (-1013) (-717) (-756) (-13 (-961) (-796 |#1|)) (-13 (-861 |#4| |#2| |#3|) (-553 (-800 |#1|)))) (T -847))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5))) (-5 *1 (-847 *5 *6 *7 *8 *3)))) (-2797 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756)) (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013)) (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717)) (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3)))))
+((-3210 (((-265 (-484)) (-1090) (-583 (-1 (-85) |#1|))) 18 T ELT) (((-265 (-484)) (-1090) (-1 (-85) |#1|)) 15 T ELT)))
+(((-848 |#1|) (-10 -7 (-15 -3210 ((-265 (-484)) (-1090) (-1 (-85) |#1|))) (-15 -3210 ((-265 (-484)) (-1090) (-583 (-1 (-85) |#1|))))) (-1129)) (T -848))
+((-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129)) (-5 *2 (-265 (-484))) (-5 *1 (-848 *5)))))
+((-3210 ((|#2| |#2| (-583 (-1 (-85) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-85) |#3|)) 13 T ELT)))
+(((-849 |#1| |#2| |#3|) (-10 -7 (-15 -3210 (|#2| |#2| (-1 (-85) |#3|))) (-15 -3210 (|#2| |#2| (-583 (-1 (-85) |#3|))))) (-1013) (-364 |#1|) (-1129)) (T -849))
+((-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1013)) (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4)))))
+((-2797 (((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)) 25 T ELT)))
+(((-850 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-1013) (-13 (-495) (-796 |#1|) (-553 (-800 |#1|))) (-904 |#2|)) (T -850))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6)) (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5)) (-5 *1 (-850 *5 *6 *3)))))
+((-2797 (((-798 |#1| (-1090)) (-1090) (-800 |#1|) (-798 |#1| (-1090))) 18 T ELT)))
+(((-851 |#1|) (-10 -7 (-15 -2797 ((-798 |#1| (-1090)) (-1090) (-800 |#1|) (-798 |#1| (-1090))))) (-1013)) (T -851))
+((-2797 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-798 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *1 (-851 *5)))))
+((-2798 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 34 T ELT)) (-2797 (((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))) 33 T ELT)))
+(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-1 |#3| (-583 |#3|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|)))) (-15 -2798 ((-798 |#1| |#3|) (-583 |#3|) (-583 (-800 |#1|)) (-798 |#1| |#3|) (-1 (-798 |#1| |#3|) |#3| (-800 |#1|) (-798 |#1| |#3|))))) (-1013) (-961) (-13 (-961) (-553 (-800 |#1|)) (-950 |#2|))) (T -852))
+((-2798 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6))) (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013)) (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8)) (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))) (-2797 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013)) (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
+((-2806 (((-1085 (-350 (-484))) (-484)) 80 T ELT)) (-2805 (((-1085 (-484)) (-484)) 83 T ELT)) (-3335 (((-1085 (-484)) (-484)) 77 T ELT)) (-2804 (((-484) (-1085 (-484))) 73 T ELT)) (-2803 (((-1085 (-350 (-484))) (-484)) 66 T ELT)) (-2802 (((-1085 (-484)) (-484)) 49 T ELT)) (-2801 (((-1085 (-484)) (-484)) 85 T ELT)) (-2800 (((-1085 (-484)) (-484)) 84 T ELT)) (-2799 (((-1085 (-350 (-484))) (-484)) 68 T ELT)))
+(((-853) (-10 -7 (-15 -2799 ((-1085 (-350 (-484))) (-484))) (-15 -2800 ((-1085 (-484)) (-484))) (-15 -2801 ((-1085 (-484)) (-484))) (-15 -2802 ((-1085 (-484)) (-484))) (-15 -2803 ((-1085 (-350 (-484))) (-484))) (-15 -2804 ((-484) (-1085 (-484)))) (-15 -3335 ((-1085 (-484)) (-484))) (-15 -2805 ((-1085 (-484)) (-484))) (-15 -2806 ((-1085 (-350 (-484))) (-484))))) (T -853))
+((-2806 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2805 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-3335 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))) (-2803 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2800 (*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))) (-2799 (*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-3707 (($ (-583 |#1|)) 9 T ELT)) (-3836 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-583 |#1|)) 25 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 18 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-3912 (((-830) $) 13 T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3835 (($ $ $) 23 T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 14 T ELT)) (-3531 (($ (-583 |#1|)) NIL T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3958 (((-694) $) 11 T ELT)))
+(((-854 |#1|) (-893 |#1|) (-961)) (T -854))
+NIL
+((-2809 (((-421 |#1| |#2|) (-857 |#2|)) 22 T ELT)) (-2812 (((-206 |#1| |#2|) (-857 |#2|)) 35 T ELT)) (-2810 (((-857 |#2|) (-421 |#1| |#2|)) 27 T ELT)) (-2808 (((-206 |#1| |#2|) (-421 |#1| |#2|)) 57 T ELT)) (-2811 (((-857 |#2|) (-206 |#1| |#2|)) 32 T ELT)) (-2807 (((-421 |#1| |#2|) (-206 |#1| |#2|)) 48 T ELT)))
+(((-855 |#1| |#2|) (-10 -7 (-15 -2807 ((-421 |#1| |#2|) (-206 |#1| |#2|))) (-15 -2808 ((-206 |#1| |#2|) (-421 |#1| |#2|))) (-15 -2809 ((-421 |#1| |#2|) (-857 |#2|))) (-15 -2810 ((-857 |#2|) (-421 |#1| |#2|))) (-15 -2811 ((-857 |#2|) (-206 |#1| |#2|))) (-15 -2812 ((-206 |#1| |#2|) (-857 |#2|)))) (-583 (-1090)) (-961)) (T -855))
+((-2812 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2810 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961)) (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5)))))
+((-2813 (((-583 |#2|) |#2| |#2|) 10 T ELT)) (-2816 (((-694) (-583 |#1|)) 47 (|has| |#1| (-755)) ELT)) (-2814 (((-583 |#2|) |#2|) 11 T ELT)) (-2817 (((-694) (-583 |#1|) (-484) (-484)) 45 (|has| |#1| (-755)) ELT)) (-2815 ((|#1| |#2|) 37 (|has| |#1| (-755)) ELT)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -2813 ((-583 |#2|) |#2| |#2|)) (-15 -2814 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-755)) (PROGN (-15 -2815 (|#1| |#2|)) (-15 -2816 ((-694) (-583 |#1|))) (-15 -2817 ((-694) (-583 |#1|) (-484) (-484)))) |%noBranch|)) (-312) (-1155 |#1|)) (T -856))
+((-2817 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1155 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1155 *4)))) (-2815 (*1 *2 *3) (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1155 *2)))) (-2814 (*1 *2 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1155 *4)))) (-2813 (*1 *2 *3 *3) (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-1090)) $) 16 T ELT)) (-3084 (((-1085 $) $ (-1090)) 21 T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1090))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1090) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1090) $) NIL T ELT)) (-3757 (($ $ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-1090)) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1090) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1090) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-1090)) NIL T ELT) (($ (-1085 $) (-1090)) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-1090)) NIL T ELT)) (-2821 (((-469 (-1090)) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT) (((-583 (-694)) $ (-583 (-1090))) NIL T ELT)) (-1625 (($ (-1 (-469 (-1090)) (-469 (-1090))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3083 (((-3 (-1090) #1#) $) 19 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1090)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3813 (($ $ (-1090)) 29 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1090) |#1|) NIL T ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL T ELT) (($ $ (-1090) $) NIL T ELT) (($ $ (-583 (-1090)) (-583 $)) NIL T ELT)) (-3758 (($ $ (-1090)) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3949 (((-469 (-1090)) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT) (((-583 (-694)) $ (-583 (-1090))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-1090) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1090) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1090) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 25 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1090)) 27 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-857 |#1|) (-13 (-861 |#1| (-469 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1090))) |%noBranch|))) (-961)) (T -857))
+((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))))
+((-3959 (((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)) 19 T ELT)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -3959 ((-857 |#2|) (-1 |#2| |#1|) (-857 |#1|)))) (-961) (-961)) (T -858))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6)))))
+((-3084 (((-1148 |#1| (-857 |#2|)) (-857 |#2|) (-1176 |#1|)) 18 T ELT)))
+(((-859 |#1| |#2|) (-10 -7 (-15 -3084 ((-1148 |#1| (-857 |#2|)) (-857 |#2|) (-1176 |#1|)))) (-1090) (-961)) (T -859))
+((-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-961)) (-5 *2 (-1148 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6)))))
+((-2820 (((-694) $) 88 T ELT) (((-694) $ (-583 |#4|)) 93 T ELT)) (-3776 (($ $) 214 T ELT)) (-3972 (((-348 $) $) 206 T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 141 T ELT)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-3757 (($ $ $ |#4|) 95 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 131 T ELT) (((-630 |#2|) (-630 $)) 121 T ELT)) (-3504 (($ $) 221 T ELT) (($ $ |#4|) 224 T ELT)) (-2819 (((-583 $) $) 77 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 240 T ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 233 T ELT)) (-2822 (((-583 $) $) 34 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-694)) NIL T ELT) (($ $ (-583 |#4|) (-583 (-694))) 71 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#4|) 203 T ELT)) (-2824 (((-3 (-583 $) #1#) $) 52 T ELT)) (-2823 (((-3 (-583 $) #1#) $) 39 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) $) 57 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 134 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 147 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 145 T ELT)) (-3733 (((-348 $) $) 165 T ELT)) (-3769 (($ $ (-583 (-249 $))) 24 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-583 |#4|) (-583 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-583 |#4|) (-583 $)) NIL T ELT)) (-3758 (($ $ |#4|) 97 T ELT)) (-3973 (((-800 (-330)) $) 254 T ELT) (((-800 (-484)) $) 247 T ELT) (((-473) $) 262 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ |#4|) 216 T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 185 T ELT)) (-3678 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-694)) 62 T ELT) (($ $ (-583 |#4|) (-583 (-694))) 69 T ELT)) (-2703 (((-632 $) $) 195 T ELT)) (-1265 (((-85) $ $) 227 T ELT)))
+(((-860 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -2703 ((-632 |#1|) |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -2797 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -2797 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-583 (-1085 |#1|)) #1="failed") (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2704 ((-3 (-1179 |#1|) #1#) (-630 |#1|))) (-15 -3504 (|#1| |#1| |#4|)) (-15 -2818 (|#1| |#1| |#4|)) (-15 -3758 (|#1| |#1| |#4|)) (-15 -3757 (|#1| |#1| |#1| |#4|)) (-15 -2819 ((-583 |#1|) |#1|)) (-15 -2820 ((-694) |#1| (-583 |#4|))) (-15 -2820 ((-694) |#1|)) (-15 -2825 ((-3 (-2 (|:| |var| |#4|) (|:| -2401 (-694))) #1#) |#1|)) (-15 -2824 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2823 ((-3 (-583 |#1|) #1#) |#1|)) (-15 -2894 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -2894 (|#1| |#1| |#4| (-694))) (-15 -3764 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -2822 ((-583 |#1|) |#1|)) (-15 -3678 (|#1| |#1| (-583 |#4|) (-583 (-694)))) (-15 -3678 (|#1| |#1| |#4| (-694))) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3769 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#4| |#1|)) (-15 -3769 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -3769 (|#1| |#1| |#4| |#2|)) (-15 -3769 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3678 (|#2| |#1| |#3|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3504 (|#1| |#1|)) (-15 -1265 ((-85) |#1| |#1|))) (-861 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -860))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT)) (-3960 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-583 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| "failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1894 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2824 (((-3 (-583 $) "failed") $) 127 T ELT)) (-2823 (((-3 (-583 $) "failed") $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) "failed") $) 126 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 183 T ELT)) (-1799 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3973 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (($ $) 98 (|has| |#1| (-495)) ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3818 (((-583 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2703 (((-632 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-861 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -861))
+((-3504 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3949 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-3949 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-3678 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-2822 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)))) (-3084 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-1085 *3)))) (-3083 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-2821 (*1 *2 *1 *3) (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-694)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-694))))) (-3764 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-861 *4 *5 *3)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *2 (-756)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717)) (-4 *3 (-756)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)))) (-2823 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2824 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-2825 (*1 *2 *1) (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694)))))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2819 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-861 *3 *4 *5)))) (-3757 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-3758 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-146)))) (-2818 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-392)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *3 (-392)))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-348 *1)) (-4 *1 (-861 *3 *4 *5)))))
+(-13 (-809 |t#3|) (-277 |t#1| |t#2|) (-260 $) (-455 |t#3| |t#1|) (-455 |t#3| $) (-950 |t#3|) (-329 |t#1|) (-10 -8 (-15 -3949 ((-694) $ |t#3|)) (-15 -3949 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3678 ($ $ |t#3| (-694))) (-15 -3678 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -2822 ((-583 $) $)) (-15 -3084 ((-1085 $) $ |t#3|)) (-15 -3084 ((-1085 |t#1|) $)) (-15 -3083 ((-3 |t#3| "failed") $)) (-15 -2821 ((-694) $ |t#3|)) (-15 -2821 ((-583 (-694)) $ (-583 |t#3|))) (-15 -3764 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -2894 ($ $ |t#3| (-694))) (-15 -2894 ($ $ (-583 |t#3|) (-583 (-694)))) (-15 -3085 ($ (-1085 |t#1|) |t#3|)) (-15 -3085 ($ (-1085 $) |t#3|)) (-15 -2823 ((-3 (-583 $) "failed") $)) (-15 -2824 ((-3 (-583 $) "failed") $)) (-15 -2825 ((-3 (-2 (|:| |var| |t#3|) (|:| -2401 (-694))) "failed") $)) (-15 -2820 ((-694) $)) (-15 -2820 ((-694) $ (-583 |t#3|))) (-15 -3082 ((-583 |t#3|) $)) (-15 -2819 ((-583 $) $)) (IF (|has| |t#1| (-553 (-473))) (IF (|has| |t#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-484)))) (IF (|has| |t#3| (-553 (-800 (-484)))) (-6 (-553 (-800 (-484)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-553 (-800 (-330)))) (IF (|has| |t#3| (-553 (-800 (-330)))) (-6 (-553 (-800 (-330)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-484))) (IF (|has| |t#3| (-796 (-484))) (-6 (-796 (-484))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-796 (-330))) (IF (|has| |t#3| (-796 (-330))) (-6 (-796 (-330))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3757 ($ $ $ |t#3|)) (-15 -3758 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-6 (-392)) (-15 -2818 ($ $ |t#3|)) (-15 -3504 ($ $)) (-15 -3504 ($ $ |t#3|)) (-15 -3972 ((-348 $) $)) (-15 -3776 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821)))
+((-3082 (((-583 |#2|) |#5|) 40 T ELT)) (-3084 (((-1085 |#5|) |#5| |#2| (-1085 |#5|)) 23 T ELT) (((-350 (-1085 |#5|)) |#5| |#2|) 16 T ELT)) (-3085 ((|#5| (-350 (-1085 |#5|)) |#2|) 30 T ELT)) (-3083 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-2824 (((-3 (-583 |#5|) #1#) |#5|) 64 T ELT)) (-2826 (((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|) 53 T ELT)) (-2823 (((-3 (-583 |#5|) #1#) |#5|) 66 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|) 56 T ELT)))
+(((-862 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3082 ((-583 |#2|) |#5|)) (-15 -3083 ((-3 |#2| #1="failed") |#5|)) (-15 -3084 ((-350 (-1085 |#5|)) |#5| |#2|)) (-15 -3085 (|#5| (-350 (-1085 |#5|)) |#2|)) (-15 -3084 ((-1085 |#5|) |#5| |#2| (-1085 |#5|))) (-15 -2823 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2824 ((-3 (-583 |#5|) #1#) |#5|)) (-15 -2825 ((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-484))) #1#) |#5|)) (-15 -2826 ((-3 (-2 (|:| |val| |#5|) (|:| -2401 (-484))) #1#) |#5|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -862))
+((-2826 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2825 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484)))) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2824 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-2823 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3084 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-5 *1 (-862 *5 *4 *6 *7 *3)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *2 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))) (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4)))) (-3084 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-350 (-1085 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))) (-3083 (*1 *2 *3) (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2)) (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $))))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-3959 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
+(((-863 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3959 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-717) (-756) (-961) (-861 |#3| |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (T -863))
+((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961)) (-4 *6 (-717)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694)))))) (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7)))))
+((-2827 (((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-694)) 48 T ELT)) (-2828 (((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-350 (-484)) (-694)) 43 T ELT)) (-2830 (((-2 (|:| -2401 (-694)) (|:| -3955 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)) 64 T ELT)) (-2829 (((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-694)) 73 (|has| |#3| (-392)) ELT)))
+(((-864 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 ((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#3| (-694))) (-15 -2828 ((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) (-350 (-484)) (-694))) (IF (|has| |#3| (-392)) (-15 -2829 ((-2 (|:| -2401 (-694)) (|:| -3955 |#5|) (|:| |radicand| |#5|)) |#5| (-694))) |%noBranch|) (-15 -2830 ((-2 (|:| -2401 (-694)) (|:| -3955 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-694)))) (-717) (-756) (-495) (-861 |#3| |#1| |#2|) (-13 (-312) (-10 -8 (-15 -3947 ($ |#4|)) (-15 -2999 (|#4| $)) (-15 -2998 (|#4| $))))) (T -864))
+((-2830 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $))))))) (-2829 (*1 *2 *3 *4) (-12 (-4 *7 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| *3))) (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694)) (-4 *3 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *8 (-861 *7 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *9) (|:| |radicand| *9))) (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694)) (-4 *9 (-13 (-312) (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6)) (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *8) (|:| |radicand| *8))) (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694)) (-4 *8 (-13 (-312) (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2831 (($ (-1033)) 8 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 15 T ELT) (((-1033) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 11 T ELT)))
+(((-865) (-13 (-1013) (-552 (-1033)) (-10 -8 (-15 -2831 ($ (-1033)))))) (T -865))
+((-2831 (*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865)))))
+((-2897 (((-1001 (-179)) $) 8 T ELT)) (-2898 (((-1001 (-179)) $) 9 T ELT)) (-2899 (((-583 (-583 (-854 (-179)))) $) 10 T ELT)) (-3947 (((-772) $) 6 T ELT)))
+(((-866) (-113)) (T -866))
+((-2899 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179))))))
+(-13 (-552 (-772)) (-10 -8 (-15 -2899 ((-583 (-583 (-854 (-179)))) $)) (-15 -2898 ((-1001 (-179)) $)) (-15 -2897 ((-1001 (-179)) $))))
+(((-552 (-772)) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 80 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 81 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 35 T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) 32 T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| |#2| $) 64 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 18 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| |#2|) NIL T ELT)) (-2821 ((|#2| $) 25 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) 29 T ELT)) (-3175 ((|#1| $) 27 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) 52 T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-3739 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-104)) (|has| |#1| (-495))) ELT)) (-3467 (((-3 $ #1#) $ $) 92 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) 87 (|has| |#1| (-495)) ELT)) (-3949 ((|#2| $) 23 T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) 47 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 42 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) 38 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 15 T CONST)) (-1623 (($ $ $ (-694)) 76 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 86 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 28 T CONST)) (-2667 (($) 12 T CONST)) (-3057 (((-85) $ $) 85 T ELT)) (-3950 (($ $ |#1|) 93 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) 71 T ELT) (($ $ (-694)) 69 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 68 T ELT) (($ $ |#1|) 66 T ELT) (($ |#1| $) 65 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-867 |#1| |#2|) (-13 (-277 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| |#2| (-104)) (-15 -3739 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-961) (-716)) (T -867))
+((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961)) (-4 *2 (-716)))))
+((-2832 (((-3 (-630 |#1|) "failed") |#2| (-830)) 18 T ELT)))
+(((-868 |#1| |#2|) (-10 -7 (-15 -2832 ((-3 (-630 |#1|) "failed") |#2| (-830)))) (-495) (-600 |#1|)) (T -868))
+((-2832 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5)) (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 18 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) 17 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 15 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 14 T ELT)) (-2200 (((-484) $) 10 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 23 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 22 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) 19 (|has| $ (-1035 |#1|)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) 11 T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) 16 T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 20 T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 13 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3958 (((-694) $) 8 T ELT)))
+(((-869 |#1|) (-19 |#1|) (-1129)) (T -869))
+NIL
+((-3842 (((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 16 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|) 18 T ELT)) (-3959 (((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)) 13 T ELT)))
+(((-870 |#1| |#2|) (-10 -7 (-15 -3842 ((-869 |#2|) (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-869 |#1|) |#2|)) (-15 -3959 ((-869 |#2|) (-1 |#2| |#1|) (-869 |#1|)))) (-1129) (-1129)) (T -870))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-870 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5)))))
+((-2833 (($ $ (-1004 $)) 7 T ELT) (($ $ (-1090)) 6 T ELT)))
+(((-871) (-113)) (T -871))
+((-2833 (*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))) (-2833 (*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1090)))))
+(-13 (-10 -8 (-15 -2833 ($ $ (-1090))) (-15 -2833 ($ $ (-1004 $)))))
+((-2834 (((-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)) (-1090)) 26 T ELT) (((-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090))) 27 T ELT) (((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 |#1|))) (-857 |#1|) (-1090) (-857 |#1|) (-1090)) 49 T ELT)))
+(((-872 |#1|) (-10 -7 (-15 -2834 ((-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 |#1|))) (-857 |#1|) (-1090) (-857 |#1|) (-1090))) (-15 -2834 ((-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)))) (-15 -2834 ((-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 |#1|))) (|:| |prim| (-1085 |#1|))) (-583 (-857 |#1|)) (-583 (-1090)) (-1090)))) (-13 (-312) (-120))) (T -872))
+((-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-5 *5 (-1090)) (-4 *6 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 *6))) (|:| |prim| (-1085 *6)))) (-5 *1 (-872 *6)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 *5))) (|:| |prim| (-1085 *5)))) (-5 *1 (-872 *5)))) (-2834 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-857 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120))) (-5 *2 (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 *5)))) (-5 *1 (-872 *5)))))
+((-2837 (((-583 |#1|) |#1| |#1|) 47 T ELT)) (-3724 (((-85) |#1|) 44 T ELT)) (-2836 ((|#1| |#1|) 80 T ELT)) (-2835 ((|#1| |#1|) 79 T ELT)))
+(((-873 |#1|) (-10 -7 (-15 -3724 ((-85) |#1|)) (-15 -2835 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2837 ((-583 |#1|) |#1| |#1|))) (-483)) (T -873))
+((-2837 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))) (-2836 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-2835 (*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))) (-3724 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483)))))
+((-2838 (((-1185) (-772)) 9 T ELT)))
+(((-874) (-10 -7 (-15 -2838 ((-1185) (-772))))) (T -874))
+((-2838 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-874)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2484 (($ $ $) 65 (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1312 (((-3 $ #1="failed") $ $) 52 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-3137 (((-694)) 36 (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-2839 ((|#2| $) 22 T ELT)) (-2840 ((|#1| $) 21 T ELT)) (-3725 (($) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-3468 (((-3 $ #1#) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) ELT)) (-1214 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (-2410 (((-85) $) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2841 (($ |#1| |#2|) 20 T ELT)) (-2010 (((-830) $) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 39 (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2400 (($ (-830)) NIL (-12 (|has| |#1| (-320)) (|has| |#2| (-320))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3010 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-2436 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3947 (((-772) $) 14 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 42 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) CONST)) (-2667 (($) 25 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) CONST)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3057 (((-85) $ $) 19 T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-2686 (((-85) $ $) 69 (OR (-12 (|has| |#1| (-717)) (|has| |#2| (-717))) (-12 (|has| |#1| (-756)) (|has| |#2| (-756)))) ELT)) (-3950 (($ $ $) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT)) (-3838 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-3840 (($ $ $) 45 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT)) (** (($ $ (-484)) NIL (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) ELT) (($ $ (-694)) 32 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT) (($ $ (-830)) NIL (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)) (* (($ (-484) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-694) $) 48 (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ (-830) $) NIL (OR (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-104)) (|has| |#2| (-104))) (-12 (|has| |#1| (-717)) (|has| |#2| (-717)))) ELT) (($ $ $) 28 (OR (-12 (|has| |#1| (-413)) (|has| |#2| (-413))) (-12 (|has| |#1| (-663)) (|has| |#2| (-663)))) ELT)))
+(((-875 |#1| |#2|) (-13 (-1013) (-10 -8 (IF (|has| |#1| (-320)) (IF (|has| |#2| (-320)) (-6 (-320)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-663)) (IF (|has| |#2| (-663)) (-6 (-663)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-104)) (IF (|has| |#2| (-104)) (-6 (-104)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-413)) (IF (|has| |#2| (-413)) (-6 (-413)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-717)) (IF (|has| |#2| (-717)) (-6 (-717)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-756)) (IF (|has| |#2| (-756)) (-6 (-756)) |%noBranch|) |%noBranch|) (-15 -2841 ($ |#1| |#2|)) (-15 -2840 (|#1| $)) (-15 -2839 (|#2| $)))) (-1013) (-1013)) (T -875))
+((-2841 (*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-2840 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))) (-2839 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013)))))
+((-3403 (((-1015) $) 13 T ELT)) (-2842 (($ (-446) (-1015)) 15 T ELT)) (-3543 (((-446) $) 11 T ELT)) (-3947 (((-772) $) 25 T ELT)))
+(((-876) (-13 (-552 (-772)) (-10 -8 (-15 -3543 ((-446) $)) (-15 -3403 ((-1015) $)) (-15 -2842 ($ (-446) (-1015)))))) (T -876))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876)))) (-2842 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 29 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) NIL T ELT)) (-2561 (($ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2847 (((-632 (-782 $ $)) $) 62 T ELT)) (-2849 (((-632 $) $) 52 T ELT)) (-2846 (((-632 (-782 $ $)) $) 63 T ELT)) (-2845 (((-632 (-782 $ $)) $) 64 T ELT)) (-2850 (((-632 |#1|) $) 43 T ELT)) (-2848 (((-632 (-782 $ $)) $) 61 T ELT)) (-2854 (($ $ $) 38 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 39 T ELT)) (-2843 (($ $ $) 36 T ELT)) (-2844 (($ $ $) 34 T ELT)) (-3947 (((-772) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) NIL T ELT)) (-2311 (($ $ $) 37 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 35 T ELT)))
+(((-877 |#1|) (-13 (-880) (-555 |#1|) (-10 -8 (-15 -2850 ((-632 |#1|) $)) (-15 -2849 ((-632 $) $)) (-15 -2848 ((-632 (-782 $ $)) $)) (-15 -2847 ((-632 (-782 $ $)) $)) (-15 -2846 ((-632 (-782 $ $)) $)) (-15 -2845 ((-632 (-782 $ $)) $)) (-15 -2844 ($ $ $)) (-15 -2843 ($ $ $)))) (-1013)) (T -877))
+((-2850 (*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2848 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))) (-2843 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
+((-3650 (((-877 |#1|) (-877 |#1|)) 46 T ELT)) (-2852 (((-877 |#1|) (-877 |#1|)) 22 T ELT)) (-2851 (((-1009 |#1|) (-877 |#1|)) 41 T ELT)))
+(((-878 |#1|) (-13 (-1129) (-10 -7 (-15 -2852 ((-877 |#1|) (-877 |#1|))) (-15 -2851 ((-1009 |#1|) (-877 |#1|))) (-15 -3650 ((-877 |#1|) (-877 |#1|))))) (-1013)) (T -878))
+((-2852 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))) (-3650 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))))
+((-3959 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 29 T ELT)))
+(((-879 |#1| |#2|) (-13 (-1129) (-10 -7 (-15 -3959 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))) (-1013) (-1013)) (T -879))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6)))))
+((-2569 (((-85) $ $) 19 T ELT)) (-2313 (($ $) 8 T ELT)) (-2856 (($) 17 T CONST)) (-2562 (($ $ $) 9 T ELT)) (-2561 (($ $) 11 T ELT)) (-3243 (((-1073) $) 23 T ELT)) (-2854 (($ $ $) 15 T ELT)) (-3244 (((-1033) $) 22 T ELT)) (-2855 (($) 16 T CONST)) (-2853 (($ $ $) 14 T ELT)) (-3947 (((-772) $) 21 T ELT)) (-1265 (((-85) $ $) 20 T ELT)) (-2563 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-3057 (((-85) $ $) 18 T ELT)) (-2312 (($ $ $) 7 T ELT)))
+(((-880) (-113)) (T -880))
+((-2856 (*1 *1) (-4 *1 (-880))) (-2855 (*1 *1) (-4 *1 (-880))) (-2854 (*1 *1 *1 *1) (-4 *1 (-880))) (-2853 (*1 *1 *1 *1) (-4 *1 (-880))))
+(-13 (-84) (-1013) (-10 -8 (-15 -2856 ($) -3953) (-15 -2855 ($) -3953) (-15 -2854 ($ $ $)) (-15 -2853 ($ $ $))))
+(((-72) . T) ((-84) . T) ((-552 (-772)) . T) ((-13) . T) ((-604) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 51 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 48 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 47 T ELT)) (-2857 (($ $ $) 39 T ELT)) (-3519 (($ $ $) 40 T ELT)) (-2609 (((-583 |#1|) $) 46 T ELT)) (-3246 (((-85) |#1| $) 50 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 41 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-1730 (((-694) |#1| $) 49 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 45 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 43 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 42 T ELT)))
+(((-881 |#1|) (-113) (-756)) (T -881))
+((-2858 (*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -2858 (|t#1| $)) (-15 -3519 ($ $ $)) (-15 -2857 ($ $ $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2870 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 105 T ELT)) (-3756 ((|#2| |#2| |#2|) 103 T ELT)) (-2871 (((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 107 T ELT)) (-2872 (((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|) 109 T ELT)) (-2879 (((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 132 (|has| |#1| (-392)) ELT)) (-2886 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 56 T ELT)) (-2860 (((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 80 T ELT)) (-2861 (((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 82 T ELT)) (-2869 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-2864 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 89 T ELT)) (-2874 (((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 121 T ELT)) (-2867 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 92 T ELT)) (-2876 (((-583 (-694)) |#2| |#2|) 102 T ELT)) (-2884 ((|#1| |#2| |#2|) 50 T ELT)) (-2878 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|) 130 (|has| |#1| (-392)) ELT)) (-2877 ((|#1| |#2| |#2|) 128 (|has| |#1| (-392)) ELT)) (-2885 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 54 T ELT)) (-2859 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|) 79 T ELT)) (-3757 ((|#1| |#2| |#2|) 76 T ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 41 T ELT)) (-2883 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-2868 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3191 ((|#2| |#2| |#2|) 93 T ELT)) (-2863 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 87 T ELT)) (-2862 ((|#2| |#2| |#2| (-694)) 85 T ELT)) (-3145 ((|#2| |#2| |#2|) 136 (|has| |#1| (-392)) ELT)) (-3467 (((-1179 |#2|) (-1179 |#2|) |#1|) 22 T ELT)) (-2880 (((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2|) 46 T ELT)) (-2873 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|) 119 T ELT)) (-3758 ((|#1| |#2|) 116 T ELT)) (-2866 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694)) 91 T ELT)) (-2865 ((|#2| |#2| |#2| (-694)) 90 T ELT)) (-2875 (((-583 |#2|) |#2| |#2|) 99 T ELT)) (-2882 ((|#2| |#2| |#1| |#1| (-694)) 62 T ELT)) (-2881 ((|#1| |#1| |#1| (-694)) 61 T ELT)) (* (((-1179 |#2|) |#1| (-1179 |#2|)) 17 T ELT)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -3757 (|#1| |#2| |#2|)) (-15 -2859 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2860 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2861 ((-2 (|:| |coef1| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2862 (|#2| |#2| |#2| (-694))) (-15 -2863 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2864 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2865 (|#2| |#2| |#2| (-694))) (-15 -2866 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -2867 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-694))) (-15 -3191 (|#2| |#2| |#2|)) (-15 -2868 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2869 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3756 (|#2| |#2| |#2|)) (-15 -2870 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2871 ((-2 (|:| |coef2| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -2872 ((-2 (|:| |coef1| |#2|) (|:| -3145 |#2|)) |#2| |#2|)) (-15 -3758 (|#1| |#2|)) (-15 -2873 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2874 ((-2 (|:| |coef2| |#2|) (|:| -3758 |#1|)) |#2|)) (-15 -2875 ((-583 |#2|) |#2| |#2|)) (-15 -2876 ((-583 (-694)) |#2| |#2|)) (IF (|has| |#1| (-392)) (PROGN (-15 -2877 (|#1| |#2| |#2|)) (-15 -2878 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -2879 ((-2 (|:| |coef2| |#2|) (|:| -2877 |#1|)) |#2| |#2|)) (-15 -3145 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1179 |#2|) |#1| (-1179 |#2|))) (-15 -3467 ((-1179 |#2|) (-1179 |#2|) |#1|)) (-15 -3753 ((-2 (|:| -3955 |#1|) (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2880 ((-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) |#2| |#2|)) (-15 -2881 (|#1| |#1| |#1| (-694))) (-15 -2882 (|#2| |#2| |#1| |#1| (-694))) (-15 -2883 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2884 (|#1| |#2| |#2|)) (-15 -2885 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|)) (-15 -2886 ((-2 (|:| |coef2| |#2|) (|:| -3757 |#1|)) |#2| |#2|))) (-495) (-1155 |#1|)) (T -882))
+((-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2885 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2884 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2883 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2882 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2881 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1155 *2)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3753 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495)) (-5 *1 (-882 *3 *4)))) (-3145 (*1 *2 *2 *2) (-12 (-4 *3 (-392)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2879 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2877 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-4 *2 (-392)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2875 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3758 (*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))) (-2872 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2871 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3756 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2869 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2868 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3191 (*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))) (-2867 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2866 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2865 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))) (-2864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2863 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))) (-2862 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2860 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4))) (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))) (-3757 (*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3947 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-883) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -883))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-883)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-883)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 40 T ELT)) (-1312 (((-3 $ "failed") $ $) 54 T ELT)) (-3725 (($) NIL T CONST)) (-2888 (((-583 (-782 (-830) (-830))) $) 64 T ELT)) (-3187 (((-85) $) NIL T ELT)) (-2887 (((-830) $) 91 T ELT)) (-2890 (((-583 (-830)) $) 17 T ELT)) (-2889 (((-1069 $) (-694)) 39 T ELT)) (-2891 (($ (-583 (-830))) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3010 (($ $) 67 T ELT)) (-3947 (((-772) $) 87 T ELT) (((-583 (-830)) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) 10 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 44 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 42 T ELT)) (-3840 (($ $ $) 46 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 49 T ELT)) (-3958 (((-694) $) 22 T ELT)))
+(((-884) (-13 (-721) (-552 (-583 (-830))) (-10 -8 (-15 -2891 ($ (-583 (-830)))) (-15 -2890 ((-583 (-830)) $)) (-15 -3958 ((-694) $)) (-15 -2889 ((-1069 $) (-694))) (-15 -2888 ((-583 (-782 (-830) (-830))) $)) (-15 -2887 ((-830) $)) (-15 -3010 ($ $))))) (T -884))
+((-2891 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1069 (-884))) (-5 *1 (-884)))) (-2888 (*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))) (-3010 (*1 *1 *1) (-5 *1 (-884))))
+((-3950 (($ $ |#2|) 31 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-350 (-484)) $) 27 T ELT) (($ $ (-350 (-484))) 29 T ELT)))
+(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-350 (-484)))) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 -3950 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 * (|#1| (-830) |#1|))) (-886 |#2| |#3| |#4|) (-961) (-716) (-756)) (T -885))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 |#3|) $) 95 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ |#3| |#2|) 97 T ELT) (($ $ (-583 |#3|) (-583 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-886 |#1| |#2| |#3|) (-113) (-961) (-716) (-756)) (T -886))
+((-3175 (*1 *2 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961)))) (-2895 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-583 *5)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756)) (-5 *2 (-85)))) (-2892 (*1 *1 *1) (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2894 ($ $ |t#3| |t#2|)) (-15 -2894 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -2895 ($ $)) (-15 -3175 (|t#1| $)) (-15 -3949 (|t#2| $)) (-15 -3082 ((-583 |t#3|) $)) (-15 -2893 ((-85) $)) (-15 -2892 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2896 (((-1001 (-179)) $) 8 T ELT)) (-2897 (((-1001 (-179)) $) 9 T ELT)) (-2898 (((-1001 (-179)) $) 10 T ELT)) (-2899 (((-583 (-583 (-854 (-179)))) $) 11 T ELT)) (-3947 (((-772) $) 6 T ELT)))
+(((-887) (-113)) (T -887))
+((-2899 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))) (-2898 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2897 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
+(-13 (-552 (-772)) (-10 -8 (-15 -2899 ((-583 (-583 (-854 (-179)))) $)) (-15 -2898 ((-1001 (-179)) $)) (-15 -2897 ((-1001 (-179)) $)) (-15 -2896 ((-1001 (-179)) $))))
+(((-552 (-772)) . T))
+((-3082 (((-583 |#4|) $) 23 T ELT)) (-2909 (((-85) $) 55 T ELT)) (-2900 (((-85) $) 54 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2905 (((-85) $) 56 T ELT)) (-2907 (((-85) $ $) 62 T ELT)) (-2906 (((-85) $ $) 65 T ELT)) (-2908 (((-85) $) 60 T ELT)) (-2901 (((-583 |#5|) (-583 |#5|) $) 98 T ELT)) (-2902 (((-583 |#5|) (-583 |#5|) $) 95 T ELT)) (-2903 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-2915 (((-583 |#4|) $) 27 T ELT)) (-2914 (((-85) |#4| $) 34 T ELT)) (-2904 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2911 (($ $ |#4|) 39 T ELT)) (-2913 (($ $ |#4|) 38 T ELT)) (-2912 (($ $ |#4|) 40 T ELT)) (-3057 (((-85) $ $) 46 T ELT)))
+(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2900 ((-85) |#1|)) (-15 -2901 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2902 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -2903 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2904 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2905 ((-85) |#1|)) (-15 -2906 ((-85) |#1| |#1|)) (-15 -2907 ((-85) |#1| |#1|)) (-15 -2908 ((-85) |#1|)) (-15 -2909 ((-85) |#1|)) (-15 -2910 ((-2 (|:| |under| |#1|) (|:| -3131 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -2914 ((-85) |#4| |#1|)) (-15 -2915 ((-583 |#4|) |#1|)) (-15 -3082 ((-583 |#4|) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-889 |#2| |#3| |#4| |#5|) (-961) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -888))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-889 |#1| |#2| |#3| |#4|) (-113) (-961) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -889))
+((-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2915 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-2914 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-2913 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2912 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)) (-4 *5 (-977 *3 *4 *2)))) (-2910 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1))) (-4 *1 (-889 *4 *5 *3 *6)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2907 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2906 (*1 *2 *1 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))) (-2904 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2903 (*1 *2 *3 *1) (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2902 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2901 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+(-13 (-1013) (-124 |t#4|) (-318 |t#4|) (-552 (-583 |t#4|)) (-10 -8 (-15 -3158 ((-3 $ "failed") (-583 |t#4|))) (-15 -3157 ($ (-583 |t#4|))) (-15 -3181 (|t#3| $)) (-15 -3082 ((-583 |t#3|) $)) (-15 -2915 ((-583 |t#3|) $)) (-15 -2914 ((-85) |t#3| $)) (-15 -2913 ($ $ |t#3|)) (-15 -2912 ($ $ |t#3|)) (-15 -2911 ($ $ |t#3|)) (-15 -2910 ((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |t#3|)) (-15 -2909 ((-85) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -2908 ((-85) $)) (-15 -2907 ((-85) $ $)) (-15 -2906 ((-85) $ $)) (-15 -2905 ((-85) $)) (-15 -2904 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2903 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2902 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2901 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -2900 ((-85) $))) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2917 (((-583 |#4|) |#4| |#4|) 135 T ELT)) (-2940 (((-583 |#4|) (-583 |#4|) (-85)) 123 (|has| |#1| (-392)) ELT) (((-583 |#4|) (-583 |#4|)) 124 (|has| |#1| (-392)) ELT)) (-2927 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 44 T ELT)) (-2926 (((-85) |#4|) 43 T ELT)) (-2939 (((-583 |#4|) |#4|) 120 (|has| |#1| (-392)) ELT)) (-2922 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|)) 24 T ELT)) (-2923 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 30 T ELT)) (-2924 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|)) 31 T ELT)) (-2935 (((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-583 |#4|))) "failed") (-583 |#4|)) 90 T ELT)) (-2937 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-2938 (((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127 T ELT)) (-2916 (((-583 |#4|) (-583 |#4|)) 126 T ELT)) (-2932 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85)) 59 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 61 T ELT)) (-2933 ((|#4| |#4| (-583 |#4|)) 60 T ELT)) (-2941 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 131 (|has| |#1| (-392)) ELT)) (-2943 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 134 (|has| |#1| (-392)) ELT)) (-2942 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 133 (|has| |#1| (-392)) ELT)) (-2918 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 105 T ELT) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 107 T ELT) (((-583 |#4|) (-583 |#4|) |#4|) 139 T ELT) (((-583 |#4|) |#4| |#4|) 136 T ELT) (((-583 |#4|) (-583 |#4|)) 106 T ELT)) (-2946 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 117 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2925 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 52 T ELT)) (-2921 (((-85) (-583 |#4|)) 79 T ELT)) (-2920 (((-85) (-583 |#4|) (-583 (-583 |#4|))) 67 T ELT)) (-2929 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 37 T ELT)) (-2928 (((-85) |#4|) 36 T ELT)) (-2945 (((-583 |#4|) (-583 |#4|)) 116 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2944 (((-583 |#4|) (-583 |#4|)) 115 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2934 (((-583 |#4|) (-583 |#4|)) 83 T ELT)) (-2936 (((-583 |#4|) (-583 |#4|)) 97 T ELT)) (-2919 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-2931 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 50 T ELT)) (-2930 (((-85) |#4|) 45 T ELT)))
+(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2918 ((-583 |#4|) (-583 |#4|))) (-15 -2918 ((-583 |#4|) |#4| |#4|)) (-15 -2916 ((-583 |#4|) (-583 |#4|))) (-15 -2917 ((-583 |#4|) |#4| |#4|)) (-15 -2918 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -2918 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2918 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -2919 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -2920 ((-85) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2921 ((-85) (-583 |#4|))) (-15 -2922 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-85) |#4|) (-583 |#4|))) (-15 -2923 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2924 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-85) |#4|)) (-583 |#4|))) (-15 -2925 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2926 ((-85) |#4|)) (-15 -2927 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2928 ((-85) |#4|)) (-15 -2929 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2930 ((-85) |#4|)) (-15 -2931 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2932 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2932 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-85))) (-15 -2933 (|#4| |#4| (-583 |#4|))) (-15 -2934 ((-583 |#4|) (-583 |#4|))) (-15 -2935 ((-3 (-2 (|:| |bas| (-416 |#1| |#2| |#3| |#4|)) (|:| -3324 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -2936 ((-583 |#4|) (-583 |#4|))) (-15 -2937 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2938 ((-583 |#4|) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-392)) (PROGN (-15 -2939 ((-583 |#4|) |#4|)) (-15 -2940 ((-583 |#4|) (-583 |#4|))) (-15 -2940 ((-583 |#4|) (-583 |#4|) (-85))) (-15 -2941 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2942 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2943 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (PROGN (-15 -2944 ((-583 |#4|) (-583 |#4|))) (-15 -2945 ((-583 |#4|) (-583 |#4|))) (-15 -2946 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |%noBranch|) |%noBranch|)) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -890))
+((-2946 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2943 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2942 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2941 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2940 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2940 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2939 (*1 *2 *3) (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2938 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2937 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))) (-2936 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2935 (*1 *2 *3) (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2933 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))) (-2932 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2932 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2931 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2929 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2926 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2924 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *5 *6 *7 *8)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))) (-2918 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2918 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3)))) (-2917 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))) (-2918 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
+((-2947 (((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-2949 (((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)) 45 T ELT)) (-2948 (((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
+(((-891 |#1|) (-10 -7 (-15 -2947 ((-2 (|:| R (-630 |#1|)) (|:| A (-630 |#1|)) (|:| |Ainv| (-630 |#1|))) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2948 ((-630 |#1|) (-630 |#1|) (-630 |#1|) (-69 |#1|) (-1 |#1| |#1|))) (-15 -2949 ((-583 (-2 (|:| C (-630 |#1|)) (|:| |g| (-1179 |#1|)))) (-630 |#1|) (-1179 |#1|)))) (-312)) (T -891))
+((-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-891 *5)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)))) (-2948 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-891 *5)))) (-2947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312)) (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6)))) (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
+((-3972 (((-348 |#4|) |#4|) 61 T ELT)))
+(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-348 |#4|) |#4|))) (-756) (-717) (-392) (-861 |#3| |#2| |#1|)) (T -892))
+((-3972 (*1 *2 *3) (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-392)) (-5 *2 (-348 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3839 (($ (-694)) 122 (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-6 -3997)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1035 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-756)) (|has| $ (-1035 |#1|))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-6 -3997)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 89 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 99 T ELT)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) 96 T ELT) (((-484) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) 94 (|has| |#1| (-72)) ELT)) (-3707 (($ (-583 |#1|)) 128 T ELT)) (-3836 (((-630 |#1|) $ $) 115 (|has| |#1| (-961)) ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 81 (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 105 T ELT)) (-3246 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 82 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3833 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3834 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-583 |#1|)) 126 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-3837 ((|#1| $ $) 116 (|has| |#1| (-961)) ELT)) (-3912 (((-830) $) 127 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-3835 (($ $ $) 114 T ELT)) (-1730 (((-694) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 104 T ELT)) (-1734 (($ $ $ (-484)) 90 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT) (($ (-583 |#1|)) 129 T ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2567 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 85 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 84 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 86 (|has| |#1| (-756)) ELT)) (-3838 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-663)) ELT) (($ $ |#1|) 117 (|has| |#1| (-663)) ELT)) (-3958 (((-694) $) 101 T ELT)))
+(((-893 |#1|) (-113) (-961)) (T -893))
+((-3707 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961)))) (-3770 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961)))))
+(-13 (-1178 |t#1|) (-557 (-583 |t#1|)) (-10 -8 (-15 -3707 ($ (-583 |t#1|))) (-15 -3912 ((-830) $)) (-15 -3835 ($ $ $)) (-15 -3770 ($ $ (-583 |t#1|)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-557 (-583 |#1|)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T) ((-1178 |#1|) . T))
+((-3959 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 17 T ELT)))
+(((-894 |#1| |#2|) (-10 -7 (-15 -3959 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)))) (-961) (-961)) (T -894))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6)))))
+((-2952 ((|#1| (-854 |#1|)) 14 T ELT)) (-2951 ((|#1| (-854 |#1|)) 13 T ELT)) (-2950 ((|#1| (-854 |#1|)) 12 T ELT)) (-2954 ((|#1| (-854 |#1|)) 16 T ELT)) (-2958 ((|#1| (-854 |#1|)) 24 T ELT)) (-2953 ((|#1| (-854 |#1|)) 15 T ELT)) (-2955 ((|#1| (-854 |#1|)) 17 T ELT)) (-2957 ((|#1| (-854 |#1|)) 23 T ELT)) (-2956 ((|#1| (-854 |#1|)) 22 T ELT)))
+(((-895 |#1|) (-10 -7 (-15 -2950 (|#1| (-854 |#1|))) (-15 -2951 (|#1| (-854 |#1|))) (-15 -2952 (|#1| (-854 |#1|))) (-15 -2953 (|#1| (-854 |#1|))) (-15 -2954 (|#1| (-854 |#1|))) (-15 -2955 (|#1| (-854 |#1|))) (-15 -2956 (|#1| (-854 |#1|))) (-15 -2957 (|#1| (-854 |#1|))) (-15 -2958 (|#1| (-854 |#1|)))) (-961)) (T -895))
+((-2958 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+((-2976 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2964 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-2974 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-2962 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2978 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2966 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2959 (((-3 |#1| "failed") |#1| (-694)) 1 T ELT)) (-2961 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2960 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2979 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2967 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-2977 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2965 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-2975 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2963 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2982 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-2970 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-2980 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2968 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-2984 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2972 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-2985 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2973 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2983 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-2971 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2969 (((-3 |#1| "failed") |#1|) 11 T ELT)))
+(((-896 |#1|) (-113) (-1115)) (T -896))
+((-2985 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2984 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2983 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2982 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2980 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2979 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2978 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2977 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2976 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2975 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2974 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2973 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2972 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2971 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2970 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2969 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2968 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2967 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2966 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2965 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2964 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2963 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2962 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2961 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2960 (*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))) (-2959 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(-13 (-10 -7 (-15 -2959 ((-3 |t#1| "failed") |t#1| (-694))) (-15 -2960 ((-3 |t#1| "failed") |t#1|)) (-15 -2961 ((-3 |t#1| "failed") |t#1|)) (-15 -2962 ((-3 |t#1| "failed") |t#1|)) (-15 -2963 ((-3 |t#1| "failed") |t#1|)) (-15 -2964 ((-3 |t#1| "failed") |t#1|)) (-15 -2965 ((-3 |t#1| "failed") |t#1|)) (-15 -2966 ((-3 |t#1| "failed") |t#1|)) (-15 -2967 ((-3 |t#1| "failed") |t#1|)) (-15 -2968 ((-3 |t#1| "failed") |t#1|)) (-15 -2969 ((-3 |t#1| "failed") |t#1|)) (-15 -2970 ((-3 |t#1| "failed") |t#1|)) (-15 -2971 ((-3 |t#1| "failed") |t#1|)) (-15 -2972 ((-3 |t#1| "failed") |t#1|)) (-15 -2973 ((-3 |t#1| "failed") |t#1|)) (-15 -2974 ((-3 |t#1| "failed") |t#1|)) (-15 -2975 ((-3 |t#1| "failed") |t#1|)) (-15 -2976 ((-3 |t#1| "failed") |t#1|)) (-15 -2977 ((-3 |t#1| "failed") |t#1|)) (-15 -2978 ((-3 |t#1| "failed") |t#1|)) (-15 -2979 ((-3 |t#1| "failed") |t#1|)) (-15 -2980 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -2982 ((-3 |t#1| "failed") |t#1|)) (-15 -2983 ((-3 |t#1| "failed") |t#1|)) (-15 -2984 ((-3 |t#1| "failed") |t#1|)) (-15 -2985 ((-3 |t#1| "failed") |t#1|))))
+((-2987 ((|#4| |#4| (-583 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2986 ((|#4| |#4| (-583 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3959 ((|#4| (-1 |#4| (-857 |#1|)) |#4|) 33 T ELT)))
+(((-897 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2986 (|#4| |#4| |#3|)) (-15 -2986 (|#4| |#4| (-583 |#3|))) (-15 -2987 (|#4| |#4| |#3|)) (-15 -2987 (|#4| |#4| (-583 |#3|))) (-15 -3959 (|#4| (-1 |#4| (-857 |#1|)) |#4|))) (-961) (-717) (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))) (-861 (-857 |#1|) |#2| |#3|)) (T -897))
+((-3959 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6)) (-4 *5 (-717)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1="failed") (-1090)))))) (-5 *1 (-897 *4 *5 *6 *2)))) (-2987 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2987 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))) (-2986 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090)))))) (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2)) (-4 *2 (-861 (-857 *4) *5 *6)))) (-2986 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090)))))) (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3)))))
+((-2988 ((|#2| |#3|) 35 T ELT)) (-3920 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 79 T ELT)) (-3919 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 100 T ELT)))
+(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3920 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|)) (-15 -2988 (|#2| |#3|))) (-299) (-1155 |#1|) (-1155 |#2|) (-661 |#2| |#3|)) (T -898))
+((-2988 (*1 *2 *3) (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-898 *4 *2 *3 *5)) (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))) (-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3402 (((-3 (-85) #1="failed") $) 71 T ELT)) (-3650 (($ $) 36 (-12 (|has| |#1| (-120)) (|has| |#1| (-258))) ELT)) (-2992 (($ $ (-3 (-85) #1#)) 72 T ELT)) (-2993 (($ (-583 |#4|) |#4|) 25 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2989 (($ $) 69 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3404 (((-85) $) 70 T ELT)) (-3566 (($) 30 T ELT)) (-2990 ((|#4| $) 74 T ELT)) (-2991 (((-583 |#4|) $) 73 T ELT)) (-3947 (((-772) $) 68 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-899 |#1| |#2| |#3| |#4|) (-13 (-1013) (-552 (-772)) (-10 -8 (-15 -3566 ($)) (-15 -2993 ($ (-583 |#4|) |#4|)) (-15 -3402 ((-3 (-85) #1="failed") $)) (-15 -2992 ($ $ (-3 (-85) #1#))) (-15 -3404 ((-85) $)) (-15 -2991 ((-583 |#4|) $)) (-15 -2990 (|#4| $)) (-15 -2989 ($ $)) (IF (|has| |#1| (-258)) (IF (|has| |#1| (-120)) (-15 -3650 ($ $)) |%noBranch|) |%noBranch|))) (-392) (-756) (-717) (-861 |#1| |#3| |#2|)) (T -899))
+((-3566 (*1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-2993 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))) (-3402 (*1 *2 *1) (|partial| -12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-3404 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2991 (*1 *2 *1) (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6)) (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))) (-2990 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)))) (-2989 (*1 *1 *1) (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))) (-3650 (*1 *1 *1) (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3)))))
+((-2994 (((-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484)))) (-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484))))) 82 T ELT)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -2994 ((-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484)))) (-899 (-350 (-484)) (-773 |#1|) (-197 |#2| (-694)) (-206 |#1| (-350 (-484))))))) (-583 (-1090)) (-694)) (T -900))
+((-2994 (*1 *2 *2) (-12 (-5 *2 (-899 (-350 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-350 (-484))))) (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
+((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-583 |#5|)) 81 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3269 (((-1185)) 32 T ELT)) (-3268 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3279 (((-583 |#5|) (-583 |#5|)) 100 T ELT)) (-3281 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) 92 T ELT)) (-3282 (((-583 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 122 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3276 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3700 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 117 T ELT)) (-3271 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
+(((-901 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1185) (-1073) (-1073) (-1073))) (-15 -3269 ((-1185))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-583 |#5|) (-583 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3700 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-583 |#5|))) (-15 -3279 ((-583 |#5|) (-583 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3281 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-15 -3282 ((-583 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -901))
+((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-901 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-901 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-901 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-3832 (((-1090) $) 15 T ELT)) (-3403 (((-1073) $) 16 T ELT)) (-3227 (($ (-1090) (-1073)) 14 T ELT)) (-3947 (((-772) $) 13 T ELT)))
+(((-902) (-13 (-552 (-772)) (-10 -8 (-15 -3227 ($ (-1090) (-1073))) (-15 -3832 ((-1090) $)) (-15 -3403 ((-1073) $))))) (T -902))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-902)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-902)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-902)))))
+((-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1090) #1#) $) 72 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) 102 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-1090) $) 67 T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) 99 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 121 T ELT) (((-630 |#2|) (-630 $)) 35 T ELT)) (-2995 (($) 105 T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 82 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 91 T ELT)) (-2997 (($ $) 10 T ELT)) (-3446 (((-632 $) $) 27 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3447 (($) 16 T CONST)) (-3129 (($ $) 61 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2996 (($ $) 12 T ELT)) (-3973 (((-800 (-484)) $) 77 T ELT) (((-800 (-330)) $) 86 T ELT) (((-473) $) 47 T ELT) (((-330) $) 51 T ELT) (((-179) $) 55 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1090)) 64 T ELT)) (-3127 (((-694)) 38 T CONST)) (-2686 (((-85) $ $) 57 T ELT)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -2686 ((-85) |#1| |#1|)) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-632 |#1|) |#1|)) (-15 -3158 ((-3 (-484) #1="failed") |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3947 (|#1| (-1090))) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -2995 (|#1|)) (-15 -3129 (|#1| |#1|)) (-15 -2996 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -2797 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -2797 ((-798 (-484) |#1|) |#1| (-800 (-484)) (-798 (-484) |#1|))) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -2279 ((-630 |#2|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 (|#1| |#1|)) (-15 -3127 ((-694)) -3953) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-904 |#2|) (-495)) (T -903))
+((-3127 (*1 *2) (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#1| $) 173 (|has| |#1| (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 164 (|has| |#1| (-821)) ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 167 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3624 (((-484) $) 154 (|has| |#1| (-740)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 203 T ELT) (((-3 (-1090) #2#) $) 162 (|has| |#1| (-950 (-1090))) ELT) (((-3 (-350 (-484)) #2#) $) 145 (|has| |#1| (-950 (-484))) ELT) (((-3 (-484) #2#) $) 143 (|has| |#1| (-950 (-484))) ELT)) (-3157 ((|#1| $) 204 T ELT) (((-1090) $) 163 (|has| |#1| (-950 (-1090))) ELT) (((-350 (-484)) $) 146 (|has| |#1| (-950 (-484))) ELT) (((-484) $) 144 (|has| |#1| (-950 (-484))) ELT)) (-2565 (($ $ $) 71 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 188 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 187 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 186 T ELT) (((-630 |#1|) (-630 $)) 185 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2995 (($) 171 (|has| |#1| (-483)) ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 156 (|has| |#1| (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 180 (|has| |#1| (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 179 (|has| |#1| (-796 (-330))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2997 (($ $) 175 T ELT)) (-2999 ((|#1| $) 177 T ELT)) (-3446 (((-632 $) $) 142 (|has| |#1| (-1066)) ELT)) (-3188 (((-85) $) 155 (|has| |#1| (-740)) ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 68 T ELT)) (-2532 (($ $ $) 147 (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) 148 (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 195 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 190 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 189 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 184 T ELT) (((-630 |#1|) (-1179 $)) 183 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3447 (($) 141 (|has| |#1| (-1066)) CONST)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3129 (($ $) 172 (|has| |#1| (-258)) ELT)) (-3131 ((|#1| $) 169 (|has| |#1| (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 166 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 165 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) 201 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 200 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 199 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 198 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 197 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 196 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-1607 (((-694) $) 74 T ELT)) (-3801 (($ $ |#1|) 202 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 194 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 193 T ELT) (($ $) 140 (|has| |#1| (-189)) ELT) (($ $ (-694)) 138 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 136 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 134 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 133 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 132 (|has| |#1| (-811 (-1090))) ELT)) (-2996 (($ $) 174 T ELT)) (-2998 ((|#1| $) 176 T ELT)) (-3973 (((-800 (-484)) $) 182 (|has| |#1| (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) 181 (|has| |#1| (-553 (-800 (-330)))) ELT) (((-473) $) 159 (|has| |#1| (-553 (-473))) ELT) (((-330) $) 158 (|has| |#1| (-933)) ELT) (((-179) $) 157 (|has| |#1| (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 168 (-2563 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 207 T ELT) (($ (-1090)) 161 (|has| |#1| (-950 (-1090))) ELT)) (-2703 (((-632 $) $) 160 (OR (|has| |#1| (-118)) (-2563 (|has| $ (-118)) (|has| |#1| (-821)))) ELT)) (-3127 (((-694)) 40 T CONST)) (-3132 ((|#1| $) 170 (|has| |#1| (-483)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 153 (|has| |#1| (-740)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 192 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 191 T ELT) (($ $) 139 (|has| |#1| (-189)) ELT) (($ $ (-694)) 137 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 135 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 131 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 130 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 129 (|has| |#1| (-811 (-1090))) ELT)) (-2567 (((-85) $ $) 149 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 151 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 150 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 152 (|has| |#1| (-756)) ELT)) (-3950 (($ $ $) 83 T ELT) (($ |#1| |#1|) 178 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ |#1| $) 206 T ELT) (($ $ |#1|) 205 T ELT)))
+(((-904 |#1|) (-113) (-495)) (T -904))
+((-3950 (*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2998 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2997 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-2996 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258)))) (-2995 (*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483)))))
+(-13 (-312) (-38 |t#1|) (-950 |t#1|) (-288 |t#1|) (-184 |t#1|) (-329 |t#1|) (-794 |t#1|) (-343 |t#1|) (-10 -8 (-15 -3950 ($ |t#1| |t#1|)) (-15 -2999 (|t#1| $)) (-15 -2998 (|t#1| $)) (-15 -2997 ($ $)) (-15 -2996 ($ $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-950 (-484))) (PROGN (-6 (-950 (-484))) (-6 (-950 (-350 (-484))))) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-740)) (-6 (-740)) |%noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-950 (-1090))) (-6 (-950 (-1090))) |%noBranch|) (IF (|has| |t#1| (-258)) (PROGN (-15 -3130 (|t#1| $)) (-15 -3129 ($ $))) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -2995 ($)) (-15 -3132 (|t#1| $)) (-15 -3131 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) OR (|has| |#1| (-740)) (|has| |#1| (-120))) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 (-1090)) |has| |#1| (-950 (-1090))) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) |has| |#1| (-933)) ((-553 (-330)) |has| |#1| (-933)) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-553 (-800 (-330))) |has| |#1| (-553 (-800 (-330)))) ((-553 (-800 (-484))) |has| |#1| (-553 (-800 (-484)))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) . T) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) . T) ((-258) . T) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-312) . T) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-343 |#1|) . T) ((-392) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-714) |has| |#1| (-740)) ((-716) |has| |#1| (-740)) ((-718) |has| |#1| (-740)) ((-721) |has| |#1| (-740)) ((-740) |has| |#1| (-740)) ((-755) |has| |#1| (-740)) ((-756) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-759) OR (|has| |#1| (-756)) (|has| |#1| (-740))) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) |has| |#1| (-796 (-330))) ((-796 (-484)) |has| |#1| (-796 (-484))) ((-794 |#1|) . T) ((-821) |has| |#1| (-821)) ((-832) . T) ((-933) |has| |#1| (-933)) ((-950 (-350 (-484))) |has| |#1| (-950 (-484))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-1090)) |has| |#1| (-950 (-1090))) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) . T))
+((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
+(((-905 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-495) (-495) (-904 |#1|) (-904 |#2|)) (T -905))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6)) (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ "failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3000 (($ (-1056 |#1| |#2|)) 11 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3124 (((-1056 |#1| |#2|) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#2| $ (-197 |#1| |#2|)) 16 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT)))
+(((-906 |#1| |#2|) (-13 (-21) (-241 (-197 |#1| |#2|) |#2|) (-10 -8 (-15 -3000 ($ (-1056 |#1| |#2|))) (-15 -3124 ((-1056 |#1| |#2|) $)))) (-830) (-312)) (T -906))
+((-3000 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)) (-5 *1 (-906 *3 *4)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 10 T ELT)) (-3947 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-907) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $))))) (T -907))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-907)))))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3003 (($ $) 42 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 54 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 51 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 50 T ELT)) (-2609 (((-583 |#1|) $) 49 T ELT)) (-3246 (((-85) |#1| $) 53 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3834 (((-694) $) 41 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3002 ((|#1| $) 40 T ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 47 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3005 ((|#1| |#1| $) 44 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3004 ((|#1| $) 43 T ELT)) (-1730 (((-694) |#1| $) 52 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 48 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-3001 ((|#1| $) 39 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 46 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 45 T ELT)))
+(((-908 |#1|) (-113) (-1129)) (T -908))
+((-3005 (*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3003 (*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3005 (|t#1| |t#1| $)) (-15 -3004 (|t#1| $)) (-15 -3003 ($ $)) (-15 -3834 ((-694) $)) (-15 -3002 (|t#1| $)) (-15 -3001 (|t#1| $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3644 ((|#1| $) 12 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) NIL (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) NIL (|has| |#1| (-483)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 15 T ELT)) (-3008 ((|#1| $) 14 T ELT)) (-3009 ((|#1| $) 13 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) NIL (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3801 (($ $ |#1|) NIL (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 ((|#1| $) NIL (|has| |#1| (-973)) ELT)) (-2661 (($) 8 T CONST)) (-2667 (($) 10 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT)))
+(((-909 |#1|) (-911 |#1|) (-146)) (T -909))
+NIL
+((-3189 (((-85) $) 43 T ELT)) (-3158 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) 78 T ELT)) (-3024 (((-85) $) 72 T ELT)) (-3023 (((-350 (-484)) $) 76 T ELT)) (-2410 (((-85) $) 42 T ELT)) (-3133 ((|#2| $) 22 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2485 (($ $) 58 T ELT)) (-3759 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-3973 (((-473) $) 67 T ELT)) (-3010 (($ $) 17 T ELT)) (-3947 (((-772) $) 53 T ELT) (($ (-484)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-350 (-484))) NIL T ELT)) (-3127 (((-694)) 10 T CONST)) (-3384 ((|#2| $) 71 T ELT)) (-3057 (((-85) $ $) 26 T ELT)) (-2686 (((-85) $ $) 69 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 27 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT)))
+(((-910 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| (-350 (-484)))) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -2686 ((-85) |#1| |#1|)) (-15 * (|#1| (-350 (-484)) |#1|)) (-15 * (|#1| |#1| (-350 (-484)))) (-15 -2485 (|#1| |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3025 ((-3 (-350 (-484)) #1="failed") |#1|)) (-15 -3023 ((-350 (-484)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3384 (|#2| |#1|)) (-15 -3133 (|#2| |#1|)) (-15 -3010 (|#1| |#1|)) (-15 -3959 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3127 ((-694)) -3953) (-15 -3947 (|#1| (-484))) (-15 -2410 ((-85) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 * (|#1| (-694) |#1|)) (-15 -3189 ((-85) |#1|)) (-15 * (|#1| (-830) |#1|)) (-15 -3840 (|#1| |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-911 |#2|) (-146)) (T -910))
+((-3127 (*1 *2) (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 (-484) #1="failed") $) 143 (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 141 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) 138 T ELT)) (-3157 (((-484) $) 142 (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) 140 (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) 139 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 123 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 122 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 121 T ELT) (((-630 |#1|) (-630 $)) 120 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3644 ((|#1| $) 111 T ELT)) (-3025 (((-3 (-350 (-484)) "failed") $) 107 (|has| |#1| (-483)) ELT)) (-3024 (((-85) $) 109 (|has| |#1| (-483)) ELT)) (-3023 (((-350 (-484)) $) 108 (|has| |#1| (-483)) ELT)) (-3006 (($ |#1| |#1| |#1| |#1|) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3133 ((|#1| $) 113 T ELT)) (-2532 (($ $ $) 95 (|has| |#1| (-756)) ELT)) (-2858 (($ $ $) 96 (|has| |#1| (-756)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 126 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 125 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 124 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 119 T ELT) (((-630 |#1|) (-1179 $)) 118 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 104 (|has| |#1| (-312)) ELT)) (-3007 ((|#1| $) 114 T ELT)) (-3008 ((|#1| $) 115 T ELT)) (-3009 ((|#1| $) 116 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) 132 (|has| |#1| (-260 |#1|)) ELT) (($ $ |#1| |#1|) 131 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-249 |#1|)) 130 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-249 |#1|))) 129 (|has| |#1| (-260 |#1|)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) 128 (|has| |#1| (-455 (-1090) |#1|)) ELT) (($ $ (-1090) |#1|) 127 (|has| |#1| (-455 (-1090) |#1|)) ELT)) (-3801 (($ $ |#1|) 133 (|has| |#1| (-241 |#1| |#1|)) ELT)) (-3759 (($ $ (-1 |#1| |#1|)) 137 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 136 T ELT) (($ $) 94 (|has| |#1| (-189)) ELT) (($ $ (-694)) 92 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 90 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 88 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 87 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 86 (|has| |#1| (-811 (-1090))) ELT)) (-3973 (((-473) $) 105 (|has| |#1| (-553 (-473))) ELT)) (-3010 (($ $) 117 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 52 T ELT) (($ (-350 (-484))) 82 (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (((-632 $) $) 106 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 ((|#1| $) 110 (|has| |#1| (-973)) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#1| |#1|)) 135 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 134 T ELT) (($ $) 93 (|has| |#1| (-189)) ELT) (($ $ (-694)) 91 (|has| |#1| (-189)) ELT) (($ $ (-1090)) 89 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 85 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 84 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 83 (|has| |#1| (-811 (-1090))) ELT)) (-2567 (((-85) $ $) 97 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 99 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 98 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 100 (|has| |#1| (-756)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 103 (|has| |#1| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 54 T ELT) (($ |#1| $) 53 T ELT) (($ $ (-350 (-484))) 102 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) 101 (|has| |#1| (-312)) ELT)))
+(((-911 |#1|) (-113) (-146)) (T -911))
+((-3010 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3009 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3006 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))) (-3384 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))) (-3025 (*1 *2 *1) (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484))))))
+(-13 (-38 |t#1|) (-355 |t#1|) (-184 |t#1|) (-288 |t#1|) (-329 |t#1|) (-10 -8 (-15 -3010 ($ $)) (-15 -3009 (|t#1| $)) (-15 -3008 (|t#1| $)) (-15 -3007 (|t#1| $)) (-15 -3133 (|t#1| $)) (-15 -3006 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3644 (|t#1| $)) (IF (|has| |t#1| (-246)) (-6 (-246)) |%noBranch|) (IF (|has| |t#1| (-756)) (-6 (-756)) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-201)) |%noBranch|) (IF (|has| |t#1| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-118)) |%noBranch|) (IF (|has| |t#1| (-973)) (-15 -3384 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-483)) (PROGN (-15 -3024 ((-85) $)) (-15 -3023 ((-350 (-484)) $)) (-15 -3025 ((-3 (-350 (-484)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-312)) ((-38 |#1|) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-312)) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-312))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-186 $) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-184 |#1|) . T) ((-190) |has| |#1| (-190)) ((-189) OR (|has| |#1| (-189)) (|has| |#1| (-190))) ((-225 |#1|) . T) ((-201) |has| |#1| (-312)) ((-241 |#1| $) |has| |#1| (-241 |#1| |#1|)) ((-246) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-260 |#1|) |has| |#1| (-260 |#1|)) ((-288 |#1|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-455 (-1090) |#1|) |has| |#1| (-455 (-1090) |#1|)) ((-455 |#1| |#1|) |has| |#1| (-260 |#1|)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-312)) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-312)) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-312)) ((-582 |#1|) . T) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-312)) ((-654 |#1|) . T) ((-663) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-312)) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-968 (-350 (-484))) |has| |#1| (-312)) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-312)) (|has| |#1| (-246))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3959 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#3| (-1 |#4| |#2|) |#1|))) (-911 |#2|) (-146) (-911 |#4|) (-146)) (T -912))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6)) (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3725 (($) NIL T CONST)) (-3003 (($ $) 24 T ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3011 (($ (-583 |#1|)) 34 T ELT)) (-2609 (((-583 |#1|) $) NIL T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3834 (((-694) $) 27 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 29 T ELT)) (-3610 (($ |#1| $) 18 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3002 ((|#1| $) 28 T ELT)) (-1275 ((|#1| $) 23 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3005 ((|#1| |#1| $) 17 T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) NIL T ELT)) (-3004 ((|#1| $) 22 T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-3001 ((|#1| $) 31 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-913 |#1|) (-13 (-908 |#1|) (-10 -8 (-15 -3011 ($ (-583 |#1|))))) (-1013)) (T -913))
+((-3011 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3)))))
+((-3038 (($ $) 12 T ELT)) (-3012 (($ $ (-484)) 13 T ELT)))
+(((-914 |#1|) (-10 -7 (-15 -3038 (|#1| |#1|)) (-15 -3012 (|#1| |#1| (-484)))) (-915)) (T -914))
+NIL
+((-3038 (($ $) 6 T ELT)) (-3012 (($ $ (-484)) 7 T ELT)) (** (($ $ (-350 (-484))) 8 T ELT)))
+(((-915) (-113)) (T -915))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-350 (-484))))) (-3012 (*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))) (-3038 (*1 *1 *1) (-4 *1 (-915))))
+(-13 (-10 -8 (-15 -3038 ($ $)) (-15 -3012 ($ $ (-484))) (-15 ** ($ $ (-350 (-484))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1647 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2063 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2061 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1785 (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|))) NIL T ELT)) (-3331 (((-350 |#2|) $) NIL T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3137 (((-694)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1661 (((-85)) NIL T ELT)) (-1660 (((-85) |#1|) 162 T ELT) (((-85) |#2|) 166 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-3 (-350 |#2|) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| (-350 |#2|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-350 |#2|) (-950 (-350 (-484)))) ELT) (((-350 |#2|) $) NIL T ELT)) (-1795 (($ (-1179 (-350 |#2|)) (-1179 $)) NIL T ELT) (($ (-1179 (-350 |#2|))) 79 T ELT) (($ (-1179 |#2|) |#2|) NIL T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-350 |#2|) (-299)) ELT)) (-2565 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1784 (((-630 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-630 $)) NIL T ELT)) (-1652 (((-1179 $) (-1179 $)) NIL T ELT)) (-3843 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-350 |#3|)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1639 (((-583 (-583 |#1|))) NIL (|has| |#1| (-320)) ELT)) (-1664 (((-85) |#1| |#1|) NIL T ELT)) (-3109 (((-830)) NIL T ELT)) (-2995 (($) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1659 (((-85)) NIL T ELT)) (-1658 (((-85) |#1|) 61 T ELT) (((-85) |#2|) 164 T ELT)) (-2564 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3504 (($ $) NIL T ELT)) (-2834 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1680 (((-85) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1767 (($ $ (-694)) NIL (|has| (-350 |#2|) (-299)) ELT) (($ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3724 (((-85) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3773 (((-830) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-743 (-830)) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3378 (((-694)) NIL T ELT)) (-1653 (((-1179 $) (-1179 $)) NIL T ELT)) (-3133 (((-350 |#2|) $) NIL T ELT)) (-1640 (((-583 (-857 |#1|)) (-1090)) NIL (|has| |#1| (-312)) ELT)) (-3446 (((-632 $) $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2014 ((|#3| $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2010 (((-830) $) NIL (|has| (-350 |#2|) (-320)) ELT)) (-3080 ((|#3| $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-350 |#2|) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-350 |#2|))) (|:| |vec| (-1179 (-350 |#2|)))) (-1179 $) $) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1648 (((-630 (-350 |#2|))) 57 T ELT)) (-1650 (((-630 (-350 |#2|))) 56 T ELT)) (-2485 (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1645 (($ (-1179 |#2|) |#2|) 80 T ELT)) (-1649 (((-630 (-350 |#2|))) 55 T ELT)) (-1651 (((-630 (-350 |#2|))) 54 T ELT)) (-1644 (((-2 (|:| |num| (-630 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1646 (((-2 (|:| |num| (-1179 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1657 (((-1179 $)) 51 T ELT)) (-3919 (((-1179 $)) 50 T ELT)) (-1656 (((-85) $) NIL T ELT)) (-1655 (((-85) $) NIL T ELT) (((-85) $ |#1|) NIL T ELT) (((-85) $ |#2|) NIL T ELT)) (-3447 (($) NIL (|has| (-350 |#2|) (-299)) CONST)) (-2400 (($ (-830)) NIL (|has| (-350 |#2|) (-320)) ELT)) (-1642 (((-3 |#2| #1#)) 70 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1666 (((-694)) NIL T ELT)) (-2409 (($) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-350 |#2|) (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-1607 (((-694) $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1643 (((-3 |#2| #1#)) 68 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3758 (((-350 |#2|) (-1179 $)) NIL T ELT) (((-350 |#2|)) 47 T ELT)) (-1768 (((-694) $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3759 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-2408 (((-630 (-350 |#2|)) (-1179 $) (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3186 ((|#3|) 58 T ELT)) (-1674 (($) NIL (|has| (-350 |#2|) (-299)) ELT)) (-3225 (((-1179 (-350 |#2|)) $ (-1179 $)) NIL T ELT) (((-630 (-350 |#2|)) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 (-350 |#2|)) $) 81 T ELT) (((-630 (-350 |#2|)) (-1179 $)) NIL T ELT)) (-3973 (((-1179 (-350 |#2|)) $) NIL T ELT) (($ (-1179 (-350 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| (-350 |#2|) (-299)) ELT)) (-1654 (((-1179 $) (-1179 $)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 |#2|)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-2703 (($ $) NIL (|has| (-350 |#2|) (-299)) ELT) (((-632 $) $) NIL (|has| (-350 |#2|) (-118)) ELT)) (-2450 ((|#3| $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1663 (((-85)) 65 T ELT)) (-1662 (((-85) |#1|) 167 T ELT) (((-85) |#2|) 168 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-1641 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1665 (((-85)) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-1 (-350 |#2|) (-350 |#2|))) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-1 (-350 |#2|) (-350 |#2|)) (-694)) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-809 (-1090)))) (-12 (|has| (-350 |#2|) (-312)) (|has| (-350 |#2|) (-811 (-1090))))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT) (($ $) NIL (OR (-12 (|has| (-350 |#2|) (-190)) (|has| (-350 |#2|) (-312))) (-12 (|has| (-350 |#2|) (-189)) (|has| (-350 |#2|) (-312))) (|has| (-350 |#2|) (-299))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ $) NIL (|has| (-350 |#2|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| (-350 |#2|) (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 |#2|)) NIL T ELT) (($ (-350 |#2|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-350 |#2|) (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| (-350 |#2|) (-312)) ELT)))
+(((-916 |#1| |#2| |#3| |#4| |#5|) (-291 |#1| |#2| |#3|) (-1134) (-1155 |#1|) (-1155 (-350 |#2|)) (-350 |#2|) (-694)) (T -916))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3018 (((-583 (-484)) $) 73 T ELT)) (-3014 (($ (-583 (-484))) 81 T ELT)) (-3130 (((-484) $) 48 (|has| (-484) (-258)) ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL (|has| (-484) (-740)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) 60 T ELT) (((-3 (-1090) #1#) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-3 (-350 (-484)) #1#) $) 57 (|has| (-484) (-950 (-484))) ELT) (((-3 (-484) #1#) $) 60 (|has| (-484) (-950 (-484))) ELT)) (-3157 (((-484) $) NIL T ELT) (((-1090) $) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) NIL (|has| (-484) (-950 (-484))) ELT) (((-484) $) NIL (|has| (-484) (-950 (-484))) ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2995 (($) NIL (|has| (-484) (-483)) ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3016 (((-583 (-484)) $) 79 T ELT)) (-3187 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (|has| (-484) (-796 (-484))) ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (|has| (-484) (-796 (-330))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL T ELT)) (-2999 (((-484) $) 45 T ELT)) (-3446 (((-632 $) $) NIL (|has| (-484) (-1066)) ELT)) (-3188 (((-85) $) NIL (|has| (-484) (-740)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-484) (-756)) ELT)) (-3959 (($ (-1 (-484) (-484)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| (-484) (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL T ELT)) (-3447 (($) NIL (|has| (-484) (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3129 (($ $) NIL (|has| (-484) (-258)) ELT) (((-350 (-484)) $) 50 T ELT)) (-3017 (((-1069 (-484)) $) 78 T ELT)) (-3013 (($ (-583 (-484)) (-583 (-484))) 82 T ELT)) (-3131 (((-484) $) 64 (|has| (-484) (-483)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| (-484) (-821)) ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-3769 (($ $ (-583 (-484)) (-583 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-484) (-484)) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-249 (-484))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-249 (-484)))) NIL (|has| (-484) (-260 (-484))) ELT) (($ $ (-583 (-1090)) (-583 (-484))) NIL (|has| (-484) (-455 (-1090) (-484))) ELT) (($ $ (-1090) (-484)) NIL (|has| (-484) (-455 (-1090) (-484))) ELT)) (-1607 (((-694) $) NIL T ELT)) (-3801 (($ $ (-484)) NIL (|has| (-484) (-241 (-484) (-484))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) 15 (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2996 (($ $) NIL T ELT)) (-2998 (((-484) $) 47 T ELT)) (-3015 (((-583 (-484)) $) 80 T ELT)) (-3973 (((-800 (-484)) $) NIL (|has| (-484) (-553 (-800 (-484)))) ELT) (((-800 (-330)) $) NIL (|has| (-484) (-553 (-800 (-330)))) ELT) (((-473) $) NIL (|has| (-484) (-553 (-473))) ELT) (((-330) $) NIL (|has| (-484) (-933)) ELT) (((-179) $) NIL (|has| (-484) (-933)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-484) (-821))) ELT)) (-3947 (((-772) $) 108 T ELT) (($ (-484)) 51 T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 27 T ELT) (($ (-484)) 51 T ELT) (($ (-1090)) NIL (|has| (-484) (-950 (-1090))) ELT) (((-350 (-484)) $) 25 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-484) (-821))) (|has| (-484) (-118))) ELT)) (-3127 (((-694)) 13 T CONST)) (-3132 (((-484) $) 62 (|has| (-484) (-483)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3384 (($ $) NIL (|has| (-484) (-740)) ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1 (-484) (-484))) NIL T ELT) (($ $ (-1 (-484) (-484)) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| (-484) (-811 (-1090))) ELT) (($ $) NIL (|has| (-484) (-189)) ELT) (($ $ (-694)) NIL (|has| (-484) (-189)) ELT)) (-2567 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) NIL (|has| (-484) (-756)) ELT)) (-2686 (((-85) $ $) 40 (|has| (-484) (-756)) ELT)) (-3950 (($ $ $) 36 T ELT) (($ (-484) (-484)) 38 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ (-484) $) 32 T ELT) (($ $ (-484)) NIL T ELT)))
+(((-917 |#1|) (-13 (-904 (-484)) (-552 (-350 (-484))) (-10 -8 (-15 -3129 ((-350 (-484)) $)) (-15 -3018 ((-583 (-484)) $)) (-15 -3017 ((-1069 (-484)) $)) (-15 -3016 ((-583 (-484)) $)) (-15 -3015 ((-583 (-484)) $)) (-15 -3014 ($ (-583 (-484)))) (-15 -3013 ($ (-583 (-484)) (-583 (-484)))))) (-484)) (T -917))
+((-3129 (*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))) (-3013 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+((-3019 (((-51) (-350 (-484)) (-484)) 9 T ELT)))
+(((-918) (-10 -7 (-15 -3019 ((-51) (-350 (-484)) (-484))))) (T -918))
+((-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918)))))
+((-3137 (((-484)) 21 T ELT)) (-3022 (((-484)) 26 T ELT)) (-3021 (((-1185) (-484)) 24 T ELT)) (-3020 (((-484) (-484)) 27 T ELT) (((-484)) 20 T ELT)))
+(((-919) (-10 -7 (-15 -3020 ((-484))) (-15 -3137 ((-484))) (-15 -3020 ((-484) (-484))) (-15 -3021 ((-1185) (-484))) (-15 -3022 ((-484))))) (T -919))
+((-3022 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-919)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3137 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))) (-3020 (*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
+((-3734 (((-348 |#1|) |#1|) 43 T ELT)) (-3733 (((-348 |#1|) |#1|) 41 T ELT)))
+(((-920 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|))) (-1155 (-350 (-484)))) (T -920))
+((-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484)))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484)))))))
+((-3025 (((-3 (-350 (-484)) "failed") |#1|) 15 T ELT)) (-3024 (((-85) |#1|) 14 T ELT)) (-3023 (((-350 (-484)) |#1|) 10 T ELT)))
+(((-921 |#1|) (-10 -7 (-15 -3023 ((-350 (-484)) |#1|)) (-15 -3024 ((-85) |#1|)) (-15 -3025 ((-3 (-350 (-484)) "failed") |#1|))) (-950 (-350 (-484)))) (T -921))
+((-3025 (*1 *2 *3) (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-350 (-484)))))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
+((-3789 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-3801 ((|#2| $ #1#) 10 T ELT)) (-3029 (((-85) $ $) 18 T ELT)))
+(((-922 |#1| |#2|) (-10 -7 (-15 -3789 (|#2| |#1| #1="value" |#2|)) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#))) (-923 |#2|) (-1129)) (T -922))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ "value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ "value") 42 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-923 |#1|) (-113) (-1129)) (T -923))
+((-3523 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3032 (*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))) (-3528 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3634 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))) (-3029 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3028 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3027 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1129)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *1 (-923 *2)) (-4 *2 (-1129)))) (-3026 (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-923 *2)) (-4 *2 (-1129)))))
+(-13 (-429 |t#1|) (-10 -8 (-15 -3523 ((-583 $) $)) (-15 -3032 ((-583 $) $)) (-15 -3528 ((-85) $)) (-15 -3403 (|t#1| $)) (-15 -3801 (|t#1| $ "value")) (-15 -3634 ((-85) $)) (-15 -3031 ((-583 |t#1|) $)) (-15 -3030 ((-484) $ $)) (IF (|has| |t#1| (-72)) (PROGN (-15 -3029 ((-85) $ $)) (-15 -3028 ((-85) $ $))) |%noBranch|) (IF (|has| $ (-1035 |t#1|)) (PROGN (-15 -3027 ($ $ (-583 $))) (-15 -3789 (|t#1| $ "value" |t#1|)) (-15 -3026 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-3038 (($ $) 9 T ELT) (($ $ (-830)) 49 T ELT) (($ (-350 (-484))) 13 T ELT) (($ (-484)) 15 T ELT)) (-3184 (((-3 $ #1="failed") (-1085 $) (-830) (-772)) 24 T ELT) (((-3 $ #1#) (-1085 $) (-830)) 32 T ELT)) (-3012 (($ $ (-484)) 58 T ELT)) (-3127 (((-694)) 18 T CONST)) (-3185 (((-583 $) (-1085 $)) NIL T ELT) (((-583 $) (-1085 (-350 (-484)))) 63 T ELT) (((-583 $) (-1085 (-484))) 68 T ELT) (((-583 $) (-857 $)) 72 T ELT) (((-583 $) (-857 (-350 (-484)))) 76 T ELT) (((-583 $) (-857 (-484))) 80 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-350 (-484))) 53 T ELT)))
+(((-924 |#1|) (-10 -7 (-15 -3038 (|#1| (-484))) (-15 -3038 (|#1| (-350 (-484)))) (-15 -3038 (|#1| |#1| (-830))) (-15 -3185 ((-583 |#1|) (-857 (-484)))) (-15 -3185 ((-583 |#1|) (-857 (-350 (-484))))) (-15 -3185 ((-583 |#1|) (-857 |#1|))) (-15 -3185 ((-583 |#1|) (-1085 (-484)))) (-15 -3185 ((-583 |#1|) (-1085 (-350 (-484))))) (-15 -3185 ((-583 |#1|) (-1085 |#1|))) (-15 -3184 ((-3 |#1| #1="failed") (-1085 |#1|) (-830))) (-15 -3184 ((-3 |#1| #1#) (-1085 |#1|) (-830) (-772))) (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -3012 (|#1| |#1| (-484))) (-15 -3038 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3127 ((-694)) -3953) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830)))) (-925)) (T -924))
+((-3127 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 111 T ELT)) (-2063 (($ $) 112 T ELT)) (-2061 (((-85) $) 114 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 131 T ELT)) (-3972 (((-348 $) $) 132 T ELT)) (-3038 (($ $) 95 T ELT) (($ $ (-830)) 81 T ELT) (($ (-350 (-484))) 80 T ELT) (($ (-484)) 79 T ELT)) (-1608 (((-85) $ $) 122 T ELT)) (-3624 (((-484) $) 148 T ELT)) (-3725 (($) 23 T CONST)) (-3184 (((-3 $ "failed") (-1085 $) (-830) (-772)) 89 T ELT) (((-3 $ "failed") (-1085 $) (-830)) 88 T ELT)) (-3158 (((-3 (-484) #1="failed") $) 108 (|has| (-350 (-484)) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) 103 T ELT)) (-3157 (((-484) $) 107 (|has| (-350 (-484)) (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-350 (-484)) $) 104 T ELT)) (-3034 (($ $ (-772)) 78 T ELT)) (-3033 (($ $ (-772)) 77 T ELT)) (-2565 (($ $ $) 126 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 125 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 120 T ELT)) (-3724 (((-85) $) 133 T ELT)) (-3187 (((-85) $) 146 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 94 T ELT)) (-3188 (((-85) $) 147 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 129 T ELT)) (-2532 (($ $ $) 140 T ELT)) (-2858 (($ $ $) 141 T ELT)) (-3035 (((-3 (-1085 $) "failed") $) 90 T ELT)) (-3037 (((-3 (-772) "failed") $) 92 T ELT)) (-3036 (((-3 (-1085 $) "failed") $) 91 T ELT)) (-1894 (($ (-583 $)) 118 T ELT) (($ $ $) 117 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 134 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 119 T ELT)) (-3145 (($ (-583 $)) 116 T ELT) (($ $ $) 115 T ELT)) (-3733 (((-348 $) $) 130 T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 127 T ELT)) (-3467 (((-3 $ "failed") $ $) 110 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 121 T ELT)) (-1607 (((-694) $) 123 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 124 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 138 T ELT) (($ $) 109 T ELT) (($ (-350 (-484))) 102 T ELT) (($ (-484)) 101 T ELT) (($ (-350 (-484))) 98 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 113 T ELT)) (-3771 (((-350 (-484)) $ $) 76 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3185 (((-583 $) (-1085 $)) 87 T ELT) (((-583 $) (-1085 (-350 (-484)))) 86 T ELT) (((-583 $) (-1085 (-484))) 85 T ELT) (((-583 $) (-857 $)) 84 T ELT) (((-583 $) (-857 (-350 (-484)))) 83 T ELT) (((-583 $) (-857 (-484))) 82 T ELT)) (-3384 (($ $) 149 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 142 T ELT)) (-2568 (((-85) $ $) 144 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 143 T ELT)) (-2686 (((-85) $ $) 145 T ELT)) (-3950 (($ $ $) 139 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 135 T ELT) (($ $ (-350 (-484))) 93 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ (-350 (-484)) $) 137 T ELT) (($ $ (-350 (-484))) 136 T ELT) (($ (-484) $) 100 T ELT) (($ $ (-484)) 99 T ELT) (($ (-350 (-484)) $) 97 T ELT) (($ $ (-350 (-484))) 96 T ELT)))
+(((-925) (-113)) (T -925))
+((-3038 (*1 *1 *1) (-4 *1 (-925))) (-3037 (*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3036 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))) (-3035 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))) (-3184 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-5 *4 (-772)) (-4 *1 (-925)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-4 *1 (-925)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925)))) (-3038 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-925)))) (-3038 (*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925)))) (-3034 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3033 (*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))) (-3771 (*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-350 (-484))))))
+(-13 (-120) (-755) (-146) (-312) (-355 (-350 (-484))) (-38 (-484)) (-38 (-350 (-484))) (-915) (-10 -8 (-15 -3037 ((-3 (-772) "failed") $)) (-15 -3036 ((-3 (-1085 $) "failed") $)) (-15 -3035 ((-3 (-1085 $) "failed") $)) (-15 -3184 ((-3 $ "failed") (-1085 $) (-830) (-772))) (-15 -3184 ((-3 $ "failed") (-1085 $) (-830))) (-15 -3185 ((-583 $) (-1085 $))) (-15 -3185 ((-583 $) (-1085 (-350 (-484))))) (-15 -3185 ((-583 $) (-1085 (-484)))) (-15 -3185 ((-583 $) (-857 $))) (-15 -3185 ((-583 $) (-857 (-350 (-484))))) (-15 -3185 ((-583 $) (-857 (-484)))) (-15 -3038 ($ $ (-830))) (-15 -3038 ($ $)) (-15 -3038 ($ (-350 (-484)))) (-15 -3038 ($ (-484))) (-15 -3034 ($ $ (-772))) (-15 -3033 ($ $ (-772))) (-15 -3771 ((-350 (-484)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 (-484)) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 (-484) (-484)) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-355 (-350 (-484))) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 (-484)) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 (-484)) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 (-484)) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-832) . T) ((-915) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) |has| (-350 (-484)) (-950 (-484))) ((-963 (-350 (-484))) . T) ((-963 (-484)) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 (-484)) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-3039 (((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT)))
+(((-926 |#1| |#2|) (-10 -7 (-15 -3039 ((-2 (|:| |ans| |#2|) (|:| -3138 |#2|) (|:| |sol?| (-85))) (-484) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-27) (-364 |#1|))) (T -926))
+((-3039 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85)))) (-5 *1 (-926 *8 *4)))))
+((-3040 (((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT)))
+(((-927 |#1| |#2|) (-10 -7 (-15 -3040 ((-3 (-583 |#2|) #1="failed") (-484) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2136 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-392) (-120) (-950 (-484)) (-580 (-484))) (-13 (-1115) (-27) (-364 |#1|))) (T -927))
+((-3040 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1115) (-27) (-364 *8))) (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484)) (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
+((-3043 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)) 39 T ELT)) (-3041 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3042 (((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|)) 76 T ELT)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -3041 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |c| (-350 |#2|)) (|:| -3094 |#2|)) "failed") (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3042 ((-2 (|:| |ans| (-350 |#2|)) (|:| |nosol| (-85))) (-350 |#2|) (-350 |#2|))) (-15 -3043 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-484)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-484) (-1 |#2| |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -928))
+((-3043 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85)))) (|:| -3267 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-928 *6 *3)))) (-3042 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5)) (-5 *3 (-350 *5)))) (-3041 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-928 *5 *6)) (-5 *3 (-350 *6)))))
+((-3044 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3045 (((-3 (-583 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)) 34 T ELT)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3044 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-350 |#2|)) (|:| |h| |#2|) (|:| |c1| (-350 |#2|)) (|:| |c2| (-350 |#2|)) (|:| -3094 |#2|)) #1="failed") (-350 |#2|) (-350 |#2|) (-350 |#2|) (-1 |#2| |#2|))) (-15 -3045 ((-3 (-583 (-350 |#2|)) #1#) (-350 |#2|) (-350 |#2|) (-350 |#2|)))) (-13 (-312) (-120) (-950 (-484))) (-1155 |#1|)) (T -929))
+((-3045 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4)) (-5 *2 (-583 (-350 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))) (-3044 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-13 (-312) (-120) (-950 (-484)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6)) (|:| |c2| (-350 *6)) (|:| -3094 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
+((-3046 (((-1 |#1|) (-583 (-2 (|:| -3403 |#1|) (|:| -1522 (-484))))) 34 T ELT)) (-3101 (((-1 |#1|) (-1009 |#1|)) 42 T ELT)) (-3047 (((-1 |#1|) (-1179 |#1|) (-1179 (-484)) (-484)) 31 T ELT)))
+(((-930 |#1|) (-10 -7 (-15 -3101 ((-1 |#1|) (-1009 |#1|))) (-15 -3046 ((-1 |#1|) (-583 (-2 (|:| -3403 |#1|) (|:| -1522 (-484)))))) (-15 -3047 ((-1 |#1|) (-1179 |#1|) (-1179 (-484)) (-484)))) (-1013)) (T -930))
+((-3047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-484))) (-5 *5 (-484)) (-4 *6 (-1013)) (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3403 *4) (|:| -1522 (-484))))) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
+((-3773 (((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
+(((-931 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3773 ((-694) (-283 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-312) (-1155 |#1|) (-1155 (-350 |#2|)) (-291 |#1| |#2| |#3|) (-13 (-320) (-312))) (T -931))
+((-3773 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312)) (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4)) (-4 *9 (-13 (-320) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3596 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-932) (-13 (-995) (-10 -8 (-15 -3596 ((-1049) $)) (-15 -3234 ((-1049) $))))) (T -932))
+((-3596 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932)))))
+((-3973 (((-179) $) 6 T ELT) (((-330) $) 9 T ELT)))
+(((-933) (-113)) (T -933))
+NIL
+(-13 (-553 (-179)) (-553 (-330)))
+(((-553 (-179)) . T) ((-553 (-330)) . T))
+((-3135 (((-3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) "failed") |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) 32 T ELT) (((-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484))) 29 T ELT)) (-3050 (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484))) 34 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-350 (-484))) 30 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) 33 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1|) 28 T ELT)) (-3049 (((-583 (-350 (-484))) (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) 20 T ELT)) (-3048 (((-350 (-484)) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) 17 T ELT)))
+(((-934 |#1|) (-10 -7 (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1|)) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-350 (-484)))) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) "failed") |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-15 -3048 ((-350 (-484)) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-15 -3049 ((-583 (-350 (-484))) (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))))) (-1155 (-484))) (T -934))
+((-3049 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *2 (-583 (-350 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) (-5 *2 (-350 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))) (-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) (-5 *4 (-350 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-350 (-484))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))))))
+((-3135 (((-3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) "failed") |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) 35 T ELT) (((-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484))) 32 T ELT)) (-3050 (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484))) 30 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-350 (-484))) 26 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) 28 T ELT) (((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1|) 24 T ELT)))
+(((-935 |#1|) (-10 -7 (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1|)) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-350 (-484)))) (-15 -3050 ((-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484)))) (-15 -3135 ((-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-350 (-484)))) (-15 -3135 ((-3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) "failed") |#1| (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))) (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))) (-1155 (-350 (-484)))) (T -935))
+((-3135 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))))) (-3135 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))) (-5 *4 (-350 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) (-3050 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *5) (|:| -3138 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *5)) (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *4) (|:| -3138 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))) (-5 *4 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))) (-3050 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))) (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484)))))))
+((-3574 (((-583 (-330)) (-857 (-484)) (-330)) 28 T ELT) (((-583 (-330)) (-857 (-350 (-484))) (-330)) 27 T ELT)) (-3970 (((-583 (-583 (-330))) (-583 (-857 (-484))) (-583 (-1090)) (-330)) 37 T ELT)))
+(((-936) (-10 -7 (-15 -3574 ((-583 (-330)) (-857 (-350 (-484))) (-330))) (-15 -3574 ((-583 (-330)) (-857 (-484)) (-330))) (-15 -3970 ((-583 (-583 (-330))) (-583 (-857 (-484))) (-583 (-1090)) (-330))))) (T -936))
+((-3970 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1090))) (-5 *2 (-583 (-583 (-330)))) (-5 *1 (-936)) (-5 *5 (-330)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) (-5 *4 (-330)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 (-330))) (-5 *1 (-936)) (-5 *4 (-330)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 75 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-3038 (($ $) NIL T ELT) (($ $ (-830)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) 70 T ELT)) (-3725 (($) NIL T CONST)) (-3184 (((-3 $ #1#) (-1085 $) (-830) (-772)) NIL T ELT) (((-3 $ #1#) (-1085 $) (-830)) 55 T ELT)) (-3158 (((-3 (-350 (-484)) #1#) $) NIL (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 115 T ELT) (((-3 (-484) #1#) $) NIL (OR (|has| (-350 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3157 (((-350 (-484)) $) 17 (|has| (-350 (-484)) (-950 (-350 (-484)))) ELT) (((-350 (-484)) $) 17 T ELT) ((|#1| $) 116 T ELT) (((-484) $) NIL (OR (|has| (-350 (-484)) (-950 (-484))) (|has| |#1| (-950 (-484)))) ELT)) (-3034 (($ $ (-772)) 47 T ELT)) (-3033 (($ $ (-772)) 48 T ELT)) (-2565 (($ $ $) NIL T ELT)) (-3183 (((-350 (-484)) $ $) 21 T ELT)) (-3468 (((-3 $ #1#) $) 88 T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-3187 (((-85) $) 66 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL T ELT)) (-3188 (((-85) $) 69 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3035 (((-3 (-1085 $) #1#) $) 83 T ELT)) (-3037 (((-3 (-772) #1#) $) 82 T ELT)) (-3036 (((-3 (-1085 $) #1#) $) 80 T ELT)) (-3051 (((-3 (-974 $ (-1085 $)) #1#) $) 78 T ELT)) (-1894 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 89 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3947 (((-772) $) 87 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) 63 T ELT) (($ (-350 (-484))) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#1|) 118 T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3771 (((-350 (-484)) $ $) 27 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3185 (((-583 $) (-1085 $)) 61 T ELT) (((-583 $) (-1085 (-350 (-484)))) NIL T ELT) (((-583 $) (-1085 (-484))) NIL T ELT) (((-583 $) (-857 $)) NIL T ELT) (((-583 $) (-857 (-350 (-484)))) NIL T ELT) (((-583 $) (-857 (-484))) NIL T ELT)) (-3052 (($ (-974 $ (-1085 $)) (-772)) 46 T ELT)) (-3384 (($ $) 22 T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 39 T CONST)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 76 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 24 T ELT)) (-3950 (($ $ $) 37 T ELT)) (-3838 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-3840 (($ $ $) 111 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ $) 103 T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ (-484) $) 71 T ELT) (($ $ (-484)) NIL T ELT) (($ (-350 (-484)) $) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT) (($ |#1| $) 101 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-937 |#1|) (-13 (-925) (-355 |#1|) (-38 |#1|) (-10 -8 (-15 -3052 ($ (-974 $ (-1085 $)) (-772))) (-15 -3051 ((-3 (-974 $ (-1085 $)) "failed") $)) (-15 -3183 ((-350 (-484)) $ $)))) (-13 (-755) (-312) (-933))) (T -937))
+((-3052 (*1 *1 *2 *3) (-12 (-5 *2 (-974 (-937 *4) (-1085 (-937 *4)))) (-5 *3 (-772)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))) (-3051 (*1 *2 *1) (|partial| -12 (-5 *2 (-974 (-937 *3) (-1085 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))) (-3183 (*1 *2 *1 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-755) (-312) (-933))))))
+((-3053 (((-2 (|:| -3267 |#2|) (|:| -2514 (-583 |#1|))) |#2| (-583 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
+(((-938 |#1| |#2|) (-10 -7 (-15 -3053 (|#2| |#2| |#1|)) (-15 -3053 ((-2 (|:| -3267 |#2|) (|:| -2514 (-583 |#1|))) |#2| (-583 |#1|)))) (-312) (-600 |#1|)) (T -938))
+((-3053 (*1 *2 *3 *4) (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-583 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))) (-3053 (*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3054 ((|#1| $ |#1|) 12 T ELT)) (-3056 (($ |#1|) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3055 ((|#1| $) 11 T ELT)) (-3947 (((-772) $) 17 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 9 T ELT)))
+(((-939 |#1|) (-13 (-1013) (-10 -8 (-15 -3056 ($ |#1|)) (-15 -3055 (|#1| $)) (-15 -3054 (|#1| $ |#1|)) (-15 -3057 ((-85) $ $)))) (-1129)) (T -939))
+((-3057 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1129)))) (-3056 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))) (-3055 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))) (-3054 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3683 (((-583 $) (-583 |#4|)) 113 T ELT) (((-583 $) (-583 |#4|) (-85)) 114 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 112 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 115 T ELT)) (-3082 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 107 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 62 T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3157 (($ (-583 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 44 T ELT)) (-3686 ((|#4| |#4| $) 65 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 80 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 128 T ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 37 T ELT)) (-2609 (((-583 |#4|) $) 18 T ELT)) (-3246 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2915 (((-583 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 105 T ELT)) (-3799 (((-3 |#4| #1#) $) 41 T ELT)) (-3193 (((-583 $) |#4| $) 88 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 98 T ELT) (((-85) |#4| $) 60 T ELT)) (-3239 (((-583 $) |#4| $) 110 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 111 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3440 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 123 T ELT)) (-3441 (($ |#4| $) 77 T ELT) (($ (-583 |#4|) $) 78 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 74 T ELT)) (-3698 (((-583 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 39 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 90 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 84 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 21 T ELT)) (-2911 (($ $ |#3|) 48 T ELT)) (-2913 (($ $ |#3|) 50 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-772) $) 34 T ELT) (((-583 |#4|) $) 45 T ELT)) (-3679 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3190 (((-583 $) |#4| $) 87 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-583 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 61 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-940 |#1| |#2| |#3| |#4|) (-13 (-983 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3683 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -940))
+((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+((-3058 (((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-350 (-857 (-484))))) 67 T ELT)) (-3059 (((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-350 (-857 (-484))))) 52 T ELT)) (-3060 (((-583 (-265 (-484))) (-630 (-350 (-857 (-484))))) 45 T ELT)) (-3064 (((-583 (-630 (-265 (-484)))) (-630 (-350 (-857 (-484))))) 85 T ELT)) (-3062 (((-630 (-265 (-484))) (-630 (-265 (-484)))) 38 T ELT)) (-3063 (((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484))))) 74 T ELT)) (-3061 (((-3 (-630 (-265 (-484))) "failed") (-630 (-350 (-857 (-484))))) 82 T ELT)))
+(((-941) (-10 -7 (-15 -3058 ((-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484))))))) (-630 (-350 (-857 (-484)))))) (-15 -3059 ((-583 (-630 (-265 (-484)))) (-265 (-484)) (-630 (-350 (-857 (-484)))))) (-15 -3060 ((-583 (-265 (-484))) (-630 (-350 (-857 (-484)))))) (-15 -3061 ((-3 (-630 (-265 (-484))) "failed") (-630 (-350 (-857 (-484)))))) (-15 -3062 ((-630 (-265 (-484))) (-630 (-265 (-484))))) (-15 -3063 ((-583 (-630 (-265 (-484)))) (-583 (-630 (-265 (-484)))))) (-15 -3064 ((-583 (-630 (-265 (-484)))) (-630 (-350 (-857 (-484)))))))) (T -941))
+((-3064 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3063 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3061 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-265 (-484)))) (-5 *1 (-941)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)) (-5 *3 (-265 (-484))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484)) (|:| |radvect| (-583 (-630 (-265 (-484)))))))) (-5 *1 (-941)))))
+((-3068 (((-583 (-630 |#1|)) (-583 (-630 |#1|))) 69 T ELT) (((-630 |#1|) (-630 |#1|)) 68 T ELT) (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 67 T ELT) (((-630 |#1|) (-630 |#1|) (-630 |#1|)) 64 T ELT)) (-3067 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 62 T ELT) (((-630 |#1|) (-630 |#1|) (-830)) 61 T ELT)) (-3069 (((-583 (-630 (-484))) (-583 (-583 (-484)))) 80 T ELT) (((-583 (-630 (-484))) (-583 (-813 (-484))) (-484)) 79 T ELT) (((-630 (-484)) (-583 (-484))) 76 T ELT) (((-630 (-484)) (-813 (-484)) (-484)) 74 T ELT)) (-3066 (((-630 (-857 |#1|)) (-694)) 94 T ELT)) (-3065 (((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830)) 48 (|has| |#1| (-6 (-3998 #1="*"))) ELT) (((-630 |#1|) (-630 |#1|) (-830)) 46 (|has| |#1| (-6 (-3998 #1#))) ELT)))
+(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-3998 #1="*"))) (-15 -3065 ((-630 |#1|) (-630 |#1|) (-830))) |%noBranch|) (IF (|has| |#1| (-6 (-3998 #1#))) (-15 -3065 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) |%noBranch|) (-15 -3066 ((-630 (-857 |#1|)) (-694))) (-15 -3067 ((-630 |#1|) (-630 |#1|) (-830))) (-15 -3067 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-830))) (-15 -3068 ((-630 |#1|) (-630 |#1|) (-630 |#1|))) (-15 -3068 ((-583 (-630 |#1|)) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3068 ((-630 |#1|) (-630 |#1|))) (-15 -3068 ((-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3069 ((-630 (-484)) (-813 (-484)) (-484))) (-15 -3069 ((-630 (-484)) (-583 (-484)))) (-15 -3069 ((-583 (-630 (-484))) (-583 (-813 (-484))) (-484))) (-15 -3069 ((-583 (-630 (-484))) (-583 (-583 (-484)))))) (-961)) (T -942))
+((-3069 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4))) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5)) (-4 *5 (-961)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3068 (*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3068 (*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4)) (-4 *4 (-961)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))) (-3065 (*1 *2 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3998 "*"))) (-4 *4 (-961)) (-5 *1 (-942 *4)))))
+((-3073 (((-630 |#1|) (-583 (-630 |#1|)) (-1179 |#1|)) 69 (|has| |#1| (-258)) ELT)) (-3419 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 (-1179 |#1|))) 107 (|has| |#1| (-312)) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 |#1|)) 104 (|has| |#1| (-312)) ELT)) (-3077 (((-1179 |#1|) (-583 (-1179 |#1|)) (-484)) 113 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3076 (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830)) 119 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85)) 118 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|))) 117 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT) (((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484)) 116 (-12 (|has| |#1| (-312)) (|has| |#1| (-320))) ELT)) (-3075 (((-85) (-583 (-630 |#1|))) 101 (|has| |#1| (-312)) ELT) (((-85) (-583 (-630 |#1|)) (-484)) 100 (|has| |#1| (-312)) ELT)) (-3072 (((-1179 (-1179 |#1|)) (-583 (-630 |#1|)) (-1179 |#1|)) 66 (|has| |#1| (-258)) ELT)) (-3071 (((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|)) 46 T ELT)) (-3070 (((-630 |#1|) (-1179 (-1179 |#1|))) 39 T ELT)) (-3074 (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484)) 93 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|))) 92 (|has| |#1| (-312)) ELT) (((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484)) 91 (|has| |#1| (-312)) ELT)))
+(((-943 |#1|) (-10 -7 (-15 -3070 ((-630 |#1|) (-1179 (-1179 |#1|)))) (-15 -3071 ((-630 |#1|) (-583 (-630 |#1|)) (-630 |#1|))) (IF (|has| |#1| (-258)) (PROGN (-15 -3072 ((-1179 (-1179 |#1|)) (-583 (-630 |#1|)) (-1179 |#1|))) (-15 -3073 ((-630 |#1|) (-583 (-630 |#1|)) (-1179 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3074 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-85) (-484))) (-15 -3074 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3074 ((-630 |#1|) (-583 (-630 |#1|)) (-583 (-630 |#1|)) (-484))) (-15 -3075 ((-85) (-583 (-630 |#1|)) (-484))) (-15 -3075 ((-85) (-583 (-630 |#1|)))) (-15 -3419 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 |#1|))) (-15 -3419 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-1179 (-1179 |#1|))))) |%noBranch|) (IF (|has| |#1| (-320)) (IF (|has| |#1| (-312)) (PROGN (-15 -3076 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85) (-484) (-484))) (-15 -3076 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)))) (-15 -3076 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-85))) (-15 -3076 ((-583 (-583 (-630 |#1|))) (-583 (-630 |#1|)) (-830))) (-15 -3077 ((-1179 |#1|) (-583 (-1179 |#1|)) (-484)))) |%noBranch|) |%noBranch|)) (-961)) (T -943))
+((-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1179 *5))) (-5 *4 (-484)) (-5 *2 (-1179 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3076 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3076 (*1 *2 *3) (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4))))) (-3076 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-320)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-583 (-630 *6))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *4)))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961)) (-5 *2 (-85)) (-5 *1 (-943 *5)))) (-3074 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)) (-4 *4 (-312)) (-4 *4 (-961)))) (-3074 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6)) (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961)) (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1179 *5)))) (-3071 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4)) (-5 *1 (-943 *4)))))
+((-3078 ((|#1| (-830) |#1|) 18 T ELT)))
+(((-944 |#1|) (-10 -7 (-15 -3078 (|#1| (-830) |#1|))) (-13 (-1013) (-10 -8 (-15 -3840 ($ $ $))))) (T -944))
+((-3078 (*1 *2 *3 *2) (-12 (-5 *3 (-830)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 -3840 ($ $ $))))))))
+((-3079 ((|#1| |#1| (-830)) 18 T ELT)))
+(((-945 |#1|) (-10 -7 (-15 -3079 (|#1| |#1| (-830)))) (-13 (-1013) (-10 -8 (-15 * ($ $ $))))) (T -945))
+((-3079 (*1 *2 *2 *3) (-12 (-5 *3 (-830)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
+((-3947 ((|#1| (-262)) 11 T ELT) (((-1185) |#1|) 9 T ELT)))
+(((-946 |#1|) (-10 -7 (-15 -3947 ((-1185) |#1|)) (-15 -3947 (|#1| (-262)))) (-1129)) (T -946))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1129)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-946 *3)) (-4 *3 (-1129)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3843 (($ |#4|) 24 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3080 ((|#4| $) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 25 T ELT)) (-3127 (((-694)) 42 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 22 T CONST)) (-3057 (((-85) $ $) 39 T ELT)) (-3838 (($ $) 30 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 28 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 35 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 37 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-146) (-38 |#1|) (-10 -8 (-15 -3843 ($ |#4|)) (-15 -3947 ($ |#4|)) (-15 -3080 (|#4| $)))) (-312) (-717) (-756) (-861 |#1| |#2| |#3|) (-583 |#4|)) (T -947))
+((-3843 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3080 (*1 *2 *1) (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3947 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-948) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $))))) (T -948))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-948)))))
+((-3157 ((|#2| $) 10 T ELT)))
+(((-949 |#1| |#2|) (-10 -7 (-15 -3157 (|#2| |#1|))) (-950 |#2|) (-1129)) (T -949))
+NIL
+((-3158 (((-3 |#1| "failed") $) 9 T ELT)) (-3157 ((|#1| $) 8 T ELT)) (-3947 (($ |#1|) 6 T ELT)))
+(((-950 |#1|) (-113) (-1129)) (T -950))
+((-3158 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1129)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1129)))))
+(-13 (-555 |t#1|) (-10 -8 (-15 -3158 ((-3 |t#1| "failed") $)) (-15 -3157 (|t#1| $))))
+(((-555 |#1|) . T))
+((-3081 (((-583 (-583 (-249 (-350 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1090))) 38 T ELT)))
+(((-951 |#1| |#2|) (-10 -7 (-15 -3081 ((-583 (-583 (-249 (-350 (-857 |#2|))))) (-583 (-857 |#2|)) (-583 (-1090))))) (-495) (-13 (-495) (-950 |#1|))) (T -951))
+((-3081 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
+((-3082 (((-583 (-1090)) (-350 (-857 |#1|))) 17 T ELT)) (-3084 (((-350 (-1085 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090)) 24 T ELT)) (-3085 (((-350 (-857 |#1|)) (-350 (-1085 (-350 (-857 |#1|)))) (-1090)) 26 T ELT)) (-3083 (((-3 (-1090) "failed") (-350 (-857 |#1|))) 20 T ELT)) (-3769 (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-249 (-350 (-857 |#1|))))) 32 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|)))) 33 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-1090)) (-583 (-350 (-857 |#1|)))) 28 T ELT) (((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|))) 29 T ELT)) (-3947 (((-350 (-857 |#1|)) |#1|) 11 T ELT)))
+(((-952 |#1|) (-10 -7 (-15 -3082 ((-583 (-1090)) (-350 (-857 |#1|)))) (-15 -3083 ((-3 (-1090) "failed") (-350 (-857 |#1|)))) (-15 -3084 ((-350 (-1085 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090))) (-15 -3085 ((-350 (-857 |#1|)) (-350 (-1085 (-350 (-857 |#1|)))) (-1090))) (-15 -3769 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)))) (-15 -3769 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-1090)) (-583 (-350 (-857 |#1|))))) (-15 -3769 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-249 (-350 (-857 |#1|))))) (-15 -3769 ((-350 (-857 |#1|)) (-350 (-857 |#1|)) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3947 ((-350 (-857 |#1|)) |#1|))) (-495)) (T -952))
+((-3947 (*1 *2 *3) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3769 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-5 *4 (-583 (-350 (-857 *5)))) (-5 *2 (-350 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5)))) (-3769 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-952 *4)))) (-3085 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-1085 (-350 (-857 *5))))) (-5 *4 (-1090)) (-5 *2 (-350 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-350 (-1085 (-350 (-857 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-350 (-857 *5))))) (-3083 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1090)) (-5 *1 (-952 *4)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1090))) (-5 *1 (-952 *4)))))
+((-3086 (((-330)) 17 T ELT)) (-3101 (((-1 (-330)) (-330) (-330)) 22 T ELT)) (-3094 (((-1 (-330)) (-694)) 48 T ELT)) (-3087 (((-330)) 37 T ELT)) (-3090 (((-1 (-330)) (-330) (-330)) 38 T ELT)) (-3088 (((-330)) 29 T ELT)) (-3091 (((-1 (-330)) (-330)) 30 T ELT)) (-3089 (((-330) (-694)) 43 T ELT)) (-3092 (((-1 (-330)) (-694)) 44 T ELT)) (-3093 (((-1 (-330)) (-694) (-694)) 47 T ELT)) (-3385 (((-1 (-330)) (-694) (-694)) 45 T ELT)))
+(((-953) (-10 -7 (-15 -3086 ((-330))) (-15 -3087 ((-330))) (-15 -3088 ((-330))) (-15 -3089 ((-330) (-694))) (-15 -3101 ((-1 (-330)) (-330) (-330))) (-15 -3090 ((-1 (-330)) (-330) (-330))) (-15 -3091 ((-1 (-330)) (-330))) (-15 -3092 ((-1 (-330)) (-694))) (-15 -3385 ((-1 (-330)) (-694) (-694))) (-15 -3093 ((-1 (-330)) (-694) (-694))) (-15 -3094 ((-1 (-330)) (-694))))) (T -953))
+((-3094 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3093 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3385 (*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))) (-3091 (*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3090 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-330)) (-5 *1 (-953)))) (-3088 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))) (-3087 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))) (-3086 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))))
+((-3733 (((-348 |#1|) |#1|) 33 T ELT)))
+(((-954 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|))) (-1155 (-350 (-857 (-484))))) (T -954))
+((-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1155 (-350 (-857 (-484))))))))
+((-3095 (((-350 (-348 (-857 |#1|))) (-350 (-857 |#1|))) 14 T ELT)))
+(((-955 |#1|) (-10 -7 (-15 -3095 ((-350 (-348 (-857 |#1|))) (-350 (-857 |#1|))))) (-258)) (T -955))
+((-3095 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-857 *4)))) (-5 *1 (-955 *4)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3947 (((-772) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
+(((-956 |#1|) (-113) (-23)) (T -956))
+((-3099 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))) (-3096 (*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1| $)) (-15 -3096 (|t#1|) -3953)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3100 (($) 31 T CONST)) (-3725 (($) 23 T CONST)) (-3099 ((|#1| $) 29 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3098 ((|#1| $) 28 T ELT)) (-3096 ((|#1|) 26 T CONST)) (-3947 (((-772) $) 13 T ELT)) (-3097 ((|#1| $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT)))
(((-957 |#1|) (-113) (-23)) (T -957))
-((-3100 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))) (-3097 (*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -3100 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -3097 (|t#1|) -3954)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3101 (($) 31 T CONST)) (-3726 (($) 23 T CONST)) (-3100 ((|#1| $) 29 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3099 ((|#1| $) 28 T ELT)) (-3097 ((|#1|) 26 T CONST)) (-3948 (((-773) $) 13 T ELT)) (-3098 ((|#1| $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT)))
-(((-958 |#1|) (-113) (-23)) (T -958))
-((-3101 (*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
-(-13 (-957 |t#1|) (-10 -8 (-15 -3101 ($) -3954)))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-957 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 (-704 |#1| (-774 |#2|)))))) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3684 (((-584 $) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85)) NIL T ELT)) (-3083 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ (-774 |#2|)) NIL T ELT)) (-3712 (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-318 (-704 |#1| (-774 |#2|)))) ELT) (((-3 (-704 |#1| (-774 |#2|)) #1="failed") $ (-774 |#2|)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2902 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|))) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3158 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3801 (((-3 $ #1#) $) NIL T ELT)) (-3687 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-72))) ELT)) (-3408 (($ (-704 |#1| (-774 |#2|)) $) NIL (-12 (|has| $ (-318 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-72))) ELT) (($ (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL (|has| $ (-318 (-704 |#1| (-774 |#2|)))) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) (-704 |#1| (-774 |#2|)) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3685 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3844 (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 (-704 |#1| (-774 |#2|)))) (|:| -1703 (-584 (-704 |#1| (-774 |#2|))))) $) NIL T ELT)) (-3199 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3200 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3697 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 (((-774 |#2|) $) NIL T ELT)) (-2610 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3247 (((-85) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT)) (-3328 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3960 (($ (-1 (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-2916 (((-584 (-774 |#2|)) $) NIL T ELT)) (-2915 (((-85) (-774 |#2|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 (-704 |#1| (-774 |#2|)) (-584 $)) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| (-704 |#1| (-774 |#2|))) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3800 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-3194 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3196 (((-3 (-85) (-584 $)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3240 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT)) (-3442 (($ (-704 |#1| (-774 |#2|)) $) NIL T ELT) (($ (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3699 (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3693 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| (-704 |#1| (-774 |#2|))) (|:| |den| |#1|)) (-704 |#1| (-774 |#2|)) $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 (-704 |#1| (-774 |#2|)) #1#) $) NIL T ELT)) (-1355 (((-3 (-704 |#1| (-774 |#2|)) #1#) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ (-704 |#1| (-774 |#2|))) NIL T ELT)) (-3771 (($ $ (-704 |#1| (-774 |#2|))) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-704 |#1| (-774 |#2|))) (-584 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-249 (-704 |#1| (-774 |#2|)))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-704 |#1| (-774 |#2|))))) NIL (-12 (|has| (-704 |#1| (-774 |#2|)) (-260 (-704 |#1| (-774 |#2|)))) (|has| (-704 |#1| (-774 |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) (-704 |#1| (-774 |#2|)) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-704 |#1| (-774 |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-2912 (($ $ (-774 |#2|)) NIL T ELT)) (-2914 (($ $ (-774 |#2|)) NIL T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ (-774 |#2|)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3680 (((-695) $) NIL (|has| (-774 |#2|) (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 (-704 |#1| (-774 |#2|))))) #1#) (-584 (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|))) (-1 (-85) (-704 |#1| (-774 |#2|)) (-704 |#1| (-774 |#2|)))) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) (-704 |#1| (-774 |#2|)) (-584 (-704 |#1| (-774 |#2|))))) NIL T ELT)) (-3191 (((-584 $) (-704 |#1| (-774 |#2|)) $) NIL T ELT) (((-584 $) (-704 |#1| (-774 |#2|)) (-584 $)) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) $) NIL T ELT) (((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-704 |#1| (-774 |#2|))) $) NIL T ELT)) (-3682 (((-584 (-774 |#2|)) $) NIL T ELT)) (-3198 (((-85) (-704 |#1| (-774 |#2|)) $) NIL T ELT)) (-3935 (((-85) (-774 |#2|) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-959 |#1| |#2|) (-13 (-984 |#1| (-470 (-774 |#2|)) (-774 |#2|) (-704 |#1| (-774 |#2|))) (-10 -8 (-15 -3684 ((-584 $) (-584 (-704 |#1| (-774 |#2|))) (-85) (-85))))) (-392) (-584 (-1091))) (T -959))
-((-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6)))))
-((-3102 (((-1 (-485)) (-1002 (-485))) 32 T ELT)) (-3106 (((-485) (-485) (-485) (-485) (-485)) 29 T ELT)) (-3104 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3105 (((-1 (-485)) |RationalNumber|) NIL T ELT)) (-3103 (((-1 (-485)) (-485) |RationalNumber|) NIL T ELT)))
-(((-960) (-10 -7 (-15 -3102 ((-1 (-485)) (-1002 (-485)))) (-15 -3103 ((-1 (-485)) (-485) |RationalNumber|)) (-15 -3104 ((-1 (-485)) |RationalNumber|)) (-15 -3105 ((-1 (-485)) |RationalNumber|)) (-15 -3106 ((-485) (-485) (-485) (-485) (-485))))) (T -960))
-((-3106 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))) (-3105 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)) (-5 *3 (-485)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-((-3948 (((-773) $) NIL T ELT) (($ (-485)) 10 T ELT)))
-(((-961 |#1|) (-10 -7 (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-962)) (T -961))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-962) (-113)) (T -962))
-((-3128 (*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695)))))
-(-13 (-971) (-1062) (-591 $) (-556 (-485)) (-10 -7 (-15 -3128 ((-695)) -3954) (-6 -3994)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-556 (-485)) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-664) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3107 (((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)) 55 T ELT)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -3107 ((-350 (-858 |#2|)) (-584 |#2|) (-584 |#2|) (-695) (-695)))) (-1091) (-312)) (T -963))
-((-3107 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6))) (-5 *1 (-963 *5 *6)) (-14 *5 (-1091)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
-(((-964 |#1|) (-113) (-1026)) (T -964))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026)))))
-(-13 (-1014) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3122 (((-85) $) 38 T ELT)) (-3124 (((-85) $) 17 T ELT)) (-3116 (((-695) $) 13 T ELT)) (-3115 (((-695) $) 14 T ELT)) (-3123 (((-85) $) 30 T ELT)) (-3121 (((-85) $) 40 T ELT)))
-(((-965 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3115 ((-695) |#1|)) (-15 -3116 ((-695) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|)) (-15 -3124 ((-85) |#1|))) (-966 |#2| |#3| |#4| |#5| |#6|) (-695) (-695) (-962) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -965))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3122 (((-85) $) 62 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 64 T ELT)) (-3726 (($) 23 T CONST)) (-3111 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3113 ((|#4| $ (-485)) 50 T ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 85 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3110 (((-695) $) 44 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) 52 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-3109 (((-695) $) 43 (|has| |#3| (-496)) ELT)) (-3108 (((-584 |#5|) $) 42 (|has| |#3| (-496)) ELT)) (-3116 (((-695) $) 56 T ELT)) (-3115 (((-695) $) 55 T ELT)) (-3120 (((-485) $) 60 T ELT)) (-3118 (((-485) $) 58 T ELT)) (-2610 (((-584 |#3|) $) 80 T ELT)) (-3247 (((-85) |#3| $) 84 (|has| |#3| (-72)) ELT)) (-3119 (((-485) $) 59 T ELT)) (-3117 (((-485) $) 57 T ELT)) (-3125 (($ (-584 (-584 |#3|))) 65 T ELT)) (-3328 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3596 (((-584 (-584 |#3|)) $) 54 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3770 (($ $ (-584 |#3|) (-584 |#3|)) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) 72 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) 66 T ELT)) (-3405 (((-85) $) 69 T ELT)) (-3567 (($) 68 T ELT)) (-3802 ((|#3| $ (-485) (-485)) 53 T ELT) ((|#3| $ (-485) (-485) |#3|) 51 T ELT)) (-3123 (((-85) $) 63 T ELT)) (-1731 (((-695) |#3| $) 83 (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) 79 T ELT)) (-3402 (($ $) 67 T ELT)) (-3112 ((|#5| $ (-485)) 49 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3121 (((-85) $) 61 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3959 (((-695) $) 76 T ELT)))
-(((-966 |#1| |#2| |#3| |#4| |#5|) (-113) (-695) (-695) (-962) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -966))
-((-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5))))) (-3802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3114 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))) (-3802 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3113 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3468 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496)))) (-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3111 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
-(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-655 |t#3|)) |%noBranch|) (-15 -3125 ($ (-584 (-584 |t#3|)))) (-15 -3124 ((-85) $)) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-485) $)) (-15 -3119 ((-485) $)) (-15 -3118 ((-485) $)) (-15 -3117 ((-485) $)) (-15 -3116 ((-695) $)) (-15 -3115 ((-695) $)) (-15 -3596 ((-584 (-584 |t#3|)) $)) (-15 -3802 (|t#3| $ (-485) (-485))) (-15 -3114 (|t#3| $ (-485) (-485))) (-15 -3802 (|t#3| $ (-485) (-485) |t#3|)) (-15 -3113 (|t#4| $ (-485))) (-15 -3112 (|t#5| $ (-485))) (-15 -3960 ($ (-1 |t#3| |t#3|) $)) (-15 -3960 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-496)) (-15 -3468 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3951 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3111 ($ $)) |%noBranch|) (IF (|has| |t#3| (-496)) (PROGN (-15 -3110 ((-695) $)) (-15 -3109 ((-695) $)) (-15 -3108 ((-584 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-553 (-773)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-456 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#3|) . T) ((-591 |#3|) . T) ((-583 |#3|) |has| |#3| (-146)) ((-655 |#3|) |has| |#3| (-146)) ((-964 |#3|) . T) ((-969 |#3|) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3113 (((-197 |#2| |#3|) $ (-485)) 35 T ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3126 (($ (-631 |#3|)) 44 T ELT)) (-3110 (((-695) $) 48 (|has| |#3| (-496)) ELT)) (-3114 ((|#3| $ (-485) (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-3109 (((-695) $) 50 (|has| |#3| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#3|))) 30 T ELT)) (-3328 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3596 (((-584 (-584 |#3|)) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) (-485)) NIL T ELT) ((|#3| $ (-485) (-485) |#3|) NIL T ELT)) (-3913 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3123 (((-85) $) NIL T ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 65 (|has| |#3| (-554 (-474))) ELT)) (-3112 (((-197 |#1| |#3|) $ (-485)) 39 T ELT)) (-3948 (((-773) $) 18 T ELT) (((-631 |#3|) $) 41 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-967 |#1| |#2| |#3|) (-13 (-966 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-553 (-631 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|) (-15 -3126 ($ (-631 |#3|))))) (-695) (-695) (-962)) (T -967))
-((-3126 (*1 *1 *2) (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695)))))
-((-3844 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3960 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
-(((-968 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3960 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3844 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-695) (-695) (-962) (-196 |#2| |#3|) (-196 |#1| |#3|) (-966 |#1| |#2| |#3| |#4| |#5|) (-962) (-196 |#2| |#7|) (-196 |#1| |#7|) (-966 |#1| |#2| |#7| |#8| |#9|)) (T -968))
-((-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695)) (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-966 *5 *6 *10 *11 *12)) (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
-(((-969 |#1|) (-113) (-971)) (T -969))
-NIL
-(-13 (-21) (-964 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-964 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3127 (((-85) $ $) 10 T ELT)))
-(((-970 |#1|) (-10 -7 (-15 -3127 ((-85) |#1| |#1|))) (-971)) (T -970))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-971) (-113)) (T -971))
-((-3127 (*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85)))))
-(-13 (-21) (-1026) (-10 -8 (-15 -3127 ((-85) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3833 (((-1091) $) 11 T ELT)) (-3738 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3228 (($ (-1091) |#1|) 10 T ELT)) (-3948 (((-773) $) 22 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3058 (((-85) $ $) 17 (|has| |#1| (-1014)) ELT)))
-(((-972 |#1| |#2|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) |#1|)) (-15 -3833 ((-1091) $)) (-15 -3738 (|#1| $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1007 |#2|) (-1130)) (T -972))
-((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3833 (*1 *2 *1) (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4)) (-4 *3 (-1007 *4)))) (-3738 (*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130)))))
-((-3773 (($ $) 17 T ELT)) (-3129 (($ $) 25 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 54 T ELT)) (-3134 (($ $) 27 T ELT)) (-3130 (($ $) 12 T ELT)) (-3132 (($ $) 40 T ELT)) (-3974 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-801 (-330)) $) 36 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) 31 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) 31 T ELT)) (-3128 (((-695)) 9 T CONST)) (-3133 (($ $) 44 T ELT)))
-(((-973 |#1|) (-10 -7 (-15 -3129 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3130 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -2798 ((-799 (-330) |#1|) |#1| (-801 (-330)) (-799 (-330) |#1|))) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 -3974 ((-179) |#1|)) (-15 -3974 ((-330) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| |#1|)) (-15 -3128 ((-695)) -3954) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-974)) (T -973))
-((-3128 (*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 (((-485) $) 108 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3773 (($ $) 106 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-3039 (($ $) 116 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3625 (((-485) $) 133 T ELT)) (-3726 (($) 23 T CONST)) (-3129 (($ $) 105 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 121 T ELT) (((-3 (-350 (-485)) #1#) $) 118 T ELT)) (-3158 (((-485) $) 122 T ELT) (((-350 (-485)) $) 119 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-3725 (((-85) $) 89 T ELT)) (-3188 (((-85) $) 131 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 112 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 115 T ELT)) (-3134 (($ $) 111 T ELT)) (-3189 (((-85) $) 132 T ELT)) (-1606 (((-3 (-584 $) #2="failed") (-584 $) $) 68 T ELT)) (-2533 (($ $ $) 125 T ELT)) (-2859 (($ $ $) 126 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3130 (($ $) 107 T ELT)) (-3132 (($ $) 109 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-3974 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-801 (-330)) $) 113 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ (-485)) 120 T ELT) (($ (-350 (-485))) 117 T ELT)) (-3128 (((-695)) 40 T CONST)) (-3133 (($ $) 110 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3385 (($ $) 134 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2568 (((-85) $ $) 127 T ELT)) (-2569 (((-85) $ $) 129 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 128 T ELT)) (-2687 (((-85) $ $) 130 T ELT)) (-3951 (($ $ $) 83 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT) (($ $ (-350 (-485))) 114 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT)))
-(((-974) (-113)) (T -974))
-((-3134 (*1 *1 *1) (-4 *1 (-974))) (-3133 (*1 *1 *1) (-4 *1 (-974))) (-3132 (*1 *1 *1) (-4 *1 (-974))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))) (-3130 (*1 *1 *1) (-4 *1 (-974))) (-3773 (*1 *1 *1) (-4 *1 (-974))) (-3129 (*1 *1 *1) (-4 *1 (-974))))
-(-13 (-312) (-756) (-934) (-951 (-485)) (-951 (-350 (-485))) (-916) (-554 (-801 (-330))) (-797 (-330)) (-120) (-10 -8 (-15 -3134 ($ $)) (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ((-485) $)) (-15 -3130 ($ $)) (-15 -3773 ($ $)) (-15 -3129 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-554 (-179)) . T) ((-554 (-330)) . T) ((-554 (-801 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 $) . T) ((-664) . T) ((-715) . T) ((-717) . T) ((-719) . T) ((-722) . T) ((-756) . T) ((-757) . T) ((-760) . T) ((-797 (-330)) . T) ((-833) . T) ((-916) . T) ((-934) . T) ((-951 (-350 (-485))) . T) ((-951 (-485)) . T) ((-964 (-350 (-485))) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) |#2| $) 26 T ELT)) (-3138 ((|#1| $) 10 T ELT)) (-3625 (((-485) |#2| $) 119 T ELT)) (-3185 (((-3 $ #1="failed") |#2| (-831)) 76 T ELT)) (-3139 ((|#1| $) 31 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3136 (($ $) 28 T ELT)) (-3469 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3189 (((-85) |#2| $) NIL T ELT)) (-3135 (((-85) |#2| $) 27 T ELT)) (-3137 ((|#1| $) 120 T ELT)) (-3140 ((|#1| $) 30 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3187 ((|#2| $) 104 T ELT)) (-3948 (((-773) $) 95 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3772 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3186 (((-584 $) |#2|) 78 T ELT)) (-3058 (((-85) $ $) 99 T ELT)))
-(((-975 |#1| |#2|) (-13 (-981 |#1| |#2|) (-10 -8 (-15 -3140 (|#1| $)) (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 ($ $)) (-15 -3135 ((-85) |#2| $)) (-15 -3184 (|#1| |#2| $ |#1|)))) (-13 (-756) (-312)) (-1156 |#1|)) (T -975))
-((-3184 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3140 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3136 (*1 *1 *1) (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))) (-3135 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3141 (($ (-1091)) 10 T ELT) (($ (-485)) 7 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-631 (-485)) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) NIL T ELT) (($ $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3835 (($ $) NIL T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2047 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) NIL T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-485) $) 16 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1091)) 9 T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-485)) 6 T ELT) (($ $) NIL T ELT) (($ (-485)) 6 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2044 (($ $ $ $) NIL T ELT)) (-3385 (($ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-3839 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-485) $) NIL T ELT)))
-(((-976) (-13 (-484) (-558 (-1091)) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-15 -3141 ($ (-1091))) (-15 -3141 ($ (-485)))))) (T -976))
-((-3141 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976)))) (-3141 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976)))))
-((-3799 (($ $) 46 T ELT)) (-3168 (((-85) $ $) 82 T ELT)) (-3159 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-858 (-350 (-485)))) 247 T ELT) (((-3 $ #1#) (-858 (-485))) 246 T ELT) (((-3 $ #1#) (-858 |#2|)) 249 T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-858 (-350 (-485)))) 235 T ELT) (($ (-858 (-485))) 231 T ELT) (($ (-858 |#2|)) 255 T ELT)) (-3961 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3696 (((-85) $ $) 131 T ELT) (((-85) $ (-584 $)) 135 T ELT)) (-3174 (((-85) $) 60 T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 125 T ELT)) (-3145 (($ $) 160 T ELT)) (-3156 (($ $) 156 T ELT)) (-3157 (($ $) 155 T ELT)) (-3167 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3166 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3697 (((-85) $ $) 143 T ELT) (((-85) $ (-584 $)) 144 T ELT)) (-3182 ((|#4| $) 32 T ELT)) (-3161 (($ $ $) 128 T ELT)) (-3175 (((-85) $) 59 T ELT)) (-3181 (((-695) $) 35 T ELT)) (-3142 (($ $) 174 T ELT)) (-3143 (($ $) 171 T ELT)) (-3170 (((-584 $) $) 72 T ELT)) (-3173 (($ $) 62 T ELT)) (-3144 (($ $) 167 T ELT)) (-3171 (((-584 $) $) 69 T ELT)) (-3172 (($ $) 64 T ELT)) (-3176 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 130 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 126 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#4|) 127 T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) 121 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#4|) 123 T ELT)) (-3165 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3164 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3178 (((-584 $) $) 54 T ELT)) (-3693 (((-85) $ $) 140 T ELT) (((-85) $ (-584 $)) 141 T ELT)) (-3688 (($ $ $) 116 T ELT)) (-3448 (($ $) 37 T ELT)) (-3701 (((-85) $ $) 80 T ELT)) (-3694 (((-85) $ $) 136 T ELT) (((-85) $ (-584 $)) 138 T ELT)) (-3689 (($ $ $) 112 T ELT)) (-3180 (($ $) 41 T ELT)) (-3146 ((|#2| |#2| $) 164 T ELT) (($ (-584 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3154 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3155 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3179 (($ $) 49 T ELT)) (-3177 (($ $) 55 T ELT)) (-3974 (((-801 (-330)) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-474) $) NIL T ELT) (($ (-858 (-350 (-485)))) 237 T ELT) (($ (-858 (-485))) 233 T ELT) (($ (-858 |#2|)) 248 T ELT) (((-1074) $) 278 T ELT) (((-858 |#2|) $) 184 T ELT)) (-3948 (((-773) $) 29 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-858 |#2|) $) 185 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)) (-3169 (((-3 (-85) #1#) $ $) 79 T ELT)))
-(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3948 (|#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3146 (|#1| (-584 |#1|))) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 ((-858 |#2|) |#1|)) (-15 -3974 ((-858 |#2|) |#1|)) (-15 -3974 ((-1074) |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3146 (|#2| |#2| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3155 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1| |#2|)) (-15 -3156 (|#1| |#1|)) (-15 -3157 (|#1| |#1|)) (-15 -3974 (|#1| (-858 |#2|))) (-15 -3158 (|#1| (-858 |#2|))) (-15 -3159 ((-3 |#1| #1="failed") (-858 |#2|))) (-15 -3974 (|#1| (-858 (-485)))) (-15 -3158 (|#1| (-858 (-485)))) (-15 -3159 ((-3 |#1| #1#) (-858 (-485)))) (-15 -3974 (|#1| (-858 (-350 (-485))))) (-15 -3158 (|#1| (-858 (-350 (-485))))) (-15 -3159 ((-3 |#1| #1#) (-858 (-350 (-485))))) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3689 (|#1| |#1| |#1|)) (-15 -3160 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3483 (-695))) |#1| |#1|)) (-15 -3161 (|#1| |#1| |#1|)) (-15 -3754 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3163 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -2904 |#1|)) |#1| |#1| |#4|)) (-15 -3163 ((-2 (|:| -3956 |#1|) (|:| |gap| (-695)) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3167 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3167 (|#1| |#1| |#1|)) (-15 -3697 ((-85) |#1| (-584 |#1|))) (-15 -3697 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-584 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3694 ((-85) |#1| (-584 |#1|))) (-15 -3694 ((-85) |#1| |#1|)) (-15 -3696 ((-85) |#1| (-584 |#1|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3168 ((-85) |#1| |#1|)) (-15 -3701 ((-85) |#1| |#1|)) (-15 -3169 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3170 ((-584 |#1|) |#1|)) (-15 -3171 ((-584 |#1|) |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3175 ((-85) |#1|)) (-15 -3961 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3177 (|#1| |#1|)) (-15 -3178 ((-584 |#1|) |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -3181 ((-695) |#1|)) (-15 -3182 (|#4| |#1|)) (-15 -3974 ((-474) |#1|)) (-15 -3974 ((-801 (-485)) |#1|)) (-15 -3974 ((-801 (-330)) |#1|)) (-15 -3948 (|#1| |#4|)) (-15 -3159 ((-3 |#4| #1#) |#1|)) (-15 -3158 (|#4| |#1|)) (-15 -3176 (|#2| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-978 |#2| |#3| |#4|) (-962) (-718) (-757)) (T -977))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 |#3|) $) 123 T ELT)) (-3085 (((-1086 $) $ |#3|) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 |#3|)) 124 T ELT)) (-3799 (($ $) 293 T ELT)) (-3168 (((-85) $ $) 279 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3757 (($ $ $) 238 (|has| |#1| (-496)) ELT)) (-3150 (((-584 $) $ $) 233 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-858 (-350 (-485)))) 253 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (((-3 $ "failed") (-858 (-485))) 250 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (((-3 $ "failed") (-858 |#1|)) 247 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) ((|#3| $) 154 T ELT) (($ (-858 (-350 (-485)))) 252 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 249 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 246 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (-2562 (|has| |#1| (-38 (-485)))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-484))) (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (-2562 (|has| |#1| (-905 (-485)))) (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT)) (-3758 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-496)) ELT)) (-3961 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3696 (((-85) $ $) 278 T ELT) (((-85) $ (-584 $)) 277 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3174 (((-85) $) 286 T ELT)) (-3754 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 258 T ELT)) (-3145 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-3156 (($ $) 243 (|has| |#1| (-496)) ELT)) (-3157 (($ $) 244 (|has| |#1| (-496)) ELT)) (-3167 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3166 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1625 (($ $ |#1| |#2| $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| |#3| (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| |#3| (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3697 (((-85) $ $) 272 T ELT) (((-85) $ (-584 $)) 271 T ELT)) (-3147 (($ $ $ $ $) 229 (|has| |#1| (-496)) ELT)) (-3182 ((|#3| $) 297 T ELT)) (-3086 (($ (-1086 |#1|) |#3|) 130 T ELT) (($ (-1086 $) |#3|) 129 T ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-695)) 132 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 131 T ELT)) (-3161 (($ $ $) 257 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 133 T ELT)) (-3175 (((-85) $) 287 T ELT)) (-2822 ((|#2| $) 187 T ELT) (((-695) $ |#3|) 135 T ELT) (((-584 (-695)) $ (-584 |#3|)) 134 T ELT)) (-3181 (((-695) $) 296 T ELT)) (-1626 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3084 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3142 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3143 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3170 (((-584 $) $) 282 T ELT)) (-3173 (($ $) 285 T ELT)) (-3144 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3171 (((-584 $) $) 283 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-3172 (($ $) 284 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3160 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $) 256 T ELT)) (-3162 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $) 260 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |#3|) 259 T ELT)) (-3163 (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $) 262 T ELT) (((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |#3|) 261 T ELT)) (-3165 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3164 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3192 (($ $ $) 232 (|has| |#1| (-496)) ELT)) (-3178 (((-584 $) $) 291 T ELT)) (-2825 (((-3 (-584 $) #3#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #3#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| |#3|) (|:| -2402 (-695))) #3#) $) 126 T ELT)) (-3693 (((-85) $ $) 274 T ELT) (((-85) $ (-584 $)) 273 T ELT)) (-3688 (($ $ $) 254 T ELT)) (-3448 (($ $) 295 T ELT)) (-3701 (((-85) $ $) 280 T ELT)) (-3694 (((-85) $ $) 276 T ELT) (((-85) $ (-584 $)) 275 T ELT)) (-3689 (($ $ $) 255 T ELT)) (-3180 (($ $) 294 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3151 (((-2 (|:| -3146 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-496)) ELT)) (-3152 (((-2 (|:| -3146 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-496)) ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-3153 (((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-496)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-3154 (($ $ |#1|) 241 (|has| |#1| (-496)) ELT) (($ $ $) 239 (|has| |#1| (-496)) ELT)) (-3155 (($ $ |#1|) 242 (|has| |#1| (-496)) ELT) (($ $ $) 240 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-584 |#3|) (-584 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-584 |#3|) (-584 $)) 155 T ELT)) (-3759 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#3|) (-584 (-695))) 52 T ELT) (($ $ |#3| (-695)) 51 T ELT) (($ $ (-584 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3950 ((|#2| $) 167 T ELT) (((-695) $ |#3|) 143 T ELT) (((-584 (-695)) $ (-584 |#3|)) 142 T ELT)) (-3179 (($ $) 292 T ELT)) (-3177 (($ $) 290 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| |#3| (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| |#3| (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| |#3| (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT) (($ (-858 (-350 (-485)))) 251 (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091)))) ELT) (($ (-858 (-485))) 248 (OR (-12 (-2562 (|has| |#1| (-38 (-350 (-485))))) (|has| |#1| (-38 (-485))) (|has| |#3| (-554 (-1091)))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#3| (-554 (-1091))))) ELT) (($ (-858 |#1|)) 245 (|has| |#3| (-554 (-1091))) ELT) (((-1074) $) 223 (-12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ELT) (((-858 |#1|) $) 222 (|has| |#3| (-554 (-1091))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-858 |#1|) $) 221 (|has| |#3| (-554 (-1091))) ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-695)) 141 T ELT) (($ $ (-584 |#3|) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-3169 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2668 (($) 45 T CONST)) (-3148 (($ $ $ $ (-695)) 230 (|has| |#1| (-496)) ELT)) (-3149 (($ $ $ (-695)) 231 (|has| |#1| (-496)) ELT)) (-2671 (($ $ (-584 |#3|) (-584 (-695))) 55 T ELT) (($ $ |#3| (-695)) 54 T ELT) (($ $ (-584 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-978 |#1| |#2| |#3|) (-113) (-962) (-718) (-757)) (T -978))
-((-3182 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-695)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3178 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3177 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3961 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3171 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3169 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3168 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *1) (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85)))) (-3697 (*1 *2 *1 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)))) (-3167 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))) (-3163 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3163 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *4 *5 *3)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5)))) (-3161 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3160 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3483 (-695)))) (-4 *1 (-978 *3 *4 *5)))) (-3689 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))) (-3159 (*1 *1 *2) (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3974 (*1 *1 *2) (OR (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3159 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3158 (*1 *1 *2) (OR (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))) (-12 (-5 *2 (-858 *3)) (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3155 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3153 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3149 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3148 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *3 (-496)))) (-3147 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-496)))) (-3146 (*1 *2 *2 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-392)))))
-(-13 (-862 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3182 (|t#3| $)) (-15 -3181 ((-695) $)) (-15 -3448 ($ $)) (-15 -3180 ($ $)) (-15 -3799 ($ $)) (-15 -3179 ($ $)) (-15 -3178 ((-584 $) $)) (-15 -3177 ($ $)) (-15 -3176 ($ $ |t#3|)) (-15 -3961 ($ $ |t#3|)) (-15 -3175 ((-85) $)) (-15 -3174 ((-85) $)) (-15 -3173 ($ $)) (-15 -3172 ($ $)) (-15 -3171 ((-584 $) $)) (-15 -3170 ((-584 $) $)) (-15 -3169 ((-3 (-85) "failed") $ $)) (-15 -3701 ((-85) $ $)) (-15 -3168 ((-85) $ $)) (-15 -3696 ((-85) $ $)) (-15 -3696 ((-85) $ (-584 $))) (-15 -3694 ((-85) $ $)) (-15 -3694 ((-85) $ (-584 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-584 $))) (-15 -3697 ((-85) $ $)) (-15 -3697 ((-85) $ (-584 $))) (-15 -3167 ($ $ $)) (-15 -3166 ($ $ $)) (-15 -3167 ($ $ $ |t#3|)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $)) (-15 -3164 ($ $ $)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $)) (-15 -3163 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -2904 $)) $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3162 ((-2 (|:| -3956 $) (|:| |gap| (-695)) (|:| -1973 $) (|:| -2904 $)) $ $ |t#3|)) (-15 -3754 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3161 ($ $ $)) (-15 -3160 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3483 (-695))) $ $)) (-15 -3689 ($ $ $)) (-15 -3688 ($ $ $)) (IF (|has| |t#3| (-554 (-1091))) (PROGN (-6 (-553 (-858 |t#1|))) (-6 (-554 (-858 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3159 ((-3 $ "failed") (-858 (-350 (-485))))) (-15 -3158 ($ (-858 (-350 (-485))))) (-15 -3974 ($ (-858 (-350 (-485))))) (-15 -3159 ((-3 $ "failed") (-858 (-485)))) (-15 -3158 ($ (-858 (-485)))) (-15 -3974 ($ (-858 (-485)))) (IF (|has| |t#1| (-905 (-485))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 (-485)))) (-15 -3158 ($ (-858 (-485)))) (-15 -3974 ($ (-858 (-485)))) (IF (|has| |t#1| (-484)) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-485))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-485)))) |%noBranch| (PROGN (-15 -3159 ((-3 $ "failed") (-858 |t#1|))) (-15 -3158 ($ (-858 |t#1|)))))) (-15 -3974 ($ (-858 |t#1|))) (IF (|has| |t#1| (-951 (-485))) (-6 (-554 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-15 -3157 ($ $)) (-15 -3156 ($ $)) (-15 -3155 ($ $ |t#1|)) (-15 -3154 ($ $ |t#1|)) (-15 -3155 ($ $ $)) (-15 -3154 ($ $ $)) (-15 -3757 ($ $ $)) (-15 -3153 ((-2 (|:| -3146 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3152 ((-2 (|:| -3146 $) (|:| |coef1| $)) $ $)) (-15 -3151 ((-2 (|:| -3146 $) (|:| |coef2| $)) $ $)) (-15 -3758 ($ $ $)) (-15 -3150 ((-584 $) $ $)) (-15 -3192 ($ $ $)) (-15 -3149 ($ $ $ (-695))) (-15 -3148 ($ $ $ $ (-695))) (-15 -3147 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3146 (|t#1| |t#1| $)) (-15 -3145 ($ $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 |#3|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-553 (-773)) . T) ((-553 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| |#3| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#3| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#3| (-554 (-801 (-485))))) ((-554 (-858 |#1|)) |has| |#3| (-554 (-1091))) ((-554 (-1074)) -12 (|has| |#1| (-951 (-485))) (|has| |#3| (-554 (-1091)))) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392))) ((-456 |#3| |#1|) . T) ((-456 |#3| $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392))) ((-664) . T) ((-807 $ |#3|) . T) ((-810 |#3|) . T) ((-812 |#3|) . T) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| |#3| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| |#3| (-797 (-485)))) ((-862 |#1| |#2| |#3|) . T) ((-822) |has| |#1| (-822)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 |#1|) . T) ((-951 |#3|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3183 (((-584 (-1050)) $) 18 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-1050) $) 20 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-979) (-13 (-996) (-10 -8 (-15 -3183 ((-584 (-1050)) $)) (-15 -3235 ((-1050) $))))) (T -979))
-((-3183 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979)))))
-((-3190 (((-85) |#3| $) 15 T ELT)) (-3185 (((-3 $ #1="failed") |#3| (-831)) 29 T ELT)) (-3469 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3188 (((-85) |#3| $) 19 T ELT)) (-3189 (((-85) |#3| $) 17 T ELT)))
-(((-980 |#1| |#2| |#3|) (-10 -7 (-15 -3185 ((-3 |#1| #1="failed") |#3| (-831))) (-15 -3469 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|)) (-15 -3190 ((-85) |#3| |#1|))) (-981 |#2| |#3|) (-13 (-756) (-312)) (-1156 |#2|)) (T -980))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) |#2| $) 25 T ELT)) (-3625 (((-485) |#2| $) 26 T ELT)) (-3185 (((-3 $ "failed") |#2| (-831)) 19 T ELT)) (-3184 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3469 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3188 (((-85) |#2| $) 23 T ELT)) (-3189 (((-85) |#2| $) 24 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3187 ((|#2| $) 21 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3772 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3186 (((-584 $) |#2|) 20 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-981 |#1| |#2|) (-113) (-13 (-756) (-312)) (-1156 |t#1|)) (T -981))
-((-3625 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-485)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-85)))) (-3469 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))) (-3186 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1)) (-4 *1 (-981 *4 *3)))) (-3185 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312))) (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))) (-3772 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))) (-3184 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))))
-(-13 (-1014) (-10 -8 (-15 -3625 ((-485) |t#2| $)) (-15 -3190 ((-85) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3469 ((-3 |t#2| "failed") |t#2| $)) (-15 -3187 (|t#2| $)) (-15 -3186 ((-584 $) |t#2|)) (-15 -3185 ((-3 $ "failed") |t#2| (-831))) (-15 -3772 (|t#1| |t#2| $ |t#1|)) (-15 -3184 (|t#1| |t#2| $ |t#1|))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3438 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 114 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT)) (-3439 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 99 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 65 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 67 T ELT)) (-3437 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 87 T ELT)) (-3974 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 92 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
-(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-85))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3438 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3974 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3439 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -982))
-((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-982 *4 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-982 *7 *8 *9 *10 *11)))) (-3437 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9)))))
-((-3199 (((-85) |#5| $) 26 T ELT)) (-3197 (((-85) |#5| $) 29 T ELT)) (-3200 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3240 (((-584 $) |#5| $) NIL T ELT) (((-584 $) (-584 |#5|) $) 94 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 92 T ELT) (((-584 $) |#5| (-584 $)) 95 T ELT)) (-3771 (($ $ |#5|) NIL T ELT) (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 73 T ELT) (((-584 $) (-584 |#5|) $) 75 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 77 T ELT)) (-3191 (((-584 $) |#5| $) NIL T ELT) (((-584 $) |#5| (-584 $)) 64 T ELT) (((-584 $) (-584 |#5|) $) 69 T ELT) (((-584 $) (-584 |#5|) (-584 $)) 71 T ELT)) (-3198 (((-85) |#5| $) 32 T ELT)))
-(((-983 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3771 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3771 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3771 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3771 ((-584 |#1|) |#5| |#1|)) (-15 -3191 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3191 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3191 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3191 ((-584 |#1|) |#5| |#1|)) (-15 -3240 ((-584 |#1|) |#5| (-584 |#1|))) (-15 -3240 ((-584 |#1|) (-584 |#5|) (-584 |#1|))) (-15 -3240 ((-584 |#1|) (-584 |#5|) |#1|)) (-15 -3240 ((-584 |#1|) |#5| |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3200 ((-85) |#5| |#1|)) (-15 -3771 (|#1| |#1| |#5|))) (-984 |#2| |#3| |#4| |#5|) (-392) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -983))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3690 ((|#4| |#4| $) 98 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 88 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3685 ((|#4| |#4| $) 93 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 113 T ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3701 (((-85) $ $) 116 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3771 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 112 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 94 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 87 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 86 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-984 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -984))
-((-3200 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3200 (*1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3193 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1)))) (-4 *1 (-984 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3240 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3191 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3191 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3442 (*1 *1 *2 *1) (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3442 (*1 *1 *2 *1) (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)))) (-3771 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8)))))
-(-13 (-1125 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3200 ((-85) |t#4| $)) (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3200 ((-85) $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3196 ((-3 (-85) (-584 $)) |t#4| $)) (-15 -3195 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |t#4| $)) (-15 -3195 ((-85) |t#4| $)) (-15 -3194 ((-584 $) |t#4| $)) (-15 -3193 ((-3 |t#4| (-584 $)) |t#4| |t#4| $)) (-15 -3192 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| |t#4| $)) (-15 -3777 ((-584 (-2 (|:| |val| |t#4|) (|:| -1601 $))) |t#4| $)) (-15 -3240 ((-584 $) |t#4| $)) (-15 -3240 ((-584 $) (-584 |t#4|) $)) (-15 -3240 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3240 ((-584 $) |t#4| (-584 $))) (-15 -3191 ((-584 $) |t#4| $)) (-15 -3191 ((-584 $) |t#4| (-584 $))) (-15 -3191 ((-584 $) (-584 |t#4|) $)) (-15 -3191 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3442 ($ |t#4| $)) (-15 -3442 ($ (-584 |t#4|) $)) (-15 -3771 ((-584 $) |t#4| $)) (-15 -3771 ((-584 $) |t#4| (-584 $))) (-15 -3771 ((-584 $) (-584 |t#4|) $)) (-15 -3771 ((-584 $) (-584 |t#4|) (-584 $))) (-15 -3684 ((-584 $) (-584 |t#4|) (-85)))))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3207 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 86 T ELT)) (-3204 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3206 (((-584 |#5|) |#4| |#5|) 74 T ELT)) (-3205 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)) (-3201 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3202 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 117 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3203 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
-(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3201 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3202 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3203 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3205 ((-85) |#4| |#5|)) (-15 -3205 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3206 ((-584 |#5|) |#4| |#5|)) (-15 -3207 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -985))
-((-3207 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-985 *6 *7 *4 *8 *9)))) (-3202 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1131) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3208 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-986) (-13 (-996) (-10 -8 (-15 -3208 ((-1050) $)) (-15 -3320 ((-1131) $))))) (T -986))
-((-3208 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986)))))
-((-3268 (((-85) $ $) 7 T ELT)))
-(((-987) (-13 (-1130) (-10 -8 (-15 -3268 ((-85) $ $))))) (T -987))
-((-3268 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3211 (($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|))) 34 T ELT)) (-3212 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-584 (-1091))) 21 T ELT)) (-3530 ((|#3| $) 13 T ELT)) (-3159 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3158 (((-249 |#3|) $) NIL T ELT)) (-3209 (((-584 (-1091)) $) 16 T ELT)) (-3210 (((-801 |#1|) $) 11 T ELT)) (-3531 ((|#3| $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-831)) 41 T ELT)) (-3948 (((-773) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 38 T ELT)))
-(((-988 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-951 (-249 |#3|)) (-10 -8 (-15 -3212 ($ |#3| |#3|)) (-15 -3212 ($ |#3| |#3| (-584 (-1091)))) (-15 -3211 ($ $ (-584 (-1091)) (-1 (-85) (-584 |#3|)))) (-15 -3210 ((-801 |#1|) $)) (-15 -3531 (|#3| $)) (-15 -3530 (|#3| $)) (-15 -3802 (|#3| $ |#3| (-831))) (-15 -3209 ((-584 (-1091)) $)))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -988))
-((-3212 (*1 *1 *2 *2) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3212 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3211 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6))) (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))) (-3210 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2))) (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))) (-3531 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))))) (-3802 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3544 (((-1091) $) 8 T ELT)) (-3244 (((-1074) $) 17 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 14 T ELT)))
-(((-989 |#1|) (-13 (-1014) (-10 -8 (-15 -3544 ((-1091) $)))) (-1091)) (T -989))
-((-3544 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3214 (($ (-584 (-988 |#1| |#2| |#3|))) 15 T ELT)) (-3213 (((-584 (-988 |#1| |#2| |#3|)) $) 22 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-831)) 28 T ELT)) (-3948 (((-773) $) 18 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 21 T ELT)))
-(((-990 |#1| |#2| |#3|) (-13 (-1014) (-241 |#3| |#3|) (-10 -8 (-15 -3214 ($ (-584 (-988 |#1| |#2| |#3|)))) (-15 -3213 ((-584 (-988 |#1| |#2| |#3|)) $)) (-15 -3802 (|#3| $ |#3| (-831))))) (-1014) (-13 (-962) (-797 |#1|) (-554 (-801 |#1|))) (-13 (-364 |#2|) (-797 |#1|) (-554 (-801 |#1|)))) (T -990))
-((-3214 (*1 *1 *2) (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3)))) (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))) (-3802 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-831)) (-4 *4 (-1014)) (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))))
-((-3215 (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 88 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 92 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 90 T ELT)))
-(((-991 |#1| |#2|) (-10 -7 (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3215 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-584 (-1091))) (T -991))
-((-3215 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))) (-3215 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))))) (-3215 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 132 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1786 (((-631 |#1|) (-1180 $)) NIL T ELT) (((-631 |#1|)) 117 T ELT)) (-3332 ((|#1| $) 121 T ELT)) (-1676 (((-1103 (-831) (-695)) (-485)) NIL (|has| |#1| (-299)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3138 (((-695)) 43 (|has| |#1| (-320)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-1796 (($ (-1180 |#1|) (-1180 $)) NIL T ELT) (($ (-1180 |#1|)) 46 T ELT)) (-1674 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1785 (((-631 |#1|) $ (-1180 $)) NIL T ELT) (((-631 |#1|) $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 109 T ELT) (((-631 |#1|) (-631 $)) 104 T ELT)) (-3844 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3110 (((-831)) 80 T ELT)) (-2996 (($) 47 (|has| |#1| (-320)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-2835 (($) NIL (|has| |#1| (-299)) ELT)) (-1681 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1768 (($ $ (-695)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3774 (((-831) $) NIL (|has| |#1| (-299)) ELT) (((-744 (-831)) $) NIL (|has| |#1| (-299)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3134 ((|#1| $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-299)) ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2015 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2011 (((-831) $) 140 (|has| |#1| (-320)) ELT)) (-3081 ((|#2| $) 59 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3448 (($) NIL (|has| |#1| (-299)) CONST)) (-2401 (($ (-831)) 131 (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2410 (($) 123 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1677 (((-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))) NIL (|has| |#1| (-299)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 ((|#1| (-1180 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1769 (((-695) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-695) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3760 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-2409 (((-631 |#1|) (-1180 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3187 ((|#2|) 77 T ELT)) (-1675 (($) NIL (|has| |#1| (-299)) ELT)) (-3226 (((-1180 |#1|) $ (-1180 $)) 92 T ELT) (((-631 |#1|) (-1180 $) (-1180 $)) NIL T ELT) (((-1180 |#1|) $) 72 T ELT) (((-631 |#1|) (-1180 $)) 88 T ELT)) (-3974 (((-1180 |#1|) $) NIL T ELT) (($ (-1180 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (|has| |#1| (-299)) ELT)) (-3948 (((-773) $) 58 T ELT) (($ (-485)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-2704 (($ $) NIL (|has| |#1| (-299)) ELT) (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-2451 ((|#2| $) 85 T ELT)) (-3128 (((-695)) 79 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-2013 (((-1180 $)) 84 T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 19 T CONST)) (-2671 (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-812 (-1091)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL (|has| |#1| (-312)) ELT)) (-3058 (((-85) $ $) 64 T ELT)) (-3951 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-312)) ELT)))
-(((-992 |#1| |#2| |#3|) (-662 |#1| |#2|) (-146) (-1156 |#1|) |#2|) (T -992))
-NIL
-((-3734 (((-348 |#3|) |#3|) 18 T ELT)))
-(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3|))) (-1156 (-350 (-485))) (-13 (-312) (-120) (-662 (-350 (-485)) |#1|)) (-1156 |#2|)) (T -993))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-3734 (((-348 |#3|) |#3|) 19 T ELT)))
-(((-994 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-348 |#3|) |#3|))) (-1156 (-350 (-858 (-485)))) (-13 (-312) (-120) (-662 (-350 (-858 (-485))) |#1|)) (-1156 |#2|)) (T -994))
-((-3734 (*1 *2 *3) (-12 (-4 *4 (-1156 (-350 (-858 (-485))))) (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2533 (($ $ $) 16 T ELT)) (-2859 (($ $ $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3216 (($) 6 T ELT)) (-3974 (((-1091) $) 20 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 9 T ELT)))
-(((-995) (-13 (-757) (-554 (-1091)) (-10 -8 (-15 -3216 ($))))) (T -995))
-((-3216 (*1 *1) (-5 *1 (-995))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-996) (-113)) (T -996))
+((-3100 (*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(-13 (-956 |t#1|) (-10 -8 (-15 -3100 ($) -3953)))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-956 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 (-703 |#1| (-773 |#2|)))))) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3683 (((-583 $) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85)) NIL T ELT)) (-3082 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3776 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ (-773 |#2|)) NIL T ELT)) (-3711 (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-318 (-703 |#1| (-773 |#2|)))) ELT) (((-3 (-703 |#1| (-773 |#2|)) #1="failed") $ (-773 |#2|)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2901 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-2902 (((-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|))) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1#) (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3157 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3800 (((-3 $ #1#) $) NIL T ELT)) (-3686 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-72))) ELT)) (-3407 (($ (-703 |#1| (-773 |#2|)) $) NIL (-12 (|has| $ (-318 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-72))) ELT) (($ (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL (|has| $ (-318 (-703 |#1| (-773 |#2|)))) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3695 (((-85) (-703 |#1| (-773 |#2|)) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3684 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3843 (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (|has| (-703 |#1| (-773 |#2|)) (-72)) ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-703 |#1| (-773 |#2|)) (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-583 (-703 |#1| (-773 |#2|)))) (|:| -1702 (-583 (-703 |#1| (-773 |#2|))))) $) NIL T ELT)) (-3198 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3196 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3199 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3696 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 (((-773 |#2|) $) NIL T ELT)) (-2609 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3246 (((-85) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-72)) ELT)) (-3327 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3959 (($ (-1 (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-2915 (((-583 (-773 |#2|)) $) NIL T ELT)) (-2914 (((-85) (-773 |#2|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 (-703 |#1| (-773 |#2|)) (-583 $)) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3191 (((-583 (-2 (|:| |val| (-703 |#1| (-773 |#2|))) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3799 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-3193 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3195 (((-3 (-85) (-583 $)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3239 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT)) (-3441 (($ (-703 |#1| (-773 |#2|)) $) NIL T ELT) (($ (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3698 (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3692 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| (-703 |#1| (-773 |#2|))) (|:| |den| |#1|)) (-703 |#1| (-773 |#2|)) $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 (((-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-3 (-703 |#1| (-773 |#2|)) #1#) $) NIL T ELT)) (-1354 (((-3 (-703 |#1| (-773 |#2|)) #1#) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ (-703 |#1| (-773 |#2|))) NIL T ELT)) (-3770 (($ $ (-703 |#1| (-773 |#2|))) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-703 |#1| (-773 |#2|))) (-583 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-249 (-703 |#1| (-773 |#2|)))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-703 |#1| (-773 |#2|))))) NIL (-12 (|has| (-703 |#1| (-773 |#2|)) (-260 (-703 |#1| (-773 |#2|)))) (|has| (-703 |#1| (-773 |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3949 (((-694) $) NIL T ELT)) (-1730 (((-694) (-703 |#1| (-773 |#2|)) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-703 |#1| (-773 |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-2911 (($ $ (-773 |#2|)) NIL T ELT)) (-2913 (($ $ (-773 |#2|)) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ (-773 |#2|)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (((-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3679 (((-694) $) NIL (|has| (-773 |#2|) (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 (-703 |#1| (-773 |#2|))))) #1#) (-583 (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|))) (-1 (-85) (-703 |#1| (-773 |#2|)) (-703 |#1| (-773 |#2|)))) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) (-703 |#1| (-773 |#2|)) (-583 (-703 |#1| (-773 |#2|))))) NIL T ELT)) (-3190 (((-583 $) (-703 |#1| (-773 |#2|)) $) NIL T ELT) (((-583 $) (-703 |#1| (-773 |#2|)) (-583 $)) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) $) NIL T ELT) (((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-583 $)) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-703 |#1| (-773 |#2|))) $) NIL T ELT)) (-3681 (((-583 (-773 |#2|)) $) NIL T ELT)) (-3197 (((-85) (-703 |#1| (-773 |#2|)) $) NIL T ELT)) (-3934 (((-85) (-773 |#2|) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-958 |#1| |#2|) (-13 (-983 |#1| (-469 (-773 |#2|)) (-773 |#2|) (-703 |#1| (-773 |#2|))) (-10 -8 (-15 -3683 ((-583 $) (-583 (-703 |#1| (-773 |#2|))) (-85) (-85))))) (-392) (-583 (-1090))) (T -958))
+((-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392)) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
+((-3101 (((-1 (-484)) (-1001 (-484))) 32 T ELT)) (-3105 (((-484) (-484) (-484) (-484) (-484)) 29 T ELT)) (-3103 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3104 (((-1 (-484)) |RationalNumber|) NIL T ELT)) (-3102 (((-1 (-484)) (-484) |RationalNumber|) NIL T ELT)))
+(((-959) (-10 -7 (-15 -3101 ((-1 (-484)) (-1001 (-484)))) (-15 -3102 ((-1 (-484)) (-484) |RationalNumber|)) (-15 -3103 ((-1 (-484)) |RationalNumber|)) (-15 -3104 ((-1 (-484)) |RationalNumber|)) (-15 -3105 ((-484) (-484) (-484) (-484) (-484))))) (T -959))
+((-3105 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))) (-3104 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3103 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))) (-3102 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)) (-5 *3 (-484)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
+((-3947 (((-772) $) NIL T ELT) (($ (-484)) 10 T ELT)))
+(((-960 |#1|) (-10 -7 (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-961)) (T -960))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-961) (-113)) (T -961))
+((-3127 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694)))))
+(-13 (-970) (-1061) (-590 $) (-555 (-484)) (-10 -7 (-15 -3127 ((-694)) -3953) (-6 -3993)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-555 (-484)) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-663) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3106 (((-350 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)) 55 T ELT)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -3106 ((-350 (-857 |#2|)) (-583 |#2|) (-583 |#2|) (-694) (-694)))) (-1090) (-312)) (T -962))
+((-3106 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-350 (-857 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT)))
+(((-963 |#1|) (-113) (-1025)) (T -963))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ |t#1|))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3121 (((-85) $) 38 T ELT)) (-3123 (((-85) $) 17 T ELT)) (-3115 (((-694) $) 13 T ELT)) (-3114 (((-694) $) 14 T ELT)) (-3122 (((-85) $) 30 T ELT)) (-3120 (((-85) $) 40 T ELT)))
+(((-964 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3114 ((-694) |#1|)) (-15 -3115 ((-694) |#1|)) (-15 -3120 ((-85) |#1|)) (-15 -3121 ((-85) |#1|)) (-15 -3122 ((-85) |#1|)) (-15 -3123 ((-85) |#1|))) (-965 |#2| |#3| |#4| |#5| |#6|) (-694) (-694) (-961) (-196 |#3| |#4|) (-196 |#2| |#4|)) (T -964))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3121 (((-85) $) 62 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 64 T ELT)) (-3725 (($) 23 T CONST)) (-3110 (($ $) 45 (|has| |#3| (-258)) ELT)) (-3112 ((|#4| $ (-484)) 50 T ELT)) (-3843 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) 85 (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) 82 T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) 81 T ELT)) (-3109 (((-694) $) 44 (|has| |#3| (-495)) ELT)) (-3113 ((|#3| $ (-484) (-484)) 52 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-3108 (((-694) $) 43 (|has| |#3| (-495)) ELT)) (-3107 (((-583 |#5|) $) 42 (|has| |#3| (-495)) ELT)) (-3115 (((-694) $) 56 T ELT)) (-3114 (((-694) $) 55 T ELT)) (-3119 (((-484) $) 60 T ELT)) (-3117 (((-484) $) 58 T ELT)) (-2609 (((-583 |#3|) $) 80 T ELT)) (-3246 (((-85) |#3| $) 84 (|has| |#3| (-72)) ELT)) (-3118 (((-484) $) 59 T ELT)) (-3116 (((-484) $) 57 T ELT)) (-3124 (($ (-583 (-583 |#3|))) 65 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 48 T ELT)) (-3595 (((-583 (-583 |#3|)) $) 54 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#3|) 47 (|has| |#3| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#3|) $) 78 T ELT)) (-3769 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) 73 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) 72 (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) 66 T ELT)) (-3404 (((-85) $) 69 T ELT)) (-3566 (($) 68 T ELT)) (-3801 ((|#3| $ (-484) (-484)) 53 T ELT) ((|#3| $ (-484) (-484) |#3|) 51 T ELT)) (-3122 (((-85) $) 63 T ELT)) (-1730 (((-694) |#3| $) 83 (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) 79 T ELT)) (-3401 (($ $) 67 T ELT)) (-3111 ((|#5| $ (-484)) 49 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) 77 T ELT)) (-3120 (((-85) $) 61 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#3|) 46 (|has| |#3| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#3| $) 33 T ELT) (($ $ |#3|) 37 T ELT)) (-3958 (((-694) $) 76 T ELT)))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-113) (-694) (-694) (-961) (-196 |t#2| |t#3|) (-196 |t#1| |t#3|)) (T -965))
+((-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3124 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-85)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3116 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3114 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-3801 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3113 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))) (-3801 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2)))) (-3112 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))) (-3111 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))) (-3467 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495)))) (-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-312)))) (-3110 (*1 *1 *1) (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *2 *4)) (-4 *4 (-258)))) (-3109 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7)))))
+(-13 (-82 |t#3| |t#3|) (-318 |t#3|) (-10 -8 (IF (|has| |t#3| (-146)) (-6 (-654 |t#3|)) |%noBranch|) (-15 -3124 ($ (-583 (-583 |t#3|)))) (-15 -3123 ((-85) $)) (-15 -3122 ((-85) $)) (-15 -3121 ((-85) $)) (-15 -3120 ((-85) $)) (-15 -3119 ((-484) $)) (-15 -3118 ((-484) $)) (-15 -3117 ((-484) $)) (-15 -3116 ((-484) $)) (-15 -3115 ((-694) $)) (-15 -3114 ((-694) $)) (-15 -3595 ((-583 (-583 |t#3|)) $)) (-15 -3801 (|t#3| $ (-484) (-484))) (-15 -3113 (|t#3| $ (-484) (-484))) (-15 -3801 (|t#3| $ (-484) (-484) |t#3|)) (-15 -3112 (|t#4| $ (-484))) (-15 -3111 (|t#5| $ (-484))) (-15 -3959 ($ (-1 |t#3| |t#3|) $)) (-15 -3959 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-495)) (-15 -3467 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-312)) (-15 -3950 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-258)) (-15 -3110 ($ $)) |%noBranch|) (IF (|has| |t#3| (-495)) (PROGN (-15 -3109 ((-694) $)) (-15 -3108 ((-694) $)) (-15 -3107 ((-583 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-72) . T) ((-82 |#3| |#3|) . T) ((-104) . T) ((-552 (-772)) . T) ((-260 |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-318 |#3|) . T) ((-429 |#3|) . T) ((-455 |#3| |#3|) -12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#3|) . T) ((-590 |#3|) . T) ((-582 |#3|) |has| |#3| (-146)) ((-654 |#3|) |has| |#3| (-146)) ((-963 |#3|) . T) ((-968 |#3|) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 46 (|has| |#3| (-258)) ELT)) (-3112 (((-197 |#2| |#3|) $ (-484)) 35 T ELT)) (-3843 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3125 (($ (-630 |#3|)) 44 T ELT)) (-3109 (((-694) $) 48 (|has| |#3| (-495)) ELT)) (-3113 ((|#3| $ (-484) (-484)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-3108 (((-694) $) 50 (|has| |#3| (-495)) ELT)) (-3107 (((-583 (-197 |#1| |#3|)) $) 54 (|has| |#3| (-495)) ELT)) (-3115 (((-694) $) NIL T ELT)) (-3114 (((-694) $) NIL T ELT)) (-3119 (((-484) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-2609 (((-583 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3124 (($ (-583 (-583 |#3|))) 30 T ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3595 (((-583 (-583 |#3|)) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-484) (-484)) NIL T ELT) ((|#3| $ (-484) (-484) |#3|) NIL T ELT)) (-3912 (((-107)) 58 (|has| |#3| (-312)) ELT)) (-3122 (((-85) $) NIL T ELT)) (-1730 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) 65 (|has| |#3| (-553 (-473))) ELT)) (-3111 (((-197 |#1| |#3|) $ (-484)) 39 T ELT)) (-3947 (((-772) $) 18 T ELT) (((-630 |#3|) $) 41 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-966 |#1| |#2| |#3|) (-13 (-965 |#1| |#2| |#3| (-197 |#2| |#3|) (-197 |#1| |#3|)) (-552 (-630 |#3|)) (-10 -8 (IF (|has| |#3| (-312)) (-6 (-1187 |#3|)) |%noBranch|) (IF (|has| |#3| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|) (-15 -3125 ($ (-630 |#3|))))) (-694) (-694) (-961)) (T -966))
+((-3125 (*1 *1 *2) (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694)))))
+((-3843 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3959 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
+(((-967 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3959 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3843 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-694) (-694) (-961) (-196 |#2| |#3|) (-196 |#1| |#3|) (-965 |#1| |#2| |#3| |#4| |#5|) (-961) (-196 |#2| |#7|) (-196 |#1| |#7|) (-965 |#1| |#2| |#7| |#8| |#9|)) (T -967))
+((-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694)) (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7)) (-4 *2 (-965 *5 *6 *10 *11 *12)) (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10)) (-4 *12 (-196 *5 *10)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ |#1|) 33 T ELT)))
+(((-968 |#1|) (-113) (-970)) (T -968))
+NIL
+(-13 (-21) (-963 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-963 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-3126 (((-85) $ $) 10 T ELT)))
+(((-969 |#1|) (-10 -7 (-15 -3126 ((-85) |#1| |#1|))) (-970)) (T -969))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-970) (-113)) (T -970))
+((-3126 (*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85)))))
+(-13 (-21) (-1025) (-10 -8 (-15 -3126 ((-85) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3832 (((-1090) $) 11 T ELT)) (-3737 ((|#1| $) 12 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3227 (($ (-1090) |#1|) 10 T ELT)) (-3947 (((-772) $) 22 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3057 (((-85) $ $) 17 (|has| |#1| (-1013)) ELT)))
+(((-971 |#1| |#2|) (-13 (-1129) (-10 -8 (-15 -3227 ($ (-1090) |#1|)) (-15 -3832 ((-1090) $)) (-15 -3737 (|#1| $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1006 |#2|) (-1129)) (T -971))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3832 (*1 *2 *1) (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-971 *3 *4)) (-4 *3 (-1006 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1129)))))
+((-3772 (($ $) 17 T ELT)) (-3128 (($ $) 25 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 54 T ELT)) (-3133 (($ $) 27 T ELT)) (-3129 (($ $) 12 T ELT)) (-3131 (($ $) 40 T ELT)) (-3973 (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (((-800 (-330)) $) 36 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) 31 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) 31 T ELT)) (-3127 (((-694)) 9 T CONST)) (-3132 (($ $) 44 T ELT)))
+(((-972 |#1|) (-10 -7 (-15 -3128 (|#1| |#1|)) (-15 -3772 (|#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -2797 ((-798 (-330) |#1|) |#1| (-800 (-330)) (-798 (-330) |#1|))) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 (|#1| (-484))) (-15 -3973 ((-179) |#1|)) (-15 -3973 ((-330) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 (|#1| |#1|)) (-15 -3127 ((-694)) -3953) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-973)) (T -972))
+((-3127 (*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 (((-484) $) 108 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3772 (($ $) 106 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-3038 (($ $) 116 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3624 (((-484) $) 133 T ELT)) (-3725 (($) 23 T CONST)) (-3128 (($ $) 105 T ELT)) (-3158 (((-3 (-484) #1="failed") $) 121 T ELT) (((-3 (-350 (-484)) #1#) $) 118 T ELT)) (-3157 (((-484) $) 122 T ELT) (((-350 (-484)) $) 119 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-3724 (((-85) $) 89 T ELT)) (-3187 (((-85) $) 131 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 112 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 115 T ELT)) (-3133 (($ $) 111 T ELT)) (-3188 (((-85) $) 132 T ELT)) (-1605 (((-3 (-583 $) #2="failed") (-583 $) $) 68 T ELT)) (-2532 (($ $ $) 125 T ELT)) (-2858 (($ $ $) 126 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3129 (($ $) 107 T ELT)) (-3131 (($ $) 109 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-3973 (((-330) $) 124 T ELT) (((-179) $) 123 T ELT) (((-800 (-330)) $) 113 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ (-484)) 120 T ELT) (($ (-350 (-484))) 117 T ELT)) (-3127 (((-694)) 40 T CONST)) (-3132 (($ $) 110 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3384 (($ $) 134 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2567 (((-85) $ $) 127 T ELT)) (-2568 (((-85) $ $) 129 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 128 T ELT)) (-2686 (((-85) $ $) 130 T ELT)) (-3950 (($ $ $) 83 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT) (($ $ (-350 (-484))) 114 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT)))
+(((-973) (-113)) (T -973))
+((-3133 (*1 *1 *1) (-4 *1 (-973))) (-3132 (*1 *1 *1) (-4 *1 (-973))) (-3131 (*1 *1 *1) (-4 *1 (-973))) (-3130 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))) (-3129 (*1 *1 *1) (-4 *1 (-973))) (-3772 (*1 *1 *1) (-4 *1 (-973))) (-3128 (*1 *1 *1) (-4 *1 (-973))))
+(-13 (-312) (-755) (-933) (-950 (-484)) (-950 (-350 (-484))) (-915) (-553 (-800 (-330))) (-796 (-330)) (-120) (-10 -8 (-15 -3133 ($ $)) (-15 -3132 ($ $)) (-15 -3131 ($ $)) (-15 -3130 ((-484) $)) (-15 -3129 ($ $)) (-15 -3772 ($ $)) (-15 -3128 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 $ $) . T) ((-104) . T) ((-120) . T) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-553 (-179)) . T) ((-553 (-330)) . T) ((-553 (-800 (-330))) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 $) . T) ((-663) . T) ((-714) . T) ((-716) . T) ((-718) . T) ((-721) . T) ((-755) . T) ((-756) . T) ((-759) . T) ((-796 (-330)) . T) ((-832) . T) ((-915) . T) ((-933) . T) ((-950 (-350 (-484))) . T) ((-950 (-484)) . T) ((-963 (-350 (-484))) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) |#2| $) 26 T ELT)) (-3137 ((|#1| $) 10 T ELT)) (-3624 (((-484) |#2| $) 119 T ELT)) (-3184 (((-3 $ #1="failed") |#2| (-830)) 76 T ELT)) (-3138 ((|#1| $) 31 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3135 (($ $) 28 T ELT)) (-3468 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3187 (((-85) |#2| $) NIL T ELT)) (-3188 (((-85) |#2| $) NIL T ELT)) (-3134 (((-85) |#2| $) 27 T ELT)) (-3136 ((|#1| $) 120 T ELT)) (-3139 ((|#1| $) 30 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3186 ((|#2| $) 104 T ELT)) (-3947 (((-772) $) 95 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3771 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3185 (((-583 $) |#2|) 78 T ELT)) (-3057 (((-85) $ $) 99 T ELT)))
+(((-974 |#1| |#2|) (-13 (-980 |#1| |#2|) (-10 -8 (-15 -3139 (|#1| $)) (-15 -3138 (|#1| $)) (-15 -3137 (|#1| $)) (-15 -3136 (|#1| $)) (-15 -3135 ($ $)) (-15 -3134 ((-85) |#2| $)) (-15 -3183 (|#1| |#2| $ |#1|)))) (-13 (-755) (-312)) (-1155 |#1|)) (T -974))
+((-3183 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3139 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3138 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3137 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3136 (*1 *2 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3135 (*1 *1 *1) (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))) (-3134 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) NIL T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3624 (((-484) $) NIL T ELT)) (-2442 (($ $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3140 (($ (-1090)) 10 T ELT) (($ (-484)) 7 T ELT)) (-3158 (((-3 (-484) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL T ELT)) (-2565 (($ $ $) NIL T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-630 (-484)) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-484)) $) NIL T ELT)) (-2995 (($) NIL T ELT) (($ $) NIL T ELT)) (-2564 (($ $ $) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-3187 (((-85) $) NIL T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2674 (((-85) $) NIL T ELT)) (-3446 (((-632 $) $) NIL T ELT)) (-3188 (((-85) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-2044 (($ $) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2046 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2675 (((-85) $) NIL T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-484) $) 16 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT) (($ (-1090)) 9 T ELT)) (-3947 (((-772) $) 23 T ELT) (($ (-484)) 6 T ELT) (($ $) NIL T ELT) (($ (-484)) 6 T ELT)) (-3127 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2043 (($ $ $ $) NIL T ELT)) (-3384 (($ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-3838 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-484) $) NIL T ELT)))
+(((-975) (-13 (-483) (-557 (-1090)) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3140 ($ (-1090))) (-15 -3140 ($ (-484)))))) (T -975))
+((-3140 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-975)))) (-3140 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975)))))
+((-3798 (($ $) 46 T ELT)) (-3167 (((-85) $ $) 82 T ELT)) (-3158 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-857 (-350 (-484)))) 247 T ELT) (((-3 $ #1#) (-857 (-484))) 246 T ELT) (((-3 $ #1#) (-857 |#2|)) 249 T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-857 (-350 (-484)))) 235 T ELT) (($ (-857 (-484))) 231 T ELT) (($ (-857 |#2|)) 255 T ELT)) (-3960 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3695 (((-85) $ $) 131 T ELT) (((-85) $ (-583 $)) 135 T ELT)) (-3173 (((-85) $) 60 T ELT)) (-3753 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 125 T ELT)) (-3144 (($ $) 160 T ELT)) (-3155 (($ $) 156 T ELT)) (-3156 (($ $) 155 T ELT)) (-3166 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3165 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3696 (((-85) $ $) 143 T ELT) (((-85) $ (-583 $)) 144 T ELT)) (-3181 ((|#4| $) 32 T ELT)) (-3160 (($ $ $) 128 T ELT)) (-3174 (((-85) $) 59 T ELT)) (-3180 (((-694) $) 35 T ELT)) (-3141 (($ $) 174 T ELT)) (-3142 (($ $) 171 T ELT)) (-3169 (((-583 $) $) 72 T ELT)) (-3172 (($ $) 62 T ELT)) (-3143 (($ $) 167 T ELT)) (-3170 (((-583 $) $) 69 T ELT)) (-3171 (($ $) 64 T ELT)) (-3175 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-694))) $ $) 130 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $) 126 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $ |#4|) 127 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $) 121 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $ |#4|) 123 T ELT)) (-3164 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3163 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3177 (((-583 $) $) 54 T ELT)) (-3692 (((-85) $ $) 140 T ELT) (((-85) $ (-583 $)) 141 T ELT)) (-3687 (($ $ $) 116 T ELT)) (-3447 (($ $) 37 T ELT)) (-3700 (((-85) $ $) 80 T ELT)) (-3693 (((-85) $ $) 136 T ELT) (((-85) $ (-583 $)) 138 T ELT)) (-3688 (($ $ $) 112 T ELT)) (-3179 (($ $) 41 T ELT)) (-3145 ((|#2| |#2| $) 164 T ELT) (($ (-583 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3153 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3154 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3178 (($ $) 49 T ELT)) (-3176 (($ $) 55 T ELT)) (-3973 (((-800 (-330)) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-473) $) NIL T ELT) (($ (-857 (-350 (-484)))) 237 T ELT) (($ (-857 (-484))) 233 T ELT) (($ (-857 |#2|)) 248 T ELT) (((-1073) $) 278 T ELT) (((-857 |#2|) $) 184 T ELT)) (-3947 (((-772) $) 29 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-857 |#2|) $) 185 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)) (-3168 (((-3 (-85) #1#) $ $) 79 T ELT)))
+(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3145 (|#1| (-583 |#1|))) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 ((-857 |#2|) |#1|)) (-15 -3973 ((-857 |#2|) |#1|)) (-15 -3973 ((-1073) |#1|)) (-15 -3141 (|#1| |#1|)) (-15 -3142 (|#1| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -3144 (|#1| |#1|)) (-15 -3145 (|#2| |#2| |#1|)) (-15 -3153 (|#1| |#1| |#1|)) (-15 -3154 (|#1| |#1| |#1|)) (-15 -3153 (|#1| |#1| |#2|)) (-15 -3154 (|#1| |#1| |#2|)) (-15 -3155 (|#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3973 (|#1| (-857 |#2|))) (-15 -3157 (|#1| (-857 |#2|))) (-15 -3158 ((-3 |#1| #1="failed") (-857 |#2|))) (-15 -3973 (|#1| (-857 (-484)))) (-15 -3157 (|#1| (-857 (-484)))) (-15 -3158 ((-3 |#1| #1#) (-857 (-484)))) (-15 -3973 (|#1| (-857 (-350 (-484))))) (-15 -3157 (|#1| (-857 (-350 (-484))))) (-15 -3158 ((-3 |#1| #1#) (-857 (-350 (-484))))) (-15 -3687 (|#1| |#1| |#1|)) (-15 -3688 (|#1| |#1| |#1|)) (-15 -3159 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3482 (-694))) |#1| |#1|)) (-15 -3160 (|#1| |#1| |#1|)) (-15 -3753 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3161 ((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -2903 |#1|)) |#1| |#1| |#4|)) (-15 -3162 ((-2 (|:| -3955 |#1|) (|:| |gap| (-694)) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3163 (|#1| |#1| |#1| |#4|)) (-15 -3164 (|#1| |#1| |#1| |#4|)) (-15 -3163 (|#1| |#1| |#1|)) (-15 -3164 (|#1| |#1| |#1|)) (-15 -3165 (|#1| |#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#1| |#4|)) (-15 -3165 (|#1| |#1| |#1|)) (-15 -3166 (|#1| |#1| |#1|)) (-15 -3696 ((-85) |#1| (-583 |#1|))) (-15 -3696 ((-85) |#1| |#1|)) (-15 -3692 ((-85) |#1| (-583 |#1|))) (-15 -3692 ((-85) |#1| |#1|)) (-15 -3693 ((-85) |#1| (-583 |#1|))) (-15 -3693 ((-85) |#1| |#1|)) (-15 -3695 ((-85) |#1| (-583 |#1|))) (-15 -3695 ((-85) |#1| |#1|)) (-15 -3167 ((-85) |#1| |#1|)) (-15 -3700 ((-85) |#1| |#1|)) (-15 -3168 ((-3 (-85) #1#) |#1| |#1|)) (-15 -3169 ((-583 |#1|) |#1|)) (-15 -3170 ((-583 |#1|) |#1|)) (-15 -3171 (|#1| |#1|)) (-15 -3172 (|#1| |#1|)) (-15 -3173 ((-85) |#1|)) (-15 -3174 ((-85) |#1|)) (-15 -3960 (|#1| |#1| |#4|)) (-15 -3175 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1|)) (-15 -3177 ((-583 |#1|) |#1|)) (-15 -3178 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3179 (|#1| |#1|)) (-15 -3447 (|#1| |#1|)) (-15 -3180 ((-694) |#1|)) (-15 -3181 (|#4| |#1|)) (-15 -3973 ((-473) |#1|)) (-15 -3973 ((-800 (-484)) |#1|)) (-15 -3973 ((-800 (-330)) |#1|)) (-15 -3947 (|#1| |#4|)) (-15 -3158 ((-3 |#4| #1#) |#1|)) (-15 -3157 (|#4| |#1|)) (-15 -3175 (|#2| |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-977 |#2| |#3| |#4|) (-961) (-717) (-756)) (T -976))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 |#3|) $) 123 T ELT)) (-3084 (((-1085 $) $ |#3|) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 125 T ELT) (((-694) $ (-583 |#3|)) 124 T ELT)) (-3798 (($ $) 293 T ELT)) (-3167 (((-85) $ $) 279 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 238 (|has| |#1| (-495)) ELT)) (-3149 (((-583 $) $ $) 233 (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 |#3| #2#) $) 153 T ELT) (((-3 $ "failed") (-857 (-350 (-484)))) 253 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (((-3 $ "failed") (-857 (-484))) 250 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (((-3 $ "failed") (-857 |#1|)) 247 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1090)))) (-12 (-2561 (|has| |#1| (-483))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (-2561 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) ((|#3| $) 154 T ELT) (($ (-857 (-350 (-484)))) 252 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (($ (-857 (-484))) 249 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (($ (-857 |#1|)) 246 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-484))))) (-2561 (|has| |#1| (-38 (-484)))) (|has| |#3| (-553 (-1090)))) (-12 (-2561 (|has| |#1| (-483))) (-2561 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (-2561 (|has| |#1| (-904 (-484)))) (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT)) (-3757 (($ $ $ |#3|) 121 (|has| |#1| (-146)) ELT) (($ $ $) 234 (|has| |#1| (-495)) ELT)) (-3960 (($ $) 171 T ELT) (($ $ |#3|) 288 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3695 (((-85) $ $) 278 T ELT) (((-85) $ (-583 $)) 277 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3173 (((-85) $) 286 T ELT)) (-3753 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 258 T ELT)) (-3144 (($ $) 227 (|has| |#1| (-392)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ |#3|) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-3155 (($ $) 243 (|has| |#1| (-495)) ELT)) (-3156 (($ $) 244 (|has| |#1| (-495)) ELT)) (-3166 (($ $ $) 270 T ELT) (($ $ $ |#3|) 268 T ELT)) (-3165 (($ $ $) 269 T ELT) (($ $ $ |#3|) 267 T ELT)) (-1624 (($ $ |#1| |#2| $) 189 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| |#3| (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| |#3| (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3696 (((-85) $ $) 272 T ELT) (((-85) $ (-583 $)) 271 T ELT)) (-3146 (($ $ $ $ $) 229 (|has| |#1| (-495)) ELT)) (-3181 ((|#3| $) 297 T ELT)) (-3085 (($ (-1085 |#1|) |#3|) 130 T ELT) (($ (-1085 $) |#3|) 129 T ELT)) (-2822 (((-583 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| |#2|) 170 T ELT) (($ $ |#3| (-694)) 132 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 131 T ELT)) (-3160 (($ $ $) 257 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#3|) 133 T ELT)) (-3174 (((-85) $) 287 T ELT)) (-2821 ((|#2| $) 187 T ELT) (((-694) $ |#3|) 135 T ELT) (((-583 (-694)) $ (-583 |#3|)) 134 T ELT)) (-3180 (((-694) $) 296 T ELT)) (-1625 (($ (-1 |#2| |#2|) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3083 (((-3 |#3| #3="failed") $) 136 T ELT)) (-3141 (($ $) 224 (|has| |#1| (-392)) ELT)) (-3142 (($ $) 225 (|has| |#1| (-392)) ELT)) (-3169 (((-583 $) $) 282 T ELT)) (-3172 (($ $) 285 T ELT)) (-3143 (($ $) 226 (|has| |#1| (-392)) ELT)) (-3170 (((-583 $) $) 283 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-3171 (($ $) 284 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT) (($ $ |#3|) 289 T ELT)) (-1894 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3159 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-694))) $ $) 256 T ELT)) (-3161 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $) 260 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $ |#3|) 259 T ELT)) (-3162 (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $) 262 T ELT) (((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $ |#3|) 261 T ELT)) (-3164 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-3163 (($ $ $) 265 T ELT) (($ $ $ |#3|) 263 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3191 (($ $ $) 232 (|has| |#1| (-495)) ELT)) (-3177 (((-583 $) $) 291 T ELT)) (-2824 (((-3 (-583 $) #3#) $) 127 T ELT)) (-2823 (((-3 (-583 $) #3#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| |#3|) (|:| -2401 (-694))) #3#) $) 126 T ELT)) (-3692 (((-85) $ $) 274 T ELT) (((-85) $ (-583 $)) 273 T ELT)) (-3687 (($ $ $) 254 T ELT)) (-3447 (($ $) 295 T ELT)) (-3700 (((-85) $ $) 280 T ELT)) (-3693 (((-85) $ $) 276 T ELT) (((-85) $ (-583 $)) 275 T ELT)) (-3688 (($ $ $) 255 T ELT)) (-3179 (($ $) 294 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3150 (((-2 (|:| -3145 $) (|:| |coef2| $)) $ $) 235 (|has| |#1| (-495)) ELT)) (-3151 (((-2 (|:| -3145 $) (|:| |coef1| $)) $ $) 236 (|has| |#1| (-495)) ELT)) (-1800 (((-85) $) 183 T ELT)) (-1799 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 ((|#1| |#1| $) 228 (|has| |#1| (-392)) ELT) (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-3152 (((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 237 (|has| |#1| (-495)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-3153 (($ $ |#1|) 241 (|has| |#1| (-495)) ELT) (($ $ $) 239 (|has| |#1| (-495)) ELT)) (-3154 (($ $ |#1|) 242 (|has| |#1| (-495)) ELT) (($ $ $) 240 (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ |#3| |#1|) 158 T ELT) (($ $ (-583 |#3|) (-583 |#1|)) 157 T ELT) (($ $ |#3| $) 156 T ELT) (($ $ (-583 |#3|) (-583 $)) 155 T ELT)) (-3758 (($ $ |#3|) 120 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#3|) (-583 (-694))) 52 T ELT) (($ $ |#3| (-694)) 51 T ELT) (($ $ (-583 |#3|)) 50 T ELT) (($ $ |#3|) 48 T ELT)) (-3949 ((|#2| $) 167 T ELT) (((-694) $ |#3|) 143 T ELT) (((-583 (-694)) $ (-583 |#3|)) 142 T ELT)) (-3178 (($ $) 292 T ELT)) (-3176 (($ $) 290 T ELT)) (-3973 (((-800 (-330)) $) 95 (-12 (|has| |#3| (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| |#3| (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| |#3| (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT) (($ (-857 (-350 (-484)))) 251 (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090)))) ELT) (($ (-857 (-484))) 248 (OR (-12 (-2561 (|has| |#1| (-38 (-350 (-484))))) (|has| |#1| (-38 (-484))) (|has| |#3| (-553 (-1090)))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#3| (-553 (-1090))))) ELT) (($ (-857 |#1|)) 245 (|has| |#3| (-553 (-1090))) ELT) (((-1073) $) 223 (-12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1090)))) ELT) (((-857 |#1|) $) 222 (|has| |#3| (-553 (-1090))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ |#3|) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ |#3|) 152 T ELT) (((-857 |#1|) $) 221 (|has| |#3| (-553 (-1090))) ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ |#2|) 172 T ELT) (($ $ |#3| (-694)) 141 T ELT) (($ $ (-583 |#3|) (-583 (-694))) 140 T ELT)) (-2703 (((-632 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-3168 (((-3 (-85) "failed") $ $) 281 T ELT)) (-2667 (($) 45 T CONST)) (-3147 (($ $ $ $ (-694)) 230 (|has| |#1| (-495)) ELT)) (-3148 (($ $ $ (-694)) 231 (|has| |#1| (-495)) ELT)) (-2670 (($ $ (-583 |#3|) (-583 (-694))) 55 T ELT) (($ $ |#3| (-694)) 54 T ELT) (($ $ (-583 |#3|)) 53 T ELT) (($ $ |#3|) 49 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-977 |#1| |#2| |#3|) (-113) (-961) (-717) (-756)) (T -977))
+((-3181 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-694)))) (-3447 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3179 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3178 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3177 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3176 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3175 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3960 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3172 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3171 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3170 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3168 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3167 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3695 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3693 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85)))) (-3696 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)))) (-3166 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3165 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3165 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3164 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3163 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3164 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3163 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))) (-3162 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -2903 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3162 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -2903 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3161 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-977 *4 *5 *3)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-977 *3 *4 *5)))) (-3160 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3159 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-694)))) (-4 *1 (-977 *3 *4 *5)))) (-3688 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))) (-3158 (*1 *1 *2) (|partial| -12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3157 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3973 (*1 *1 *2) (OR (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5)) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3158 (*1 *1 *2) (|partial| OR (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-2561 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-483))) (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3157 (*1 *1 *2) (OR (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-2561 (-4 *3 (-38 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-483))) (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))) (-12 (-5 *2 (-857 *3)) (-12 (-2561 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *5 (-553 (-1090))) (-4 *4 (-717)) (-4 *5 (-756)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3155 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3154 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3153 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3152 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3151 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3150 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3149 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))) (-3191 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3148 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3147 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *3 (-495)))) (-3146 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-495)))) (-3145 (*1 *2 *2 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3144 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3142 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))) (-3141 (*1 *1 *1) (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-392)))))
+(-13 (-861 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3181 (|t#3| $)) (-15 -3180 ((-694) $)) (-15 -3447 ($ $)) (-15 -3179 ($ $)) (-15 -3798 ($ $)) (-15 -3178 ($ $)) (-15 -3177 ((-583 $) $)) (-15 -3176 ($ $)) (-15 -3175 ($ $ |t#3|)) (-15 -3960 ($ $ |t#3|)) (-15 -3174 ((-85) $)) (-15 -3173 ((-85) $)) (-15 -3172 ($ $)) (-15 -3171 ($ $)) (-15 -3170 ((-583 $) $)) (-15 -3169 ((-583 $) $)) (-15 -3168 ((-3 (-85) "failed") $ $)) (-15 -3700 ((-85) $ $)) (-15 -3167 ((-85) $ $)) (-15 -3695 ((-85) $ $)) (-15 -3695 ((-85) $ (-583 $))) (-15 -3693 ((-85) $ $)) (-15 -3693 ((-85) $ (-583 $))) (-15 -3692 ((-85) $ $)) (-15 -3692 ((-85) $ (-583 $))) (-15 -3696 ((-85) $ $)) (-15 -3696 ((-85) $ (-583 $))) (-15 -3166 ($ $ $)) (-15 -3165 ($ $ $)) (-15 -3166 ($ $ $ |t#3|)) (-15 -3165 ($ $ $ |t#3|)) (-15 -3164 ($ $ $)) (-15 -3163 ($ $ $)) (-15 -3164 ($ $ $ |t#3|)) (-15 -3163 ($ $ $ |t#3|)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $)) (-15 -3162 ((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -2903 $)) $ $ |t#3|)) (-15 -3161 ((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -3161 ((-2 (|:| -3955 $) (|:| |gap| (-694)) (|:| -1972 $) (|:| -2903 $)) $ $ |t#3|)) (-15 -3753 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -3160 ($ $ $)) (-15 -3159 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3482 (-694))) $ $)) (-15 -3688 ($ $ $)) (-15 -3687 ($ $ $)) (IF (|has| |t#3| (-553 (-1090))) (PROGN (-6 (-552 (-857 |t#1|))) (-6 (-553 (-857 |t#1|))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3158 ((-3 $ "failed") (-857 (-350 (-484))))) (-15 -3157 ($ (-857 (-350 (-484))))) (-15 -3973 ($ (-857 (-350 (-484))))) (-15 -3158 ((-3 $ "failed") (-857 (-484)))) (-15 -3157 ($ (-857 (-484)))) (-15 -3973 ($ (-857 (-484)))) (IF (|has| |t#1| (-904 (-484))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-857 |t#1|))) (-15 -3157 ($ (-857 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) (IF (|has| |t#1| (-38 (-350 (-484)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-857 (-484)))) (-15 -3157 ($ (-857 (-484)))) (-15 -3973 ($ (-857 (-484)))) (IF (|has| |t#1| (-483)) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-857 |t#1|))) (-15 -3157 ($ (-857 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-484))) |%noBranch| (IF (|has| |t#1| (-38 (-350 (-484)))) |%noBranch| (PROGN (-15 -3158 ((-3 $ "failed") (-857 |t#1|))) (-15 -3157 ($ (-857 |t#1|)))))) (-15 -3973 ($ (-857 |t#1|))) (IF (|has| |t#1| (-950 (-484))) (-6 (-553 (-1073))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-15 -3156 ($ $)) (-15 -3155 ($ $)) (-15 -3154 ($ $ |t#1|)) (-15 -3153 ($ $ |t#1|)) (-15 -3154 ($ $ $)) (-15 -3153 ($ $ $)) (-15 -3756 ($ $ $)) (-15 -3152 ((-2 (|:| -3145 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3151 ((-2 (|:| -3145 $) (|:| |coef1| $)) $ $)) (-15 -3150 ((-2 (|:| -3145 $) (|:| |coef2| $)) $ $)) (-15 -3757 ($ $ $)) (-15 -3149 ((-583 $) $ $)) (-15 -3191 ($ $ $)) (-15 -3148 ($ $ $ (-694))) (-15 -3147 ($ $ $ $ (-694))) (-15 -3146 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (PROGN (-15 -3145 (|t#1| |t#1| $)) (-15 -3144 ($ $)) (-15 -3143 ($ $)) (-15 -3142 ($ $)) (-15 -3141 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 |#3|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-552 (-772)) . T) ((-552 (-857 |#1|)) |has| |#3| (-553 (-1090))) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| |#3| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#3| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#3| (-553 (-800 (-484))))) ((-553 (-857 |#1|)) |has| |#3| (-553 (-1090))) ((-553 (-1073)) -12 (|has| |#1| (-950 (-484))) (|has| |#3| (-553 (-1090)))) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-260 $) . T) ((-277 |#1| |#2|) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392))) ((-455 |#3| |#1|) . T) ((-455 |#3| $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392))) ((-663) . T) ((-806 $ |#3|) . T) ((-809 |#3|) . T) ((-811 |#3|) . T) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| |#3| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| |#3| (-796 (-484)))) ((-861 |#1| |#2| |#3|) . T) ((-821) |has| |#1| (-821)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) |has| |#1| (-821)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3182 (((-583 (-1049)) $) 18 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-1049) $) 20 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-978) (-13 (-995) (-10 -8 (-15 -3182 ((-583 (-1049)) $)) (-15 -3234 ((-1049) $))))) (T -978))
+((-3182 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-978)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-978)))))
+((-3189 (((-85) |#3| $) 15 T ELT)) (-3184 (((-3 $ #1="failed") |#3| (-830)) 29 T ELT)) (-3468 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3187 (((-85) |#3| $) 19 T ELT)) (-3188 (((-85) |#3| $) 17 T ELT)))
+(((-979 |#1| |#2| |#3|) (-10 -7 (-15 -3184 ((-3 |#1| #1="failed") |#3| (-830))) (-15 -3468 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3187 ((-85) |#3| |#1|)) (-15 -3188 ((-85) |#3| |#1|)) (-15 -3189 ((-85) |#3| |#1|))) (-980 |#2| |#3|) (-13 (-755) (-312)) (-1155 |#2|)) (T -979))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) |#2| $) 25 T ELT)) (-3624 (((-484) |#2| $) 26 T ELT)) (-3184 (((-3 $ "failed") |#2| (-830)) 19 T ELT)) (-3183 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3468 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3187 (((-85) |#2| $) 23 T ELT)) (-3188 (((-85) |#2| $) 24 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3186 ((|#2| $) 21 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3771 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3185 (((-583 $) |#2|) 20 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-980 |#1| |#2|) (-113) (-13 (-755) (-312)) (-1155 |t#1|)) (T -980))
+((-3624 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-484)))) (-3189 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-85)))) (-3468 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3)))) (-3185 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *3)))) (-3184 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312))) (-4 *1 (-980 *4 *2)) (-4 *2 (-1155 *4)))) (-3771 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2)))) (-3183 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2)))))
+(-13 (-1013) (-10 -8 (-15 -3624 ((-484) |t#2| $)) (-15 -3189 ((-85) |t#2| $)) (-15 -3188 ((-85) |t#2| $)) (-15 -3187 ((-85) |t#2| $)) (-15 -3468 ((-3 |t#2| "failed") |t#2| $)) (-15 -3186 (|t#2| $)) (-15 -3185 ((-583 $) |t#2|)) (-15 -3184 ((-3 $ "failed") |t#2| (-830))) (-15 -3771 (|t#1| |t#2| $ |t#1|)) (-15 -3183 (|t#1| |t#2| $ |t#1|))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3437 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694)) 114 T ELT)) (-3434 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 63 T ELT)) (-3438 (((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)) 99 T ELT)) (-3432 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 65 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85)) 67 T ELT)) (-3436 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 86 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 87 T ELT)) (-3973 (((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 92 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85)) 62 T ELT)) (-3431 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3432 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-85))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3436 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3436 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694))) (-15 -3973 ((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3438 ((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -981))
+((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) (-5 *1 (-981 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-981 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9)))))
+((-3198 (((-85) |#5| $) 26 T ELT)) (-3196 (((-85) |#5| $) 29 T ELT)) (-3199 (((-85) |#5| $) 18 T ELT) (((-85) $) 52 T ELT)) (-3239 (((-583 $) |#5| $) NIL T ELT) (((-583 $) (-583 |#5|) $) 94 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 92 T ELT) (((-583 $) |#5| (-583 $)) 95 T ELT)) (-3770 (($ $ |#5|) NIL T ELT) (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 73 T ELT) (((-583 $) (-583 |#5|) $) 75 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 77 T ELT)) (-3190 (((-583 $) |#5| $) NIL T ELT) (((-583 $) |#5| (-583 $)) 64 T ELT) (((-583 $) (-583 |#5|) $) 69 T ELT) (((-583 $) (-583 |#5|) (-583 $)) 71 T ELT)) (-3197 (((-85) |#5| $) 32 T ELT)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3770 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3770 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3770 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3770 ((-583 |#1|) |#5| |#1|)) (-15 -3190 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3190 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3190 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3190 ((-583 |#1|) |#5| |#1|)) (-15 -3239 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3239 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3239 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3239 ((-583 |#1|) |#5| |#1|)) (-15 -3196 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#1|)) (-15 -3197 ((-85) |#5| |#1|)) (-15 -3198 ((-85) |#5| |#1|)) (-15 -3199 ((-85) |#5| |#1|)) (-15 -3770 (|#1| |#1| |#5|))) (-983 |#2| |#3| |#4| |#5|) (-392) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -982))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3683 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-583 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3698 (((-583 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-3949 (((-694) $) 112 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3679 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3190 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-583 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-983 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -983))
+((-3199 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3198 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3197 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3196 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3195 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3194 (*1 *2 *3 *1) (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3193 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3192 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3191 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3776 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1)))) (-4 *1 (-983 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3239 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3239 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3190 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3190 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3441 (*1 *1 *2 *1) (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)))) (-3770 (*1 *2 *3 *1) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)))) (-3770 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7)))) (-3770 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8)))))
+(-13 (-1124 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3199 ((-85) |t#4| $)) (-15 -3198 ((-85) |t#4| $)) (-15 -3197 ((-85) |t#4| $)) (-15 -3199 ((-85) $)) (-15 -3196 ((-85) |t#4| $)) (-15 -3195 ((-3 (-85) (-583 $)) |t#4| $)) (-15 -3194 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |t#4| $)) (-15 -3194 ((-85) |t#4| $)) (-15 -3193 ((-583 $) |t#4| $)) (-15 -3192 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -3191 ((-583 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| |t#4| $)) (-15 -3776 ((-583 (-2 (|:| |val| |t#4|) (|:| -1600 $))) |t#4| $)) (-15 -3239 ((-583 $) |t#4| $)) (-15 -3239 ((-583 $) (-583 |t#4|) $)) (-15 -3239 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3239 ((-583 $) |t#4| (-583 $))) (-15 -3190 ((-583 $) |t#4| $)) (-15 -3190 ((-583 $) |t#4| (-583 $))) (-15 -3190 ((-583 $) (-583 |t#4|) $)) (-15 -3190 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3441 ($ |t#4| $)) (-15 -3441 ($ (-583 |t#4|) $)) (-15 -3770 ((-583 $) |t#4| $)) (-15 -3770 ((-583 $) |t#4| (-583 $))) (-15 -3770 ((-583 $) (-583 |t#4|) $)) (-15 -3770 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -3683 ((-583 $) (-583 |t#4|) (-85)))))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1035 |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3206 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 86 T ELT)) (-3203 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3205 (((-583 |#5|) |#4| |#5|) 74 T ELT)) (-3204 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3287 (((-1185)) 36 T ELT)) (-3285 (((-1185)) 25 T ELT)) (-3286 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3284 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT)) (-3200 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3201 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 117 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3202 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 112 T ELT)))
+(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1185) (-1073) (-1073) (-1073))) (-15 -3285 ((-1185))) (-15 -3286 ((-1185) (-1073) (-1073) (-1073))) (-15 -3287 ((-1185))) (-15 -3200 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3201 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3201 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3202 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3203 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3204 ((-85) |#4| |#5|)) (-15 -3204 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3205 ((-583 |#5|) |#4| |#5|)) (-15 -3206 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -984))
+((-3206 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3203 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3202 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-984 *6 *7 *4 *8 *9)))) (-3201 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1130) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3207 (((-1049) $) 11 T ELT)) (-3947 (((-772) $) 21 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-985) (-13 (-995) (-10 -8 (-15 -3207 ((-1049) $)) (-15 -3319 ((-1130) $))))) (T -985))
+((-3207 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-985)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-985)))))
+((-3267 (((-85) $ $) 7 T ELT)))
+(((-986) (-13 (-1129) (-10 -8 (-15 -3267 ((-85) $ $))))) (T -986))
+((-3267 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3210 (($ $ (-583 (-1090)) (-1 (-85) (-583 |#3|))) 34 T ELT)) (-3211 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-583 (-1090))) 21 T ELT)) (-3529 ((|#3| $) 13 T ELT)) (-3158 (((-3 (-249 |#3|) "failed") $) 60 T ELT)) (-3157 (((-249 |#3|) $) NIL T ELT)) (-3208 (((-583 (-1090)) $) 16 T ELT)) (-3209 (((-800 |#1|) $) 11 T ELT)) (-3530 ((|#3| $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-830)) 41 T ELT)) (-3947 (((-772) $) 89 T ELT) (($ (-249 |#3|)) 22 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 38 T ELT)))
+(((-987 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-950 (-249 |#3|)) (-10 -8 (-15 -3211 ($ |#3| |#3|)) (-15 -3211 ($ |#3| |#3| (-583 (-1090)))) (-15 -3210 ($ $ (-583 (-1090)) (-1 (-85) (-583 |#3|)))) (-15 -3209 ((-800 |#1|) $)) (-15 -3530 (|#3| $)) (-15 -3529 (|#3| $)) (-15 -3801 (|#3| $ |#3| (-830))) (-15 -3208 ((-583 (-1090)) $)))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -987))
+((-3211 (*1 *1 *2 *2) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))) (-3211 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-3210 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1 (-85) (-583 *6))) (-4 *6 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))) (-3209 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2))) (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 *2))))) (-3530 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3529 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))) (-3208 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-1090))) (-5 *1 (-987 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3543 (((-1090) $) 8 T ELT)) (-3243 (((-1073) $) 17 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 11 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 14 T ELT)))
+(((-988 |#1|) (-13 (-1013) (-10 -8 (-15 -3543 ((-1090) $)))) (-1090)) (T -988))
+((-3543 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-988 *3)) (-14 *3 *2))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3213 (($ (-583 (-987 |#1| |#2| |#3|))) 15 T ELT)) (-3212 (((-583 (-987 |#1| |#2| |#3|)) $) 22 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#3| $ |#3|) 25 T ELT) ((|#3| $ |#3| (-830)) 28 T ELT)) (-3947 (((-772) $) 18 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 21 T ELT)))
+(((-989 |#1| |#2| |#3|) (-13 (-1013) (-241 |#3| |#3|) (-10 -8 (-15 -3213 ($ (-583 (-987 |#1| |#2| |#3|)))) (-15 -3212 ((-583 (-987 |#1| |#2| |#3|)) $)) (-15 -3801 (|#3| $ |#3| (-830))))) (-1013) (-13 (-961) (-796 |#1|) (-553 (-800 |#1|))) (-13 (-364 |#2|) (-796 |#1|) (-553 (-800 |#1|)))) (T -989))
+((-3213 (*1 *1 *2) (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))) (-3212 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3)))) (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5)) (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))) (-3801 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-830)) (-4 *4 (-1013)) (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2)) (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))))
+((-3214 (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 88 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 92 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 90 T ELT)))
+(((-990 |#1| |#2|) (-10 -7 (-15 -3214 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3214 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3214 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)))) (-13 (-258) (-120)) (-583 (-1090))) (T -990))
+((-3214 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4)))))) (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5)))))) (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 132 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-312)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-1785 (((-630 |#1|) (-1179 $)) NIL T ELT) (((-630 |#1|)) 117 T ELT)) (-3331 ((|#1| $) 121 T ELT)) (-1675 (((-1102 (-830) (-694)) (-484)) NIL (|has| |#1| (-299)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3137 (((-694)) 43 (|has| |#1| (-320)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-1795 (($ (-1179 |#1|) (-1179 $)) NIL T ELT) (($ (-1179 |#1|)) 46 T ELT)) (-1673 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-299)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1784 (((-630 |#1|) $ (-1179 $)) NIL T ELT) (((-630 |#1|) $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 109 T ELT) (((-630 |#1|) (-630 $)) 104 T ELT)) (-3843 (($ |#2|) 62 T ELT) (((-3 $ #1#) (-350 |#2|)) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3109 (((-830)) 80 T ELT)) (-2995 (($) 47 (|has| |#1| (-320)) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-2834 (($) NIL (|has| |#1| (-299)) ELT)) (-1680 (((-85) $) NIL (|has| |#1| (-299)) ELT)) (-1767 (($ $ (-694)) NIL (|has| |#1| (-299)) ELT) (($ $) NIL (|has| |#1| (-299)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3773 (((-830) $) NIL (|has| |#1| (-299)) ELT) (((-743 (-830)) $) NIL (|has| |#1| (-299)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3133 ((|#1| $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-299)) ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2014 ((|#2| $) 87 (|has| |#1| (-312)) ELT)) (-2010 (((-830) $) 140 (|has| |#1| (-320)) ELT)) (-3080 ((|#2| $) 59 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3447 (($) NIL (|has| |#1| (-299)) CONST)) (-2400 (($ (-830)) 131 (|has| |#1| (-320)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2409 (($) 123 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-1676 (((-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))) NIL (|has| |#1| (-299)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3758 ((|#1| (-1179 $)) NIL T ELT) ((|#1|) 113 T ELT)) (-1768 (((-694) $) NIL (|has| |#1| (-299)) ELT) (((-3 (-694) #1#) $ $) NIL (|has| |#1| (-299)) ELT)) (-3759 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-2408 (((-630 |#1|) (-1179 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT)) (-3186 ((|#2|) 77 T ELT)) (-1674 (($) NIL (|has| |#1| (-299)) ELT)) (-3225 (((-1179 |#1|) $ (-1179 $)) 92 T ELT) (((-630 |#1|) (-1179 $) (-1179 $)) NIL T ELT) (((-1179 |#1|) $) 72 T ELT) (((-630 |#1|) (-1179 $)) 88 T ELT)) (-3973 (((-1179 |#1|) $) NIL T ELT) (($ (-1179 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (|has| |#1| (-299)) ELT)) (-3947 (((-772) $) 58 T ELT) (($ (-484)) 53 T ELT) (($ |#1|) 55 T ELT) (($ $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-312)) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-2703 (($ $) NIL (|has| |#1| (-299)) ELT) (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-2450 ((|#2| $) 85 T ELT)) (-3127 (((-694)) 79 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-2012 (((-1179 $)) 84 T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-189)) (|has| |#1| (-312))) (|has| |#1| (-299))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#1| (-811 (-1090)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL (|has| |#1| (-312)) ELT)) (-3057 (((-85) $ $) 64 T ELT)) (-3950 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 51 T ELT) (($ $ $) 70 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 48 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-312)) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-312)) ELT)))
+(((-991 |#1| |#2| |#3|) (-661 |#1| |#2|) (-146) (-1155 |#1|) |#2|) (T -991))
+NIL
+((-3733 (((-348 |#3|) |#3|) 18 T ELT)))
+(((-992 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3|))) (-1155 (-350 (-484))) (-13 (-312) (-120) (-661 (-350 (-484)) |#1|)) (-1155 |#2|)) (T -992))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-13 (-312) (-120) (-661 (-350 (-484)) *4))) (-5 *2 (-348 *3)) (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-3733 (((-348 |#3|) |#3|) 19 T ELT)))
+(((-993 |#1| |#2| |#3|) (-10 -7 (-15 -3733 ((-348 |#3|) |#3|))) (-1155 (-350 (-857 (-484)))) (-13 (-312) (-120) (-661 (-350 (-857 (-484))) |#1|)) (-1155 |#2|)) (T -993))
+((-3733 (*1 *2 *3) (-12 (-4 *4 (-1155 (-350 (-857 (-484))))) (-4 *5 (-13 (-312) (-120) (-661 (-350 (-857 (-484))) *4))) (-5 *2 (-348 *3)) (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2532 (($ $ $) 16 T ELT)) (-2858 (($ $ $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3215 (($) 6 T ELT)) (-3973 (((-1090) $) 20 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 9 T ELT)))
+(((-994) (-13 (-756) (-553 (-1090)) (-10 -8 (-15 -3215 ($))))) (T -994))
+((-3215 (*1 *1) (-5 *1 (-994))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-995) (-113)) (T -995))
NIL
(-13 (-64))
-(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3219 ((|#1| |#1| (-1 (-485) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3217 (((-1186)) 21 T ELT)) (-3218 (((-584 |#1|)) 13 T ELT)))
-(((-997 |#1|) (-10 -7 (-15 -3217 ((-1186))) (-15 -3218 ((-584 |#1|))) (-15 -3219 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3219 (|#1| |#1| (-1 (-485) |#1| |#1|)))) (-105)) (T -997))
-((-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3219 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))) (-3218 (*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))) (-3217 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
-((-3222 (($ (-78) $) 20 T ELT)) (-3223 (((-633 (-78)) (-447) $) 19 T ELT)) (-3567 (($) 7 T ELT)) (-3221 (($) 21 T ELT)) (-3220 (($) 22 T ELT)) (-3224 (((-584 (-149)) $) 10 T ELT)) (-3948 (((-773) $) 25 T ELT)))
-(((-998) (-13 (-553 (-773)) (-10 -8 (-15 -3567 ($)) (-15 -3224 ((-584 (-149)) $)) (-15 -3223 ((-633 (-78)) (-447) $)) (-15 -3222 ($ (-78) $)) (-15 -3221 ($)) (-15 -3220 ($))))) (T -998))
-((-3567 (*1 *1) (-5 *1 (-998))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))) (-3223 (*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))) (-3222 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))) (-3221 (*1 *1) (-5 *1 (-998))) (-3220 (*1 *1) (-5 *1 (-998))))
-((-3225 (((-1180 (-631 |#1|)) (-584 (-631 |#1|))) 45 T ELT) (((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|))) 75 T ELT) (((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|)))) 92 T ELT)) (-3226 (((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))) 39 T ELT)))
-(((-999 |#1|) (-10 -7 (-15 -3225 ((-1180 (-631 (-350 (-858 |#1|)))) (-584 (-1091)) (-631 (-350 (-858 |#1|))))) (-15 -3225 ((-1180 (-631 (-858 |#1|))) (-584 (-1091)) (-631 (-858 |#1|)))) (-15 -3225 ((-1180 (-631 |#1|)) (-584 (-631 |#1|)))) (-15 -3226 ((-1180 |#1|) (-631 |#1|) (-584 (-631 |#1|))))) (-312)) (T -999))
-((-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312)) (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-999 *4)))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5)))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5))))) (-3225 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5)) (-5 *4 (-631 (-350 (-858 *5)))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1489 (((-584 (-695)) $) NIL T ELT) (((-584 (-695)) $ (-1091)) NIL T ELT)) (-1523 (((-695) $) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3083 (((-584 (-1001 (-1091))) $) NIL T ELT)) (-3085 (((-1086 $) $ (-1001 (-1091))) NIL T ELT) (((-1086 |#1|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-1485 (($ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-1001 (-1091)) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-1040 |#1| (-1091)) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-1001 (-1091)) $) NIL T ELT) (((-1091) $) NIL T ELT) (((-1040 |#1| (-1091)) $) NIL T ELT)) (-3758 (($ $ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 (-1001 (-1091))) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1001 (-1091)) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3086 (($ (-1086 |#1|) (-1001 (-1091))) NIL T ELT) (($ (-1086 $) (-1001 (-1091))) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-1001 (-1091))) NIL T ELT)) (-2822 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT)) (-1626 (($ (-1 (-470 (-1001 (-1091))) (-470 (-1001 (-1091)))) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1524 (((-1 $ (-695)) (-1091)) NIL T ELT) (((-1 $ (-695)) $) NIL (|has| |#1| (-190)) ELT)) (-3084 (((-3 (-1001 (-1091)) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1487 (((-1001 (-1091)) $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1488 (((-85) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-1001 (-1091))) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-1486 (($ $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-1001 (-1091)) |#1|) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 |#1|)) NIL T ELT) (($ $ (-1001 (-1091)) $) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 $)) NIL T ELT) (($ $ (-1091) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-584 (-1091)) (-584 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3759 (($ $ (-1001 (-1091))) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-1490 (((-584 (-1091)) $) NIL T ELT)) (-3950 (((-470 (-1001 (-1091))) $) NIL T ELT) (((-695) $ (-1001 (-1091))) NIL T ELT) (((-584 (-695)) $ (-584 (-1001 (-1091)))) NIL T ELT) (((-695) $ (-1091)) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-1001 (-1091)) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1001 (-1091))) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1001 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-1040 |#1| (-1091))) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1001 (-1091))) (-584 (-695))) NIL T ELT) (($ $ (-1001 (-1091)) (-695)) NIL T ELT) (($ $ (-584 (-1001 (-1091)))) NIL T ELT) (($ $ (-1001 (-1091))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-695)) NIL (|has| |#1| (-189)) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1000 |#1|) (-13 (-213 |#1| (-1091) (-1001 (-1091)) (-470 (-1001 (-1091)))) (-951 (-1040 |#1| (-1091)))) (-962)) (T -1000))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-1523 (((-695) $) NIL T ELT)) (-3833 ((|#1| $) 10 T ELT)) (-3159 (((-3 |#1| "failed") $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT)) (-3774 (((-695) $) 11 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-1524 (($ |#1| (-695)) 9 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3760 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2671 (($ $ (-695)) NIL T ELT) (($ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 16 T ELT)))
-(((-1001 |#1|) (-228 |#1|) (-757)) (T -1001))
-NIL
-((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 16 T ELT)) (-3960 (((-584 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3233 ((|#1| $) 11 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3229 (((-485) $) 15 T ELT)) (-3230 ((|#1| $) 14 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3965 (((-584 |#1|) $) 42 (|has| |#1| (-756)) ELT) (((-584 |#1|) (-584 $)) 41 (|has| |#1| (-756)) ELT)) (-3974 (($ |#1|) 29 T ELT)) (-3948 (((-773) $) 28 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 10 T ELT)) (-3234 (($ $ (-485)) 17 T ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT)))
-(((-1002 |#1|) (-13 (-1007 |#1|) (-10 -7 (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-584 |#1|))) |%noBranch|))) (-1130)) (T -1002))
-NIL
-((-3960 (((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 27 (|has| |#1| (-756)) ELT) (((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|)) 14 T ELT)))
-(((-1003 |#1| |#2|) (-10 -7 (-15 -3960 ((-1002 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) (IF (|has| |#1| (-756)) (-15 -3960 ((-584 |#2|) (-1 |#2| |#1|) (-1002 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1003))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3227 (((-584 (-1050)) $) 10 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1004) (-13 (-996) (-10 -8 (-15 -3227 ((-584 (-1050)) $))))) (T -1004))
-((-3227 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004)))))
-((-2570 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3833 (((-1091) $) NIL T ELT)) (-3738 (((-1002 |#1|) $) NIL T ELT)) (-3244 (((-1074) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3228 (($ (-1091) (-1002 |#1|)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)) (-3058 (((-85) $ $) NIL (|has| (-1002 |#1|) (-1014)) ELT)))
-(((-1005 |#1|) (-13 (-1130) (-10 -8 (-15 -3228 ($ (-1091) (-1002 |#1|))) (-15 -3833 ((-1091) $)) (-15 -3738 ((-1002 |#1|) $)) (IF (|has| (-1002 |#1|) (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1005))
-((-3228 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))) (-3833 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130)))))
-((-3960 (((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)) 19 T ELT)))
-(((-1006 |#1| |#2|) (-10 -7 (-15 -3960 ((-1005 |#2|) (-1 |#2| |#1|) (-1005 |#1|)))) (-1130) (-1130)) (T -1006))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6)))))
-((-3738 (($ |#1| |#1|) 8 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3974 (($ |#1|) 6 T ELT)) (-3739 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT)))
-(((-1007 |#1|) (-113) (-1130)) (T -1007))
-((-3739 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3234 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))) (-3738 (*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(-13 (-558 |t#1|) (-10 -8 (-15 -3739 ($ |t#1| |t#1|)) (-15 -3234 ($ $ (-485))) (-15 -3233 (|t#1| $)) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 ((-485) $)) (-15 -3738 ($ |t#1| |t#1|))))
-(((-558 |#1|) . T))
-((-3738 (($ |#1| |#1|) 8 T ELT)) (-3960 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3231 ((|#1| $) 11 T ELT)) (-3233 ((|#1| $) 13 T ELT)) (-3229 (((-485) $) 9 T ELT)) (-3230 ((|#1| $) 10 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3965 ((|#2| (-584 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3974 (($ |#1|) 6 T ELT)) (-3739 (($ |#1| |#1|) 15 T ELT)) (-3234 (($ $ (-485)) 14 T ELT)))
-(((-1008 |#1| |#2|) (-113) (-756) (-1065 |t#1|)) (T -1008))
-((-3965 (*1 *2 *3) (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3)))) (-3960 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756)) (-4 *2 (-1065 *4)))))
-(-13 (-1007 |t#1|) (-10 -8 (-15 -3965 (|t#2| (-584 $))) (-15 -3965 (|t#2| $)) (-15 -3960 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-558 |#1|) . T) ((-1007 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-1050) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 20 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-3235 (((-584 (-1050)) $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1009) (-13 (-996) (-10 -8 (-15 -3235 ((-584 (-1050)) $)) (-15 -3800 ((-1050) $))))) (T -1009))
-((-3235 (*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-1806 (($) NIL (|has| |#1| (-320)) ELT)) (-3236 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3238 (($ $ $) 81 T ELT)) (-3237 (((-85) $ $) 83 T ELT)) (-3138 (((-695)) NIL (|has| |#1| (-320)) ELT)) (-3241 (($ (-584 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1571 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) 75 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2996 (($) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-85) $ $) NIL T ELT)) (-2533 ((|#1| $) 56 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 20 T ELT)) (-3247 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2859 ((|#1| $) 54 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2011 (((-831) $) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3240 (($ $ $) 79 T ELT)) (-1275 ((|#1| $) 26 T ELT)) (-3611 (($ |#1| $) 70 T ELT)) (-2401 (($ (-831)) NIL (|has| |#1| (-320)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1276 ((|#1| $) 28 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 22 T ELT)) (-3567 (($) 12 T ELT)) (-3239 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1467 (($) NIL T ELT) (($ (-584 |#1|)) NIL T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 17 T ELT)) (-3974 (((-474) $) 51 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 63 T ELT)) (-1807 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3948 (((-773) $) NIL T ELT)) (-1808 (((-695) $) NIL T ELT)) (-3242 (($ (-584 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 53 T ELT)) (-3959 (((-695) $) 11 T ELT)))
-(((-1010 |#1|) (-369 |#1|) (-1014)) (T -1010))
-NIL
-((-3236 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3238 (($ $ $) 10 T ELT)) (-3239 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -3236 (|#1| |#2| |#1|)) (-15 -3236 (|#1| |#1| |#2|)) (-15 -3236 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3239 (|#1| |#1| |#2|)) (-15 -3239 (|#1| |#1| |#1|))) (-1012 |#2|) (-1014)) (T -1011))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3236 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3238 (($ $ $) 24 T ELT)) (-3237 (((-85) $ $) 23 T ELT)) (-3241 (($) 29 T ELT) (($ (-584 |#1|)) 28 T ELT)) (-3712 (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 37 T CONST)) (-1354 (($ $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 46 (|has| $ (-318 |#1|)) ELT)) (-3243 (((-85) $ $) 32 T ELT)) (-3328 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3240 (($ $ $) 27 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 45 T ELT)) (-3770 (($ $ (-584 |#1|) (-584 |#1|)) 43 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 42 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 41 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) 40 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 33 T ELT)) (-3405 (((-85) $) 36 T ELT)) (-3567 (($) 35 T ELT)) (-3239 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-3402 (($ $) 34 T ELT)) (-3974 (((-474) $) 50 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 44 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3242 (($) 31 T ELT) (($ (-584 |#1|)) 30 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-1012 |#1|) (-113) (-1014)) (T -1012))
-((-3243 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3242 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3242 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3241 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3)))) (-3240 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3239 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3237 (*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))) (-3236 (*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(-13 (-1014) (-124 |t#1|) (-10 -8 (-6 -3987) (-15 -3243 ((-85) $ $)) (-15 -3242 ($)) (-15 -3242 ($ (-584 |t#1|))) (-15 -3241 ($)) (-15 -3241 ($ (-584 |t#1|))) (-15 -3240 ($ $ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ |t#1|)) (-15 -3238 ($ $ $)) (-15 -3237 ((-85) $ $)) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |t#1|)) (-15 -3236 ($ |t#1| $))))
-(((-34) . T) ((-72) . T) ((-553 (-773)) . T) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-3244 (((-1074) $) 10 T ELT)) (-3245 (((-1034) $) 8 T ELT)))
-(((-1013 |#1|) (-10 -7 (-15 -3244 ((-1074) |#1|)) (-15 -3245 ((-1034) |#1|))) (-1014)) (T -1013))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-1014) (-113)) (T -1014))
-((-3245 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074)))))
-(-13 (-72) (-553 (-773)) (-10 -8 (-15 -3245 ((-1034) $)) (-15 -3244 ((-1074) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 36 T ELT)) (-3249 (($ (-584 (-831))) 70 T ELT)) (-3251 (((-3 $ #1="failed") $ (-831) (-831)) 81 T ELT)) (-2996 (($) 40 T ELT)) (-3247 (((-85) (-831) $) 42 T ELT)) (-2011 (((-831) $) 64 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 39 T ELT)) (-3252 (((-3 $ #1#) $ (-831)) 77 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3248 (((-1180 $)) 47 T ELT)) (-3250 (((-584 (-831)) $) 27 T ELT)) (-3246 (((-695) $ (-831) (-831)) 78 T ELT)) (-3948 (((-773) $) 32 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 24 T ELT)))
-(((-1015 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3252 ((-3 $ #1="failed") $ (-831))) (-15 -3251 ((-3 $ #1#) $ (-831) (-831))) (-15 -3250 ((-584 (-831)) $)) (-15 -3249 ($ (-584 (-831)))) (-15 -3248 ((-1180 $))) (-15 -3247 ((-85) (-831) $)) (-15 -3246 ((-695) $ (-831) (-831))))) (-831) (-831)) (T -1015))
-((-3252 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3251 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3248 (*1 *2) (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3246 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3258 (((-1091) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3537 (((-1074) $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3267 (((-85) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-179) $) NIL T ELT)) (-3255 (((-773) $) NIL T ELT)) (-3268 (((-85) $ $) NIL T ELT)) (-3802 (($ $ (-485)) NIL T ELT) (($ $ (-584 (-485))) NIL T ELT)) (-3259 (((-584 $) $) NIL T ELT)) (-3974 (($ (-1074)) NIL T ELT) (($ (-1091)) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-773)) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-3254 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-485) $) NIL T ELT)))
-(((-1016) (-1017 (-1074) (-1091) (-485) (-179) (-773))) (T -1016))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3262 (((-85) $) 36 T ELT)) (-3258 ((|#2| $) 31 T ELT)) (-3263 (((-85) $) 37 T ELT)) (-3537 ((|#1| $) 32 T ELT)) (-3265 (((-85) $) 39 T ELT)) (-3267 (((-85) $) 41 T ELT)) (-3264 (((-85) $) 38 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3261 (((-85) $) 35 T ELT)) (-3257 ((|#3| $) 30 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3260 (((-85) $) 34 T ELT)) (-3256 ((|#4| $) 29 T ELT)) (-3255 ((|#5| $) 28 T ELT)) (-3268 (((-85) $ $) 42 T ELT)) (-3802 (($ $ (-485)) 44 T ELT) (($ $ (-584 (-485))) 43 T ELT)) (-3259 (((-584 $) $) 33 T ELT)) (-3974 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-584 $)) 45 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 27 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3266 (((-85) $) 40 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-485) $) 25 T ELT)))
-(((-1017 |#1| |#2| |#3| |#4| |#5|) (-113) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1017))
-((-3268 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))) (-3254 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))) (-3959 (*1 *2 *1) (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485)))))
-(-13 (-1014) (-558 |t#1|) (-558 |t#2|) (-558 |t#3|) (-558 |t#4|) (-558 |t#4|) (-558 |t#5|) (-558 (-584 $)) (-241 (-485) $) (-241 (-584 (-485)) $) (-10 -8 (-15 -3268 ((-85) $ $)) (-15 -3267 ((-85) $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-584 $) $)) (-15 -3537 (|t#1| $)) (-15 -3258 (|t#2| $)) (-15 -3257 (|t#3| $)) (-15 -3256 (|t#4| $)) (-15 -3255 (|t#5| $)) (-15 -3254 ($ $)) (-15 -3253 ($ $)) (-15 -3959 ((-485) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-558 (-584 $)) . T) ((-558 |#1|) . T) ((-558 |#2|) . T) ((-558 |#3|) . T) ((-558 |#4|) . T) ((-558 |#5|) . T) ((-241 (-485) $) . T) ((-241 (-584 (-485)) $) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3262 (((-85) $) 45 T ELT)) (-3258 ((|#2| $) 48 T ELT)) (-3263 (((-85) $) 20 T ELT)) (-3537 ((|#1| $) 21 T ELT)) (-3265 (((-85) $) 42 T ELT)) (-3267 (((-85) $) 14 T ELT)) (-3264 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3261 (((-85) $) 46 T ELT)) (-3257 ((|#3| $) 50 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3260 (((-85) $) 47 T ELT)) (-3256 ((|#4| $) 49 T ELT)) (-3255 ((|#5| $) 51 T ELT)) (-3268 (((-85) $ $) 41 T ELT)) (-3802 (($ $ (-485)) 62 T ELT) (($ $ (-584 (-485))) 64 T ELT)) (-3259 (((-584 $) $) 27 T ELT)) (-3974 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-584 $)) 52 T ELT)) (-3948 (((-773) $) 28 T ELT)) (-3253 (($ $) 26 T ELT)) (-3254 (($ $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3266 (((-85) $) 23 T ELT)) (-3058 (((-85) $ $) 40 T ELT)) (-3959 (((-485) $) 60 T ELT)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-1017 |#1| |#2| |#3| |#4| |#5|) (-1014) (-1014) (-1014) (-1014) (-1014)) (T -1018))
-NIL
-((-3271 (((-85) |#5| |#5|) 44 T ELT)) (-3274 (((-85) |#5| |#5|) 59 T ELT)) (-3279 (((-85) |#5| (-584 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3275 (((-85) (-584 |#4|) (-584 |#4|)) 65 T ELT)) (-3281 (((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 70 T ELT)) (-3270 (((-1186)) 32 T ELT)) (-3269 (((-1186) (-1074) (-1074) (-1074)) 28 T ELT)) (-3280 (((-584 |#5|) (-584 |#5|)) 101 T ELT)) (-3282 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) 93 T ELT)) (-3283 (((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85)) 123 T ELT)) (-3273 (((-85) |#5| |#5|) 53 T ELT)) (-3278 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3276 (((-85) (-584 |#4|) (-584 |#4|)) 64 T ELT)) (-3277 (((-85) (-584 |#4|) (-584 |#4|)) 66 T ELT)) (-3701 (((-85) (-584 |#4|) (-584 |#4|)) 67 T ELT)) (-3284 (((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3272 (((-584 |#5|) (-584 |#5|)) 49 T ELT)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3269 ((-1186) (-1074) (-1074) (-1074))) (-15 -3270 ((-1186))) (-15 -3271 ((-85) |#5| |#5|)) (-15 -3272 ((-584 |#5|) (-584 |#5|))) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) |#5| |#5|)) (-15 -3275 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3276 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3277 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3701 ((-85) (-584 |#4|) (-584 |#4|))) (-15 -3278 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3279 ((-85) |#5| |#5|)) (-15 -3279 ((-85) |#5| (-584 |#5|))) (-15 -3280 ((-584 |#5|) (-584 |#5|))) (-15 -3281 ((-85) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3282 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-15 -3283 ((-584 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|)))) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3284 ((-3 (-2 (|:| -3268 (-584 |#4|)) (|:| -1601 |#5|) (|:| |ineq| (-584 |#4|))) #1#) (-584 |#4|) |#5| (-584 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1019))
-((-3284 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9)))) (-3283 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))) (-3282 (*1 *2 *2) (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7)))) (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3279 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))) (-3270 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3269 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-3299 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|) 106 T ELT)) (-3289 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3292 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3294 (((-584 |#5|) |#4| |#5|) 122 T ELT)) (-3296 (((-584 |#5|) |#4| |#5|) 129 T ELT)) (-3298 (((-584 |#5|) |#4| |#5|) 130 T ELT)) (-3293 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 107 T ELT)) (-3295 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 128 T ELT)) (-3297 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3290 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85)) 91 T ELT) (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3291 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3288 (((-1186)) 36 T ELT)) (-3286 (((-1186)) 25 T ELT)) (-3287 (((-1186) (-1074) (-1074) (-1074)) 32 T ELT)) (-3285 (((-1186) (-1074) (-1074) (-1074)) 21 T ELT)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3285 ((-1186) (-1074) (-1074) (-1074))) (-15 -3286 ((-1186))) (-15 -3287 ((-1186) (-1074) (-1074) (-1074))) (-15 -3288 ((-1186))) (-15 -3289 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3290 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) |#3| (-85))) (-15 -3291 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3292 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#4| |#5|)) (-15 -3297 ((-85) |#4| |#5|)) (-15 -3293 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3294 ((-584 |#5|) |#4| |#5|)) (-15 -3295 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3296 ((-584 |#5|) |#4| |#5|)) (-15 -3297 ((-584 (-2 (|:| |val| (-85)) (|:| -1601 |#5|))) |#4| |#5|)) (-15 -3298 ((-584 |#5|) |#4| |#5|)) (-15 -3299 ((-584 (-2 (|:| |val| |#4|) (|:| -1601 |#5|))) |#4| |#5|))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-984 |#1| |#2| |#3| |#4|)) (T -1020))
-((-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85)) (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *4 (-757)) (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9)))) (-5 *1 (-1020 *6 *7 *4 *8 *9)))) (-3290 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3)))) (-3289 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))) (-3288 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3287 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))) (-3286 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))) (-3285 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8)) (-4 *8 (-984 *4 *5 *6 *7)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3690 ((|#4| |#4| $) 98 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 88 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3685 ((|#4| |#4| $) 93 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 113 T ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3701 (((-85) $ $) 116 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3771 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 112 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 94 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 87 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 86 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-1021 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1021))
-NIL
-(-13 (-984 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3310 (((-584 (-485)) (-485) (-485) (-485)) 40 T ELT)) (-3309 (((-584 (-485)) (-485) (-485) (-485)) 30 T ELT)) (-3308 (((-584 (-485)) (-485) (-485) (-485)) 35 T ELT)) (-3307 (((-485) (-485) (-485)) 22 T ELT)) (-3306 (((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485)) 78 T ELT) (((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485)) 73 T ELT)) (-3305 (((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85)) 56 T ELT)) (-3304 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 77 T ELT)) (-3303 (((-631 (-485)) (-584 (-831)) (-584 (-485))) 61 T ELT)) (-3302 (((-584 (-631 (-485))) (-584 (-831))) 66 T ELT)) (-3301 (((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485))) 81 T ELT)) (-3300 (((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485))) 91 T ELT)))
-(((-1022) (-10 -7 (-15 -3300 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-584 (-485)))) (-15 -3301 ((-584 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3302 ((-584 (-631 (-485))) (-584 (-831)))) (-15 -3303 ((-631 (-485)) (-584 (-831)) (-584 (-485)))) (-15 -3304 ((-631 (-485)) (-584 (-485)) (-584 (-485)) (-631 (-485)))) (-15 -3305 ((-584 (-485)) (-584 (-831)) (-584 (-485)) (-85))) (-15 -3306 ((-1180 (-485)) (-1180 (-485)) (-1180 (-485)) (-485))) (-15 -3306 ((-1180 (-485)) (-584 (-485)) (-1180 (-485)) (-485))) (-15 -3307 ((-485) (-485) (-485))) (-15 -3308 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3309 ((-584 (-485)) (-485) (-485) (-485))) (-15 -3310 ((-584 (-485)) (-485) (-485) (-485))))) (T -1022))
-((-3310 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))) (-3307 (*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))) (-3306 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485)) (-5 *1 (-1022)))) (-3306 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85)) (-5 *1 (-1022)))) (-3304 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))) (-3303 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))) (-3301 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))) (-3300 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3311 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1023 |#1|) (-13 (-1024 |#1|) (-1014) (-10 -8 (-15 -3311 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1023))
-((-3311 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3)))))
-((-3802 ((|#1| $ |#1| |#1|) 6 T ELT)))
-(((-1024 |#1|) (-113) (-72)) (T -1024))
-NIL
-(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3058 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
-(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1130) . T))
-((** (($ $ (-831)) 10 T ELT)))
-(((-1025 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-831)))) (-1026)) (T -1025))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (** (($ $ (-831)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
-(((-1026) (-113)) (T -1026))
-((* (*1 *1 *1 *1) (-4 *1 (-1026))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831)))))
-(-13 (-1014) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-831)))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3190 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3709 (($ (-831)) NIL (|has| |#3| (-962)) ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-2485 (($ $ $) NIL (|has| |#3| (-718)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3138 (((-695)) NIL (|has| |#3| (-320)) ELT)) (-3790 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1014)) ELT)) (-3158 (((-485) $) NIL (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) ((|#3| $) NIL (|has| |#3| (-1014)) ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-631 $)) NIL (|has| |#3| (-962)) ELT)) (-3844 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL (|has| |#3| (-962)) ELT)) (-2996 (($) NIL (|has| |#3| (-320)) ELT)) (-1577 ((|#3| $ (-485) |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#3| $ (-485)) 12 T ELT)) (-3188 (((-85) $) NIL (|has| |#3| (-718)) ELT)) (-1215 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2411 (((-85) $) NIL (|has| |#3| (-962)) ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-2610 (((-584 |#3|) $) NIL T ELT)) (-3247 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#3| (-757)) ELT)) (-3328 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2011 (((-831) $) NIL (|has| |#3| (-320)) ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#3| (-581 (-485))) (|has| |#3| (-962))) ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-1180 $) $) NIL (|has| |#3| (-962)) ELT) (((-631 |#3|) (-1180 $)) NIL (|has| |#3| (-962)) ELT)) (-3244 (((-1074) $) NIL (|has| |#3| (-1014)) ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-2401 (($ (-831)) NIL (|has| |#3| (-320)) ELT)) (-3245 (((-1034) $) NIL (|has| |#3| (-1014)) ELT)) (-3803 ((|#3| $) NIL (|has| (-485) (-757)) ELT)) (-2200 (($ $ |#3|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT) (($ $ (-584 |#3|) (-584 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2206 (((-584 |#3|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#3| $ (-485) |#3|) NIL T ELT) ((|#3| $ (-485)) NIL T ELT)) (-3838 ((|#3| $ $) NIL (|has| |#3| (-962)) ELT)) (-1469 (($ (-1180 |#3|)) NIL T ELT)) (-3913 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3760 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-1731 (((-695) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-695) (-1 (-85) |#3|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3948 (((-1180 |#3|) $) NIL T ELT) (($ (-485)) NIL (OR (-12 (|has| |#3| (-951 (-485))) (|has| |#3| (-1014))) (|has| |#3| (-962))) ELT) (($ (-350 (-485))) NIL (-12 (|has| |#3| (-951 (-350 (-485)))) (|has| |#3| (-1014))) ELT) (($ |#3|) NIL (|has| |#3| (-1014)) ELT) (((-773) $) NIL (|has| |#3| (-553 (-773))) ELT)) (-3128 (((-695)) NIL (|has| |#3| (-962)) CONST)) (-1266 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3127 (((-85) $ $) NIL (|has| |#3| (-962)) ELT)) (-2662 (($) NIL (|has| |#3| (-23)) CONST)) (-2668 (($) NIL (|has| |#3| (-962)) CONST)) (-2671 (($ $ (-695)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1091)) NIL (-12 (|has| |#3| (-812 (-1091))) (|has| |#3| (-962))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-962)) ELT) (($ $ (-1 |#3| |#3|) (-695)) NIL (|has| |#3| (-962)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#3| (-757)) ELT)) (-2687 (((-85) $ $) 24 (|has| |#3| (-757)) ELT)) (-3951 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3839 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-695)) NIL (|has| |#3| (-962)) ELT) (($ $ (-831)) NIL (|has| |#3| (-962)) ELT)) (* (($ $ $) NIL (|has| |#3| (-962)) ELT) (($ $ |#3|) NIL (|has| |#3| (-664)) ELT) (($ |#3| $) NIL (|has| |#3| (-664)) ELT) (($ (-485) $) NIL (|has| |#3| (-21)) ELT) (($ (-695) $) NIL (|has| |#3| (-23)) ELT) (($ (-831) $) NIL (|has| |#3| (-25)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1027 |#1| |#2| |#3|) (-196 |#1| |#3|) (-695) (-695) (-718)) (T -1027))
-NIL
-((-3312 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 50 T ELT)) (-3318 (((-485) (-1149 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3316 (((-485) (-1149 |#2| |#1|)) 79 T ELT)) (-3313 (((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 58 T ELT)) (-3317 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3314 (((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 61 T ELT)) (-3315 (((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|)) 78 T ELT)))
-(((-1028 |#1| |#2|) (-10 -7 (-15 -3312 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3313 ((-584 (-1149 |#2| |#1|)) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3314 ((-584 |#1|) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3315 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3316 ((-485) (-1149 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3317 ((-485) (-1149 |#2| |#1|) (-1149 |#2| |#1|))) (-15 -3318 ((-485) (-1149 |#2| |#1|)))) |%noBranch|)) (-741) (-1091)) (T -1028))
-((-3318 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3317 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3315 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4)) (-5 *1 (-1028 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4))) (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3320 (((-1096) $) 12 T ELT)) (-3319 (((-584 (-1096)) $) 14 T ELT)) (-3321 (($ (-584 (-1096)) (-1096)) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 29 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)))
-(((-1029) (-13 (-1014) (-10 -8 (-15 -3321 ($ (-584 (-1096)) (-1096))) (-15 -3320 ((-1096) $)) (-15 -3319 ((-584 (-1096)) $))))) (T -1029))
-((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3322 (($ (-447) (-1029)) 14 T ELT)) (-3321 (((-1029) $) 20 T ELT)) (-3544 (((-447) $) 17 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1030) (-13 (-996) (-10 -8 (-15 -3322 ($ (-447) (-1029))) (-15 -3544 ((-447) $)) (-15 -3321 ((-1029) $))))) (T -1030))
-((-3322 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) (-3321 (*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030)))))
-((-3625 (((-3 (-485) #1="failed") |#2| (-1091) |#2| (-1074)) 19 T ELT) (((-3 (-485) #1#) |#2| (-1091) (-751 |#2|)) 17 T ELT) (((-3 (-485) #1#) |#2|) 60 T ELT)))
-(((-1031 |#1| |#2|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") |#2|)) (-15 -3625 ((-3 (-485) #1#) |#2| (-1091) (-751 |#2|))) (-15 -3625 ((-3 (-485) #1#) |#2| (-1091) |#2| (-1074)))) (-13 (-496) (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|))) (T -1031))
-((-3625 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6))) (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *6 *3)))) (-3625 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485)) (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))))
-((-3625 (((-3 (-485) #1="failed") (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)) 38 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|)))) 33 T ELT) (((-3 (-485) #1#) (-350 (-858 |#1|))) 14 T ELT)))
-(((-1032 |#1|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") (-350 (-858 |#1|)))) (-15 -3625 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-751 (-350 (-858 |#1|))))) (-15 -3625 ((-3 (-485) #1#) (-350 (-858 |#1|)) (-1091) (-350 (-858 |#1|)) (-1074)))) (-392)) (T -1032))
-((-3625 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3625 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6)))) (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *4)))))
-((-3651 (((-265 (-485)) (-48)) 12 T ELT)))
-(((-1033) (-10 -7 (-15 -3651 ((-265 (-485)) (-48))))) (T -1033))
-((-3651 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 22 T ELT)) (-3190 (((-85) $) 49 T ELT)) (-3323 (($ $ $) 28 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 75 T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-2048 (($ $ $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2043 (($ $ $ $) 59 T ELT)) (-3777 (($ $) NIL T ELT)) (-3973 (((-348 $) $) NIL T ELT)) (-1609 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 61 T ELT)) (-3625 (((-485) $) NIL T ELT)) (-2443 (($ $ $) 56 T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL T ELT)) (-2566 (($ $ $) 42 T ELT)) (-2280 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 70 T ELT) (((-631 (-485)) (-631 $)) 8 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3026 (((-3 (-350 (-485)) #1#) $) NIL T ELT)) (-3025 (((-85) $) NIL T ELT)) (-3024 (((-350 (-485)) $) NIL T ELT)) (-2996 (($) 73 T ELT) (($ $) 72 T ELT)) (-2565 (($ $ $) 41 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL T ELT)) (-3725 (((-85) $) NIL T ELT)) (-2041 (($ $ $ $) NIL T ELT)) (-2049 (($ $ $) 71 T ELT)) (-3188 (((-85) $) 76 T ELT)) (-1370 (($ $ $) NIL T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL T ELT)) (-2563 (($ $ $) 27 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 50 T ELT)) (-2675 (((-85) $) 47 T ELT)) (-2562 (($ $) 23 T ELT)) (-3447 (((-633 $) $) NIL T ELT)) (-3189 (((-85) $) 60 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL T ELT)) (-2042 (($ $ $ $) 57 T ELT)) (-2533 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2859 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2045 (($ $) NIL T ELT)) (-2011 (((-831) $) 66 T ELT)) (-3835 (($ $) 55 T ELT)) (-2281 (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL T ELT) (((-631 (-485)) (-1180 $)) NIL T ELT)) (-1895 (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2040 (($ $ $) NIL T ELT)) (-3448 (($) NIL T CONST)) (-2401 (($ (-831)) 65 T ELT)) (-2047 (($ $) 33 T ELT)) (-3245 (((-1034) $) 54 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL T ELT)) (-3146 (($ $ $) 45 T ELT) (($ (-584 $)) NIL T ELT)) (-1368 (($ $) NIL T ELT)) (-3734 (((-348 $) $) NIL T ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL T ELT)) (-2676 (((-85) $) 48 T ELT)) (-1608 (((-695) $) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 44 T ELT)) (-3760 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2046 (($ $) 34 T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-485) $) 12 T ELT) (((-474) $) NIL T ELT) (((-801 (-485)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (($ (-485)) 13 T ELT) (($ $) NIL T ELT) (($ (-485)) 13 T ELT)) (-3128 (((-695)) NIL T CONST)) (-2050 (((-85) $ $) NIL T ELT)) (-3103 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2696 (($) 17 T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2564 (($ $ $) 26 T ELT)) (-2044 (($ $ $ $) 58 T ELT)) (-3385 (($ $) 46 T ELT)) (-2312 (($ $ $) 25 T ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2568 (((-85) $ $) 32 T ELT)) (-2569 (((-85) $ $) 30 T ELT)) (-3058 (((-85) $ $) 21 T ELT)) (-2686 (((-85) $ $) 31 T ELT)) (-2687 (((-85) $ $) 29 T ELT)) (-2313 (($ $ $) 24 T ELT)) (-3839 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3841 (($ $ $) 36 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 40 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-485) $) 14 T ELT)))
-(((-1034) (-13 (-484) (-753) (-84) (-10 -8 (-6 -3984) (-6 -3989) (-6 -3985) (-15 -3323 ($ $ $))))) (T -1034))
-((-3323 (*1 *1 *1 *1) (-5 *1 (-1034))))
-((-485) (|%ismall?| |#1|))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 40 T ELT)) (-3726 (($) 6 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3327 ((|#1| |#1| $) 42 T ELT)) (-3326 ((|#1| $) 41 T ELT)) (-2610 (((-584 |#1|) $) 47 T ELT)) (-3247 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 34 T ELT)) (-3611 (($ |#1| $) 35 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 36 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3324 (((-695) $) 39 T ELT)) (-1731 (((-695) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 46 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) 37 T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-1035 |#1|) (-113) (-1130)) (T -1035))
-((-3327 (*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3327 (|t#1| |t#1| $)) (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 ((-695) $))))
-(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3726 (($) 6 T CONST)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3402 (($ $) 9 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-1036 |#1|) (-113) (-1130)) (T -1036))
-((-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130)))))
-(-13 (-429 |t#1|) (-10 -8 (-6 -3998) (-15 -3328 ($ (-1 |t#1| |t#1|) $))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-3332 ((|#3| $) 87 T ELT)) (-3159 (((-3 (-485) #1="failed") $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3158 (((-485) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL T ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL T ELT) (((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 $) (-1180 $)) 84 T ELT) (((-631 |#3|) (-631 $)) 76 T ELT)) (-3760 (($ $ (-1 |#3| |#3|) (-695)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3331 ((|#3| $) 89 T ELT)) (-3333 ((|#4| $) 43 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 24 T ELT) (($ $ (-485)) 95 T ELT)))
-(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 ** (|#1| |#1| (-485))) (-15 -3331 (|#3| |#1|)) (-15 -3332 (|#3| |#1|)) (-15 -3333 (|#4| |#1|)) (-15 -2280 ((-631 |#3|) (-631 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 |#3|)) (|:| |vec| (-1180 |#3|))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 |#1|) (-1180 |#1|))) (-15 -2280 ((-631 (-485)) (-631 |#1|))) (-15 -3948 (|#1| |#3|)) (-15 -3159 ((-3 |#3| #1="failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3760 (|#1| |#1| (-1 |#3| |#3|) (-695))) (-15 -3948 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3948 ((-773) |#1|))) (-1038 |#2| |#3| |#4| |#5|) (-695) (-962) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1037))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3332 ((|#2| $) 90 T ELT)) (-3122 (((-85) $) 133 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3124 (((-85) $) 131 T ELT)) (-3335 (($ |#2|) 93 T ELT)) (-3726 (($) 23 T CONST)) (-3111 (($ $) 150 (|has| |#2| (-258)) ELT)) (-3113 ((|#3| $ (-485)) 145 T ELT)) (-3159 (((-3 (-485) #1="failed") $) 109 (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) 106 (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3158 (((-485) $) 108 (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) 105 (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) 104 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 99 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 98 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 97 T ELT) (((-631 |#2|) (-631 $)) 96 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) 114 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 113 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 110 (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3110 (((-695) $) 151 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) 143 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3109 (((-695) $) 152 (|has| |#2| (-496)) ELT)) (-3108 (((-584 |#4|) $) 153 (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) 139 T ELT)) (-3115 (((-695) $) 140 T ELT)) (-3329 ((|#2| $) 85 (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) 135 T ELT)) (-3118 (((-485) $) 137 T ELT)) (-2610 (((-584 |#2|) $) 115 T ELT)) (-3247 (((-85) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) 136 T ELT)) (-3117 (((-485) $) 138 T ELT)) (-3125 (($ (-584 (-584 |#2|))) 130 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) 124 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) 147 T ELT) (($ (-1 |#2| |#2|) $) 125 T ELT)) (-3596 (((-584 (-584 |#2|)) $) 141 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 101 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 100 (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 95 T ELT) (((-631 |#2|) (-1180 $)) 94 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3592 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3468 (((-3 $ "failed") $ |#2|) 148 (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 117 T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) 123 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 122 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 121 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) 129 T ELT)) (-3405 (((-85) $) 126 T ELT)) (-3567 (($) 127 T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) 144 T ELT) ((|#2| $ (-485) (-485)) 142 T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-695)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 63 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 61 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 60 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 59 (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) 89 T ELT)) (-3334 (($ (-584 |#2|)) 92 T ELT)) (-3123 (((-85) $) 132 T ELT)) (-3333 ((|#3| $) 91 T ELT)) (-3330 ((|#2| $) 86 (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) 116 T ELT) (((-695) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3402 (($ $) 128 T ELT)) (-3112 ((|#4| $ (-485)) 146 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 107 (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) 102 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) 118 T ELT)) (-3121 (((-85) $) 134 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-695)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1091)) 62 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 58 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 57 (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 56 (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#2|) 149 (|has| |#2| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 155 T ELT) (($ |#2| $) 154 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3959 (((-695) $) 119 T ELT)))
-(((-1038 |#1| |#2| |#3| |#4|) (-113) (-695) (-962) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1038))
-((-3335 (*1 *1 *2) (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-962)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3999 #1="*"))) (-4 *2 (-962)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3999 #1#))) (-4 *2 (-962)))) (-3592 (*1 *1 *1) (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))))
-(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-966 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-655 |t#2|)) |%noBranch|) (-15 -3335 ($ |t#2|)) (-15 -3334 ($ (-584 |t#2|))) (-15 -3333 (|t#3| $)) (-15 -3332 (|t#2| $)) (-15 -3331 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3999 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3330 (|t#2| $)) (-15 -3329 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3592 ((-3 $ "failed") $)) (-15 ** ($ $ (-485)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3999 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 (-485)) |has| |#2| (-581 (-485))) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3999 #1#)))) ((-581 (-485)) |has| |#2| (-581 (-485))) ((-581 |#2|) . T) ((-655 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3999 #1#)))) ((-664) . T) ((-807 $ (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-810 (-1091)) |has| |#2| (-810 (-1091))) ((-812 (-1091)) OR (|has| |#2| (-812 (-1091))) (|has| |#2| (-810 (-1091)))) ((-966 |#1| |#1| |#2| |#3| |#4|) . T) ((-951 (-350 (-485))) |has| |#2| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#2| (-951 (-485))) ((-951 |#2|) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3338 ((|#4| |#4|) 81 T ELT)) (-3336 ((|#4| |#4|) 76 T ELT)) (-3340 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|) 91 T ELT)) (-3339 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3337 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
-(((-1039 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 (|#4| |#4|)) (-15 -3337 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3338 (|#4| |#4|)) (-15 -3339 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3340 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2013 (-584 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1039))
-((-3340 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4)))) (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3338 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 18 T ELT)) (-3083 (((-584 |#2|) $) 174 T ELT)) (-3085 (((-1086 $) $ |#2|) 60 T ELT) (((-1086 |#1|) $) 49 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 116 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 118 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 120 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 |#2|)) 214 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#1| $) 165 T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) ((|#2| $) NIL T ELT)) (-3758 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3961 (($ $) 218 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) 90 T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-470 |#2|) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 20 T ELT)) (-2421 (((-695) $) 30 T ELT)) (-3086 (($ (-1086 |#1|) |#2|) 54 T ELT) (($ (-1086 $) |#2|) 71 T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) 38 T ELT)) (-2895 (($ |#1| (-470 |#2|)) 78 T ELT) (($ $ |#2| (-695)) 58 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ |#2|) NIL T ELT)) (-2822 (((-470 |#2|) $) 205 T ELT) (((-695) $ |#2|) 206 T ELT) (((-584 (-695)) $ (-584 |#2|)) 207 T ELT)) (-1626 (($ (-1 (-470 |#2|) (-470 |#2|)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3084 (((-3 |#2| #1#) $) 177 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) 217 T ELT)) (-3176 ((|#1| $) 43 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| |#2|) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 39 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 148 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-822)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-584 |#2|) (-584 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-584 |#2|) (-584 $)) 194 T ELT)) (-3759 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3950 (((-470 |#2|) $) 201 T ELT) (((-695) $ |#2|) 196 T ELT) (((-584 (-695)) $ (-584 |#2|)) 199 T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| |#1| (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3948 (((-773) $) 159 T ELT) (($ (-485)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) 162 T ELT)) (-3679 ((|#1| $ (-470 |#2|)) 80 T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 87 T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) 123 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 12 T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) 106 T ELT)) (-3951 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3841 (($ $ $) 55 T ELT)) (** (($ $ (-831)) 110 T ELT) (($ $ (-695)) 109 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1040 |#1| |#2|) (-862 |#1| (-470 |#2|) |#2|) (-962) (-757)) (T -1040))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3494 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 125 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 121 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 129 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3816 (((-858 |#1|) $ (-695)) NIL T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ |#2|) NIL T ELT) (((-695) $ |#2| (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ $ (-584 |#2|) (-584 (-470 |#2|))) NIL T ELT) (($ $ |#2| (-470 |#2|)) NIL T ELT) (($ |#1| (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) 63 T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) 119 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3678 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 (($ $ (-695)) 17 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) 117 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ |#2| $) 104 T ELT) (($ $ (-584 |#2|) (-584 $)) 99 T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3760 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3950 (((-470 |#2|) $) NIL T ELT)) (-3341 (((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|))) 87 T ELT)) (-3497 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 127 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 123 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 19 T ELT)) (-3948 (((-773) $) 194 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3679 ((|#1| $ (-470 |#2|)) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) ((|#3| $ (-695)) 43 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 139 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 52 T CONST)) (-2668 (($) 62 T CONST)) (-2671 (($ $ (-584 |#2|) (-584 (-695))) NIL T ELT) (($ $ |#2| (-695)) NIL T ELT) (($ $ (-584 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 66 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 109 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-485))) 114 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
-(((-1041 |#1| |#2| |#3|) (-13 (-680 |#1| |#2|) (-10 -8 (-15 -3679 (|#3| $ (-695))) (-15 -3948 ($ |#2|)) (-15 -3948 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3341 ((-1 (-1070 |#3|) |#3|) (-584 |#2|) (-584 (-1070 |#3|)))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ |#2| |#1|)) (-15 -3678 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-962) (-757) (-862 |#1| (-470 |#2|) |#2|)) (T -1041))
-((-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-757)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3948 (*1 *1 *2) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2)) (-4 *2 (-862 *3 (-470 *4) *4)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757)) (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7)) (-5 *1 (-1041 *5 *6 *7)))) (-3814 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2)))) (-3678 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 92 T ELT) (((-584 $) (-584 |#4|) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3690 ((|#4| |#4| $) 98 T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 134 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ #1#) $) 88 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3685 ((|#4| |#4| $) 93 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3199 (((-85) |#4| $) 144 T ELT)) (-3197 (((-85) |#4| $) 141 T ELT)) (-3200 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3697 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) 136 T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 135 T ELT)) (-3800 (((-3 |#4| #1#) $) 89 T ELT)) (-3194 (((-584 $) |#4| $) 137 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) 140 T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3240 (((-584 $) |#4| $) 133 T ELT) (((-584 $) (-584 |#4|) $) 132 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 131 T ELT) (((-584 $) |#4| (-584 $)) 130 T ELT)) (-3442 (($ |#4| $) 125 T ELT) (($ (-584 |#4|) $) 124 T ELT)) (-3699 (((-584 |#4|) $) 113 T ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3701 (((-85) $ $) 116 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| #1#) $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3771 (($ $ |#4|) 83 T ELT) (((-584 $) |#4| $) 123 T ELT) (((-584 $) |#4| (-584 $)) 122 T ELT) (((-584 $) (-584 |#4|) $) 121 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 120 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 112 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 94 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-3191 (((-584 $) |#4| $) 129 T ELT) (((-584 $) |#4| (-584 $)) 128 T ELT) (((-584 $) (-584 |#4|) $) 127 T ELT) (((-584 $) (-584 |#4|) (-584 $)) 126 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 87 T ELT)) (-3198 (((-85) |#4| $) 143 T ELT)) (-3935 (((-85) |#3| $) 86 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-1042 |#1| |#2| |#3| |#4|) (-113) (-392) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1042))
-NIL
-(-13 (-1021 |t#1| |t#2| |t#3| |t#4|) (-708 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-708 |#1| |#2| |#3| |#4|) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-984 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1021 |#1| |#2| |#3| |#4|) . T) ((-1125 |#1| |#2| |#3| |#4|) . T) ((-1130) . T))
-((-3575 (((-584 |#2|) |#1|) 15 T ELT)) (-3347 (((-584 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-584 |#2|) |#1|) 61 T ELT)) (-3345 (((-584 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-584 |#2|) |#1|) 59 T ELT)) (-3342 ((|#2| |#1|) 54 T ELT)) (-3343 (((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3344 (((-584 |#2|) |#2| |#2|) 42 T ELT) (((-584 |#2|) |#1|) 58 T ELT)) (-3346 (((-584 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-584 |#2|) |#1|) 60 T ELT)) (-3351 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3349 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3348 ((|#2| |#2| |#2|) 50 T ELT)) (-3350 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
-(((-1043 |#1| |#2|) (-10 -7 (-15 -3575 ((-584 |#2|) |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -3343 ((-2 (|:| |solns| (-584 |#2|)) (|:| |maps| (-584 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3344 ((-584 |#2|) |#1|)) (-15 -3345 ((-584 |#2|) |#1|)) (-15 -3346 ((-584 |#2|) |#1|)) (-15 -3347 ((-584 |#2|) |#1|)) (-15 -3344 ((-584 |#2|) |#2| |#2|)) (-15 -3345 ((-584 |#2|) |#2| |#2| |#2|)) (-15 -3346 ((-584 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3347 ((-584 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3351 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1156 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (T -1043))
-((-3351 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3350 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3349 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3348 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3347 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3346 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3345 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3344 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))) (-3343 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-2 (|:| |solns| (-584 *5)) (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))) (-3342 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485))))))) (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4)))))
-((-3352 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|))))) 119 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 118 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|)))) 116 T ELT) (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 113 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|)))) 97 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091)) 98 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|))) 92 T ELT) (((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091)) 82 T ELT)) (-3353 (((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 111 T ELT) (((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 54 T ELT)) (-3354 (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)) 123 T ELT) (((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 122 T ELT)))
-(((-1044 |#1|) (-10 -7 (-15 -3352 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)) (-1091))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-350 (-858 |#1|)))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3352 ((-584 (-249 (-265 |#1|))) (-249 (-350 (-858 |#1|))))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-350 (-858 |#1|))))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3352 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3353 ((-584 (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3353 ((-584 (-584 (-265 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3354 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3354 ((-1081 (-584 (-265 |#1|)) (-584 (-249 (-265 |#1|)))) (-350 (-858 |#1|)) (-1091)))) (-13 (-258) (-120))) (T -1044))
-((-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5)))))
-((-3356 (((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)) 36 T ELT)) (-3355 (((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|)))) 48 T ELT)))
-(((-1045 |#1|) (-10 -7 (-15 -3355 ((-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))) (-350 (-1086 (-265 |#1|))))) (-15 -3356 ((-350 (-1086 (-265 |#1|))) (-1180 (-265 |#1|)) (-350 (-1086 (-265 |#1|))) (-485)))) (-496)) (T -1045))
-((-3356 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5))) (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))) (-3355 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3)))))
-((-3575 (((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))) 244 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091)) 23 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091)) 29 T ELT) (((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-584 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT)))
-(((-1046 |#1|) (-10 -7 (-15 -3575 ((-584 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1091))) (-15 -3575 ((-584 (-249 (-265 |#1|))) (-265 |#1|) (-1091))) (-15 -3575 ((-584 (-584 (-249 (-265 |#1|)))) (-584 (-249 (-265 |#1|))) (-584 (-1091))))) (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (T -1046))
-((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5)) (-5 *3 (-584 (-249 (-265 *5)))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-249 (-265 *5))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-249 (-265 *4))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4)))))
-((-3358 ((|#2| |#2|) 28 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3357 ((|#2| |#2|) 27 (|has| |#1| (-757)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
-(((-1047 |#1| |#2|) (-10 -7 (-15 -3357 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3358 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-757)) (PROGN (-15 -3357 (|#2| |#2|)) (-15 -3358 (|#2| |#2|))) |%noBranch|)) (-1130) (-13 (-539 (-485) |#1|) (-318 |#1|) (-1036 |#1|))) (T -1047))
-((-3358 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))) (-3357 (*1 *2 *2) (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2)) (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))) (-3358 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4))))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2)) (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3890 (((-1080 3 |#1|) $) 141 T ELT)) (-3368 (((-85) $) 101 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 44 T ELT) (($ $ (-584 (-584 |#1|))) 104 T ELT) (($ (-584 (-855 |#1|))) 103 T ELT) (((-584 (-855 |#1|)) $) 102 T ELT)) (-3374 (((-85) $) 72 T ELT)) (-3708 (($ $ (-855 |#1|)) 76 T ELT) (($ $ (-584 |#1|)) 81 T ELT) (($ $ (-695)) 83 T ELT) (($ (-855 |#1|)) 77 T ELT) (((-855 |#1|) $) 75 T ELT)) (-3360 (((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 139 T ELT)) (-3378 (((-695) $) 53 T ELT)) (-3379 (((-695) $) 52 T ELT)) (-3889 (($ $ (-695) (-855 |#1|)) 67 T ELT)) (-3366 (((-85) $) 111 T ELT)) (-3367 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 118 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 120 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 127 T ELT) (($ (-584 (-584 (-855 |#1|)))) 116 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 117 T ELT) (((-584 (-584 (-855 |#1|))) $) 114 T ELT)) (-3520 (($ (-584 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3361 (((-584 (-145)) $) 133 T ELT)) (-3365 (((-584 (-855 |#1|)) $) 130 T ELT)) (-3362 (((-584 (-584 (-145))) $) 132 T ELT)) (-3363 (((-584 (-584 (-584 (-855 |#1|)))) $) NIL T ELT)) (-3364 (((-584 (-584 (-584 (-695)))) $) 131 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3375 (((-695) $ (-584 (-855 |#1|))) 65 T ELT)) (-3372 (((-85) $) 84 T ELT)) (-3373 (($ $ (-584 (-855 |#1|))) 86 T ELT) (($ $ (-584 (-584 |#1|))) 92 T ELT) (($ (-584 (-855 |#1|))) 87 T ELT) (((-584 (-855 |#1|)) $) 85 T ELT)) (-3380 (($) 48 T ELT) (($ (-1080 3 |#1|)) 49 T ELT)) (-3402 (($ $) 63 T ELT)) (-3376 (((-584 $) $) 62 T ELT)) (-3756 (($ (-584 $)) 59 T ELT)) (-3377 (((-584 $) $) 61 T ELT)) (-3948 (((-773) $) 146 T ELT)) (-3370 (((-85) $) 94 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 96 T ELT) (($ $ (-584 (-584 |#1|))) 99 T ELT) (($ (-584 (-855 |#1|))) 97 T ELT) (((-584 (-855 |#1|)) $) 95 T ELT)) (-3359 (($ $) 140 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1048 |#1|) (-1049 |#1|) (-962)) (T -1048))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3890 (((-1080 3 |#1|) $) 17 T ELT)) (-3368 (((-85) $) 33 T ELT)) (-3369 (($ $ (-584 (-855 |#1|))) 37 T ELT) (($ $ (-584 (-584 |#1|))) 36 T ELT) (($ (-584 (-855 |#1|))) 35 T ELT) (((-584 (-855 |#1|)) $) 34 T ELT)) (-3374 (((-85) $) 48 T ELT)) (-3708 (($ $ (-855 |#1|)) 53 T ELT) (($ $ (-584 |#1|)) 52 T ELT) (($ $ (-695)) 51 T ELT) (($ (-855 |#1|)) 50 T ELT) (((-855 |#1|) $) 49 T ELT)) (-3360 (((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $) 19 T ELT)) (-3378 (((-695) $) 62 T ELT)) (-3379 (((-695) $) 63 T ELT)) (-3889 (($ $ (-695) (-855 |#1|)) 54 T ELT)) (-3366 (((-85) $) 25 T ELT)) (-3367 (($ $ (-584 (-584 (-855 |#1|))) (-584 (-145)) (-145)) 32 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-584 (-145)) (-145)) 31 T ELT) (($ $ (-584 (-584 (-855 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-584 (-584 (-584 |#1|))) (-85) (-85)) 29 T ELT) (($ (-584 (-584 (-855 |#1|)))) 28 T ELT) (($ (-584 (-584 (-855 |#1|))) (-85) (-85)) 27 T ELT) (((-584 (-584 (-855 |#1|))) $) 26 T ELT)) (-3520 (($ (-584 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3361 (((-584 (-145)) $) 20 T ELT)) (-3365 (((-584 (-855 |#1|)) $) 24 T ELT)) (-3362 (((-584 (-584 (-145))) $) 21 T ELT)) (-3363 (((-584 (-584 (-584 (-855 |#1|)))) $) 22 T ELT)) (-3364 (((-584 (-584 (-584 (-695)))) $) 23 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3375 (((-695) $ (-584 (-855 |#1|))) 55 T ELT)) (-3372 (((-85) $) 43 T ELT)) (-3373 (($ $ (-584 (-855 |#1|))) 47 T ELT) (($ $ (-584 (-584 |#1|))) 46 T ELT) (($ (-584 (-855 |#1|))) 45 T ELT) (((-584 (-855 |#1|)) $) 44 T ELT)) (-3380 (($) 65 T ELT) (($ (-1080 3 |#1|)) 64 T ELT)) (-3402 (($ $) 56 T ELT)) (-3376 (((-584 $) $) 57 T ELT)) (-3756 (($ (-584 $)) 59 T ELT)) (-3377 (((-584 $) $) 58 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-3370 (((-85) $) 38 T ELT)) (-3371 (($ $ (-584 (-855 |#1|))) 42 T ELT) (($ $ (-584 (-584 |#1|))) 41 T ELT) (($ (-584 (-855 |#1|))) 40 T ELT) (((-584 (-855 |#1|)) $) 39 T ELT)) (-3359 (($ $) 18 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-1049 |#1|) (-113) (-962)) (T -1049))
-((-3948 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773)))) (-3380 (*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3756 (*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3377 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))) (-3402 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3375 (*1 *2 *1 *3) (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3)))) (-3374 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3373 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3373 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3367 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3367 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145)) (-4 *1 (-1049 *5)) (-4 *5 (-962)))) (-3367 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3367 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4)) (-4 *4 (-962)))) (-3367 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3)))) (-3367 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962)) (-4 *1 (-1049 *4)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3)))))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-855 *3))))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695)))))) (-3359 (*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3)))))
-(-13 (-1014) (-10 -8 (-15 -3380 ($)) (-15 -3380 ($ (-1080 3 |t#1|))) (-15 -3379 ((-695) $)) (-15 -3378 ((-695) $)) (-15 -3520 ($ (-584 $))) (-15 -3520 ($ $ $)) (-15 -3756 ($ (-584 $))) (-15 -3377 ((-584 $) $)) (-15 -3376 ((-584 $) $)) (-15 -3402 ($ $)) (-15 -3375 ((-695) $ (-584 (-855 |t#1|)))) (-15 -3889 ($ $ (-695) (-855 |t#1|))) (-15 -3708 ($ $ (-855 |t#1|))) (-15 -3708 ($ $ (-584 |t#1|))) (-15 -3708 ($ $ (-695))) (-15 -3708 ($ (-855 |t#1|))) (-15 -3708 ((-855 |t#1|) $)) (-15 -3374 ((-85) $)) (-15 -3373 ($ $ (-584 (-855 |t#1|)))) (-15 -3373 ($ $ (-584 (-584 |t#1|)))) (-15 -3373 ($ (-584 (-855 |t#1|)))) (-15 -3373 ((-584 (-855 |t#1|)) $)) (-15 -3372 ((-85) $)) (-15 -3371 ($ $ (-584 (-855 |t#1|)))) (-15 -3371 ($ $ (-584 (-584 |t#1|)))) (-15 -3371 ($ (-584 (-855 |t#1|)))) (-15 -3371 ((-584 (-855 |t#1|)) $)) (-15 -3370 ((-85) $)) (-15 -3369 ($ $ (-584 (-855 |t#1|)))) (-15 -3369 ($ $ (-584 (-584 |t#1|)))) (-15 -3369 ($ (-584 (-855 |t#1|)))) (-15 -3369 ((-584 (-855 |t#1|)) $)) (-15 -3368 ((-85) $)) (-15 -3367 ($ $ (-584 (-584 (-855 |t#1|))) (-584 (-145)) (-145))) (-15 -3367 ($ $ (-584 (-584 (-584 |t#1|))) (-584 (-145)) (-145))) (-15 -3367 ($ $ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3367 ($ $ (-584 (-584 (-584 |t#1|))) (-85) (-85))) (-15 -3367 ($ (-584 (-584 (-855 |t#1|))))) (-15 -3367 ($ (-584 (-584 (-855 |t#1|))) (-85) (-85))) (-15 -3367 ((-584 (-584 (-855 |t#1|))) $)) (-15 -3366 ((-85) $)) (-15 -3365 ((-584 (-855 |t#1|)) $)) (-15 -3364 ((-584 (-584 (-584 (-695)))) $)) (-15 -3363 ((-584 (-584 (-584 (-855 |t#1|)))) $)) (-15 -3362 ((-584 (-584 (-145))) $)) (-15 -3361 ((-584 (-145)) $)) (-15 -3360 ((-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695)) (|:| |constructs| (-695))) $)) (-15 -3359 ($ $)) (-15 -3890 ((-1080 3 |t#1|) $)) (-15 -3948 ((-773) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 185 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) 7 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-463))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-618))) 27 T ELT) (((-85) $ (|[\|\|]| (-1191))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-540))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1030))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-623))) 55 T ELT) (((-85) $ (|[\|\|]| (-459))) 59 T ELT) (((-85) $ (|[\|\|]| (-979))) 63 T ELT) (((-85) $ (|[\|\|]| (-1192))) 67 T ELT) (((-85) $ (|[\|\|]| (-464))) 71 T ELT) (((-85) $ (|[\|\|]| (-1068))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-614))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-949))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-884))) 99 T ELT) (((-85) $ (|[\|\|]| (-986))) 103 T ELT) (((-85) $ (|[\|\|]| (-1004))) 107 T ELT) (((-85) $ (|[\|\|]| (-1009))) 111 T ELT) (((-85) $ (|[\|\|]| (-566))) 116 T ELT) (((-85) $ (|[\|\|]| (-1082))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-529))) 136 T ELT) (((-85) $ (|[\|\|]| (-447))) 140 T ELT) (((-85) $ (|[\|\|]| (-1074))) 144 T ELT) (((-85) $ (|[\|\|]| (-485))) 148 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-463) $) 20 T ELT) (((-172) $) 24 T ELT) (((-618) $) 28 T ELT) (((-1191) $) 32 T ELT) (((-111) $) 36 T ELT) (((-540) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1030) $) 48 T ELT) (((-67) $) 52 T ELT) (((-623) $) 56 T ELT) (((-459) $) 60 T ELT) (((-979) $) 64 T ELT) (((-1192) $) 68 T ELT) (((-464) $) 72 T ELT) (((-1068) $) 76 T ELT) (((-127) $) 80 T ELT) (((-614) $) 84 T ELT) (((-263) $) 88 T ELT) (((-949) $) 92 T ELT) (((-154) $) 96 T ELT) (((-884) $) 100 T ELT) (((-986) $) 104 T ELT) (((-1004) $) 108 T ELT) (((-1009) $) 112 T ELT) (((-566) $) 117 T ELT) (((-1082) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-529) $) 137 T ELT) (((-447) $) 141 T ELT) (((-1074) $) 145 T ELT) (((-485) $) 149 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1050) (-1052)) (T -1050))
-NIL
-((-3381 (((-584 (-1096)) (-1074)) 9 T ELT)))
-(((-1051) (-10 -7 (-15 -3381 ((-584 (-1096)) (-1074))))) (T -1051))
-((-3381 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-1096)) 20 T ELT) (((-1096) $) 19 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-463))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-618))) 84 T ELT) (((-85) $ (|[\|\|]| (-1191))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-540))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1030))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-623))) 70 T ELT) (((-85) $ (|[\|\|]| (-459))) 68 T ELT) (((-85) $ (|[\|\|]| (-979))) 66 T ELT) (((-85) $ (|[\|\|]| (-1192))) 64 T ELT) (((-85) $ (|[\|\|]| (-464))) 62 T ELT) (((-85) $ (|[\|\|]| (-1068))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-614))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-949))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-884))) 48 T ELT) (((-85) $ (|[\|\|]| (-986))) 46 T ELT) (((-85) $ (|[\|\|]| (-1004))) 44 T ELT) (((-85) $ (|[\|\|]| (-1009))) 42 T ELT) (((-85) $ (|[\|\|]| (-566))) 40 T ELT) (((-85) $ (|[\|\|]| (-1082))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-529))) 30 T ELT) (((-85) $ (|[\|\|]| (-447))) 28 T ELT) (((-85) $ (|[\|\|]| (-1074))) 26 T ELT) (((-85) $ (|[\|\|]| (-485))) 24 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3574 (((-463) $) 87 T ELT) (((-172) $) 85 T ELT) (((-618) $) 83 T ELT) (((-1191) $) 81 T ELT) (((-111) $) 79 T ELT) (((-540) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1030) $) 73 T ELT) (((-67) $) 71 T ELT) (((-623) $) 69 T ELT) (((-459) $) 67 T ELT) (((-979) $) 65 T ELT) (((-1192) $) 63 T ELT) (((-464) $) 61 T ELT) (((-1068) $) 59 T ELT) (((-127) $) 57 T ELT) (((-614) $) 55 T ELT) (((-263) $) 53 T ELT) (((-949) $) 51 T ELT) (((-154) $) 49 T ELT) (((-884) $) 47 T ELT) (((-986) $) 45 T ELT) (((-1004) $) 43 T ELT) (((-1009) $) 41 T ELT) (((-566) $) 39 T ELT) (((-1082) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-529) $) 29 T ELT) (((-447) $) 27 T ELT) (((-1074) $) 25 T ELT) (((-485) $) 23 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-1052) (-113)) (T -1052))
-((-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074)))) (-3568 (*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485)))))
-(-13 (-996) (-1176) (-10 -8 (-15 -3568 ((-85) $ (|[\|\|]| (-463)))) (-15 -3574 ((-463) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-172)))) (-15 -3574 ((-172) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-618)))) (-15 -3574 ((-618) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3574 ((-1191) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-111)))) (-15 -3574 ((-111) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-540)))) (-15 -3574 ((-540) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-106)))) (-15 -3574 ((-106) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1030)))) (-15 -3574 ((-1030) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-67)))) (-15 -3574 ((-67) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-623)))) (-15 -3574 ((-623) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-459)))) (-15 -3574 ((-459) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-979)))) (-15 -3574 ((-979) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1192)))) (-15 -3574 ((-1192) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-464)))) (-15 -3574 ((-464) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1068)))) (-15 -3574 ((-1068) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-127)))) (-15 -3574 ((-127) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-614)))) (-15 -3574 ((-614) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-263)))) (-15 -3574 ((-263) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-949)))) (-15 -3574 ((-949) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-154)))) (-15 -3574 ((-154) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-884)))) (-15 -3574 ((-884) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-986)))) (-15 -3574 ((-986) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1004)))) (-15 -3574 ((-1004) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1009)))) (-15 -3574 ((-1009) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-566)))) (-15 -3574 ((-566) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1082)))) (-15 -3574 ((-1082) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-129)))) (-15 -3574 ((-129) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-110)))) (-15 -3574 ((-110) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-418)))) (-15 -3574 ((-418) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-529)))) (-15 -3574 ((-529) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3574 ((-447) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-1074)))) (-15 -3574 ((-1074) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-485)))) (-15 -3574 ((-485) $))))
-(((-64) . T) ((-72) . T) ((-556 (-1096)) . T) ((-553 (-773)) . T) ((-553 (-1096)) . T) ((-430 (-1096)) . T) ((-13) . T) ((-1014) . T) ((-996) . T) ((-1130) . T) ((-1176) . T))
-((-3384 (((-1186) (-584 (-773))) 22 T ELT) (((-1186) (-773)) 21 T ELT)) (-3383 (((-1186) (-584 (-773))) 20 T ELT) (((-1186) (-773)) 19 T ELT)) (-3382 (((-1186) (-584 (-773))) 18 T ELT) (((-1186) (-773)) 10 T ELT) (((-1186) (-1074) (-773)) 16 T ELT)))
-(((-1053) (-10 -7 (-15 -3382 ((-1186) (-1074) (-773))) (-15 -3382 ((-1186) (-773))) (-15 -3383 ((-1186) (-773))) (-15 -3384 ((-1186) (-773))) (-15 -3382 ((-1186) (-584 (-773)))) (-15 -3383 ((-1186) (-584 (-773)))) (-15 -3384 ((-1186) (-584 (-773)))))) (T -1053))
-((-3384 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))) (-3382 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-((-3388 (($ $ $) 10 T ELT)) (-3387 (($ $) 9 T ELT)) (-3391 (($ $ $) 13 T ELT)) (-3393 (($ $ $) 15 T ELT)) (-3390 (($ $ $) 12 T ELT)) (-3392 (($ $ $) 14 T ELT)) (-3395 (($ $) 17 T ELT)) (-3394 (($ $) 16 T ELT)) (-3385 (($ $) 6 T ELT)) (-3389 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3386 (($ $ $) 8 T ELT)))
-(((-1054) (-113)) (T -1054))
-((-3395 (*1 *1 *1) (-4 *1 (-1054))) (-3394 (*1 *1 *1) (-4 *1 (-1054))) (-3393 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3387 (*1 *1 *1) (-4 *1 (-1054))) (-3386 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3389 (*1 *1 *1) (-4 *1 (-1054))) (-3385 (*1 *1 *1) (-4 *1 (-1054))))
-(-13 (-10 -8 (-15 -3385 ($ $)) (-15 -3389 ($ $)) (-15 -3386 ($ $ $)) (-15 -3387 ($ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $ $)) (-15 -3394 ($ $)) (-15 -3395 ($ $))))
-((-2570 (((-85) $ $) 44 T ELT)) (-3404 ((|#1| $) 17 T ELT)) (-3396 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3403 (((-85) $) 19 T ELT)) (-3401 (($ $ |#1|) 30 T ELT)) (-3399 (($ $ (-85)) 32 T ELT)) (-3398 (($ $) 33 T ELT)) (-3400 (($ $ |#2|) 31 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3397 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3405 (((-85) $) 16 T ELT)) (-3567 (($) 13 T ELT)) (-3402 (($ $) 29 T ELT)) (-3532 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) 23 T ELT) (((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) 26 T ELT) (((-584 $) |#1| (-584 |#2|)) 28 T ELT)) (-3924 ((|#2| $) 18 T ELT)) (-3948 (((-773) $) 53 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 42 T ELT)))
-(((-1055 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3567 ($)) (-15 -3405 ((-85) $)) (-15 -3404 (|#1| $)) (-15 -3924 (|#2| $)) (-15 -3403 ((-85) $)) (-15 -3532 ($ |#1| |#2| (-85))) (-15 -3532 ($ |#1| |#2|)) (-15 -3532 ($ (-2 (|:| |val| |#1|) (|:| -1601 |#2|)))) (-15 -3532 ((-584 $) (-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))))) (-15 -3532 ((-584 $) |#1| (-584 |#2|))) (-15 -3402 ($ $)) (-15 -3401 ($ $ |#1|)) (-15 -3400 ($ $ |#2|)) (-15 -3399 ($ $ (-85))) (-15 -3398 ($ $)) (-15 -3397 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3396 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1055))
-((-3567 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3405 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3404 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1014) (-34))))) (-3924 (*1 *2 *1) (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4)))) (-3532 (*1 *2 *3) (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5)))) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1014) (-34))))) (-3402 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3401 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34))) (-4 *2 (-13 (-1014) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3397 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3396 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))))))
-((-2570 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3404 (((-1055 |#1| |#2|) $) 27 T ELT)) (-3413 (($ $) 91 T ELT)) (-3409 (((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3406 (($ $ $ (-584 (-1055 |#1| |#2|))) 108 T ELT) (($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3027 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 46 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3790 (((-1055 |#1| |#2|) $ #1="value" (-1055 |#1| |#2|)) NIL (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3028 (($ $ (-584 $)) 44 (|has| $ (-1036 (-1055 |#1| |#2|))) ELT)) (-3726 (($) NIL T CONST)) (-3411 (((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $) 95 T ELT)) (-3407 (($ (-1055 |#1| |#2|) $) 42 T ELT)) (-3408 (($ (-1055 |#1| |#2|) $) 34 T ELT)) (-3844 (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $ (-1055 |#1| |#2|)) NIL T ELT) (((-1055 |#1| |#2|) (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3033 (((-584 $) $) 54 T ELT)) (-3410 (((-85) (-1055 |#1| |#2|) $) 97 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-2610 (((-584 (-1055 |#1| |#2|)) $) 58 T ELT)) (-3247 (((-85) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3328 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 50 T ELT)) (-3960 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 49 T ELT)) (-3032 (((-584 (-1055 |#1| |#2|)) $) 56 T ELT)) (-3529 (((-85) $) 45 T ELT)) (-3244 (((-1074) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| (-1055 |#1| |#2|) (-1014)) ELT)) (-3414 (((-3 $ "failed") $) 89 T ELT)) (-1732 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-249 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT) (($ $ (-584 (-1055 |#1| |#2|)) (-584 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-260 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 24 T ELT)) (-3567 (($) 26 T ELT)) (-3802 (((-1055 |#1| |#2|) $ #1#) NIL T ELT)) (-3031 (((-485) $ $) NIL T ELT)) (-3635 (((-85) $) 47 T ELT)) (-1731 (((-695) (-1055 |#1| |#2|) $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT) (((-695) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3402 (($ $) 52 T ELT)) (-3532 (($ (-1055 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-584 $)) 13 T ELT) (($ |#1| |#2| (-584 (-1055 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-584 |#2|)) 18 T ELT)) (-3412 (((-584 |#2|) $) 96 T ELT)) (-3948 (((-773) $) 87 (|has| (-1055 |#1| |#2|) (-553 (-773))) ELT)) (-3524 (((-584 $) $) 31 T ELT)) (-3030 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-1055 |#1| |#2|)) $) NIL T ELT)) (-3058 (((-85) $ $) 70 (|has| (-1055 |#1| |#2|) (-72)) ELT)) (-3959 (((-695) $) 64 T ELT)))
-(((-1056 |#1| |#2|) (-13 (-924 (-1055 |#1| |#2|)) (-318 (-1055 |#1| |#2|)) (-1036 (-1055 |#1| |#2|)) (-10 -8 (-15 -3414 ((-3 $ "failed") $)) (-15 -3413 ($ $)) (-15 -3532 ($ (-1055 |#1| |#2|))) (-15 -3532 ($ |#1| |#2| (-584 $))) (-15 -3532 ($ |#1| |#2| (-584 (-1055 |#1| |#2|)))) (-15 -3532 ($ |#1| |#2| |#1| (-584 |#2|))) (-15 -3412 ((-584 |#2|) $)) (-15 -3411 ((-584 (-2 (|:| |val| |#1|) (|:| -1601 |#2|))) $)) (-15 -3410 ((-85) (-1055 |#1| |#2|) $)) (-15 -3409 ((-85) (-1055 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3408 ($ (-1055 |#1| |#2|) $)) (-15 -3407 ($ (-1055 |#1| |#2|) $)) (-15 -3406 ($ $ $ (-584 (-1055 |#1| |#2|)))) (-15 -3406 ($ $ $ (-584 (-1055 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1014) (-34)) (-13 (-1014) (-34))) (T -1056))
-((-3414 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3413 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))))) (-3532 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)))) (-3532 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34))))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))) (-3410 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)))) (-3409 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *5 *6)))) (-3408 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))) (-3406 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34))) (-5 *1 (-1056 *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3416 (($ $) NIL T ELT)) (-3332 ((|#2| $) NIL T ELT)) (-3122 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3415 (($ (-631 |#2|)) 53 T ELT)) (-3124 (((-85) $) NIL T ELT)) (-3335 (($ |#2|) 14 T ELT)) (-3726 (($) NIL T CONST)) (-3111 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3113 (((-197 |#1| |#2|) $ (-485)) 40 T ELT)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) ((|#2| $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3469 (((-3 $ #1#) $) 80 T ELT)) (-3110 (((-695) $) 68 (|has| |#2| (-496)) ELT)) (-3114 ((|#2| $ (-485) (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3109 (((-695) $) 70 (|has| |#2| (-496)) ELT)) (-3108 (((-584 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-496)) ELT)) (-3116 (((-695) $) NIL T ELT)) (-3616 (($ |#2|) 23 T ELT)) (-3115 (((-695) $) NIL T ELT)) (-3329 ((|#2| $) 64 (|has| |#2| (-6 (-3999 #2="*"))) ELT)) (-3120 (((-485) $) NIL T ELT)) (-3118 (((-485) $) NIL T ELT)) (-2610 (((-584 |#2|) $) NIL T ELT)) (-3247 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3119 (((-485) $) NIL T ELT)) (-3117 (((-485) $) NIL T ELT)) (-3125 (($ (-584 (-584 |#2|))) 35 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3596 (((-584 (-584 |#2|)) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3592 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ (-485) (-485) |#2|) NIL T ELT) ((|#2| $ (-485) (-485)) NIL T ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3334 (($ (-584 |#2|)) 48 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3333 (((-197 |#1| |#2|) $) NIL T ELT)) (-3330 ((|#2| $) 62 (|has| |#2| (-6 (-3999 #2#))) ELT)) (-1731 (((-695) (-1 (-85) |#2|) $) NIL T ELT) (((-695) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 87 (|has| |#2| (-554 (-474))) ELT)) (-3112 (((-197 |#1| |#2|) $ (-485)) 42 T ELT)) (-3948 (((-773) $) 45 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (($ |#2|) NIL T ELT) (((-631 |#2|) $) 50 T ELT)) (-3128 (((-695)) 21 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-2668 (($) 19 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-695)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1057 |#1| |#2|) (-13 (-1038 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-553 (-631 |#2|)) (-10 -8 (-15 -3616 ($ |#2|)) (-15 -3416 ($ $)) (-15 -3415 ($ (-631 |#2|))) (IF (|has| |#2| (-6 (-3999 #1="*"))) (-6 -3986) |%noBranch|) (IF (|has| |#2| (-6 (-3999 #1#))) (IF (|has| |#2| (-6 -3994)) (-6 -3994) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-554 (-474))) (-6 (-554 (-474))) |%noBranch|))) (-695) (-962)) (T -1057))
-((-3616 (*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962)))) (-3416 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695)))))
-((-3429 (($ $) 19 T ELT)) (-3419 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3427 (((-85) $ $) 24 T ELT)) (-3431 (($ $) 17 T ELT)) (-3802 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) (($ $ $) 31 T ELT)) (-3948 (($ (-117)) 29 T ELT) (((-773) $) NIL T ELT)))
-(((-1058 |#1|) (-10 -7 (-15 -3948 ((-773) |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| (-114))) (-15 -3419 (|#1| |#1| (-117))) (-15 -3948 (|#1| (-117))) (-15 -3427 ((-85) |#1| |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3431 (|#1| |#1|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3802 ((-117) |#1| (-485))) (-15 -3802 ((-117) |#1| (-485) (-117)))) (-1059)) (T -1058))
-NIL
-((-2570 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-3428 (($ $) 130 T ELT)) (-3429 (($ $) 131 T ELT)) (-3419 (($ $ (-117)) 118 T ELT) (($ $ (-114)) 117 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-3426 (((-85) $ $) 128 T ELT)) (-3425 (((-85) $ $ (-485)) 127 T ELT)) (-3420 (((-584 $) $ (-117)) 120 T ELT) (((-584 $) $ (-114)) 119 T ELT)) (-1736 (((-85) (-1 (-85) (-117) (-117)) $) 97 T ELT) (((-85) $) 91 (|has| (-117) (-757)) ELT)) (-1734 (($ (-1 (-85) (-117) (-117)) $) 88 (|has| $ (-1036 (-117))) ELT) (($ $) 87 (-12 (|has| (-117) (-757)) (|has| $ (-1036 (-117)))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) 98 T ELT) (($ $) 92 (|has| (-117) (-757)) ELT)) (-3790 (((-117) $ (-485) (-117)) 47 (|has| $ (-6 -3998)) ELT) (((-117) $ (-1147 (-485)) (-117)) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) (-117)) $) 70 (|has| $ (-318 (-117))) ELT)) (-3726 (($) 6 T CONST)) (-3417 (($ $ (-117)) 114 T ELT) (($ $ (-114)) 113 T ELT)) (-2298 (($ $) 89 (|has| $ (-1036 (-117))) ELT)) (-2299 (($ $) 99 T ELT)) (-3422 (($ $ (-1147 (-485)) $) 124 T ELT)) (-1354 (($ $) 72 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT)) (-3408 (($ (-117) $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 69 (|has| $ (-318 (-117))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 110 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 107 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 106 T ELT)) (-1577 (((-117) $ (-485) (-117)) 48 (|has| $ (-6 -3998)) ELT)) (-3114 (((-117) $ (-485)) 46 T ELT)) (-3427 (((-85) $ $) 129 T ELT)) (-3421 (((-485) (-1 (-85) (-117)) $) 96 T ELT) (((-485) (-117) $) 95 (|has| (-117) (-72)) ELT) (((-485) (-117) $ (-485)) 94 (|has| (-117) (-72)) ELT) (((-485) $ $ (-485)) 123 T ELT) (((-485) (-114) $ (-485)) 122 T ELT)) (-3616 (($ (-695) (-117)) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 81 (|has| (-117) (-757)) ELT)) (-3520 (($ (-1 (-85) (-117) (-117)) $ $) 100 T ELT) (($ $ $) 93 (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) 105 T ELT)) (-3247 (((-85) (-117) $) 109 (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 82 (|has| (-117) (-757)) ELT)) (-3423 (((-85) $ $ (-117)) 125 T ELT)) (-3424 (((-695) $ $ (-117)) 126 T ELT)) (-3328 (($ (-1 (-117) (-117)) $) 25 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) 26 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 60 T ELT)) (-3430 (($ $) 132 T ELT)) (-3431 (($ $) 133 T ELT)) (-3418 (($ $ (-117)) 116 T ELT) (($ $ (-114)) 115 T ELT)) (-3244 (((-1074) $) 20 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| (-117) (-1014)) ELT)) (-3803 (((-117) $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 68 T ELT)) (-2200 (($ $ (-117)) 36 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) 103 T ELT)) (-3770 (($ $ (-584 (-249 (-117)))) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) 22 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) 21 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) (-117) $) 40 (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2206 (((-584 (-117)) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 (((-117) $ (-485) (-117)) 45 T ELT) (((-117) $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT) (($ $ $) 112 T ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-1731 (((-695) (-117) $) 108 (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) 104 T ELT)) (-1735 (($ $ $ (-485)) 90 (|has| $ (-1036 (-117))) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| (-117) (-554 (-474))) ELT)) (-3532 (($ (-584 (-117))) 67 T ELT)) (-3804 (($ $ (-117)) 64 T ELT) (($ (-117) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (($ (-117)) 121 T ELT) (((-773) $) 15 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-2568 (((-85) $ $) 83 (|has| (-117) (-757)) ELT)) (-2569 (((-85) $ $) 85 (|has| (-117) (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) 84 (|has| (-117) (-757)) ELT)) (-2687 (((-85) $ $) 86 (|has| (-117) (-757)) ELT)) (-3959 (((-695) $) 101 T ELT)))
-(((-1059) (-113)) (T -1059))
-((-3431 (*1 *1 *1) (-4 *1 (-1059))) (-3430 (*1 *1 *1) (-4 *1 (-1059))) (-3429 (*1 *1 *1) (-4 *1 (-1059))) (-3428 (*1 *1 *1) (-4 *1 (-1059))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3422 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))) (-3421 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)))) (-3421 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114)))) (-3802 (*1 *1 *1 *1) (-4 *1 (-1059))))
-(-13 (-19 (-117)) (-10 -8 (-15 -3431 ($ $)) (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ((-85) $ $)) (-15 -3426 ((-85) $ $)) (-15 -3425 ((-85) $ $ (-485))) (-15 -3424 ((-695) $ $ (-117))) (-15 -3423 ((-85) $ $ (-117))) (-15 -3422 ($ $ (-1147 (-485)) $)) (-15 -3421 ((-485) $ $ (-485))) (-15 -3421 ((-485) (-114) $ (-485))) (-15 -3948 ($ (-117))) (-15 -3420 ((-584 $) $ (-117))) (-15 -3420 ((-584 $) $ (-114))) (-15 -3419 ($ $ (-117))) (-15 -3419 ($ $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3802 ($ $ $))))
-(((-34) . T) ((-72) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-72))) ((-553 (-773)) OR (|has| (-117) (-1014)) (|has| (-117) (-757)) (|has| (-117) (-553 (-773)))) ((-124 (-117)) . T) ((-554 (-474)) |has| (-117) (-554 (-474))) ((-241 (-485) (-117)) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-539 (-485) (-117)) . T) ((-456 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ((-13) . T) ((-594 (-117)) . T) ((-19 (-117)) . T) ((-757) |has| (-117) (-757)) ((-760) |has| (-117) (-757)) ((-1014) OR (|has| (-117) (-1014)) (|has| (-117) (-757))) ((-1036 (-117)) . T) ((-1130) . T))
-((-3438 (((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695)) 112 T ELT)) (-3435 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 61 T ELT)) (-3439 (((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)) 97 T ELT)) (-3433 (((-695) (-584 |#4|) (-584 |#5|)) 30 T ELT)) (-3436 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695)) 63 T ELT) (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85)) 65 T ELT)) (-3437 (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85)) 85 T ELT)) (-3974 (((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) 90 T ELT)) (-3434 (((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|) 60 T ELT)) (-3432 (((-695) (-584 |#4|) (-584 |#5|)) 21 T ELT)))
-(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3432 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3433 ((-695) (-584 |#4|) (-584 |#5|))) (-15 -3434 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3435 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695) (-85))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5| (-695))) (-15 -3436 ((-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) |#4| |#5|)) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85))) (-15 -3437 ((-584 |#5|) (-584 |#4|) (-584 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3438 ((-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-584 |#4|) (-584 |#5|) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-2 (|:| |done| (-584 |#5|)) (|:| |todo| (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))))) (-695))) (-15 -3974 ((-1074) (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|)))) (-15 -3439 ((-1186) (-584 (-2 (|:| |val| (-584 |#4|)) (|:| -1601 |#5|))) (-695)))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|) (-1021 |#1| |#2| |#3| |#4|)) (T -1060))
-((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8))) (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-584 *11)) (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11)))))) (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11)))) (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9)) (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3437 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3437 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-584 *4)) (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 117 T ELT) (((-584 $) (-584 |#4|) (-85)) 118 T ELT) (((-584 $) (-584 |#4|) (-85) (-85)) 116 T ELT) (((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-3777 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| $) 90 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) 28 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 44 T ELT)) (-3687 ((|#4| |#4| $) 72 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3200 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3440 (((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85)) 132 T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 37 T ELT)) (-2610 (((-584 |#4|) $) 18 T ELT)) (-3247 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3193 (((-3 |#4| (-584 $)) |#4| |#4| $) NIL T ELT)) (-3192 (((-584 (-2 (|:| |val| |#4|) (|:| -1601 $))) |#4| |#4| $) 110 T ELT)) (-3800 (((-3 |#4| #1#) $) 41 T ELT)) (-3194 (((-584 $) |#4| $) 95 T ELT)) (-3196 (((-3 (-85) (-584 $)) |#4| $) NIL T ELT)) (-3195 (((-584 (-2 (|:| |val| (-85)) (|:| -1601 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3240 (((-584 $) |#4| $) 114 T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 115 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT)) (-3441 (((-584 $) (-584 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3442 (($ |#4| $) 81 T ELT) (($ (-584 |#4|) $) 82 T ELT) (((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3699 (((-584 |#4|) $) NIL T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3701 (((-85) $ $) NIL T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 39 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3771 (($ $ |#4|) NIL T ELT) (((-584 $) |#4| $) 97 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) 92 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 17 T ELT)) (-3567 (($) 14 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) 13 T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 21 T ELT)) (-2912 (($ $ |#3|) 48 T ELT)) (-2914 (($ $ |#3|) 50 T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) 34 T ELT) (((-584 |#4|) $) 45 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-3191 (((-584 $) |#4| $) 62 T ELT) (((-584 $) |#4| (-584 $)) NIL T ELT) (((-584 $) (-584 |#4|) $) NIL T ELT) (((-584 $) (-584 |#4|) (-584 $)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3935 (((-85) |#3| $) 68 T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1021 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3442 ((-584 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85))) (-15 -3684 ((-584 $) (-584 |#4|) (-85) (-85) (-85) (-85))) (-15 -3441 ((-584 $) (-584 |#4|) (-85) (-85) (-85))) (-15 -3440 ((-2 (|:| |val| (-584 |#4|)) (|:| |towers| (-584 $))) (-584 |#4|) (-85) (-85))))) (-392) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1061))
-((-3442 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-978 *5 *6 *7)))) (-3684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3684 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3441 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 32 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 30 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 29 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-695)) 31 T ELT) (($ $ (-831)) 28 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ $ $) 27 T ELT)))
-(((-1062) (-113)) (T -1062))
-NIL
-(-13 (-23) (-664))
-(((-23) . T) ((-25) . T) ((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-664) . T) ((-1026) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3325 ((|#1| $) 38 T ELT)) (-3443 (($ (-584 |#1|)) 46 T ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3327 ((|#1| |#1| $) 41 T ELT)) (-3326 ((|#1| $) 36 T ELT)) (-2610 (((-584 |#1|) $) 19 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-1275 ((|#1| $) 39 T ELT)) (-3611 (($ |#1| $) 42 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1276 ((|#1| $) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 33 T ELT)) (-3567 (($) 44 T ELT)) (-3324 (((-695) $) 31 T ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-3402 (($ $) 28 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1277 (($ (-584 |#1|)) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 32 T ELT)))
-(((-1063 |#1|) (-13 (-1035 |#1|) (-10 -8 (-15 -3443 ($ (-584 |#1|))))) (-1130)) (T -1063))
-((-3443 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3)))))
-((-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 53 T ELT) ((|#2| $ (-485) |#2|) 50 T ELT)) (-3445 (((-85) $) 12 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3803 ((|#2| $) NIL T ELT) (($ $ (-695)) 17 T ELT)) (-2200 (($ $ |#2|) 49 T ELT)) (-3446 (((-85) $) 11 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) 36 T ELT) ((|#2| $ (-485)) 25 T ELT) ((|#2| $ (-485) |#2|) NIL T ELT)) (-3793 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3804 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-584 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1064 |#1| |#2|) (-10 -7 (-15 -3445 ((-85) |#1|)) (-15 -3446 ((-85) |#1|)) (-15 -3790 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -2200 (|#1| |#1| |#2|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3790 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -3790 (|#2| |#1| #1="last" |#2|)) (-15 -3790 (|#1| |#1| #2="rest" |#1|)) (-15 -3790 (|#2| |#1| #3="first" |#2|)) (-15 -3793 (|#1| |#1| |#2|)) (-15 -3793 (|#1| |#1| |#1|)) (-15 -3802 (|#2| |#1| #1#)) (-15 -3802 (|#1| |#1| #2#)) (-15 -3803 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| #3#)) (-15 -3803 (|#2| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3790 (|#2| |#1| #4="value" |#2|)) (-15 -3802 (|#2| |#1| #4#)) (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|))) (-1065 |#2|) (-1130)) (T -1064))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3797 ((|#1| $) 62 T ELT)) (-3799 (($ $) 64 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 99 (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) 82 T ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 116 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) 88 (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3798 ((|#1| $) 63 T ELT)) (-3726 (($) 6 T CONST)) (-3801 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-1354 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-1577 ((|#1| $ (-485) |#1|) 87 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 89 T ELT)) (-3445 (((-85) $) 85 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) 108 T ELT)) (-3721 (((-85) $ (-695)) 83 T ELT)) (-2201 (((-485) $) 97 (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) 96 (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3718 (((-85) $ (-695)) 84 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-2305 (($ $ $ (-485)) 115 T ELT) (($ |#1| $ (-485)) 114 T ELT)) (-2204 (((-584 (-485)) $) 94 T ELT)) (-2205 (((-85) (-485) $) 93 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2200 (($ $ |#1|) 98 (|has| $ (-6 -3998)) ELT)) (-3446 (((-85) $) 86 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 92 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1147 (-485))) 107 T ELT) ((|#1| $ (-485)) 91 T ELT) ((|#1| $ (-485) |#1|) 90 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-2306 (($ $ (-1147 (-485))) 113 T ELT) (($ $ (-485)) 112 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3794 (($ $) 59 T ELT)) (-3792 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 60 T ELT)) (-3796 (($ $) 61 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 100 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 106 T ELT)) (-3793 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-584 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-1065 |#1|) (-113) (-1130)) (T -1065))
-((-3446 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3721 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-3444 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))))
-(-13 (-1169 |t#1|) (-594 |t#1|) (-10 -8 (-15 -3446 ((-85) $)) (-15 -3445 ((-85) $)) (-15 -3718 ((-85) $ (-695))) (-15 -3721 ((-85) $ (-695))) (-15 -3444 ((-85) $ (-695)))))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T) ((-1169 |#1|) . T))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1066 |#1| |#2| |#3|) (-1108 |#1| |#2|) (-1014) (-1014) |#2|) (T -1066))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3447 (((-633 $) $) 17 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3448 (($) 18 T CONST)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3058 (((-85) $ $) 8 T ELT)))
-(((-1067) (-113)) (T -1067))
-((-3448 (*1 *1) (-4 *1 (-1067))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067)))))
-(-13 (-1014) (-10 -8 (-15 -3448 ($) -3954) (-15 -3447 ((-633 $) $))))
-(((-72) . T) ((-553 (-773)) . T) ((-13) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3450 (((-633 (-1050)) $) 28 T ELT)) (-3449 (((-1050) $) 16 T ELT)) (-3451 (((-1050) $) 18 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3452 (((-447) $) 14 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 38 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1068) (-13 (-996) (-10 -8 (-15 -3452 ((-447) $)) (-15 -3451 ((-1050) $)) (-15 -3450 ((-633 (-1050)) $)) (-15 -3449 ((-1050) $))))) (T -1068))
-((-3452 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))))
-((-3455 (((-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (-3453 (((-1070 |#1|) (-1070 |#1|)) 13 T ELT)) (-3456 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 20 T ELT)) (-3454 (((-1070 |#1|) (-1070 |#1|)) 15 T ELT)))
-(((-1069 |#1|) (-10 -7 (-15 -3453 ((-1070 |#1|) (-1070 |#1|))) (-15 -3454 ((-1070 |#1|) (-1070 |#1|))) (-15 -3455 ((-1070 |#1|) (-1070 |#1|))) (-15 -3456 ((-1070 |#1|) (-1070 |#1|) (-485) (-485)))) (-13 (-496) (-120))) (T -1069))
-((-3456 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1069 *4)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) NIL T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3799 (($ $) 60 T ELT)) (-2199 (((-1186) $ (-485) (-485)) 93 (|has| $ (-6 -3998)) ELT)) (-3787 (($ $ (-485)) 122 (|has| $ (-1036 |#1|)) ELT)) (-3444 (((-85) $ (-695)) NIL T ELT)) (-3461 (((-773) $) 46 (|has| |#1| (-1014)) ELT)) (-3460 (((-85)) 49 (|has| |#1| (-1014)) ELT)) (-3027 ((|#1| $ |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 109 (|has| $ (-1036 |#1|)) ELT) (($ $ (-485) $) 135 T ELT)) (-3788 ((|#1| $ |#1|) 119 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 114 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1036 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 106 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-485) |#1|) 72 (|has| $ (-6 -3998)) ELT)) (-3028 (($ $ (-584 $)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3798 ((|#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2324 (($ $) 11 T ELT)) (-3801 (($ $) 35 T ELT) (($ $ (-695)) 105 T ELT)) (-3466 (((-85) (-584 |#1|) $) 128 (|has| |#1| (-1014)) ELT)) (-3467 (($ (-584 |#1|)) 124 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3445 (((-85) $) NIL T ELT)) (-3462 (((-1186) (-485) $) 133 (|has| |#1| (-1014)) ELT)) (-2323 (((-695) $) 131 T ELT)) (-3033 (((-584 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-3721 (((-85) $ (-695)) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2202 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3718 (((-85) $ (-695)) NIL T ELT)) (-3032 (((-584 |#1|) $) NIL T ELT)) (-3529 (((-85) $) NIL T ELT)) (-2326 (($ $) 107 T ELT)) (-2327 (((-85) $) 10 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) NIL T ELT) (($ $ (-695)) NIL T ELT)) (-2305 (($ $ $ (-485)) NIL T ELT) (($ |#1| $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) 90 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3459 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2325 ((|#1| $) 7 T ELT)) (-3803 ((|#1| $) 34 T ELT) (($ $ (-695)) 58 T ELT)) (-3465 (((-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695))) (-695) $) 29 T ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3458 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2200 (($ $ |#1|) 85 (|has| $ (-6 -3998)) ELT)) (-3771 (($ $ (-485)) 40 T ELT)) (-3446 (((-85) $) 88 T ELT)) (-2328 (((-85) $) 9 T ELT)) (-2329 (((-85) $) 130 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 25 T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) 14 T ELT)) (-3567 (($) 53 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT) ((|#1| $ (-485)) 70 T ELT) ((|#1| $ (-485) |#1|) NIL T ELT)) (-3031 (((-485) $ $) 57 T ELT)) (-2306 (($ $ (-1147 (-485))) NIL T ELT) (($ $ (-485)) NIL T ELT)) (-3464 (($ (-1 $)) 56 T ELT)) (-3635 (((-85) $) 86 T ELT)) (-3794 (($ $) 87 T ELT)) (-3792 (($ $) 110 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) NIL T ELT)) (-3796 (($ $) NIL T ELT)) (-3402 (($ $) 52 T ELT)) (-3974 (((-474) $) NIL (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 68 T ELT)) (-3463 (($ |#1| $) 108 T ELT)) (-3793 (($ $ $) 112 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-584 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2893 (($ $) 59 T ELT)) (-3948 (($ (-584 |#1|)) 123 T ELT) (((-773) $) 50 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) NIL T ELT)) (-3030 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)))
-(((-1070 |#1|) (-13 (-617 |#1|) (-556 (-584 |#1|)) (-1036 |#1|) (-10 -8 (-15 -3467 ($ (-584 |#1|))) (IF (|has| |#1| (-1014)) (-15 -3466 ((-85) (-584 |#1|) $)) |%noBranch|) (-15 -3465 ((-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695))) (-695) $)) (-15 -3464 ($ (-1 $))) (-15 -3463 ($ |#1| $)) (IF (|has| |#1| (-1014)) (PROGN (-15 -3462 ((-1186) (-485) $)) (-15 -3461 ((-773) $)) (-15 -3460 ((-85)))) |%noBranch|) (-15 -3789 ($ $ (-485) $)) (-15 -3459 ($ (-1 |#1|))) (-15 -3459 ($ (-1 |#1| |#1|) |#1|)) (-15 -3458 ($ (-1 (-85) |#1|) $)) (-15 -3457 ($ (-1 (-85) |#1|) $)))) (-1130)) (T -1070))
-((-3467 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)) (-5 *1 (-1070 *4)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695)))) (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))) (-3462 (*1 *2 *3 *1) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)))) (-3461 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3460 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3459 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3458 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-((-3804 (((-1070 |#1|) (-1070 (-1070 |#1|))) 15 T ELT)))
-(((-1071 |#1|) (-10 -7 (-15 -3804 ((-1070 |#1|) (-1070 (-1070 |#1|))))) (-1130)) (T -1071))
-((-3804 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4)) (-4 *4 (-1130)))))
-((-3843 (((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 25 T ELT)) (-3844 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)) 26 T ELT)) (-3960 (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 16 T ELT)))
-(((-1072 |#1| |#2|) (-10 -7 (-15 -3960 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (-15 -3843 ((-1070 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|))) (-15 -3844 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1070 |#1|)))) (-1130) (-1130)) (T -1072))
-((-3844 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1072 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130)) (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6)))))
-((-3960 (((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)) 21 T ELT)))
-(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -3960 ((-1070 |#3|) (-1 |#3| |#1| |#2|) (-1070 |#1|) (-1070 |#2|)))) (-1130) (-1130) (-1130)) (T -1073))
-((-3960 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7)) (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8)) (-5 *1 (-1073 *6 *7 *8)))))
-((-2570 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3428 (($ $) 42 T ELT)) (-3429 (($ $) NIL T ELT)) (-3419 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-3426 (((-85) $ $) 67 T ELT)) (-3425 (((-85) $ $ (-485)) 62 T ELT)) (-3537 (($ (-485)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-447)) 11 T ELT)) (-3420 (((-584 $) $ (-117)) 76 T ELT) (((-584 $) $ (-114)) 77 T ELT)) (-1736 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-757)) ELT)) (-1734 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1036 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1036 (-117))) (|has| (-117) (-757))) ELT)) (-2911 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-757)) ELT)) (-3790 (((-117) $ (-485) (-117)) 59 (|has| $ (-6 -3998)) ELT) (((-117) $ (-1147 (-485)) (-117)) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3726 (($) NIL T CONST)) (-3417 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2298 (($ $) NIL (|has| $ (-1036 (-117))) ELT)) (-2299 (($ $) NIL T ELT)) (-3422 (($ $ (-1147 (-485)) $) 57 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3408 (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3844 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1577 (((-117) $ (-485) (-117)) NIL (|has| $ (-6 -3998)) ELT)) (-3114 (((-117) $ (-485)) NIL T ELT)) (-3427 (((-85) $ $) 91 T ELT)) (-3421 (((-485) (-1 (-85) (-117)) $) NIL T ELT) (((-485) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-485) (-117) $ (-485)) 64 (|has| (-117) (-72)) ELT) (((-485) $ $ (-485)) 63 T ELT) (((-485) (-114) $ (-485)) 66 T ELT)) (-3616 (($ (-695) (-117)) 14 T ELT)) (-2201 (((-485) $) 36 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3520 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-2610 (((-584 (-117)) $) NIL T ELT)) (-3247 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2202 (((-485) $) 50 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| (-117) (-757)) ELT)) (-3423 (((-85) $ $ (-117)) 92 T ELT)) (-3424 (((-695) $ $ (-117)) 88 T ELT)) (-3328 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3960 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3430 (($ $) 45 T ELT)) (-3431 (($ $) NIL T ELT)) (-3418 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3244 (((-1074) $) 46 (|has| (-117) (-1014)) ELT)) (-2305 (($ (-117) $ (-485)) NIL T ELT) (($ $ $ (-485)) 31 T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) 87 (|has| (-117) (-1014)) ELT)) (-3803 (((-117) $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2200 (($ $ (-117)) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT) (($ $ (-584 (-117)) (-584 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2206 (((-584 (-117)) $) NIL T ELT)) (-3405 (((-85) $) 19 T ELT)) (-3567 (($) 16 T ELT)) (-3802 (((-117) $ (-485) (-117)) NIL T ELT) (((-117) $ (-485)) 69 T ELT) (($ $ (-1147 (-485))) 29 T ELT) (($ $ $) NIL T ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-1731 (((-695) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-695) (-1 (-85) (-117)) $) NIL T ELT)) (-1735 (($ $ $ (-485)) 83 (|has| $ (-1036 (-117))) ELT)) (-3402 (($ $) 24 T ELT)) (-3974 (((-474) $) NIL (|has| (-117) (-554 (-474))) ELT)) (-3532 (($ (-584 (-117))) NIL T ELT)) (-3804 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-584 $)) 84 T ELT)) (-3948 (($ (-117)) NIL T ELT) (((-773) $) 35 (|has| (-117) (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1733 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-3058 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| (-117) (-757)) ELT)) (-2687 (((-85) $ $) 22 (|has| (-117) (-757)) ELT)) (-3959 (((-695) $) 20 T ELT)))
-(((-1074) (-13 (-1059) (-10 -8 (-15 -3537 ($ (-485))) (-15 -3537 ($ (-179))) (-15 -3537 ($ (-447)))))) (T -1074))
-((-3537 (*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074)))) (-3537 (*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074)))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-2199 (((-1186) $ (-1074) (-1074)) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-2232 (((-3 |#1| #1="failed") (-1074) $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1074) $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) ELT)) (-3844 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1577 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-1074)) NIL T ELT)) (-2201 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT)) (-2202 (((-1074) $) NIL (|has| (-1074) (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-2233 (((-584 (-1074)) $) NIL T ELT)) (-2234 (((-85) (-1074) $) NIL T ELT)) (-1275 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2204 (((-584 (-1074)) $) NIL T ELT)) (-2205 (((-85) (-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014)) (|has| |#1| (-1014))) ELT)) (-3803 ((|#1| $) NIL (|has| (-1074) (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-1074)) NIL T ELT) ((|#1| $ (-1074) |#1|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-553 (-773))) (|has| |#1| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1075 |#1|) (-1108 (-1074) |#1|) (-1014)) (T -1075))
-NIL
-((-3807 (((-1070 |#1|) (-1070 |#1|)) 83 T ELT)) (-3469 (((-3 (-1070 |#1|) #1="failed") (-1070 |#1|)) 39 T ELT)) (-3480 (((-1070 |#1|) (-350 (-485)) (-1070 |#1|)) 131 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3483 (((-1070 |#1|) |#1| (-1070 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3810 (((-1070 |#1|) (-1070 |#1|)) 97 T ELT)) (-3471 (((-1070 (-485)) (-485)) 63 T ELT)) (-3479 (((-1070 |#1|) (-1070 (-1070 |#1|))) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3806 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 103 T ELT)) (-3940 (((-1070 |#1|) |#1| (-485)) 51 T ELT)) (-3473 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3481 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3478 (((-1070 |#1|) |#1| (-1 (-1070 |#1|))) 115 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3482 (((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3811 (((-1070 |#1|) (-1070 |#1|)) 96 T ELT)) (-3812 (((-1070 |#1|) (-1070 |#1|)) 82 T ELT)) (-3805 (((-1070 |#1|) (-485) (-485) (-1070 |#1|)) 104 T ELT)) (-3814 (((-1070 |#1|) |#1| (-1070 |#1|)) 113 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3470 (((-1070 (-485)) (-485)) 62 T ELT)) (-3472 (((-1070 |#1|) |#1|) 65 T ELT)) (-3808 (((-1070 |#1|) (-1070 |#1|) (-485) (-485)) 100 T ELT)) (-3475 (((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|)) 72 T ELT)) (-3468 (((-3 (-1070 |#1|) #1#) (-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3809 (((-1070 |#1|) (-1070 |#1|)) 98 T ELT)) (-3770 (((-1070 |#1|) (-1070 |#1|) |#1|) 77 T ELT)) (-3474 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3476 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 78 T ELT)) (-3948 (((-1070 |#1|) |#1|) 73 T ELT)) (-3477 (((-1070 |#1|) (-1070 (-1070 |#1|))) 88 T ELT)) (-3951 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3839 (((-1070 |#1|) (-1070 |#1|)) 21 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 23 T ELT)) (-3841 (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 17 T ELT)) (* (((-1070 |#1|) (-1070 |#1|) |#1|) 29 T ELT) (((-1070 |#1|) |#1| (-1070 |#1|)) 26 T ELT) (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 27 T ELT)))
-(((-1076 |#1|) (-10 -7 (-15 -3841 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3839 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3839 ((-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 * ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 * ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3468 ((-3 (-1070 |#1|) #1="failed") (-1070 |#1|) (-1070 |#1|))) (-15 -3951 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3469 ((-3 (-1070 |#1|) #1#) (-1070 |#1|))) (-15 -3940 ((-1070 |#1|) |#1| (-485))) (-15 -3470 ((-1070 (-485)) (-485))) (-15 -3471 ((-1070 (-485)) (-485))) (-15 -3472 ((-1070 |#1|) |#1|)) (-15 -3473 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3474 ((-1070 |#1|) (-1070 |#1|))) (-15 -3475 ((-1070 |#1|) (-1 |#1| (-485)) (-1070 |#1|))) (-15 -3948 ((-1070 |#1|) |#1|)) (-15 -3770 ((-1070 |#1|) (-1070 |#1|) |#1|)) (-15 -3476 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3812 ((-1070 |#1|) (-1070 |#1|))) (-15 -3807 ((-1070 |#1|) (-1070 |#1|))) (-15 -3477 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3811 ((-1070 |#1|) (-1070 |#1|))) (-15 -3810 ((-1070 |#1|) (-1070 |#1|))) (-15 -3809 ((-1070 |#1|) (-1070 |#1|))) (-15 -3808 ((-1070 |#1|) (-1070 |#1|) (-485) (-485))) (-15 -3806 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (-15 -3805 ((-1070 |#1|) (-485) (-485) (-1070 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ((-1070 |#1|) |#1| (-1070 |#1|))) (-15 -3478 ((-1070 |#1|) |#1| (-1 (-1070 |#1|)))) (-15 -3479 ((-1070 |#1|) (-1070 (-1070 |#1|)))) (-15 -3480 ((-1070 |#1|) (-350 (-485)) (-1070 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3481 ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3482 ((-1070 |#1|) (-1 |#1| (-485)) |#1| (-1 (-1070 |#1|)))) (-15 -3483 ((-1070 |#1|) |#1| (-1070 |#1|)))) |%noBranch|)) (-962)) (T -1076))
-((-3483 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))) (-3481 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3480 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485))) (-5 *1 (-1076 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3814 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3805 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3806 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3808 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)) (-4 *4 (-962)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3476 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3475 (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962)) (-5 *1 (-1076 *4)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3472 (*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962)) (-5 *3 (-485)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))) (-3469 (*1 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3951 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3468 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-((-3494 (((-1070 |#1|) (-1070 |#1|)) 102 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 59 T ELT)) (-3485 (((-2 (|:| -3492 (-1070 |#1|)) (|:| -3493 (-1070 |#1|))) (-1070 |#1|)) 98 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 99 T ELT)) (-3484 (((-2 (|:| -3640 (-1070 |#1|)) (|:| -3636 (-1070 |#1|))) (-1070 |#1|)) 54 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 55 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 104 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3945 (((-1070 |#1|) (-1070 |#1|)) 37 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 105 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 67 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 103 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 62 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 100 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 113 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 88 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 107 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 84 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 117 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 92 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 119 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 94 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 115 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 90 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 109 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 86 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 41 T ELT)))
-(((-1077 |#1|) (-10 -7 (-15 -3945 ((-1070 |#1|) (-1070 |#1|))) (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3484 ((-2 (|:| -3640 (-1070 |#1|)) (|:| -3636 (-1070 |#1|))) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3641 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3485 ((-2 (|:| -3492 (-1070 |#1|)) (|:| -3493 (-1070 |#1|))) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1077))
-((-3503 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3492 (-1070 *4)) (|:| -3493 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-2 (|:| -3640 (-1070 *4)) (|:| -3636 (-1070 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3)))))
-((-3494 (((-1070 |#1|) (-1070 |#1|)) 60 T ELT)) (-3641 (((-1070 |#1|) (-1070 |#1|)) 42 T ELT)) (-3492 (((-1070 |#1|) (-1070 |#1|)) 56 T ELT)) (-3640 (((-1070 |#1|) (-1070 |#1|)) 38 T ELT)) (-3496 (((-1070 |#1|) (-1070 |#1|)) 63 T ELT)) (-3639 (((-1070 |#1|) (-1070 |#1|)) 45 T ELT)) (-3944 (((-1070 |#1|) (-1070 |#1|)) 34 T ELT)) (-3945 (((-1070 |#1|) (-1070 |#1|)) 29 T ELT)) (-3497 (((-1070 |#1|) (-1070 |#1|)) 64 T ELT)) (-3638 (((-1070 |#1|) (-1070 |#1|)) 46 T ELT)) (-3495 (((-1070 |#1|) (-1070 |#1|)) 61 T ELT)) (-3637 (((-1070 |#1|) (-1070 |#1|)) 43 T ELT)) (-3493 (((-1070 |#1|) (-1070 |#1|)) 58 T ELT)) (-3636 (((-1070 |#1|) (-1070 |#1|)) 40 T ELT)) (-3500 (((-1070 |#1|) (-1070 |#1|)) 68 T ELT)) (-3488 (((-1070 |#1|) (-1070 |#1|)) 50 T ELT)) (-3498 (((-1070 |#1|) (-1070 |#1|)) 66 T ELT)) (-3486 (((-1070 |#1|) (-1070 |#1|)) 48 T ELT)) (-3502 (((-1070 |#1|) (-1070 |#1|)) 71 T ELT)) (-3490 (((-1070 |#1|) (-1070 |#1|)) 53 T ELT)) (-3503 (((-1070 |#1|) (-1070 |#1|)) 72 T ELT)) (-3491 (((-1070 |#1|) (-1070 |#1|)) 54 T ELT)) (-3501 (((-1070 |#1|) (-1070 |#1|)) 70 T ELT)) (-3489 (((-1070 |#1|) (-1070 |#1|)) 52 T ELT)) (-3499 (((-1070 |#1|) (-1070 |#1|)) 69 T ELT)) (-3487 (((-1070 |#1|) (-1070 |#1|)) 51 T ELT)) (** (((-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) 36 T ELT)))
-(((-1078 |#1|) (-10 -7 (-15 -3945 ((-1070 |#1|) (-1070 |#1|))) (-15 -3944 ((-1070 |#1|) (-1070 |#1|))) (-15 ** ((-1070 |#1|) (-1070 |#1|) (-1070 |#1|))) (-15 -3640 ((-1070 |#1|) (-1070 |#1|))) (-15 -3636 ((-1070 |#1|) (-1070 |#1|))) (-15 -3641 ((-1070 |#1|) (-1070 |#1|))) (-15 -3637 ((-1070 |#1|) (-1070 |#1|))) (-15 -3639 ((-1070 |#1|) (-1070 |#1|))) (-15 -3638 ((-1070 |#1|) (-1070 |#1|))) (-15 -3486 ((-1070 |#1|) (-1070 |#1|))) (-15 -3487 ((-1070 |#1|) (-1070 |#1|))) (-15 -3488 ((-1070 |#1|) (-1070 |#1|))) (-15 -3489 ((-1070 |#1|) (-1070 |#1|))) (-15 -3490 ((-1070 |#1|) (-1070 |#1|))) (-15 -3491 ((-1070 |#1|) (-1070 |#1|))) (-15 -3492 ((-1070 |#1|) (-1070 |#1|))) (-15 -3493 ((-1070 |#1|) (-1070 |#1|))) (-15 -3494 ((-1070 |#1|) (-1070 |#1|))) (-15 -3495 ((-1070 |#1|) (-1070 |#1|))) (-15 -3496 ((-1070 |#1|) (-1070 |#1|))) (-15 -3497 ((-1070 |#1|) (-1070 |#1|))) (-15 -3498 ((-1070 |#1|) (-1070 |#1|))) (-15 -3499 ((-1070 |#1|) (-1070 |#1|))) (-15 -3500 ((-1070 |#1|) (-1070 |#1|))) (-15 -3501 ((-1070 |#1|) (-1070 |#1|))) (-15 -3502 ((-1070 |#1|) (-1070 |#1|))) (-15 -3503 ((-1070 |#1|) (-1070 |#1|)))) (-38 (-350 (-485)))) (T -1078))
-((-3503 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3502 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
-((-3504 (((-870 |#2|) |#2| |#2|) 51 T ELT)) (-3505 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT)))
-(((-1079 |#1| |#2|) (-10 -7 (-15 -3504 ((-870 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3505 (|#2| |#2| |#1|)) |%noBranch|)) (-496) (-1156 |#1|)) (T -1079))
-((-3505 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))) (-3504 (*1 *2 *3 *3) (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1156 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3513 (($ $ (-584 (-695))) 79 T ELT)) (-3890 (($) 33 T ELT)) (-3522 (($ $) 51 T ELT)) (-3753 (((-584 $) $) 60 T ELT)) (-3528 (((-85) $) 19 T ELT)) (-3506 (((-584 (-855 |#2|)) $) 86 T ELT)) (-3507 (($ $) 80 T ELT)) (-3523 (((-695) $) 47 T ELT)) (-3616 (($) 32 T ELT)) (-3516 (($ $ (-584 (-695)) (-855 |#2|)) 72 T ELT) (($ $ (-584 (-695)) (-695)) 73 T ELT) (($ $ (-695) (-855 |#2|)) 75 T ELT)) (-3520 (($ $ $) 57 T ELT) (($ (-584 $)) 59 T ELT)) (-3508 (((-695) $) 87 T ELT)) (-3529 (((-85) $) 15 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3527 (((-85) $) 22 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3509 (((-145) $) 85 T ELT)) (-3512 (((-855 |#2|) $) 81 T ELT)) (-3511 (((-695) $) 82 T ELT)) (-3510 (((-85) $) 84 T ELT)) (-3514 (($ $ (-584 (-695)) (-145)) 78 T ELT)) (-3521 (($ $) 52 T ELT)) (-3948 (((-773) $) 99 T ELT)) (-3515 (($ $ (-584 (-695)) (-85)) 77 T ELT)) (-3524 (((-584 $) $) 11 T ELT)) (-3525 (($ $ (-695)) 46 T ELT)) (-3526 (($ $) 43 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3517 (($ $ $ (-855 |#2|) (-695)) 68 T ELT)) (-3518 (($ $ (-855 |#2|)) 67 T ELT)) (-3519 (($ $ (-584 (-695)) (-855 |#2|)) 66 T ELT) (($ $ (-584 (-695)) (-695)) 70 T ELT) (((-695) $ (-855 |#2|)) 71 T ELT)) (-3058 (((-85) $ $) 92 T ELT)))
-(((-1080 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3529 ((-85) $)) (-15 -3528 ((-85) $)) (-15 -3527 ((-85) $)) (-15 -3616 ($)) (-15 -3890 ($)) (-15 -3526 ($ $)) (-15 -3525 ($ $ (-695))) (-15 -3524 ((-584 $) $)) (-15 -3523 ((-695) $)) (-15 -3522 ($ $)) (-15 -3521 ($ $)) (-15 -3520 ($ $ $)) (-15 -3520 ($ (-584 $))) (-15 -3753 ((-584 $) $)) (-15 -3519 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3518 ($ $ (-855 |#2|))) (-15 -3517 ($ $ $ (-855 |#2|) (-695))) (-15 -3516 ($ $ (-584 (-695)) (-855 |#2|))) (-15 -3519 ($ $ (-584 (-695)) (-695))) (-15 -3516 ($ $ (-584 (-695)) (-695))) (-15 -3519 ((-695) $ (-855 |#2|))) (-15 -3516 ($ $ (-695) (-855 |#2|))) (-15 -3515 ($ $ (-584 (-695)) (-85))) (-15 -3514 ($ $ (-584 (-695)) (-145))) (-15 -3513 ($ $ (-584 (-695)))) (-15 -3512 ((-855 |#2|) $)) (-15 -3511 ((-695) $)) (-15 -3510 ((-85) $)) (-15 -3509 ((-145) $)) (-15 -3508 ((-695) $)) (-15 -3507 ($ $)) (-15 -3506 ((-584 (-855 |#2|)) $)))) (-831) (-962)) (T -1080))
-((-3529 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3616 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3890 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3526 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3525 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3522 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3518 (*1 *1 *1 *2) (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)))) (-3517 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3519 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)) (-4 *5 (-962)))) (-3513 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))) (-3507 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3530 ((|#2| $) 11 T ELT)) (-3531 ((|#1| $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3532 (($ |#1| |#2|) 9 T ELT)) (-3948 (((-773) $) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1081 |#1| |#2|) (-13 (-1014) (-10 -8 (-15 -3532 ($ |#1| |#2|)) (-15 -3531 (|#1| $)) (-15 -3530 (|#2| $)))) (-1014) (-1014)) (T -1081))
-((-3532 (*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3531 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3533 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 16 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1082) (-13 (-996) (-10 -8 (-15 -3533 ((-1050) $))))) (T -1082))
-((-3533 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3773 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) 75 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3733 (((-1090 |#1| |#2| |#3|) $) 42 T ELT)) (-3730 (((-3 (-1090 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3731 (((-1090 |#1| |#2| |#3|) $) 33 T ELT)) (-3494 (($ $) 116 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 92 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 112 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 88 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) 120 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 96 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1090 |#1| |#2| |#3|) $) 140 T ELT) (((-1091) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) 37 T ELT) (($ (-485) $) 38 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-1090 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ #1#) $) 54 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 74 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 76 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 28 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) NIL T ELT) (((-485) $ (-485)) 26 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1090 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 19 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 81 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1090 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1090 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1090 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) (-1090 |#1| |#2| |#3|)) 36 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 79 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 80 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 158 T ELT)) (-3468 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 82 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-456 (-1091) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1090 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1090 |#1| |#2| |#3|)) (-584 (-1090 |#1| |#2| |#3|))) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-260 (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) NIL T ELT) (($ $ $) 61 (|has| (-485) (-1026)) ELT) (($ $ (-1090 |#1| |#2| |#3|)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-241 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1090 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 43 T ELT)) (-3497 (($ $) 122 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 98 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 118 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 94 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 114 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 90 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-474) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 162 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1090 |#1| |#2| |#3|)) 30 T ELT) (($ (-1177 |#2|)) 25 T ELT) (($ (-1091)) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3679 ((|#1| $ (-485)) 77 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-3133 (((-1090 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 128 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 104 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) 124 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 100 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 132 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 108 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 110 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 130 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 106 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 126 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 102 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1090 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1090 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 23 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 60 T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1090 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1090 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1083 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1090 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1083))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-3534 ((|#2| |#2| (-1005 |#2|)) 26 T ELT) ((|#2| |#2| (-1091)) 28 T ELT)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| |#2| (-1091))) (-15 -3534 (|#2| |#2| (-1005 |#2|)))) (-13 (-496) (-951 (-485)) (-581 (-485))) (-13 (-364 |#1|) (-133) (-27) (-1116))) (T -1084))
-((-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116))))))
-((-3534 (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))) 31 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|))) 44 T ELT) (((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091)) 33 T ELT) (((-350 (-858 |#1|)) (-858 |#1|) (-1091)) 36 T ELT)))
-(((-1085 |#1|) (-10 -7 (-15 -3534 ((-350 (-858 |#1|)) (-858 |#1|) (-1091))) (-15 -3534 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1091))) (-15 -3534 ((-350 (-858 |#1|)) (-858 |#1|) (-1005 (-858 |#1|)))) (-15 -3534 ((-3 (-350 (-858 |#1|)) (-265 |#1|)) (-350 (-858 |#1|)) (-1005 (-350 (-858 |#1|)))))) (-13 (-496) (-951 (-485)))) (T -1085))
-((-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1085 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-350 (-858 *5))))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5)))))
-((-2570 (((-85) $ $) 172 T ELT)) (-3190 (((-85) $) 44 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#1|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) 83 T ELT) (((-1086 |#1|) $) 72 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) 166 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) 160 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 97 (|has| |#1| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) 117 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) 62 T ELT)) (-3762 (($ $ (-695)) 64 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#1| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) 81 T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#1|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) 133 T ELT)) (-3755 (($ $ $) NIL (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3505 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 70 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3535 (((-773) $ (-773)) 150 T ELT)) (-3774 (((-695) $ $) NIL (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 49 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) 74 T ELT) (($ (-1086 $) (-995)) 91 T ELT)) (-3779 (($ $ (-695)) 52 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 89 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 155 T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3768 (((-1086 |#1|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) NIL T ELT) (((-631 |#1|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) 77 T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 61 T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) 51 T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 105 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3740 (($ $ (-695) |#1| $) 125 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 110 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#1|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#1|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) 55 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 79 T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-995)) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 151 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-995)) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) 42 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 122 T ELT)) (-3951 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 92 T ELT)) (** (($ $ (-831)) 14 T ELT) (($ $ (-695)) 12 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1086 |#1|) (-13 (-1156 |#1|) (-10 -8 (-15 -3535 ((-773) $ (-773))) (-15 -3740 ($ $ (-695) |#1| $)))) (-962)) (T -1086))
-((-3535 (*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))) (-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))))
-((-3960 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13 T ELT)))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -3960 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-962) (-962)) (T -1087))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6)))))
-((-3973 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 51 T ELT)) (-3734 (((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))) 52 T ELT)))
-(((-1088 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|)))) (-15 -3973 ((-348 (-1086 (-350 |#4|))) (-1086 (-350 |#4|))))) (-718) (-757) (-392) (-862 |#3| |#1| |#2|)) (T -1088))
-((-3973 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7))))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7)) (-5 *3 (-1086 (-350 *7))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1090 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3158 (((-1083 |#1| |#2| |#3|) $) NIL T ELT) (((-1090 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3783 (((-350 (-485)) $) 59 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) (-1083 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 20 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (((-1083 |#1| |#2| |#3|) $) 41 T ELT)) (-3780 (((-3 (-1083 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3781 (((-1083 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 62 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1083 |#1| |#2| |#3|)) 30 T ELT) (($ (-1090 |#1| |#2| |#3|)) 31 T ELT) (($ (-1177 |#2|)) 26 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 22 T CONST)) (-2668 (($) 16 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 24 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1089 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1083 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1090 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1089))
-((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 129 T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 119 T ELT)) (-3813 (((-1149 |#2| |#1|) $ (-695)) 69 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 85 T ELT) (($ $ (-695) (-695)) 82 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 105 T ELT)) (-3494 (($ $) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1070 |#1|)) 113 T ELT)) (-3496 (($ $) 177 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 25 T ELT)) (-3818 (($ $) 28 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 81 T ELT) (((-858 |#1|) $ (-695) (-695)) 83 T ELT)) (-2894 (((-85) $) 124 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) 126 T ELT) (((-695) $ (-695)) 128 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 13 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) 135 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $) 133 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 134 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3771 (($ $ (-695)) 15 T ELT)) (-3468 (((-3 $ #1#) $ $) 26 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 137 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 122 T ELT) (($ $ $) 132 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 31 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3497 (($ $) 179 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 206 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 55 T ELT) (($ (-1177 |#2|)) 36 T ELT)) (-3819 (((-1070 |#1|) $) 101 T ELT)) (-3679 ((|#1| $ (-695)) 121 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 58 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 185 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 181 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 189 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 191 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 187 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 183 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 17 T CONST)) (-2668 (($) 20 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3841 (($ $ $) 35 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 141 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1090 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1149 |#2| |#1|))) (-15 -3813 ((-1149 |#2| |#1|) $ (-695))) (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1090))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1090 *3 *4 *5)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3539 (($ $ (-584 (-773))) 48 T ELT)) (-3540 (($ $ (-584 (-773))) 46 T ELT)) (-3537 (((-1074) $) 88 T ELT)) (-3542 (((-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))) $) 95 T ELT)) (-3543 (((-85) $) 86 T ELT)) (-3541 (($ $ (-584 (-584 (-773)))) 45 T ELT) (($ $ (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) 85 T ELT)) (-3726 (($) 151 T CONST)) (-3159 (((-3 (-447) "failed") $) 155 T ELT)) (-3158 (((-447) $) NIL T ELT)) (-3545 (((-1186)) 123 T ELT)) (-2798 (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 55 T ELT) (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 62 T ELT)) (-3616 (($) 109 T ELT) (($ $) 118 T ELT)) (-3544 (($ $) 87 T ELT)) (-2533 (($ $ $) NIL T ELT)) (-2859 (($ $ $) NIL T ELT)) (-3536 (((-584 $) $) 124 T ELT)) (-3244 (((-1074) $) 101 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3802 (($ $ (-584 (-773))) 47 T ELT)) (-3974 (((-474) $) 33 T ELT) (((-1091) $) 34 T ELT) (((-801 (-485)) $) 66 T ELT) (((-801 (-330)) $) 64 T ELT)) (-3948 (((-773) $) 41 T ELT) (($ (-1074)) 35 T ELT) (($ (-447)) 153 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3538 (($ $ (-584 (-773))) 49 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 37 T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) 38 T ELT)))
-(((-1091) (-13 (-757) (-554 (-474)) (-554 (-1091)) (-556 (-1074)) (-951 (-447)) (-554 (-801 (-485))) (-554 (-801 (-330))) (-797 (-485)) (-797 (-330)) (-10 -8 (-15 -3616 ($)) (-15 -3616 ($ $)) (-15 -3545 ((-1186))) (-15 -3544 ($ $)) (-15 -3543 ((-85) $)) (-15 -3542 ((-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))) $)) (-15 -3541 ($ $ (-584 (-584 (-773))))) (-15 -3541 ($ $ (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773)))))) (-15 -3540 ($ $ (-584 (-773)))) (-15 -3539 ($ $ (-584 (-773)))) (-15 -3538 ($ $ (-584 (-773)))) (-15 -3802 ($ $ (-584 (-773)))) (-15 -3537 ((-1074) $)) (-15 -3536 ((-584 $) $)) (-15 -3726 ($) -3954)))) (T -1091))
-((-3616 (*1 *1) (-5 *1 (-1091))) (-3616 (*1 *1 *1) (-5 *1 (-1091))) (-3545 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091)))) (-3544 (*1 *1 *1) (-5 *1 (-1091))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773))) (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773))) (|:| |args| (-584 (-773))))) (-5 *1 (-1091)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))) (-3726 (*1 *1) (-5 *1 (-1091))))
-((-3546 (((-1180 |#1|) |#1| (-831)) 18 T ELT) (((-1180 |#1|) (-584 |#1|)) 25 T ELT)))
-(((-1092 |#1|) (-10 -7 (-15 -3546 ((-1180 |#1|) (-584 |#1|))) (-15 -3546 ((-1180 |#1|) |#1| (-831)))) (-962)) (T -1092))
-((-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))) (-3546 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3158 (((-485) $) NIL (|has| |#1| (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| |#1| (-951 (-350 (-485)))) ELT) ((|#1| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3505 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1625 (($ $ |#1| (-885) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 18 T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-885)) NIL T ELT)) (-2822 (((-885) $) NIL T ELT)) (-1626 (($ (-1 (-885) (-885)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#1| $) NIL T ELT)) (-3740 (($ $ (-885) |#1| $) NIL (-12 (|has| (-885) (-104)) (|has| |#1| (-496))) ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-496)) ELT)) (-3950 (((-885) $) NIL T ELT)) (-2819 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-951 (-350 (-485))))) ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-885)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1093 |#1|) (-13 (-277 |#1| (-885)) (-10 -8 (IF (|has| |#1| (-496)) (IF (|has| (-885) (-104)) (-15 -3740 ($ $ (-885) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962)) (T -1093))
-((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
-((-3547 (((-1095) (-1091) $) 26 T ELT)) (-3557 (($) 30 T ELT)) (-3549 (((-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) (-1091) $) 23 T ELT)) (-3551 (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)) $) 42 T ELT) (((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) 43 T ELT) (((-1186) (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) 44 T ELT)) (-3559 (((-1186) (-1091)) 59 T ELT)) (-3550 (((-1186) (-1091) $) 56 T ELT) (((-1186) (-1091)) 57 T ELT) (((-1186)) 58 T ELT)) (-3555 (((-1186) (-1091)) 38 T ELT)) (-3553 (((-1091)) 37 T ELT)) (-3567 (($) 35 T ELT)) (-3566 (((-379) (-1091) (-379) (-1091) $) 46 T ELT) (((-379) (-584 (-1091)) (-379) (-1091) $) 50 T ELT) (((-379) (-1091) (-379)) 47 T ELT) (((-379) (-1091) (-379) (-1091)) 51 T ELT)) (-3554 (((-1091)) 36 T ELT)) (-3948 (((-773) $) 29 T ELT)) (-3556 (((-1186)) 31 T ELT) (((-1186) (-1091)) 34 T ELT)) (-3548 (((-584 (-1091)) (-1091) $) 25 T ELT)) (-3552 (((-1186) (-1091) (-584 (-1091)) $) 39 T ELT) (((-1186) (-1091) (-584 (-1091))) 40 T ELT) (((-1186) (-584 (-1091))) 41 T ELT)))
-(((-1094) (-13 (-553 (-773)) (-10 -8 (-15 -3557 ($)) (-15 -3556 ((-1186))) (-15 -3556 ((-1186) (-1091))) (-15 -3566 ((-379) (-1091) (-379) (-1091) $)) (-15 -3566 ((-379) (-584 (-1091)) (-379) (-1091) $)) (-15 -3566 ((-379) (-1091) (-379))) (-15 -3566 ((-379) (-1091) (-379) (-1091))) (-15 -3555 ((-1186) (-1091))) (-15 -3554 ((-1091))) (-15 -3553 ((-1091))) (-15 -3552 ((-1186) (-1091) (-584 (-1091)) $)) (-15 -3552 ((-1186) (-1091) (-584 (-1091)))) (-15 -3552 ((-1186) (-584 (-1091)))) (-15 -3551 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1="void")) $)) (-15 -3551 ((-1186) (-1091) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))) (-15 -3551 ((-1186) (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))) (-15 -3550 ((-1186) (-1091) $)) (-15 -3550 ((-1186) (-1091))) (-15 -3550 ((-1186))) (-15 -3559 ((-1186) (-1091))) (-15 -3567 ($)) (-15 -3549 ((-3 (|:| |fst| (-377)) (|:| -3912 #1#)) (-1091) $)) (-15 -3548 ((-584 (-1091)) (-1091) $)) (-15 -3547 ((-1095) (-1091) $))))) (T -1094))
-((-3557 (*1 *1) (-5 *1 (-1094))) (-3556 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3556 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3566 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3554 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3553 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3550 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))) (-3567 (*1 *1) (-5 *1 (-1094))) (-3549 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *1 (-1094)))) (-3548 (*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
-((-3561 (((-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $) 66 T ELT)) (-3563 (((-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $) 47 T ELT)) (-3558 (($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))) 17 T ELT)) (-3559 (((-1186) $) 73 T ELT)) (-3564 (((-584 (-1091)) $) 22 T ELT)) (-3560 (((-1016) $) 60 T ELT)) (-3565 (((-379) (-1091) $) 27 T ELT)) (-3562 (((-584 (-1091)) $) 30 T ELT)) (-3567 (($) 19 T ELT)) (-3566 (((-379) (-584 (-1091)) (-379) $) 25 T ELT) (((-379) (-1091) (-379) $) 24 T ELT)) (-3948 (((-773) $) 12 T ELT) (((-1103 (-1091) (-379)) $) 13 T ELT)))
-(((-1095) (-13 (-553 (-773)) (-10 -8 (-15 -3948 ((-1103 (-1091) (-379)) $)) (-15 -3567 ($)) (-15 -3566 ((-379) (-584 (-1091)) (-379) $)) (-15 -3566 ((-379) (-1091) (-379) $)) (-15 -3565 ((-379) (-1091) $)) (-15 -3564 ((-584 (-1091)) $)) (-15 -3563 ((-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))) (-377) $)) (-15 -3562 ((-584 (-1091)) $)) (-15 -3561 ((-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) $)) (-15 -3560 ((-1016) $)) (-15 -3559 ((-1186) $)) (-15 -3558 ($ (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))))))) (T -1095))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095)))) (-3567 (*1 *1) (-5 *1 (-1095))) (-3566 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))) (-3566 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3565 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3563 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))) (-5 *1 (-1095)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-3 (|:| -3544 (-1091)) (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))) (-5 *1 (-1095)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095)))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379))))) (-5 *1 (-1095)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3159 (((-3 (-485) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-447) #1#) $) 43 T ELT) (((-3 (-1074) #1#) $) 47 T ELT)) (-3158 (((-485) $) 30 T ELT) (((-179) $) 36 T ELT) (((-447) $) 40 T ELT) (((-1074) $) 48 T ELT)) (-3572 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3571 (((-3 (-485) (-179) (-447) (-1074) $) $) 56 T ELT)) (-3570 (((-584 $) $) 58 T ELT)) (-3974 (((-1016) $) 24 T ELT) (($ (-1016)) 25 T ELT)) (-3569 (((-85) $) 57 T ELT)) (-3948 (((-773) $) 23 T ELT) (($ (-485)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-447)) 38 T ELT) (($ (-1074)) 44 T ELT) (((-474) $) 60 T ELT) (((-485) $) 31 T ELT) (((-179) $) 37 T ELT) (((-447) $) 41 T ELT) (((-1074) $) 49 T ELT)) (-3568 (((-85) $ (|[\|\|]| (-485))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-447))) 19 T ELT) (((-85) $ (|[\|\|]| (-1074))) 16 T ELT)) (-3573 (($ (-447) (-584 $)) 51 T ELT) (($ $ (-584 $)) 52 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3574 (((-485) $) 27 T ELT) (((-179) $) 33 T ELT) (((-447) $) 39 T ELT) (((-1074) $) 45 T ELT)) (-3058 (((-85) $ $) 7 T ELT)))
-(((-1096) (-13 (-1176) (-1014) (-951 (-485)) (-951 (-179)) (-951 (-447)) (-951 (-1074)) (-553 (-474)) (-10 -8 (-15 -3974 ((-1016) $)) (-15 -3974 ($ (-1016))) (-15 -3948 ((-485) $)) (-15 -3574 ((-485) $)) (-15 -3948 ((-179) $)) (-15 -3574 ((-179) $)) (-15 -3948 ((-447) $)) (-15 -3574 ((-447) $)) (-15 -3948 ((-1074) $)) (-15 -3574 ((-1074) $)) (-15 -3573 ($ (-447) (-584 $))) (-15 -3573 ($ $ (-584 $))) (-15 -3572 ((-85) $)) (-15 -3571 ((-3 (-485) (-179) (-447) (-1074) $) $)) (-15 -3570 ((-584 $) $)) (-15 -3569 ((-85) $)) (-15 -3568 ((-85) $ (|[\|\|]| (-485)))) (-15 -3568 ((-85) $ (|[\|\|]| (-179)))) (-15 -3568 ((-85) $ (|[\|\|]| (-447)))) (-15 -3568 ((-85) $ (|[\|\|]| (-1074))))))) (T -1096))
-((-3974 (*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096)))) (-3568 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3138 (((-695)) 21 T ELT)) (-3726 (($) 10 T CONST)) (-2996 (($) 25 T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2011 (((-831) $) 23 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) 22 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)))
-(((-1097 |#1|) (-13 (-753) (-10 -8 (-15 -3726 ($) -3954))) (-831)) (T -1097))
-((-3726 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831)))))
-((-485) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) 24 T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) 18 T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2859 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) 20 T ELT)) (-3728 (($ $ $) 19 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 22 T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) 21 T ELT)))
-(((-1098 |#1|) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954))) (-831)) (T -1098))
-((-3728 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3727 (*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) (-3726 (*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))))
-((-695) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 9 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 7 T ELT)))
-(((-1099) (-1014)) (T -1099))
-NIL
-((-3576 (((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 69 T ELT)) (-3575 (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|)))) 81 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|))) 77 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091)) 82 T ELT) (((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091)) 76 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|))))) 108 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|)))) 107 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091))) 109 T ELT) (((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091))) 106 T ELT)))
-(((-1100 |#1|) (-10 -7 (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))) (-584 (-1091)))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-350 (-858 |#1|))))) (-15 -3575 ((-584 (-584 (-249 (-350 (-858 |#1|))))) (-584 (-249 (-350 (-858 |#1|)))))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)) (-1091))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))) (-1091))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-350 (-858 |#1|)))) (-15 -3575 ((-584 (-249 (-350 (-858 |#1|)))) (-249 (-350 (-858 |#1|))))) (-15 -3576 ((-584 (-584 (-858 |#1|))) (-584 (-350 (-858 |#1|))) (-584 (-1091))))) (-496)) (T -1100))
-((-3576 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-249 (-350 (-858 *4)))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4)) (-5 *3 (-350 (-858 *4))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5)))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5))))) (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5))))) (-3575 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4))))))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4)))) (-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)) (-5 *3 (-584 (-249 (-350 (-858 *5))))))) (-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5)))))
-((-3581 (((-1074)) 7 T ELT)) (-3578 (((-1074)) 11 T CONST)) (-3577 (((-1186) (-1074)) 13 T ELT)) (-3580 (((-1074)) 8 T CONST)) (-3579 (((-103)) 10 T CONST)))
-(((-1101) (-13 (-1130) (-10 -7 (-15 -3581 ((-1074))) (-15 -3580 ((-1074)) -3954) (-15 -3579 ((-103)) -3954) (-15 -3578 ((-1074)) -3954) (-15 -3577 ((-1186) (-1074)))))) (T -1101))
-((-3581 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3580 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3579 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101)))) (-3578 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101)))))
-((-3585 (((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 56 T ELT)) (-3588 (((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|))) 38 T ELT)) (-3589 (((-1104 (-584 |#1|)) (-584 |#1|)) 49 T ELT)) (-3591 (((-584 (-584 |#1|)) (-584 |#1|)) 45 T ELT)) (-3594 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))) 53 T ELT)) (-3593 (((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|)))) 52 T ELT)) (-3590 (((-584 (-584 |#1|)) (-584 (-584 |#1|))) 43 T ELT)) (-3592 (((-584 |#1|) (-584 |#1|)) 46 T ELT)) (-3584 (((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 32 T ELT)) (-3583 (((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|)))) 29 T ELT)) (-3582 (((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|))) 24 T ELT)) (-3586 (((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|)))) 58 T ELT)) (-3587 (((-584 (-584 |#1|)) (-1104 (-584 |#1|))) 60 T ELT)))
-(((-1102 |#1|) (-10 -7 (-15 -3582 ((-2 (|:| |fs| (-85)) (|:| |sd| (-584 |#1|)) (|:| |td| (-584 (-584 |#1|)))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 |#1|)))) (-15 -3583 ((-584 (-584 (-584 |#1|))) (-1 (-85) |#1| |#1|) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3584 ((-584 (-584 (-584 |#1|))) (-584 |#1|) (-584 (-584 (-584 |#1|))))) (-15 -3585 ((-584 (-584 |#1|)) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3586 ((-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))))) (-15 -3587 ((-584 (-584 |#1|)) (-1104 (-584 |#1|)))) (-15 -3588 ((-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)))) (-15 -3589 ((-1104 (-584 |#1|)) (-584 |#1|))) (-15 -3590 ((-584 (-584 |#1|)) (-584 (-584 |#1|)))) (-15 -3591 ((-584 (-584 |#1|)) (-584 |#1|))) (-15 -3592 ((-584 |#1|) (-584 |#1|))) (-15 -3593 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 |#1|) (-584 (-584 (-584 |#1|))) (-584 (-584 |#1|)) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))) (-584 (-584 (-584 |#1|))))) (-15 -3594 ((-2 (|:| |f1| (-584 |#1|)) (|:| |f2| (-584 (-584 (-584 |#1|)))) (|:| |f3| (-584 (-584 |#1|))) (|:| |f4| (-584 (-584 (-584 |#1|))))) (-584 (-584 (-584 |#1|)))))) (-757)) (T -1102))
-((-3594 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4)))) (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4)))))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))) (-3593 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5)))) (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))) (-3592 (*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))) (-3589 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4)) (-5 *3 (-584 *4)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 *4))))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4)) (-4 *4 (-757)))) (-3585 (*1 *2 *2 *3) (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *1 (-1102 *4)))) (-3583 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))) (-3582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4)))) (-5 *1 (-1102 *6)) (-5 *5 (-584 *4)))))
-((-2570 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3601 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2199 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-1354 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1577 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) NIL T ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-2233 (((-584 |#1|) $) NIL T ELT)) (-2234 (((-85) |#1| $) NIL T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2204 (((-584 |#1|) $) NIL T ELT)) (-2205 (((-85) |#1| $) NIL T ELT)) (-3245 (((-1034) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ELT)) (-3803 ((|#2| $) NIL (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2200 (($ $ |#2|) NIL (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1467 (($) NIL T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3948 (((-773) $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773)))) ELT)) (-1266 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1103 |#1| |#2|) (-1108 |#1| |#2|) (-1014) (-1014)) (T -1103))
-NIL
-((-3595 (($ (-584 (-584 |#1|))) 10 T ELT)) (-3596 (((-584 (-584 |#1|)) $) 11 T ELT)) (-3948 (((-773) $) 33 T ELT)))
-(((-1104 |#1|) (-10 -8 (-15 -3595 ($ (-584 (-584 |#1|)))) (-15 -3596 ((-584 (-584 |#1|)) $)) (-15 -3948 ((-773) $))) (-1014)) (T -1104))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))) (-3595 (*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3597 (($ |#1| (-55)) 11 T ELT)) (-3544 ((|#1| $) 13 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2635 (((-85) $ |#1|) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2523 (((-55) $) 15 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1105 |#1|) (-13 (-748 |#1|) (-10 -8 (-15 -3597 ($ |#1| (-55))))) (-1014)) (T -1105))
-((-3597 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014)))))
-((-3598 ((|#1| (-584 |#1|)) 46 T ELT)) (-3600 ((|#1| |#1| (-485)) 24 T ELT)) (-3599 (((-1086 |#1|) |#1| (-831)) 20 T ELT)))
-(((-1106 |#1|) (-10 -7 (-15 -3598 (|#1| (-584 |#1|))) (-15 -3599 ((-1086 |#1|) |#1| (-831))) (-15 -3600 (|#1| |#1| (-485)))) (-312)) (T -1106))
-((-3600 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))))
-((-3601 (($) 10 T ELT) (($ (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3407 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2610 (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 53 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1275 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3611 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2204 (((-584 |#2|) $) 19 T ELT)) (-2205 (((-85) |#2| $) 61 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1276 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-2206 (((-584 |#3|) $) 37 T ELT)) (-3948 (((-773) $) 27 T ELT)) (-3058 (((-85) $ $) 47 T ELT)))
-(((-1107 |#1| |#2| |#3|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3601 (|#1| (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))))) (-15 -3601 (|#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3328 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2610 ((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3407 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -2205 ((-85) |#2| |#1|)) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3407 (|#1| (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1355 ((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1275 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3611 (|#1| (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3328 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1014) (-1014)) (T -1107))
-NIL
-((-2570 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3601 (($) 91 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 90 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 79 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 56 T ELT)) (-3726 (($) 6 T CONST)) (-1354 (($ $) 50 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 57 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 68 T ELT)) (-2201 ((|#1| $) 76 (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 75 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 93 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 92 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 89 T ELT)) (-3244 (((-1074) $) 20 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 58 T ELT)) (-2234 (((-85) |#1| $) 59 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2204 (((-584 |#1|) $) 73 T ELT)) (-2205 (((-85) |#1| $) 72 T ELT)) (-3245 (((-1034) $) 19 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 77 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2200 (($ $ |#2|) 78 (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 100 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 71 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT)) (-1467 (($) 44 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1731 (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 101 T ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 51 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3948 (((-773) $) 15 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1733 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 99 T ELT)) (-3058 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3959 (((-695) $) 98 T ELT)))
-(((-1108 |#1| |#2|) (-113) (-1014) (-1014)) (T -1108))
-((-3601 (*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-584 (-2 (|:| -3862 *3) (|:| |entry| *4)))) (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4)))) (-3960 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(-13 (-550 |t#1| |t#2|) (-318 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3601 ($)) (-15 -3601 ($ (-584 (-2 (|:| -3862 |t#1|) (|:| |entry| |t#2|))))) (-15 -3960 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-76 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1014)) (|has| |#2| (-72))) ((-553 (-773)) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-1014)) (|has| |#2| (-553 (-773)))) ((-124 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-554 (-474)) |has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ((-183 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-539 |#1| |#2|) . T) ((-456 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ((-456 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ((-13) . T) ((-550 |#1| |#2|) . T) ((-1014) OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014))) ((-1036 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) . T) ((-1130) . T))
-((-3607 (((-85)) 29 T ELT)) (-3604 (((-1186) (-1074)) 31 T ELT)) (-3608 (((-85)) 41 T ELT)) (-3605 (((-1186)) 39 T ELT)) (-3603 (((-1186) (-1074) (-1074)) 30 T ELT)) (-3609 (((-85)) 42 T ELT)) (-3611 (((-1186) |#1| |#2|) 53 T ELT)) (-3602 (((-1186)) 26 T ELT)) (-3610 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3606 (((-1186)) 40 T ELT)))
-(((-1109 |#1| |#2|) (-10 -7 (-15 -3602 ((-1186))) (-15 -3603 ((-1186) (-1074) (-1074))) (-15 -3604 ((-1186) (-1074))) (-15 -3605 ((-1186))) (-15 -3606 ((-1186))) (-15 -3607 ((-85))) (-15 -3608 ((-85))) (-15 -3609 ((-85))) (-15 -3610 ((-3 |#2| "failed") |#1|)) (-15 -3611 ((-1186) |#1| |#2|))) (-1014) (-1014)) (T -1109))
-((-3611 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3610 (*1 *2 *3) (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))) (-3609 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3606 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3605 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3603 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)))) (-3602 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3617 (((-584 (-1074)) $) 37 T ELT)) (-3613 (((-584 (-1074)) $ (-584 (-1074))) 40 T ELT)) (-3612 (((-584 (-1074)) $ (-584 (-1074))) 39 T ELT)) (-3614 (((-584 (-1074)) $ (-584 (-1074))) 41 T ELT)) (-3615 (((-584 (-1074)) $) 36 T ELT)) (-3616 (($) 26 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3618 (((-584 (-1074)) $) 38 T ELT)) (-3619 (((-1186) $ (-485)) 33 T ELT) (((-1186) $) 34 T ELT)) (-3974 (($ (-773) (-485)) 31 T ELT) (($ (-773) (-485) (-773)) NIL T ELT)) (-3948 (((-773) $) 47 T ELT) (($ (-773)) 30 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1110) (-13 (-1014) (-556 (-773)) (-10 -8 (-15 -3974 ($ (-773) (-485))) (-15 -3974 ($ (-773) (-485) (-773))) (-15 -3619 ((-1186) $ (-485))) (-15 -3619 ((-1186) $)) (-15 -3618 ((-584 (-1074)) $)) (-15 -3617 ((-584 (-1074)) $)) (-15 -3616 ($)) (-15 -3615 ((-584 (-1074)) $)) (-15 -3614 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3613 ((-584 (-1074)) $ (-584 (-1074)))) (-15 -3612 ((-584 (-1074)) $ (-584 (-1074))))))) (T -1110))
-((-3974 (*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3974 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3616 (*1 *1) (-5 *1 (-1110))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-((-3948 (((-1110) |#1|) 11 T ELT)))
-(((-1111 |#1|) (-10 -7 (-15 -3948 ((-1110) |#1|))) (-1014)) (T -1111))
-((-3948 (*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3624 (((-1074) $ (-1074)) 21 T ELT) (((-1074) $) 20 T ELT)) (-1698 (((-1074) $ (-1074)) 19 T ELT)) (-1702 (($ $ (-1074)) NIL T ELT)) (-3622 (((-3 (-1074) #1="failed") $) 11 T ELT)) (-3623 (((-1074) $) 8 T ELT)) (-3621 (((-3 (-1074) #1#) $) 12 T ELT)) (-1699 (((-1074) $) 9 T ELT)) (-1703 (($ (-338)) NIL T ELT) (($ (-338) (-1074)) NIL T ELT)) (-3544 (((-338) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-1700 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3620 (((-85) $) 25 T ELT)) (-3948 (((-773) $) NIL T ELT)) (-1701 (($ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1112) (-13 (-314 (-338) (-1074)) (-10 -8 (-15 -3624 ((-1074) $ (-1074))) (-15 -3624 ((-1074) $)) (-15 -3623 ((-1074) $)) (-15 -3622 ((-3 (-1074) #1="failed") $)) (-15 -3621 ((-3 (-1074) #1#) $)) (-15 -3620 ((-85) $))))) (T -1112))
-((-3624 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3622 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112)))))
-((-3625 (((-3 (-485) #1="failed") |#1|) 19 T ELT)) (-3626 (((-3 (-485) #1#) |#1|) 14 T ELT)) (-3627 (((-485) (-1074)) 33 T ELT)))
-(((-1113 |#1|) (-10 -7 (-15 -3625 ((-3 (-485) #1="failed") |#1|)) (-15 -3626 ((-3 (-485) #1#) |#1|)) (-15 -3627 ((-485) (-1074)))) (-962)) (T -1113))
-((-3627 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))) (-3626 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-((-3628 (((-1048 (-179))) 9 T ELT)))
-(((-1114) (-10 -7 (-15 -3628 ((-1048 (-179)))))) (T -1114))
-((-3628 (*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114)))))
-((-3629 (($) 12 T ELT)) (-3500 (($ $) 36 T ELT)) (-3498 (($ $) 34 T ELT)) (-3486 (($ $) 26 T ELT)) (-3502 (($ $) 18 T ELT)) (-3503 (($ $) 16 T ELT)) (-3501 (($ $) 20 T ELT)) (-3489 (($ $) 31 T ELT)) (-3499 (($ $) 35 T ELT)) (-3487 (($ $) 30 T ELT)))
-(((-1115 |#1|) (-10 -7 (-15 -3629 (|#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3487 (|#1| |#1|))) (-1116)) (T -1115))
-NIL
-((-3494 (($ $) 26 T ELT)) (-3641 (($ $) 11 T ELT)) (-3492 (($ $) 27 T ELT)) (-3640 (($ $) 10 T ELT)) (-3496 (($ $) 28 T ELT)) (-3639 (($ $) 9 T ELT)) (-3629 (($) 16 T ELT)) (-3944 (($ $) 19 T ELT)) (-3945 (($ $) 18 T ELT)) (-3497 (($ $) 29 T ELT)) (-3638 (($ $) 8 T ELT)) (-3495 (($ $) 30 T ELT)) (-3637 (($ $) 7 T ELT)) (-3493 (($ $) 31 T ELT)) (-3636 (($ $) 6 T ELT)) (-3500 (($ $) 20 T ELT)) (-3488 (($ $) 32 T ELT)) (-3498 (($ $) 21 T ELT)) (-3486 (($ $) 33 T ELT)) (-3502 (($ $) 22 T ELT)) (-3490 (($ $) 34 T ELT)) (-3503 (($ $) 23 T ELT)) (-3491 (($ $) 35 T ELT)) (-3501 (($ $) 24 T ELT)) (-3489 (($ $) 36 T ELT)) (-3499 (($ $) 25 T ELT)) (-3487 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
-(((-1116) (-113)) (T -1116))
-((-3629 (*1 *1) (-4 *1 (-1116))))
-(-13 (-1119) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3629 ($))))
-(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1119) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 19 T ELT)) (-3634 (($ |#1| (-584 $)) 28 T ELT) (($ (-584 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3027 ((|#1| $ |#1|) 14 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 13 (|has| $ (-1036 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3033 (((-584 $) $) 59 T ELT)) (-3029 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2610 (((-584 |#1|) $) 70 T ELT)) (-3247 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3032 (((-584 |#1|) $) 55 T ELT)) (-3529 (((-85) $) 53 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 101 T ELT)) (-3405 (((-85) $) 9 T ELT)) (-3567 (($) 10 T ELT)) (-3802 ((|#1| $ #1#) NIL T ELT)) (-3031 (((-485) $ $) 48 T ELT)) (-3630 (((-584 $) $) 83 T ELT)) (-3631 (((-85) $ $) 104 T ELT)) (-3632 (((-584 $) $) 99 T ELT)) (-3633 (($ $) 100 T ELT)) (-3635 (((-85) $) 76 T ELT)) (-1731 (((-695) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 25 T ELT)) (-3402 (($ $) 82 T ELT)) (-3948 (((-773) $) 85 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 12 T ELT)) (-3030 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3058 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 80 T ELT)))
-(((-1117 |#1|) (-13 (-924 |#1|) (-318 |#1|) (-1036 |#1|) (-10 -8 (-15 -3634 ($ |#1| (-584 $))) (-15 -3634 ($ (-584 |#1|))) (-15 -3634 ($ |#1|)) (-15 -3635 ((-85) $)) (-15 -3633 ($ $)) (-15 -3632 ((-584 $) $)) (-15 -3631 ((-85) $ $)) (-15 -3630 ((-584 $) $)))) (-1014)) (T -1117))
-((-3635 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3634 (*1 *1 *2 *3) (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3634 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3)))) (-3634 (*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3631 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-((-3641 (($ $) 15 T ELT)) (-3639 (($ $) 12 T ELT)) (-3638 (($ $) 10 T ELT)) (-3637 (($ $) 17 T ELT)))
-(((-1118 |#1|) (-10 -7 (-15 -3637 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3641 (|#1| |#1|))) (-1119)) (T -1118))
-NIL
-((-3641 (($ $) 11 T ELT)) (-3640 (($ $) 10 T ELT)) (-3639 (($ $) 9 T ELT)) (-3638 (($ $) 8 T ELT)) (-3637 (($ $) 7 T ELT)) (-3636 (($ $) 6 T ELT)))
-(((-1119) (-113)) (T -1119))
-((-3641 (*1 *1 *1) (-4 *1 (-1119))) (-3640 (*1 *1 *1) (-4 *1 (-1119))) (-3639 (*1 *1 *1) (-4 *1 (-1119))) (-3638 (*1 *1 *1) (-4 *1 (-1119))) (-3637 (*1 *1 *1) (-4 *1 (-1119))) (-3636 (*1 *1 *1) (-4 *1 (-1119))))
-(-13 (-10 -8 (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $)) (-15 -3641 ($ $))))
-((-3644 ((|#2| |#2|) 95 T ELT)) (-3647 (((-85) |#2|) 29 T ELT)) (-3645 ((|#2| |#2|) 33 T ELT)) (-3646 ((|#2| |#2|) 35 T ELT)) (-3642 ((|#2| |#2| (-1091)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3648 (((-142 |#2|) |#2|) 31 T ELT)) (-3643 ((|#2| |#2| (-1091)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
-(((-1120 |#1| |#2|) (-10 -7 (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1091))) (-15 -3643 (|#2| |#2|)) (-15 -3643 (|#2| |#2| (-1091))) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -3647 ((-85) |#2|)) (-15 -3648 ((-142 |#2|) |#2|))) (-13 (-392) (-951 (-485)) (-581 (-485))) (-13 (-27) (-1116) (-364 |#1|))) (T -1120))
-((-3648 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3643 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *3))))))
-((-3649 ((|#4| |#4| |#1|) 31 T ELT)) (-3650 ((|#4| |#4| |#1|) 32 T ELT)))
-(((-1121 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3649 (|#4| |#4| |#1|)) (-15 -3650 (|#4| |#4| |#1|))) (-496) (-324 |#1|) (-324 |#1|) (-628 |#1| |#2| |#3|)) (T -1121))
-((-3650 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))) (-3649 (*1 *2 *2 *3) (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-((-3668 ((|#2| |#2|) 148 T ELT)) (-3670 ((|#2| |#2|) 145 T ELT)) (-3667 ((|#2| |#2|) 136 T ELT)) (-3669 ((|#2| |#2|) 133 T ELT)) (-3666 ((|#2| |#2|) 141 T ELT)) (-3665 ((|#2| |#2|) 129 T ELT)) (-3654 ((|#2| |#2|) 44 T ELT)) (-3653 ((|#2| |#2|) 105 T ELT)) (-3651 ((|#2| |#2|) 88 T ELT)) (-3664 ((|#2| |#2|) 143 T ELT)) (-3663 ((|#2| |#2|) 131 T ELT)) (-3676 ((|#2| |#2|) 153 T ELT)) (-3674 ((|#2| |#2|) 151 T ELT)) (-3675 ((|#2| |#2|) 152 T ELT)) (-3673 ((|#2| |#2|) 150 T ELT)) (-3652 ((|#2| |#2|) 163 T ELT)) (-3677 ((|#2| |#2|) 30 (-12 (|has| |#2| (-554 (-801 |#1|))) (|has| |#2| (-797 |#1|)) (|has| |#1| (-554 (-801 |#1|))) (|has| |#1| (-797 |#1|))) ELT)) (-3655 ((|#2| |#2|) 89 T ELT)) (-3656 ((|#2| |#2|) 154 T ELT)) (-3965 ((|#2| |#2|) 155 T ELT)) (-3662 ((|#2| |#2|) 142 T ELT)) (-3661 ((|#2| |#2|) 130 T ELT)) (-3660 ((|#2| |#2|) 149 T ELT)) (-3672 ((|#2| |#2|) 147 T ELT)) (-3659 ((|#2| |#2|) 137 T ELT)) (-3671 ((|#2| |#2|) 135 T ELT)) (-3658 ((|#2| |#2|) 139 T ELT)) (-3657 ((|#2| |#2|) 127 T ELT)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -3965 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (-15 -3676 (|#2| |#2|)) (IF (|has| |#1| (-797 |#1|)) (IF (|has| |#1| (-554 (-801 |#1|))) (IF (|has| |#2| (-554 (-801 |#1|))) (IF (|has| |#2| (-797 |#1|)) (-15 -3677 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1116))) (T -1122))
-((-3677 (*1 *2 *2) (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))) (-3965 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-1091)) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3816 (((-858 |#1|) $ (-695)) 18 T ELT) (((-858 |#1|) $ (-695) (-695)) NIL T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $ (-1091)) NIL T ELT) (((-695) $ (-1091) (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ $ (-584 (-1091)) (-584 (-470 (-1091)))) NIL T ELT) (($ $ (-1091) (-470 (-1091))) NIL T ELT) (($ |#1| (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3814 (($ $ (-1091)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3678 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3771 (($ $ (-695)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (($ $ (-1091) $) NIL T ELT) (($ $ (-584 (-1091)) (-584 $)) NIL T ELT) (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT)) (-3760 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3950 (((-470 (-1091)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-1091)) NIL T ELT) (($ (-858 |#1|)) NIL T ELT)) (-3679 ((|#1| $ (-470 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (((-858 |#1|) $ (-695)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-2671 (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1123 |#1|) (-13 (-680 |#1| (-1091)) (-10 -8 (-15 -3679 ((-858 |#1|) $ (-695))) (-15 -3948 ($ (-1091))) (-15 -3948 ($ (-858 |#1|))) (IF (|has| |#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $ (-1091) |#1|)) (-15 -3678 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-962)) (T -1123))
-((-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3)))) (-3814 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))) (-3678 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4)) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
-((-3695 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3690 ((|#5| |#5| $) 83 T ELT)) (-3712 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3691 (((-584 |#5|) (-584 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3159 (((-3 $ #1#) (-584 |#5|)) 134 T ELT)) (-3801 (((-3 $ #1#) $) 119 T ELT)) (-3687 ((|#5| |#5| $) 101 T ELT)) (-3696 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3685 ((|#5| |#5| $) 105 T ELT)) (-3844 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#5|)) (|:| -1703 (-584 |#5|))) $) 63 T ELT)) (-3697 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3182 ((|#4| $) 115 T ELT)) (-3800 (((-3 |#5| #1#) $) 117 T ELT)) (-3699 (((-584 |#5|) $) 55 T ELT)) (-3693 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3688 ((|#5| |#5| $) 89 T ELT)) (-3701 (((-85) $ $) 29 T ELT)) (-3694 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3689 ((|#5| |#5| $) 86 T ELT)) (-3803 (((-3 |#5| #1#) $) 116 T ELT)) (-3771 (($ $ |#5|) 135 T ELT)) (-3950 (((-695) $) 60 T ELT)) (-3532 (($ (-584 |#5|)) 132 T ELT)) (-2912 (($ $ |#4|) 130 T ELT)) (-2914 (($ $ |#4|) 128 T ELT)) (-3686 (($ $) 127 T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 |#5|) $) 120 T ELT)) (-3680 (((-695) $) 139 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3692 (((-85) $ (-1 (-85) |#5| (-584 |#5|))) 107 T ELT)) (-3682 (((-584 |#4|) $) 122 T ELT)) (-3935 (((-85) |#4| $) 125 T ELT)) (-3058 (((-85) $ $) 20 T ELT)))
-(((-1124 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3680 ((-695) |#1|)) (-15 -3771 (|#1| |#1| |#5|)) (-15 -3712 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3935 ((-85) |#4| |#1|)) (-15 -3682 ((-584 |#4|) |#1|)) (-15 -3801 ((-3 |#1| #1#) |#1|)) (-15 -3800 ((-3 |#5| #1#) |#1|)) (-15 -3803 ((-3 |#5| #1#) |#1|)) (-15 -3685 (|#5| |#5| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 (|#5| |#5| |#1|)) (-15 -3691 ((-584 |#5|) (-584 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3844 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3693 ((-85) |#1|)) (-15 -3694 ((-85) |#1|)) (-15 -3695 ((-85) |#1|)) (-15 -3692 ((-85) |#1| (-1 (-85) |#5| (-584 |#5|)))) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1|)) (-15 -3696 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3697 ((-85) |#1|)) (-15 -3697 ((-85) |#5| |#1|)) (-15 -3698 ((-2 (|:| -3863 (-584 |#5|)) (|:| -1703 (-584 |#5|))) |#1|)) (-15 -3950 ((-695) |#1|)) (-15 -3699 ((-584 |#5|) |#1|)) (-15 -3700 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3700 ((-3 (-2 (|:| |bas| |#1|) (|:| -3325 (-584 |#5|))) #1#) (-584 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3701 ((-85) |#1| |#1|)) (-15 -2912 (|#1| |#1| |#4|)) (-15 -2914 (|#1| |#1| |#4|)) (-15 -3182 (|#4| |#1|)) (-15 -3159 ((-3 |#1| #1#) (-584 |#5|))) (-15 -3948 ((-584 |#5|) |#1|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3844 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3532 (|#1| (-584 |#5|))) (-15 -3712 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3058 ((-85) |#1| |#1|))) (-1125 |#2| |#3| |#4| |#5|) (-496) (-718) (-757) (-978 |#2| |#3| |#4|)) (T -1124))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) 91 T ELT)) (-3684 (((-584 $) (-584 |#4|)) 92 T ELT)) (-3083 (((-584 |#3|) $) 38 T ELT)) (-2910 (((-85) $) 31 T ELT)) (-2901 (((-85) $) 22 (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3690 ((|#4| |#4| $) 98 T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3712 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3726 (($) 57 T CONST)) (-2906 (((-85) $) 27 (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) 29 (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) 28 (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) 30 (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 23 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) 24 (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ "failed") (-584 |#4|)) 41 T ELT)) (-3158 (($ (-584 |#4|)) 40 T ELT)) (-3801 (((-3 $ "failed") $) 88 T ELT)) (-3687 ((|#4| |#4| $) 95 T ELT)) (-1354 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3408 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3685 ((|#4| |#4| $) 93 T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) 111 T ELT)) (-3697 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3182 ((|#3| $) 39 T ELT)) (-2610 (((-584 |#4|) $) 47 T ELT)) (-3247 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3328 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3960 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2916 (((-584 |#3|) $) 37 T ELT)) (-2915 (((-85) |#3| $) 36 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3800 (((-3 |#4| "failed") $) 89 T ELT)) (-3699 (((-584 |#4|) $) 113 T ELT)) (-3693 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3688 ((|#4| |#4| $) 96 T ELT)) (-3701 (((-85) $ $) 116 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3689 ((|#4| |#4| $) 97 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3803 (((-3 |#4| "failed") $) 90 T ELT)) (-1355 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3681 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3771 (($ $ |#4|) 83 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) 53 T ELT)) (-3405 (((-85) $) 56 T ELT)) (-3567 (($) 55 T ELT)) (-3950 (((-695) $) 112 T ELT)) (-1731 (((-695) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) 46 T ELT)) (-3402 (($ $) 54 T ELT)) (-3974 (((-474) $) 70 (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) 64 T ELT)) (-2912 (($ $ |#3|) 33 T ELT)) (-2914 (($ $ |#3|) 35 T ELT)) (-3686 (($ $) 94 T ELT)) (-2913 (($ $ |#3|) 34 T ELT)) (-3948 (((-773) $) 13 T ELT) (((-584 |#4|) $) 42 T ELT)) (-3680 (((-695) $) 82 (|has| |#3| (-320)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) "failed") (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) 104 T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3682 (((-584 |#3|) $) 87 T ELT)) (-3935 (((-85) |#3| $) 86 T ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3959 (((-695) $) 43 T ELT)))
-(((-1125 |#1| |#2| |#3| |#4|) (-113) (-496) (-718) (-757) (-978 |t#1| |t#2| |t#3|)) (T -1125))
-((-3701 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3700 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *8)))) (-5 *3 (-584 *8)) (-4 *1 (-1125 *5 *6 *7 *8)))) (-3700 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *9)))) (-5 *3 (-584 *9)) (-4 *1 (-1125 *6 *7 *8 *9)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-2 (|:| -3863 (-584 *6)) (|:| -1703 (-584 *6)))))) (-3697 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3696 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))) (-3844 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *2 (-978 *5 *6 *7)))) (-3691 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)))) (-3690 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3684 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3683 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-584 (-2 (|:| -3863 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7)) (-4 *1 (-1125 *4 *5 *6 *7)))) (-3803 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3800 (*1 *2 *1) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3801 (*1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))) (-3935 (*1 *2 *3 *1) (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))) (-3712 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3)))) (-3681 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695)))))
-(-13 (-890 |t#1| |t#2| |t#3| |t#4|) (-1036 |t#4|) (-10 -8 (-15 -3701 ((-85) $ $)) (-15 -3700 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3700 ((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |t#4|))) "failed") (-584 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-584 |t#4|) $)) (-15 -3950 ((-695) $)) (-15 -3698 ((-2 (|:| -3863 (-584 |t#4|)) (|:| -1703 (-584 |t#4|))) $)) (-15 -3697 ((-85) |t#4| $)) (-15 -3697 ((-85) $)) (-15 -3696 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3695 ((-85) |t#4| $)) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) $ (-1 (-85) |t#4| (-584 |t#4|)))) (-15 -3695 ((-85) $)) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) $)) (-15 -3844 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3691 ((-584 |t#4|) (-584 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3690 (|t#4| |t#4| $)) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 ($ $)) (-15 -3685 (|t#4| |t#4| $)) (-15 -3684 ((-584 $) (-584 |t#4|))) (-15 -3683 ((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |t#4|)))) (-584 |t#4|))) (-15 -3803 ((-3 |t#4| "failed") $)) (-15 -3800 ((-3 |t#4| "failed") $)) (-15 -3801 ((-3 $ "failed") $)) (-15 -3682 ((-584 |t#3|) $)) (-15 -3935 ((-85) |t#3| $)) (-15 -3712 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3681 ((-3 $ "failed") $ |t#4|)) (-15 -3771 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3680 ((-695) $)) |%noBranch|)))
-(((-34) . T) ((-72) . T) ((-553 (-584 |#4|)) . T) ((-553 (-773)) . T) ((-124 |#4|) . T) ((-554 (-474)) |has| |#4| (-554 (-474))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-456 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ((-13) . T) ((-890 |#1| |#2| |#3| |#4|) . T) ((-1014) . T) ((-1036 |#4|) . T) ((-1130) . T))
-((-3707 (($ |#1| (-584 (-584 (-855 (-179)))) (-85)) 19 T ELT)) (-3706 (((-85) $ (-85)) 18 T ELT)) (-3705 (((-85) $) 17 T ELT)) (-3703 (((-584 (-584 (-855 (-179)))) $) 13 T ELT)) (-3702 ((|#1| $) 8 T ELT)) (-3704 (((-85) $) 15 T ELT)))
-(((-1126 |#1|) (-10 -8 (-15 -3702 (|#1| $)) (-15 -3703 ((-584 (-584 (-855 (-179)))) $)) (-15 -3704 ((-85) $)) (-15 -3705 ((-85) $)) (-15 -3706 ((-85) $ (-85))) (-15 -3707 ($ |#1| (-584 (-584 (-855 (-179)))) (-85)))) (-888)) (T -1126))
-((-3707 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2)) (-4 *2 (-888)))) (-3706 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))) (-3702 (*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888)))))
-((-3709 (((-855 (-179)) (-855 (-179))) 31 T ELT)) (-3708 (((-855 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3711 (((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179)))) 57 T ELT)) (-3838 (((-179) (-855 (-179)) (-855 (-179))) 27 T ELT)) (-3836 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 28 T ELT)) (-3710 (((-584 (-584 (-179))) (-485)) 45 T ELT)) (-3839 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 26 T ELT)) (-3841 (((-855 (-179)) (-855 (-179)) (-855 (-179))) 24 T ELT)) (* (((-855 (-179)) (-179) (-855 (-179))) 22 T ELT)))
-(((-1127) (-10 -7 (-15 -3708 ((-855 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-855 (-179)) (-179) (-855 (-179)))) (-15 -3841 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3839 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3838 ((-179) (-855 (-179)) (-855 (-179)))) (-15 -3836 ((-855 (-179)) (-855 (-179)) (-855 (-179)))) (-15 -3709 ((-855 (-179)) (-855 (-179)))) (-15 -3710 ((-584 (-584 (-179))) (-485))) (-15 -3711 ((-584 (-855 (-179))) (-855 (-179)) (-855 (-179)) (-855 (-179)) (-179) (-584 (-584 (-179))))))) (T -1127))
-((-3711 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4))) (-5 *1 (-1127)) (-5 *3 (-855 *4)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3836 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3838 (*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127)))) (-3839 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (-3841 (*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127)))) (-3708 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179)))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3712 ((|#1| $ (-695)) 18 T ELT)) (-3835 (((-695) $) 13 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3948 (((-870 |#1|) $) 12 T ELT) (($ (-870 |#1|)) 11 T ELT) (((-773) $) 29 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3058 (((-85) $ $) 22 (|has| |#1| (-1014)) ELT)))
-(((-1128 |#1|) (-13 (-430 (-870 |#1|)) (-10 -8 (-15 -3712 (|#1| $ (-695))) (-15 -3835 ((-695) $)) (IF (|has| |#1| (-553 (-773))) (-6 (-553 (-773))) |%noBranch|) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|))) (-1130)) (T -1128))
-((-3712 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130)))))
-((-3715 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)) 92 T ELT)) (-3713 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 84 T ELT)) (-3714 (((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 68 T ELT)))
-(((-1129 |#1|) (-10 -7 (-15 -3713 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3714 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -3715 ((-348 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-485)))) (-299)) (T -1129))
-((-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5)))) (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))) (-3714 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4)) (-5 *3 (-1086 (-1086 *4))))))
-NIL
-(((-1130) (-113)) (T -1130))
+(((-64) . T) ((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3218 ((|#1| |#1| (-1 (-484) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-85) |#1|)) 33 T ELT)) (-3216 (((-1185)) 21 T ELT)) (-3217 (((-583 |#1|)) 13 T ELT)))
+(((-996 |#1|) (-10 -7 (-15 -3216 ((-1185))) (-15 -3217 ((-583 |#1|))) (-15 -3218 (|#1| |#1| (-1 (-85) |#1|))) (-15 -3218 (|#1| |#1| (-1 (-484) |#1| |#1|)))) (-105)) (T -996))
+((-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3218 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))) (-3217 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))) (-3216 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+((-3221 (($ (-78) $) 20 T ELT)) (-3222 (((-632 (-78)) (-446) $) 19 T ELT)) (-3566 (($) 7 T ELT)) (-3220 (($) 21 T ELT)) (-3219 (($) 22 T ELT)) (-3223 (((-583 (-149)) $) 10 T ELT)) (-3947 (((-772) $) 25 T ELT)))
+(((-997) (-13 (-552 (-772)) (-10 -8 (-15 -3566 ($)) (-15 -3223 ((-583 (-149)) $)) (-15 -3222 ((-632 (-78)) (-446) $)) (-15 -3221 ($ (-78) $)) (-15 -3220 ($)) (-15 -3219 ($))))) (T -997))
+((-3566 (*1 *1) (-5 *1 (-997))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))) (-3222 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))) (-3221 (*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))) (-3220 (*1 *1) (-5 *1 (-997))) (-3219 (*1 *1) (-5 *1 (-997))))
+((-3224 (((-1179 (-630 |#1|)) (-583 (-630 |#1|))) 45 T ELT) (((-1179 (-630 (-857 |#1|))) (-583 (-1090)) (-630 (-857 |#1|))) 75 T ELT) (((-1179 (-630 (-350 (-857 |#1|)))) (-583 (-1090)) (-630 (-350 (-857 |#1|)))) 92 T ELT)) (-3225 (((-1179 |#1|) (-630 |#1|) (-583 (-630 |#1|))) 39 T ELT)))
+(((-998 |#1|) (-10 -7 (-15 -3224 ((-1179 (-630 (-350 (-857 |#1|)))) (-583 (-1090)) (-630 (-350 (-857 |#1|))))) (-15 -3224 ((-1179 (-630 (-857 |#1|))) (-583 (-1090)) (-630 (-857 |#1|)))) (-15 -3224 ((-1179 (-630 |#1|)) (-583 (-630 |#1|)))) (-15 -3225 ((-1179 |#1|) (-630 |#1|) (-583 (-630 |#1|))))) (-312)) (T -998))
+((-3225 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312)) (-5 *2 (-1179 *5)) (-5 *1 (-998 *5)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-998 *4)))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-857 *5)))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5))))) (-3224 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-350 (-857 *5))))) (-5 *1 (-998 *5)) (-5 *4 (-630 (-350 (-857 *5)))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1488 (((-583 (-694)) $) NIL T ELT) (((-583 (-694)) $ (-1090)) NIL T ELT)) (-1522 (((-694) $) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3082 (((-583 (-1000 (-1090))) $) NIL T ELT)) (-3084 (((-1085 $) $ (-1000 (-1090))) NIL T ELT) (((-1085 |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-1000 (-1090)))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-1484 (($ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-1000 (-1090)) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-1039 |#1| (-1090)) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-1000 (-1090)) $) NIL T ELT) (((-1090) $) NIL T ELT) (((-1039 |#1| (-1090)) $) NIL T ELT)) (-3757 (($ $ $ (-1000 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1000 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 (-1000 (-1090))) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1000 (-1090)) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1000 (-1090)) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ (-1090)) NIL T ELT) (((-694) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3085 (($ (-1085 |#1|) (-1000 (-1090))) NIL T ELT) (($ (-1085 $) (-1000 (-1090))) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-469 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-1000 (-1090))) NIL T ELT)) (-2821 (((-469 (-1000 (-1090))) $) NIL T ELT) (((-694) $ (-1000 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1090)))) NIL T ELT)) (-1625 (($ (-1 (-469 (-1000 (-1090))) (-469 (-1000 (-1090)))) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1523 (((-1 $ (-694)) (-1090)) NIL T ELT) (((-1 $ (-694)) $) NIL (|has| |#1| (-190)) ELT)) (-3083 (((-3 (-1000 (-1090)) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1486 (((-1000 (-1090)) $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1487 (((-85) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-1000 (-1090))) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-1485 (($ $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-1000 (-1090)) |#1|) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 |#1|)) NIL T ELT) (($ $ (-1000 (-1090)) $) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 $)) NIL T ELT) (($ $ (-1090) $) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 $)) NIL (|has| |#1| (-190)) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-190)) ELT) (($ $ (-583 (-1090)) (-583 |#1|)) NIL (|has| |#1| (-190)) ELT)) (-3758 (($ $ (-1000 (-1090))) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-1489 (((-583 (-1090)) $) NIL T ELT)) (-3949 (((-469 (-1000 (-1090))) $) NIL T ELT) (((-694) $ (-1000 (-1090))) NIL T ELT) (((-583 (-694)) $ (-583 (-1000 (-1090)))) NIL T ELT) (((-694) $ (-1090)) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-1000 (-1090)) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT) (($ $ (-1000 (-1090))) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1000 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-1039 |#1| (-1090))) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-469 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-1000 (-1090))) (-583 (-694))) NIL T ELT) (($ $ (-1000 (-1090)) (-694)) NIL T ELT) (($ $ (-583 (-1000 (-1090)))) NIL T ELT) (($ $ (-1000 (-1090))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $) NIL (|has| |#1| (-189)) ELT) (($ $ (-694)) NIL (|has| |#1| (-189)) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-999 |#1|) (-13 (-213 |#1| (-1090) (-1000 (-1090)) (-469 (-1000 (-1090)))) (-950 (-1039 |#1| (-1090)))) (-961)) (T -999))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-1522 (((-694) $) NIL T ELT)) (-3832 ((|#1| $) 10 T ELT)) (-3158 (((-3 |#1| "failed") $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT)) (-3773 (((-694) $) 11 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-1523 (($ |#1| (-694)) 9 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3759 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2670 (($ $ (-694)) NIL T ELT) (($ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 16 T ELT)))
+(((-1000 |#1|) (-228 |#1|) (-756)) (T -1000))
+NIL
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3737 (($ |#1| |#1|) 16 T ELT)) (-3959 (((-583 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3230 ((|#1| $) 12 T ELT)) (-3232 ((|#1| $) 11 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3228 (((-484) $) 15 T ELT)) (-3229 ((|#1| $) 14 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3964 (((-583 |#1|) $) 42 (|has| |#1| (-755)) ELT) (((-583 |#1|) (-583 $)) 41 (|has| |#1| (-755)) ELT)) (-3973 (($ |#1|) 29 T ELT)) (-3947 (((-772) $) 28 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3738 (($ |#1| |#1|) 10 T ELT)) (-3233 (($ $ (-484)) 17 T ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
+(((-1001 |#1|) (-13 (-1006 |#1|) (-10 -7 (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-583 |#1|))) |%noBranch|))) (-1129)) (T -1001))
+NIL
+((-3959 (((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 27 (|has| |#1| (-755)) ELT) (((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|)) 14 T ELT)))
+(((-1002 |#1| |#2|) (-10 -7 (-15 -3959 ((-1001 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) (IF (|has| |#1| (-755)) (-15 -3959 ((-583 |#2|) (-1 |#2| |#1|) (-1001 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1002))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3226 (((-583 (-1049)) $) 10 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1003) (-13 (-995) (-10 -8 (-15 -3226 ((-583 (-1049)) $))))) (T -1003))
+((-3226 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1003)))))
+((-2569 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3832 (((-1090) $) NIL T ELT)) (-3737 (((-1001 |#1|) $) NIL T ELT)) (-3243 (((-1073) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3227 (($ (-1090) (-1001 |#1|)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)) (-3057 (((-85) $ $) NIL (|has| (-1001 |#1|) (-1013)) ELT)))
+(((-1004 |#1|) (-13 (-1129) (-10 -8 (-15 -3227 ($ (-1090) (-1001 |#1|))) (-15 -3832 ((-1090) $)) (-15 -3737 ((-1001 |#1|) $)) (IF (|has| (-1001 |#1|) (-1013)) (-6 (-1013)) |%noBranch|))) (-1129)) (T -1004))
+((-3227 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1001 *4)) (-4 *4 (-1129)) (-5 *1 (-1004 *4)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004 *3)) (-4 *3 (-1129)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1129)))))
+((-3959 (((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)) 19 T ELT)))
+(((-1005 |#1| |#2|) (-10 -7 (-15 -3959 ((-1004 |#2|) (-1 |#2| |#1|) (-1004 |#1|)))) (-1129) (-1129)) (T -1005))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6)))))
+((-3737 (($ |#1| |#1|) 8 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-484) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-484)) 14 T ELT)))
+(((-1006 |#1|) (-113) (-1129)) (T -1006))
+((-3738 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1129)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))) (-3737 (*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))))
+(-13 (-557 |t#1|) (-10 -8 (-15 -3738 ($ |t#1| |t#1|)) (-15 -3233 ($ $ (-484))) (-15 -3232 (|t#1| $)) (-15 -3231 (|t#1| $)) (-15 -3230 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -3228 ((-484) $)) (-15 -3737 ($ |t#1| |t#1|))))
+(((-557 |#1|) . T))
+((-3737 (($ |#1| |#1|) 8 T ELT)) (-3959 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3230 ((|#1| $) 11 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3228 (((-484) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-3231 ((|#1| $) 12 T ELT)) (-3964 ((|#2| (-583 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-3973 (($ |#1|) 6 T ELT)) (-3738 (($ |#1| |#1|) 15 T ELT)) (-3233 (($ $ (-484)) 14 T ELT)))
+(((-1007 |#1| |#2|) (-113) (-755) (-1064 |t#1|)) (T -1007))
+((-3964 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1064 *4)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1064 *3)))) (-3959 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755)) (-4 *2 (-1064 *4)))))
+(-13 (-1006 |t#1|) (-10 -8 (-15 -3964 (|t#2| (-583 $))) (-15 -3964 (|t#2| $)) (-15 -3959 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-557 |#1|) . T) ((-1006 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3799 (((-1049) $) 14 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 20 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-3234 (((-583 (-1049)) $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1008) (-13 (-995) (-10 -8 (-15 -3234 ((-583 (-1049)) $)) (-15 -3799 ((-1049) $))))) (T -1008))
+((-3234 (*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1008)))) (-3799 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1008)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-1805 (($) NIL (|has| |#1| (-320)) ELT)) (-3235 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 84 T ELT)) (-3237 (($ $ $) 81 T ELT)) (-3236 (((-85) $ $) 83 T ELT)) (-3137 (((-694)) NIL (|has| |#1| (-320)) ELT)) (-3240 (($ (-583 |#1|)) NIL T ELT) (($) 14 T ELT)) (-1570 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3406 (($ |#1| $) 75 (|has| $ (-318 |#1|)) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 42 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 40 T ELT)) (-2995 (($) NIL (|has| |#1| (-320)) ELT)) (-3242 (((-85) $ $) NIL T ELT)) (-2532 ((|#1| $) 56 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 20 T ELT)) (-3246 (((-85) |#1| $) 74 (|has| |#1| (-72)) ELT)) (-2858 ((|#1| $) 54 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2010 (((-830) $) NIL (|has| |#1| (-320)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3239 (($ $ $) 79 T ELT)) (-1274 ((|#1| $) 26 T ELT)) (-3610 (($ |#1| $) 70 T ELT)) (-2400 (($ (-830)) NIL (|has| |#1| (-320)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 32 T ELT)) (-1275 ((|#1| $) 28 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 22 T ELT)) (-3566 (($) 12 T ELT)) (-3238 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-1466 (($) NIL T ELT) (($ (-583 |#1|)) NIL T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 17 T ELT)) (-3973 (((-473) $) 51 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 63 T ELT)) (-1806 (($ $) NIL (|has| |#1| (-320)) ELT)) (-3947 (((-772) $) NIL T ELT)) (-1807 (((-694) $) NIL T ELT)) (-3241 (($ (-583 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 53 T ELT)) (-3958 (((-694) $) 11 T ELT)))
+(((-1009 |#1|) (-369 |#1|) (-1013)) (T -1009))
+NIL
+((-3235 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3237 (($ $ $) 10 T ELT)) (-3238 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -3235 (|#1| |#2| |#1|)) (-15 -3235 (|#1| |#1| |#2|)) (-15 -3235 (|#1| |#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#2|)) (-15 -3238 (|#1| |#1| |#1|))) (-1011 |#2|) (-1013)) (T -1010))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3235 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3237 (($ $ $) 24 T ELT)) (-3236 (((-85) $ $) 23 T ELT)) (-3240 (($) 29 T ELT) (($ (-583 |#1|)) 28 T ELT)) (-3711 (($ (-1 (-85) |#1|) $) 47 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 37 T CONST)) (-1353 (($ $) 49 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 48 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 46 (|has| $ (-318 |#1|)) ELT)) (-3242 (((-85) $ $) 32 T ELT)) (-3327 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3239 (($ $ $) 27 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 45 T ELT)) (-3769 (($ $ (-583 |#1|) (-583 |#1|)) 43 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 42 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 41 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) 40 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 33 T ELT)) (-3404 (((-85) $) 36 T ELT)) (-3566 (($) 35 T ELT)) (-3238 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-3401 (($ $) 34 T ELT)) (-3973 (((-473) $) 50 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 44 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-3241 (($) 31 T ELT) (($ (-583 |#1|)) 30 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1011 |#1|) (-113) (-1013)) (T -1011))
+((-3242 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3241 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3241 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3240 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3)))) (-3239 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3236 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))) (-3235 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))) (-3235 (*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(-13 (-1013) (-124 |t#1|) (-10 -8 (-6 -3986) (-15 -3242 ((-85) $ $)) (-15 -3241 ($)) (-15 -3241 ($ (-583 |t#1|))) (-15 -3240 ($)) (-15 -3240 ($ (-583 |t#1|))) (-15 -3239 ($ $ $)) (-15 -3238 ($ $ $)) (-15 -3238 ($ $ |t#1|)) (-15 -3237 ($ $ $)) (-15 -3236 ((-85) $ $)) (-15 -3235 ($ $ $)) (-15 -3235 ($ $ |t#1|)) (-15 -3235 ($ |t#1| $))))
+(((-34) . T) ((-72) . T) ((-552 (-772)) . T) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-3243 (((-1073) $) 10 T ELT)) (-3244 (((-1033) $) 8 T ELT)))
+(((-1012 |#1|) (-10 -7 (-15 -3243 ((-1073) |#1|)) (-15 -3244 ((-1033) |#1|))) (-1013)) (T -1012))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1013) (-113)) (T -1013))
+((-3244 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1073)))))
+(-13 (-72) (-552 (-772)) (-10 -8 (-15 -3244 ((-1033) $)) (-15 -3243 ((-1073) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) 36 T ELT)) (-3248 (($ (-583 (-830))) 70 T ELT)) (-3250 (((-3 $ #1="failed") $ (-830) (-830)) 81 T ELT)) (-2995 (($) 40 T ELT)) (-3246 (((-85) (-830) $) 42 T ELT)) (-2010 (((-830) $) 64 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 39 T ELT)) (-3251 (((-3 $ #1#) $ (-830)) 77 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3247 (((-1179 $)) 47 T ELT)) (-3249 (((-583 (-830)) $) 27 T ELT)) (-3245 (((-694) $ (-830) (-830)) 78 T ELT)) (-3947 (((-772) $) 32 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 24 T ELT)))
+(((-1014 |#1| |#2|) (-13 (-320) (-10 -8 (-15 -3251 ((-3 $ #1="failed") $ (-830))) (-15 -3250 ((-3 $ #1#) $ (-830) (-830))) (-15 -3249 ((-583 (-830)) $)) (-15 -3248 ($ (-583 (-830)))) (-15 -3247 ((-1179 $))) (-15 -3246 ((-85) (-830) $)) (-15 -3245 ((-694) $ (-830) (-830))))) (-830) (-830)) (T -1014))
+((-3251 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3250 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3247 (*1 *2) (-12 (-5 *2 (-1179 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830)))) (-3246 (*1 *2 *3 *1) (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) NIL T ELT)) (-3257 (((-1090) $) NIL T ELT)) (-3262 (((-85) $) NIL T ELT)) (-3536 (((-1073) $) NIL T ELT)) (-3264 (((-85) $) NIL T ELT)) (-3266 (((-85) $) NIL T ELT)) (-3263 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3260 (((-85) $) NIL T ELT)) (-3256 (((-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3259 (((-85) $) NIL T ELT)) (-3255 (((-179) $) NIL T ELT)) (-3254 (((-772) $) NIL T ELT)) (-3267 (((-85) $ $) NIL T ELT)) (-3801 (($ $ (-484)) NIL T ELT) (($ $ (-583 (-484))) NIL T ELT)) (-3258 (((-583 $) $) NIL T ELT)) (-3973 (($ (-1073)) NIL T ELT) (($ (-1090)) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-179)) NIL T ELT) (($ (-772)) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3252 (($ $) NIL T ELT)) (-3253 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-484) $) NIL T ELT)))
+(((-1015) (-1016 (-1073) (-1090) (-484) (-179) (-772))) (T -1015))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3261 (((-85) $) 36 T ELT)) (-3257 ((|#2| $) 31 T ELT)) (-3262 (((-85) $) 37 T ELT)) (-3536 ((|#1| $) 32 T ELT)) (-3264 (((-85) $) 39 T ELT)) (-3266 (((-85) $) 41 T ELT)) (-3263 (((-85) $) 38 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3260 (((-85) $) 35 T ELT)) (-3256 ((|#3| $) 30 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3259 (((-85) $) 34 T ELT)) (-3255 ((|#4| $) 29 T ELT)) (-3254 ((|#5| $) 28 T ELT)) (-3267 (((-85) $ $) 42 T ELT)) (-3801 (($ $ (-484)) 44 T ELT) (($ $ (-583 (-484))) 43 T ELT)) (-3258 (((-583 $) $) 33 T ELT)) (-3973 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-583 $)) 45 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 27 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3265 (((-85) $) 40 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-484) $) 25 T ELT)))
+(((-1016 |#1| |#2| |#3| |#4| |#5|) (-113) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1016))
+((-3267 (*1 *2 *1 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3262 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3261 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))) (-3258 (*1 *2 *1) (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3256 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3255 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))) (-3253 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))) (-3958 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484)))))
+(-13 (-1013) (-557 |t#1|) (-557 |t#2|) (-557 |t#3|) (-557 |t#4|) (-557 |t#4|) (-557 |t#5|) (-557 (-583 $)) (-241 (-484) $) (-241 (-583 (-484)) $) (-10 -8 (-15 -3267 ((-85) $ $)) (-15 -3266 ((-85) $)) (-15 -3265 ((-85) $)) (-15 -3264 ((-85) $)) (-15 -3263 ((-85) $)) (-15 -3262 ((-85) $)) (-15 -3261 ((-85) $)) (-15 -3260 ((-85) $)) (-15 -3259 ((-85) $)) (-15 -3258 ((-583 $) $)) (-15 -3536 (|t#1| $)) (-15 -3257 (|t#2| $)) (-15 -3256 (|t#3| $)) (-15 -3255 (|t#4| $)) (-15 -3254 (|t#5| $)) (-15 -3253 ($ $)) (-15 -3252 ($ $)) (-15 -3958 ((-484) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-557 (-583 $)) . T) ((-557 |#1|) . T) ((-557 |#2|) . T) ((-557 |#3|) . T) ((-557 |#4|) . T) ((-557 |#5|) . T) ((-241 (-484) $) . T) ((-241 (-583 (-484)) $) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3261 (((-85) $) 45 T ELT)) (-3257 ((|#2| $) 48 T ELT)) (-3262 (((-85) $) 20 T ELT)) (-3536 ((|#1| $) 21 T ELT)) (-3264 (((-85) $) 42 T ELT)) (-3266 (((-85) $) 14 T ELT)) (-3263 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3260 (((-85) $) 46 T ELT)) (-3256 ((|#3| $) 50 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3259 (((-85) $) 47 T ELT)) (-3255 ((|#4| $) 49 T ELT)) (-3254 ((|#5| $) 51 T ELT)) (-3267 (((-85) $ $) 41 T ELT)) (-3801 (($ $ (-484)) 62 T ELT) (($ $ (-583 (-484))) 64 T ELT)) (-3258 (((-583 $) $) 27 T ELT)) (-3973 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-583 $)) 52 T ELT)) (-3947 (((-772) $) 28 T ELT)) (-3252 (($ $) 26 T ELT)) (-3253 (($ $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3265 (((-85) $) 23 T ELT)) (-3057 (((-85) $ $) 40 T ELT)) (-3958 (((-484) $) 60 T ELT)))
+(((-1017 |#1| |#2| |#3| |#4| |#5|) (-1016 |#1| |#2| |#3| |#4| |#5|) (-1013) (-1013) (-1013) (-1013) (-1013)) (T -1017))
+NIL
+((-3270 (((-85) |#5| |#5|) 44 T ELT)) (-3273 (((-85) |#5| |#5|) 59 T ELT)) (-3278 (((-85) |#5| (-583 |#5|)) 82 T ELT) (((-85) |#5| |#5|) 68 T ELT)) (-3274 (((-85) (-583 |#4|) (-583 |#4|)) 65 T ELT)) (-3280 (((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 70 T ELT)) (-3269 (((-1185)) 32 T ELT)) (-3268 (((-1185) (-1073) (-1073) (-1073)) 28 T ELT)) (-3279 (((-583 |#5|) (-583 |#5|)) 101 T ELT)) (-3281 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) 93 T ELT)) (-3282 (((-583 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85)) 123 T ELT)) (-3272 (((-85) |#5| |#5|) 53 T ELT)) (-3277 (((-3 (-85) #1="failed") |#5| |#5|) 78 T ELT)) (-3275 (((-85) (-583 |#4|) (-583 |#4|)) 64 T ELT)) (-3276 (((-85) (-583 |#4|) (-583 |#4|)) 66 T ELT)) (-3700 (((-85) (-583 |#4|) (-583 |#4|)) 67 T ELT)) (-3283 (((-3 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)) 118 T ELT)) (-3271 (((-583 |#5|) (-583 |#5|)) 49 T ELT)))
+(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3268 ((-1185) (-1073) (-1073) (-1073))) (-15 -3269 ((-1185))) (-15 -3270 ((-85) |#5| |#5|)) (-15 -3271 ((-583 |#5|) (-583 |#5|))) (-15 -3272 ((-85) |#5| |#5|)) (-15 -3273 ((-85) |#5| |#5|)) (-15 -3274 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3275 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3276 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3700 ((-85) (-583 |#4|) (-583 |#4|))) (-15 -3277 ((-3 (-85) #1="failed") |#5| |#5|)) (-15 -3278 ((-85) |#5| |#5|)) (-15 -3278 ((-85) |#5| (-583 |#5|))) (-15 -3279 ((-583 |#5|) (-583 |#5|))) (-15 -3280 ((-85) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3281 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-15 -3282 ((-583 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3283 ((-3 (-2 (|:| -3267 (-583 |#4|)) (|:| -1600 |#5|) (|:| |ineq| (-583 |#4|))) #1#) (-583 |#4|) |#5| (-583 |#4|) (-85) (-85) (-85) (-85) (-85)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1018))
+((-3283 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9)))) (-3282 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7)))) (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3280 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1018 *5 *6 *7 *8 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3700 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3276 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3275 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3274 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))) (-3269 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1018 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-3298 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|) 106 T ELT)) (-3288 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3291 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3293 (((-583 |#5|) |#4| |#5|) 122 T ELT)) (-3295 (((-583 |#5|) |#4| |#5|) 129 T ELT)) (-3297 (((-583 |#5|) |#4| |#5|) 130 T ELT)) (-3292 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 107 T ELT)) (-3294 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 128 T ELT)) (-3296 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|) 47 T ELT) (((-85) |#4| |#5|) 55 T ELT)) (-3289 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85)) 91 T ELT) (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85)) 52 T ELT)) (-3290 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3287 (((-1185)) 36 T ELT)) (-3285 (((-1185)) 25 T ELT)) (-3286 (((-1185) (-1073) (-1073) (-1073)) 32 T ELT)) (-3284 (((-1185) (-1073) (-1073) (-1073)) 21 T ELT)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3284 ((-1185) (-1073) (-1073) (-1073))) (-15 -3285 ((-1185))) (-15 -3286 ((-1185) (-1073) (-1073) (-1073))) (-15 -3287 ((-1185))) (-15 -3288 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3289 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5| (-85) (-85))) (-15 -3289 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) |#3| (-85))) (-15 -3290 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3291 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#4| |#5|)) (-15 -3296 ((-85) |#4| |#5|)) (-15 -3292 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3293 ((-583 |#5|) |#4| |#5|)) (-15 -3294 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3295 ((-583 |#5|) |#4| |#5|)) (-15 -3296 ((-583 (-2 (|:| |val| (-85)) (|:| -1600 |#5|))) |#4| |#5|)) (-15 -3297 ((-583 |#5|) |#4| |#5|)) (-15 -3298 ((-583 (-2 (|:| |val| |#4|) (|:| -1600 |#5|))) |#4| |#5|))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-983 |#1| |#2| |#3| |#4|)) (T -1019))
+((-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3297 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3295 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3293 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3292 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3296 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3290 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85)) (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *4 (-756)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9)))) (-5 *1 (-1019 *6 *7 *4 *8 *9)))) (-3289 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3)))) (-3288 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))) (-3287 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3286 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))) (-3285 (*1 *2) (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))) (-3284 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-983 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3683 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-583 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3698 (((-583 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-3949 (((-694) $) 112 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3679 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3190 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-583 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-1020 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1020))
+NIL
+(-13 (-983 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1035 |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3309 (((-583 (-484)) (-484) (-484) (-484)) 40 T ELT)) (-3308 (((-583 (-484)) (-484) (-484) (-484)) 30 T ELT)) (-3307 (((-583 (-484)) (-484) (-484) (-484)) 35 T ELT)) (-3306 (((-484) (-484) (-484)) 22 T ELT)) (-3305 (((-1179 (-484)) (-583 (-484)) (-1179 (-484)) (-484)) 78 T ELT) (((-1179 (-484)) (-1179 (-484)) (-1179 (-484)) (-484)) 73 T ELT)) (-3304 (((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85)) 56 T ELT)) (-3303 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 77 T ELT)) (-3302 (((-630 (-484)) (-583 (-830)) (-583 (-484))) 61 T ELT)) (-3301 (((-583 (-630 (-484))) (-583 (-830))) 66 T ELT)) (-3300 (((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484))) 81 T ELT)) (-3299 (((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484))) 91 T ELT)))
+(((-1021) (-10 -7 (-15 -3299 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-583 (-484)))) (-15 -3300 ((-583 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3301 ((-583 (-630 (-484))) (-583 (-830)))) (-15 -3302 ((-630 (-484)) (-583 (-830)) (-583 (-484)))) (-15 -3303 ((-630 (-484)) (-583 (-484)) (-583 (-484)) (-630 (-484)))) (-15 -3304 ((-583 (-484)) (-583 (-830)) (-583 (-484)) (-85))) (-15 -3305 ((-1179 (-484)) (-1179 (-484)) (-1179 (-484)) (-484))) (-15 -3305 ((-1179 (-484)) (-583 (-484)) (-1179 (-484)) (-484))) (-15 -3306 ((-484) (-484) (-484))) (-15 -3307 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3308 ((-583 (-484)) (-484) (-484) (-484))) (-15 -3309 ((-583 (-484)) (-484) (-484) (-484))))) (T -1021))
+((-3309 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3308 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3307 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))) (-3306 (*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))) (-3305 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484)) (-5 *1 (-1021)))) (-3305 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-484)) (-5 *1 (-1021)))) (-3304 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85)) (-5 *1 (-1021)))) (-3303 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))) (-3301 (*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))) (-3300 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))) (-3299 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3310 (($ (-1 |#1| |#1| |#1|)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1022 |#1|) (-13 (-1023 |#1|) (-1013) (-10 -8 (-15 -3310 ($ (-1 |#1| |#1| |#1|))))) (-72)) (T -1022))
+((-3310 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
+((-3801 ((|#1| $ |#1| |#1|) 6 T ELT)))
+(((-1023 |#1|) (-113) (-72)) (T -1023))
+NIL
+(-13 (-80 |t#1|) (-10 -8 (-6 (|%Rule| |associativity| (|%Forall| (|%Sequence| (|:| |f| $) (|:| |x| |t#1|) (|:| |y| |t#1|) (|:| |z| |t#1|)) (-3057 (|f| (|f| |x| |y|) |z|) (|f| |x| (|f| |y| |z|))))))))
+(((-80 |#1|) . T) ((|MappingCategory| |#1| |#1| |#1|) . T) ((-1129) . T))
+((** (($ $ (-830)) 10 T ELT)))
+(((-1024 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-830)))) (-1025)) (T -1024))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (** (($ $ (-830)) 17 T ELT)) (* (($ $ $) 18 T ELT)))
+(((-1025) (-113)) (T -1025))
+((* (*1 *1 *1 *1) (-4 *1 (-1025))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830)))))
+(-13 (-1013) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-830)))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-3189 (((-85) $) NIL (|has| |#3| (-23)) ELT)) (-3708 (($ (-830)) NIL (|has| |#3| (-961)) ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-6 -3997)) ELT)) (-2484 (($ $ $) NIL (|has| |#3| (-717)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-104)) ELT)) (-3137 (((-694)) NIL (|has| |#3| (-320)) ELT)) (-3789 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1013)) ELT)) (-3157 (((-484) $) NIL (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) ((|#3| $) NIL (|has| |#3| (-1013)) ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-630 $)) NIL (|has| |#3| (-961)) ELT)) (-3843 ((|#3| (-1 |#3| |#3| |#3|) $ |#3| |#3|) NIL (|has| |#3| (-72)) ELT) ((|#3| (-1 |#3| |#3| |#3|) $ |#3|) NIL T ELT) ((|#3| (-1 |#3| |#3| |#3|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL (|has| |#3| (-961)) ELT)) (-2995 (($) NIL (|has| |#3| (-320)) ELT)) (-1576 ((|#3| $ (-484) |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#3| $ (-484)) 12 T ELT)) (-3187 (((-85) $) NIL (|has| |#3| (-717)) ELT)) (-1214 (((-85) $ $) NIL (|has| |#3| (-23)) ELT)) (-2410 (((-85) $) NIL (|has| |#3| (-961)) ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-2609 (((-583 |#3|) $) NIL T ELT)) (-3246 (((-85) |#3| $) NIL (|has| |#3| (-72)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#3| (-756)) ELT)) (-3327 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2010 (((-830) $) NIL (|has| |#3| (-320)) ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#3| (-580 (-484))) (|has| |#3| (-961))) ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-1179 $) $) NIL (|has| |#3| (-961)) ELT) (((-630 |#3|) (-1179 $)) NIL (|has| |#3| (-961)) ELT)) (-3243 (((-1073) $) NIL (|has| |#3| (-1013)) ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-2400 (($ (-830)) NIL (|has| |#3| (-320)) ELT)) (-3244 (((-1033) $) NIL (|has| |#3| (-1013)) ELT)) (-3802 ((|#3| $) NIL (|has| (-484) (-756)) ELT)) (-2199 (($ $ |#3|) NIL (|has| $ (-6 -3997)) ELT)) (-1731 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#3|))) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-249 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-260 |#3|)) (|has| |#3| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#3| $) NIL (-12 (|has| $ (-318 |#3|)) (|has| |#3| (-72))) ELT)) (-2205 (((-583 |#3|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#3| $ (-484) |#3|) NIL T ELT) ((|#3| $ (-484)) NIL T ELT)) (-3837 ((|#3| $ $) NIL (|has| |#3| (-961)) ELT)) (-1468 (($ (-1179 |#3|)) NIL T ELT)) (-3912 (((-107)) NIL (|has| |#3| (-312)) ELT)) (-3759 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-1730 (((-694) |#3| $) NIL (|has| |#3| (-72)) ELT) (((-694) (-1 (-85) |#3|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3947 (((-1179 |#3|) $) NIL T ELT) (($ (-484)) NIL (OR (-12 (|has| |#3| (-950 (-484))) (|has| |#3| (-1013))) (|has| |#3| (-961))) ELT) (($ (-350 (-484))) NIL (-12 (|has| |#3| (-950 (-350 (-484)))) (|has| |#3| (-1013))) ELT) (($ |#3|) NIL (|has| |#3| (-1013)) ELT) (((-772) $) NIL (|has| |#3| (-552 (-772))) ELT)) (-3127 (((-694)) NIL (|has| |#3| (-961)) CONST)) (-1265 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#3|) $) NIL T ELT)) (-3126 (((-85) $ $) NIL (|has| |#3| (-961)) ELT)) (-2661 (($) NIL (|has| |#3| (-23)) CONST)) (-2667 (($) NIL (|has| |#3| (-961)) CONST)) (-2670 (($ $ (-694)) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $) NIL (-12 (|has| |#3| (-189)) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1090)) NIL (-12 (|has| |#3| (-811 (-1090))) (|has| |#3| (-961))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)) ELT) (($ $ (-1 |#3| |#3|) (-694)) NIL (|has| |#3| (-961)) ELT)) (-2567 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#3| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#3| (-756)) ELT)) (-2686 (((-85) $ $) 24 (|has| |#3| (-756)) ELT)) (-3950 (($ $ |#3|) NIL (|has| |#3| (-312)) ELT)) (-3838 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-694)) NIL (|has| |#3| (-961)) ELT) (($ $ (-830)) NIL (|has| |#3| (-961)) ELT)) (* (($ $ $) NIL (|has| |#3| (-961)) ELT) (($ $ |#3|) NIL (|has| |#3| (-663)) ELT) (($ |#3| $) NIL (|has| |#3| (-663)) ELT) (($ (-484) $) NIL (|has| |#3| (-21)) ELT) (($ (-694) $) NIL (|has| |#3| (-23)) ELT) (($ (-830) $) NIL (|has| |#3| (-25)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1026 |#1| |#2| |#3|) (-196 |#1| |#3|) (-694) (-694) (-717)) (T -1026))
+NIL
+((-3311 (((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 50 T ELT)) (-3317 (((-484) (-1148 |#2| |#1|)) 95 (|has| |#1| (-392)) ELT)) (-3315 (((-484) (-1148 |#2| |#1|)) 79 T ELT)) (-3312 (((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 58 T ELT)) (-3316 (((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 81 (|has| |#1| (-392)) ELT)) (-3313 (((-583 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 61 T ELT)) (-3314 (((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|)) 78 T ELT)))
+(((-1027 |#1| |#2|) (-10 -7 (-15 -3311 ((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3312 ((-583 (-1148 |#2| |#1|)) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3313 ((-583 |#1|) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3314 ((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3315 ((-484) (-1148 |#2| |#1|))) (IF (|has| |#1| (-392)) (PROGN (-15 -3316 ((-484) (-1148 |#2| |#1|) (-1148 |#2| |#1|))) (-15 -3317 ((-484) (-1148 |#2| |#1|)))) |%noBranch|)) (-740) (-1090)) (T -1027))
+((-3317 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3316 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3314 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))) (-3313 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 *4)) (-5 *1 (-1027 *4 *5)))) (-3312 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4)))) (-3311 (*1 *2 *3 *3) (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4))) (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3319 (((-1095) $) 12 T ELT)) (-3318 (((-583 (-1095)) $) 14 T ELT)) (-3320 (($ (-583 (-1095)) (-1095)) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 29 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-1028) (-13 (-1013) (-10 -8 (-15 -3320 ($ (-583 (-1095)) (-1095))) (-15 -3319 ((-1095) $)) (-15 -3318 ((-583 (-1095)) $))))) (T -1028))
+((-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1028)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1028)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1028)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3321 (($ (-446) (-1028)) 14 T ELT)) (-3320 (((-1028) $) 20 T ELT)) (-3543 (((-446) $) 17 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 27 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1029) (-13 (-995) (-10 -8 (-15 -3321 ($ (-446) (-1028))) (-15 -3543 ((-446) $)) (-15 -3320 ((-1028) $))))) (T -1029))
+((-3321 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
+((-3624 (((-3 (-484) #1="failed") |#2| (-1090) |#2| (-1073)) 19 T ELT) (((-3 (-484) #1#) |#2| (-1090) (-750 |#2|)) 17 T ELT) (((-3 (-484) #1#) |#2|) 60 T ELT)))
+(((-1030 |#1| |#2|) (-10 -7 (-15 -3624 ((-3 (-484) #1="failed") |#2|)) (-15 -3624 ((-3 (-484) #1#) |#2| (-1090) (-750 |#2|))) (-15 -3624 ((-3 (-484) #1#) |#2| (-1090) |#2| (-1073)))) (-13 (-495) (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|))) (T -1030))
+((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6))) (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *6 *3)))) (-3624 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484)) (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
+((-3624 (((-3 (-484) #1="failed") (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)) (-1073)) 38 T ELT) (((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-750 (-350 (-857 |#1|)))) 33 T ELT) (((-3 (-484) #1#) (-350 (-857 |#1|))) 14 T ELT)))
+(((-1031 |#1|) (-10 -7 (-15 -3624 ((-3 (-484) #1="failed") (-350 (-857 |#1|)))) (-15 -3624 ((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-750 (-350 (-857 |#1|))))) (-15 -3624 ((-3 (-484) #1#) (-350 (-857 |#1|)) (-1090) (-350 (-857 |#1|)) (-1073)))) (-392)) (T -1031))
+((-3624 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3624 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 (-350 (-857 *6)))) (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *4)))))
+((-3650 (((-265 (-484)) (-48)) 12 T ELT)))
+(((-1032) (-10 -7 (-15 -3650 ((-265 (-484)) (-48))))) (T -1032))
+((-3650 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 22 T ELT)) (-3189 (((-85) $) 49 T ELT)) (-3322 (($ $ $) 28 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 75 T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-2047 (($ $ $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2042 (($ $ $ $) 59 T ELT)) (-3776 (($ $) NIL T ELT)) (-3972 (((-348 $) $) NIL T ELT)) (-1608 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) 61 T ELT)) (-3624 (((-484) $) NIL T ELT)) (-2442 (($ $ $) 56 T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL T ELT)) (-2565 (($ $ $) 42 T ELT)) (-2279 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 70 T ELT) (((-630 (-484)) (-630 $)) 8 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3025 (((-3 (-350 (-484)) #1#) $) NIL T ELT)) (-3024 (((-85) $) NIL T ELT)) (-3023 (((-350 (-484)) $) NIL T ELT)) (-2995 (($) 73 T ELT) (($ $) 72 T ELT)) (-2564 (($ $ $) 41 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL T ELT)) (-3724 (((-85) $) NIL T ELT)) (-2040 (($ $ $ $) NIL T ELT)) (-2048 (($ $ $) 71 T ELT)) (-3187 (((-85) $) 76 T ELT)) (-1369 (($ $ $) NIL T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL T ELT)) (-2562 (($ $ $) 27 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 50 T ELT)) (-2674 (((-85) $) 47 T ELT)) (-2561 (($ $) 23 T ELT)) (-3446 (((-632 $) $) NIL T ELT)) (-3188 (((-85) $) 60 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL T ELT)) (-2041 (($ $ $ $) 57 T ELT)) (-2532 (($ $ $) 52 T ELT) (($) 19 T CONST)) (-2858 (($ $ $) 51 T ELT) (($) 18 T CONST)) (-2044 (($ $) NIL T ELT)) (-2010 (((-830) $) 66 T ELT)) (-3834 (($ $) 55 T ELT)) (-2280 (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL T ELT) (((-630 (-484)) (-1179 $)) NIL T ELT)) (-1894 (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2039 (($ $ $) NIL T ELT)) (-3447 (($) NIL T CONST)) (-2400 (($ (-830)) 65 T ELT)) (-2046 (($ $) 33 T ELT)) (-3244 (((-1033) $) 54 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL T ELT)) (-3145 (($ $ $) 45 T ELT) (($ (-583 $)) NIL T ELT)) (-1367 (($ $) NIL T ELT)) (-3733 (((-348 $) $) NIL T ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL T ELT)) (-2675 (((-85) $) 48 T ELT)) (-1607 (((-694) $) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 44 T ELT)) (-3759 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2045 (($ $) 34 T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-484) $) 12 T ELT) (((-473) $) NIL T ELT) (((-800 (-484)) $) NIL T ELT) (((-330) $) NIL T ELT) (((-179) $) NIL T ELT)) (-3947 (((-772) $) 11 T ELT) (($ (-484)) 13 T ELT) (($ $) NIL T ELT) (($ (-484)) 13 T ELT)) (-3127 (((-694)) NIL T CONST)) (-2049 (((-85) $ $) NIL T ELT)) (-3102 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2695 (($) 17 T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2563 (($ $ $) 26 T ELT)) (-2043 (($ $ $ $) 58 T ELT)) (-3384 (($ $) 46 T ELT)) (-2311 (($ $ $) 25 T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2567 (((-85) $ $) 32 T ELT)) (-2568 (((-85) $ $) 30 T ELT)) (-3057 (((-85) $ $) 21 T ELT)) (-2685 (((-85) $ $) 31 T ELT)) (-2686 (((-85) $ $) 29 T ELT)) (-2312 (($ $ $) 24 T ELT)) (-3838 (($ $) 35 T ELT) (($ $ $) 37 T ELT)) (-3840 (($ $ $) 36 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 40 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 14 T ELT) (($ $ $) 38 T ELT) (($ (-484) $) 14 T ELT)))
+(((-1033) (-13 (-483) (-752) (-84) (-10 -8 (-6 -3983) (-6 -3988) (-6 -3984) (-15 -3322 ($ $ $))))) (T -1033))
+((-3322 (*1 *1 *1 *1) (-5 *1 (-1033))))
+((-484) (|%ismall?| |#1|))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 40 T ELT)) (-3725 (($) 6 T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 52 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 49 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 48 T ELT)) (-3326 ((|#1| |#1| $) 42 T ELT)) (-3325 ((|#1| $) 41 T ELT)) (-2609 (((-583 |#1|) $) 47 T ELT)) (-3246 (((-85) |#1| $) 51 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 34 T ELT)) (-3610 (($ |#1| $) 35 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 36 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 45 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3323 (((-694) $) 39 T ELT)) (-1730 (((-694) |#1| $) 50 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 46 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) 37 T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 44 T ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-1034 |#1|) (-113) (-1129)) (T -1034))
+((-3326 (*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3324 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))))
+(-13 (-76 |t#1|) (-318 |t#1|) (-10 -8 (-15 -3326 (|t#1| |t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 (|t#1| $)) (-15 -3323 ((-694) $))))
+(((-34) . T) ((-76 |#1|) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3725 (($) 6 T CONST)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3401 (($ $) 9 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-1035 |#1|) (-113) (-1129)) (T -1035))
+((-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-1129)))))
+(-13 (-429 |t#1|) (-10 -8 (-6 -3997) (-15 -3327 ($ (-1 |t#1| |t#1|) $))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-3331 ((|#3| $) 87 T ELT)) (-3158 (((-3 (-484) #1="failed") $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3157 (((-484) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL T ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL T ELT) (((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 $) (-1179 $)) 84 T ELT) (((-630 |#3|) (-630 $)) 76 T ELT)) (-3759 (($ $ (-1 |#3| |#3|) (-694)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3330 ((|#3| $) 89 T ELT)) (-3332 ((|#4| $) 43 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 24 T ELT) (($ $ (-484)) 95 T ELT)))
+(((-1036 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 ** (|#1| |#1| (-484))) (-15 -3330 (|#3| |#1|)) (-15 -3331 (|#3| |#1|)) (-15 -3332 (|#4| |#1|)) (-15 -2279 ((-630 |#3|) (-630 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 |#3|)) (|:| |vec| (-1179 |#3|))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 |#1|) (-1179 |#1|))) (-15 -2279 ((-630 (-484)) (-630 |#1|))) (-15 -3947 (|#1| |#3|)) (-15 -3158 ((-3 |#3| #1="failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3759 (|#1| |#1| (-1 |#3| |#3|) (-694))) (-15 -3947 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3947 ((-772) |#1|))) (-1037 |#2| |#3| |#4| |#5|) (-694) (-961) (-196 |#2| |#3|) (-196 |#2| |#3|)) (T -1036))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3331 ((|#2| $) 90 T ELT)) (-3121 (((-85) $) 133 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3123 (((-85) $) 131 T ELT)) (-3334 (($ |#2|) 93 T ELT)) (-3725 (($) 23 T CONST)) (-3110 (($ $) 150 (|has| |#2| (-258)) ELT)) (-3112 ((|#3| $ (-484)) 145 T ELT)) (-3158 (((-3 (-484) #1="failed") $) 109 (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) 106 (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) 103 T ELT)) (-3157 (((-484) $) 108 (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) 105 (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) 104 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 99 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 98 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 97 T ELT) (((-630 |#2|) (-630 $)) 96 T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) 114 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 113 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 110 (|has| |#2| (-72)) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3109 (((-694) $) 151 (|has| |#2| (-495)) ELT)) (-3113 ((|#2| $ (-484) (-484)) 143 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3108 (((-694) $) 152 (|has| |#2| (-495)) ELT)) (-3107 (((-583 |#4|) $) 153 (|has| |#2| (-495)) ELT)) (-3115 (((-694) $) 139 T ELT)) (-3114 (((-694) $) 140 T ELT)) (-3328 ((|#2| $) 85 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-484) $) 135 T ELT)) (-3117 (((-484) $) 137 T ELT)) (-2609 (((-583 |#2|) $) 115 T ELT)) (-3246 (((-85) |#2| $) 111 (|has| |#2| (-72)) ELT)) (-3118 (((-484) $) 136 T ELT)) (-3116 (((-484) $) 138 T ELT)) (-3124 (($ (-583 (-583 |#2|))) 130 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 124 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) 147 T ELT) (($ (-1 |#2| |#2|) $) 125 T ELT)) (-3595 (((-583 (-583 |#2|)) $) 141 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 101 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 100 (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 95 T ELT) (((-630 |#2|) (-1179 $)) 94 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3591 (((-3 $ "failed") $) 84 (|has| |#2| (-312)) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3467 (((-3 $ "failed") $ |#2|) 148 (|has| |#2| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) 117 T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) 123 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 122 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 121 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 120 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) 129 T ELT)) (-3404 (((-85) $) 126 T ELT)) (-3566 (($) 127 T ELT)) (-3801 ((|#2| $ (-484) (-484) |#2|) 144 T ELT) ((|#2| $ (-484) (-484)) 142 T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) 65 T ELT) (($ $ (-1 |#2| |#2|)) 64 T ELT) (($ $) 55 (|has| |#2| (-189)) ELT) (($ $ (-694)) 53 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 63 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 61 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 60 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 59 (|has| |#2| (-811 (-1090))) ELT)) (-3330 ((|#2| $) 89 T ELT)) (-3333 (($ (-583 |#2|)) 92 T ELT)) (-3122 (((-85) $) 132 T ELT)) (-3332 ((|#3| $) 91 T ELT)) (-3329 ((|#2| $) 86 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1730 (((-694) (-1 (-85) |#2|) $) 116 T ELT) (((-694) |#2| $) 112 (|has| |#2| (-72)) ELT)) (-3401 (($ $) 128 T ELT)) (-3111 ((|#4| $ (-484)) 146 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 107 (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) 102 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) 118 T ELT)) (-3120 (((-85) $) 134 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) 67 T ELT) (($ $ (-1 |#2| |#2|)) 66 T ELT) (($ $) 54 (|has| |#2| (-189)) ELT) (($ $ (-694)) 52 (|has| |#2| (-189)) ELT) (($ $ (-1090)) 62 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 58 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 57 (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 56 (|has| |#2| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#2|) 149 (|has| |#2| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 83 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#2|) 155 T ELT) (($ |#2| $) 154 T ELT) ((|#4| $ |#4|) 88 T ELT) ((|#3| |#3| $) 87 T ELT)) (-3958 (((-694) $) 119 T ELT)))
+(((-1037 |#1| |#2| |#3| |#4|) (-113) (-694) (-961) (-196 |t#1| |t#2|) (-196 |t#1| |t#2|)) (T -1037))
+((-3334 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)))) (-3333 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *2 (-196 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4)) (-4 *5 (-196 *3 *4)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1="*"))) (-4 *2 (-961)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2)) (|has| *2 (-6 (-3998 #1#))) (-4 *2 (-961)))) (-3591 (*1 *1 *1) (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312)))))
+(-13 (-184 |t#2|) (-82 |t#2| |t#2|) (-965 |t#1| |t#1| |t#2| |t#3| |t#4|) (-355 |t#2|) (-329 |t#2|) (-10 -8 (IF (|has| |t#2| (-146)) (-6 (-654 |t#2|)) |%noBranch|) (-15 -3334 ($ |t#2|)) (-15 -3333 ($ (-583 |t#2|))) (-15 -3332 (|t#3| $)) (-15 -3331 (|t#2| $)) (-15 -3330 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-3998 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3329 (|t#2| $)) (-15 -3328 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-312)) (PROGN (-15 -3591 ((-3 $ "failed") $)) (-15 ** ($ $ (-484)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-3998 #1="*"))) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-350 (-484))) |has| |#2| (-950 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-186 $) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-184 |#2|) . T) ((-190) |has| |#2| (-190)) ((-189) OR (|has| |#2| (-189)) (|has| |#2| (-190))) ((-225 |#2|) . T) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-318 |#2|) . T) ((-329 |#2|) . T) ((-355 |#2|) . T) ((-429 |#2|) . T) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 (-484)) |has| |#2| (-580 (-484))) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-580 (-484)) |has| |#2| (-580 (-484))) ((-580 |#2|) . T) ((-654 |#2|) OR (|has| |#2| (-146)) (|has| |#2| (-6 (-3998 #1#)))) ((-663) . T) ((-806 $ (-1090)) OR (|has| |#2| (-811 (-1090))) (|has| |#2| (-809 (-1090)))) ((-809 (-1090)) |has| |#2| (-809 (-1090))) ((-811 (-1090)) OR (|has| |#2| (-811 (-1090))) (|has| |#2| (-809 (-1090)))) ((-965 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-350 (-484))) |has| |#2| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#2| (-950 (-484))) ((-950 |#2|) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3337 ((|#4| |#4|) 81 T ELT)) (-3335 ((|#4| |#4|) 76 T ELT)) (-3339 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|) 91 T ELT)) (-3338 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3336 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
+(((-1038 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3335 (|#4| |#4|)) (-15 -3336 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3337 (|#4| |#4|)) (-15 -3338 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3339 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2012 (-583 |#3|))) |#4| |#3|))) (-258) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -1038))
+((-3339 (*1 *2 *3 *4) (-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4)))) (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3337 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3336 (*1 *2 *3) (-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 18 T ELT)) (-3082 (((-583 |#2|) $) 174 T ELT)) (-3084 (((-1085 $) $ |#2|) 60 T ELT) (((-1085 |#1|) $) 49 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 116 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 118 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 120 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 |#2|)) 214 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#1| $) 165 T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) ((|#2| $) NIL T ELT)) (-3757 (($ $ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3960 (($ $) 218 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT) (($ $ |#2|) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-469 |#2|) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 20 T ELT)) (-2420 (((-694) $) 30 T ELT)) (-3085 (($ (-1085 |#1|) |#2|) 54 T ELT) (($ (-1085 $) |#2|) 71 T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) 38 T ELT)) (-2894 (($ |#1| (-469 |#2|)) 78 T ELT) (($ $ |#2| (-694)) 58 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ |#2|) NIL T ELT)) (-2821 (((-469 |#2|) $) 205 T ELT) (((-694) $ |#2|) 206 T ELT) (((-583 (-694)) $ (-583 |#2|)) 207 T ELT)) (-1625 (($ (-1 (-469 |#2|) (-469 |#2|)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3083 (((-3 |#2| #1#) $) 177 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) 217 T ELT)) (-3175 ((|#1| $) 43 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| |#2|) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) 39 T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 148 (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) 153 (|has| |#1| (-392)) ELT) (($ $ $) 138 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-821)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-583 |#2|) (-583 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-583 |#2|) (-583 $)) 194 T ELT)) (-3758 (($ $ |#2|) NIL (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-3949 (((-469 |#2|) $) 201 T ELT) (((-694) $ |#2|) 196 T ELT) (((-583 (-694)) $ (-583 |#2|)) 199 T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| |#1| (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#1| $) 134 (|has| |#1| (-392)) ELT) (($ $ |#2|) 137 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3947 (((-772) $) 159 T ELT) (($ (-484)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3818 (((-583 |#1|) $) 162 T ELT)) (-3678 ((|#1| $ (-469 |#2|)) 80 T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 87 T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) 123 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 12 T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) 106 T ELT)) (-3950 (($ $ |#1|) 132 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-3840 (($ $ $) 55 T ELT)) (** (($ $ (-830)) 110 T ELT) (($ $ (-694)) 109 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1039 |#1| |#2|) (-861 |#1| (-469 |#2|) |#2|) (-961) (-756)) (T -1039))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 125 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 121 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3495 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 129 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-857 |#1|) $ (-694)) NIL T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $ |#2|) NIL T ELT) (((-694) $ |#2| (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ $ (-583 |#2|) (-583 (-469 |#2|))) NIL T ELT) (($ $ |#2| (-469 |#2|)) NIL T ELT) (($ |#1| (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) 63 T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 119 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3813 (($ $ |#2|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ |#2| |#1|) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3677 (($ (-1 $) |#2| |#1|) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 (($ $ (-694)) 17 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3944 (($ $) 117 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (($ $ |#2| $) 104 T ELT) (($ $ (-583 |#2|) (-583 $)) 99 T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3759 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) 106 T ELT)) (-3949 (((-469 |#2|) $) NIL T ELT)) (-3340 (((-1 (-1069 |#3|) |#3|) (-583 |#2|) (-583 (-1069 |#3|))) 87 T ELT)) (-3496 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 131 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 127 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 123 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 19 T ELT)) (-3947 (((-772) $) 194 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-3678 ((|#1| $ (-469 |#2|)) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) ((|#3| $ (-694)) 43 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 133 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 141 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 139 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 135 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 52 T CONST)) (-2667 (($) 62 T CONST)) (-2670 (($ $ (-583 |#2|) (-583 (-694))) NIL T ELT) (($ $ |#2| (-694)) NIL T ELT) (($ $ (-583 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) 196 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 66 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 109 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-350 (-484))) 114 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
+(((-1040 |#1| |#2| |#3|) (-13 (-679 |#1| |#2|) (-10 -8 (-15 -3678 (|#3| $ (-694))) (-15 -3947 ($ |#2|)) (-15 -3947 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3340 ((-1 (-1069 |#3|) |#3|) (-583 |#2|) (-583 (-1069 |#3|)))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $ |#2| |#1|)) (-15 -3677 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-961) (-756) (-861 |#1| (-469 |#2|) |#2|)) (T -1040))
+((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1040 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-756)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3947 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2)) (-4 *2 (-861 *3 (-469 *4) *4)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1069 *7))) (-4 *6 (-756)) (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1069 *7) *7)) (-5 *1 (-1040 *5 *6 *7)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3683 (((-583 $) (-583 |#4|)) 92 T ELT) (((-583 $) (-583 |#4|) (-85)) 119 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 134 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 85 T ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-3800 (((-3 $ #1#) $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3198 (((-85) |#4| $) 144 T ELT)) (-3196 (((-85) |#4| $) 141 T ELT)) (-3199 (((-85) |#4| $) 145 T ELT) (((-85) $) 142 T ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) 136 T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 135 T ELT)) (-3799 (((-3 |#4| #1#) $) 89 T ELT)) (-3193 (((-583 $) |#4| $) 137 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) 140 T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 139 T ELT) (((-85) |#4| $) 138 T ELT)) (-3239 (((-583 $) |#4| $) 133 T ELT) (((-583 $) (-583 |#4|) $) 132 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 131 T ELT) (((-583 $) |#4| (-583 $)) 130 T ELT)) (-3441 (($ |#4| $) 125 T ELT) (($ (-583 |#4|) $) 124 T ELT)) (-3698 (((-583 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-3 |#4| #1#) $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT) (((-583 $) |#4| $) 123 T ELT) (((-583 $) |#4| (-583 $)) 122 T ELT) (((-583 $) (-583 |#4|) $) 121 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 120 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-3949 (((-694) $) 112 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3679 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-3190 (((-583 $) |#4| $) 129 T ELT) (((-583 $) |#4| (-583 $)) 128 T ELT) (((-583 $) (-583 |#4|) $) 127 T ELT) (((-583 $) (-583 |#4|) (-583 $)) 126 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-583 |#3|) $) 87 T ELT)) (-3197 (((-85) |#4| $) 143 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-1041 |#1| |#2| |#3| |#4|) (-113) (-392) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1041))
+NIL
+(-13 (-1020 |t#1| |t#2| |t#3| |t#4|) (-707 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-707 |#1| |#2| |#3| |#4|) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-983 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1035 |#4|) . T) ((-1020 |#1| |#2| |#3| |#4|) . T) ((-1124 |#1| |#2| |#3| |#4|) . T) ((-1129) . T))
+((-3574 (((-583 |#2|) |#1|) 15 T ELT)) (-3346 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-583 |#2|) |#1|) 61 T ELT)) (-3344 (((-583 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-583 |#2|) |#1|) 59 T ELT)) (-3341 ((|#2| |#1|) 54 T ELT)) (-3342 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3343 (((-583 |#2|) |#2| |#2|) 42 T ELT) (((-583 |#2|) |#1|) 58 T ELT)) (-3345 (((-583 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-583 |#2|) |#1|) 60 T ELT)) (-3350 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3348 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3347 ((|#2| |#2| |#2|) 50 T ELT)) (-3349 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
+(((-1042 |#1| |#2|) (-10 -7 (-15 -3574 ((-583 |#2|) |#1|)) (-15 -3341 (|#2| |#1|)) (-15 -3342 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3343 ((-583 |#2|) |#1|)) (-15 -3344 ((-583 |#2|) |#1|)) (-15 -3345 ((-583 |#2|) |#1|)) (-15 -3346 ((-583 |#2|) |#1|)) (-15 -3343 ((-583 |#2|) |#2| |#2|)) (-15 -3344 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -3345 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3346 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3347 (|#2| |#2| |#2|)) (-15 -3348 (|#2| |#2| |#2| |#2|)) (-15 -3349 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3350 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1155 |#2|) (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (T -1042))
+((-3350 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3349 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3348 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3347 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3346 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3345 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3343 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))) (-3346 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3345 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3343 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5)))) (-3341 (*1 *2 *3) (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484))))))) (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4)))))
+((-3351 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|))))) 119 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090))) 118 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|)))) 116 T ELT) (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 113 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|)))) 97 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))) (-1090)) 98 T ELT) (((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|))) 92 T ELT) (((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)) (-1090)) 82 T ELT)) (-3352 (((-583 (-583 (-265 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 111 T ELT) (((-583 (-265 |#1|)) (-350 (-857 |#1|)) (-1090)) 54 T ELT)) (-3353 (((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-350 (-857 |#1|)) (-1090)) 123 T ELT) (((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090)) 122 T ELT)))
+(((-1043 |#1|) (-10 -7 (-15 -3351 ((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)) (-1090))) (-15 -3351 ((-583 (-249 (-265 |#1|))) (-350 (-857 |#1|)))) (-15 -3351 ((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3351 ((-583 (-249 (-265 |#1|))) (-249 (-350 (-857 |#1|))))) (-15 -3351 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3351 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-350 (-857 |#1|))))) (-15 -3351 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090)))) (-15 -3351 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3352 ((-583 (-265 |#1|)) (-350 (-857 |#1|)) (-1090))) (-15 -3352 ((-583 (-583 (-265 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3353 ((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3353 ((-1080 (-583 (-265 |#1|)) (-583 (-249 (-265 |#1|)))) (-350 (-857 |#1|)) (-1090)))) (-13 (-258) (-120))) (T -1043))
+((-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3352 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-265 *5))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-249 (-350 (-857 *5))))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5)))))
+((-3355 (((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-484)) 36 T ELT)) (-3354 (((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|)))) 48 T ELT)))
+(((-1044 |#1|) (-10 -7 (-15 -3354 ((-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))) (-350 (-1085 (-265 |#1|))))) (-15 -3355 ((-350 (-1085 (-265 |#1|))) (-1179 (-265 |#1|)) (-350 (-1085 (-265 |#1|))) (-484)))) (-495)) (T -1044))
+((-3355 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5))) (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1044 *5)))) (-3354 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1044 *3)))))
+((-3574 (((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1090))) 244 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1090)) 23 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090)) 29 T ELT) (((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|))) 28 T ELT) (((-583 (-249 (-265 |#1|))) (-265 |#1|)) 24 T ELT)))
+(((-1045 |#1|) (-10 -7 (-15 -3574 ((-583 (-249 (-265 |#1|))) (-265 |#1|))) (-15 -3574 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)))) (-15 -3574 ((-583 (-249 (-265 |#1|))) (-249 (-265 |#1|)) (-1090))) (-15 -3574 ((-583 (-249 (-265 |#1|))) (-265 |#1|) (-1090))) (-15 -3574 ((-583 (-583 (-249 (-265 |#1|)))) (-583 (-249 (-265 |#1|))) (-583 (-1090))))) (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (T -1045))
+((-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1045 *5)) (-5 *3 (-583 (-249 (-265 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-249 (-265 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-249 (-265 *4))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4)))))
+((-3357 ((|#2| |#2|) 28 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 25 T ELT)) (-3356 ((|#2| |#2|) 27 (|has| |#1| (-756)) ELT) ((|#2| |#2| (-1 (-85) |#1| |#1|)) 22 T ELT)))
+(((-1046 |#1| |#2|) (-10 -7 (-15 -3356 (|#2| |#2| (-1 (-85) |#1| |#1|))) (-15 -3357 (|#2| |#2| (-1 (-85) |#1| |#1|))) (IF (|has| |#1| (-756)) (PROGN (-15 -3356 (|#2| |#2|)) (-15 -3357 (|#2| |#2|))) |%noBranch|)) (-1129) (-13 (-538 (-484) |#1|) (-318 |#1|) (-1035 |#1|))) (T -1046))
+((-3357 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-1035 *3))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-1035 *3))))) (-3357 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-1035 *4))))) (-3356 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2)) (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-1035 *4))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3889 (((-1079 3 |#1|) $) 141 T ELT)) (-3367 (((-85) $) 101 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 44 T ELT) (($ $ (-583 (-583 |#1|))) 104 T ELT) (($ (-583 (-854 |#1|))) 103 T ELT) (((-583 (-854 |#1|)) $) 102 T ELT)) (-3373 (((-85) $) 72 T ELT)) (-3707 (($ $ (-854 |#1|)) 76 T ELT) (($ $ (-583 |#1|)) 81 T ELT) (($ $ (-694)) 83 T ELT) (($ (-854 |#1|)) 77 T ELT) (((-854 |#1|) $) 75 T ELT)) (-3359 (((-2 (|:| -3851 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 139 T ELT)) (-3377 (((-694) $) 53 T ELT)) (-3378 (((-694) $) 52 T ELT)) (-3888 (($ $ (-694) (-854 |#1|)) 67 T ELT)) (-3365 (((-85) $) 111 T ELT)) (-3366 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 118 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 120 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 115 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 127 T ELT) (($ (-583 (-583 (-854 |#1|)))) 116 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 117 T ELT) (((-583 (-583 (-854 |#1|))) $) 114 T ELT)) (-3519 (($ (-583 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3360 (((-583 (-145)) $) 133 T ELT)) (-3364 (((-583 (-854 |#1|)) $) 130 T ELT)) (-3361 (((-583 (-583 (-145))) $) 132 T ELT)) (-3362 (((-583 (-583 (-583 (-854 |#1|)))) $) NIL T ELT)) (-3363 (((-583 (-583 (-583 (-694)))) $) 131 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3374 (((-694) $ (-583 (-854 |#1|))) 65 T ELT)) (-3371 (((-85) $) 84 T ELT)) (-3372 (($ $ (-583 (-854 |#1|))) 86 T ELT) (($ $ (-583 (-583 |#1|))) 92 T ELT) (($ (-583 (-854 |#1|))) 87 T ELT) (((-583 (-854 |#1|)) $) 85 T ELT)) (-3379 (($) 48 T ELT) (($ (-1079 3 |#1|)) 49 T ELT)) (-3401 (($ $) 63 T ELT)) (-3375 (((-583 $) $) 62 T ELT)) (-3755 (($ (-583 $)) 59 T ELT)) (-3376 (((-583 $) $) 61 T ELT)) (-3947 (((-772) $) 146 T ELT)) (-3369 (((-85) $) 94 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 96 T ELT) (($ $ (-583 (-583 |#1|))) 99 T ELT) (($ (-583 (-854 |#1|))) 97 T ELT) (((-583 (-854 |#1|)) $) 95 T ELT)) (-3358 (($ $) 140 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1047 |#1|) (-1048 |#1|) (-961)) (T -1047))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3889 (((-1079 3 |#1|) $) 17 T ELT)) (-3367 (((-85) $) 33 T ELT)) (-3368 (($ $ (-583 (-854 |#1|))) 37 T ELT) (($ $ (-583 (-583 |#1|))) 36 T ELT) (($ (-583 (-854 |#1|))) 35 T ELT) (((-583 (-854 |#1|)) $) 34 T ELT)) (-3373 (((-85) $) 48 T ELT)) (-3707 (($ $ (-854 |#1|)) 53 T ELT) (($ $ (-583 |#1|)) 52 T ELT) (($ $ (-694)) 51 T ELT) (($ (-854 |#1|)) 50 T ELT) (((-854 |#1|) $) 49 T ELT)) (-3359 (((-2 (|:| -3851 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $) 19 T ELT)) (-3377 (((-694) $) 62 T ELT)) (-3378 (((-694) $) 63 T ELT)) (-3888 (($ $ (-694) (-854 |#1|)) 54 T ELT)) (-3365 (((-85) $) 25 T ELT)) (-3366 (($ $ (-583 (-583 (-854 |#1|))) (-583 (-145)) (-145)) 32 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-145)) (-145)) 31 T ELT) (($ $ (-583 (-583 (-854 |#1|))) (-85) (-85)) 30 T ELT) (($ $ (-583 (-583 (-583 |#1|))) (-85) (-85)) 29 T ELT) (($ (-583 (-583 (-854 |#1|)))) 28 T ELT) (($ (-583 (-583 (-854 |#1|))) (-85) (-85)) 27 T ELT) (((-583 (-583 (-854 |#1|))) $) 26 T ELT)) (-3519 (($ (-583 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3360 (((-583 (-145)) $) 20 T ELT)) (-3364 (((-583 (-854 |#1|)) $) 24 T ELT)) (-3361 (((-583 (-583 (-145))) $) 21 T ELT)) (-3362 (((-583 (-583 (-583 (-854 |#1|)))) $) 22 T ELT)) (-3363 (((-583 (-583 (-583 (-694)))) $) 23 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3374 (((-694) $ (-583 (-854 |#1|))) 55 T ELT)) (-3371 (((-85) $) 43 T ELT)) (-3372 (($ $ (-583 (-854 |#1|))) 47 T ELT) (($ $ (-583 (-583 |#1|))) 46 T ELT) (($ (-583 (-854 |#1|))) 45 T ELT) (((-583 (-854 |#1|)) $) 44 T ELT)) (-3379 (($) 65 T ELT) (($ (-1079 3 |#1|)) 64 T ELT)) (-3401 (($ $) 56 T ELT)) (-3375 (((-583 $) $) 57 T ELT)) (-3755 (($ (-583 $)) 59 T ELT)) (-3376 (((-583 $) $) 58 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-3369 (((-85) $) 38 T ELT)) (-3370 (($ $ (-583 (-854 |#1|))) 42 T ELT) (($ $ (-583 (-583 |#1|))) 41 T ELT) (($ (-583 (-854 |#1|))) 40 T ELT) (((-583 (-854 |#1|)) $) 39 T ELT)) (-3358 (($ $) 18 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1048 |#1|) (-113) (-961)) (T -1048))
+((-3947 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-772)))) (-3379 (*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3379 (*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3519 (*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3755 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3376 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))) (-3375 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))) (-3401 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3374 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3888 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3707 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3707 (*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3)))) (-3373 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3372 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3372 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3368 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-961)))) (-3366 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145)) (-4 *1 (-1048 *5)) (-4 *5 (-961)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3366 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4)) (-4 *4 (-961)))) (-3366 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1048 *3)))) (-3366 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961)) (-4 *1 (-1048 *4)))) (-3366 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3)))))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))) (-3362 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-854 *3))))))) (-3361 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))) (-3360 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3851 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694)))))) (-3358 (*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-1079 3 *3)))))
+(-13 (-1013) (-10 -8 (-15 -3379 ($)) (-15 -3379 ($ (-1079 3 |t#1|))) (-15 -3378 ((-694) $)) (-15 -3377 ((-694) $)) (-15 -3519 ($ (-583 $))) (-15 -3519 ($ $ $)) (-15 -3755 ($ (-583 $))) (-15 -3376 ((-583 $) $)) (-15 -3375 ((-583 $) $)) (-15 -3401 ($ $)) (-15 -3374 ((-694) $ (-583 (-854 |t#1|)))) (-15 -3888 ($ $ (-694) (-854 |t#1|))) (-15 -3707 ($ $ (-854 |t#1|))) (-15 -3707 ($ $ (-583 |t#1|))) (-15 -3707 ($ $ (-694))) (-15 -3707 ($ (-854 |t#1|))) (-15 -3707 ((-854 |t#1|) $)) (-15 -3373 ((-85) $)) (-15 -3372 ($ $ (-583 (-854 |t#1|)))) (-15 -3372 ($ $ (-583 (-583 |t#1|)))) (-15 -3372 ($ (-583 (-854 |t#1|)))) (-15 -3372 ((-583 (-854 |t#1|)) $)) (-15 -3371 ((-85) $)) (-15 -3370 ($ $ (-583 (-854 |t#1|)))) (-15 -3370 ($ $ (-583 (-583 |t#1|)))) (-15 -3370 ($ (-583 (-854 |t#1|)))) (-15 -3370 ((-583 (-854 |t#1|)) $)) (-15 -3369 ((-85) $)) (-15 -3368 ($ $ (-583 (-854 |t#1|)))) (-15 -3368 ($ $ (-583 (-583 |t#1|)))) (-15 -3368 ($ (-583 (-854 |t#1|)))) (-15 -3368 ((-583 (-854 |t#1|)) $)) (-15 -3367 ((-85) $)) (-15 -3366 ($ $ (-583 (-583 (-854 |t#1|))) (-583 (-145)) (-145))) (-15 -3366 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-145)) (-145))) (-15 -3366 ($ $ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3366 ($ $ (-583 (-583 (-583 |t#1|))) (-85) (-85))) (-15 -3366 ($ (-583 (-583 (-854 |t#1|))))) (-15 -3366 ($ (-583 (-583 (-854 |t#1|))) (-85) (-85))) (-15 -3366 ((-583 (-583 (-854 |t#1|))) $)) (-15 -3365 ((-85) $)) (-15 -3364 ((-583 (-854 |t#1|)) $)) (-15 -3363 ((-583 (-583 (-583 (-694)))) $)) (-15 -3362 ((-583 (-583 (-583 (-854 |t#1|)))) $)) (-15 -3361 ((-583 (-583 (-145))) $)) (-15 -3360 ((-583 (-145)) $)) (-15 -3359 ((-2 (|:| -3851 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694)) (|:| |constructs| (-694))) $)) (-15 -3358 ($ $)) (-15 -3889 ((-1079 3 |t#1|) $)) (-15 -3947 ((-772) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 185 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) 7 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-462))) 19 T ELT) (((-85) $ (|[\|\|]| (-172))) 23 T ELT) (((-85) $ (|[\|\|]| (-617))) 27 T ELT) (((-85) $ (|[\|\|]| (-1190))) 31 T ELT) (((-85) $ (|[\|\|]| (-111))) 35 T ELT) (((-85) $ (|[\|\|]| (-539))) 39 T ELT) (((-85) $ (|[\|\|]| (-106))) 43 T ELT) (((-85) $ (|[\|\|]| (-1029))) 47 T ELT) (((-85) $ (|[\|\|]| (-67))) 51 T ELT) (((-85) $ (|[\|\|]| (-622))) 55 T ELT) (((-85) $ (|[\|\|]| (-458))) 59 T ELT) (((-85) $ (|[\|\|]| (-978))) 63 T ELT) (((-85) $ (|[\|\|]| (-1191))) 67 T ELT) (((-85) $ (|[\|\|]| (-463))) 71 T ELT) (((-85) $ (|[\|\|]| (-1067))) 75 T ELT) (((-85) $ (|[\|\|]| (-127))) 79 T ELT) (((-85) $ (|[\|\|]| (-613))) 83 T ELT) (((-85) $ (|[\|\|]| (-263))) 87 T ELT) (((-85) $ (|[\|\|]| (-948))) 91 T ELT) (((-85) $ (|[\|\|]| (-154))) 95 T ELT) (((-85) $ (|[\|\|]| (-883))) 99 T ELT) (((-85) $ (|[\|\|]| (-985))) 103 T ELT) (((-85) $ (|[\|\|]| (-1003))) 107 T ELT) (((-85) $ (|[\|\|]| (-1008))) 111 T ELT) (((-85) $ (|[\|\|]| (-565))) 116 T ELT) (((-85) $ (|[\|\|]| (-1081))) 120 T ELT) (((-85) $ (|[\|\|]| (-129))) 124 T ELT) (((-85) $ (|[\|\|]| (-110))) 128 T ELT) (((-85) $ (|[\|\|]| (-418))) 132 T ELT) (((-85) $ (|[\|\|]| (-528))) 136 T ELT) (((-85) $ (|[\|\|]| (-446))) 140 T ELT) (((-85) $ (|[\|\|]| (-1073))) 144 T ELT) (((-85) $ (|[\|\|]| (-484))) 148 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3573 (((-462) $) 20 T ELT) (((-172) $) 24 T ELT) (((-617) $) 28 T ELT) (((-1190) $) 32 T ELT) (((-111) $) 36 T ELT) (((-539) $) 40 T ELT) (((-106) $) 44 T ELT) (((-1029) $) 48 T ELT) (((-67) $) 52 T ELT) (((-622) $) 56 T ELT) (((-458) $) 60 T ELT) (((-978) $) 64 T ELT) (((-1191) $) 68 T ELT) (((-463) $) 72 T ELT) (((-1067) $) 76 T ELT) (((-127) $) 80 T ELT) (((-613) $) 84 T ELT) (((-263) $) 88 T ELT) (((-948) $) 92 T ELT) (((-154) $) 96 T ELT) (((-883) $) 100 T ELT) (((-985) $) 104 T ELT) (((-1003) $) 108 T ELT) (((-1008) $) 112 T ELT) (((-565) $) 117 T ELT) (((-1081) $) 121 T ELT) (((-129) $) 125 T ELT) (((-110) $) 129 T ELT) (((-418) $) 133 T ELT) (((-528) $) 137 T ELT) (((-446) $) 141 T ELT) (((-1073) $) 145 T ELT) (((-484) $) 149 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1049) (-1051)) (T -1049))
+NIL
+((-3380 (((-583 (-1095)) (-1073)) 9 T ELT)))
+(((-1050) (-10 -7 (-15 -3380 ((-583 (-1095)) (-1073))))) (T -1050))
+((-3380 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-1050)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-1095)) 20 T ELT) (((-1095) $) 19 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-462))) 88 T ELT) (((-85) $ (|[\|\|]| (-172))) 86 T ELT) (((-85) $ (|[\|\|]| (-617))) 84 T ELT) (((-85) $ (|[\|\|]| (-1190))) 82 T ELT) (((-85) $ (|[\|\|]| (-111))) 80 T ELT) (((-85) $ (|[\|\|]| (-539))) 78 T ELT) (((-85) $ (|[\|\|]| (-106))) 76 T ELT) (((-85) $ (|[\|\|]| (-1029))) 74 T ELT) (((-85) $ (|[\|\|]| (-67))) 72 T ELT) (((-85) $ (|[\|\|]| (-622))) 70 T ELT) (((-85) $ (|[\|\|]| (-458))) 68 T ELT) (((-85) $ (|[\|\|]| (-978))) 66 T ELT) (((-85) $ (|[\|\|]| (-1191))) 64 T ELT) (((-85) $ (|[\|\|]| (-463))) 62 T ELT) (((-85) $ (|[\|\|]| (-1067))) 60 T ELT) (((-85) $ (|[\|\|]| (-127))) 58 T ELT) (((-85) $ (|[\|\|]| (-613))) 56 T ELT) (((-85) $ (|[\|\|]| (-263))) 54 T ELT) (((-85) $ (|[\|\|]| (-948))) 52 T ELT) (((-85) $ (|[\|\|]| (-154))) 50 T ELT) (((-85) $ (|[\|\|]| (-883))) 48 T ELT) (((-85) $ (|[\|\|]| (-985))) 46 T ELT) (((-85) $ (|[\|\|]| (-1003))) 44 T ELT) (((-85) $ (|[\|\|]| (-1008))) 42 T ELT) (((-85) $ (|[\|\|]| (-565))) 40 T ELT) (((-85) $ (|[\|\|]| (-1081))) 38 T ELT) (((-85) $ (|[\|\|]| (-129))) 36 T ELT) (((-85) $ (|[\|\|]| (-110))) 34 T ELT) (((-85) $ (|[\|\|]| (-418))) 32 T ELT) (((-85) $ (|[\|\|]| (-528))) 30 T ELT) (((-85) $ (|[\|\|]| (-446))) 28 T ELT) (((-85) $ (|[\|\|]| (-1073))) 26 T ELT) (((-85) $ (|[\|\|]| (-484))) 24 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3573 (((-462) $) 87 T ELT) (((-172) $) 85 T ELT) (((-617) $) 83 T ELT) (((-1190) $) 81 T ELT) (((-111) $) 79 T ELT) (((-539) $) 77 T ELT) (((-106) $) 75 T ELT) (((-1029) $) 73 T ELT) (((-67) $) 71 T ELT) (((-622) $) 69 T ELT) (((-458) $) 67 T ELT) (((-978) $) 65 T ELT) (((-1191) $) 63 T ELT) (((-463) $) 61 T ELT) (((-1067) $) 59 T ELT) (((-127) $) 57 T ELT) (((-613) $) 55 T ELT) (((-263) $) 53 T ELT) (((-948) $) 51 T ELT) (((-154) $) 49 T ELT) (((-883) $) 47 T ELT) (((-985) $) 45 T ELT) (((-1003) $) 43 T ELT) (((-1008) $) 41 T ELT) (((-565) $) 39 T ELT) (((-1081) $) 37 T ELT) (((-129) $) 35 T ELT) (((-110) $) 33 T ELT) (((-418) $) 31 T ELT) (((-528) $) 29 T ELT) (((-446) $) 27 T ELT) (((-1073) $) 25 T ELT) (((-484) $) 23 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1051) (-113)) (T -1051))
+((-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-462)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-617)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-539)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1029)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-622)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-458)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-978)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-613)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-948)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-883)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-985)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1003)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1008)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-565)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-528)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-446)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-484)))))
+(-13 (-995) (-1175) (-10 -8 (-15 -3567 ((-85) $ (|[\|\|]| (-462)))) (-15 -3573 ((-462) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-172)))) (-15 -3573 ((-172) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-617)))) (-15 -3573 ((-617) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1190)))) (-15 -3573 ((-1190) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-111)))) (-15 -3573 ((-111) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-539)))) (-15 -3573 ((-539) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-106)))) (-15 -3573 ((-106) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1029)))) (-15 -3573 ((-1029) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-67)))) (-15 -3573 ((-67) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-622)))) (-15 -3573 ((-622) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-458)))) (-15 -3573 ((-458) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-978)))) (-15 -3573 ((-978) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1191)))) (-15 -3573 ((-1191) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-463)))) (-15 -3573 ((-463) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1067)))) (-15 -3573 ((-1067) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-127)))) (-15 -3573 ((-127) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-613)))) (-15 -3573 ((-613) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-263)))) (-15 -3573 ((-263) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-948)))) (-15 -3573 ((-948) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-154)))) (-15 -3573 ((-154) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-883)))) (-15 -3573 ((-883) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-985)))) (-15 -3573 ((-985) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1003)))) (-15 -3573 ((-1003) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1008)))) (-15 -3573 ((-1008) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-565)))) (-15 -3573 ((-565) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1081)))) (-15 -3573 ((-1081) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-129)))) (-15 -3573 ((-129) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-110)))) (-15 -3573 ((-110) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-418)))) (-15 -3573 ((-418) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-528)))) (-15 -3573 ((-528) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-446)))) (-15 -3573 ((-446) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-1073)))) (-15 -3573 ((-1073) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-484)))) (-15 -3573 ((-484) $))))
+(((-64) . T) ((-72) . T) ((-555 (-1095)) . T) ((-552 (-772)) . T) ((-552 (-1095)) . T) ((-430 (-1095)) . T) ((-13) . T) ((-1013) . T) ((-995) . T) ((-1129) . T) ((-1175) . T))
+((-3383 (((-1185) (-583 (-772))) 22 T ELT) (((-1185) (-772)) 21 T ELT)) (-3382 (((-1185) (-583 (-772))) 20 T ELT) (((-1185) (-772)) 19 T ELT)) (-3381 (((-1185) (-583 (-772))) 18 T ELT) (((-1185) (-772)) 10 T ELT) (((-1185) (-1073) (-772)) 16 T ELT)))
+(((-1052) (-10 -7 (-15 -3381 ((-1185) (-1073) (-772))) (-15 -3381 ((-1185) (-772))) (-15 -3382 ((-1185) (-772))) (-15 -3383 ((-1185) (-772))) (-15 -3381 ((-1185) (-583 (-772)))) (-15 -3382 ((-1185) (-583 (-772)))) (-15 -3383 ((-1185) (-583 (-772)))))) (T -1052))
+((-3383 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+((-3387 (($ $ $) 10 T ELT)) (-3386 (($ $) 9 T ELT)) (-3390 (($ $ $) 13 T ELT)) (-3392 (($ $ $) 15 T ELT)) (-3389 (($ $ $) 12 T ELT)) (-3391 (($ $ $) 14 T ELT)) (-3394 (($ $) 17 T ELT)) (-3393 (($ $) 16 T ELT)) (-3384 (($ $) 6 T ELT)) (-3388 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3385 (($ $ $) 8 T ELT)))
+(((-1053) (-113)) (T -1053))
+((-3394 (*1 *1 *1) (-4 *1 (-1053))) (-3393 (*1 *1 *1) (-4 *1 (-1053))) (-3392 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3391 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3390 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3389 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3388 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3387 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3386 (*1 *1 *1) (-4 *1 (-1053))) (-3385 (*1 *1 *1 *1) (-4 *1 (-1053))) (-3388 (*1 *1 *1) (-4 *1 (-1053))) (-3384 (*1 *1 *1) (-4 *1 (-1053))))
+(-13 (-10 -8 (-15 -3384 ($ $)) (-15 -3388 ($ $)) (-15 -3385 ($ $ $)) (-15 -3386 ($ $)) (-15 -3387 ($ $ $)) (-15 -3388 ($ $ $)) (-15 -3389 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3391 ($ $ $)) (-15 -3392 ($ $ $)) (-15 -3393 ($ $)) (-15 -3394 ($ $))))
+((-2569 (((-85) $ $) 44 T ELT)) (-3403 ((|#1| $) 17 T ELT)) (-3395 (((-85) $ $ (-1 (-85) |#2| |#2|)) 39 T ELT)) (-3402 (((-85) $) 19 T ELT)) (-3400 (($ $ |#1|) 30 T ELT)) (-3398 (($ $ (-85)) 32 T ELT)) (-3397 (($ $) 33 T ELT)) (-3399 (($ $ |#2|) 31 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3396 (((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|)) 38 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3404 (((-85) $) 16 T ELT)) (-3566 (($) 13 T ELT)) (-3401 (($ $) 29 T ELT)) (-3531 (($ |#1| |#2| (-85)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) 23 T ELT) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) 26 T ELT) (((-583 $) |#1| (-583 |#2|)) 28 T ELT)) (-3923 ((|#2| $) 18 T ELT)) (-3947 (((-772) $) 53 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 42 T ELT)))
+(((-1054 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3566 ($)) (-15 -3404 ((-85) $)) (-15 -3403 (|#1| $)) (-15 -3923 (|#2| $)) (-15 -3402 ((-85) $)) (-15 -3531 ($ |#1| |#2| (-85))) (-15 -3531 ($ |#1| |#2|)) (-15 -3531 ($ (-2 (|:| |val| |#1|) (|:| -1600 |#2|)))) (-15 -3531 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))))) (-15 -3531 ((-583 $) |#1| (-583 |#2|))) (-15 -3401 ($ $)) (-15 -3400 ($ $ |#1|)) (-15 -3399 ($ $ |#2|)) (-15 -3398 ($ $ (-85))) (-15 -3397 ($ $)) (-15 -3396 ((-85) $ $ (-1 (-85) |#1| |#1|) (-1 (-85) |#2| |#2|))) (-15 -3395 ((-85) $ $ (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1054))
+((-3566 (*1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3403 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3)) (-4 *3 (-13 (-1013) (-34))))) (-3923 (*1 *2 *1) (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34))))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1600 *5)))) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-583 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-13 (-1013) (-34))))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3400 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3399 (*1 *1 *1 *2) (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34))) (-4 *2 (-13 (-1013) (-34))))) (-3398 (*1 *1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3396 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *5 *6)))) (-3395 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
+((-2569 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3403 (((-1054 |#1| |#2|) $) 27 T ELT)) (-3412 (($ $) 91 T ELT)) (-3408 (((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|)) 100 T ELT)) (-3405 (($ $ $ (-583 (-1054 |#1| |#2|))) 108 T ELT) (($ $ $ (-583 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|)) 109 T ELT)) (-3026 (((-1054 |#1| |#2|) $ (-1054 |#1| |#2|)) 46 (|has| $ (-1035 (-1054 |#1| |#2|))) ELT)) (-3789 (((-1054 |#1| |#2|) $ #1="value" (-1054 |#1| |#2|)) NIL (|has| $ (-1035 (-1054 |#1| |#2|))) ELT)) (-3027 (($ $ (-583 $)) 44 (|has| $ (-1035 (-1054 |#1| |#2|))) ELT)) (-3725 (($) NIL T CONST)) (-3410 (((-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $) 95 T ELT)) (-3406 (($ (-1054 |#1| |#2|) $) 42 T ELT)) (-3407 (($ (-1054 |#1| |#2|) $) 34 T ELT)) (-3843 (((-1054 |#1| |#2|) (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $ (-1054 |#1| |#2|) (-1054 |#1| |#2|)) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT) (((-1054 |#1| |#2|) (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $ (-1054 |#1| |#2|)) NIL T ELT) (((-1054 |#1| |#2|) (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3032 (((-583 $) $) 54 T ELT)) (-3409 (((-85) (-1054 |#1| |#2|) $) 97 T ELT)) (-3028 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-2609 (((-583 (-1054 |#1| |#2|)) $) 58 T ELT)) (-3246 (((-85) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3327 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 50 T ELT)) (-3959 (($ (-1 (-1054 |#1| |#2|) (-1054 |#1| |#2|)) $) 49 T ELT)) (-3031 (((-583 (-1054 |#1| |#2|)) $) 56 T ELT)) (-3528 (((-85) $) 45 T ELT)) (-3243 (((-1073) $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| (-1054 |#1| |#2|) (-1013)) ELT)) (-3413 (((-3 $ "failed") $) 89 T ELT)) (-1731 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-1054 |#1| |#2|)))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-249 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-1054 |#1| |#2|) (-1054 |#1| |#2|)) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT) (($ $ (-583 (-1054 |#1| |#2|)) (-583 (-1054 |#1| |#2|))) NIL (-12 (|has| (-1054 |#1| |#2|) (-260 (-1054 |#1| |#2|))) (|has| (-1054 |#1| |#2|) (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 24 T ELT)) (-3566 (($) 26 T ELT)) (-3801 (((-1054 |#1| |#2|) $ #1#) NIL T ELT)) (-3030 (((-484) $ $) NIL T ELT)) (-3634 (((-85) $) 47 T ELT)) (-1730 (((-694) (-1054 |#1| |#2|) $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT) (((-694) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3401 (($ $) 52 T ELT)) (-3531 (($ (-1054 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-583 $)) 13 T ELT) (($ |#1| |#2| (-583 (-1054 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-583 |#2|)) 18 T ELT)) (-3411 (((-583 |#2|) $) 96 T ELT)) (-3947 (((-772) $) 87 (|has| (-1054 |#1| |#2|) (-552 (-772))) ELT)) (-3523 (((-583 $) $) 31 T ELT)) (-3029 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-1732 (((-85) (-1 (-85) (-1054 |#1| |#2|)) $) NIL T ELT)) (-3057 (((-85) $ $) 70 (|has| (-1054 |#1| |#2|) (-72)) ELT)) (-3958 (((-694) $) 64 T ELT)))
+(((-1055 |#1| |#2|) (-13 (-923 (-1054 |#1| |#2|)) (-318 (-1054 |#1| |#2|)) (-1035 (-1054 |#1| |#2|)) (-10 -8 (-15 -3413 ((-3 $ "failed") $)) (-15 -3412 ($ $)) (-15 -3531 ($ (-1054 |#1| |#2|))) (-15 -3531 ($ |#1| |#2| (-583 $))) (-15 -3531 ($ |#1| |#2| (-583 (-1054 |#1| |#2|)))) (-15 -3531 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -3411 ((-583 |#2|) $)) (-15 -3410 ((-583 (-2 (|:| |val| |#1|) (|:| -1600 |#2|))) $)) (-15 -3409 ((-85) (-1054 |#1| |#2|) $)) (-15 -3408 ((-85) (-1054 |#1| |#2|) $ (-1 (-85) |#2| |#2|))) (-15 -3407 ($ (-1054 |#1| |#2|) $)) (-15 -3406 ($ (-1054 |#1| |#2|) $)) (-15 -3405 ($ $ $ (-583 (-1054 |#1| |#2|)))) (-15 -3405 ($ $ $ (-583 (-1054 |#1| |#2|)) (-1 (-85) |#2| |#2|))))) (-13 (-1013) (-34)) (-13 (-1013) (-34))) (T -1055))
+((-3413 (*1 *1 *1) (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3412 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))))) (-3531 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1054 *2 *3))) (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)))) (-3531 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34))))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))) (-3409 (*1 *2 *3 *1) (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)))) (-3408 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6)) (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *5 *6)))) (-3407 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3406 (*1 *1 *2 *1) (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3405 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1054 *3 *4))) (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))) (-3405 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5)) (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34))) (-5 *1 (-1055 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3415 (($ $) NIL T ELT)) (-3331 ((|#2| $) NIL T ELT)) (-3121 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3414 (($ (-630 |#2|)) 53 T ELT)) (-3123 (((-85) $) NIL T ELT)) (-3334 (($ |#2|) 14 T ELT)) (-3725 (($) NIL T CONST)) (-3110 (($ $) 66 (|has| |#2| (-258)) ELT)) (-3112 (((-197 |#1| |#2|) $ (-484)) 40 T ELT)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) ((|#2| $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3843 ((|#2| (-1 |#2| |#2| |#2|) $) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) NIL T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) NIL (|has| |#2| (-72)) ELT)) (-3468 (((-3 $ #1#) $) 80 T ELT)) (-3109 (((-694) $) 68 (|has| |#2| (-495)) ELT)) (-3113 ((|#2| $ (-484) (-484)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3108 (((-694) $) 70 (|has| |#2| (-495)) ELT)) (-3107 (((-583 (-197 |#1| |#2|)) $) 74 (|has| |#2| (-495)) ELT)) (-3115 (((-694) $) NIL T ELT)) (-3615 (($ |#2|) 23 T ELT)) (-3114 (((-694) $) NIL T ELT)) (-3328 ((|#2| $) 64 (|has| |#2| (-6 (-3998 #2="*"))) ELT)) (-3119 (((-484) $) NIL T ELT)) (-3117 (((-484) $) NIL T ELT)) (-2609 (((-583 |#2|) $) NIL T ELT)) (-3246 (((-85) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3118 (((-484) $) NIL T ELT)) (-3116 (((-484) $) NIL T ELT)) (-3124 (($ (-583 (-583 |#2|))) 35 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3595 (((-583 (-583 |#2|)) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3591 (((-3 $ #1#) $) 77 (|has| |#2| (-312)) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT)) (-1731 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ (-484) (-484) |#2|) NIL T ELT) ((|#2| $ (-484) (-484)) NIL T ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3330 ((|#2| $) NIL T ELT)) (-3333 (($ (-583 |#2|)) 48 T ELT)) (-3122 (((-85) $) NIL T ELT)) (-3332 (((-197 |#1| |#2|) $) NIL T ELT)) (-3329 ((|#2| $) 62 (|has| |#2| (-6 (-3998 #2#))) ELT)) (-1730 (((-694) (-1 (-85) |#2|) $) NIL T ELT) (((-694) |#2| $) NIL (|has| |#2| (-72)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) 87 (|has| |#2| (-553 (-473))) ELT)) (-3111 (((-197 |#1| |#2|) $ (-484)) 42 T ELT)) (-3947 (((-772) $) 45 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (($ |#2|) NIL T ELT) (((-630 |#2|) $) 50 T ELT)) (-3127 (((-694)) 21 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#2|) $) NIL T ELT)) (-3120 (((-85) $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-2667 (($) 19 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-189)) ELT) (($ $ (-694)) NIL (|has| |#2| (-189)) ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) 79 (|has| |#2| (-312)) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-197 |#1| |#2|) $ (-197 |#1| |#2|)) 56 T ELT) (((-197 |#1| |#2|) (-197 |#1| |#2|) $) 58 T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1056 |#1| |#2|) (-13 (-1037 |#1| |#2| (-197 |#1| |#2|) (-197 |#1| |#2|)) (-552 (-630 |#2|)) (-10 -8 (-15 -3615 ($ |#2|)) (-15 -3415 ($ $)) (-15 -3414 ($ (-630 |#2|))) (IF (|has| |#2| (-6 (-3998 #1="*"))) (-6 -3985) |%noBranch|) (IF (|has| |#2| (-6 (-3998 #1#))) (IF (|has| |#2| (-6 -3993)) (-6 -3993) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-553 (-473))) (-6 (-553 (-473))) |%noBranch|))) (-694) (-961)) (T -1056))
+((-3615 (*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961)))) (-3415 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-694)))))
+((-3428 (($ $) 19 T ELT)) (-3418 (($ $ (-117)) 10 T ELT) (($ $ (-114)) 14 T ELT)) (-3426 (((-85) $ $) 24 T ELT)) (-3430 (($ $) 17 T ELT)) (-3801 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) (($ $ $) 31 T ELT)) (-3947 (($ (-117)) 29 T ELT) (((-772) $) NIL T ELT)))
+(((-1057 |#1|) (-10 -7 (-15 -3947 ((-772) |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| (-114))) (-15 -3418 (|#1| |#1| (-117))) (-15 -3947 (|#1| (-117))) (-15 -3426 ((-85) |#1| |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3801 (|#1| |#1| (-1146 (-484)))) (-15 -3801 ((-117) |#1| (-484))) (-15 -3801 ((-117) |#1| (-484) (-117)))) (-1058)) (T -1057))
+NIL
+((-2569 (((-85) $ $) 17 (|has| (-117) (-72)) ELT)) (-3427 (($ $) 130 T ELT)) (-3428 (($ $) 131 T ELT)) (-3418 (($ $ (-117)) 118 T ELT) (($ $ (-114)) 117 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 (-117))) ELT)) (-3425 (((-85) $ $) 128 T ELT)) (-3424 (((-85) $ $ (-484)) 127 T ELT)) (-3419 (((-583 $) $ (-117)) 120 T ELT) (((-583 $) $ (-114)) 119 T ELT)) (-1735 (((-85) (-1 (-85) (-117) (-117)) $) 97 T ELT) (((-85) $) 91 (|has| (-117) (-756)) ELT)) (-1733 (($ (-1 (-85) (-117) (-117)) $) 88 (|has| $ (-1035 (-117))) ELT) (($ $) 87 (-12 (|has| (-117) (-756)) (|has| $ (-1035 (-117)))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) 98 T ELT) (($ $) 92 (|has| (-117) (-756)) ELT)) (-3789 (((-117) $ (-484) (-117)) 47 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1146 (-484)) (-117)) 55 (|has| $ (-1035 (-117))) ELT)) (-3711 (($ (-1 (-85) (-117)) $) 70 (|has| $ (-318 (-117))) ELT)) (-3725 (($) 6 T CONST)) (-3416 (($ $ (-117)) 114 T ELT) (($ $ (-114)) 113 T ELT)) (-2297 (($ $) 89 (|has| $ (-1035 (-117))) ELT)) (-2298 (($ $) 99 T ELT)) (-3421 (($ $ (-1146 (-484)) $) 124 T ELT)) (-1353 (($ $) 72 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT)) (-3407 (($ (-117) $) 71 (-12 (|has| (-117) (-72)) (|has| $ (-318 (-117)))) ELT) (($ (-1 (-85) (-117)) $) 69 (|has| $ (-318 (-117))) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) 110 (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) 107 T ELT) (((-117) (-1 (-117) (-117) (-117)) $) 106 T ELT)) (-1576 (((-117) $ (-484) (-117)) 48 (|has| $ (-6 -3997)) ELT)) (-3113 (((-117) $ (-484)) 46 T ELT)) (-3426 (((-85) $ $) 129 T ELT)) (-3420 (((-484) (-1 (-85) (-117)) $) 96 T ELT) (((-484) (-117) $) 95 (|has| (-117) (-72)) ELT) (((-484) (-117) $ (-484)) 94 (|has| (-117) (-72)) ELT) (((-484) $ $ (-484)) 123 T ELT) (((-484) (-114) $ (-484)) 122 T ELT)) (-3615 (($ (-694) (-117)) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 81 (|has| (-117) (-756)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) 100 T ELT) (($ $ $) 93 (|has| (-117) (-756)) ELT)) (-2609 (((-583 (-117)) $) 105 T ELT)) (-3246 (((-85) (-117) $) 109 (|has| (-117) (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 82 (|has| (-117) (-756)) ELT)) (-3422 (((-85) $ $ (-117)) 125 T ELT)) (-3423 (((-694) $ $ (-117)) 126 T ELT)) (-3327 (($ (-1 (-117) (-117)) $) 25 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) 26 T ELT) (($ (-1 (-117) (-117) (-117)) $ $) 60 T ELT)) (-3429 (($ $) 132 T ELT)) (-3430 (($ $) 133 T ELT)) (-3417 (($ $ (-117)) 116 T ELT) (($ $ (-114)) 115 T ELT)) (-3243 (((-1073) $) 20 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| (-117) (-1013)) ELT)) (-3802 (((-117) $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) 68 T ELT)) (-2199 (($ $ (-117)) 36 (|has| $ (-1035 (-117))) ELT)) (-1731 (((-85) (-1 (-85) (-117)) $) 103 T ELT)) (-3769 (($ $ (-583 (-249 (-117)))) 24 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) 23 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) 22 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) 21 (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) (-117) $) 40 (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2205 (((-583 (-117)) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 (((-117) $ (-484) (-117)) 45 T ELT) (((-117) $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT) (($ $ $) 112 T ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-1730 (((-694) (-117) $) 108 (|has| (-117) (-72)) ELT) (((-694) (-1 (-85) (-117)) $) 104 T ELT)) (-1734 (($ $ $ (-484)) 90 (|has| $ (-1035 (-117))) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| (-117) (-553 (-473))) ELT)) (-3531 (($ (-583 (-117))) 67 T ELT)) (-3803 (($ $ (-117)) 64 T ELT) (($ (-117) $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (($ (-117)) 121 T ELT) (((-772) $) 15 (|has| (-117) (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| (-117) (-72)) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) 102 T ELT)) (-2567 (((-85) $ $) 83 (|has| (-117) (-756)) ELT)) (-2568 (((-85) $ $) 85 (|has| (-117) (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) 84 (|has| (-117) (-756)) ELT)) (-2686 (((-85) $ $) 86 (|has| (-117) (-756)) ELT)) (-3958 (((-694) $) 101 T ELT)))
+(((-1058) (-113)) (T -1058))
+((-3430 (*1 *1 *1) (-4 *1 (-1058))) (-3429 (*1 *1 *1) (-4 *1 (-1058))) (-3428 (*1 *1 *1) (-4 *1 (-1058))) (-3427 (*1 *1 *1) (-4 *1 (-1058))) (-3426 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3425 (*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-484)) (-5 *2 (-85)))) (-3423 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-694)))) (-3422 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85)))) (-3421 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-484))))) (-3420 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)))) (-3420 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)) (-5 *3 (-114)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3417 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114)))) (-3801 (*1 *1 *1 *1) (-4 *1 (-1058))))
+(-13 (-19 (-117)) (-10 -8 (-15 -3430 ($ $)) (-15 -3429 ($ $)) (-15 -3428 ($ $)) (-15 -3427 ($ $)) (-15 -3426 ((-85) $ $)) (-15 -3425 ((-85) $ $)) (-15 -3424 ((-85) $ $ (-484))) (-15 -3423 ((-694) $ $ (-117))) (-15 -3422 ((-85) $ $ (-117))) (-15 -3421 ($ $ (-1146 (-484)) $)) (-15 -3420 ((-484) $ $ (-484))) (-15 -3420 ((-484) (-114) $ (-484))) (-15 -3947 ($ (-117))) (-15 -3419 ((-583 $) $ (-117))) (-15 -3419 ((-583 $) $ (-114))) (-15 -3418 ($ $ (-117))) (-15 -3418 ($ $ (-114))) (-15 -3417 ($ $ (-117))) (-15 -3417 ($ $ (-114))) (-15 -3416 ($ $ (-117))) (-15 -3416 ($ $ (-114))) (-15 -3801 ($ $ $))))
+(((-34) . T) ((-72) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-72))) ((-552 (-772)) OR (|has| (-117) (-1013)) (|has| (-117) (-756)) (|has| (-117) (-552 (-772)))) ((-124 (-117)) . T) ((-553 (-473)) |has| (-117) (-553 (-473))) ((-241 (-484) (-117)) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) (-117)) . T) ((-260 (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-318 (-117)) . T) ((-324 (-117)) . T) ((-429 (-117)) . T) ((-538 (-484) (-117)) . T) ((-455 (-117) (-117)) -12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ((-13) . T) ((-593 (-117)) . T) ((-19 (-117)) . T) ((-756) |has| (-117) (-756)) ((-759) |has| (-117) (-756)) ((-1013) OR (|has| (-117) (-1013)) (|has| (-117) (-756))) ((-1035 (-117)) . T) ((-1129) . T))
+((-3437 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694)) 112 T ELT)) (-3434 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 61 T ELT)) (-3438 (((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)) 97 T ELT)) (-3432 (((-694) (-583 |#4|) (-583 |#5|)) 30 T ELT)) (-3435 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694)) 63 T ELT) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85)) 65 T ELT)) (-3436 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85)) 84 T ELT) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85)) 85 T ELT)) (-3973 (((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) 90 T ELT)) (-3433 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|) 60 T ELT)) (-3431 (((-694) (-583 |#4|) (-583 |#5|)) 21 T ELT)))
+(((-1059 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3431 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3432 ((-694) (-583 |#4|) (-583 |#5|))) (-15 -3433 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3434 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694) (-85))) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5| (-694))) (-15 -3435 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) |#4| |#5|)) (-15 -3436 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85))) (-15 -3436 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-85) (-85) (-85) (-85) (-85))) (-15 -3437 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))))) (-694))) (-15 -3973 ((-1073) (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|)))) (-15 -3438 ((-1185) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -1600 |#5|))) (-694)))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|) (-1020 |#1| |#2| |#3| |#4|)) (T -1059))
+((-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8))) (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073)) (-5 *1 (-1059 *4 *5 *6 *7 *8)))) (-3437 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11)))))) (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9)) (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-5 *1 (-1059 *7 *8 *9 *10 *11)))) (-3436 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3436 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3435 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3435 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3435 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3434 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3)))) (-3433 (*1 *2 *3 *4) (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4)))))) (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3683 (((-583 $) (-583 |#4|)) 117 T ELT) (((-583 $) (-583 |#4|) (-85)) 118 T ELT) (((-583 $) (-583 |#4|) (-85) (-85)) 116 T ELT) (((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85)) 119 T ELT)) (-3082 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3776 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| $) 90 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) 69 T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) 28 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3157 (($ (-583 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 44 T ELT)) (-3686 ((|#4| |#4| $) 72 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3198 (((-85) |#4| $) NIL T ELT)) (-3196 (((-85) |#4| $) NIL T ELT)) (-3199 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3439 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85)) 132 T ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 37 T ELT)) (-2609 (((-583 |#4|) $) 18 T ELT)) (-3246 (((-85) |#4| $) 26 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 24 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 22 T ELT)) (-2915 (((-583 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3192 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL T ELT)) (-3191 (((-583 (-2 (|:| |val| |#4|) (|:| -1600 $))) |#4| |#4| $) 110 T ELT)) (-3799 (((-3 |#4| #1#) $) 41 T ELT)) (-3193 (((-583 $) |#4| $) 95 T ELT)) (-3195 (((-3 (-85) (-583 $)) |#4| $) NIL T ELT)) (-3194 (((-583 (-2 (|:| |val| (-85)) (|:| -1600 $))) |#4| $) 105 T ELT) (((-85) |#4| $) 61 T ELT)) (-3239 (((-583 $) |#4| $) 114 T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 115 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT)) (-3440 (((-583 $) (-583 |#4|) (-85) (-85) (-85)) 127 T ELT)) (-3441 (($ |#4| $) 81 T ELT) (($ (-583 |#4|) $) 82 T ELT) (((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85)) 80 T ELT)) (-3698 (((-583 |#4|) $) NIL T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) NIL T ELT)) (-3700 (((-85) $ $) NIL T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 39 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) 55 T ELT)) (-3770 (($ $ |#4|) NIL T ELT) (((-583 $) |#4| $) 97 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) 92 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 17 T ELT)) (-3566 (($) 14 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) 13 T ELT)) (-3973 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 21 T ELT)) (-2911 (($ $ |#3|) 48 T ELT)) (-2913 (($ $ |#3|) 50 T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-772) $) 34 T ELT) (((-583 |#4|) $) 45 T ELT)) (-3679 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-3190 (((-583 $) |#4| $) 62 T ELT) (((-583 $) |#4| (-583 $)) NIL T ELT) (((-583 $) (-583 |#4|) $) NIL T ELT) (((-583 $) (-583 |#4|) (-583 $)) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-583 |#3|) $) NIL T ELT)) (-3197 (((-85) |#4| $) NIL T ELT)) (-3934 (((-85) |#3| $) 68 T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1060 |#1| |#2| |#3| |#4|) (-13 (-1020 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3441 ((-583 $) |#4| $ (-85) (-85) (-85) (-85) (-85))) (-15 -3683 ((-583 $) (-583 |#4|) (-85) (-85))) (-15 -3683 ((-583 $) (-583 |#4|) (-85) (-85) (-85) (-85))) (-15 -3440 ((-583 $) (-583 |#4|) (-85) (-85) (-85))) (-15 -3439 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-85) (-85))))) (-392) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1060))
+((-3441 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3)) (-4 *3 (-977 *5 *6 *7)))) (-3683 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3683 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3440 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8))) (-5 *1 (-1060 *5 *6 *7 *8)))) (-3439 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1060 *5 *6 *7 *8))))) (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 32 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 30 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 29 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-694)) 31 T ELT) (($ $ (-830)) 28 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ $ $) 27 T ELT)))
+(((-1061) (-113)) (T -1061))
+NIL
+(-13 (-23) (-663))
+(((-23) . T) ((-25) . T) ((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-663) . T) ((-1025) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3324 ((|#1| $) 38 T ELT)) (-3442 (($ (-583 |#1|)) 46 T ELT)) (-3725 (($) NIL T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3326 ((|#1| |#1| $) 41 T ELT)) (-3325 ((|#1| $) 36 T ELT)) (-2609 (((-583 |#1|) $) 19 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-1274 ((|#1| $) 39 T ELT)) (-3610 (($ |#1| $) 42 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1275 ((|#1| $) 37 T ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 33 T ELT)) (-3566 (($) 44 T ELT)) (-3323 (((-694) $) 31 T ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-3401 (($ $) 28 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1276 (($ (-583 |#1|)) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3057 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 32 T ELT)))
+(((-1062 |#1|) (-13 (-1034 |#1|) (-10 -8 (-15 -3442 ($ (-583 |#1|))))) (-1129)) (T -1062))
+((-3442 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3)))))
+((-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1146 (-484)) |#2|) 53 T ELT) ((|#2| $ (-484) |#2|) 50 T ELT)) (-3444 (((-85) $) 12 T ELT)) (-3327 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3802 ((|#2| $) NIL T ELT) (($ $ (-694)) 17 T ELT)) (-2199 (($ $ |#2|) 49 T ELT)) (-3445 (((-85) $) 11 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) 36 T ELT) ((|#2| $ (-484)) 25 T ELT) ((|#2| $ (-484) |#2|) NIL T ELT)) (-3792 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3803 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-583 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1063 |#1| |#2|) (-10 -7 (-15 -3444 ((-85) |#1|)) (-15 -3445 ((-85) |#1|)) (-15 -3789 (|#2| |#1| (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484) |#2|)) (-15 -3801 (|#2| |#1| (-484))) (-15 -2199 (|#1| |#1| |#2|)) (-15 -3801 (|#1| |#1| (-1146 (-484)))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3803 (|#1| (-583 |#1|))) (-15 -3789 (|#2| |#1| (-1146 (-484)) |#2|)) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| #1#)) (-15 -3801 (|#1| |#1| #2#)) (-15 -3802 (|#1| |#1| (-694))) (-15 -3801 (|#2| |#1| #3#)) (-15 -3802 (|#2| |#1|)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -3327 (|#1| (-1 |#2| |#2|) |#1|))) (-1064 |#2|) (-1129)) (T -1063))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3796 ((|#1| $) 62 T ELT)) (-3798 (($ $) 64 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 99 (|has| $ (-1035 |#1|)) ELT)) (-3786 (($ $ (-484)) 49 (|has| $ (-1035 |#1|)) ELT)) (-3443 (((-85) $ (-694)) 82 T ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 53 (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) 51 (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 54 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) 52 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 50 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 116 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-484) |#1|) 88 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 103 (|has| $ (-318 |#1|)) ELT)) (-3797 ((|#1| $) 63 T ELT)) (-3725 (($) 6 T CONST)) (-3800 (($ $) 70 T ELT) (($ $ (-694)) 68 T ELT)) (-1353 (($ $) 101 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ (-1 (-85) |#1|) $) 104 (|has| $ (-318 |#1|)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-1576 ((|#1| $ (-484) |#1|) 87 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 89 T ELT)) (-3444 (((-85) $) 85 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) 108 T ELT)) (-3720 (((-85) $ (-694)) 83 T ELT)) (-2200 (((-484) $) 97 (|has| (-484) (-756)) ELT)) (-2201 (((-484) $) 96 (|has| (-484) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 111 T ELT)) (-3717 (((-85) $ (-694)) 84 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) 67 T ELT) (($ $ (-694)) 65 T ELT)) (-2304 (($ $ $ (-484)) 115 T ELT) (($ |#1| $ (-484)) 114 T ELT)) (-2203 (((-583 (-484)) $) 94 T ELT)) (-2204 (((-85) (-484) $) 93 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 73 T ELT) (($ $ (-694)) 71 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 105 T ELT)) (-2199 (($ $ |#1|) 98 (|has| $ (-1035 |#1|)) ELT)) (-3445 (((-85) $) 86 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 95 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 92 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) ((|#1| $ #2#) 72 T ELT) (($ $ #3#) 69 T ELT) ((|#1| $ #4#) 66 T ELT) (($ $ (-1146 (-484))) 107 T ELT) ((|#1| $ (-484)) 91 T ELT) ((|#1| $ (-484) |#1|) 90 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-2305 (($ $ (-1146 (-484))) 113 T ELT) (($ $ (-484)) 112 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3793 (($ $) 59 T ELT)) (-3791 (($ $) 56 (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) 60 T ELT)) (-3795 (($ $) 61 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 100 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 106 T ELT)) (-3792 (($ $ $) 58 (|has| $ (-1035 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1035 |#1|)) ELT)) (-3803 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT) (($ (-583 $)) 110 T ELT) (($ $ |#1|) 109 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-1064 |#1|) (-113) (-1129)) (T -1064))
+((-3445 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))) (-3717 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3720 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))) (-3443 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
+(-13 (-1168 |t#1|) (-593 |t#1|) (-10 -8 (-15 -3445 ((-85) $)) (-15 -3444 ((-85) $)) (-15 -3717 ((-85) $ (-694))) (-15 -3720 ((-85) $ (-694))) (-15 -3443 ((-85) $ (-694)))))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T) ((-1168 |#1|) . T))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1065 |#1| |#2| |#3|) (-1107 |#1| |#2|) (-1013) (-1013) |#2|) (T -1065))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3446 (((-632 $) $) 17 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3447 (($) 18 T CONST)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3057 (((-85) $ $) 8 T ELT)))
+(((-1066) (-113)) (T -1066))
+((-3447 (*1 *1) (-4 *1 (-1066))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1066)))))
+(-13 (-1013) (-10 -8 (-15 -3447 ($) -3953) (-15 -3446 ((-632 $) $))))
+(((-72) . T) ((-552 (-772)) . T) ((-13) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3449 (((-632 (-1049)) $) 28 T ELT)) (-3448 (((-1049) $) 16 T ELT)) (-3450 (((-1049) $) 18 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3451 (((-446) $) 14 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 38 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1067) (-13 (-995) (-10 -8 (-15 -3451 ((-446) $)) (-15 -3450 ((-1049) $)) (-15 -3449 ((-632 (-1049)) $)) (-15 -3448 ((-1049) $))))) (T -1067))
+((-3451 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1067)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-632 (-1049))) (-5 *1 (-1067)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
+((-3454 (((-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (-3452 (((-1069 |#1|) (-1069 |#1|)) 13 T ELT)) (-3455 (((-1069 |#1|) (-1069 |#1|) (-484) (-484)) 20 T ELT)) (-3453 (((-1069 |#1|) (-1069 |#1|)) 15 T ELT)))
+(((-1068 |#1|) (-10 -7 (-15 -3452 ((-1069 |#1|) (-1069 |#1|))) (-15 -3453 ((-1069 |#1|) (-1069 |#1|))) (-15 -3454 ((-1069 |#1|) (-1069 |#1|))) (-15 -3455 ((-1069 |#1|) (-1069 |#1|) (-484) (-484)))) (-13 (-495) (-120))) (T -1068))
+((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1068 *4)))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))) (-3453 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))) (-3452 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) NIL T ELT)) (-3796 ((|#1| $) NIL T ELT)) (-3798 (($ $) 60 T ELT)) (-2198 (((-1185) $ (-484) (-484)) 93 (|has| $ (-6 -3997)) ELT)) (-3786 (($ $ (-484)) 122 (|has| $ (-1035 |#1|)) ELT)) (-3443 (((-85) $ (-694)) NIL T ELT)) (-3460 (((-772) $) 46 (|has| |#1| (-1013)) ELT)) (-3459 (((-85)) 49 (|has| |#1| (-1013)) ELT)) (-3026 ((|#1| $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 109 (|has| $ (-1035 |#1|)) ELT) (($ $ (-484) $) 135 T ELT)) (-3787 ((|#1| $ |#1|) 119 (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 114 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #2="first" |#1|) 116 (|has| $ (-1035 |#1|)) ELT) (($ $ #3="rest" $) 118 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ #4="last" |#1|) 121 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 106 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-484) |#1|) 72 (|has| $ (-6 -3997)) ELT)) (-3027 (($ $ (-583 $)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 75 T ELT)) (-3797 ((|#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2323 (($ $) 11 T ELT)) (-3800 (($ $) 35 T ELT) (($ $ (-694)) 105 T ELT)) (-3465 (((-85) (-583 |#1|) $) 128 (|has| |#1| (-1013)) ELT)) (-3466 (($ (-583 |#1|)) 124 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) 74 T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3444 (((-85) $) NIL T ELT)) (-3461 (((-1185) (-484) $) 133 (|has| |#1| (-1013)) ELT)) (-2322 (((-694) $) 131 T ELT)) (-3032 (((-583 $) $) NIL T ELT)) (-3028 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-3720 (((-85) $ (-694)) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2201 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 84 T ELT)) (-3717 (((-85) $ (-694)) NIL T ELT)) (-3031 (((-583 |#1|) $) NIL T ELT)) (-3528 (((-85) $) NIL T ELT)) (-2325 (($ $) 107 T ELT)) (-2326 (((-85) $) 10 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) NIL T ELT) (($ $ (-694)) NIL T ELT)) (-2304 (($ $ $ (-484)) NIL T ELT) (($ |#1| $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) 90 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3458 (($ (-1 |#1|)) 137 T ELT) (($ (-1 |#1| |#1|) |#1|) 138 T ELT)) (-2324 ((|#1| $) 7 T ELT)) (-3802 ((|#1| $) 34 T ELT) (($ $ (-694)) 58 T ELT)) (-3464 (((-2 (|:| |cycle?| (-85)) (|:| -2596 (-694)) (|:| |period| (-694))) (-694) $) 29 T ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-3457 (($ (-1 (-85) |#1|) $) 139 T ELT)) (-3456 (($ (-1 (-85) |#1|) $) 140 T ELT)) (-2199 (($ $ |#1|) 85 (|has| $ (-6 -3997)) ELT)) (-3770 (($ $ (-484)) 40 T ELT)) (-3445 (((-85) $) 88 T ELT)) (-2327 (((-85) $) 9 T ELT)) (-2328 (((-85) $) 130 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 25 T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) 14 T ELT)) (-3566 (($) 53 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT) ((|#1| $ (-484)) 70 T ELT) ((|#1| $ (-484) |#1|) NIL T ELT)) (-3030 (((-484) $ $) 57 T ELT)) (-2305 (($ $ (-1146 (-484))) NIL T ELT) (($ $ (-484)) NIL T ELT)) (-3463 (($ (-1 $)) 56 T ELT)) (-3634 (((-85) $) 86 T ELT)) (-3793 (($ $) 87 T ELT)) (-3791 (($ $) 110 (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) NIL T ELT)) (-3795 (($ $) NIL T ELT)) (-3401 (($ $) 52 T ELT)) (-3973 (((-473) $) NIL (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 68 T ELT)) (-3462 (($ |#1| $) 108 T ELT)) (-3792 (($ $ $) 112 (|has| $ (-1035 |#1|)) ELT) (($ $ |#1|) 113 (|has| $ (-1035 |#1|)) ELT)) (-3803 (($ $ $) 95 T ELT) (($ |#1| $) 54 T ELT) (($ (-583 $)) 100 T ELT) (($ $ |#1|) 94 T ELT)) (-2892 (($ $) 59 T ELT)) (-3947 (($ (-583 |#1|)) 123 T ELT) (((-772) $) 50 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) NIL T ELT)) (-3029 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 126 (|has| |#1| (-72)) ELT)))
+(((-1069 |#1|) (-13 (-616 |#1|) (-555 (-583 |#1|)) (-1035 |#1|) (-10 -8 (-15 -3466 ($ (-583 |#1|))) (IF (|has| |#1| (-1013)) (-15 -3465 ((-85) (-583 |#1|) $)) |%noBranch|) (-15 -3464 ((-2 (|:| |cycle?| (-85)) (|:| -2596 (-694)) (|:| |period| (-694))) (-694) $)) (-15 -3463 ($ (-1 $))) (-15 -3462 ($ |#1| $)) (IF (|has| |#1| (-1013)) (PROGN (-15 -3461 ((-1185) (-484) $)) (-15 -3460 ((-772) $)) (-15 -3459 ((-85)))) |%noBranch|) (-15 -3788 ($ $ (-484) $)) (-15 -3458 ($ (-1 |#1|))) (-15 -3458 ($ (-1 |#1| |#1|) |#1|)) (-15 -3457 ($ (-1 (-85) |#1|) $)) (-15 -3456 ($ (-1 (-85) |#1|) $)))) (-1129)) (T -1069))
+((-3466 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3465 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)) (-5 *1 (-1069 *4)))) (-3464 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-694)) (|:| |period| (-694)))) (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-694)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3462 (*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129)))) (-3461 (*1 *2 *3 *1) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))) (-3459 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))) (-3788 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))) (-3456 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+((-3803 (((-1069 |#1|) (-1069 (-1069 |#1|))) 15 T ELT)))
+(((-1070 |#1|) (-10 -7 (-15 -3803 ((-1069 |#1|) (-1069 (-1069 |#1|))))) (-1129)) (T -1070))
+((-3803 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4)) (-4 *4 (-1129)))))
+((-3842 (((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 25 T ELT)) (-3843 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)) 26 T ELT)) (-3959 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 16 T ELT)))
+(((-1071 |#1| |#2|) (-10 -7 (-15 -3959 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|))) (-15 -3842 ((-1069 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|))) (-15 -3843 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1069 |#1|)))) (-1129) (-1129)) (T -1071))
+((-3843 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1071 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129)) (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6)))))
+((-3959 (((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)) 21 T ELT)))
+(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-1069 |#3|) (-1 |#3| |#1| |#2|) (-1069 |#1|) (-1069 |#2|)))) (-1129) (-1129) (-1129)) (T -1072))
+((-3959 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7)) (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8)) (-5 *1 (-1072 *6 *7 *8)))))
+((-2569 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-3427 (($ $) 42 T ELT)) (-3428 (($ $) NIL T ELT)) (-3418 (($ $ (-117)) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-1035 (-117))) ELT)) (-3425 (((-85) $ $) 67 T ELT)) (-3424 (((-85) $ $ (-484)) 62 T ELT)) (-3536 (($ (-484)) 7 T ELT) (($ (-179)) 9 T ELT) (($ (-446)) 11 T ELT)) (-3419 (((-583 $) $ (-117)) 76 T ELT) (((-583 $) $ (-114)) 77 T ELT)) (-1735 (((-85) (-1 (-85) (-117) (-117)) $) NIL T ELT) (((-85) $) NIL (|has| (-117) (-756)) ELT)) (-1733 (($ (-1 (-85) (-117) (-117)) $) NIL (|has| $ (-1035 (-117))) ELT) (($ $) NIL (-12 (|has| $ (-1035 (-117))) (|has| (-117) (-756))) ELT)) (-2910 (($ (-1 (-85) (-117) (-117)) $) NIL T ELT) (($ $) NIL (|has| (-117) (-756)) ELT)) (-3789 (((-117) $ (-484) (-117)) 59 (|has| $ (-6 -3997)) ELT) (((-117) $ (-1146 (-484)) (-117)) NIL (|has| $ (-1035 (-117))) ELT)) (-3711 (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3725 (($) NIL T CONST)) (-3416 (($ $ (-117)) 80 T ELT) (($ $ (-114)) 81 T ELT)) (-2297 (($ $) NIL (|has| $ (-1035 (-117))) ELT)) (-2298 (($ $) NIL T ELT)) (-3421 (($ $ (-1146 (-484)) $) 57 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-3407 (($ (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT) (($ (-1 (-85) (-117)) $) NIL (|has| $ (-318 (-117))) ELT)) (-3843 (((-117) (-1 (-117) (-117) (-117)) $ (-117) (-117)) NIL (|has| (-117) (-72)) ELT) (((-117) (-1 (-117) (-117) (-117)) $ (-117)) NIL T ELT) (((-117) (-1 (-117) (-117) (-117)) $) NIL T ELT)) (-1576 (((-117) $ (-484) (-117)) NIL (|has| $ (-6 -3997)) ELT)) (-3113 (((-117) $ (-484)) NIL T ELT)) (-3426 (((-85) $ $) 91 T ELT)) (-3420 (((-484) (-1 (-85) (-117)) $) NIL T ELT) (((-484) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-484) (-117) $ (-484)) 64 (|has| (-117) (-72)) ELT) (((-484) $ $ (-484)) 63 T ELT) (((-484) (-114) $ (-484)) 66 T ELT)) (-3615 (($ (-694) (-117)) 14 T ELT)) (-2200 (((-484) $) 36 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3519 (($ (-1 (-85) (-117) (-117)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-2609 (((-583 (-117)) $) NIL T ELT)) (-3246 (((-85) (-117) $) NIL (|has| (-117) (-72)) ELT)) (-2201 (((-484) $) 50 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| (-117) (-756)) ELT)) (-3422 (((-85) $ $ (-117)) 92 T ELT)) (-3423 (((-694) $ $ (-117)) 88 T ELT)) (-3327 (($ (-1 (-117) (-117)) $) 41 T ELT)) (-3959 (($ (-1 (-117) (-117)) $) NIL T ELT) (($ (-1 (-117) (-117) (-117)) $ $) NIL T ELT)) (-3429 (($ $) 45 T ELT)) (-3430 (($ $) NIL T ELT)) (-3417 (($ $ (-117)) 78 T ELT) (($ $ (-114)) 79 T ELT)) (-3243 (((-1073) $) 46 (|has| (-117) (-1013)) ELT)) (-2304 (($ (-117) $ (-484)) NIL T ELT) (($ $ $ (-484)) 31 T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) 87 (|has| (-117) (-1013)) ELT)) (-3802 (((-117) $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 (-117) "failed") (-1 (-85) (-117)) $) NIL T ELT)) (-2199 (($ $ (-117)) NIL (|has| $ (-1035 (-117))) ELT)) (-1731 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-117)))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-249 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-117) (-117)) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT) (($ $ (-583 (-117)) (-583 (-117))) NIL (-12 (|has| (-117) (-260 (-117))) (|has| (-117) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) (-117) $) NIL (-12 (|has| $ (-318 (-117))) (|has| (-117) (-72))) ELT)) (-2205 (((-583 (-117)) $) NIL T ELT)) (-3404 (((-85) $) 19 T ELT)) (-3566 (($) 16 T ELT)) (-3801 (((-117) $ (-484) (-117)) NIL T ELT) (((-117) $ (-484)) 69 T ELT) (($ $ (-1146 (-484))) 29 T ELT) (($ $ $) NIL T ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-1730 (((-694) (-117) $) NIL (|has| (-117) (-72)) ELT) (((-694) (-1 (-85) (-117)) $) NIL T ELT)) (-1734 (($ $ $ (-484)) 83 (|has| $ (-1035 (-117))) ELT)) (-3401 (($ $) 24 T ELT)) (-3973 (((-473) $) NIL (|has| (-117) (-553 (-473))) ELT)) (-3531 (($ (-583 (-117))) NIL T ELT)) (-3803 (($ $ (-117)) NIL T ELT) (($ (-117) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-583 $)) 84 T ELT)) (-3947 (($ (-117)) NIL T ELT) (((-772) $) 35 (|has| (-117) (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| (-117) (-72)) ELT)) (-1732 (((-85) (-1 (-85) (-117)) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-3057 (((-85) $ $) 21 (|has| (-117) (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| (-117) (-756)) ELT)) (-2686 (((-85) $ $) 22 (|has| (-117) (-756)) ELT)) (-3958 (((-694) $) 20 T ELT)))
+(((-1073) (-13 (-1058) (-10 -8 (-15 -3536 ($ (-484))) (-15 -3536 ($ (-179))) (-15 -3536 ($ (-446)))))) (T -1073))
+((-3536 (*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1073)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1073)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-2198 (((-1185) $ (-1073) (-1073)) NIL (|has| $ (-6 -3997)) ELT)) (-3789 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-2231 (((-3 |#1| #1="failed") (-1073) $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT) (((-3 |#1| #1#) (-1073) $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) ELT)) (-3843 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL T ELT) (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-1576 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-1073)) NIL T ELT)) (-2200 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT)) (-2201 (((-1073) $) NIL (|has| (-1073) (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-2232 (((-583 (-1073)) $) NIL T ELT)) (-2233 (((-85) (-1073) $) NIL T ELT)) (-1274 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-2203 (((-583 (-1073)) $) NIL T ELT)) (-2204 (((-85) (-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013)) (|has| |#1| (-1013))) ELT)) (-3802 ((|#1| $) NIL (|has| (-1073) (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) #1#) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-1275 (((-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))))) NIL (-12 (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-260 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-1073)) NIL T ELT) ((|#1| $ (-1073) |#1|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-552 (-772))) (|has| |#1| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 (-1073)) (|:| |entry| |#1|)) (-72)) (|has| |#1| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1074 |#1|) (-1107 (-1073) |#1|) (-1013)) (T -1074))
+NIL
+((-3806 (((-1069 |#1|) (-1069 |#1|)) 83 T ELT)) (-3468 (((-3 (-1069 |#1|) #1="failed") (-1069 |#1|)) 39 T ELT)) (-3479 (((-1069 |#1|) (-350 (-484)) (-1069 |#1|)) 131 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3482 (((-1069 |#1|) |#1| (-1069 |#1|)) 135 (|has| |#1| (-312)) ELT)) (-3809 (((-1069 |#1|) (-1069 |#1|)) 97 T ELT)) (-3470 (((-1069 (-484)) (-484)) 63 T ELT)) (-3478 (((-1069 |#1|) (-1069 (-1069 |#1|))) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3805 (((-1069 |#1|) (-484) (-484) (-1069 |#1|)) 103 T ELT)) (-3939 (((-1069 |#1|) |#1| (-484)) 51 T ELT)) (-3472 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3480 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 133 (|has| |#1| (-312)) ELT)) (-3477 (((-1069 |#1|) |#1| (-1 (-1069 |#1|))) 115 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3481 (((-1069 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1069 |#1|))) 134 (|has| |#1| (-312)) ELT)) (-3810 (((-1069 |#1|) (-1069 |#1|)) 96 T ELT)) (-3811 (((-1069 |#1|) (-1069 |#1|)) 82 T ELT)) (-3804 (((-1069 |#1|) (-484) (-484) (-1069 |#1|)) 104 T ELT)) (-3813 (((-1069 |#1|) |#1| (-1069 |#1|)) 113 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3469 (((-1069 (-484)) (-484)) 62 T ELT)) (-3471 (((-1069 |#1|) |#1|) 65 T ELT)) (-3807 (((-1069 |#1|) (-1069 |#1|) (-484) (-484)) 100 T ELT)) (-3474 (((-1069 |#1|) (-1 |#1| (-484)) (-1069 |#1|)) 72 T ELT)) (-3467 (((-3 (-1069 |#1|) #1#) (-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3808 (((-1069 |#1|) (-1069 |#1|)) 98 T ELT)) (-3769 (((-1069 |#1|) (-1069 |#1|) |#1|) 77 T ELT)) (-3473 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3475 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 78 T ELT)) (-3947 (((-1069 |#1|) |#1|) 73 T ELT)) (-3476 (((-1069 |#1|) (-1069 (-1069 |#1|))) 88 T ELT)) (-3950 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3838 (((-1069 |#1|) (-1069 |#1|)) 21 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 23 T ELT)) (-3840 (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 17 T ELT)) (* (((-1069 |#1|) (-1069 |#1|) |#1|) 29 T ELT) (((-1069 |#1|) |#1| (-1069 |#1|)) 26 T ELT) (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 27 T ELT)))
+(((-1075 |#1|) (-10 -7 (-15 -3840 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3838 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3838 ((-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 * ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 * ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3467 ((-3 (-1069 |#1|) #1="failed") (-1069 |#1|) (-1069 |#1|))) (-15 -3950 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3468 ((-3 (-1069 |#1|) #1#) (-1069 |#1|))) (-15 -3939 ((-1069 |#1|) |#1| (-484))) (-15 -3469 ((-1069 (-484)) (-484))) (-15 -3470 ((-1069 (-484)) (-484))) (-15 -3471 ((-1069 |#1|) |#1|)) (-15 -3472 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3473 ((-1069 |#1|) (-1069 |#1|))) (-15 -3474 ((-1069 |#1|) (-1 |#1| (-484)) (-1069 |#1|))) (-15 -3947 ((-1069 |#1|) |#1|)) (-15 -3769 ((-1069 |#1|) (-1069 |#1|) |#1|)) (-15 -3475 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3811 ((-1069 |#1|) (-1069 |#1|))) (-15 -3806 ((-1069 |#1|) (-1069 |#1|))) (-15 -3476 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3810 ((-1069 |#1|) (-1069 |#1|))) (-15 -3809 ((-1069 |#1|) (-1069 |#1|))) (-15 -3808 ((-1069 |#1|) (-1069 |#1|))) (-15 -3807 ((-1069 |#1|) (-1069 |#1|) (-484) (-484))) (-15 -3805 ((-1069 |#1|) (-484) (-484) (-1069 |#1|))) (-15 -3804 ((-1069 |#1|) (-484) (-484) (-1069 |#1|))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ((-1069 |#1|) |#1| (-1069 |#1|))) (-15 -3477 ((-1069 |#1|) |#1| (-1 (-1069 |#1|)))) (-15 -3478 ((-1069 |#1|) (-1069 (-1069 |#1|)))) (-15 -3479 ((-1069 |#1|) (-350 (-484)) (-1069 |#1|)))) |%noBranch|) (IF (|has| |#1| (-312)) (PROGN (-15 -3480 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3481 ((-1069 |#1|) (-1 |#1| (-484)) |#1| (-1 (-1069 |#1|)))) (-15 -3482 ((-1069 |#1|) |#1| (-1069 |#1|)))) |%noBranch|)) (-961)) (T -1075))
+((-3482 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)))) (-3480 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3479 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-350 (-484))) (-5 *1 (-1075 *4)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))) (-3813 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3805 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3807 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3810 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)) (-4 *4 (-961)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3475 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3947 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3474 (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961)) (-5 *1 (-1075 *4)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961)) (-5 *3 (-484)))) (-3939 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))) (-3468 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3950 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3467 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
+((-3493 (((-1069 |#1|) (-1069 |#1|)) 102 T ELT)) (-3640 (((-1069 |#1|) (-1069 |#1|)) 59 T ELT)) (-3484 (((-2 (|:| -3491 (-1069 |#1|)) (|:| -3492 (-1069 |#1|))) (-1069 |#1|)) 98 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 99 T ELT)) (-3483 (((-2 (|:| -3639 (-1069 |#1|)) (|:| -3635 (-1069 |#1|))) (-1069 |#1|)) 54 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 55 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 104 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3944 (((-1069 |#1|) (-1069 |#1|)) 37 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 105 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 67 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 103 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 62 T ELT)) (-3492 (((-1069 |#1|) (-1069 |#1|)) 100 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 113 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 88 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 107 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 84 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 117 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 92 T ELT)) (-3502 (((-1069 |#1|) (-1069 |#1|)) 119 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 94 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 115 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 90 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 109 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 86 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 41 T ELT)))
+(((-1076 |#1|) (-10 -7 (-15 -3944 ((-1069 |#1|) (-1069 |#1|))) (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3483 ((-2 (|:| -3639 (-1069 |#1|)) (|:| -3635 (-1069 |#1|))) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3640 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3484 ((-2 (|:| -3491 (-1069 |#1|)) (|:| -3492 (-1069 |#1|))) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|))) (-15 -3502 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-484)))) (T -1076))
+((-3502 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-2 (|:| -3491 (-1069 *4)) (|:| -3492 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-2 (|:| -3639 (-1069 *4)) (|:| -3635 (-1069 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3)))))
+((-3493 (((-1069 |#1|) (-1069 |#1|)) 60 T ELT)) (-3640 (((-1069 |#1|) (-1069 |#1|)) 42 T ELT)) (-3491 (((-1069 |#1|) (-1069 |#1|)) 56 T ELT)) (-3639 (((-1069 |#1|) (-1069 |#1|)) 38 T ELT)) (-3495 (((-1069 |#1|) (-1069 |#1|)) 63 T ELT)) (-3638 (((-1069 |#1|) (-1069 |#1|)) 45 T ELT)) (-3943 (((-1069 |#1|) (-1069 |#1|)) 34 T ELT)) (-3944 (((-1069 |#1|) (-1069 |#1|)) 29 T ELT)) (-3496 (((-1069 |#1|) (-1069 |#1|)) 64 T ELT)) (-3637 (((-1069 |#1|) (-1069 |#1|)) 46 T ELT)) (-3494 (((-1069 |#1|) (-1069 |#1|)) 61 T ELT)) (-3636 (((-1069 |#1|) (-1069 |#1|)) 43 T ELT)) (-3492 (((-1069 |#1|) (-1069 |#1|)) 58 T ELT)) (-3635 (((-1069 |#1|) (-1069 |#1|)) 40 T ELT)) (-3499 (((-1069 |#1|) (-1069 |#1|)) 68 T ELT)) (-3487 (((-1069 |#1|) (-1069 |#1|)) 50 T ELT)) (-3497 (((-1069 |#1|) (-1069 |#1|)) 66 T ELT)) (-3485 (((-1069 |#1|) (-1069 |#1|)) 48 T ELT)) (-3501 (((-1069 |#1|) (-1069 |#1|)) 71 T ELT)) (-3489 (((-1069 |#1|) (-1069 |#1|)) 53 T ELT)) (-3502 (((-1069 |#1|) (-1069 |#1|)) 72 T ELT)) (-3490 (((-1069 |#1|) (-1069 |#1|)) 54 T ELT)) (-3500 (((-1069 |#1|) (-1069 |#1|)) 70 T ELT)) (-3488 (((-1069 |#1|) (-1069 |#1|)) 52 T ELT)) (-3498 (((-1069 |#1|) (-1069 |#1|)) 69 T ELT)) (-3486 (((-1069 |#1|) (-1069 |#1|)) 51 T ELT)) (** (((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) 36 T ELT)))
+(((-1077 |#1|) (-10 -7 (-15 -3944 ((-1069 |#1|) (-1069 |#1|))) (-15 -3943 ((-1069 |#1|) (-1069 |#1|))) (-15 ** ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -3639 ((-1069 |#1|) (-1069 |#1|))) (-15 -3635 ((-1069 |#1|) (-1069 |#1|))) (-15 -3640 ((-1069 |#1|) (-1069 |#1|))) (-15 -3636 ((-1069 |#1|) (-1069 |#1|))) (-15 -3638 ((-1069 |#1|) (-1069 |#1|))) (-15 -3637 ((-1069 |#1|) (-1069 |#1|))) (-15 -3485 ((-1069 |#1|) (-1069 |#1|))) (-15 -3486 ((-1069 |#1|) (-1069 |#1|))) (-15 -3487 ((-1069 |#1|) (-1069 |#1|))) (-15 -3488 ((-1069 |#1|) (-1069 |#1|))) (-15 -3489 ((-1069 |#1|) (-1069 |#1|))) (-15 -3490 ((-1069 |#1|) (-1069 |#1|))) (-15 -3491 ((-1069 |#1|) (-1069 |#1|))) (-15 -3492 ((-1069 |#1|) (-1069 |#1|))) (-15 -3493 ((-1069 |#1|) (-1069 |#1|))) (-15 -3494 ((-1069 |#1|) (-1069 |#1|))) (-15 -3495 ((-1069 |#1|) (-1069 |#1|))) (-15 -3496 ((-1069 |#1|) (-1069 |#1|))) (-15 -3497 ((-1069 |#1|) (-1069 |#1|))) (-15 -3498 ((-1069 |#1|) (-1069 |#1|))) (-15 -3499 ((-1069 |#1|) (-1069 |#1|))) (-15 -3500 ((-1069 |#1|) (-1069 |#1|))) (-15 -3501 ((-1069 |#1|) (-1069 |#1|))) (-15 -3502 ((-1069 |#1|) (-1069 |#1|)))) (-38 (-350 (-484)))) (T -1077))
+((-3502 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3501 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3498 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3495 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3494 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3493 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3492 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3491 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3487 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3637 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3639 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))) (-3944 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
+((-3503 (((-869 |#2|) |#2| |#2|) 51 T ELT)) (-3504 ((|#2| |#2| |#1|) 19 (|has| |#1| (-258)) ELT)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -3503 ((-869 |#2|) |#2| |#2|)) (IF (|has| |#1| (-258)) (-15 -3504 (|#2| |#2| |#1|)) |%noBranch|)) (-495) (-1155 |#1|)) (T -1078))
+((-3504 (*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3)))) (-3503 (*1 *2 *3 *3) (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1155 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3512 (($ $ (-583 (-694))) 79 T ELT)) (-3889 (($) 33 T ELT)) (-3521 (($ $) 51 T ELT)) (-3752 (((-583 $) $) 60 T ELT)) (-3527 (((-85) $) 19 T ELT)) (-3505 (((-583 (-854 |#2|)) $) 86 T ELT)) (-3506 (($ $) 80 T ELT)) (-3522 (((-694) $) 47 T ELT)) (-3615 (($) 32 T ELT)) (-3515 (($ $ (-583 (-694)) (-854 |#2|)) 72 T ELT) (($ $ (-583 (-694)) (-694)) 73 T ELT) (($ $ (-694) (-854 |#2|)) 75 T ELT)) (-3519 (($ $ $) 57 T ELT) (($ (-583 $)) 59 T ELT)) (-3507 (((-694) $) 87 T ELT)) (-3528 (((-85) $) 15 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3526 (((-85) $) 22 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3508 (((-145) $) 85 T ELT)) (-3511 (((-854 |#2|) $) 81 T ELT)) (-3510 (((-694) $) 82 T ELT)) (-3509 (((-85) $) 84 T ELT)) (-3513 (($ $ (-583 (-694)) (-145)) 78 T ELT)) (-3520 (($ $) 52 T ELT)) (-3947 (((-772) $) 99 T ELT)) (-3514 (($ $ (-583 (-694)) (-85)) 77 T ELT)) (-3523 (((-583 $) $) 11 T ELT)) (-3524 (($ $ (-694)) 46 T ELT)) (-3525 (($ $) 43 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3516 (($ $ $ (-854 |#2|) (-694)) 68 T ELT)) (-3517 (($ $ (-854 |#2|)) 67 T ELT)) (-3518 (($ $ (-583 (-694)) (-854 |#2|)) 66 T ELT) (($ $ (-583 (-694)) (-694)) 70 T ELT) (((-694) $ (-854 |#2|)) 71 T ELT)) (-3057 (((-85) $ $) 92 T ELT)))
+(((-1079 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3528 ((-85) $)) (-15 -3527 ((-85) $)) (-15 -3526 ((-85) $)) (-15 -3615 ($)) (-15 -3889 ($)) (-15 -3525 ($ $)) (-15 -3524 ($ $ (-694))) (-15 -3523 ((-583 $) $)) (-15 -3522 ((-694) $)) (-15 -3521 ($ $)) (-15 -3520 ($ $)) (-15 -3519 ($ $ $)) (-15 -3519 ($ (-583 $))) (-15 -3752 ((-583 $) $)) (-15 -3518 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3517 ($ $ (-854 |#2|))) (-15 -3516 ($ $ $ (-854 |#2|) (-694))) (-15 -3515 ($ $ (-583 (-694)) (-854 |#2|))) (-15 -3518 ($ $ (-583 (-694)) (-694))) (-15 -3515 ($ $ (-583 (-694)) (-694))) (-15 -3518 ((-694) $ (-854 |#2|))) (-15 -3515 ($ $ (-694) (-854 |#2|))) (-15 -3514 ($ $ (-583 (-694)) (-85))) (-15 -3513 ($ $ (-583 (-694)) (-145))) (-15 -3512 ($ $ (-583 (-694)))) (-15 -3511 ((-854 |#2|) $)) (-15 -3510 ((-694) $)) (-15 -3509 ((-85) $)) (-15 -3508 ((-145) $)) (-15 -3507 ((-694) $)) (-15 -3506 ($ $)) (-15 -3505 ((-583 (-854 |#2|)) $)))) (-830) (-961)) (T -1079))
+((-3528 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3615 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3889 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3525 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3524 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3521 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3519 (*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3519 (*1 *1 *2) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)))) (-3516 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3518 (*1 *2 *1 *3) (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3515 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))) (-3514 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3513 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)) (-4 *5 (-961)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-854 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))) (-3506 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3529 ((|#2| $) 11 T ELT)) (-3530 ((|#1| $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3531 (($ |#1| |#2|) 9 T ELT)) (-3947 (((-772) $) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1080 |#1| |#2|) (-13 (-1013) (-10 -8 (-15 -3531 ($ |#1| |#2|)) (-15 -3530 (|#1| $)) (-15 -3529 (|#2| $)))) (-1013) (-1013)) (T -1080))
+((-3531 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3530 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1013)))) (-3529 (*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3532 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 16 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1081) (-13 (-995) (-10 -8 (-15 -3532 ((-1049) $))))) (T -1081))
+((-3532 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3772 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) 75 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1089 |#1| |#2| |#3|) $) 42 T ELT)) (-3729 (((-3 (-1089 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-3730 (((-1089 |#1| |#2| |#3|) $) 33 T ELT)) (-3493 (($ $) 116 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 92 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 112 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 88 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3624 (((-484) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) 120 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 96 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3157 (((-1089 |#1| |#2| |#3|) $) 140 T ELT) (((-1090) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 37 T ELT) (($ (-484) $) 38 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-1089 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) 54 T ELT)) (-3728 (((-350 (-857 |#1|)) $ (-484)) 74 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 76 (|has| |#1| (-495)) ELT)) (-2995 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 28 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3773 (((-484) $) NIL T ELT) (((-484) $ (-484)) 26 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1089 |#1| |#2| |#3|) $) 44 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (((-632 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-830)) NIL T ELT)) (-3816 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-484)) 19 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 81 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 (-1089 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1089 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-484) (-1089 |#1| |#2| |#3|)) 36 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 79 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 80 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-484)) 158 T ELT)) (-3467 (((-3 $ #1#) $ $) 55 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 82 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-455 (-1090) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1089 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1089 |#1| |#2| |#3|)) (-583 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-260 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-484)) NIL T ELT) (($ $ $) 61 (|has| (-484) (-1025)) ELT) (($ $ (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-241 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 57 T ELT) (($ $) 56 (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1089 |#1| |#2| |#3|) $) 46 (|has| |#1| (-312)) ELT)) (-3949 (((-484) $) 43 T ELT)) (-3496 (($ $) 122 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 98 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 118 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 94 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 114 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 90 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3973 (((-473) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) 162 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1089 |#1| |#2| |#3|)) 30 T ELT) (($ (-1176 |#2|)) 25 T ELT) (($ (-1090)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-350 (-484))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3678 ((|#1| $ (-484)) 77 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-3132 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 128 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 104 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3497 (($ $) 124 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 100 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 132 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 108 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 134 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 110 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 130 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 106 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 126 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 102 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1089 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 49 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) 50 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 23 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 60 T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1089 |#1| |#2| |#3|)) 48 (|has| |#1| (-312)) ELT) (($ (-1089 |#1| |#2| |#3|) $) 47 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1082 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1089 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3947 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1082))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-3533 ((|#2| |#2| (-1004 |#2|)) 26 T ELT) ((|#2| |#2| (-1090)) 28 T ELT)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -3533 (|#2| |#2| (-1090))) (-15 -3533 (|#2| |#2| (-1004 |#2|)))) (-13 (-495) (-950 (-484)) (-580 (-484))) (-13 (-364 |#1|) (-133) (-27) (-1115))) (T -1083))
+((-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115))))))
+((-3533 (((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1004 (-350 (-857 |#1|)))) 31 T ELT) (((-350 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|))) 44 T ELT) (((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1090)) 33 T ELT) (((-350 (-857 |#1|)) (-857 |#1|) (-1090)) 36 T ELT)))
+(((-1084 |#1|) (-10 -7 (-15 -3533 ((-350 (-857 |#1|)) (-857 |#1|) (-1090))) (-15 -3533 ((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1090))) (-15 -3533 ((-350 (-857 |#1|)) (-857 |#1|) (-1004 (-857 |#1|)))) (-15 -3533 ((-3 (-350 (-857 |#1|)) (-265 |#1|)) (-350 (-857 |#1|)) (-1004 (-350 (-857 |#1|)))))) (-13 (-495) (-950 (-484)))) (T -1084))
+((-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5))) (-5 *1 (-1084 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 (-350 (-857 *5)) (-265 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-350 (-857 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-857 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-857 *5)))))
+((-2569 (((-85) $ $) 172 T ELT)) (-3189 (((-85) $) 44 T ELT)) (-3768 (((-1179 |#1|) $ (-694)) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3766 (($ (-1085 |#1|)) NIL T ELT)) (-3084 (((-1085 $) $ (-994)) 83 T ELT) (((-1085 |#1|) $) 72 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) 166 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) 160 (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 97 (|has| |#1| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) 117 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-694)) 62 T ELT)) (-3761 (($ $ (-694)) 64 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3157 ((|#1| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3757 (($ $ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $ $) 162 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) 81 T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#1|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 133 T ELT)) (-3754 (($ $ $) NIL (|has| |#1| (-495)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3504 (($ $) 167 (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) 70 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3534 (((-772) $ (-772)) 150 T ELT)) (-3773 (((-694) $ $) NIL (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 49 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-994)) 74 T ELT) (($ (-1085 $) (-994)) 91 T ELT)) (-3778 (($ $ (-694)) 52 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) 89 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 155 T ELT)) (-2821 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3767 (((-1085 |#1|) $) NIL T ELT)) (-3083 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) NIL T ELT) (((-630 |#1|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) 77 T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) NIL (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) 61 T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (|has| |#1| (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) 51 T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 105 (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-392)) ELT) (($ $ $) 169 (|has| |#1| (-392)) ELT)) (-3739 (($ $ (-694) |#1| $) 125 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 103 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 102 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 110 (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#1|) 165 (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#1|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#1|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 152 T ELT) (($ $ $) 153 T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) NIL (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#1| (-495)) ELT)) (-3765 (((-3 $ #1#) $ (-694)) 55 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 173 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-994)) NIL (|has| |#1| (-146)) ELT) ((|#1| $) 158 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3949 (((-694) $) 79 T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) 164 (|has| |#1| (-392)) ELT) (($ $ (-994)) NIL (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#1| (-495)) ELT)) (-3947 (((-772) $) 151 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) 78 T ELT) (($ (-994)) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) 42 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#1| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 122 T ELT)) (-3950 (($ $ |#1|) 174 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 92 T ELT)) (** (($ $ (-830)) 14 T ELT) (($ $ (-694)) 12 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 131 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1085 |#1|) (-13 (-1155 |#1|) (-10 -8 (-15 -3534 ((-772) $ (-772))) (-15 -3739 ($ $ (-694) |#1| $)))) (-961)) (T -1085))
+((-3534 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1085 *3)) (-4 *3 (-961)))) (-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1085 *3)) (-4 *3 (-961)))))
+((-3959 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 13 T ELT)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -3959 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-961) (-961)) (T -1086))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6)))))
+((-3972 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 51 T ELT)) (-3733 (((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))) 52 T ELT)))
+(((-1087 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3733 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|)))) (-15 -3972 ((-348 (-1085 (-350 |#4|))) (-1085 (-350 |#4|))))) (-717) (-756) (-392) (-861 |#3| |#1| |#2|)) (T -1087))
+((-3972 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7))))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7)) (-5 *3 (-1085 (-350 *7))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1089 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3157 (((-1082 |#1| |#2| |#3|) $) NIL T ELT) (((-1089 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-350 (-484)) $) 59 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-484)) (-1082 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-484))) 20 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1082 |#1| |#2| |#3|) $) 41 T ELT)) (-3779 (((-3 (-1082 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1082 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3949 (((-350 (-484)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) 62 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1082 |#1| |#2| |#3|)) 30 T ELT) (($ (-1089 |#1| |#2| |#3|)) 31 T ELT) (($ (-1176 |#2|)) 26 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 22 T CONST)) (-2667 (($) 16 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 24 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1088 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1082 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-950 (-1089 |#1| |#2| |#3|)) (-555 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1088))
+((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 129 T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 119 T ELT)) (-3812 (((-1148 |#2| |#1|) $ (-694)) 69 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-694)) 85 T ELT) (($ $ (-694) (-694)) 82 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 105 T ELT)) (-3493 (($ $) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1069 |#1|)) 113 T ELT)) (-3495 (($ $) 177 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 25 T ELT)) (-3817 (($ $) 28 T ELT)) (-3815 (((-857 |#1|) $ (-694)) 81 T ELT) (((-857 |#1|) $ (-694) (-694)) 83 T ELT)) (-2893 (((-85) $) 124 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $) 126 T ELT) (((-694) $ (-694)) 128 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) NIL T ELT)) (-3816 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) 13 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) 135 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3813 (($ $) 133 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 134 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3770 (($ $ (-694)) 15 T ELT)) (-3467 (((-3 $ #1#) $ $) 26 (|has| |#1| (-495)) ELT)) (-3944 (($ $) 137 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3801 ((|#1| $ (-694)) 122 T ELT) (($ $ $) 132 (|has| (-694) (-1025)) ELT)) (-3759 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) 31 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-3496 (($ $) 179 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 175 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) 206 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 130 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 55 T ELT) (($ (-1176 |#2|)) 36 T ELT)) (-3818 (((-1069 |#1|) $) 101 T ELT)) (-3678 ((|#1| $ (-694)) 121 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 58 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 185 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) 181 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 189 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-694)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 191 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 187 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 183 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 17 T CONST)) (-2667 (($) 20 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-3840 (($ $ $) 35 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-312)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 141 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1089 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3947 ($ (-1148 |#2| |#1|))) (-15 -3812 ((-1148 |#2| |#1|) $ (-694))) (-15 -3947 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1089))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1089 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3538 (($ $ (-583 (-772))) 48 T ELT)) (-3539 (($ $ (-583 (-772))) 46 T ELT)) (-3536 (((-1073) $) 88 T ELT)) (-3541 (((-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772)))) $) 95 T ELT)) (-3542 (((-85) $) 86 T ELT)) (-3540 (($ $ (-583 (-583 (-772)))) 45 T ELT) (($ $ (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772))))) 85 T ELT)) (-3725 (($) 151 T CONST)) (-3158 (((-3 (-446) "failed") $) 155 T ELT)) (-3157 (((-446) $) NIL T ELT)) (-3544 (((-1185)) 123 T ELT)) (-2797 (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 55 T ELT) (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 62 T ELT)) (-3615 (($) 109 T ELT) (($ $) 118 T ELT)) (-3543 (($ $) 87 T ELT)) (-2532 (($ $ $) NIL T ELT)) (-2858 (($ $ $) NIL T ELT)) (-3535 (((-583 $) $) 124 T ELT)) (-3243 (((-1073) $) 101 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3801 (($ $ (-583 (-772))) 47 T ELT)) (-3973 (((-473) $) 33 T ELT) (((-1090) $) 34 T ELT) (((-800 (-484)) $) 66 T ELT) (((-800 (-330)) $) 64 T ELT)) (-3947 (((-772) $) 41 T ELT) (($ (-1073)) 35 T ELT) (($ (-446)) 153 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3537 (($ $ (-583 (-772))) 49 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 37 T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) 38 T ELT)))
+(((-1090) (-13 (-756) (-553 (-473)) (-553 (-1090)) (-555 (-1073)) (-950 (-446)) (-553 (-800 (-484))) (-553 (-800 (-330))) (-796 (-484)) (-796 (-330)) (-10 -8 (-15 -3615 ($)) (-15 -3615 ($ $)) (-15 -3544 ((-1185))) (-15 -3543 ($ $)) (-15 -3542 ((-85) $)) (-15 -3541 ((-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772)))) $)) (-15 -3540 ($ $ (-583 (-583 (-772))))) (-15 -3540 ($ $ (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772)))))) (-15 -3539 ($ $ (-583 (-772)))) (-15 -3538 ($ $ (-583 (-772)))) (-15 -3537 ($ $ (-583 (-772)))) (-15 -3801 ($ $ (-583 (-772)))) (-15 -3536 ((-1073) $)) (-15 -3535 ((-583 $) $)) (-15 -3725 ($) -3953)))) (T -1090))
+((-3615 (*1 *1) (-5 *1 (-1090))) (-3615 (*1 *1 *1) (-5 *1 (-1090))) (-3544 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090)))) (-3543 (*1 *1 *1) (-5 *1 (-1090))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090)))) (-3541 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1090)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1090)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772))) (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772))) (|:| |args| (-583 (-772))))) (-5 *1 (-1090)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3537 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))) (-3536 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1090)))) (-3725 (*1 *1) (-5 *1 (-1090))))
+((-3545 (((-1179 |#1|) |#1| (-830)) 18 T ELT) (((-1179 |#1|) (-583 |#1|)) 25 T ELT)))
+(((-1091 |#1|) (-10 -7 (-15 -3545 ((-1179 |#1|) (-583 |#1|))) (-15 -3545 ((-1179 |#1|) |#1| (-830)))) (-961)) (T -1091))
+((-3545 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3157 (((-484) $) NIL (|has| |#1| (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| |#1| (-950 (-350 (-484)))) ELT) ((|#1| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3504 (($ $) NIL (|has| |#1| (-392)) ELT)) (-1624 (($ $ |#1| (-884) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 18 T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-884)) NIL T ELT)) (-2821 (((-884) $) NIL T ELT)) (-1625 (($ (-1 (-884) (-884)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#1| $) NIL T ELT)) (-3739 (($ $ (-884) |#1| $) NIL (-12 (|has| (-884) (-104)) (|has| |#1| (-495))) ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-495)) ELT)) (-3949 (((-884) $) NIL T ELT)) (-2818 ((|#1| $) NIL (|has| |#1| (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-950 (-350 (-484))))) ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-884)) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 23 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 17 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1092 |#1|) (-13 (-277 |#1| (-884)) (-10 -8 (IF (|has| |#1| (-495)) (IF (|has| (-884) (-104)) (-15 -3739 ($ $ (-884) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-961)) (T -1092))
+((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
+((-3546 (((-1094) (-1090) $) 26 T ELT)) (-3556 (($) 30 T ELT)) (-3548 (((-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) (-1090) $) 23 T ELT)) (-3550 (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)) $) 42 T ELT) (((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) 43 T ELT) (((-1185) (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) 44 T ELT)) (-3558 (((-1185) (-1090)) 59 T ELT)) (-3549 (((-1185) (-1090) $) 56 T ELT) (((-1185) (-1090)) 57 T ELT) (((-1185)) 58 T ELT)) (-3554 (((-1185) (-1090)) 38 T ELT)) (-3552 (((-1090)) 37 T ELT)) (-3566 (($) 35 T ELT)) (-3565 (((-379) (-1090) (-379) (-1090) $) 46 T ELT) (((-379) (-583 (-1090)) (-379) (-1090) $) 50 T ELT) (((-379) (-1090) (-379)) 47 T ELT) (((-379) (-1090) (-379) (-1090)) 51 T ELT)) (-3553 (((-1090)) 36 T ELT)) (-3947 (((-772) $) 29 T ELT)) (-3555 (((-1185)) 31 T ELT) (((-1185) (-1090)) 34 T ELT)) (-3547 (((-583 (-1090)) (-1090) $) 25 T ELT)) (-3551 (((-1185) (-1090) (-583 (-1090)) $) 39 T ELT) (((-1185) (-1090) (-583 (-1090))) 40 T ELT) (((-1185) (-583 (-1090))) 41 T ELT)))
+(((-1093) (-13 (-552 (-772)) (-10 -8 (-15 -3556 ($)) (-15 -3555 ((-1185))) (-15 -3555 ((-1185) (-1090))) (-15 -3565 ((-379) (-1090) (-379) (-1090) $)) (-15 -3565 ((-379) (-583 (-1090)) (-379) (-1090) $)) (-15 -3565 ((-379) (-1090) (-379))) (-15 -3565 ((-379) (-1090) (-379) (-1090))) (-15 -3554 ((-1185) (-1090))) (-15 -3553 ((-1090))) (-15 -3552 ((-1090))) (-15 -3551 ((-1185) (-1090) (-583 (-1090)) $)) (-15 -3551 ((-1185) (-1090) (-583 (-1090)))) (-15 -3551 ((-1185) (-583 (-1090)))) (-15 -3550 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3911 #1="void")) $)) (-15 -3550 ((-1185) (-1090) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))) (-15 -3550 ((-1185) (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))) (-15 -3549 ((-1185) (-1090) $)) (-15 -3549 ((-1185) (-1090))) (-15 -3549 ((-1185))) (-15 -3558 ((-1185) (-1090))) (-15 -3566 ($)) (-15 -3548 ((-3 (|:| |fst| (-377)) (|:| -3911 #1#)) (-1090) $)) (-15 -3547 ((-583 (-1090)) (-1090) $)) (-15 -3546 ((-1094) (-1090) $))))) (T -1093))
+((-3556 (*1 *1) (-5 *1 (-1093))) (-3555 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3565 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3565 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) (-3565 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3565 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3553 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3552 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3551 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3551 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3549 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))) (-3566 (*1 *1) (-5 *1 (-1093))) (-3548 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *1 (-1093)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))) (-3546 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
+((-3560 (((-583 (-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) $) 66 T ELT)) (-3562 (((-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))) (-377) $) 47 T ELT)) (-3557 (($ (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| (-379))))) 17 T ELT)) (-3558 (((-1185) $) 73 T ELT)) (-3563 (((-583 (-1090)) $) 22 T ELT)) (-3559 (((-1015) $) 60 T ELT)) (-3564 (((-379) (-1090) $) 27 T ELT)) (-3561 (((-583 (-1090)) $) 30 T ELT)) (-3566 (($) 19 T ELT)) (-3565 (((-379) (-583 (-1090)) (-379) $) 25 T ELT) (((-379) (-1090) (-379) $) 24 T ELT)) (-3947 (((-772) $) 12 T ELT) (((-1102 (-1090) (-379)) $) 13 T ELT)))
+(((-1094) (-13 (-552 (-772)) (-10 -8 (-15 -3947 ((-1102 (-1090) (-379)) $)) (-15 -3566 ($)) (-15 -3565 ((-379) (-583 (-1090)) (-379) $)) (-15 -3565 ((-379) (-1090) (-379) $)) (-15 -3564 ((-379) (-1090) $)) (-15 -3563 ((-583 (-1090)) $)) (-15 -3562 ((-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))) (-377) $)) (-15 -3561 ((-583 (-1090)) $)) (-15 -3560 ((-583 (-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) $)) (-15 -3559 ((-1015) $)) (-15 -3558 ((-1185) $)) (-15 -3557 ($ (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| (-379))))))))) (T -1094))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094)))) (-3566 (*1 *1) (-5 *1 (-1094))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *1 (-1094)))) (-3565 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094)))) (-3564 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))) (-3562 (*1 *2 *3 *1) (-12 (-5 *3 (-377)) (-5 *2 (-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))) (-5 *1 (-1094)))) (-3561 (*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -3543 (-1090)) (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))))) (-5 *1 (-1094)))) (-3559 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))) (-3558 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094)))) (-3557 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| (-379))))) (-5 *1 (-1094)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3158 (((-3 (-484) #1="failed") $) 29 T ELT) (((-3 (-179) #1#) $) 35 T ELT) (((-3 (-446) #1#) $) 43 T ELT) (((-3 (-1073) #1#) $) 47 T ELT)) (-3157 (((-484) $) 30 T ELT) (((-179) $) 36 T ELT) (((-446) $) 40 T ELT) (((-1073) $) 48 T ELT)) (-3571 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3570 (((-3 (-484) (-179) (-446) (-1073) $) $) 56 T ELT)) (-3569 (((-583 $) $) 58 T ELT)) (-3973 (((-1015) $) 24 T ELT) (($ (-1015)) 25 T ELT)) (-3568 (((-85) $) 57 T ELT)) (-3947 (((-772) $) 23 T ELT) (($ (-484)) 26 T ELT) (($ (-179)) 32 T ELT) (($ (-446)) 38 T ELT) (($ (-1073)) 44 T ELT) (((-473) $) 60 T ELT) (((-484) $) 31 T ELT) (((-179) $) 37 T ELT) (((-446) $) 41 T ELT) (((-1073) $) 49 T ELT)) (-3567 (((-85) $ (|[\|\|]| (-484))) 10 T ELT) (((-85) $ (|[\|\|]| (-179))) 13 T ELT) (((-85) $ (|[\|\|]| (-446))) 19 T ELT) (((-85) $ (|[\|\|]| (-1073))) 16 T ELT)) (-3572 (($ (-446) (-583 $)) 51 T ELT) (($ $ (-583 $)) 52 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3573 (((-484) $) 27 T ELT) (((-179) $) 33 T ELT) (((-446) $) 39 T ELT) (((-1073) $) 45 T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
+(((-1095) (-13 (-1175) (-1013) (-950 (-484)) (-950 (-179)) (-950 (-446)) (-950 (-1073)) (-552 (-473)) (-10 -8 (-15 -3973 ((-1015) $)) (-15 -3973 ($ (-1015))) (-15 -3947 ((-484) $)) (-15 -3573 ((-484) $)) (-15 -3947 ((-179) $)) (-15 -3573 ((-179) $)) (-15 -3947 ((-446) $)) (-15 -3573 ((-446) $)) (-15 -3947 ((-1073) $)) (-15 -3573 ((-1073) $)) (-15 -3572 ($ (-446) (-583 $))) (-15 -3572 ($ $ (-583 $))) (-15 -3571 ((-85) $)) (-15 -3570 ((-3 (-484) (-179) (-446) (-1073) $) $)) (-15 -3569 ((-583 $) $)) (-15 -3568 ((-85) $)) (-15 -3567 ((-85) $ (|[\|\|]| (-484)))) (-15 -3567 ((-85) $ (|[\|\|]| (-179)))) (-15 -3567 ((-85) $ (|[\|\|]| (-446)))) (-15 -3567 ((-85) $ (|[\|\|]| (-1073))))))) (T -1095))
+((-3973 (*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1095)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1095))) (-5 *1 (-1095)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3570 (*1 *2 *1) (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1073) (-1095))) (-5 *1 (-1095)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1095)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3137 (((-694)) 21 T ELT)) (-3725 (($) 10 T CONST)) (-2995 (($) 25 T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2010 (((-830) $) 23 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) 22 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)))
+(((-1096 |#1|) (-13 (-752) (-10 -8 (-15 -3725 ($) -3953))) (-830)) (T -1096))
+((-3725 (*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830)))))
+((-484) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) 24 T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) 18 T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-2858 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3726 (($ $ $) 20 T ELT)) (-3727 (($ $ $) 19 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) 22 T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) 21 T ELT)))
+(((-1097 |#1|) (-13 (-752) (-604) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953))) (-830)) (T -1097))
+((-3727 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) (-3726 (*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) (-3725 (*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))))
+((-694) (|%not| (|%ilt| @1 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 9 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 7 T ELT)))
+(((-1098) (-1013)) (T -1098))
+NIL
+((-3575 (((-583 (-583 (-857 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 69 T ELT)) (-3574 (((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|)))) 81 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|))) 77 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090)) 82 T ELT) (((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090)) 76 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|))))) 108 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|)))) 107 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090))) 109 T ELT) (((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))) (-583 (-1090))) 106 T ELT)))
+(((-1099 |#1|) (-10 -7 (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))) (-583 (-1090)))) (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))) (-583 (-1090)))) (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-350 (-857 |#1|))))) (-15 -3574 ((-583 (-583 (-249 (-350 (-857 |#1|))))) (-583 (-249 (-350 (-857 |#1|)))))) (-15 -3574 ((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)) (-1090))) (-15 -3574 ((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))) (-1090))) (-15 -3574 ((-583 (-249 (-350 (-857 |#1|)))) (-350 (-857 |#1|)))) (-15 -3574 ((-583 (-249 (-350 (-857 |#1|)))) (-249 (-350 (-857 |#1|))))) (-15 -3575 ((-583 (-583 (-857 |#1|))) (-583 (-350 (-857 |#1|))) (-583 (-1090))))) (-495)) (T -1099))
+((-3575 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1099 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-249 (-350 (-857 *4)))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4)) (-5 *3 (-350 (-857 *4))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-857 *5)))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5))))) (-5 *1 (-1099 *5)) (-5 *3 (-350 (-857 *5))))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-583 (-249 (-350 (-857 *4))))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5)) (-5 *3 (-583 (-249 (-350 (-857 *5))))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5)))))
+((-3580 (((-1073)) 7 T ELT)) (-3577 (((-1073)) 11 T CONST)) (-3576 (((-1185) (-1073)) 13 T ELT)) (-3579 (((-1073)) 8 T CONST)) (-3578 (((-103)) 10 T CONST)))
+(((-1100) (-13 (-1129) (-10 -7 (-15 -3580 ((-1073))) (-15 -3579 ((-1073)) -3953) (-15 -3578 ((-103)) -3953) (-15 -3577 ((-1073)) -3953) (-15 -3576 ((-1185) (-1073)))))) (T -1100))
+((-3580 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3579 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3578 (*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100)))) (-3577 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))) (-3576 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100)))))
+((-3584 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 56 T ELT)) (-3587 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 38 T ELT)) (-3588 (((-1103 (-583 |#1|)) (-583 |#1|)) 49 T ELT)) (-3590 (((-583 (-583 |#1|)) (-583 |#1|)) 45 T ELT)) (-3593 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 53 T ELT)) (-3592 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 52 T ELT)) (-3589 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 43 T ELT)) (-3591 (((-583 |#1|) (-583 |#1|)) 46 T ELT)) (-3583 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 32 T ELT)) (-3582 (((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 29 T ELT)) (-3581 (((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 24 T ELT)) (-3585 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 58 T ELT)) (-3586 (((-583 (-583 |#1|)) (-1103 (-583 |#1|))) 60 T ELT)))
+(((-1101 |#1|) (-10 -7 (-15 -3581 ((-2 (|:| |fs| (-85)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -3582 ((-583 (-583 (-583 |#1|))) (-1 (-85) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3583 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3584 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3585 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3586 ((-583 (-583 |#1|)) (-1103 (-583 |#1|)))) (-15 -3587 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -3588 ((-1103 (-583 |#1|)) (-583 |#1|))) (-15 -3589 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3590 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -3591 ((-583 |#1|) (-583 |#1|))) (-15 -3592 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -3593 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-756)) (T -1101))
+((-3593 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-3592 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1101 *6)) (-5 *4 (-583 *5)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1101 *3)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-583 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1101 *3)))) (-3588 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-1103 (-583 *4))) (-5 *1 (-1101 *4)) (-5 *3 (-583 *4)))) (-3587 (*1 *2 *3) (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 *4))))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1103 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4)) (-4 *4 (-756)))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756)) (-5 *1 (-1101 *4)))) (-3583 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *1 (-1101 *4)))) (-3582 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1101 *5)))) (-3581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1101 *6)) (-5 *5 (-583 *4)))))
+((-2569 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3600 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-2198 (((-1185) $ |#1| |#1|) NIL (|has| $ (-1035 |#2|)) ELT)) (-3789 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-1353 (($ $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (-12 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-1576 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) NIL T ELT)) (-2200 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-2232 (((-583 |#1|) $) NIL T ELT)) (-2233 (((-85) |#1| $) NIL T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-2203 (((-583 |#1|) $) NIL T ELT)) (-2204 (((-85) |#1| $) NIL T ELT)) (-3244 (((-1033) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ELT)) (-3802 ((|#2| $) NIL (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) #1#) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-2199 (($ $ |#2|) NIL (|has| $ (-1035 |#2|)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) NIL (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#2| $) NIL (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1466 (($) NIL T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-3947 (((-772) $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772)))) ELT)) (-1265 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) NIL T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) NIL (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72))) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1102 |#1| |#2|) (-1107 |#1| |#2|) (-1013) (-1013)) (T -1102))
+NIL
+((-3594 (($ (-583 (-583 |#1|))) 10 T ELT)) (-3595 (((-583 (-583 |#1|)) $) 11 T ELT)) (-3947 (((-772) $) 33 T ELT)))
+(((-1103 |#1|) (-10 -8 (-15 -3594 ($ (-583 (-583 |#1|)))) (-15 -3595 ((-583 (-583 |#1|)) $)) (-15 -3947 ((-772) $))) (-1013)) (T -1103))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))) (-3594 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1103 *3)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3596 (($ |#1| (-55)) 11 T ELT)) (-3543 ((|#1| $) 13 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2634 (((-85) $ |#1|) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2522 (((-55) $) 15 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1104 |#1|) (-13 (-747 |#1|) (-10 -8 (-15 -3596 ($ |#1| (-55))))) (-1013)) (T -1104))
+((-3596 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1013)))))
+((-3597 ((|#1| (-583 |#1|)) 46 T ELT)) (-3599 ((|#1| |#1| (-484)) 24 T ELT)) (-3598 (((-1085 |#1|) |#1| (-830)) 20 T ELT)))
+(((-1105 |#1|) (-10 -7 (-15 -3597 (|#1| (-583 |#1|))) (-15 -3598 ((-1085 |#1|) |#1| (-830))) (-15 -3599 (|#1| |#1| (-484)))) (-312)) (T -1105))
+((-3599 (*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-830)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
+((-3600 (($) 10 T ELT) (($ (-583 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3406 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2609 (((-583 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 53 T ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1274 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3610 (($ (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2203 (((-583 |#2|) $) 19 T ELT)) (-2204 (((-85) |#2| $) 61 T ELT)) (-1354 (((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1275 (((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-2205 (((-583 |#3|) $) 37 T ELT)) (-3947 (((-772) $) 27 T ELT)) (-3057 (((-85) $ $) 47 T ELT)))
+(((-1106 |#1| |#2| |#3|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3600 (|#1| (-583 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))))) (-15 -3600 (|#1|)) (-15 -3959 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3327 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2609 ((-583 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3406 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3959 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3327 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2205 ((-583 |#3|) |#1|)) (-15 -2204 ((-85) |#2| |#1|)) (-15 -2203 ((-583 |#2|) |#1|)) (-15 -3406 (|#1| (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3406 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1354 ((-3 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1274 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3610 (|#1| (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1275 ((-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3327 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3959 (|#1| (-1 (-2 (|:| -3861 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3861 |#2|) (|:| |entry| |#3|))) |#1|))) (-1107 |#2| |#3|) (-1013) (-1013)) (T -1106))
+NIL
+((-2569 (((-85) $ $) 17 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3600 (($) 91 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 90 T ELT)) (-2198 (((-1185) $ |#1| |#1|) 79 (|has| $ (-1035 |#2|)) ELT)) (-3789 ((|#2| $ |#1| |#2|) 67 (|has| $ (-6 -3997)) ELT)) (-1570 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 40 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3711 (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-2231 (((-3 |#2| #1="failed") |#1| $) 56 T ELT)) (-3725 (($) 6 T CONST)) (-1353 (($ $) 50 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT)) (-3406 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 42 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 41 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 57 T ELT)) (-3407 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 49 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 47 (|has| $ (-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) ELT)) (-3843 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 107 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 104 T ELT) (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 103 T ELT)) (-1576 ((|#2| $ |#1| |#2|) 66 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#2| $ |#1|) 68 T ELT)) (-2200 ((|#1| $) 76 (|has| |#1| (-756)) ELT)) (-2609 (((-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 102 T ELT)) (-3246 (((-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 106 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2201 ((|#1| $) 75 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 25 T ELT) (($ (-1 |#2| |#2|) $) 61 (|has| $ (-6 -3997)) ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 93 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 26 T ELT) (($ (-1 |#2| |#2|) $) 60 T ELT) (($ (-1 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 92 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 89 T ELT)) (-3243 (((-1073) $) 20 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-2232 (((-583 |#1|) $) 58 T ELT)) (-2233 (((-85) |#1| $) 59 T ELT)) (-1274 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 34 T ELT)) (-3610 (($ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 35 T ELT)) (-2203 (((-583 |#1|) $) 73 T ELT)) (-2204 (((-85) |#1| $) 72 T ELT)) (-3244 (((-1033) $) 19 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-3802 ((|#2| $) 77 (|has| |#1| (-756)) ELT)) (-1354 (((-3 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 46 T ELT)) (-2199 (($ $ |#2|) 78 (|has| $ (-1035 |#2|)) ELT)) (-1275 (((-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 36 T ELT)) (-1731 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 100 T ELT)) (-3769 (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 24 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 22 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 21 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 65 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ |#2| |#2|) 64 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-249 |#2|)) 63 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-249 |#2|))) 62 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ELT) (($ $ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 97 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) 96 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 95 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT) (($ $ (-583 (-249 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))))) 94 (-12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#2| $) 74 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2205 (((-583 |#2|) $) 71 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#2| $ |#1|) 70 T ELT) ((|#2| $ |#1| |#2|) 69 T ELT)) (-1466 (($) 44 T ELT) (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 43 T ELT)) (-1730 (((-694) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) $) 105 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-694) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 101 T ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 51 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ELT)) (-3531 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-3947 (((-772) $) 15 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-552 (-772))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772)))) ELT)) (-1265 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1276 (($ (-583 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) 37 T ELT)) (-1732 (((-85) (-1 (-85) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) $) 99 T ELT)) (-3057 (((-85) $ $) 16 (OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3958 (((-694) $) 98 T ELT)))
+(((-1107 |#1| |#2|) (-113) (-1013) (-1013)) (T -1107))
+((-3600 (*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))) (-3600 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *1 (-1107 *3 *4)))) (-3959 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(-13 (-549 |t#1| |t#2|) (-318 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))) (-10 -8 (-15 -3600 ($)) (-15 -3600 ($ (-583 (-2 (|:| -3861 |t#1|) (|:| |entry| |t#2|))))) (-15 -3959 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-76 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-72) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-1013)) (|has| |#2| (-72))) ((-552 (-772)) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-552 (-772))) (|has| |#2| (-1013)) (|has| |#2| (-552 (-772)))) ((-124 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-553 (-473)) |has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-553 (-473))) ((-183 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-193 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-241 |#1| |#2|) . T) ((-243 |#1| |#2|) . T) ((-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-260 |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-318 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-429 |#2|) . T) ((-538 |#1| |#2|) . T) ((-455 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) -12 (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013))) ((-455 |#2| |#2|) -12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1013))) ((-13) . T) ((-549 |#1| |#2|) . T) ((-1013) OR (|has| (-2 (|:| -3861 |#1|) (|:| |entry| |#2|)) (-1013)) (|has| |#2| (-1013))) ((-1035 (-2 (|:| -3861 |#1|) (|:| |entry| |#2|))) . T) ((-1129) . T))
+((-3606 (((-85)) 29 T ELT)) (-3603 (((-1185) (-1073)) 31 T ELT)) (-3607 (((-85)) 41 T ELT)) (-3604 (((-1185)) 39 T ELT)) (-3602 (((-1185) (-1073) (-1073)) 30 T ELT)) (-3608 (((-85)) 42 T ELT)) (-3610 (((-1185) |#1| |#2|) 53 T ELT)) (-3601 (((-1185)) 26 T ELT)) (-3609 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-3605 (((-1185)) 40 T ELT)))
+(((-1108 |#1| |#2|) (-10 -7 (-15 -3601 ((-1185))) (-15 -3602 ((-1185) (-1073) (-1073))) (-15 -3603 ((-1185) (-1073))) (-15 -3604 ((-1185))) (-15 -3605 ((-1185))) (-15 -3606 ((-85))) (-15 -3607 ((-85))) (-15 -3608 ((-85))) (-15 -3609 ((-3 |#2| "failed") |#1|)) (-15 -3610 ((-1185) |#1| |#2|))) (-1013) (-1013)) (T -1108))
+((-3610 (*1 *2 *3 *4) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3609 (*1 *2 *3) (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1013)))) (-3608 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3607 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3606 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3605 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3604 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3602 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)))) (-3601 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3616 (((-583 (-1073)) $) 37 T ELT)) (-3612 (((-583 (-1073)) $ (-583 (-1073))) 40 T ELT)) (-3611 (((-583 (-1073)) $ (-583 (-1073))) 39 T ELT)) (-3613 (((-583 (-1073)) $ (-583 (-1073))) 41 T ELT)) (-3614 (((-583 (-1073)) $) 36 T ELT)) (-3615 (($) 26 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3617 (((-583 (-1073)) $) 38 T ELT)) (-3618 (((-1185) $ (-484)) 33 T ELT) (((-1185) $) 34 T ELT)) (-3973 (($ (-772) (-484)) 31 T ELT) (($ (-772) (-484) (-772)) NIL T ELT)) (-3947 (((-772) $) 47 T ELT) (($ (-772)) 30 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1109) (-13 (-1013) (-555 (-772)) (-10 -8 (-15 -3973 ($ (-772) (-484))) (-15 -3973 ($ (-772) (-484) (-772))) (-15 -3618 ((-1185) $ (-484))) (-15 -3618 ((-1185) $)) (-15 -3617 ((-583 (-1073)) $)) (-15 -3616 ((-583 (-1073)) $)) (-15 -3615 ($)) (-15 -3614 ((-583 (-1073)) $)) (-15 -3613 ((-583 (-1073)) $ (-583 (-1073)))) (-15 -3612 ((-583 (-1073)) $ (-583 (-1073)))) (-15 -3611 ((-583 (-1073)) $ (-583 (-1073))))))) (T -1109))
+((-3973 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) (-3973 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109)))) (-3618 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3616 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3615 (*1 *1) (-5 *1 (-1109))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3613 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3612 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))) (-3611 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+((-3947 (((-1109) |#1|) 11 T ELT)))
+(((-1110 |#1|) (-10 -7 (-15 -3947 ((-1109) |#1|))) (-1013)) (T -1110))
+((-3947 (*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1013)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3623 (((-1073) $ (-1073)) 21 T ELT) (((-1073) $) 20 T ELT)) (-1697 (((-1073) $ (-1073)) 19 T ELT)) (-1701 (($ $ (-1073)) NIL T ELT)) (-3621 (((-3 (-1073) #1="failed") $) 11 T ELT)) (-3622 (((-1073) $) 8 T ELT)) (-3620 (((-3 (-1073) #1#) $) 12 T ELT)) (-1698 (((-1073) $) 9 T ELT)) (-1702 (($ (-338)) NIL T ELT) (($ (-338) (-1073)) NIL T ELT)) (-3543 (((-338) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-1699 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3619 (((-85) $) 25 T ELT)) (-3947 (((-772) $) NIL T ELT)) (-1700 (($ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1111) (-13 (-314 (-338) (-1073)) (-10 -8 (-15 -3623 ((-1073) $ (-1073))) (-15 -3623 ((-1073) $)) (-15 -3622 ((-1073) $)) (-15 -3621 ((-3 (-1073) #1="failed") $)) (-15 -3620 ((-3 (-1073) #1#) $)) (-15 -3619 ((-85) $))))) (T -1111))
+((-3623 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3621 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3620 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111)))))
+((-3624 (((-3 (-484) #1="failed") |#1|) 19 T ELT)) (-3625 (((-3 (-484) #1#) |#1|) 14 T ELT)) (-3626 (((-484) (-1073)) 33 T ELT)))
+(((-1112 |#1|) (-10 -7 (-15 -3624 ((-3 (-484) #1="failed") |#1|)) (-15 -3625 ((-3 (-484) #1#) |#1|)) (-15 -3626 ((-484) (-1073)))) (-961)) (T -1112))
+((-3626 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-1112 *4)) (-4 *4 (-961)))) (-3625 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961)))) (-3624 (*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961)))))
+((-3627 (((-1047 (-179))) 9 T ELT)))
+(((-1113) (-10 -7 (-15 -3627 ((-1047 (-179)))))) (T -1113))
+((-3627 (*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113)))))
+((-3628 (($) 12 T ELT)) (-3499 (($ $) 36 T ELT)) (-3497 (($ $) 34 T ELT)) (-3485 (($ $) 26 T ELT)) (-3501 (($ $) 18 T ELT)) (-3502 (($ $) 16 T ELT)) (-3500 (($ $) 20 T ELT)) (-3488 (($ $) 31 T ELT)) (-3498 (($ $) 35 T ELT)) (-3486 (($ $) 30 T ELT)))
+(((-1114 |#1|) (-10 -7 (-15 -3628 (|#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3486 (|#1| |#1|))) (-1115)) (T -1114))
+NIL
+((-3493 (($ $) 26 T ELT)) (-3640 (($ $) 11 T ELT)) (-3491 (($ $) 27 T ELT)) (-3639 (($ $) 10 T ELT)) (-3495 (($ $) 28 T ELT)) (-3638 (($ $) 9 T ELT)) (-3628 (($) 16 T ELT)) (-3943 (($ $) 19 T ELT)) (-3944 (($ $) 18 T ELT)) (-3496 (($ $) 29 T ELT)) (-3637 (($ $) 8 T ELT)) (-3494 (($ $) 30 T ELT)) (-3636 (($ $) 7 T ELT)) (-3492 (($ $) 31 T ELT)) (-3635 (($ $) 6 T ELT)) (-3499 (($ $) 20 T ELT)) (-3487 (($ $) 32 T ELT)) (-3497 (($ $) 21 T ELT)) (-3485 (($ $) 33 T ELT)) (-3501 (($ $) 22 T ELT)) (-3489 (($ $) 34 T ELT)) (-3502 (($ $) 23 T ELT)) (-3490 (($ $) 35 T ELT)) (-3500 (($ $) 24 T ELT)) (-3488 (($ $) 36 T ELT)) (-3498 (($ $) 25 T ELT)) (-3486 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
+(((-1115) (-113)) (T -1115))
+((-3628 (*1 *1) (-4 *1 (-1115))))
+(-13 (-1118) (-66) (-433) (-35) (-239) (-10 -8 (-15 -3628 ($))))
+(((-35) . T) ((-66) . T) ((-239) . T) ((-433) . T) ((-1118) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 19 T ELT)) (-3633 (($ |#1| (-583 $)) 28 T ELT) (($ (-583 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3026 ((|#1| $ |#1|) 14 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 13 (|has| $ (-1035 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-3032 (((-583 $) $) 59 T ELT)) (-3028 (((-85) $ $) 50 (|has| |#1| (-72)) ELT)) (-2609 (((-583 |#1|) $) 70 T ELT)) (-3246 (((-85) |#1| $) 69 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 29 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3031 (((-583 |#1|) $) 55 T ELT)) (-3528 (((-85) $) 53 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 67 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 101 T ELT)) (-3404 (((-85) $) 9 T ELT)) (-3566 (($) 10 T ELT)) (-3801 ((|#1| $ #1#) NIL T ELT)) (-3030 (((-484) $ $) 48 T ELT)) (-3629 (((-583 $) $) 83 T ELT)) (-3630 (((-85) $ $) 104 T ELT)) (-3631 (((-583 $) $) 99 T ELT)) (-3632 (($ $) 100 T ELT)) (-3634 (((-85) $) 76 T ELT)) (-1730 (((-694) |#1| $) 17 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 25 T ELT)) (-3401 (($ $) 82 T ELT)) (-3947 (((-772) $) 85 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 12 T ELT)) (-3029 (((-85) $ $) 39 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 66 T ELT)) (-3057 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3958 (((-694) $) 80 T ELT)))
+(((-1116 |#1|) (-13 (-923 |#1|) (-318 |#1|) (-1035 |#1|) (-10 -8 (-15 -3633 ($ |#1| (-583 $))) (-15 -3633 ($ (-583 |#1|))) (-15 -3633 ($ |#1|)) (-15 -3634 ((-85) $)) (-15 -3632 ($ $)) (-15 -3631 ((-583 $) $)) (-15 -3630 ((-85) $ $)) (-15 -3629 ((-583 $) $)))) (-1013)) (T -1116))
+((-3634 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1116 *3)))) (-3633 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3632 (*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3630 (*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))))
+((-3640 (($ $) 15 T ELT)) (-3638 (($ $) 12 T ELT)) (-3637 (($ $) 10 T ELT)) (-3636 (($ $) 17 T ELT)))
+(((-1117 |#1|) (-10 -7 (-15 -3636 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3640 (|#1| |#1|))) (-1118)) (T -1117))
+NIL
+((-3640 (($ $) 11 T ELT)) (-3639 (($ $) 10 T ELT)) (-3638 (($ $) 9 T ELT)) (-3637 (($ $) 8 T ELT)) (-3636 (($ $) 7 T ELT)) (-3635 (($ $) 6 T ELT)))
+(((-1118) (-113)) (T -1118))
+((-3640 (*1 *1 *1) (-4 *1 (-1118))) (-3639 (*1 *1 *1) (-4 *1 (-1118))) (-3638 (*1 *1 *1) (-4 *1 (-1118))) (-3637 (*1 *1 *1) (-4 *1 (-1118))) (-3636 (*1 *1 *1) (-4 *1 (-1118))) (-3635 (*1 *1 *1) (-4 *1 (-1118))))
+(-13 (-10 -8 (-15 -3635 ($ $)) (-15 -3636 ($ $)) (-15 -3637 ($ $)) (-15 -3638 ($ $)) (-15 -3639 ($ $)) (-15 -3640 ($ $))))
+((-3643 ((|#2| |#2|) 95 T ELT)) (-3646 (((-85) |#2|) 29 T ELT)) (-3644 ((|#2| |#2|) 33 T ELT)) (-3645 ((|#2| |#2|) 35 T ELT)) (-3641 ((|#2| |#2| (-1090)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-3647 (((-142 |#2|) |#2|) 31 T ELT)) (-3642 ((|#2| |#2| (-1090)) 91 T ELT) ((|#2| |#2|) 92 T ELT)))
+(((-1119 |#1| |#2|) (-10 -7 (-15 -3641 (|#2| |#2|)) (-15 -3641 (|#2| |#2| (-1090))) (-15 -3642 (|#2| |#2|)) (-15 -3642 (|#2| |#2| (-1090))) (-15 -3643 (|#2| |#2|)) (-15 -3644 (|#2| |#2|)) (-15 -3645 (|#2| |#2|)) (-15 -3646 ((-85) |#2|)) (-15 -3647 ((-142 |#2|) |#2|))) (-13 (-392) (-950 (-484)) (-580 (-484))) (-13 (-27) (-1115) (-364 |#1|))) (T -1119))
+((-3647 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))) (-3645 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3644 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3642 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))) (-3641 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))) (-3641 (*1 *2 *2) (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
+((-3648 ((|#4| |#4| |#1|) 31 T ELT)) (-3649 ((|#4| |#4| |#1|) 32 T ELT)))
+(((-1120 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3648 (|#4| |#4| |#1|)) (-15 -3649 (|#4| |#4| |#1|))) (-495) (-324 |#1|) (-324 |#1|) (-627 |#1| |#2| |#3|)) (T -1120))
+((-3649 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))) (-3648 (*1 *2 *2 *3) (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3)) (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+((-3667 ((|#2| |#2|) 148 T ELT)) (-3669 ((|#2| |#2|) 145 T ELT)) (-3666 ((|#2| |#2|) 136 T ELT)) (-3668 ((|#2| |#2|) 133 T ELT)) (-3665 ((|#2| |#2|) 141 T ELT)) (-3664 ((|#2| |#2|) 129 T ELT)) (-3653 ((|#2| |#2|) 44 T ELT)) (-3652 ((|#2| |#2|) 105 T ELT)) (-3650 ((|#2| |#2|) 88 T ELT)) (-3663 ((|#2| |#2|) 143 T ELT)) (-3662 ((|#2| |#2|) 131 T ELT)) (-3675 ((|#2| |#2|) 153 T ELT)) (-3673 ((|#2| |#2|) 151 T ELT)) (-3674 ((|#2| |#2|) 152 T ELT)) (-3672 ((|#2| |#2|) 150 T ELT)) (-3651 ((|#2| |#2|) 163 T ELT)) (-3676 ((|#2| |#2|) 30 (-12 (|has| |#2| (-553 (-800 |#1|))) (|has| |#2| (-796 |#1|)) (|has| |#1| (-553 (-800 |#1|))) (|has| |#1| (-796 |#1|))) ELT)) (-3654 ((|#2| |#2|) 89 T ELT)) (-3655 ((|#2| |#2|) 154 T ELT)) (-3964 ((|#2| |#2|) 155 T ELT)) (-3661 ((|#2| |#2|) 142 T ELT)) (-3660 ((|#2| |#2|) 130 T ELT)) (-3659 ((|#2| |#2|) 149 T ELT)) (-3671 ((|#2| |#2|) 147 T ELT)) (-3658 ((|#2| |#2|) 137 T ELT)) (-3670 ((|#2| |#2|) 135 T ELT)) (-3657 ((|#2| |#2|) 139 T ELT)) (-3656 ((|#2| |#2|) 127 T ELT)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -3651 (|#2| |#2|)) (-15 -3652 (|#2| |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -3656 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -3661 (|#2| |#2|)) (-15 -3662 (|#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3665 (|#2| |#2|)) (-15 -3666 (|#2| |#2|)) (-15 -3667 (|#2| |#2|)) (-15 -3668 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3671 (|#2| |#2|)) (-15 -3672 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3675 (|#2| |#2|)) (IF (|has| |#1| (-796 |#1|)) (IF (|has| |#1| (-553 (-800 |#1|))) (IF (|has| |#2| (-553 (-800 |#1|))) (IF (|has| |#2| (-796 |#1|)) (-15 -3676 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-392) (-13 (-364 |#1|) (-1115))) (T -1121))
+((-3676 (*1 *2 *2) (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3675 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3672 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3671 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3667 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3666 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3665 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3662 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3656 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3652 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3651 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-1090)) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3815 (((-857 |#1|) $ (-694)) 18 T ELT) (((-857 |#1|) $ (-694) (-694)) NIL T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $ (-1090)) NIL T ELT) (((-694) $ (-1090) (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ $ (-583 (-1090)) (-583 (-469 (-1090)))) NIL T ELT) (($ $ (-1090) (-469 (-1090))) NIL T ELT) (($ |#1| (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3813 (($ $ (-1090)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3677 (($ (-1 $) (-1090) |#1|) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3770 (($ $ (-694)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (($ $ (-1090) $) NIL T ELT) (($ $ (-583 (-1090)) (-583 $)) NIL T ELT) (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT)) (-3759 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3949 (((-469 (-1090)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-1090)) NIL T ELT) (($ (-857 |#1|)) NIL T ELT)) (-3678 ((|#1| $ (-469 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (((-857 |#1|) $ (-694)) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-2670 (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1122 |#1|) (-13 (-679 |#1| (-1090)) (-10 -8 (-15 -3678 ((-857 |#1|) $ (-694))) (-15 -3947 ($ (-1090))) (-15 -3947 ($ (-857 |#1|))) (IF (|has| |#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $ (-1090) |#1|)) (-15 -3677 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) (-961)) (T -1122))
+((-3678 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-961)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-961)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1122 *3)))) (-3813 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))) (-3677 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4)) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)))))
+((-3694 (((-85) |#5| $) 68 T ELT) (((-85) $) 109 T ELT)) (-3689 ((|#5| |#5| $) 83 T ELT)) (-3711 (($ (-1 (-85) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-3690 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 81 T ELT)) (-3158 (((-3 $ #1#) (-583 |#5|)) 134 T ELT)) (-3800 (((-3 $ #1#) $) 119 T ELT)) (-3686 ((|#5| |#5| $) 101 T ELT)) (-3695 (((-85) |#5| $ (-1 (-85) |#5| |#5|)) 36 T ELT)) (-3684 ((|#5| |#5| $) 105 T ELT)) (-3843 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|)) 77 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#5|)) (|:| -1702 (-583 |#5|))) $) 63 T ELT)) (-3696 (((-85) |#5| $) 66 T ELT) (((-85) $) 110 T ELT)) (-3181 ((|#4| $) 115 T ELT)) (-3799 (((-3 |#5| #1#) $) 117 T ELT)) (-3698 (((-583 |#5|) $) 55 T ELT)) (-3692 (((-85) |#5| $) 75 T ELT) (((-85) $) 114 T ELT)) (-3687 ((|#5| |#5| $) 89 T ELT)) (-3700 (((-85) $ $) 29 T ELT)) (-3693 (((-85) |#5| $) 71 T ELT) (((-85) $) 112 T ELT)) (-3688 ((|#5| |#5| $) 86 T ELT)) (-3802 (((-3 |#5| #1#) $) 116 T ELT)) (-3770 (($ $ |#5|) 135 T ELT)) (-3949 (((-694) $) 60 T ELT)) (-3531 (($ (-583 |#5|)) 132 T ELT)) (-2911 (($ $ |#4|) 130 T ELT)) (-2913 (($ $ |#4|) 128 T ELT)) (-3685 (($ $) 127 T ELT)) (-3947 (((-772) $) NIL T ELT) (((-583 |#5|) $) 120 T ELT)) (-3679 (((-694) $) 139 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|)) 51 T ELT)) (-3691 (((-85) $ (-1 (-85) |#5| (-583 |#5|))) 107 T ELT)) (-3681 (((-583 |#4|) $) 122 T ELT)) (-3934 (((-85) |#4| $) 125 T ELT)) (-3057 (((-85) $ $) 20 T ELT)))
+(((-1123 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3679 ((-694) |#1|)) (-15 -3770 (|#1| |#1| |#5|)) (-15 -3711 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -3934 ((-85) |#4| |#1|)) (-15 -3681 ((-583 |#4|) |#1|)) (-15 -3800 ((-3 |#1| #1#) |#1|)) (-15 -3799 ((-3 |#5| #1#) |#1|)) (-15 -3802 ((-3 |#5| #1#) |#1|)) (-15 -3684 (|#5| |#5| |#1|)) (-15 -3685 (|#1| |#1|)) (-15 -3686 (|#5| |#5| |#1|)) (-15 -3687 (|#5| |#5| |#1|)) (-15 -3688 (|#5| |#5| |#1|)) (-15 -3689 (|#5| |#5| |#1|)) (-15 -3690 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3843 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-85) |#5| |#5|))) (-15 -3692 ((-85) |#1|)) (-15 -3693 ((-85) |#1|)) (-15 -3694 ((-85) |#1|)) (-15 -3691 ((-85) |#1| (-1 (-85) |#5| (-583 |#5|)))) (-15 -3692 ((-85) |#5| |#1|)) (-15 -3693 ((-85) |#5| |#1|)) (-15 -3694 ((-85) |#5| |#1|)) (-15 -3695 ((-85) |#5| |#1| (-1 (-85) |#5| |#5|))) (-15 -3696 ((-85) |#1|)) (-15 -3696 ((-85) |#5| |#1|)) (-15 -3697 ((-2 (|:| -3862 (-583 |#5|)) (|:| -1702 (-583 |#5|))) |#1|)) (-15 -3949 ((-694) |#1|)) (-15 -3698 ((-583 |#5|) |#1|)) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5|) (-1 (-85) |#5| |#5|))) (-15 -3699 ((-3 (-2 (|:| |bas| |#1|) (|:| -3324 (-583 |#5|))) #1#) (-583 |#5|) (-1 (-85) |#5| |#5|))) (-15 -3700 ((-85) |#1| |#1|)) (-15 -2911 (|#1| |#1| |#4|)) (-15 -2913 (|#1| |#1| |#4|)) (-15 -3181 (|#4| |#1|)) (-15 -3158 ((-3 |#1| #1#) (-583 |#5|))) (-15 -3947 ((-583 |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3843 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3531 (|#1| (-583 |#5|))) (-15 -3711 (|#1| (-1 (-85) |#5|) |#1|)) (-15 -3947 ((-772) |#1|)) (-15 -3057 ((-85) |#1| |#1|))) (-1124 |#2| |#3| |#4| |#5|) (-495) (-717) (-756) (-977 |#2| |#3| |#4|)) (T -1123))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) 91 T ELT)) (-3683 (((-583 $) (-583 |#4|)) 92 T ELT)) (-3082 (((-583 |#3|) $) 38 T ELT)) (-2909 (((-85) $) 31 T ELT)) (-2900 (((-85) $) 22 (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) 107 T ELT) (((-85) $) 103 T ELT)) (-3689 ((|#4| |#4| $) 98 T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) 32 T ELT)) (-3711 (($ (-1 (-85) |#4|) $) 67 (|has| $ (-318 |#4|)) ELT) (((-3 |#4| "failed") $ |#3|) 85 T ELT)) (-3725 (($) 57 T CONST)) (-2905 (((-85) $) 27 (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) 29 (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) 28 (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) 30 (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 99 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 23 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ "failed") (-583 |#4|)) 41 T ELT)) (-3157 (($ (-583 |#4|)) 40 T ELT)) (-3800 (((-3 $ "failed") $) 88 T ELT)) (-3686 ((|#4| |#4| $) 95 T ELT)) (-1353 (($ $) 69 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT)) (-3407 (($ |#4| $) 68 (-12 (|has| |#4| (-72)) (|has| $ (-318 |#4|))) ELT) (($ (-1 (-85) |#4|) $) 66 (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) 108 T ELT)) (-3684 ((|#4| |#4| $) 93 T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 52 (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 49 T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 48 T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 100 T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) 111 T ELT)) (-3696 (((-85) |#4| $) 110 T ELT) (((-85) $) 109 T ELT)) (-3181 ((|#3| $) 39 T ELT)) (-2609 (((-583 |#4|) $) 47 T ELT)) (-3246 (((-85) |#4| $) 51 (|has| |#4| (-72)) ELT)) (-3327 (($ (-1 |#4| |#4|) $) 59 T ELT)) (-3959 (($ (-1 |#4| |#4|) $) 58 T ELT)) (-2915 (((-583 |#3|) $) 37 T ELT)) (-2914 (((-85) |#3| $) 36 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3799 (((-3 |#4| "failed") $) 89 T ELT)) (-3698 (((-583 |#4|) $) 113 T ELT)) (-3692 (((-85) |#4| $) 105 T ELT) (((-85) $) 101 T ELT)) (-3687 ((|#4| |#4| $) 96 T ELT)) (-3700 (((-85) $ $) 116 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 26 (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) 106 T ELT) (((-85) $) 102 T ELT)) (-3688 ((|#4| |#4| $) 97 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3802 (((-3 |#4| "failed") $) 90 T ELT)) (-1354 (((-3 |#4| "failed") (-1 (-85) |#4|) $) 65 T ELT)) (-3680 (((-3 $ "failed") $ |#4|) 84 T ELT)) (-3770 (($ $ |#4|) 83 T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) 45 T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) 63 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) 62 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) 61 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) 60 (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) 53 T ELT)) (-3404 (((-85) $) 56 T ELT)) (-3566 (($) 55 T ELT)) (-3949 (((-694) $) 112 T ELT)) (-1730 (((-694) |#4| $) 50 (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) 46 T ELT)) (-3401 (($ $) 54 T ELT)) (-3973 (((-473) $) 70 (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) 64 T ELT)) (-2911 (($ $ |#3|) 33 T ELT)) (-2913 (($ $ |#3|) 35 T ELT)) (-3685 (($ $) 94 T ELT)) (-2912 (($ $ |#3|) 34 T ELT)) (-3947 (((-772) $) 13 T ELT) (((-583 |#4|) $) 42 T ELT)) (-3679 (((-694) $) 82 (|has| |#3| (-320)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4| |#4|)) 115 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) 114 T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) 104 T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) 44 T ELT)) (-3681 (((-583 |#3|) $) 87 T ELT)) (-3934 (((-85) |#3| $) 86 T ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3958 (((-694) $) 43 T ELT)))
+(((-1124 |#1| |#2| |#3| |#4|) (-113) (-495) (-717) (-756) (-977 |t#1| |t#2| |t#3|)) (T -1124))
+((-3700 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3699 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1124 *5 *6 *7 *8)))) (-3699 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1124 *6 *7 *8 *9)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-2 (|:| -3862 (-583 *6)) (|:| -1702 (-583 *6)))))) (-3696 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3695 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3693 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3692 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1124 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)))) (-3694 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3692 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))) (-3843 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2)) (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *2 (-977 *5 *6 *7)))) (-3690 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8)) (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)))) (-3689 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3688 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3687 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3686 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3685 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -3862 *1) (|:| -1702 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1124 *4 *5 *6 *7)))) (-3802 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3799 (*1 *2 *1) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3800 (*1 *1 *1) (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3934 (*1 *2 *3 *1) (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))) (-3711 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3)))) (-3680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-694)))))
+(-13 (-889 |t#1| |t#2| |t#3| |t#4|) (-1035 |t#4|) (-10 -8 (-15 -3700 ((-85) $ $)) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3699 ((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-85) |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3698 ((-583 |t#4|) $)) (-15 -3949 ((-694) $)) (-15 -3697 ((-2 (|:| -3862 (-583 |t#4|)) (|:| -1702 (-583 |t#4|))) $)) (-15 -3696 ((-85) |t#4| $)) (-15 -3696 ((-85) $)) (-15 -3695 ((-85) |t#4| $ (-1 (-85) |t#4| |t#4|))) (-15 -3694 ((-85) |t#4| $)) (-15 -3693 ((-85) |t#4| $)) (-15 -3692 ((-85) |t#4| $)) (-15 -3691 ((-85) $ (-1 (-85) |t#4| (-583 |t#4|)))) (-15 -3694 ((-85) $)) (-15 -3693 ((-85) $)) (-15 -3692 ((-85) $)) (-15 -3843 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3690 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-85) |t#4| |t#4|))) (-15 -3689 (|t#4| |t#4| $)) (-15 -3688 (|t#4| |t#4| $)) (-15 -3687 (|t#4| |t#4| $)) (-15 -3686 (|t#4| |t#4| $)) (-15 -3685 ($ $)) (-15 -3684 (|t#4| |t#4| $)) (-15 -3683 ((-583 $) (-583 |t#4|))) (-15 -3682 ((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |t#4|)))) (-583 |t#4|))) (-15 -3802 ((-3 |t#4| "failed") $)) (-15 -3799 ((-3 |t#4| "failed") $)) (-15 -3800 ((-3 $ "failed") $)) (-15 -3681 ((-583 |t#3|) $)) (-15 -3934 ((-85) |t#3| $)) (-15 -3711 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3680 ((-3 $ "failed") $ |t#4|)) (-15 -3770 ($ $ |t#4|)) (IF (|has| |t#3| (-320)) (-15 -3679 ((-694) $)) |%noBranch|)))
+(((-34) . T) ((-72) . T) ((-552 (-583 |#4|)) . T) ((-552 (-772)) . T) ((-124 |#4|) . T) ((-553 (-473)) |has| |#4| (-553 (-473))) ((-260 |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-318 |#4|) . T) ((-429 |#4|) . T) ((-455 |#4| |#4|) -12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ((-13) . T) ((-889 |#1| |#2| |#3| |#4|) . T) ((-1013) . T) ((-1035 |#4|) . T) ((-1129) . T))
+((-3706 (($ |#1| (-583 (-583 (-854 (-179)))) (-85)) 19 T ELT)) (-3705 (((-85) $ (-85)) 18 T ELT)) (-3704 (((-85) $) 17 T ELT)) (-3702 (((-583 (-583 (-854 (-179)))) $) 13 T ELT)) (-3701 ((|#1| $) 8 T ELT)) (-3703 (((-85) $) 15 T ELT)))
+(((-1125 |#1|) (-10 -8 (-15 -3701 (|#1| $)) (-15 -3702 ((-583 (-583 (-854 (-179)))) $)) (-15 -3703 ((-85) $)) (-15 -3704 ((-85) $)) (-15 -3705 ((-85) $ (-85))) (-15 -3706 ($ |#1| (-583 (-583 (-854 (-179)))) (-85)))) (-887)) (T -1125))
+((-3706 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2)) (-4 *2 (-887)))) (-3705 (*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-887)))) (-3701 (*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-887)))))
+((-3708 (((-854 (-179)) (-854 (-179))) 31 T ELT)) (-3707 (((-854 (-179)) (-179) (-179) (-179) (-179)) 10 T ELT)) (-3710 (((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179)))) 57 T ELT)) (-3837 (((-179) (-854 (-179)) (-854 (-179))) 27 T ELT)) (-3835 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 28 T ELT)) (-3709 (((-583 (-583 (-179))) (-484)) 45 T ELT)) (-3838 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 26 T ELT)) (-3840 (((-854 (-179)) (-854 (-179)) (-854 (-179))) 24 T ELT)) (* (((-854 (-179)) (-179) (-854 (-179))) 22 T ELT)))
+(((-1126) (-10 -7 (-15 -3707 ((-854 (-179)) (-179) (-179) (-179) (-179))) (-15 * ((-854 (-179)) (-179) (-854 (-179)))) (-15 -3840 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3838 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3837 ((-179) (-854 (-179)) (-854 (-179)))) (-15 -3835 ((-854 (-179)) (-854 (-179)) (-854 (-179)))) (-15 -3708 ((-854 (-179)) (-854 (-179)))) (-15 -3709 ((-583 (-583 (-179))) (-484))) (-15 -3710 ((-583 (-854 (-179))) (-854 (-179)) (-854 (-179)) (-854 (-179)) (-179) (-583 (-583 (-179))))))) (T -1126))
+((-3710 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4))) (-5 *1 (-1126)) (-5 *3 (-854 *4)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1126)))) (-3708 (*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3835 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1126)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (-3840 (*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1126)))) (-3707 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)) (-5 *3 (-179)))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3711 ((|#1| $ (-694)) 18 T ELT)) (-3834 (((-694) $) 13 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3947 (((-869 |#1|) $) 12 T ELT) (($ (-869 |#1|)) 11 T ELT) (((-772) $) 29 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3057 (((-85) $ $) 22 (|has| |#1| (-1013)) ELT)))
+(((-1127 |#1|) (-13 (-430 (-869 |#1|)) (-10 -8 (-15 -3711 (|#1| $ (-694))) (-15 -3834 ((-694) $)) (IF (|has| |#1| (-552 (-772))) (-6 (-552 (-772))) |%noBranch|) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|))) (-1129)) (T -1127))
+((-3711 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1127 *2)) (-4 *2 (-1129)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1127 *3)) (-4 *3 (-1129)))))
+((-3714 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-484)) 92 T ELT)) (-3712 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 84 T ELT)) (-3713 (((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|))) 68 T ELT)))
+(((-1128 |#1|) (-10 -7 (-15 -3712 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3713 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)))) (-15 -3714 ((-348 (-1085 (-1085 |#1|))) (-1085 (-1085 |#1|)) (-484)))) (-299)) (T -1128))
+((-3714 (*1 *2 *3 *4) (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5)))) (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4))))) (-3712 (*1 *2 *3) (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4)) (-5 *3 (-1085 (-1085 *4))))))
+NIL
+(((-1129) (-113)) (T -1129))
NIL
(-13)
(((-13) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 9 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1131) (-996)) (T -1131))
-NIL
-((-3719 (((-85)) 18 T ELT)) (-3716 (((-1186) (-584 |#1|) (-584 |#1|)) 22 T ELT) (((-1186) (-584 |#1|)) 23 T ELT)) (-3721 (((-85) |#1| |#1|) 37 (|has| |#1| (-757)) ELT)) (-3718 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3720 ((|#1| (-584 |#1|)) 38 (|has| |#1| (-757)) ELT) ((|#1| (-584 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3717 (((-2 (|:| -3231 (-584 |#1|)) (|:| -3230 (-584 |#1|)))) 20 T ELT)))
-(((-1132 |#1|) (-10 -7 (-15 -3716 ((-1186) (-584 |#1|))) (-15 -3716 ((-1186) (-584 |#1|) (-584 |#1|))) (-15 -3717 ((-2 (|:| -3231 (-584 |#1|)) (|:| -3230 (-584 |#1|))))) (-15 -3718 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3718 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3720 (|#1| (-584 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3719 ((-85))) (IF (|has| |#1| (-757)) (PROGN (-15 -3720 (|#1| (-584 |#1|))) (-15 -3721 ((-85) |#1| |#1|))) |%noBranch|)) (-1014)) (T -1132))
-((-3721 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))) (-3720 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))) (-3719 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2)) (-4 *2 (-1014)))) (-3718 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85)) (-5 *1 (-1132 *3)))) (-3718 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3717 (*1 *2) (-12 (-5 *2 (-2 (|:| -3231 (-584 *3)) (|:| -3230 (-584 *3)))) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))))
-((-3722 (((-1186) (-584 (-1091)) (-584 (-1091))) 14 T ELT) (((-1186) (-584 (-1091))) 12 T ELT)) (-3724 (((-1186)) 16 T ELT)) (-3723 (((-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091))))) 20 T ELT)))
-(((-1133) (-10 -7 (-15 -3722 ((-1186) (-584 (-1091)))) (-15 -3722 ((-1186) (-584 (-1091)) (-584 (-1091)))) (-15 -3723 ((-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091)))))) (-15 -3724 ((-1186))))) (T -1133))
-((-3724 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3723 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091))))) (-5 *1 (-1133)))) (-3722 (*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))))
-((-3777 (($ $) 17 T ELT)) (-3725 (((-85) $) 27 T ELT)))
-(((-1134 |#1|) (-10 -7 (-15 -3777 (|#1| |#1|)) (-15 -3725 ((-85) |#1|))) (-1135)) (T -1134))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 66 T ELT)) (-3973 (((-348 $) $) 67 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3725 (((-85) $) 68 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 65 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT)))
-(((-1135) (-113)) (T -1135))
-((-3725 (*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))) (-3777 (*1 *1 *1) (-4 *1 (-1135))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135)))))
-(-13 (-392) (-10 -8 (-15 -3725 ((-85) $)) (-15 -3973 ((-348 $) $)) (-15 -3777 ($ $)) (-15 -3734 ((-348 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 $) . T) ((-591 $) . T) ((-583 $) . T) ((-655 $) . T) ((-664) . T) ((-964 $) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-1136) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1136))
-((-3728 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3726 (*1 *1) (-5 *1 (-1136))))
-((-695) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-1137) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1137))
-((-3728 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3726 (*1 *1) (-5 *1 (-1137))))
-((-695) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-1138) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1138))
-((-3728 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3726 (*1 *1) (-5 *1 (-1138))))
-((-695) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-2314 (($ $) NIL T ELT)) (-3138 (((-695)) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2996 (($) NIL T ELT)) (-2533 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2859 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2011 (((-831) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2401 (($ (-831)) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-3728 (($ $ $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-2569 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2687 (((-85) $ $) NIL T ELT)) (-2313 (($ $ $) NIL T ELT)))
-(((-1139) (-13 (-753) (-605) (-10 -8 (-15 -3728 ($ $ $)) (-15 -3727 ($ $ $)) (-15 -3726 ($) -3954)))) (T -1139))
-((-3728 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3727 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3726 (*1 *1) (-5 *1 (-1139))))
-((-695) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3131 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 10 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2064 (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2062 (((-85) $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3773 (($ $ (-485)) NIL T ELT) (($ $ (-485) (-485)) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) NIL T ELT)) (-3733 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3730 (((-3 (-1170 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3731 (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1170 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3158 (((-1170 |#1| |#2| |#3|) $) NIL T ELT) (((-1091) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT) (((-485) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) NIL T ELT) (($ (-485) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-1170 |#1| |#2| |#3|)) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) NIL (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) NIL (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) NIL T ELT) (((-485) $ (-485)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) NIL T ELT)) (-3817 (($ (-1 |#1| (-485)) $) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 18 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2859 (($ $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 (-1170 |#1| |#2| |#3|)) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-1170 |#1| |#2| |#3|))) (|:| |vec| (-1180 (-1170 |#1| |#2| |#3|)))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) (-1170 |#1| |#2| |#3|)) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 27 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 28 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3132 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-456 (-1091) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 (-1170 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1170 |#1| |#2| |#3|)) (-584 (-1170 |#1| |#2| |#3|))) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-260 (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) NIL T ELT) (($ $ $) NIL (|has| (-485) (-1026)) ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-241 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-474) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-474))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-934)) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1170 |#1| |#2| |#3|)) NIL T ELT) (($ (-1177 |#2|)) 24 T ELT) (($ (-1091)) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT) (($ (-350 (-485))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-951 (-485))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-485))))) ELT)) (-3679 ((|#1| $ (-485)) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 11 T ELT)) (-3133 (((-1170 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-822)) (|has| |#1| (-312))) (|has| |#1| (-496))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 20 T CONST)) (-2668 (($) 15 T CONST)) (-2671 (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1177 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-810 (-1091))) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2569 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-2687 (((-85) $ $) NIL (OR (-12 (|has| (-1170 |#1| |#2| |#3|) (-741)) (|has| |#1| (-312))) (-12 (|has| (-1170 |#1| |#2| |#3|) (-757)) (|has| |#1| (-312)))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 22 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1170 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1170 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1140 |#1| |#2| |#3|) (-13 (-1144 |#1| (-1170 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1177 |#2|))) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1140))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-3960 (((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)) 23 T ELT)))
-(((-1141 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 ((-1140 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1140 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1141))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3950 (((-485) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-485) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1142 |#1|) (-113) (-962)) (T -1142))
-((-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1142 *3)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962)))) (-3729 (*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3729 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496)) (-5 *2 (-350 (-858 *4))))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
-(-13 (-1159 |t#1| (-485)) (-10 -8 (-15 -3820 ($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |t#1|))))) (-15 -3817 ($ (-1 |t#1| (-485)) $)) (IF (|has| |t#1| (-496)) (PROGN (-15 -3729 ((-350 (-858 |t#1|)) $ (-485))) (-15 -3729 ((-350 (-858 |t#1|)) $ (-485) (-485)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-485) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-485)) . T))
-((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1091) #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT)) (-3158 ((|#3| $) 14 T ELT) (((-1091) $) NIL T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT)))
-(((-1143 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 (-485) #1="failed") |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3159 ((-3 (-1091) #1#) |#1|)) (-15 -3158 ((-1091) |#1|)) (-15 -3159 ((-3 |#3| #1#) |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1144 |#2| |#3|) (-962) (-1173 |#2|)) (T -1143))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3131 ((|#2| $) 266 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 124 T ELT) (($ $ (-485) (-485)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 130 T ELT)) (-3733 ((|#2| $) 302 T ELT)) (-3730 (((-3 |#2| "failed") $) 298 T ELT)) (-3731 ((|#2| $) 299 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 275 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 272 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) 284 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 201 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-485) #2#) $) 295 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-485)) #2#) $) 293 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-3 (-1091) #2#) $) 277 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3158 ((|#2| $) 306 T ELT) (((-485) $) 294 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-350 (-485)) $) 292 (-2564 (|has| |#2| (-951 (-485))) (|has| |#1| (-312))) ELT) (((-1091) $) 276 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT)) (-3732 (($ $) 301 T ELT) (($ (-485) $) 300 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-2280 (((-631 |#2|) (-631 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 252 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-631 $)) 251 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 199 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 198 (|has| |#1| (-496)) ELT)) (-2996 (($) 268 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) 282 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 260 (-2564 (|has| |#2| (-797 (-330))) (|has| |#1| (-312))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 259 (-2564 (|has| |#2| (-797 (-485))) (|has| |#1| (-312))) ELT)) (-3774 (((-485) $) 126 T ELT) (((-485) $ (-485)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2998 (($ $) 264 (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) 296 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) ELT)) (-3189 (((-85) $) 283 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 200 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-485)) 81 T ELT) (($ $ (-995) (-485)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-485))) 96 T ELT)) (-2533 (($ $ $) 291 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2859 (($ $ $) 290 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 250 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT) (((-631 (-485)) (-1180 $)) 249 (-2564 (|has| |#2| (-581 (-485))) (|has| |#1| (-312))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) |#2|) 303 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3448 (($) 297 (-2564 (|has| |#2| (-1067)) (|has| |#1| (-312))) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3130 (($ $) 267 (-2564 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3132 ((|#2| $) 270 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 273 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 274 (-2564 (|has| |#2| (-822)) (|has| |#1| (-312))) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) 243 (-2564 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) 242 (-2564 (|has| |#2| (-456 (-1091) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 (-249 |#2|))) 241 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 238 (-2564 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 131 T ELT) (($ $ $) 107 (|has| (-485) (-1026)) ELT) (($ $ |#2|) 237 (-2564 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 109 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 119 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 117 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 116 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2997 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-179) $) 281 (-2564 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2564 (|has| |#2| (-934)) (|has| |#1| (-312))) ELT) (((-474) $) 279 (-2564 (|has| |#2| (-554 (-474))) (|has| |#1| (-312))) ELT) (((-801 (-330)) $) 258 (-2564 (|has| |#2| (-554 (-801 (-330)))) (|has| |#1| (-312))) ELT) (((-801 (-485)) $) 257 (-2564 (|has| |#2| (-554 (-801 (-485)))) (|has| |#1| (-312))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 271 (-2564 (-2564 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#1| (-312))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1091)) 278 (-2564 (|has| |#2| (-951 (-1091))) (|has| |#1| (-312))) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 79 T ELT)) (-2704 (((-633 $) $) 68 (OR (-2564 (OR (|has| |#2| (-118)) (-2564 (|has| $ (-118)) (|has| |#2| (-822)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-3133 ((|#2| $) 269 (-2564 (|has| |#2| (-484)) (|has| |#1| (-312))) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) 285 (-2564 (|has| |#2| (-741)) (|has| |#1| (-312))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) 108 (OR (-2564 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 118 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091))) 114 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-1091) (-695)) 113 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (OR (-2564 (|has| |#2| (-812 (-1091))) (|has| |#1| (-312))) (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|))))) ELT)) (-2568 (((-85) $ $) 289 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2569 (((-85) $ $) 287 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-2686 (((-85) $ $) 288 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-2687 (((-85) $ $) 286 (-2564 (|has| |#2| (-757)) (|has| |#1| (-312))) ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1144 |#1| |#2|) (-113) (-962) (-1173 |t#1|)) (T -1144))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3732 (*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))) (-3732 (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))) (-3730 (*1 *2 *1) (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
-(-13 (-1142 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3781 ($ (-485) |t#2|)) (-15 -3950 ((-485) $)) (-15 -3733 (|t#2| $)) (-15 -3732 ($ $)) (-15 -3732 ($ (-485) $)) (-15 -3731 (|t#2| $)) (-15 -3730 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-905 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-485)) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-554 (-474)) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-485) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-485) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-485) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-456 (-1091) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ((-456 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 |#2|) |has| |#1| (-312)) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-591 |#1|) . T) ((-591 |#2|) |has| |#1| (-312)) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 |#2|) |has| |#1| (-312)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-581 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ((-581 |#2|) |has| |#1| (-312)) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 |#2|) |has| |#1| (-312)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-715) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-717) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-719) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-722) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-741) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-756) -12 (|has| |#1| (-312)) (|has| |#2| (-741))) ((-757) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-760) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) (-12 (|has| |#1| (-312)) (|has| |#2| (-741)))) ((-807 $ (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-810 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-812 (-1091)) OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-810 (-1091))))) ((-797 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ((-795 |#2|) |has| |#1| (-312)) ((-822) -12 (|has| |#1| (-312)) (|has| |#2| (-822))) ((-887 |#1| (-485) (-995)) . T) ((-833) |has| |#1| (-312)) ((-905 |#2|) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-934) -12 (|has| |#1| (-312)) (|has| |#2| (-934))) ((-951 (-350 (-485))) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-485)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ((-951 (-1091)) -12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-312)) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 |#2|) |has| |#1| (-312)) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) -12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1142 |#1|) . T) ((-1159 |#1| (-485)) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 83 T ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 102 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-485)) 111 T ELT) (($ $ (-485) (-485)) 114 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|))) $) 51 T ELT)) (-3733 ((|#2| $) 11 T ELT)) (-3730 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3731 ((|#2| $) 36 T ELT)) (-3494 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1#) $ $) NIL T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3625 (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-485)) (|:| |c| |#1|)))) 59 T ELT)) (-3496 (($ $) 212 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-485) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-3 (-1091) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3158 ((|#2| $) 158 T ELT) (((-485) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-350 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-485)))) ELT) (((-1091) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT)) (-3732 (($ $) 65 T ELT) (($ (-485) $) 28 T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 |#2|) (-631 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-631 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-3469 (((-3 $ #1#) $) 90 T ELT)) (-3729 (((-350 (-858 |#1|)) $ (-485)) 126 (|has| |#1| (-496)) ELT) (((-350 (-858 |#1|)) $ (-485) (-485)) 128 (|has| |#1| (-496)) ELT)) (-2996 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2894 (((-85) $) 76 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-797 (-485)))) ELT)) (-3774 (((-485) $) 107 T ELT) (((-485) $ (-485)) 109 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2998 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3000 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3447 (((-633 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) ELT)) (-3189 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-3779 (($ $ (-831)) 150 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 146 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-485)) 20 T ELT) (($ $ (-995) (-485)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-485))) NIL T ELT)) (-2533 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2859 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2281 (((-631 |#2|) (-1180 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT) (((-631 (-485)) (-1180 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-581 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (($ (-485) |#2|) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 230 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3448 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1067))) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3130 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-485)) 140 T ELT)) (-3468 (((-3 $ #1#) $ $) 130 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) ELT) (($ $ (-1091) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-1091)) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-456 (-1091) |#2|))) ELT) (($ $ (-584 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-485)) 105 T ELT) (($ $ $) 92 (|has| (-485) (-1026)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) 155 (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3950 (((-485) $) 12 T ELT)) (-3497 (($ $) 214 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3974 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-934))) ELT) (((-474) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-474)))) ELT) (((-801 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-554 (-801 (-485))))) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) ELT)) (-2893 (($ $) 138 T ELT)) (-3948 (((-773) $) 268 T ELT) (($ (-485)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1091)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-951 (-1091)))) ELT) (($ (-350 (-485))) 171 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-485)) 87 T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-822))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3128 (((-695)) 157 T CONST)) (-3775 ((|#1| $) 104 T ELT)) (-3133 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-484))) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 220 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 216 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 224 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-485)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-485)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 226 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 222 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 218 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3385 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-741))) ELT)) (-2662 (($) 13 T CONST)) (-2668 (($) 18 T CONST)) (-2671 (($ $ (-1 |#2| |#2|) (-695)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-695)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-1091) (-695)) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (OR (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-485) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-812 (-1091))))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2569 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3058 (((-85) $ $) 74 T ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-2687 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-757))) ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3841 (($ $ $) 78 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 86 T ELT) (($ $ (-485)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1145 |#1| |#2|) (-1144 |#1| |#2|) (-962) (-1173 |#1|)) (T -1145))
-NIL
-((-3736 (((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)) 13 T ELT)) (-3735 (((-348 |#1|) |#1|) 26 T ELT)) (-3734 (((-348 |#1|) |#1|) 24 T ELT)))
-(((-1146 |#1|) (-10 -7 (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-348 |#1|) |#1|)) (-15 -3736 ((-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| |#1|) (|:| -2396 (-485)))))) |#1| (-85)))) (-1156 (-485))) (T -1146))
-((-3736 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-485)) (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3738 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3960 (((-1070 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-756)) ELT)) (-3231 ((|#1| $) 15 T ELT)) (-3233 ((|#1| $) 12 T ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-3229 (((-485) $) 19 T ELT)) (-3230 ((|#1| $) 18 T ELT)) (-3232 ((|#1| $) 13 T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3737 (((-85) $) 17 T ELT)) (-3965 (((-1070 |#1|) $) 41 (|has| |#1| (-756)) ELT) (((-1070 |#1|) (-584 $)) 40 (|has| |#1| (-756)) ELT)) (-3974 (($ |#1|) 26 T ELT)) (-3948 (($ (-1002 |#1|)) 25 T ELT) (((-773) $) 37 (|has| |#1| (-1014)) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-1014)) ELT)) (-3739 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3234 (($ $ (-485)) 14 T ELT)) (-3058 (((-85) $ $) 30 (|has| |#1| (-1014)) ELT)))
-(((-1147 |#1|) (-13 (-1007 |#1|) (-10 -8 (-15 -3739 ($ |#1|)) (-15 -3738 ($ |#1|)) (-15 -3948 ($ (-1002 |#1|))) (-15 -3737 ((-85) $)) (IF (|has| |#1| (-1014)) (-6 (-1014)) |%noBranch|) (IF (|has| |#1| (-756)) (-6 (-1008 |#1| (-1070 |#1|))) |%noBranch|))) (-1130)) (T -1147))
-((-3739 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3738 (*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130)))))
-((-3960 (((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 23 (|has| |#1| (-756)) ELT) (((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|)) 17 T ELT)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -3960 ((-1147 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) (IF (|has| |#1| (-756)) (-15 -3960 ((-1070 |#2|) (-1 |#2| |#1|) (-1147 |#1|))) |%noBranch|)) (-1130) (-1130)) (T -1148))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3769 (((-1180 |#2|) $ (-695)) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3767 (($ (-1086 |#2|)) NIL T ELT)) (-3085 (((-1086 $) $ (-995)) NIL T ELT) (((-1086 |#2|) $) NIL T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#2| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#2| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#2| (-496)) ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3757 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3777 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1#) (-584 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-1609 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3763 (($ $ (-695)) NIL T ELT)) (-3762 (($ $ (-695)) NIL T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-3 (-485) #1#) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT) (((-350 (-485)) $) NIL (|has| |#2| (-951 (-350 (-485)))) ELT) (((-485) $) NIL (|has| |#2| (-951 (-485))) ELT) (((-995) $) NIL T ELT)) (-3758 (($ $ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2566 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-2280 (((-631 (-485)) (-631 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-631 $) (-1180 $)) NIL T ELT) (((-631 |#2|) (-631 $)) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3761 (($ $ $) NIL T ELT)) (-3755 (($ $ $) NIL (|has| |#2| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#2|) (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#2| (-312)) ELT)) (-3505 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2820 (((-584 $) $) NIL T ELT)) (-3725 (((-85) $) NIL (|has| |#2| (-822)) ELT)) (-1625 (($ $ |#2| (-695) $) NIL T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) NIL (-12 (|has| (-995) (-797 (-330))) (|has| |#2| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) NIL (-12 (|has| (-995) (-797 (-485))) (|has| |#2| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) NIL (|has| |#2| (-496)) ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-3447 (((-633 $) $) NIL (|has| |#2| (-1067)) ELT)) (-3086 (($ (-1086 |#2|) (-995)) NIL T ELT) (($ (-1086 $) (-995)) NIL T ELT)) (-3779 (($ $ (-695)) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#2| (-695)) 18 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) NIL T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-1626 (($ (-1 (-695) (-695)) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3768 (((-1086 |#2|) $) NIL T ELT)) (-3084 (((-3 (-995) #1#) $) NIL T ELT)) (-2281 (((-631 (-485)) (-1180 $)) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) NIL (|has| |#2| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#2|)) (|:| |vec| (-1180 |#2|))) (-1180 $) $) NIL T ELT) (((-631 |#2|) (-1180 $)) NIL T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) NIL T ELT)) (-2825 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2824 (((-3 (-584 $) #1#) $) NIL T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #1#) $) NIL T ELT)) (-3814 (($ $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT)) (-3448 (($) NIL (|has| |#2| (-1067)) CONST)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 ((|#2| $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-392)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3740 (($ $ (-695) |#2| $) NIL T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-822)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#2| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3468 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-496)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#2| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) NIL T ELT) (($ $ (-584 (-995)) (-584 |#2|)) NIL T ELT) (($ $ (-995) $) NIL T ELT) (($ $ (-584 (-995)) (-584 $)) NIL T ELT)) (-1608 (((-695) $) NIL (|has| |#2| (-312)) ELT)) (-3802 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-496)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-496)) ELT)) (-3766 (((-3 $ #1#) $ (-695)) NIL T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3759 (($ $ (-995)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) NIL T ELT) (((-584 (-695)) $ (-584 (-995))) NIL T ELT)) (-3974 (((-801 (-330)) $) NIL (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#2| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) NIL (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#2| (-554 (-801 (-485))))) ELT) (((-474) $) NIL (-12 (|has| (-995) (-554 (-474))) (|has| |#2| (-554 (-474)))) ELT)) (-2819 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-995)) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-822))) ELT)) (-3756 (((-3 $ #1#) $ $) NIL (|has| |#2| (-496)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-496)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) NIL T ELT) (($ (-1177 |#1|)) 20 T ELT) (($ (-350 (-485))) NIL (OR (|has| |#2| (-38 (-350 (-485)))) (|has| |#2| (-951 (-350 (-485))))) ELT) (($ $) NIL (|has| |#2| (-496)) ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-695)) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2704 (((-633 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-822))) (|has| |#2| (-118))) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL (|has| |#2| (-496)) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) 14 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1091)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) NIL (|has| |#2| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (|has| |#2| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-485))) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) NIL (|has| |#2| (-38 (-350 (-485)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1149 |#1| |#2|) (-13 (-1156 |#2|) (-556 (-1177 |#1|)) (-10 -8 (-15 -3740 ($ $ (-695) |#2| $)))) (-1091) (-962)) (T -1149))
-((-3740 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962)))))
-((-3960 (((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)) 15 T ELT)))
-(((-1150 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 ((-1149 |#3| |#4|) (-1 |#4| |#2|) (-1149 |#1| |#2|)))) (-1091) (-962) (-1091) (-962)) (T -1150))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962)) (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8)) (-14 *7 (-1091)))))
-((-3743 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3741 ((|#1| |#3|) 13 T ELT)) (-3742 ((|#3| |#3|) 19 T ELT)))
-(((-1151 |#1| |#2| |#3|) (-10 -7 (-15 -3741 (|#1| |#3|)) (-15 -3742 (|#3| |#3|)) (-15 -3743 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-496) (-905 |#1|) (-1156 |#2|)) (T -1151))
-((-3743 (*1 *2 *3) (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3)) (-4 *3 (-1156 *5)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2)) (-4 *2 (-1156 *4)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3)) (-4 *3 (-1156 *4)))))
-((-3745 (((-3 |#2| #1="failed") |#2| (-695) |#1|) 35 T ELT)) (-3744 (((-3 |#2| #1#) |#2| (-695)) 36 T ELT)) (-3747 (((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|) 50 T ELT)) (-3748 (((-584 |#2|) |#2|) 52 T ELT)) (-3746 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -3744 ((-3 |#2| #1="failed") |#2| (-695))) (-15 -3745 ((-3 |#2| #1#) |#2| (-695) |#1|)) (-15 -3746 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3747 ((-3 (-2 (|:| -3140 |#2|) (|:| -3139 |#2|)) #1#) |#2|)) (-15 -3748 ((-584 |#2|) |#2|))) (-13 (-496) (-120)) (-1156 |#1|)) (T -1152))
-((-3748 (*1 *2 *3) (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3747 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1156 *4)))) (-3746 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2)) (-4 *2 (-1156 *3)))) (-3745 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))) (-3744 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
-((-3749 (((-3 (-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -3749 ((-3 (-2 (|:| -1973 |#2|) (|:| -2904 |#2|)) "failed") |#2| |#2|))) (-496) (-1156 |#1|)) (T -1153))
-((-3749 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4)))))
-((-3750 ((|#2| |#2| |#2|) 22 T ELT)) (-3751 ((|#2| |#2| |#2|) 36 T ELT)) (-3752 ((|#2| |#2| |#2| (-695) (-695)) 44 T ELT)))
-(((-1154 |#1| |#2|) (-10 -7 (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2|)) (-15 -3752 (|#2| |#2| |#2| (-695) (-695)))) (-962) (-1156 |#1|)) (T -1154))
-((-3752 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))) (-3751 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
-((-3769 (((-1180 |#2|) $ (-695)) 129 T ELT)) (-3083 (((-584 (-995)) $) 16 T ELT)) (-3767 (($ (-1086 |#2|)) 80 T ELT)) (-2821 (((-695) $) NIL T ELT) (((-695) $ (-584 (-995))) 21 T ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 217 T ELT)) (-3777 (($ $) 207 T ELT)) (-3973 (((-348 $) $) 205 T ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 95 T ELT)) (-3763 (($ $ (-695)) 84 T ELT)) (-3762 (($ $ (-695)) 86 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3159 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-485)) #1#) $) NIL T ELT) (((-3 (-485) #1#) $) NIL T ELT) (((-3 (-995) #1#) $) NIL T ELT)) (-3158 ((|#2| $) 130 T ELT) (((-350 (-485)) $) NIL T ELT) (((-485) $) NIL T ELT) (((-995) $) NIL T ELT)) (-3755 (($ $ $) 182 T ELT)) (-3754 (((-2 (|:| -3956 |#2|) (|:| -1973 $) (|:| -2904 $)) $ $) 185 T ELT)) (-3774 (((-695) $ $) 202 T ELT)) (-3447 (((-633 $) $) 149 T ELT)) (-2895 (($ |#2| (-695)) NIL T ELT) (($ $ (-995) (-695)) 59 T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-2822 (((-695) $) NIL T ELT) (((-695) $ (-995)) 54 T ELT) (((-584 (-695)) $ (-584 (-995))) 55 T ELT)) (-3768 (((-1086 |#2|) $) 72 T ELT)) (-3084 (((-3 (-995) #1#) $) 52 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 83 T ELT)) (-3814 (($ $) 232 T ELT)) (-3448 (($) 134 T CONST)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 214 T ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 101 T ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 99 T ELT)) (-3734 (((-348 $) $) 120 T ELT)) (-3770 (($ $ (-584 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-584 $) (-584 $)) NIL T ELT) (($ $ (-995) |#2|) 39 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 36 T ELT) (($ $ (-995) $) 32 T ELT) (($ $ (-584 (-995)) (-584 $)) 30 T ELT)) (-1608 (((-695) $) 220 T ELT)) (-3802 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 225 T ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995))) NIL T ELT) (($ $ (-995)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-695)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1091)) NIL T ELT) (($ $ (-584 (-1091))) NIL T ELT) (($ $ (-1091) (-695)) NIL T ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL T ELT)) (-3950 (((-695) $) NIL T ELT) (((-695) $ (-995)) 17 T ELT) (((-584 (-695)) $ (-584 (-995))) 23 T ELT)) (-2819 ((|#2| $) NIL T ELT) (($ $ (-995)) 151 T ELT)) (-3756 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-995)) 64 T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT)))
-(((-1155 |#1| |#2|) (-10 -7 (-15 -3948 (|#1| |#1|)) (-15 -2710 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3760 (|#1| |#1| (-584 (-1091)) (-584 (-695)))) (-15 -3760 (|#1| |#1| (-1091) (-695))) (-15 -3760 (|#1| |#1| (-584 (-1091)))) (-15 -3760 (|#1| |#1| (-1091))) (-15 -3973 ((-348 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3448 (|#1|) -3954) (-15 -3447 ((-633 |#1|) |#1|)) (-15 -3802 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1608 ((-695) |#1|)) (-15 -2881 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3802 (|#2| (-350 |#1|) |#2|)) (-15 -3753 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3754 ((-2 (|:| -3956 |#2|) (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| |#1|)) (-15 -3755 (|#1| |#1| |#1|)) (-15 -3756 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3756 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3774 ((-695) |#1| |#1|)) (-15 -3802 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3762 (|#1| |#1| (-695))) (-15 -3763 (|#1| |#1| (-695))) (-15 -3764 ((-2 (|:| -1973 |#1|) (|:| -2904 |#1|)) |#1| (-695))) (-15 -3767 (|#1| (-1086 |#2|))) (-15 -3768 ((-1086 |#2|) |#1|)) (-15 -3769 ((-1180 |#2|) |#1| (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|) (-695))) (-15 -3760 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3760 (|#1| |#1| (-695))) (-15 -3760 (|#1| |#1|)) (-15 -3802 (|#1| |#1| |#1|)) (-15 -3802 (|#2| |#1| |#2|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -2709 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2708 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2707 ((-348 (-1086 |#1|)) (-1086 |#1|))) (-15 -2706 ((-3 (-584 (-1086 |#1|)) #1#) (-584 (-1086 |#1|)) (-1086 |#1|))) (-15 -2819 (|#1| |#1| (-995))) (-15 -3083 ((-584 (-995)) |#1|)) (-15 -2821 ((-695) |#1| (-584 (-995)))) (-15 -2821 ((-695) |#1|)) (-15 -2895 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -2895 (|#1| |#1| (-995) (-695))) (-15 -2822 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -2822 ((-695) |#1| (-995))) (-15 -3084 ((-3 (-995) #1#) |#1|)) (-15 -3950 ((-584 (-695)) |#1| (-584 (-995)))) (-15 -3950 ((-695) |#1| (-995))) (-15 -3948 (|#1| (-995))) (-15 -3159 ((-3 (-995) #1#) |#1|)) (-15 -3158 ((-995) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-995)) (-584 |#1|))) (-15 -3770 (|#1| |#1| (-995) |#1|)) (-15 -3770 (|#1| |#1| (-584 (-995)) (-584 |#2|))) (-15 -3770 (|#1| |#1| (-995) |#2|)) (-15 -3770 (|#1| |#1| (-584 |#1|) (-584 |#1|))) (-15 -3770 (|#1| |#1| |#1| |#1|)) (-15 -3770 (|#1| |#1| (-249 |#1|))) (-15 -3770 (|#1| |#1| (-584 (-249 |#1|)))) (-15 -3950 ((-695) |#1|)) (-15 -2895 (|#1| |#2| (-695))) (-15 -3159 ((-3 (-485) #1#) |#1|)) (-15 -3158 ((-485) |#1|)) (-15 -3159 ((-3 (-350 (-485)) #1#) |#1|)) (-15 -3158 ((-350 (-485)) |#1|)) (-15 -3158 (|#2| |#1|)) (-15 -3159 ((-3 |#2| #1#) |#1|)) (-15 -3948 (|#1| |#2|)) (-15 -2822 ((-695) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3760 (|#1| |#1| (-995))) (-15 -3760 (|#1| |#1| (-584 (-995)))) (-15 -3760 (|#1| |#1| (-995) (-695))) (-15 -3760 (|#1| |#1| (-584 (-995)) (-584 (-695)))) (-15 -3948 (|#1| (-485))) (-15 -3948 ((-773) |#1|))) (-1156 |#2|) (-962)) (T -1155))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3769 (((-1180 |#1|) $ (-695)) 271 T ELT)) (-3083 (((-584 (-995)) $) 123 T ELT)) (-3767 (($ (-1086 |#1|)) 269 T ELT)) (-3085 (((-1086 $) $ (-995)) 138 T ELT) (((-1086 |#1|) $) 137 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 100 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 101 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 103 (|has| |#1| (-496)) ELT)) (-2821 (((-695) $) 125 T ELT) (((-695) $ (-584 (-995))) 124 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3757 (($ $ $) 256 (|has| |#1| (-496)) ELT)) (-2709 (((-348 (-1086 $)) (-1086 $)) 113 (|has| |#1| (-822)) ELT)) (-3777 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3973 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2706 (((-3 (-584 (-1086 $)) #1="failed") (-584 (-1086 $)) (-1086 $)) 116 (|has| |#1| (-822)) ELT)) (-1609 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3763 (($ $ (-695)) 264 T ELT)) (-3762 (($ $ (-695)) 263 T ELT)) (-3753 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-485)) #2#) $) 178 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-3 (-485) #2#) $) 176 (|has| |#1| (-951 (-485))) ELT) (((-3 (-995) #2#) $) 153 T ELT)) (-3158 ((|#1| $) 180 T ELT) (((-350 (-485)) $) 179 (|has| |#1| (-951 (-350 (-485)))) ELT) (((-485) $) 177 (|has| |#1| (-951 (-485))) ELT) (((-995) $) 154 T ELT)) (-3758 (($ $ $ (-995)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2566 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 171 T ELT)) (-2280 (((-631 (-485)) (-631 $)) 149 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-631 $) (-1180 $)) 148 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-631 $) (-1180 $)) 147 T ELT) (((-631 |#1|) (-631 $)) 146 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3761 (($ $ $) 262 T ELT)) (-3755 (($ $ $) 253 (|has| |#1| (-496)) ELT)) (-3754 (((-2 (|:| -3956 |#1|) (|:| -1973 $) (|:| -2904 $)) $ $) 252 (|has| |#1| (-496)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 239 (|has| |#1| (-312)) ELT)) (-3505 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-995)) 118 (|has| |#1| (-392)) ELT)) (-2820 (((-584 $) $) 122 T ELT)) (-3725 (((-85) $) 109 (|has| |#1| (-822)) ELT)) (-1625 (($ $ |#1| (-695) $) 189 T ELT)) (-2798 (((-799 (-330) $) $ (-801 (-330)) (-799 (-330) $)) 97 (-12 (|has| (-995) (-797 (-330))) (|has| |#1| (-797 (-330)))) ELT) (((-799 (-485) $) $ (-801 (-485)) (-799 (-485) $)) 96 (-12 (|has| (-995) (-797 (-485))) (|has| |#1| (-797 (-485)))) ELT)) (-3774 (((-695) $ $) 257 (|has| |#1| (-496)) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-2421 (((-695) $) 186 T ELT)) (-3447 (((-633 $) $) 237 (|has| |#1| (-1067)) ELT)) (-3086 (($ (-1086 |#1|) (-995)) 130 T ELT) (($ (-1086 $) (-995)) 129 T ELT)) (-3779 (($ $ (-695)) 268 T ELT)) (-1606 (((-3 (-584 $) #3="failed") (-584 $) $) 248 (|has| |#1| (-312)) ELT)) (-2823 (((-584 $) $) 139 T ELT)) (-3939 (((-85) $) 169 T ELT)) (-2895 (($ |#1| (-695)) 170 T ELT) (($ $ (-995) (-695)) 132 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 131 T ELT)) (-3765 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $ (-995)) 133 T ELT) (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 266 T ELT)) (-2822 (((-695) $) 187 T ELT) (((-695) $ (-995)) 135 T ELT) (((-584 (-695)) $ (-584 (-995))) 134 T ELT)) (-1626 (($ (-1 (-695) (-695)) $) 188 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3768 (((-1086 |#1|) $) 270 T ELT)) (-3084 (((-3 (-995) #4="failed") $) 136 T ELT)) (-2281 (((-631 (-485)) (-1180 $)) 151 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 (-485))) (|:| |vec| (-1180 (-485)))) (-1180 $) $) 150 (|has| |#1| (-581 (-485))) ELT) (((-2 (|:| |mat| (-631 |#1|)) (|:| |vec| (-1180 |#1|))) (-1180 $) $) 145 T ELT) (((-631 |#1|) (-1180 $)) 144 T ELT)) (-2896 (($ $) 166 T ELT)) (-3176 ((|#1| $) 165 T ELT)) (-1895 (($ (-584 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3764 (((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695)) 265 T ELT)) (-2825 (((-3 (-584 $) #4#) $) 127 T ELT)) (-2824 (((-3 (-584 $) #4#) $) 128 T ELT)) (-2826 (((-3 (-2 (|:| |var| (-995)) (|:| -2402 (-695))) #4#) $) 126 T ELT)) (-3814 (($ $) 249 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3448 (($) 236 (|has| |#1| (-1067)) CONST)) (-3245 (((-1034) $) 12 T ELT)) (-1801 (((-85) $) 183 T ELT)) (-1800 ((|#1| $) 184 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 108 (|has| |#1| (-392)) ELT)) (-3146 (($ (-584 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2707 (((-348 (-1086 $)) (-1086 $)) 115 (|has| |#1| (-822)) ELT)) (-2708 (((-348 (-1086 $)) (-1086 $)) 114 (|has| |#1| (-822)) ELT)) (-3734 (((-348 $) $) 112 (|has| |#1| (-822)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3468 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-496)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 240 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-584 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-584 $) (-584 $)) 159 T ELT) (($ $ (-995) |#1|) 158 T ELT) (($ $ (-584 (-995)) (-584 |#1|)) 157 T ELT) (($ $ (-995) $) 156 T ELT) (($ $ (-584 (-995)) (-584 $)) 155 T ELT)) (-1608 (((-695) $) 242 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-496)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-496)) ELT)) (-3766 (((-3 $ "failed") $ (-695)) 267 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-995)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3760 (($ $ (-584 (-995)) (-584 (-695))) 52 T ELT) (($ $ (-995) (-695)) 51 T ELT) (($ $ (-584 (-995))) 50 T ELT) (($ $ (-995)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-695)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1091)) 235 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 233 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 232 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 231 (|has| |#1| (-812 (-1091))) ELT)) (-3950 (((-695) $) 167 T ELT) (((-695) $ (-995)) 143 T ELT) (((-584 (-695)) $ (-584 (-995))) 142 T ELT)) (-3974 (((-801 (-330)) $) 95 (-12 (|has| (-995) (-554 (-801 (-330)))) (|has| |#1| (-554 (-801 (-330))))) ELT) (((-801 (-485)) $) 94 (-12 (|has| (-995) (-554 (-801 (-485)))) (|has| |#1| (-554 (-801 (-485))))) ELT) (((-474) $) 93 (-12 (|has| (-995) (-554 (-474))) (|has| |#1| (-554 (-474)))) ELT)) (-2819 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-995)) 119 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-1180 $) #1#) (-631 $)) 117 (-2564 (|has| $ (-118)) (|has| |#1| (-822))) ELT)) (-3756 (((-3 $ "failed") $ $) 255 (|has| |#1| (-496)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-496)) ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-995)) 152 T ELT) (($ (-350 (-485))) 91 (OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ELT) (($ $) 98 (|has| |#1| (-496)) ELT)) (-3819 (((-584 |#1|) $) 185 T ELT)) (-3679 ((|#1| $ (-695)) 172 T ELT) (($ $ (-995) (-695)) 141 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 140 T ELT)) (-2704 (((-633 $) $) 92 (OR (-2564 (|has| $ (-118)) (|has| |#1| (-822))) (|has| |#1| (-118))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1624 (($ $ $ (-695)) 190 (|has| |#1| (-146)) ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 102 (|has| |#1| (-496)) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-584 (-995)) (-584 (-695))) 55 T ELT) (($ $ (-995) (-695)) 54 T ELT) (($ $ (-584 (-995))) 53 T ELT) (($ $ (-995)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-695)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-695)) 272 T ELT) (($ $ (-1091)) 234 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091))) 230 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-1091) (-695)) 229 (|has| |#1| (-812 (-1091))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 228 (|has| |#1| (-812 (-1091))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ (-350 (-485)) $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
-(((-1156 |#1|) (-113) (-962)) (T -1156))
-((-3769 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))) (-3768 (*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3766 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3765 (*1 *2 *1 *1) (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3764 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *4)))) (-3763 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3761 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)))) (-3760 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))) (-3759 (*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3758 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))) (-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3774 (*1 *2 *1 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695)))) (-3757 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3756 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3756 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)))) (-3755 (*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))) (-3754 (*1 *2 *1 *1) (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -3956 *3) (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-1156 *3)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))) (-3802 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))))
-(-13 (-862 |t#1| (-695) (-995)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3769 ((-1180 |t#1|) $ (-695))) (-15 -3768 ((-1086 |t#1|) $)) (-15 -3767 ($ (-1086 |t#1|))) (-15 -3779 ($ $ (-695))) (-15 -3766 ((-3 $ "failed") $ (-695))) (-15 -3765 ((-2 (|:| -1973 $) (|:| -2904 $)) $ $)) (-15 -3764 ((-2 (|:| -1973 $) (|:| -2904 $)) $ (-695))) (-15 -3763 ($ $ (-695))) (-15 -3762 ($ $ (-695))) (-15 -3761 ($ $ $)) (-15 -3760 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3759 (|t#1| $)) (-15 -3758 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-496)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3802 ((-350 $) (-350 $) (-350 $))) (-15 -3774 ((-695) $ $)) (-15 -3757 ($ $ $)) (-15 -3756 ((-3 $ "failed") $ $)) (-15 -3756 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3755 ($ $ $)) (-15 -3754 ((-2 (|:| -3956 |t#1|) (|:| -1973 $) (|:| -2904 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3753 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3993) (-15 -3802 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (-15 -3814 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-951 (-350 (-485)))) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 (-995)) . T) ((-556 |#1|) . T) ((-556 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-554 (-474)) -12 (|has| |#1| (-554 (-474))) (|has| (-995) (-554 (-474)))) ((-554 (-801 (-330))) -12 (|has| |#1| (-554 (-801 (-330)))) (|has| (-995) (-554 (-801 (-330))))) ((-554 (-801 (-485))) -12 (|has| |#1| (-554 (-801 (-485)))) (|has| (-995) (-554 (-801 (-485))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-496)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-695)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-822)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-456 (-995) |#1|) . T) ((-456 (-995) $) . T) ((-456 $ $) . T) ((-496) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 (-485)) |has| |#1| (-581 (-485))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-581 (-485)) |has| |#1| (-581 (-485))) ((-581 |#1|) . T) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-995)) . T) ((-807 $ (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-810 (-995)) . T) ((-810 (-1091)) |has| |#1| (-810 (-1091))) ((-812 (-995)) . T) ((-812 (-1091)) OR (|has| |#1| (-812 (-1091))) (|has| |#1| (-810 (-1091)))) ((-797 (-330)) -12 (|has| |#1| (-797 (-330))) (|has| (-995) (-797 (-330)))) ((-797 (-485)) -12 (|has| |#1| (-797 (-485))) (|has| (-995) (-797 (-485)))) ((-862 |#1| (-695) (-995)) . T) ((-822) |has| |#1| (-822)) ((-833) |has| |#1| (-312)) ((-951 (-350 (-485))) |has| |#1| (-951 (-350 (-485)))) ((-951 (-485)) |has| |#1| (-951 (-485))) ((-951 (-995)) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-822)) (|has| |#1| (-496)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1067) |has| |#1| (-1067)) ((-1130) . T) ((-1135) |has| |#1| (-822)))
-((-3960 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
-(((-1157 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#3| |#1|) |#2|))) (-962) (-1156 |#1|) (-962) (-1156 |#3|)) (T -1157))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6)) (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5)))))
-((-3083 (((-584 (-995)) $) 34 T ELT)) (-3961 (($ $) 31 T ELT)) (-2895 (($ |#2| |#3|) NIL T ELT) (($ $ (-995) |#3|) 28 T ELT) (($ $ (-584 (-995)) (-584 |#3|)) 27 T ELT)) (-2896 (($ $) 14 T ELT)) (-3176 ((|#2| $) 12 T ELT)) (-3950 ((|#3| $) 10 T ELT)))
-(((-1158 |#1| |#2| |#3|) (-10 -7 (-15 -3083 ((-584 (-995)) |#1|)) (-15 -2895 (|#1| |#1| (-584 (-995)) (-584 |#3|))) (-15 -2895 (|#1| |#1| (-995) |#3|)) (-15 -3961 (|#1| |#1|)) (-15 -2895 (|#1| |#2| |#3|)) (-15 -3950 (|#3| |#1|)) (-15 -2896 (|#1| |#1|)) (-15 -3176 (|#2| |#1|))) (-1159 |#2| |#3|) (-962) (-717)) (T -1158))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3774 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| |#2|) 81 T ELT) (($ $ (-995) |#2|) 97 T ELT) (($ $ (-584 (-995)) (-584 |#2|)) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ |#2|) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3802 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1026)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3950 ((|#2| $) 84 T ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3679 ((|#1| $ |#2|) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3772 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1159 |#1| |#2|) (-113) (-962) (-717)) (T -1159))
-((-3776 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3774 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3773 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3772 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3948 (*2 (-1091)))) (-4 *2 (-962)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))) (-3770 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3)))))
-(-13 (-887 |t#1| |t#2| (-995)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3776 ((-1070 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3833 ((-1091) $)) (-15 -3775 (|t#1| $)) (-15 -3779 ($ $ (-831))) (-15 -3774 (|t#2| $)) (-15 -3774 (|t#2| $ |t#2|)) (-15 -3773 ($ $ |t#2|)) (-15 -3773 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3948 (|t#1| (-1091)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3772 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3771 ($ $ |t#2|)) (IF (|has| |t#2| (-1026)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-810 (-1091))) (-6 (-810 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3770 ((-1070 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1026)) ((-246) |has| |#1| (-496)) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-887 |#1| |#2| (-995)) . T) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-3777 ((|#2| |#2|) 12 T ELT)) (-3973 (((-348 |#2|) |#2|) 14 T ELT)) (-3778 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))) 30 T ELT)))
-(((-1160 |#1| |#2|) (-10 -7 (-15 -3973 ((-348 |#2|) |#2|)) (-15 -3777 (|#2| |#2|)) (-15 -3778 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-485))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-485)))))) (-496) (-13 (-1156 |#1|) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (T -1160))
-((-3778 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-485)))) (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496)) (-5 *1 (-1160 *3 *4)))) (-3777 (*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))))) (-3973 (*1 *2 *3) (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $))))))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 11 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) NIL T ELT) (($ $ (-350 (-485)) (-350 (-485))) NIL T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) NIL T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1170 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3158 (((-1140 |#1| |#2| |#3|) $) NIL T ELT) (((-1170 |#1| |#2| |#3|) $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3783 (((-350 (-485)) $) 68 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) (-1140 |#1| |#2| |#3|)) NIL T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) NIL T ELT) (((-350 (-485)) $ (-350 (-485))) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) NIL T ELT) (($ $ (-350 (-485))) NIL T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 30 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 (((-1140 |#1| |#2| |#3|) $) 71 T ELT)) (-3780 (((-3 (-1140 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3781 (((-1140 |#1| |#2| |#3|) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3814 (($ $) 39 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) NIL T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) 38 T ELT)) (-3950 (((-350 (-485)) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) NIL T ELT)) (-3948 (((-773) $) 107 T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1140 |#1| |#2| |#3|)) 16 T ELT) (($ (-1170 |#1| |#2| |#3|)) 17 T ELT) (($ (-1177 |#2|)) 36 T ELT) (($ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 12 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 32 T CONST)) (-2668 (($) 26 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 34 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ (-485)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1161 |#1| |#2| |#3|) (-13 (-1165 |#1| (-1140 |#1| |#2| |#3|)) (-807 $ (-1177 |#2|)) (-951 (-1170 |#1| |#2| |#3|)) (-556 (-1177 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1161))
-((-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-3960 (((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)) 24 T ELT)))
-(((-1162 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3960 ((-1161 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1161 |#1| |#3| |#5|)))) (-962) (-962) (-1091) (-1091) |#1| |#2|) (T -1162))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962)) (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1163 |#1|) (-113) (-962)) (T -1163))
-((-3820 (*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))) (-4 *4 (-962)) (-4 *1 (-1163 *4)))) (-3779 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
-(-13 (-1159 |t#1| (-350 (-485))) (-10 -8 (-15 -3820 ($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |t#1|))))) (-15 -3779 ($ $ (-350 (-485)))) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T))
-((-3190 (((-85) $) 12 T ELT)) (-3159 (((-3 |#3| "failed") $) 17 T ELT)) (-3158 ((|#3| $) 14 T ELT)))
-(((-1164 |#1| |#2| |#3|) (-10 -7 (-15 -3159 ((-3 |#3| "failed") |#1|)) (-15 -3158 (|#3| |#1|)) (-15 -3190 ((-85) |#1|))) (-1165 |#2| |#3|) (-962) (-1142 |#2|)) (T -1164))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 124 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 199 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#2| "failed") $) 212 T ELT)) (-3158 ((|#2| $) 213 T ELT)) (-2566 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3783 (((-350 (-485)) $) 209 T ELT)) (-2565 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) |#2|) 210 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 179 (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 126 T ELT) (((-350 (-485)) $ (-350 (-485))) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT) (($ $ (-350 (-485))) 198 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 188 (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-350 (-485))) 81 T ELT) (($ $ (-995) (-350 (-485))) 97 T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-1895 (($ (-584 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3782 ((|#2| $) 208 T ELT)) (-3780 (((-3 |#2| "failed") $) 206 T ELT)) (-3781 ((|#2| $) 207 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 197 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 196 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 178 (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 180 (|has| |#1| (-312)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) 182 (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1165 |#1| |#2|) (-113) (-962) (-1142 |t#1|)) (T -1165))
-((-3950 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3784 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3)) (-4 *3 (-1142 *4)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3)) (-5 *2 (-350 (-485))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))) (-3780 (*1 *2 *1) (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
-(-13 (-1163 |t#1|) (-951 |t#2|) (-556 |t#2|) (-10 -8 (-15 -3784 ($ (-350 (-485)) |t#2|)) (-15 -3783 ((-350 (-485)) $)) (-15 -3782 (|t#2| $)) (-15 -3950 ((-350 (-485)) $)) (-15 -3781 (|t#2| $)) (-15 -3780 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-485))) . T) ((-25) . T) ((-38 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 |#2|) . T) ((-556 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-350 (-485)) |#1|) . T) ((-241 $ $) |has| (-350 (-485)) (-1026)) ((-246) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-13) . T) ((-589 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-655 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) OR (|has| |#1| (-496)) (|has| |#1| (-312))) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ((-887 |#1| (-350 (-485)) (-995)) . T) ((-833) |has| |#1| (-312)) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-951 |#2|) . T) ((-964 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-969 (-350 (-485))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-485))))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1135) |has| |#1| (-312)) ((-1159 |#1| (-350 (-485))) . T) ((-1163 |#1|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 104 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-350 (-485))) 116 T ELT) (($ $ (-350 (-485)) (-350 (-485))) 118 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|))) $) 54 T ELT)) (-3494 (($ $) 192 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3777 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3973 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1609 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3492 (($ $) 188 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-695) (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#1|)))) 65 T ELT)) (-3496 (($ $) 196 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-2566 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 85 T ELT)) (-3783 (((-350 (-485)) $) 13 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3784 (($ (-350 (-485)) |#2|) 11 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) NIL (|has| |#1| (-312)) ELT)) (-3725 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2894 (((-85) $) 74 T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-350 (-485)) $) 113 T ELT) (((-350 (-485)) $ (-350 (-485))) 114 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 130 T ELT) (($ $ (-350 (-485))) 128 T ELT)) (-1606 (((-3 (-584 $) #1#) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-350 (-485))) 33 T ELT) (($ $ (-995) (-350 (-485))) NIL T ELT) (($ $ (-584 (-995)) (-584 (-350 (-485)))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3944 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-1895 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3782 ((|#2| $) 12 T ELT)) (-3780 (((-3 |#2| #1#) $) 44 T ELT)) (-3781 ((|#2| $) 45 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-2486 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3814 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-312)) ELT)) (-3146 (($ (-584 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3734 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1607 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3771 (($ $ (-350 (-485))) 122 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) NIL (|has| |#1| (-312)) ELT)) (-3945 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) ELT)) (-1608 (((-695) $) NIL (|has| |#1| (-312)) ELT)) (-3802 ((|#1| $ (-350 (-485))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-485)) (-1026)) ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3760 (($ $ (-1091)) 138 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3950 (((-350 (-485)) $) 16 T ELT)) (-3497 (($ $) 198 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 174 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 194 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 190 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 120 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-485))) 139 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT)) (-3679 ((|#1| $ (-350 (-485))) 107 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 127 T CONST)) (-3775 ((|#1| $) 106 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) 204 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 180 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) 200 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 176 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 208 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 184 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-350 (-485))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-485))))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) 210 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 186 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 206 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 182 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 202 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 178 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 17 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-350 (-485)) |#1|))) ELT)) (-3058 (((-85) $ $) 72 T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3841 (($ $ $) 76 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 82 T ELT) (($ $ (-485)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1166 |#1| |#2|) (-1165 |#1| |#2|) (-962) (-1142 |#1|)) (T -1166))
-NIL
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 37 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL T ELT)) (-2064 (($ $) NIL T ELT)) (-2062 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 (-485) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-3 (-350 (-485)) #1#) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-3 (-1161 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3158 (((-485) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-485))) ELT) (((-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) ELT) (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3961 (($ $) 41 T ELT)) (-3469 (((-3 $ #1#) $) 27 T ELT)) (-3505 (($ $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-1625 (($ $ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) 11 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2822 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1626 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3960 (($ (-1 (-1161 |#2| |#3| |#4|) (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3786 (((-3 (-751 |#2|) #1#) $) 91 T ELT)) (-2896 (($ $) NIL T ELT)) (-3176 (((-1161 |#2| |#3| |#4|) $) 20 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-1801 (((-85) $) NIL T ELT)) (-1800 (((-1161 |#2| |#3| |#4|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-496)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3785 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $) 74 T ELT)) (-3950 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2819 (((-1161 |#2| |#3| |#4|) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-392)) ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-485))) NIL (OR (|has| (-1161 |#2| |#3| |#4|) (-951 (-350 (-485)))) (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485))))) ELT)) (-3819 (((-584 (-1161 |#2| |#3| |#4|)) $) NIL T ELT)) (-3679 (((-1161 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2704 (((-633 $) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-1624 (($ $ $ (-695)) NIL (|has| (-1161 |#2| |#3| |#4|) (-146)) ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-2063 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ (-1161 |#2| |#3| |#4|)) NIL (|has| (-1161 |#2| |#3| |#4|) (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1161 |#2| |#3| |#4|)) NIL T ELT) (($ (-1161 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-485)) $) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| (-1161 |#2| |#3| |#4|) (-38 (-350 (-485)))) ELT)))
-(((-1167 |#1| |#2| |#3| |#4|) (-13 (-277 (-1161 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-496) (-10 -8 (-15 -3786 ((-3 (-751 |#2|) #1="failed") $)) (-15 -3785 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) #1#) $)))) (-13 (-951 (-485)) (-581 (-485)) (-392)) (-13 (-27) (-1116) (-364 |#1|)) (-1091) |#2|) (T -1167))
-((-3786 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))) (-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))))
-((-3404 ((|#2| $) 34 T ELT)) (-3797 ((|#2| $) 18 T ELT)) (-3799 (($ $) 43 T ELT)) (-3787 (($ $ (-485)) 78 T ELT)) (-3027 ((|#2| $ |#2|) 75 T ELT)) (-3788 ((|#2| $ |#2|) 71 T ELT)) (-3790 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3028 (($ $ (-584 $)) 74 T ELT)) (-3798 ((|#2| $) 17 T ELT)) (-3801 (($ $) NIL T ELT) (($ $ (-695)) 51 T ELT)) (-3033 (((-584 $) $) 31 T ELT)) (-3029 (((-85) $ $) 62 T ELT)) (-3529 (((-85) $) 33 T ELT)) (-3800 ((|#2| $) 25 T ELT) (($ $ (-695)) 57 T ELT)) (-3802 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3635 (((-85) $) 23 T ELT)) (-3794 (($ $) 46 T ELT)) (-3792 (($ $) 79 T ELT)) (-3795 (((-695) $) 50 T ELT)) (-3796 (($ $) 49 T ELT)) (-3804 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3524 (((-584 $) $) 32 T ELT)) (-3058 (((-85) $ $) 60 T ELT)))
-(((-1168 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3787 (|#1| |#1| (-485))) (-15 -3790 (|#2| |#1| #1="last" |#2|)) (-15 -3788 (|#2| |#1| |#2|)) (-15 -3790 (|#1| |#1| #2="rest" |#1|)) (-15 -3790 (|#2| |#1| #3="first" |#2|)) (-15 -3792 (|#1| |#1|)) (-15 -3794 (|#1| |#1|)) (-15 -3795 ((-695) |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#2| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3800 (|#1| |#1| (-695))) (-15 -3802 (|#2| |#1| #1#)) (-15 -3800 (|#2| |#1|)) (-15 -3801 (|#1| |#1| (-695))) (-15 -3802 (|#1| |#1| #2#)) (-15 -3801 (|#1| |#1|)) (-15 -3802 (|#2| |#1| #3#)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3027 (|#2| |#1| |#2|)) (-15 -3790 (|#2| |#1| #4="value" |#2|)) (-15 -3028 (|#1| |#1| (-584 |#1|))) (-15 -3029 ((-85) |#1| |#1|)) (-15 -3635 ((-85) |#1|)) (-15 -3802 (|#2| |#1| #4#)) (-15 -3404 (|#2| |#1|)) (-15 -3529 ((-85) |#1|)) (-15 -3033 ((-584 |#1|) |#1|)) (-15 -3524 ((-584 |#1|) |#1|))) (-1169 |#2|) (-1130)) (T -1168))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3404 ((|#1| $) 43 T ELT)) (-3797 ((|#1| $) 62 T ELT)) (-3799 (($ $) 64 T ELT)) (-3787 (($ $ (-485)) 49 (|has| $ (-1036 |#1|)) ELT)) (-3027 ((|#1| $ |#1|) 34 (|has| $ (-1036 |#1|)) ELT)) (-3789 (($ $ $) 53 (|has| $ (-1036 |#1|)) ELT)) (-3788 ((|#1| $ |#1|) 51 (|has| $ (-1036 |#1|)) ELT)) (-3791 ((|#1| $ |#1|) 55 (|has| $ (-1036 |#1|)) ELT)) (-3790 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1036 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1036 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1036 |#1|)) ELT)) (-3028 (($ $ (-584 $)) 36 (|has| $ (-1036 |#1|)) ELT)) (-3798 ((|#1| $) 63 T ELT)) (-3726 (($) 6 T CONST)) (-3801 (($ $) 70 T ELT) (($ $ (-695)) 68 T ELT)) (-3033 (((-584 $) $) 45 T ELT)) (-3029 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3032 (((-584 |#1|) $) 40 T ELT)) (-3529 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-3800 ((|#1| $) 67 T ELT) (($ $ (-695)) 65 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 73 T ELT) (($ $ (-695)) 71 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3031 (((-485) $ $) 39 T ELT)) (-3635 (((-85) $) 41 T ELT)) (-3794 (($ $) 59 T ELT)) (-3792 (($ $) 56 (|has| $ (-1036 |#1|)) ELT)) (-3795 (((-695) $) 60 T ELT)) (-3796 (($ $) 61 T ELT)) (-3402 (($ $) 9 T ELT)) (-3793 (($ $ $) 58 (|has| $ (-1036 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1036 |#1|)) ELT)) (-3804 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-3524 (((-584 $) $) 46 T ELT)) (-3030 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
-(((-1169 |#1|) (-113) (-1130)) (T -1169))
-((-3804 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3804 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3802 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-3794 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3793 (*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3792 (*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3791 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3789 (*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))) (-3788 (*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3790 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -3804 ($ $ $)) (-15 -3804 ($ |t#1| $)) (-15 -3803 (|t#1| $)) (-15 -3802 (|t#1| $ "first")) (-15 -3803 ($ $ (-695))) (-15 -3801 ($ $)) (-15 -3802 ($ $ "rest")) (-15 -3801 ($ $ (-695))) (-15 -3800 (|t#1| $)) (-15 -3802 (|t#1| $ "last")) (-15 -3800 ($ $ (-695))) (-15 -3799 ($ $)) (-15 -3798 (|t#1| $)) (-15 -3797 (|t#1| $)) (-15 -3796 ($ $)) (-15 -3795 ((-695) $)) (-15 -3794 ($ $)) (IF (|has| $ (-1036 |t#1|)) (PROGN (-15 -3793 ($ $ $)) (-15 -3793 ($ $ |t#1|)) (-15 -3792 ($ $)) (-15 -3791 (|t#1| $ |t#1|)) (-15 -3790 (|t#1| $ "first" |t#1|)) (-15 -3789 ($ $ $)) (-15 -3790 ($ $ "rest" $)) (-15 -3788 (|t#1| $ |t#1|)) (-15 -3790 (|t#1| $ "last" |t#1|)) (-15 -3787 ($ $ (-485)))) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-924 |#1|) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3083 (((-584 (-995)) $) NIL T ELT)) (-3833 (((-1091) $) 87 T ELT)) (-3813 (((-1149 |#2| |#1|) $ (-695)) 70 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) NIL (|has| |#1| (-496)) ELT)) (-2064 (($ $) NIL (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 139 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 125 T ELT) (($ $ (-695) (-695)) 127 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 42 T ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3039 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1070 |#1|)) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) NIL T CONST)) (-3807 (($ $) 131 T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3818 (($ $) 137 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 60 T ELT) (((-858 |#1|) $ (-695) (-695)) 62 T ELT)) (-2894 (((-85) $) NIL T ELT)) (-3629 (($) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) NIL T ELT) (((-695) $ (-695)) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3810 (($ $) 115 T ELT)) (-3013 (($ $ (-485)) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3806 (($ (-485) (-485) $) 133 T ELT)) (-3779 (($ $ (-831)) 136 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 109 T ELT)) (-3939 (((-85) $) NIL T ELT)) (-2895 (($ |#1| (-695)) 16 T ELT) (($ $ (-995) (-695)) NIL T ELT) (($ $ (-584 (-995)) (-584 (-695))) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3811 (($ $) 113 T ELT)) (-3812 (($ $) 111 T ELT)) (-3805 (($ (-485) (-485) $) 135 T ELT)) (-3814 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116))) (-12 (|has| |#1| (-38 (-350 (-485)))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))))) ELT) (($ $ (-1177 |#2|)) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3808 (($ $ (-485) (-485)) 119 T ELT)) (-3771 (($ $ (-695)) 121 T ELT)) (-3468 (((-3 $ #1#) $ $) NIL (|has| |#1| (-496)) ELT)) (-3945 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3809 (($ $) 117 T ELT)) (-3770 (((-1070 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 93 T ELT) (($ $ $) 129 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) 106 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) 101 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 123 T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) 26 T ELT) (($ (-350 (-485))) 145 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) NIL (|has| |#1| (-496)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1149 |#2| |#1|)) 78 T ELT) (($ (-1177 |#2|)) 22 T ELT)) (-3819 (((-1070 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ (-695)) 92 T ELT)) (-2704 (((-633 $) $) NIL (|has| |#1| (-118)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3775 ((|#1| $) 88 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-3503 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 18 T CONST)) (-2668 (($) 13 T CONST)) (-2671 (($ $ (-1091)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) NIL (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) NIL (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-1177 |#2|)) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3951 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-485)) $) NIL (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) NIL (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1170 |#1| |#2| |#3|) (-13 (-1173 |#1|) (-807 $ (-1177 |#2|)) (-10 -8 (-15 -3948 ($ (-1149 |#2| |#1|))) (-15 -3813 ((-1149 |#2| |#1|) $ (-695))) (-15 -3948 ($ (-1177 |#2|))) (-15 -3812 ($ $)) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $ (-485) (-485))) (-15 -3807 ($ $)) (-15 -3806 ($ (-485) (-485) $)) (-15 -3805 ($ (-485) (-485) $)) (IF (|has| |#1| (-38 (-350 (-485)))) (-15 -3814 ($ $ (-1177 |#2|))) |%noBranch|))) (-962) (-1091) |#1|) (T -1170))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1170 *3 *4 *5)))) (-3813 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6)) (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))) (-3948 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *5 *3))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3808 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3807 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))) (-3806 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3805 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3))) (-3814 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3))))
-((-3960 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
-(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3960 (|#4| (-1 |#2| |#1|) |#3|))) (-962) (-962) (-1173 |#1|) (-1173 |#2|)) (T -1171))
-((-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6)) (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5)))))
-((-3190 (((-85) $) 17 T ELT)) (-3494 (($ $) 105 T ELT)) (-3641 (($ $) 81 T ELT)) (-3492 (($ $) 101 T ELT)) (-3640 (($ $) 77 T ELT)) (-3496 (($ $) 109 T ELT)) (-3639 (($ $) 85 T ELT)) (-3944 (($ $) 75 T ELT)) (-3945 (($ $) 73 T ELT)) (-3497 (($ $) 111 T ELT)) (-3638 (($ $) 87 T ELT)) (-3495 (($ $) 107 T ELT)) (-3637 (($ $) 83 T ELT)) (-3493 (($ $) 103 T ELT)) (-3636 (($ $) 79 T ELT)) (-3948 (((-773) $) 61 T ELT) (($ (-485)) NIL T ELT) (($ (-350 (-485))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3500 (($ $) 117 T ELT)) (-3488 (($ $) 93 T ELT)) (-3498 (($ $) 113 T ELT)) (-3486 (($ $) 89 T ELT)) (-3502 (($ $) 121 T ELT)) (-3490 (($ $) 97 T ELT)) (-3503 (($ $) 123 T ELT)) (-3491 (($ $) 99 T ELT)) (-3501 (($ $) 119 T ELT)) (-3489 (($ $) 95 T ELT)) (-3499 (($ $) 115 T ELT)) (-3487 (($ $) 91 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-485))) 71 T ELT)))
-(((-1172 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-485)))) (-15 -3641 (|#1| |#1|)) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3948 (|#1| |#2|)) (-15 -3948 (|#1| |#1|)) (-15 -3948 (|#1| (-350 (-485)))) (-15 -3948 (|#1| (-485))) (-15 ** (|#1| |#1| (-695))) (-15 ** (|#1| |#1| (-831))) (-15 -3190 ((-85) |#1|)) (-15 -3948 ((-773) |#1|))) (-1173 |#2|) (-962)) (T -1172))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3083 (((-584 (-995)) $) 95 T ELT)) (-3833 (((-1091) $) 129 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 71 (|has| |#1| (-496)) ELT)) (-2064 (($ $) 72 (|has| |#1| (-496)) ELT)) (-2062 (((-85) $) 74 (|has| |#1| (-496)) ELT)) (-3773 (($ $ (-695)) 124 T ELT) (($ $ (-695) (-695)) 123 T ELT)) (-3776 (((-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|))) $) 130 T ELT)) (-3494 (($ $) 163 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3641 (($ $) 146 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3039 (($ $) 145 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3492 (($ $) 162 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3640 (($ $) 147 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3820 (($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1070 |#1|)) 181 T ELT)) (-3496 (($ $) 161 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3639 (($ $) 148 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3726 (($) 23 T CONST)) (-3961 (($ $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3818 (($ $) 180 T ELT)) (-3816 (((-858 |#1|) $ (-695)) 178 T ELT) (((-858 |#1|) $ (-695) (-695)) 177 T ELT)) (-2894 (((-85) $) 94 T ELT)) (-3629 (($) 173 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3774 (((-695) $) 126 T ELT) (((-695) $ (-695)) 125 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3013 (($ $ (-485)) 144 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3779 (($ $ (-831)) 127 T ELT)) (-3817 (($ (-1 |#1| (-485)) $) 179 T ELT)) (-3939 (((-85) $) 82 T ELT)) (-2895 (($ |#1| (-695)) 81 T ELT) (($ $ (-995) (-695)) 97 T ELT) (($ $ (-584 (-995)) (-584 (-695))) 96 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3944 (($ $) 170 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2896 (($ $) 85 T ELT)) (-3176 ((|#1| $) 86 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3814 (($ $) 175 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-1091)) 174 (OR (-12 (|has| |#1| (-29 (-485))) (|has| |#1| (-872)) (|has| |#1| (-1116)) (|has| |#1| (-38 (-350 (-485))))) (-12 (|has| |#1| (-15 -3083 ((-584 (-1091)) |#1|))) (|has| |#1| (-15 -3814 (|#1| |#1| (-1091)))) (|has| |#1| (-38 (-350 (-485)))))) ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3771 (($ $ (-695)) 121 T ELT)) (-3468 (((-3 $ "failed") $ $) 70 (|has| |#1| (-496)) ELT)) (-3945 (($ $) 171 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3770 (((-1070 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) ELT)) (-3802 ((|#1| $ (-695)) 131 T ELT) (($ $ $) 107 (|has| (-695) (-1026)) ELT)) (-3760 (($ $ (-1091)) 119 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 117 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 116 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 115 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 109 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3950 (((-695) $) 84 T ELT)) (-3497 (($ $) 160 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3638 (($ $) 149 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3495 (($ $) 159 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3637 (($ $) 150 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3493 (($ $) 158 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3636 (($ $) 151 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2893 (($ $) 93 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ (-350 (-485))) 77 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $) 69 (|has| |#1| (-496)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3819 (((-1070 |#1|) $) 182 T ELT)) (-3679 ((|#1| $ (-695)) 79 T ELT)) (-2704 (((-633 $) $) 68 (|has| |#1| (-118)) ELT)) (-3128 (((-695)) 40 T CONST)) (-3775 ((|#1| $) 128 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-3500 (($ $) 169 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3488 (($ $) 157 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2063 (((-85) $ $) 73 (|has| |#1| (-496)) ELT)) (-3498 (($ $) 168 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3486 (($ $) 156 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3502 (($ $) 167 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3490 (($ $) 155 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3772 ((|#1| $ (-695)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-695)))) (|has| |#1| (-15 -3948 (|#1| (-1091))))) ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3503 (($ $) 166 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3491 (($ $) 154 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3501 (($ $) 165 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3489 (($ $) 153 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3499 (($ $) 164 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-3487 (($ $) 152 (|has| |#1| (-38 (-350 (-485)))) ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-2671 (($ $ (-1091)) 118 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091))) 114 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-1091) (-695)) 113 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $ (-584 (-1091)) (-584 (-695))) 112 (-12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT) (($ $ (-695)) 108 (|has| |#1| (-15 * (|#1| (-695) |#1|))) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 143 (|has| |#1| (-38 (-350 (-485)))) ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-485)) $) 76 (|has| |#1| (-38 (-350 (-485)))) ELT) (($ $ (-350 (-485))) 75 (|has| |#1| (-38 (-350 (-485)))) ELT)))
-(((-1173 |#1|) (-113) (-962)) (T -1173))
-((-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3)))) (-3818 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)))) (-3817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))) (-3816 (*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (-3816 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))) (-3814 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116)) (-4 *3 (-38 (-350 (-485)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-12 (|has| *3 (-15 -3083 ((-584 *2) *3))) (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485)))))))))
-(-13 (-1159 |t#1| (-695)) (-10 -8 (-15 -3820 ($ (-1070 (-2 (|:| |k| (-695)) (|:| |c| |t#1|))))) (-15 -3819 ((-1070 |t#1|) $)) (-15 -3820 ($ (-1070 |t#1|))) (-15 -3818 ($ $)) (-15 -3817 ($ (-1 |t#1| (-485)) $)) (-15 -3816 ((-858 |t#1|) $ (-695))) (-15 -3816 ((-858 |t#1|) $ (-695) (-695))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-485)))) (PROGN (-15 -3814 ($ $)) (IF (|has| |t#1| (-15 -3814 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -3083 ((-584 (-1091)) |t#1|))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1116)) (IF (|has| |t#1| (-872)) (IF (|has| |t#1| (-29 (-485))) (-15 -3814 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-916)) (-6 (-1116))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| (-695)) . T) ((-25) . T) ((-38 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-496)) ((-35) |has| |#1| (-38 (-350 (-485)))) ((-66) |has| |#1| (-38 (-350 (-485)))) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-556 (-485)) . T) ((-556 |#1|) |has| |#1| (-146)) ((-556 $) |has| |#1| (-496)) ((-553 (-773)) . T) ((-146) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-695) |#1|))) ((-239) |has| |#1| (-38 (-350 (-485)))) ((-241 (-695) |#1|) . T) ((-241 $ $) |has| (-695) (-1026)) ((-246) |has| |#1| (-496)) ((-433) |has| |#1| (-38 (-350 (-485)))) ((-496) |has| |#1| (-496)) ((-13) . T) ((-589 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-583 |#1|) |has| |#1| (-146)) ((-583 $) |has| |#1| (-496)) ((-655 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-655 |#1|) |has| |#1| (-146)) ((-655 $) |has| |#1| (-496)) ((-664) . T) ((-807 $ (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-810 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-812 (-1091)) -12 (|has| |#1| (-810 (-1091))) (|has| |#1| (-15 * (|#1| (-695) |#1|)))) ((-887 |#1| (-695) (-995)) . T) ((-916) |has| |#1| (-38 (-350 (-485)))) ((-964 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-964 |#1|) . T) ((-964 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-969 (-350 (-485))) |has| |#1| (-38 (-350 (-485)))) ((-969 |#1|) . T) ((-969 $) OR (|has| |#1| (-496)) (|has| |#1| (-146))) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1116) |has| |#1| (-38 (-350 (-485)))) ((-1119) |has| |#1| (-38 (-350 (-485)))) ((-1130) . T) ((-1159 |#1| (-695)) . T))
-((-3823 (((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|))) 24 T ELT)) (-3822 (((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3821 (((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3826 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3825 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3827 ((|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|)) 60 T ELT)) (-3828 (((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))) 66 T ELT)) (-3824 ((|#2| |#2| |#2|) 43 T ELT)))
-(((-1174 |#1| |#2|) (-10 -7 (-15 -3821 ((-1 (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2|))) (-15 -3822 ((-1 (-1070 |#1|) (-1070 |#1|) (-1070 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3823 ((-1 (-1070 |#1|) (-584 (-1070 |#1|))) (-1 |#2| (-584 |#2|)))) (-15 -3824 (|#2| |#2| |#2|)) (-15 -3825 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3826 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3827 (|#2| (-1 |#2| (-584 |#2|)) (-584 |#1|))) (-15 -3828 ((-584 |#2|) (-584 |#1|) (-584 (-1 |#2| (-584 |#2|)))))) (-38 (-350 (-485))) (-1173 |#1|)) (T -1174))
-((-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6)))) (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6)) (-5 *1 (-1174 *5 *6)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485)))) (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))) (-3826 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3825 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-38 (-350 (-485)))))) (-3824 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485)))) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
-((-3830 ((|#2| |#4| (-695)) 31 T ELT)) (-3829 ((|#4| |#2|) 26 T ELT)) (-3832 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-496)) ELT)) (-3831 (((-1 |#4| (-584 |#4|)) |#3|) 43 T ELT)))
-(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3829 (|#4| |#2|)) (-15 -3830 (|#2| |#4| (-695))) (-15 -3831 ((-1 |#4| (-584 |#4|)) |#3|)) (IF (|has| |#1| (-496)) (-15 -3832 (|#4| (-350 |#2|))) |%noBranch|)) (-962) (-1156 |#1|) (-601 |#2|) (-1173 |#1|)) (T -1175))
-((-3832 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))) (-3830 (*1 *2 *3 *4) (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
-NIL
-(((-1176) (-113)) (T -1176))
-NIL
-(-13 (-10 -7 (-6 -2288)))
-((-2570 (((-85) $ $) NIL T ELT)) (-3833 (((-1091)) 12 T ELT)) (-3244 (((-1074) $) 18 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 11 T ELT) (((-1091) $) 8 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 15 T ELT)))
-(((-1177 |#1|) (-13 (-1014) (-553 (-1091)) (-10 -8 (-15 -3948 ((-1091) $)) (-15 -3833 ((-1091))))) (-1091)) (T -1177))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-3833 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
-((-3840 (($ (-695)) 19 T ELT)) (-3837 (((-631 |#2|) $ $) 41 T ELT)) (-3834 ((|#2| $) 51 T ELT)) (-3835 ((|#2| $) 50 T ELT)) (-3838 ((|#2| $ $) 36 T ELT)) (-3836 (($ $ $) 47 T ELT)) (-3839 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3841 (($ $ $) 15 T ELT)) (* (($ (-485) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
-(((-1178 |#1| |#2|) (-10 -7 (-15 -3834 (|#2| |#1|)) (-15 -3835 (|#2| |#1|)) (-15 -3836 (|#1| |#1| |#1|)) (-15 -3837 ((-631 |#2|) |#1| |#1|)) (-15 -3838 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-485) |#1|)) (-15 -3839 (|#1| |#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3840 (|#1| (-695))) (-15 -3841 (|#1| |#1| |#1|))) (-1179 |#2|) (-1130)) (T -1178))
-NIL
-((-2570 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) 122 (|has| |#1| (-23)) ELT)) (-2199 (((-1186) $ (-485) (-485)) 35 (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1036 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-757)) (|has| $ (-1036 |#1|))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) 47 (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) 55 (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3726 (($) 6 T CONST)) (-2298 (($ $) 89 (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) 99 T ELT)) (-1354 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3408 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1577 ((|#1| $ (-485) |#1|) 48 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) 46 T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) 96 T ELT) (((-485) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) 94 (|has| |#1| (-72)) ELT)) (-3837 (((-631 |#1|) $ $) 115 (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) 65 T ELT)) (-2201 (((-485) $) 38 (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) 81 (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 105 T ELT)) (-3247 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 39 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) 82 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3834 ((|#1| $) 112 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3835 ((|#1| $) 113 (-12 (|has| |#1| (-962)) (|has| |#1| (-916))) ELT)) (-3244 (((-1074) $) 20 (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) 57 T ELT) (($ $ $ (-485)) 56 T ELT)) (-2204 (((-584 (-485)) $) 41 T ELT)) (-2205 (((-85) (-485) $) 42 T ELT)) (-3245 (((-1034) $) 19 (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) 37 (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2200 (($ $ |#1|) 36 (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 10 T ELT)) (-2203 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) 43 T ELT)) (-3405 (((-85) $) 7 T ELT)) (-3567 (($) 8 T ELT)) (-3802 ((|#1| $ (-485) |#1|) 45 T ELT) ((|#1| $ (-485)) 44 T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-3838 ((|#1| $ $) 116 (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) 59 T ELT) (($ $ (-1147 (-485))) 58 T ELT)) (-3836 (($ $ $) 114 (|has| |#1| (-962)) ELT)) (-1731 (((-695) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) 104 T ELT)) (-1735 (($ $ $ (-485)) 90 (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) 9 T ELT)) (-3974 (((-474) $) 73 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 67 T ELT)) (-3804 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3948 (((-773) $) 15 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2568 (((-85) $ $) 83 (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) 85 (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) 84 (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) 86 (|has| |#1| (-757)) ELT)) (-3839 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-485) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-664)) ELT) (($ $ |#1|) 117 (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) 101 T ELT)))
-(((-1179 |#1|) (-113) (-1130)) (T -1179))
-((-3841 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664)))) (-3838 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))) (-3836 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3841 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3840 ($ (-695))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3839 ($ $)) (-15 -3839 ($ $ $)) (-15 * ($ (-485) $))) |%noBranch|) (IF (|has| |t#1| (-664)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-15 -3838 (|t#1| $ $)) (-15 -3837 ((-631 |t#1|) $ $)) (-15 -3836 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-962)) (PROGN (-15 -3835 (|t#1| $)) (-15 -3834 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-757)) (|has| |#1| (-553 (-773)))) ((-124 |#1|) . T) ((-554 (-474)) |has| |#1| (-554 (-474))) ((-241 (-485) |#1|) . T) ((-241 (-1147 (-485)) $) . T) ((-243 (-485) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-539 (-485) |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-594 |#1|) . T) ((-19 |#1|) . T) ((-757) |has| |#1| (-757)) ((-760) |has| |#1| (-757)) ((-1014) OR (|has| |#1| (-1014)) (|has| |#1| (-757))) ((-1036 |#1|) . T) ((-1130) . T))
-((-2570 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3840 (($ (-695)) NIL (|has| |#1| (-23)) ELT)) (-3842 (($ (-584 |#1|)) 9 T ELT)) (-2199 (((-1186) $ (-485) (-485)) NIL (|has| $ (-6 -3998)) ELT)) (-1736 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-757)) ELT)) (-1734 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1036 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1036 |#1|)) (|has| |#1| (-757))) ELT)) (-2911 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-757)) ELT)) (-3790 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT) ((|#1| $ (-1147 (-485)) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3712 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3726 (($) NIL T CONST)) (-2298 (($ $) NIL (|has| $ (-1036 |#1|)) ELT)) (-2299 (($ $) NIL T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3408 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1577 ((|#1| $ (-485) |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-3114 ((|#1| $ (-485)) NIL T ELT)) (-3421 (((-485) (-1 (-85) |#1|) $) NIL T ELT) (((-485) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-485) |#1| $ (-485)) NIL (|has| |#1| (-72)) ELT)) (-3837 (((-631 |#1|) $ $) NIL (|has| |#1| (-962)) ELT)) (-3616 (($ (-695) |#1|) NIL T ELT)) (-2201 (((-485) $) NIL (|has| (-485) (-757)) ELT)) (-2533 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3520 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-2610 (((-584 |#1|) $) 15 T ELT)) (-3247 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2202 (((-485) $) 11 (|has| (-485) (-757)) ELT)) (-2859 (($ $ $) NIL (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3835 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-962))) ELT)) (-3244 (((-1074) $) NIL (|has| |#1| (-1014)) ELT)) (-2305 (($ |#1| $ (-485)) NIL T ELT) (($ $ $ (-485)) NIL T ELT)) (-2204 (((-584 (-485)) $) NIL T ELT)) (-2205 (((-85) (-485) $) NIL T ELT)) (-3245 (((-1034) $) NIL (|has| |#1| (-1014)) ELT)) (-3803 ((|#1| $) NIL (|has| (-485) (-757)) ELT)) (-1355 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2200 (($ $ |#1|) NIL (|has| $ (-6 -3998)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-2203 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2206 (((-584 |#1|) $) NIL T ELT)) (-3405 (((-85) $) NIL T ELT)) (-3567 (($) NIL T ELT)) (-3802 ((|#1| $ (-485) |#1|) NIL T ELT) ((|#1| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3838 ((|#1| $ $) NIL (|has| |#1| (-962)) ELT)) (-2306 (($ $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) NIL T ELT)) (-3836 (($ $ $) NIL (|has| |#1| (-962)) ELT)) (-1731 (((-695) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-695) (-1 (-85) |#1|) $) NIL T ELT)) (-1735 (($ $ $ (-485)) NIL (|has| $ (-1036 |#1|)) ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) 19 (|has| |#1| (-554 (-474))) ELT)) (-3532 (($ (-584 |#1|)) 8 T ELT)) (-3804 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-584 $)) NIL T ELT)) (-3948 (((-773) $) NIL (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1733 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2569 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3058 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-2687 (((-85) $ $) NIL (|has| |#1| (-757)) ELT)) (-3839 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3841 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-485) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-664)) ELT) (($ $ |#1|) NIL (|has| |#1| (-664)) ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1180 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3842 ($ (-584 |#1|))))) (-1130)) (T -1180))
-((-3842 (*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3)))))
-((-3843 (((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 13 T ELT)) (-3844 ((|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|) 15 T ELT)) (-3960 (((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)) 30 T ELT) (((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|)) 18 T ELT)))
-(((-1181 |#1| |#2|) (-10 -7 (-15 -3843 ((-1180 |#2|) (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3844 (|#2| (-1 |#2| |#1| |#2|) (-1180 |#1|) |#2|)) (-15 -3960 ((-1180 |#2|) (-1 |#2| |#1|) (-1180 |#1|))) (-15 -3960 ((-3 (-1180 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1180 |#1|)))) (-1130) (-1130)) (T -1181))
-((-3960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6)))) (-3844 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130)) (-5 *1 (-1181 *5 *2)))) (-3843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5)))))
-((-3845 (((-408) (-584 (-584 (-855 (-179)))) (-584 (-221))) 22 T ELT) (((-408) (-584 (-584 (-855 (-179))))) 21 T ELT) (((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 20 T ELT)) (-3846 (((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221))) 30 T ELT) (((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221))) 29 T ELT)) (-3948 (((-1183) (-408)) 46 T ELT)))
-(((-1182) (-10 -7 (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))))) (-15 -3845 ((-408) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3846 ((-1183) (-584 (-584 (-855 (-179)))) (-784) (-784) (-831) (-584 (-221)))) (-15 -3846 ((-1183) (-584 (-584 (-855 (-179)))) (-584 (-221)))) (-15 -3948 ((-1183) (-408))))) (T -1182))
-((-3948 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3846 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3845 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3864 (((-1074) $ (-1074)) 107 T ELT) (((-1074) $ (-1074) (-1074)) 105 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 104 T ELT)) (-3860 (($) 69 T ELT)) (-3847 (((-1186) $ (-408) (-831)) 54 T ELT)) (-3853 (((-1186) $ (-831) (-1074)) 89 T ELT) (((-1186) $ (-831) (-784)) 90 T ELT)) (-3875 (((-1186) $ (-831) (-330) (-330)) 57 T ELT)) (-3885 (((-1186) $ (-1074)) 84 T ELT)) (-3848 (((-1186) $ (-831) (-1074)) 94 T ELT)) (-3849 (((-1186) $ (-831) (-330) (-330)) 58 T ELT)) (-3886 (((-1186) $ (-831) (-831)) 55 T ELT)) (-3866 (((-1186) $) 85 T ELT)) (-3851 (((-1186) $ (-831) (-1074)) 93 T ELT)) (-3855 (((-1186) $ (-408) (-831)) 41 T ELT)) (-3852 (((-1186) $ (-831) (-1074)) 92 T ELT)) (-3888 (((-584 (-221)) $) 29 T ELT) (($ $ (-584 (-221))) 30 T ELT)) (-3887 (((-1186) $ (-695) (-695)) 52 T ELT)) (-3859 (($ $) 70 T ELT) (($ (-408) (-584 (-221))) 71 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 48 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3856 (((-1180 (-3 (-408) "undefined")) $) 47 T ELT)) (-3857 (((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $) 46 T ELT)) (-3858 (((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485)) 83 T ELT)) (-3861 (((-584 (-855 (-179))) $) NIL T ELT)) (-3854 (((-408) $ (-831)) 43 T ELT)) (-3884 (((-1186) $ (-695) (-695) (-831) (-831)) 50 T ELT)) (-3882 (((-1186) $ (-1074)) 95 T ELT)) (-3850 (((-1186) $ (-831) (-1074)) 91 T ELT)) (-3948 (((-773) $) 102 T ELT)) (-3863 (((-1186) $) 96 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3881 (((-1186) $ (-831) (-1074)) 87 T ELT) (((-1186) $ (-831) (-784)) 88 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1183) (-13 (-1014) (-10 -8 (-15 -3861 ((-584 (-855 (-179))) $)) (-15 -3860 ($)) (-15 -3859 ($ $)) (-15 -3888 ((-584 (-221)) $)) (-15 -3888 ($ $ (-584 (-221)))) (-15 -3859 ($ (-408) (-584 (-221)))) (-15 -3858 ((-1186) $ (-831) (-179) (-179) (-179) (-179) (-485) (-485) (-485) (-485) (-784) (-485) (-784) (-485))) (-15 -3857 ((-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))) $)) (-15 -3856 ((-1180 (-3 (-408) "undefined")) $)) (-15 -3885 ((-1186) $ (-1074))) (-15 -3855 ((-1186) $ (-408) (-831))) (-15 -3854 ((-408) $ (-831))) (-15 -3881 ((-1186) $ (-831) (-1074))) (-15 -3881 ((-1186) $ (-831) (-784))) (-15 -3853 ((-1186) $ (-831) (-1074))) (-15 -3853 ((-1186) $ (-831) (-784))) (-15 -3852 ((-1186) $ (-831) (-1074))) (-15 -3851 ((-1186) $ (-831) (-1074))) (-15 -3850 ((-1186) $ (-831) (-1074))) (-15 -3882 ((-1186) $ (-1074))) (-15 -3863 ((-1186) $)) (-15 -3884 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3849 ((-1186) $ (-831) (-330) (-330))) (-15 -3875 ((-1186) $ (-831) (-330) (-330))) (-15 -3848 ((-1186) $ (-831) (-1074))) (-15 -3887 ((-1186) $ (-695) (-695))) (-15 -3847 ((-1186) $ (-408) (-831))) (-15 -3886 ((-1186) $ (-831) (-831))) (-15 -3864 ((-1074) $ (-1074))) (-15 -3864 ((-1074) $ (-1074) (-1074))) (-15 -3864 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3866 ((-1186) $)) (-15 -3862 ((-485) $)) (-15 -3948 ((-773) $))))) (T -1183))
-((-3948 (*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183)))) (-3860 (*1 *1) (-5 *1 (-1183))) (-3859 (*1 *1 *1) (-5 *1 (-1183))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183)))) (-3859 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183)))) (-3858 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1180 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485)) (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784)) (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485))))) (-5 *1 (-1183)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3855 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3854 (*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3853 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3849 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3848 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3876 (((-1186) $ (-330)) 168 T ELT) (((-1186) $ (-330) (-330) (-330)) 169 T ELT)) (-3864 (((-1074) $ (-1074)) 177 T ELT) (((-1074) $ (-1074) (-1074)) 175 T ELT) (((-1074) $ (-1074) (-584 (-1074))) 174 T ELT)) (-3892 (($) 67 T ELT)) (-3883 (((-1186) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1186) $ (-485) (-485) (-330) (-330) (-330)) 143 T ELT) (((-1186) $ (-330) (-330)) 144 T ELT) (((-1186) $ (-330) (-330) (-330)) 151 T ELT)) (-3895 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3897 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3896 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3893 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3894 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3875 (((-1186) $ (-330) (-330)) 170 T ELT)) (-3885 (((-1186) $ (-1074)) 152 T ELT)) (-3890 (((-1048 (-179)) $) 68 T ELT) (($ $ (-1048 (-179))) 69 T ELT)) (-3871 (((-1186) $ (-1074)) 186 T ELT)) (-3870 (((-1186) $ (-1074)) 187 T ELT)) (-3877 (((-1186) $ (-330) (-330)) 150 T ELT) (((-1186) $ (-485) (-485)) 167 T ELT)) (-3886 (((-1186) $ (-831) (-831)) 159 T ELT)) (-3866 (((-1186) $) 136 T ELT)) (-3874 (((-1186) $ (-1074)) 185 T ELT)) (-3879 (((-1186) $ (-1074)) 133 T ELT)) (-3888 (((-584 (-221)) $) 70 T ELT) (($ $ (-584 (-221))) 71 T ELT)) (-3887 (((-1186) $ (-695) (-695)) 158 T ELT)) (-3889 (((-1186) $ (-695) (-855 (-179))) 192 T ELT)) (-3891 (($ $) 73 T ELT) (($ (-1048 (-179)) (-1074)) 74 T ELT) (($ (-1048 (-179)) (-584 (-221))) 75 T ELT)) (-3868 (((-1186) $ (-330) (-330) (-330)) 130 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3862 (((-485) $) 127 T ELT)) (-3867 (((-1186) $ (-330)) 172 T ELT)) (-3872 (((-1186) $ (-330)) 190 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3873 (((-1186) $ (-330)) 189 T ELT)) (-3878 (((-1186) $ (-1074)) 135 T ELT)) (-3884 (((-1186) $ (-695) (-695) (-831) (-831)) 157 T ELT)) (-3880 (((-1186) $ (-1074)) 132 T ELT)) (-3882 (((-1186) $ (-1074)) 134 T ELT)) (-3865 (((-1186) $ (-130) (-130)) 156 T ELT)) (-3948 (((-773) $) 165 T ELT)) (-3863 (((-1186) $) 137 T ELT)) (-3869 (((-1186) $ (-1074)) 188 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3881 (((-1186) $ (-1074)) 131 T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1184) (-13 (-1014) (-10 -8 (-15 -3897 ((-330))) (-15 -3897 ((-330) (-330))) (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ($)) (-15 -3891 ($ $)) (-15 -3891 ($ (-1048 (-179)) (-1074))) (-15 -3891 ($ (-1048 (-179)) (-584 (-221)))) (-15 -3890 ((-1048 (-179)) $)) (-15 -3890 ($ $ (-1048 (-179)))) (-15 -3889 ((-1186) $ (-695) (-855 (-179)))) (-15 -3888 ((-584 (-221)) $)) (-15 -3888 ($ $ (-584 (-221)))) (-15 -3887 ((-1186) $ (-695) (-695))) (-15 -3886 ((-1186) $ (-831) (-831))) (-15 -3885 ((-1186) $ (-1074))) (-15 -3884 ((-1186) $ (-695) (-695) (-831) (-831))) (-15 -3883 ((-1186) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3883 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3883 ((-1186) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3883 ((-1186) $ (-485) (-485) (-330) (-330) (-330))) (-15 -3883 ((-1186) $ (-330) (-330))) (-15 -3883 ((-1186) $ (-330) (-330) (-330))) (-15 -3882 ((-1186) $ (-1074))) (-15 -3881 ((-1186) $ (-1074))) (-15 -3880 ((-1186) $ (-1074))) (-15 -3879 ((-1186) $ (-1074))) (-15 -3878 ((-1186) $ (-1074))) (-15 -3877 ((-1186) $ (-330) (-330))) (-15 -3877 ((-1186) $ (-485) (-485))) (-15 -3876 ((-1186) $ (-330))) (-15 -3876 ((-1186) $ (-330) (-330) (-330))) (-15 -3875 ((-1186) $ (-330) (-330))) (-15 -3874 ((-1186) $ (-1074))) (-15 -3873 ((-1186) $ (-330))) (-15 -3872 ((-1186) $ (-330))) (-15 -3871 ((-1186) $ (-1074))) (-15 -3870 ((-1186) $ (-1074))) (-15 -3869 ((-1186) $ (-1074))) (-15 -3868 ((-1186) $ (-330) (-330) (-330))) (-15 -3867 ((-1186) $ (-330))) (-15 -3866 ((-1186) $)) (-15 -3865 ((-1186) $ (-130) (-130))) (-15 -3864 ((-1074) $ (-1074))) (-15 -3864 ((-1074) $ (-1074) (-1074))) (-15 -3864 ((-1074) $ (-1074) (-584 (-1074)))) (-15 -3863 ((-1186) $)) (-15 -3862 ((-485) $))))) (T -1184))
-((-3897 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))) (-3892 (*1 *1) (-5 *1 (-1184))) (-3891 (*1 *1 *1) (-5 *1 (-1184))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184)))) (-3891 (*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3890 (*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))) (-3889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3888 (*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3888 (*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))) (-3887 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3884 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3883 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3877 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3876 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3875 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3874 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3868 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3865 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3864 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184)))))
-((-3906 (((-584 (-1074)) (-584 (-1074))) 103 T ELT) (((-584 (-1074))) 96 T ELT)) (-3907 (((-584 (-1074))) 94 T ELT)) (-3904 (((-584 (-831)) (-584 (-831))) 69 T ELT) (((-584 (-831))) 64 T ELT)) (-3903 (((-584 (-695)) (-584 (-695))) 61 T ELT) (((-584 (-695))) 55 T ELT)) (-3905 (((-1186)) 71 T ELT)) (-3909 (((-831) (-831)) 87 T ELT) (((-831)) 86 T ELT)) (-3908 (((-831) (-831)) 85 T ELT) (((-831)) 84 T ELT)) (-3901 (((-784) (-784)) 81 T ELT) (((-784)) 80 T ELT)) (-3911 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3910 (((-831)) 88 T ELT) (((-831) (-831)) 89 T ELT)) (-3902 (((-831) (-831)) 83 T ELT) (((-831)) 82 T ELT)) (-3898 (((-784) (-784)) 75 T ELT) (((-784)) 73 T ELT)) (-3899 (((-784) (-784)) 77 T ELT) (((-784)) 76 T ELT)) (-3900 (((-784) (-784)) 79 T ELT) (((-784)) 78 T ELT)))
-(((-1185) (-10 -7 (-15 -3898 ((-784))) (-15 -3898 ((-784) (-784))) (-15 -3899 ((-784))) (-15 -3899 ((-784) (-784))) (-15 -3900 ((-784))) (-15 -3900 ((-784) (-784))) (-15 -3901 ((-784))) (-15 -3901 ((-784) (-784))) (-15 -3902 ((-831))) (-15 -3902 ((-831) (-831))) (-15 -3903 ((-584 (-695)))) (-15 -3903 ((-584 (-695)) (-584 (-695)))) (-15 -3904 ((-584 (-831)))) (-15 -3904 ((-584 (-831)) (-584 (-831)))) (-15 -3905 ((-1186))) (-15 -3906 ((-584 (-1074)))) (-15 -3906 ((-584 (-1074)) (-584 (-1074)))) (-15 -3907 ((-584 (-1074)))) (-15 -3908 ((-831))) (-15 -3909 ((-831))) (-15 -3908 ((-831) (-831))) (-15 -3909 ((-831) (-831))) (-15 -3910 ((-831) (-831))) (-15 -3910 ((-831))) (-15 -3911 ((-179) (-330))) (-15 -3911 ((-179))))) (T -1185))
-((-3911 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185)))) (-3910 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3909 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3908 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3907 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3906 (*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))) (-3905 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3904 (*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3903 (*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3902 (*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3901 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3900 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3899 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))) (-3898 (*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))))
-((-3912 (($) 6 T ELT)) (-3948 (((-773) $) 9 T ELT)))
-(((-1186) (-13 (-553 (-773)) (-10 -8 (-15 -3912 ($))))) (T -1186))
-((-3912 (*1 *1) (-5 *1 (-1186))))
-((-3951 (($ $ |#2|) 10 T ELT)))
-(((-1187 |#1| |#2|) (-10 -7 (-15 -3951 (|#1| |#1| |#2|))) (-1188 |#2|) (-312)) (T -1187))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-1215 (((-85) $ $) 20 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3913 (((-107)) 39 T ELT)) (-3948 (((-773) $) 13 T ELT)) (-1266 (((-85) $ $) 6 T ELT)) (-2662 (($) 24 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ |#1|) 40 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
-(((-1188 |#1|) (-113) (-312)) (T -1188))
-((-3951 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312)))) (-3913 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
-(-13 (-655 |t#1|) (-10 -8 (-15 -3951 ($ $ |t#1|)) (-15 -3913 ((-107)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-591 |#1|) . T) ((-583 |#1|) . T) ((-655 |#1|) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-1014) . T) ((-1130) . T))
-((-3918 (((-584 (-1123 |#1|)) (-1091) (-1123 |#1|)) 83 T ELT)) (-3916 (((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|))) 63 T ELT)) (-3919 (((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))) 74 T ELT)) (-3914 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 65 T ELT)) (-3917 (((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091)) 32 T ELT)) (-3915 (((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695)) 64 T ELT)))
-(((-1189 |#1|) (-10 -7 (-15 -3914 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3915 ((-1 (-1070 (-858 |#1|)) (-1070 (-858 |#1|))) (-695))) (-15 -3916 ((-1070 (-1070 (-858 |#1|))) (-1091) (-1070 (-858 |#1|)))) (-15 -3917 ((-1 (-1086 (-858 |#1|)) (-858 |#1|)) (-1091))) (-15 -3918 ((-584 (-1123 |#1|)) (-1091) (-1123 |#1|))) (-15 -3919 ((-1 (-1070 (-1123 |#1|)) (-1070 (-1123 |#1|))) (-695) (-1123 |#1|) (-1070 (-1123 |#1|))))) (-312)) (T -1189))
-((-3919 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6)) (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3916 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-312)))))
-((-3921 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|) 80 T ELT)) (-3920 (((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|)))) 79 T ELT)))
-(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3920 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))))) (-15 -3921 ((-2 (|:| -2013 (-631 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-631 |#2|))) |#2|))) (-299) (-1156 |#1|) (-1156 |#2|) (-353 |#2| |#3|)) (T -1190))
-((-3921 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3)) (-5 *2 (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3920 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3922 (((-1050) $) 12 T ELT)) (-3923 (((-1050) $) 10 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 18 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1191) (-13 (-996) (-10 -8 (-15 -3923 ((-1050) $)) (-15 -3922 ((-1050) $))))) (T -1191))
-((-3923 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3924 (((-1050) $) 11 T ELT)) (-3948 (((-773) $) 17 T ELT) (($ (-1096)) NIL T ELT) (((-1096) $) NIL T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)))
-(((-1192) (-13 (-996) (-10 -8 (-15 -3924 ((-1050) $))))) (T -1192))
-((-3924 (*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 59 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 82 T ELT) (($ (-485)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3128 (((-695)) NIL T CONST)) (-3925 (((-1186) (-695)) 16 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 36 T CONST)) (-2668 (($) 85 T CONST)) (-3058 (((-85) $ $) 88 T ELT)) (-3951 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3839 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 64 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
-(((-1193 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-962) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3951 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3925 ((-1186) (-695))))) (-962) (-757) (-718) (-862 |#1| |#3| |#2|) (-584 |#2|) (-584 (-695)) (-695)) (T -1193))
-((-3951 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718)) (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718)) (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3683 (((-584 (-2 (|:| -3863 $) (|:| -1703 (-584 |#4|)))) (-584 |#4|)) NIL T ELT)) (-3684 (((-584 $) (-584 |#4|)) 95 T ELT)) (-3083 (((-584 |#3|) $) NIL T ELT)) (-2910 (((-85) $) NIL T ELT)) (-2901 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3695 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3690 ((|#4| |#4| $) NIL T ELT)) (-2911 (((-2 (|:| |under| $) (|:| -3132 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3712 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3726 (($) NIL T CONST)) (-2906 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-2908 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-496)) ELT)) (-2909 (((-85) $) NIL (|has| |#1| (-496)) ELT)) (-3691 (((-584 |#4|) (-584 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2902 (((-584 |#4|) (-584 |#4|) $) 28 (|has| |#1| (-496)) ELT)) (-2903 (((-584 |#4|) (-584 |#4|) $) NIL (|has| |#1| (-496)) ELT)) (-3159 (((-3 $ #1#) (-584 |#4|)) NIL T ELT)) (-3158 (($ (-584 |#4|)) NIL T ELT)) (-3801 (((-3 $ #1#) $) 77 T ELT)) (-3687 ((|#4| |#4| $) 82 T ELT)) (-1354 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3408 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2904 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3696 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3685 ((|#4| |#4| $) NIL T ELT)) (-3844 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3698 (((-2 (|:| -3863 (-584 |#4|)) (|:| -1703 (-584 |#4|))) $) NIL T ELT)) (-3697 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3182 ((|#3| $) 83 T ELT)) (-2610 (((-584 |#4|) $) 32 T ELT)) (-3247 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3928 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-584 |#4|)) 38 T ELT)) (-3328 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3960 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2916 (((-584 |#3|) $) NIL T ELT)) (-2915 (((-85) |#3| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3800 (((-3 |#4| #1#) $) NIL T ELT)) (-3699 (((-584 |#4|) $) 53 T ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) 81 T ELT)) (-3701 (((-85) $ $) 92 T ELT)) (-2905 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-496)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3803 (((-3 |#4| #1#) $) 76 T ELT)) (-1355 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3771 (($ $ |#4|) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3770 (($ $ (-584 |#4|) (-584 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT) (($ $ (-584 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1014))) ELT)) (-1223 (((-85) $ $) NIL T ELT)) (-3405 (((-85) $) 74 T ELT)) (-3567 (($) 45 T ELT)) (-3950 (((-695) $) NIL T ELT)) (-1731 (((-695) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-695) (-1 (-85) |#4|) $) NIL T ELT)) (-3402 (($ $) NIL T ELT)) (-3974 (((-474) $) NIL (|has| |#4| (-554 (-474))) ELT)) (-3532 (($ (-584 |#4|)) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-2914 (($ $ |#3|) NIL T ELT)) (-3686 (($ $) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (((-584 |#4|) $) 62 T ELT)) (-3680 (((-695) $) NIL (|has| |#3| (-320)) ELT)) (-3927 (((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-584 |#4|)) 44 T ELT)) (-3926 (((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-584 $) (-584 |#4|)) 73 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3700 (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3325 (-584 |#4|))) #1#) (-584 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3692 (((-85) $ (-1 (-85) |#4| (-584 |#4|))) NIL T ELT)) (-1733 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3682 (((-584 |#3|) $) NIL T ELT)) (-3935 (((-85) |#3| $) NIL T ELT)) (-3058 (((-85) $ $) NIL T ELT)) (-3959 (((-695) $) NIL T ELT)))
-(((-1194 |#1| |#2| |#3| |#4|) (-13 (-1125 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3928 ((-3 $ #1="failed") (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3928 ((-3 $ #1#) (-584 |#4|))) (-15 -3927 ((-3 $ #1#) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-3 $ #1#) (-584 |#4|))) (-15 -3926 ((-584 $) (-584 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-584 $) (-584 |#4|))))) (-496) (-718) (-757) (-978 |#1| |#2| |#3|)) (T -1194))
-((-3928 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3928 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3927 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))) (-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6)))) (-3926 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757)) (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7))) (-5 *1 (-1194 *4 *5 *6 *7)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3726 (($) 23 T CONST)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT)))
-(((-1195 |#1|) (-113) (-962)) (T -1195))
-NIL
-(-13 (-962) (-82 |t#1| |t#1|) (-556 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 |#1|) |has| |#1| (-146)) ((-655 |#1|) |has| |#1| (-146)) ((-664) . T) ((-964 |#1|) . T) ((-969 |#1|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T))
-((-2570 (((-85) $ $) 69 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 54 T ELT)) (-3949 (($ $ (-695)) 47 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ (-695)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ $) 72 T ELT) (($ $ (-740 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT)) (-3961 (($ $) 40 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) 39 T ELT)) (-3938 (($ $) 41 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3957 (((-740 |#1|) $) NIL T ELT)) (-3958 (((-740 |#1|) $) 42 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (($ $ $) 71 T ELT) (($ $ (-740 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1753 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-740 |#1|) $) 36 T ELT)) (-3176 ((|#2| $) 38 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3950 (((-695) $) 44 T ELT)) (-3955 (((-85) $) 48 T ELT)) (-3954 ((|#2| $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-740 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-485)) NIL T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3956 ((|#2| $ $) 78 T ELT) ((|#2| $ (-740 |#1|)) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 14 T CONST)) (-2668 (($) 20 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3058 (((-85) $ $) 45 T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 29 T ELT)) (** (($ $ (-695)) NIL T ELT) (($ $ (-831)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-740 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
-(((-1196 |#1| |#2|) (-13 (-335 |#2| (-740 |#1|)) (-1203 |#1| |#2|)) (-757) (-962)) (T -1196))
-NIL
-((-3944 ((|#3| |#3| (-695)) 28 T ELT)) (-3945 ((|#3| |#3| (-695)) 34 T ELT)) (-3929 ((|#3| |#3| |#3| (-695)) 35 T ELT)))
-(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -3945 (|#3| |#3| (-695))) (-15 -3944 (|#3| |#3| (-695))) (-15 -3929 (|#3| |#3| |#3| (-695)))) (-13 (-962) (-655 (-350 (-485)))) (-757) (-1203 |#2| |#1|)) (T -1197))
-((-3929 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757)) (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
-((-3934 (((-85) $) 15 T ELT)) (-3935 (((-85) $) 14 T ELT)) (-3930 (($ $) 19 T ELT) (($ $ (-695)) 21 T ELT)))
-(((-1198 |#1| |#2|) (-10 -7 (-15 -3930 (|#1| |#1| (-695))) (-15 -3930 (|#1| |#1|)) (-15 -3934 ((-85) |#1|)) (-15 -3935 ((-85) |#1|))) (-1199 |#2|) (-312)) (T -1198))
-NIL
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-2065 (((-2 (|:| -1776 $) (|:| -3984 $) (|:| |associate| $)) $) 55 T ELT)) (-2064 (($ $) 54 T ELT)) (-2062 (((-85) $) 52 T ELT)) (-3934 (((-85) $) 114 T ELT)) (-3931 (((-695)) 110 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3777 (($ $) 91 T ELT)) (-3973 (((-348 $) $) 90 T ELT)) (-1609 (((-85) $ $) 75 T ELT)) (-3726 (($) 23 T CONST)) (-3159 (((-3 |#1| "failed") $) 121 T ELT)) (-3158 ((|#1| $) 122 T ELT)) (-2566 (($ $ $) 71 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-2565 (($ $ $) 72 T ELT)) (-2743 (((-2 (|:| -3956 (-584 $)) (|:| -2410 $)) (-584 $)) 66 T ELT)) (-1768 (($ $ (-695)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3725 (((-85) $) 89 T ELT)) (-3774 (((-744 (-831)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-1606 (((-3 (-584 $) #1="failed") (-584 $) $) 68 T ELT)) (-1895 (($ $ $) 60 T ELT) (($ (-584 $)) 59 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-2486 (($ $) 88 T ELT)) (-3933 (((-85) $) 113 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-2710 (((-1086 $) (-1086 $) (-1086 $)) 58 T ELT)) (-3146 (($ $ $) 62 T ELT) (($ (-584 $)) 61 T ELT)) (-3734 (((-348 $) $) 92 T ELT)) (-3932 (((-744 (-831))) 111 T ELT)) (-1607 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2410 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3468 (((-3 $ "failed") $ $) 56 T ELT)) (-2742 (((-633 (-584 $)) (-584 $) $) 65 T ELT)) (-1608 (((-695) $) 74 T ELT)) (-2881 (((-2 (|:| -1973 $) (|:| -2904 $)) $ $) 73 T ELT)) (-1769 (((-3 (-695) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3913 (((-107)) 119 T ELT)) (-3950 (((-744 (-831)) $) 112 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-485))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2704 (((-633 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-2063 (((-85) $ $) 53 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-3935 (((-85) $) 115 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3930 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-695)) 108 (|has| |#1| (-320)) ELT)) (-3058 (((-85) $ $) 8 T ELT)) (-3951 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT) (($ $ (-485)) 87 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-485))) 86 T ELT) (($ (-350 (-485)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
-(((-1199 |#1|) (-113) (-312)) (T -1199))
-((-3935 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3932 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))) (-3931 (*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695)))) (-3930 (*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320)))))
-(-13 (-312) (-951 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3935 ((-85) $)) (-15 -3934 ((-85) $)) (-15 -3933 ((-85) $)) (-15 -3950 ((-744 (-831)) $)) (-15 -3932 ((-744 (-831)))) (-15 -3931 ((-695))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3930 ($ $)) (-15 -3930 ($ $ (-695)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-485))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-485)) (-350 (-485))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-556 (-350 (-485))) . T) ((-556 (-485)) . T) ((-556 |#1|) . T) ((-556 $) . T) ((-553 (-773)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-496) . T) ((-13) . T) ((-589 (-350 (-485))) . T) ((-589 (-485)) . T) ((-589 |#1|) . T) ((-589 $) . T) ((-591 (-350 (-485))) . T) ((-591 |#1|) . T) ((-591 $) . T) ((-583 (-350 (-485))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-655 (-350 (-485))) . T) ((-655 |#1|) . T) ((-655 $) . T) ((-664) . T) ((-833) . T) ((-951 |#1|) . T) ((-964 (-350 (-485))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-969 (-350 (-485))) . T) ((-969 |#1|) . T) ((-969 $) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1135) . T) ((-1188 |#1|) . T))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 55 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3937 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3726 (($) 23 T CONST)) (-3941 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3158 (((-740 |#1|) $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3953 (((-85) $) 60 T ELT)) (-3952 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 65 T ELT)) (-3940 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3938 (($ $) 64 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3957 (((-740 |#1|) $) 76 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3942 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3955 (((-85) $) 62 T ELT)) (-3954 ((|#2| $) 61 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1200 |#1| |#2|) (-113) (-757) (-962)) (T -1200))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))) (-3956 (*1 *2 *1 *3) (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962)))) (-3956 (*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3942 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3942 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3938 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3948 (*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))) (-3952 (*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))) (-3937 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-4 *4 (-146)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
-(-13 (-962) (-1195 |t#2|) (-951 (-740 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3957 ((-740 |t#1|) $)) (-15 -3943 ((-2 (|:| |k| (-740 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3956 (|t#2| $ (-740 |t#1|))) (-15 -3956 (|t#2| $ $)) (-15 -3942 ($ $ |t#1|)) (-15 -3942 ($ $ (-740 |t#1|))) (-15 -3942 ($ $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ (-740 |t#1|))) (-15 -3941 ($ $ $)) (-15 -3940 ($ (-740 |t#1|) |t#2|)) (-15 -3939 ((-85) $)) (-15 -3938 ($ $)) (-15 -3948 ($ |t#1|)) (-15 -3955 ((-85) $)) (-15 -3954 (|t#2| $)) (-15 -3953 ((-85) $)) (-15 -3952 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3937 ($ $ $)) (-15 -3937 ($ $ (-695)))) |%noBranch|) (-15 -3960 ($ (-1 |t#2| |t#2|) $)) (-15 -3936 ((-584 |t#1|) $)) (IF (|has| |t#2| (-6 -3990)) (-6 -3990) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 99 T ELT)) (-3949 (($ $ (-695)) 103 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-695)) NIL (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT) (((-3 (-804 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT) (((-804 |#1|) $) NIL T ELT)) (-3961 (($ $) 102 T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) 90 T ELT)) (-3952 (($ $) 93 T ELT)) (-3946 (($ $ $ (-695)) 104 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) NIL T ELT) (($ (-804 |#1|) |#2|) 28 T ELT)) (-3938 (($ $) 120 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3957 (((-740 |#1|) $) NIL T ELT)) (-3958 (((-740 |#1|) $) NIL T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3942 (($ $ |#1|) NIL T ELT) (($ $ (-740 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3944 (($ $ (-695)) 113 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-1753 (((-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2896 (((-804 |#1|) $) 84 T ELT)) (-3176 ((|#2| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3945 (($ $ (-695)) 110 (|has| |#2| (-655 (-350 (-485)))) ELT)) (-3950 (((-695) $) 100 T ELT)) (-3955 (((-85) $) 85 T ELT)) (-3954 ((|#2| $) 88 T ELT)) (-3948 (((-773) $) 70 T ELT) (($ (-485)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-740 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-804 |#1|)) NIL T ELT) (($ (-607 |#1| |#2|)) 47 T ELT) (((-1196 |#1| |#2|) $) 77 T ELT) (((-1205 |#1| |#2|) $) 82 T ELT)) (-3819 (((-584 |#2|) $) NIL T ELT)) (-3679 ((|#2| $ (-804 |#1|)) NIL T ELT)) (-3956 ((|#2| $ (-740 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 21 T CONST)) (-2668 (($) 27 T CONST)) (-2667 (((-584 (-2 (|:| |k| (-804 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3947 (((-3 (-607 |#1| |#2|) #1#) $) 119 T ELT)) (-3058 (((-85) $ $) 78 T ELT)) (-3839 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3841 (($ $ $) 20 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-804 |#1|)) NIL T ELT)))
-(((-1201 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-335 |#2| (-804 |#1|)) (-10 -8 (-15 -3948 ($ (-607 |#1| |#2|))) (-15 -3948 ((-1196 |#1| |#2|) $)) (-15 -3948 ((-1205 |#1| |#2|) $)) (-15 -3947 ((-3 (-607 |#1| |#2|) "failed") $)) (-15 -3946 ($ $ $ (-695))) (IF (|has| |#2| (-655 (-350 (-485)))) (PROGN (-15 -3945 ($ $ (-695))) (-15 -3944 ($ $ (-695)))) |%noBranch|))) (-757) (-146)) (T -1201))
-((-3948 (*1 *1 *2) (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *1 (-1201 *3 *4)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3947 (*1 *2 *1) (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3946 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485)))) (-4 *3 (-757)) (-4 *4 (-146)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 (-1091)) $) NIL T ELT)) (-3964 (($ (-1196 (-1091) |#1|)) NIL T ELT)) (-3949 (($ $ (-695)) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-695)) NIL (|has| |#1| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3159 (((-3 (-740 (-1091)) #1#) $) NIL T ELT)) (-3158 (((-740 (-1091)) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) NIL T ELT)) (-3953 (((-85) $) NIL T ELT)) (-3952 (($ $) NIL T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 (-1091)) |#1|) NIL T ELT)) (-3938 (($ $) NIL T ELT)) (-3943 (((-2 (|:| |k| (-740 (-1091))) (|:| |c| |#1|)) $) NIL T ELT)) (-3957 (((-740 (-1091)) $) NIL T ELT)) (-3958 (((-740 (-1091)) $) NIL T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3942 (($ $ (-1091)) NIL T ELT) (($ $ (-740 (-1091))) NIL T ELT) (($ $ $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3965 (((-1196 (-1091) |#1|) $) NIL T ELT)) (-3950 (((-695) $) NIL T ELT)) (-3955 (((-85) $) NIL T ELT)) (-3954 ((|#1| $) NIL T ELT)) (-3948 (((-773) $) NIL T ELT) (($ (-485)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-740 (-1091))) NIL T ELT) (($ (-1091)) NIL T ELT)) (-3956 ((|#1| $ (-740 (-1091))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3128 (((-695)) NIL T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) NIL T CONST)) (-3963 (((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL T ELT)) (-2668 (($) NIL T CONST)) (-3058 (((-85) $ $) NIL T ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) NIL T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) NIL T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1091) $) NIL T ELT)))
-(((-1202 |#1|) (-13 (-1203 (-1091) |#1|) (-10 -8 (-15 -3965 ((-1196 (-1091) |#1|) $)) (-15 -3964 ($ (-1196 (-1091) |#1|))) (-15 -3963 ((-584 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-962)) (T -1202))
-((-3965 (*1 *2 *1) (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3))))) (-5 *1 (-1202 *3)) (-4 *3 (-962)))))
-((-2570 (((-85) $ $) 7 T ELT)) (-3190 (((-85) $) 22 T ELT)) (-3936 (((-584 |#1|) $) 55 T ELT)) (-3949 (($ $ (-695)) 89 T ELT)) (-1313 (((-3 $ "failed") $ $) 26 T ELT)) (-3937 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-695)) 57 (|has| |#2| (-146)) ELT)) (-3726 (($) 23 T CONST)) (-3941 (($ $ |#1|) 69 T ELT) (($ $ (-740 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3159 (((-3 (-740 |#1|) "failed") $) 79 T ELT)) (-3158 (((-740 |#1|) $) 80 T ELT)) (-3469 (((-3 $ "failed") $) 42 T ELT)) (-3953 (((-85) $) 60 T ELT)) (-3952 (($ $) 59 T ELT)) (-1215 (((-85) $ $) 20 T ELT)) (-2411 (((-85) $) 44 T ELT)) (-3939 (((-85) $) 65 T ELT)) (-3940 (($ (-740 |#1|) |#2|) 66 T ELT)) (-3938 (($ $) 64 T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3957 (((-740 |#1|) $) 76 T ELT)) (-3958 (((-740 |#1|) $) 91 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3942 (($ $ |#1|) 72 T ELT) (($ $ (-740 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3244 (((-1074) $) 11 T ELT)) (-3245 (((-1034) $) 12 T ELT)) (-3950 (((-695) $) 90 T ELT)) (-3955 (((-85) $) 62 T ELT)) (-3954 ((|#2| $) 61 T ELT)) (-3948 (((-773) $) 13 T ELT) (($ (-485)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-740 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3128 (((-695)) 40 T CONST)) (-1266 (((-85) $ $) 6 T ELT)) (-3127 (((-85) $ $) 33 T ELT)) (-2662 (($) 24 T CONST)) (-2668 (($) 45 T CONST)) (-3058 (((-85) $ $) 8 T ELT)) (-3839 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3841 (($ $ $) 18 T ELT)) (** (($ $ (-831)) 35 T ELT) (($ $ (-695)) 43 T ELT)) (* (($ (-831) $) 17 T ELT) (($ (-695) $) 21 T ELT) (($ (-485) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
-(((-1203 |#1| |#2|) (-113) (-757) (-962)) (T -1203))
-((-3958 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-(-13 (-1200 |t#1| |t#2|) (-10 -8 (-15 -3958 ((-740 |t#1|) $)) (-15 -3950 ((-695) $)) (-15 -3949 ($ $ (-695)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-556 (-485)) . T) ((-556 (-740 |#1|)) . T) ((-556 |#2|) . T) ((-553 (-773)) . T) ((-13) . T) ((-589 (-485)) . T) ((-589 |#2|) . T) ((-589 $) . T) ((-591 |#2|) . T) ((-591 $) . T) ((-583 |#2|) |has| |#2| (-146)) ((-655 |#2|) |has| |#2| (-146)) ((-664) . T) ((-951 (-740 |#1|)) . T) ((-964 |#2|) . T) ((-969 |#2|) . T) ((-962) . T) ((-971) . T) ((-1026) . T) ((-1062) . T) ((-1014) . T) ((-1130) . T) ((-1195 |#2|) . T) ((-1200 |#1| |#2|) . T))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) NIL T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3726 (($) NIL T CONST)) (-3159 (((-3 |#2| #1#) $) NIL T ELT)) (-3158 ((|#2| $) NIL T ELT)) (-3961 (($ $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 43 T ELT)) (-3953 (((-85) $) 37 T ELT)) (-3952 (($ $) 38 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-2421 (((-695) $) NIL T ELT)) (-2823 (((-584 $) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ |#2| |#1|) NIL T ELT)) (-3957 ((|#2| $) 25 T ELT)) (-3958 ((|#2| $) 23 T ELT)) (-3960 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1753 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2896 ((|#2| $) NIL T ELT)) (-3176 ((|#1| $) NIL T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3955 (((-85) $) 33 T ELT)) (-3954 ((|#1| $) 34 T ELT)) (-3948 (((-773) $) 66 T ELT) (($ (-485)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3819 (((-584 |#1|) $) NIL T ELT)) (-3679 ((|#1| $ |#2|) NIL T ELT)) (-3956 ((|#1| $ |#2|) 29 T ELT)) (-3128 (((-695)) 14 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 30 T CONST)) (-2668 (($) 11 T CONST)) (-2667 (((-584 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3058 (((-85) $ $) 31 T ELT)) (-3951 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3839 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3841 (($ $ $) 51 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 53 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3959 (((-695) $) 18 T ELT)))
-(((-1204 |#1| |#2|) (-13 (-962) (-1195 |#1|) (-335 |#1| |#2|) (-556 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3959 ((-695) $)) (-15 -3958 (|#2| $)) (-15 -3957 (|#2| $)) (-15 -3961 ($ $)) (-15 -3956 (|#1| $ |#2|)) (-15 -3955 ((-85) $)) (-15 -3954 (|#1| $)) (-15 -3953 ((-85) $)) (-15 -3952 ($ $)) (-15 -3960 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3951 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3990)) (-6 -3990) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|) (IF (|has| |#1| (-6 -3995)) (-6 -3995) |%noBranch|))) (-962) (-755)) (T -1204))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3961 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3960 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755)))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3958 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3957 (*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))) (-3956 (*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3954 (*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))) (-3951 (*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755)))))
-((-2570 (((-85) $ $) 27 T ELT)) (-3190 (((-85) $) NIL T ELT)) (-3936 (((-584 |#1|) $) 132 T ELT)) (-3964 (($ (-1196 |#1| |#2|)) 50 T ELT)) (-3949 (($ $ (-695)) 38 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3937 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-695)) 52 (|has| |#2| (-146)) ELT)) (-3726 (($) NIL T CONST)) (-3941 (($ $ |#1|) 114 T ELT) (($ $ (-740 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3159 (((-3 (-740 |#1|) #1#) $) NIL T ELT)) (-3158 (((-740 |#1|) $) NIL T ELT)) (-3469 (((-3 $ #1#) $) 122 T ELT)) (-3953 (((-85) $) 117 T ELT)) (-3952 (($ $) 118 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) NIL T ELT)) (-3939 (((-85) $) NIL T ELT)) (-3940 (($ (-740 |#1|) |#2|) 20 T ELT)) (-3938 (($ $) NIL T ELT)) (-3943 (((-2 (|:| |k| (-740 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3957 (((-740 |#1|) $) 123 T ELT)) (-3958 (((-740 |#1|) $) 126 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3942 (($ $ |#1|) 112 T ELT) (($ $ (-740 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3965 (((-1196 |#1| |#2|) $) 94 T ELT)) (-3950 (((-695) $) 129 T ELT)) (-3955 (((-85) $) 81 T ELT)) (-3954 ((|#2| $) 32 T ELT)) (-3948 (((-773) $) 73 T ELT) (($ (-485)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-740 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3956 ((|#2| $ (-740 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3128 (((-695)) 120 T CONST)) (-1266 (((-85) $ $) NIL T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 15 T CONST)) (-3963 (((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2668 (($) 33 T CONST)) (-3058 (((-85) $ $) 14 T ELT)) (-3839 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3841 (($ $ $) 61 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 55 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) 53 T ELT) (($ (-485) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
-(((-1205 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -3965 ((-1196 |#1| |#2|) $)) (-15 -3964 ($ (-1196 |#1| |#2|))) (-15 -3963 ((-584 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-757) (-962)) (T -1205))
-((-3965 (*1 *2 *1) (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))) (-3964 (*1 *1 *2) (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *1 (-1205 *3 *4)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4))))) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3967 (($ (-584 (-831))) 11 T ELT)) (-3966 (((-885) $) 12 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3948 (((-773) $) 25 T ELT) (($ (-885)) 14 T ELT) (((-885) $) 13 T ELT)) (-1266 (((-85) $ $) NIL T ELT)) (-3058 (((-85) $ $) 17 T ELT)))
-(((-1206) (-13 (-1014) (-430 (-885)) (-10 -8 (-15 -3967 ($ (-584 (-831)))) (-15 -3966 ((-885) $))))) (T -1206))
-((-3967 (*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))) (-3966 (*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206)))))
-((-3968 (((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)) 16 T ELT) (((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|))) 13 T ELT)))
-(((-1207 |#1|) (-10 -7 (-15 -3968 ((-1070 |#1|) (-1 (-1070 |#1|) (-1070 |#1|)))) (-15 -3968 ((-584 (-1070 |#1|)) (-1 (-584 (-1070 |#1|)) (-584 (-1070 |#1|))) (-485)))) (-1130)) (T -1207))
-((-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485)) (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1130)))))
-((-3970 (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|))) 174 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85)) 173 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85)) 172 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-959 |#1| |#2|)) 156 T ELT)) (-3969 (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|))) 85 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85)) 84 T ELT) (((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85)) 83 T ELT)) (-3973 (((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|)) 73 T ELT)) (-3971 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 140 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 139 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 138 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 132 T ELT)) (-3972 (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|))) 145 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85)) 144 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85)) 143 T ELT) (((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|)) 142 T ELT)) (-3974 (((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) 111 T ELT) (((-1086 (-938 (-350 |#1|))) (-1086 |#1|)) 102 T ELT) (((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|))) 109 T ELT) (((-858 (-938 (-350 |#1|))) (-858 |#1|)) 107 T ELT) (((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|))) 33 T ELT)))
-(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)) (-85))) (-15 -3969 ((-584 (-959 |#1| |#2|)) (-584 (-858 |#1|)))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-959 |#1| |#2|))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)) (-85))) (-15 -3970 ((-584 (-2 (|:| -1751 (-1086 |#1|)) (|:| -3226 (-584 (-858 |#1|))))) (-584 (-858 |#1|)))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3971 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-959 |#1| |#2|))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85) (-85))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)) (-85))) (-15 -3972 ((-584 (-584 (-938 (-350 |#1|)))) (-584 (-858 |#1|)))) (-15 -3973 ((-584 (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))) (-959 |#1| |#2|))) (-15 -3974 ((-704 |#1| (-774 |#3|)) (-704 |#1| (-774 |#2|)))) (-15 -3974 ((-858 (-938 (-350 |#1|))) (-858 |#1|))) (-15 -3974 ((-858 (-938 (-350 |#1|))) (-704 |#1| (-774 |#3|)))) (-15 -3974 ((-1086 (-938 (-350 |#1|))) (-1086 |#1|))) (-15 -3974 ((-584 (-704 |#1| (-774 |#3|))) (-1061 |#1| (-470 (-774 |#3|)) (-774 |#3|) (-704 |#1| (-774 |#3|)))))) (-13 (-756) (-258) (-120) (-934)) (-584 (-1091)) (-584 (-1091))) (T -1208))
-((-3974 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3972 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3972 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091))))))
-((-3977 (((-3 (-1180 (-350 (-485))) #1="failed") (-1180 |#1|) |#1|) 21 T ELT)) (-3975 (((-85) (-1180 |#1|)) 12 T ELT)) (-3976 (((-3 (-1180 (-485)) #1#) (-1180 |#1|)) 16 T ELT)))
-(((-1209 |#1|) (-10 -7 (-15 -3975 ((-85) (-1180 |#1|))) (-15 -3976 ((-3 (-1180 (-485)) #1="failed") (-1180 |#1|))) (-15 -3977 ((-3 (-1180 (-350 (-485))) #1#) (-1180 |#1|) |#1|))) (-13 (-962) (-581 (-485)))) (T -1209))
-((-3977 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4)))) (-3976 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85)) (-5 *1 (-1209 *4)))))
-((-2570 (((-85) $ $) NIL T ELT)) (-3190 (((-85) $) 12 T ELT)) (-1313 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3138 (((-695)) 9 T ELT)) (-3726 (($) NIL T CONST)) (-3469 (((-3 $ #1#) $) 57 T ELT)) (-2996 (($) 46 T ELT)) (-1215 (((-85) $ $) NIL T ELT)) (-2411 (((-85) $) 38 T ELT)) (-3447 (((-633 $) $) 36 T ELT)) (-2011 (((-831) $) 14 T ELT)) (-3244 (((-1074) $) NIL T ELT)) (-3448 (($) 26 T CONST)) (-2401 (($ (-831)) 47 T ELT)) (-3245 (((-1034) $) NIL T ELT)) (-3974 (((-485) $) 16 T ELT)) (-3948 (((-773) $) 21 T ELT) (($ (-485)) 18 T ELT)) (-3128 (((-695)) 10 T CONST)) (-1266 (((-85) $ $) 59 T ELT)) (-3127 (((-85) $ $) NIL T ELT)) (-2662 (($) 23 T CONST)) (-2668 (($) 25 T CONST)) (-3058 (((-85) $ $) 31 T ELT)) (-3839 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3841 (($ $ $) 29 T ELT)) (** (($ $ (-831)) NIL T ELT) (($ $ (-695)) 52 T ELT)) (* (($ (-831) $) NIL T ELT) (($ (-695) $) NIL T ELT) (($ (-485) $) 41 T ELT) (($ $ $) 40 T ELT)))
-(((-1210 |#1|) (-13 (-146) (-320) (-554 (-485)) (-1067)) (-831)) (T -1210))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 2796242 2796247 2796252 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2796227 2796232 2796237 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2796212 2796217 2796222 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2796197 2796202 2796207 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2795176 2796115 2796192 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2794391 2794570 2794789 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2785550 2787419 2789353 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2784938 2785091 2785280 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2784400 2784703 2784816 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2781960 2783862 2784065 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2778724 2780377 2780948 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2775981 2777711 2777765 "XPOLYC" 2778050 XPOLYC (NIL T T) -9 NIL 2778163 NIL) (-1202 2773500 2775485 2775688 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2769748 2772359 2772747 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2764595 2766228 2766282 "XFALG" 2768427 XFALG (NIL T T) -9 NIL 2769211 NIL) (-1199 2759751 2762484 2762526 "XF" 2763144 XF (NIL T) -9 NIL 2763540 NIL) (-1198 2759469 2759579 2759746 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2758696 2758818 2759022 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2756438 2758596 2758691 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2755019 2755814 2755856 "XALG" 2755861 XALG (NIL T) -9 NIL 2755970 NIL) (-1194 2748870 2753429 2753907 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2747113 2748115 2748436 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2746712 2746984 2747053 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2746199 2746502 2746595 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2745276 2745486 2745781 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2743572 2744035 2744497 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2742461 2743046 2743088 "VSPACE" 2743224 VSPACE (NIL T) -9 NIL 2743298 NIL) (-1187 2742332 2742365 2742456 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2742175 2742229 2742297 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2739158 2739953 2740690 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2730256 2732857 2735030 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2723833 2725724 2727303 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2722317 2722712 2723118 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2721144 2721425 2721741 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2716551 2720971 2721063 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2709906 2714224 2714267 "VECTCAT" 2715255 VECTCAT (NIL T) -9 NIL 2715839 NIL) (-1178 2709185 2709511 2709901 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2708679 2708921 2709041 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2708612 2708617 2708647 "UTYPE" 2708652 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2707599 2707775 2708036 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2705450 2705958 2706482 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2695332 2701302 2701344 "UTSCAT" 2702442 UTSCAT (NIL T) -9 NIL 2703199 NIL) (-1172 2693397 2694340 2695327 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2693071 2693120 2693251 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2684782 2691267 2691746 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2679285 2681617 2681660 "URAGG" 2683700 URAGG (NIL T) -9 NIL 2684425 NIL) (-1168 2677356 2678288 2679280 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2673063 2676332 2676794 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2665492 2672987 2673058 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2654143 2661630 2661691 "UPXSCCA" 2662259 UPXSCCA (NIL T T) -9 NIL 2662491 NIL) (-1164 2653864 2653966 2654138 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2642416 2649628 2649670 "UPXSCAT" 2650310 UPXSCAT (NIL T) -9 NIL 2650918 NIL) (-1162 2641929 2642014 2642191 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2633615 2641520 2641782 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2632510 2632780 2633130 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2625213 2628698 2628752 "UPSCAT" 2629821 UPSCAT (NIL T T) -9 NIL 2630585 NIL) (-1158 2624633 2624885 2625208 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2624307 2624356 2624487 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2608437 2617391 2617433 "UPOLYC" 2619511 UPOLYC (NIL T) -9 NIL 2620731 NIL) (-1155 2602492 2605340 2608432 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2601928 2602053 2602216 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2601562 2601649 2601788 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2600375 2600642 2600946 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2599708 2599838 2600023 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2599300 2599375 2599522 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2590064 2599066 2599194 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2589426 2589563 2589768 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2588027 2588874 2589150 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2587256 2587453 2587678 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2574066 2587180 2587251 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2553872 2567107 2567168 "ULSCCAT" 2567799 ULSCCAT (NIL T T) -9 NIL 2568086 NIL) (-1143 2553207 2553493 2553867 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2541579 2548713 2548755 "ULSCAT" 2549608 ULSCAT (NIL T) -9 NIL 2550338 NIL) (-1141 2541092 2541177 2541354 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2523209 2540591 2540832 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2522243 2522936 2523050 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2523161) (-1138 2521276 2521969 2522083 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2522194) (-1137 2520309 2521002 2521116 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2521227) (-1136 2519342 2520035 2520149 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2520260) (-1135 2517349 2518570 2518600 "UFD" 2518811 UFD (NIL) -9 NIL 2518924 NIL) (-1134 2517193 2517250 2517344 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2516445 2516652 2516868 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2514665 2515118 2515583 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2514390 2514630 2514660 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2514328 2514333 2514363 "TYPE" 2514368 TYPE (NIL) -9 NIL 2514375 NIL) (-1129 2513487 2513707 2513947 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2512665 2513096 2513331 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2510819 2511392 2511931 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2509853 2510089 2510325 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2498470 2502646 2502742 "TSETCAT" 2507957 TSETCAT (NIL T T T T) -9 NIL 2509461 NIL) (-1124 2494807 2496623 2498465 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2489199 2494033 2494315 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2484536 2485549 2486478 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2484033 2484108 2484271 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2482109 2482399 2482754 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2481593 2481742 2481772 "TRIGCAT" 2481985 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2481344 2481447 2481588 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2478399 2480450 2480731 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2477505 2478201 2478231 "TRANFUN" 2478266 TRANFUN (NIL) -9 NIL 2478332 NIL) (-1115 2476969 2477220 2477500 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2476806 2476844 2476905 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2476263 2476394 2476545 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2475004 2475661 2475897 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2474816 2474853 2474925 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2473030 2473676 2474105 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2471410 2471747 2472069 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2461356 2469190 2469246 "TBAGG" 2469563 TBAGG (NIL T T) -9 NIL 2469773 NIL) (-1107 2458546 2459905 2461351 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2458023 2458148 2458293 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2457533 2457853 2457943 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2457030 2457147 2457285 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2449399 2456958 2457025 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2445152 2446447 2447692 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2444521 2444680 2444861 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2441675 2442428 2443211 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2441449 2441639 2441670 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2440403 2441088 2441214 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2441400) (-1097 2439667 2440215 2440294 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2440354) (-1096 2436490 2437649 2438349 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2434173 2434856 2435490 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2430251 2431297 2432274 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2427350 2429906 2430135 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2426946 2427033 2427155 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2423570 2425044 2425863 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2416530 2422767 2423060 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2408216 2416121 2416383 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2407495 2407634 2407851 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2407179 2407244 2407355 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2397902 2406891 2407016 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2396632 2396930 2397285 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2396037 2396115 2396306 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2378189 2395536 2395777 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2377788 2378060 2378129 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2377124 2377405 2377545 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2371726 2372985 2373938 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2371258 2371358 2371522 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2366369 2367651 2368798 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2360827 2362298 2363609 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2353742 2355806 2357597 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2345770 2353680 2353737 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2340739 2345484 2345599 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2340326 2340409 2340553 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2339477 2339678 2339913 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2339217 2339275 2339368 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2332694 2337420 2338028 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2331870 2332075 2332306 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2331115 2331486 2331633 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2330603 2330845 2330875 "STEP" 2330969 STEP (NIL) -9 NIL 2331040 NIL) (-1066 2322962 2330521 2330598 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2317897 2321760 2321803 "STAGG" 2322230 STAGG (NIL T) -9 NIL 2322404 NIL) (-1064 2316276 2317024 2317892 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2314497 2316103 2316195 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2313777 2314316 2314346 "SRING" 2314351 SRING (NIL) -9 NIL 2314371 NIL) (-1061 2306692 2312315 2312754 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2300466 2301905 2303409 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2293124 2297761 2297791 "SRAGG" 2299090 SRAGG (NIL) -9 NIL 2299694 NIL) (-1058 2292421 2292741 2293119 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2286521 2291743 2292166 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2280533 2283874 2284625 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2276962 2277781 2278418 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2275937 2276242 2276272 "SPFCAT" 2276716 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2274874 2275126 2275390 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2265632 2267906 2267936 "SPADXPT" 2272573 SPADXPT (NIL) -9 NIL 2274697 NIL) (-1051 2265434 2265480 2265549 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2263090 2265398 2265429 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2254764 2256853 2256895 "SPACEC" 2261210 SPACEC (NIL T) -9 NIL 2263015 NIL) (-1048 2252593 2254711 2254759 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2251572 2251761 2252044 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2249976 2250309 2250720 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2249241 2249475 2249736 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2245421 2246381 2247376 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2241779 2242478 2243207 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2235820 2241082 2241178 "SNTSCAT" 2241183 SNTSCAT (NIL T T T T) -9 NIL 2241253 NIL) (-1041 2229641 2234461 2234851 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2223413 2229560 2229636 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2221845 2222176 2222574 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2213477 2218411 2218513 "SMATCAT" 2219856 SMATCAT (NIL NIL T T T) -9 NIL 2220404 NIL) (-1037 2211318 2212302 2213472 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2209924 2210776 2210819 "SMAGG" 2210904 SMAGG (NIL T) -9 NIL 2210979 NIL) (-1035 2207543 2209091 2209134 "SKAGG" 2209395 SKAGG (NIL T) -9 NIL 2209531 NIL) (-1034 2203589 2207363 2207474 "SINT" NIL SINT (NIL) -8 NIL NIL 2207515) (-1033 2203399 2203443 2203509 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2202474 2202706 2202974 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2201478 2201640 2201916 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2200824 2201164 2201287 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2200170 2200477 2200617 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2198281 2198773 2199279 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2191767 2198200 2198276 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2191270 2191507 2191537 "SGROUP" 2191630 SGROUP (NIL) -9 NIL 2191692 NIL) (-1025 2191160 2191192 2191265 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2190798 2190838 2190879 "SGPOPC" 2190884 SGPOPC (NIL T) -9 NIL 2191085 NIL) (-1023 2190332 2190609 2190715 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2187755 2188524 2189246 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2181895 2187157 2187253 "SFRTCAT" 2187258 SFRTCAT (NIL T T T T) -9 NIL 2187296 NIL) (-1020 2176287 2177400 2178527 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2170463 2171624 2172788 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2169435 2170337 2170458 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2165043 2165938 2166033 "SEXCAT" 2168646 SEXCAT (NIL T T T T T) -9 NIL 2169197 NIL) (-1016 2164016 2164970 2165038 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2162407 2162992 2163294 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2161930 2162115 2162145 "SETCAT" 2162262 SETCAT (NIL) -9 NIL 2162346 NIL) (-1013 2161762 2161826 2161925 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2158715 2160216 2160259 "SETAGG" 2161127 SETAGG (NIL T) -9 NIL 2161465 NIL) (-1011 2158321 2158473 2158710 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2155566 2158268 2158316 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2155032 2155342 2155442 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2154159 2154525 2154586 "SEGXCAT" 2154872 SEGXCAT (NIL T T) -9 NIL 2154992 NIL) (-1007 2153084 2153352 2153395 "SEGCAT" 2153917 SEGCAT (NIL T) -9 NIL 2154138 NIL) (-1006 2152764 2152829 2152942 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2151830 2152300 2152508 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2151408 2151687 2151763 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2150773 2150909 2151113 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2149839 2150586 2150768 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2149092 2149787 2149834 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2140577 2148959 2149087 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2139437 2139727 2140044 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2138743 2138955 2139143 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2138093 2138250 2138426 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2137666 2137897 2137925 "SASTCAT" 2137930 SASTCAT (NIL) -9 NIL 2137943 NIL) (-995 2137133 2137558 2137632 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2136736 2136777 2136948 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2136367 2136408 2136565 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2129448 2136284 2136362 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2128098 2128427 2128823 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2126859 2127220 2127520 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2126483 2126704 2126785 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2123943 2124577 2125030 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2123782 2123815 2123883 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2123273 2123576 2123667 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2118901 2119769 2120680 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2107975 2113237 2113331 "RSETCAT" 2117387 RSETCAT (NIL T T T T) -9 NIL 2118475 NIL) (-983 2106513 2107155 2107970 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2100287 2101732 2103239 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2098169 2098726 2098798 "RRCC" 2099871 RRCC (NIL T T) -9 NIL 2100212 NIL) (-980 2097694 2097893 2098164 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2097164 2097474 2097572 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2069716 2080429 2080493 "RPOLCAT" 2090967 RPOLCAT (NIL T T T) -9 NIL 2094112 NIL) (-977 2063815 2066638 2069711 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2059982 2063563 2063701 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2058310 2059049 2059305 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2053953 2056765 2056793 "RNS" 2057055 RNS (NIL) -9 NIL 2057307 NIL) (-973 2052856 2053343 2053880 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2051974 2052375 2052575 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2051112 2051674 2051702 "RNG" 2051762 RNG (NIL) -9 NIL 2051816 NIL) (-970 2051001 2051035 2051107 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2050263 2050768 2050808 "RMODULE" 2050813 RMODULE (NIL T) -9 NIL 2050839 NIL) (-968 2049202 2049308 2049638 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2046093 2048792 2049085 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2038782 2041227 2041339 "RMATCAT" 2044644 RMATCAT (NIL NIL NIL T T T) -9 NIL 2045610 NIL) (-965 2038299 2038478 2038777 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2037867 2038078 2038119 "RLINSET" 2038180 RLINSET (NIL T) -9 NIL 2038224 NIL) (-963 2037512 2037593 2037719 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2036358 2037089 2037117 "RING" 2037172 RING (NIL) -9 NIL 2037264 NIL) (-961 2036203 2036259 2036353 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2035257 2035524 2035780 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2026481 2034885 2035086 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2025706 2026217 2026256 "RGBCSPC" 2026313 RGBCSPC (NIL T) -9 NIL 2026364 NIL) (-957 2024740 2025226 2025265 "RGBCMDL" 2025493 RGBCMDL (NIL T) -9 NIL 2025607 NIL) (-956 2024452 2024521 2024622 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2024215 2024256 2024351 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2022639 2023069 2023449 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2020226 2020894 2021562 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2019776 2019874 2020034 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2019398 2019496 2019537 "RETRACT" 2019668 RETRACT (NIL T) -9 NIL 2019755 NIL) (-950 2019278 2019309 2019393 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2018880 2019152 2019219 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2017360 2018251 2018448 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2017051 2017112 2017208 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2016794 2016835 2016940 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2016529 2016570 2016679 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2011600 2013051 2014266 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2008699 2009457 2010265 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2006668 2007290 2007890 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 1999596 2005219 2005655 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 1998908 1999188 1999337 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 1998393 1998508 1998673 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 1993986 1997796 1998017 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 1993218 1993417 1993630 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 1990508 1991346 1992228 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 1987090 1988126 1989185 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 1986926 1986979 1987007 "REAL" 1987012 REAL (NIL) -9 NIL 1987047 NIL) (-933 1986416 1986720 1986811 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 1985896 1985974 1986179 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 1985129 1985321 1985532 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1984017 1984314 1984681 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1982284 1982754 1983287 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1981206 1981483 1981870 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1980033 1980342 1980761 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1973381 1976893 1976921 "RCFIELD" 1978198 RCFIELD (NIL) -9 NIL 1978928 NIL) (-925 1971999 1972611 1973308 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1968712 1970103 1970144 "RCAGG" 1971198 RCAGG (NIL T) -9 NIL 1971660 NIL) (-923 1968439 1968549 1968707 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1967884 1968013 1968174 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1967501 1967580 1967699 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1966916 1967066 1967216 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1966698 1966748 1966819 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1959140 1965816 1966124 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1948842 1959007 1959135 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1948476 1948569 1948597 "RADCAT" 1948754 RADCAT (NIL) -9 NIL NIL NIL) (-915 1948314 1948374 1948471 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1946478 1948145 1948234 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1946159 1946208 1946335 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1938446 1942530 1942570 "QUATCAT" 1943348 QUATCAT (NIL T) -9 NIL 1944112 NIL) (-911 1935696 1936976 1938352 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1931536 1935646 1935691 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1928950 1930551 1930592 "QUAGG" 1930967 QUAGG (NIL T) -9 NIL 1931143 NIL) (-908 1928552 1928824 1928891 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1927558 1928188 1928351 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1927239 1927288 1927415 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1916839 1923008 1923048 "QFCAT" 1923706 QFCAT (NIL T) -9 NIL 1924699 NIL) (-904 1913723 1915162 1916745 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1913269 1913403 1913533 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1907465 1908626 1909788 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1906884 1907064 1907296 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1904706 1905234 1905657 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1903605 1903847 1904164 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1901966 1902164 1902517 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1897722 1898938 1898979 "PTRANFN" 1900863 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1896369 1896714 1897035 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1896062 1896125 1896232 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1890388 1894821 1894861 "PTCAT" 1895153 PTCAT (NIL T) -9 NIL 1895306 NIL) (-893 1890081 1890122 1890246 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1888960 1889276 1889610 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1877839 1880400 1882709 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1871000 1873622 1873716 "PSETCAT" 1876690 PSETCAT (NIL T T T T) -9 NIL 1877499 NIL) (-889 1869450 1870184 1870995 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1868769 1868964 1868992 "PSCURVE" 1869260 PSCURVE (NIL) -9 NIL 1869427 NIL) (-887 1864371 1866191 1866255 "PSCAT" 1867090 PSCAT (NIL T T T) -9 NIL 1867329 NIL) (-886 1863685 1863967 1864366 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1862082 1862997 1863260 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1861573 1861876 1861967 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1852593 1855015 1857203 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1850363 1851874 1851914 "PRQAGG" 1852097 PRQAGG (NIL T) -9 NIL 1852200 NIL) (-881 1849536 1849982 1850010 "PROPLOG" 1850149 PROPLOG (NIL) -9 NIL 1850263 NIL) (-880 1849211 1849274 1849397 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1848647 1848786 1848958 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1846895 1847658 1847955 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1846447 1846579 1846707 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1840888 1845387 1846207 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1840717 1840755 1840814 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1840156 1840296 1840447 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1838624 1839043 1839509 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1838341 1838402 1838430 "PRIMCAT" 1838554 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1837512 1837708 1837936 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1833683 1837462 1837507 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1833382 1833444 1833555 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1830518 1833031 1833264 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1829969 1830126 1830154 "PPCURVE" 1830359 PPCURVE (NIL) -9 NIL 1830495 NIL) (-866 1829582 1829827 1829910 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1827338 1827759 1828351 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1826781 1826845 1827078 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1823501 1823987 1824598 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1809092 1815221 1815285 "POLYCAT" 1818770 POLYCAT (NIL T T T) -9 NIL 1820647 NIL) (-861 1804602 1806749 1809087 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1804259 1804333 1804452 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1803952 1804015 1804122 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1797315 1803685 1803844 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1796202 1796465 1796741 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1794806 1795119 1795449 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1790259 1794756 1794801 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1788747 1789158 1789533 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1787504 1787813 1788209 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1787175 1787259 1787376 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1786754 1786829 1787003 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1786240 1786336 1786496 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1785712 1785832 1785986 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1784607 1784825 1785202 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1784218 1784303 1784455 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1783769 1783851 1784032 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1783461 1783542 1783655 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1782974 1783049 1783257 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1782322 1782450 1782652 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1781684 1781818 1781981 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1780988 1781170 1781351 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1780711 1780785 1780879 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1777279 1778468 1779384 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1776363 1776564 1776799 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1771928 1773312 1774454 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1751849 1756736 1761583 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1751589 1751642 1751745 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1751030 1751164 1751344 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1749039 1750260 1750288 "PID" 1750485 PID (NIL) -9 NIL 1750612 NIL) (-832 1748827 1748870 1748945 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1748014 1748674 1748761 "PI" NIL PI (NIL) -8 NIL NIL 1748801) (-830 1747466 1747617 1747793 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1743794 1744752 1745657 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1742158 1742447 1742813 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1741600 1741715 1741876 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1738141 1740469 1740822 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1736747 1737027 1737352 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1735512 1735766 1736114 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1734222 1734449 1734801 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1731232 1732792 1732820 "PFECAT" 1733413 PFECAT (NIL) -9 NIL 1733790 NIL) (-821 1730855 1731020 1731227 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1729679 1729961 1730262 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1727861 1728248 1728678 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1723831 1727787 1727856 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1719734 1720881 1721748 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1717666 1718755 1718796 "PERMCAT" 1719195 PERMCAT (NIL T) -9 NIL 1719492 NIL) (-815 1717362 1717409 1717532 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1713811 1715492 1716137 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1711777 1713566 1713687 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1710646 1710909 1710950 "PDSPC" 1711483 PDSPC (NIL T) -9 NIL 1711728 NIL) (-811 1710013 1710279 1710641 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1708648 1709641 1709682 "PDRING" 1709687 PDRING (NIL T) -9 NIL 1709714 NIL) (-809 1707358 1708147 1708200 "PDMOD" 1708205 PDMOD (NIL T T) -9 NIL 1708308 NIL) (-808 1706451 1706663 1706912 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1706056 1706123 1706177 "PDDOM" 1706342 PDDOM (NIL T T) -9 NIL 1706422 NIL) (-806 1705908 1705944 1706051 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1705694 1705733 1705822 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1704011 1704765 1705064 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1703700 1703763 1703872 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1701838 1702268 1702719 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1695458 1697287 1698579 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1695089 1695162 1695294 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1692791 1693471 1693952 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1690995 1691423 1691826 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1690441 1690689 1690730 "PATMAB" 1690837 PATMAB (NIL T) -9 NIL 1690920 NIL) (-796 1689088 1689492 1689749 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1688626 1688757 1688798 "PATAB" 1688803 PATAB (NIL T) -9 NIL 1688975 NIL) (-794 1687169 1687606 1688029 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1686847 1686922 1687024 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1686536 1686599 1686708 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1686341 1686387 1686454 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1686019 1686094 1686196 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1685708 1685771 1685880 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1685399 1685469 1685566 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1685088 1685151 1685260 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1684249 1684628 1684807 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1683856 1683954 1684073 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1682824 1683249 1683468 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1681489 1682143 1682503 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1674579 1680893 1681087 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1667000 1674077 1674261 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1663725 1665640 1665680 "PADICCT" 1666261 PADICCT (NIL NIL) -9 NIL 1666543 NIL) (-779 1661715 1663675 1663720 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1660877 1661087 1661353 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1660219 1660362 1660566 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1658600 1659627 1659905 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1658124 1658383 1658480 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1657183 1657861 1658033 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1647605 1650474 1652673 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1646997 1647311 1647437 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1646274 1646469 1646497 "OUTBCON" 1646815 OUTBCON (NIL) -9 NIL 1646981 NIL) (-770 1645982 1646112 1646269 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1645363 1645508 1645669 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1644734 1645161 1645250 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1644149 1644564 1644592 "OSGROUP" 1644597 OSGROUP (NIL) -9 NIL 1644619 NIL) (-766 1643113 1643374 1643659 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1640382 1642988 1643108 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1637523 1640133 1640259 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1635541 1636069 1636629 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1628883 1631423 1631463 "OREPCAT" 1633784 OREPCAT (NIL T) -9 NIL 1634886 NIL) (-761 1626909 1627843 1628878 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1626106 1626377 1626405 "ORDTYPE" 1626710 ORDTYPE (NIL) -9 NIL 1626868 NIL) (-759 1625640 1625851 1626101 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1625102 1625478 1625635 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1624596 1624959 1624987 "ORDSET" 1624992 ORDSET (NIL) -9 NIL 1625014 NIL) (-756 1623161 1624183 1624211 "ORDRING" 1624216 ORDRING (NIL) -9 NIL 1624244 NIL) (-755 1622409 1622966 1622994 "ORDMON" 1622999 ORDMON (NIL) -9 NIL 1623020 NIL) (-754 1621713 1621875 1622067 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1620924 1621432 1621460 "ORDFIN" 1621525 ORDFIN (NIL) -9 NIL 1621599 NIL) (-752 1620318 1620457 1620643 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1616993 1619286 1619692 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1616400 1616755 1616860 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1616208 1616253 1616319 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1615509 1615785 1615826 "OPERCAT" 1616037 OPERCAT (NIL T) -9 NIL 1616133 NIL) (-747 1615321 1615388 1615504 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1612687 1614123 1614619 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1612108 1612235 1612409 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1609009 1611247 1611613 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1605893 1608402 1608442 "OMSAGG" 1608503 OMSAGG (NIL T) -9 NIL 1608567 NIL) (-742 1604305 1605564 1605732 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1602501 1603742 1603770 "OINTDOM" 1603775 OINTDOM (NIL) -9 NIL 1603796 NIL) (-740 1599931 1601503 1601832 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1599185 1599881 1599926 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1596387 1599026 1599180 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1587924 1596258 1596382 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1581381 1587815 1587919 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1580353 1580590 1580863 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1577987 1578657 1579361 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1573764 1574724 1575747 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1573272 1573360 1573554 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1570721 1571303 1571976 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1568116 1568624 1569220 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1565113 1565652 1566298 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1564468 1564576 1564834 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1563626 1563751 1563972 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1559910 1560706 1561619 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1559350 1559445 1559667 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1559031 1559080 1559207 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1555634 1558830 1558949 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1554794 1555416 1555444 "OCAMON" 1555449 OCAMON (NIL) -9 NIL 1555470 NIL) (-721 1549006 1551820 1551860 "OC" 1552955 OC (NIL T) -9 NIL 1553811 NIL) (-720 1547006 1547932 1548912 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1546422 1546840 1546868 "OASGP" 1546873 OASGP (NIL) -9 NIL 1546893 NIL) (-718 1545485 1546134 1546162 "OAMONS" 1546202 OAMONS (NIL) -9 NIL 1546245 NIL) (-717 1544630 1545211 1545239 "OAMON" 1545296 OAMON (NIL) -9 NIL 1545347 NIL) (-716 1544526 1544558 1544625 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1543277 1544051 1544079 "OAGROUP" 1544225 OAGROUP (NIL) -9 NIL 1544317 NIL) (-714 1543068 1543155 1543272 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1542808 1542864 1542952 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1537870 1539433 1540960 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1534565 1535599 1536634 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1533675 1533908 1534126 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1522536 1525564 1528012 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1516678 1521940 1522034 "NTSCAT" 1522039 NTSCAT (NIL T T T T) -9 NIL 1522077 NIL) (-707 1516019 1516198 1516391 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1515712 1515775 1515882 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1503379 1513332 1514142 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1492388 1503244 1503374 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1491108 1491433 1491790 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1489944 1490208 1490566 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1489111 1489244 1489460 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1487429 1487748 1488154 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1487142 1487176 1487300 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1486961 1486996 1487065 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1486737 1486927 1486956 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1486301 1486368 1486545 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1484587 1485664 1485919 "NNI" NIL NNI (NIL) -8 NIL NIL 1486266) (-694 1483315 1483652 1484016 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1482292 1482544 1482846 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1481379 1481944 1481985 "NETCLT" 1482156 NETCLT (NIL T) -9 NIL 1482237 NIL) (-691 1480283 1480550 1480831 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1480082 1480125 1480200 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1478613 1479001 1479421 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1477246 1478212 1478240 "NASRING" 1478350 NASRING (NIL) -9 NIL 1478430 NIL) (-687 1477091 1477147 1477241 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1476020 1476698 1476726 "NARNG" 1476843 NARNG (NIL) -9 NIL 1476934 NIL) (-685 1475796 1475881 1476015 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1474562 1475316 1475356 "NAALG" 1475435 NAALG (NIL T) -9 NIL 1475496 NIL) (-683 1474432 1474467 1474557 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1469411 1470596 1471782 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1468806 1468893 1469077 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1460816 1465310 1465362 "MTSCAT" 1466422 MTSCAT (NIL T T) -9 NIL 1466936 NIL) (-679 1460582 1460642 1460734 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1460408 1460447 1460507 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1457997 1459940 1459981 "MSETAGG" 1459986 MSETAGG (NIL T) -9 NIL 1460020 NIL) (-676 1454367 1457040 1457361 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1450641 1452464 1453204 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1450278 1450351 1450480 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1449931 1449972 1450116 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1447796 1448133 1448564 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1441194 1447695 1447791 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1440719 1440760 1440968 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1440278 1440327 1440510 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1439552 1439645 1439864 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1438169 1438530 1438920 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1437690 1437757 1437796 "MONOPC" 1437856 MONOPC (NIL T) -9 NIL 1438075 NIL) (-665 1437141 1437477 1437605 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1436283 1436662 1436690 "MONOID" 1436908 MONOID (NIL) -9 NIL 1437052 NIL) (-663 1435942 1436092 1436278 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1424880 1431750 1431809 "MONOGEN" 1432483 MONOGEN (NIL T T) -9 NIL 1432939 NIL) (-661 1422892 1423778 1424761 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1421606 1422150 1422178 "MONADWU" 1422569 MONADWU (NIL) -9 NIL 1422804 NIL) (-659 1421154 1421354 1421601 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1420431 1420732 1420760 "MONAD" 1420967 MONAD (NIL) -9 NIL 1421079 NIL) (-657 1420198 1420294 1420426 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1418588 1419358 1419637 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1417722 1418249 1418289 "MODULE" 1418294 MODULE (NIL T) -9 NIL 1418332 NIL) (-654 1417401 1417527 1417717 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1415112 1415998 1416312 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1412291 1413708 1414221 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1410925 1411499 1411775 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1400144 1409590 1410003 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1397100 1399144 1399413 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1396184 1396551 1396741 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1395753 1395802 1395981 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1393578 1394574 1394614 "MLO" 1395031 MLO (NIL T) -9 NIL 1395271 NIL) (-645 1391459 1391986 1392581 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1390927 1391023 1391177 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1390597 1390673 1390796 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1389809 1389995 1390223 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1389302 1389418 1389574 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1388674 1388788 1388973 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1387701 1387974 1388251 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1387134 1387222 1387393 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1384292 1385171 1386050 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1382959 1383307 1383660 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1380343 1382064 1382105 "MDAGG" 1382362 MDAGG (NIL T) -9 NIL 1382507 NIL) (-634 1379617 1379781 1379981 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1378695 1378981 1379211 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1376792 1377369 1377930 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1372590 1376382 1376629 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1368939 1369708 1370442 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1367692 1367861 1368190 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1357215 1360779 1360855 "MATCAT" 1365843 MATCAT (NIL T T T) -9 NIL 1367289 NIL) (-627 1354496 1355802 1357210 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1352897 1353257 1353641 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1352030 1352227 1352449 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1350781 1351107 1351434 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1349943 1350345 1350521 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1349612 1349676 1349799 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1349260 1349333 1349447 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1348795 1348910 1349052 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1347004 1347772 1348073 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1346498 1346800 1346890 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1340729 1344813 1344854 "LZSTAGG" 1345631 LZSTAGG (NIL T) -9 NIL 1345921 NIL) (-616 1338078 1339390 1340724 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1335465 1336431 1336914 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1335046 1335325 1335399 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1327255 1334907 1335041 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1326618 1326763 1326991 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1324102 1324800 1325512 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1322214 1322537 1322985 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1315623 1321264 1321305 "LSAGG" 1321367 LSAGG (NIL T) -9 NIL 1321445 NIL) (-608 1313317 1314416 1315618 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1310797 1312666 1312915 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1310464 1310555 1310678 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1310135 1310214 1310242 "LOGIC" 1310353 LOGIC (NIL) -9 NIL 1310435 NIL) (-604 1310030 1310059 1310130 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1309349 1309507 1309700 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1308134 1308383 1308734 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1303956 1306755 1306795 "LODOCAT" 1307227 LODOCAT (NIL T) -9 NIL 1307438 NIL) (-600 1303749 1303825 1303951 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1300749 1303626 1303744 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1297847 1300699 1300744 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1294934 1297777 1297842 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1293987 1294162 1294464 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1292119 1293249 1293502 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1287945 1290278 1290319 "LNAGG" 1291181 LNAGG (NIL T) -9 NIL 1291616 NIL) (-593 1287332 1287599 1287940 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1283904 1284845 1285482 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1283166 1283671 1283711 "LMODULE" 1283716 LMODULE (NIL T) -9 NIL 1283742 NIL) (-590 1280635 1282902 1283025 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1280203 1280414 1280455 "LLINSET" 1280516 LLINSET (NIL T) -9 NIL 1280560 NIL) (-588 1279879 1280139 1280198 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1279478 1279558 1279697 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1277929 1278277 1278676 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1277100 1277296 1277524 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1270423 1276356 1276610 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1270000 1270233 1270274 "LINSET" 1270279 LINSET (NIL T) -9 NIL 1270312 NIL) (-582 1268901 1269623 1269790 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1267167 1267922 1267962 "LINEXP" 1268448 LINEXP (NIL T) -9 NIL 1268721 NIL) (-580 1265789 1266776 1266957 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1264616 1264888 1265190 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1263829 1264418 1264528 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1261379 1262101 1262851 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1260009 1260306 1260697 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1258802 1259404 1259444 "LIECAT" 1259584 LIECAT (NIL T) -9 NIL 1259735 NIL) (-574 1258676 1258709 1258797 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1252932 1258366 1258594 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1244433 1252608 1252764 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1240885 1241834 1242769 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1239509 1240417 1240445 "LFCAT" 1240652 LFCAT (NIL) -9 NIL 1240791 NIL) (-569 1237748 1238078 1238423 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1235265 1235930 1236611 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1232277 1233255 1233758 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1231768 1232071 1232162 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1230475 1230799 1231199 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1229741 1229826 1230052 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1224744 1228309 1228845 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1224369 1224419 1224579 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1223140 1223913 1223953 "LALG" 1224014 LALG (NIL T) -9 NIL 1224072 NIL) (-560 1222923 1223000 1223135 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1220776 1222191 1222442 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1220605 1220635 1220676 "KVTFROM" 1220738 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1219421 1220136 1220325 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1219250 1219280 1219321 "KRCFROM" 1219383 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1218352 1218549 1218844 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1218181 1218211 1218252 "KONVERT" 1218314 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1218010 1218040 1218081 "KOERCE" 1218143 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1217580 1217673 1217805 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1215633 1216527 1216899 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1208584 1213417 1213471 "KDAGG" 1213847 KDAGG (NIL T T) -9 NIL 1214073 NIL) (-549 1208242 1208377 1208579 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1201535 1208034 1208180 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1201185 1201467 1201530 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1200155 1200654 1200903 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1199281 1199730 1199935 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1198145 1198637 1198937 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1197427 1197826 1197987 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1197137 1197373 1197422 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1191392 1196827 1197055 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1190810 1191143 1191263 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1187482 1188993 1189047 "IXAGG" 1189968 IXAGG (NIL T T) -9 NIL 1190425 NIL) (-538 1186688 1187059 1187477 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1185655 1185930 1186193 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1184317 1184524 1184817 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1183268 1183490 1183773 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1182943 1183006 1183129 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1182205 1182577 1182751 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1180181 1181481 1181755 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1169729 1175498 1176655 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1168974 1169126 1169362 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1168465 1168768 1168859 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1167758 1167849 1168062 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1166890 1167115 1167355 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1165303 1165684 1166112 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1165088 1165132 1165208 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1163938 1164235 1164530 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1163211 1163562 1163713 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1162414 1162545 1162758 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1160569 1161066 1161610 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1157650 1158918 1159607 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1157475 1157515 1157575 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1153473 1157401 1157470 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1151476 1153412 1153468 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1150847 1151146 1151276 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1150300 1150588 1150720 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1149381 1150006 1150132 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1148791 1149285 1149313 "IOBCON" 1149318 IOBCON (NIL) -9 NIL 1149339 NIL) (-512 1148362 1148426 1148608 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1140406 1142777 1145102 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1137517 1138300 1139164 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1137194 1137291 1137408 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1134636 1137130 1137189 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1132748 1133277 1133844 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1132250 1132364 1132504 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1130634 1131040 1131502 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1128413 1129007 1129618 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1125786 1126396 1127116 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1125190 1125348 1125556 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1124709 1124795 1124983 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1122914 1123435 1123892 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1115996 1117649 1119378 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1115362 1115524 1115697 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1113235 1113699 1114243 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1111361 1112311 1112339 "INTDOM" 1112638 INTDOM (NIL) -9 NIL 1112843 NIL) (-495 1110914 1111116 1111356 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1106721 1109193 1109247 "INTCAT" 1110043 INTCAT (NIL T) -9 NIL 1110359 NIL) (-493 1106286 1106406 1106533 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1105126 1105298 1105604 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1104699 1104795 1104952 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1097047 1104606 1104694 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1096345 1096900 1096965 "INT8" NIL INT8 (NIL) -8 NIL NIL 1096999) (-488 1095642 1096197 1096262 "INT64" NIL INT64 (NIL) -8 NIL NIL 1096296) (-487 1094939 1095494 1095559 "INT32" NIL INT32 (NIL) -8 NIL NIL 1095593) (-486 1094236 1094791 1094856 "INT16" NIL INT16 (NIL) -8 NIL NIL 1094890) (-485 1090699 1094155 1094231 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1084756 1088239 1088267 "INS" 1089197 INS (NIL) -9 NIL 1089856 NIL) (-483 1082818 1083736 1084683 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1081877 1082100 1082375 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1081091 1081232 1081429 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1080081 1080222 1080459 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1079233 1079397 1079657 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1078513 1078628 1078816 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1077252 1077521 1077845 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1076532 1076673 1076856 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1076195 1076267 1076365 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1073273 1074759 1075282 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1072872 1072979 1073093 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1072028 1072673 1072774 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1070878 1071146 1071467 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1069868 1070808 1070873 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1069493 1069573 1069690 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1068407 1068952 1069156 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1064502 1065557 1066500 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1063356 1063679 1063707 "INBCON" 1064220 INBCON (NIL) -9 NIL 1064486 NIL) (-465 1062810 1063075 1063351 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1062304 1062606 1062696 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1061761 1062070 1062175 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1060600 1060741 1061058 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1059023 1059292 1059631 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1053866 1058954 1059018 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1053246 1053580 1053695 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1048348 1052684 1052870 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1047378 1048270 1048343 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1046950 1047027 1047081 "IEVALAB" 1047288 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1046705 1046785 1046945 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1046090 1046317 1046474 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1045083 1046010 1046085 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1044146 1045003 1045078 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1043228 1043875 1044012 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1041591 1042162 1042213 "IDPC" 1042719 IDPC (NIL T T) -9 NIL 1043032 NIL) (-449 1040879 1041513 1041586 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1040049 1040801 1040874 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1039742 1039955 1040015 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1039446 1039486 1039525 "IDEMOPC" 1039530 IDEMOPC (NIL T) -9 NIL 1039667 NIL) (-445 1036517 1037398 1038290 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1030143 1031420 1032459 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1029405 1029535 1029734 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1028578 1029077 1029215 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1026967 1027298 1027689 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1023019 1026923 1026962 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1020277 1020901 1021596 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1018503 1018983 1019516 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1016377 1018409 1018498 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1012529 1016315 1016372 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1006108 1011493 1011961 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1005676 1005739 1005912 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1005168 1005317 1005345 "HYPCAT" 1005552 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1004824 1004977 1005163 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1004437 1004682 1004765 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1004270 1004319 1004360 "HOMOTOP" 1004365 HOMOTOP (NIL T) -9 NIL 1004398 NIL) (-429 1002455 1003326 1003367 "HOAGG" 1003554 HOAGG (NIL T) -9 NIL 1003949 NIL) (-428 1002082 1002229 1002450 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 995282 1001807 1001955 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 994217 994475 994738 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 993152 994082 994212 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 991410 992985 993073 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 990725 991077 991210 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 984225 990658 990720 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 977364 983961 984112 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 976817 976974 977137 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 969182 976734 976812 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 968673 968976 969067 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 966223 968460 968639 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 961909 966106 966218 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 954251 961806 961904 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 946188 953620 953875 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 945212 945721 945749 "GROUP" 945952 GROUP (NIL) -9 NIL 946086 NIL) (-412 944755 944956 945207 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 943427 943766 944153 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 942249 942606 942657 "GRMOD" 943186 GRMOD (NIL T T) -9 NIL 943352 NIL) (-409 942068 942116 942244 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 938191 939402 940402 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 936913 937237 937552 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 936466 936594 936735 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 935539 936038 936089 "GRALG" 936242 GRALG (NIL T T) -9 NIL 936332 NIL) (-404 935258 935359 935534 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 932277 934949 935116 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 931690 931753 932010 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 927544 928440 928965 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 926719 926921 927159 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 921722 922649 923668 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 921470 921527 921616 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 920952 921041 921206 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 920461 920502 920715 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 919262 919545 919849 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 912537 918952 919113 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 902320 907327 908431 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 900372 901475 901503 "GCDDOM" 901758 GCDDOM (NIL) -9 NIL 901915 NIL) (-391 899995 900152 900367 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 890788 893258 895646 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 888923 889248 889666 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 887864 888053 888320 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 886735 886942 887246 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 886198 886340 886488 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 884810 885158 885471 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 883355 883676 883998 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 880981 881337 881742 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 874233 875894 877472 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 873885 874106 874174 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 873509 873730 873811 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 871606 872289 872749 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 870199 870506 870898 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 868854 869213 869537 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 868157 868281 868468 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 867131 867397 867744 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 864789 865319 865801 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 864372 864432 864601 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 862672 863586 863889 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 861820 861954 862177 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 860991 861152 861379 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 857225 859886 859927 "FSAGG" 860297 FSAGG (NIL T) -9 NIL 860558 NIL) (-368 855579 856338 857130 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 853535 853831 854375 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 852582 852764 853064 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 852263 852312 852439 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 832419 841920 841961 "FS" 845831 FS (NIL T) -9 NIL 848109 NIL) (-363 824650 828143 832122 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 824184 824311 824463 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 818707 821865 821905 "FRNAALG" 823225 FRNAALG (NIL T) -9 NIL 823823 NIL) (-360 815448 816699 817957 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 815129 815178 815305 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 813616 814173 814467 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 812902 812995 813282 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 810736 811502 811818 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 809845 810288 810329 "FRETRCT" 810334 FRETRCT (NIL T) -9 NIL 810505 NIL) (-354 809218 809496 809840 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 805962 807482 807541 "FRAMALG" 808423 FRAMALG (NIL T T) -9 NIL 808715 NIL) (-352 804558 805109 805739 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 804251 804314 804421 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 797892 804056 804246 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 797585 797648 797755 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 789893 794464 795792 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 783671 787174 787202 "FPS" 788321 FPS (NIL) -9 NIL 788877 NIL) (-346 783228 783361 783525 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 780038 782081 782109 "FPC" 782334 FPC (NIL) -9 NIL 782476 NIL) (-344 779884 779936 780033 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 778661 779370 779411 "FPATMAB" 779416 FPATMAB (NIL T) -9 NIL 779568 NIL) (-342 777091 777687 778034 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 776666 776724 776897 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 775169 776064 776238 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 773784 774289 774317 "FNCAT" 774774 FNCAT (NIL) -9 NIL 775031 NIL) (-338 773241 773751 773779 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 771828 773190 773236 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 768416 769774 769815 "FMONCAT" 771032 FMONCAT (NIL T) -9 NIL 771636 NIL) (-335 765274 766352 766405 "FMCAT" 767586 FMCAT (NIL T T) -9 NIL 768078 NIL) (-334 763974 765097 765196 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 763022 763822 763969 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 761209 761661 762155 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 759144 759680 760258 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 752530 757481 758095 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 751011 752112 752152 "FLINEXP" 752157 FLINEXP (NIL T) -9 NIL 752250 NIL) (-328 750420 750679 751006 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 749635 749794 750015 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 746518 747597 747649 "FLALG" 748876 FLALG (NIL T T) -9 NIL 749343 NIL) (-325 745689 745850 746077 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 739364 743103 743144 "FLAGG" 744383 FLAGG (NIL T) -9 NIL 745031 NIL) (-323 738472 738876 739359 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 735033 736297 736356 "FINRALG" 737484 FINRALG (NIL T T) -9 NIL 737992 NIL) (-321 734424 734689 735028 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 733722 734018 734046 "FINITE" 734242 FINITE (NIL) -9 NIL 734349 NIL) (-319 733630 733656 733717 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 730564 731891 731932 "FINAGG" 732837 FINAGG (NIL T) -9 NIL 733291 NIL) (-317 729595 730060 730559 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 721556 724147 724187 "FINAALG" 727839 FINAALG (NIL T) -9 NIL 729277 NIL) (-315 717823 719068 720191 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 716375 716794 716848 "FILECAT" 717532 FILECAT (NIL T T) -9 NIL 717748 NIL) (-313 715726 716200 716303 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 712974 714852 714880 "FIELD" 714920 FIELD (NIL) -9 NIL 715000 NIL) (-311 711999 712460 712969 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 710003 710949 711295 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 709246 709427 709646 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 704516 709184 709241 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 704178 704245 704380 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 703718 703760 703969 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 700398 701275 702052 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 695682 700330 700393 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 690361 695171 695361 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 684842 689642 689900 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 679049 684293 684504 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 678072 678282 678597 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 673512 676217 676245 "FFIELDC" 676864 FFIELDC (NIL) -9 NIL 677239 NIL) (-298 672581 673021 673507 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 672196 672254 672378 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 670340 670863 671380 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 665434 670139 670240 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 660534 665223 665330 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 655200 660325 660433 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 654654 654703 654938 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 633229 644263 644349 "FFCAT" 649499 FFCAT (NIL T T T) -9 NIL 650935 NIL) (-290 629469 630695 632001 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 624312 629400 629464 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 623204 623673 623714 "FEVALAB" 623798 FEVALAB (NIL T) -9 NIL 624059 NIL) (-287 622609 622861 623199 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 619436 620347 620462 "FDIVCAT" 622029 FDIVCAT (NIL T T T T) -9 NIL 622465 NIL) (-285 619230 619262 619431 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 618537 618630 618907 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 617023 618021 618224 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 616116 616500 616702 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 615238 615727 615867 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 606825 611468 611508 "FAXF" 613309 FAXF (NIL T) -9 NIL 613999 NIL) (-279 604741 605545 606360 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 599900 604263 604437 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 594358 596781 596833 "FAMR" 597844 FAMR (NIL T T) -9 NIL 598303 NIL) (-276 593557 593922 594353 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 592578 593499 593552 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 590172 591051 591104 "FAMONC" 592045 FAMONC (NIL T T) -9 NIL 592430 NIL) (-273 588728 590030 590167 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 586808 587169 587571 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 586085 586282 586504 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 577945 585532 585731 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 575964 576534 577120 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 572866 573508 574228 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 568023 568730 569535 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 567712 567775 567884 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 552505 566761 567187 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 543032 551825 552113 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 542526 542828 542918 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 542302 542492 542521 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 541991 542059 542172 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 541508 541650 541691 "EVALAB" 541861 EVALAB (NIL T) -9 NIL 541965 NIL) (-259 541136 541282 541503 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 538179 539774 539802 "EUCDOM" 540356 EUCDOM (NIL) -9 NIL 540705 NIL) (-257 537106 537599 538174 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 536831 536887 536987 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 536519 536583 536692 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 530290 532190 532218 "ES" 534960 ES (NIL) -9 NIL 536344 NIL) (-253 526805 528337 530129 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 526153 526306 526482 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 518524 526083 526148 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 518213 518276 518385 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 511840 514965 516398 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 508143 509239 510332 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 506972 507322 507627 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 505857 506588 506616 "ENTIRER" 506621 ENTIRER (NIL) -9 NIL 506665 NIL) (-245 505746 505780 505852 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 502379 504176 504525 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 501471 501682 501736 "ELTAGG" 502116 ELTAGG (NIL T T) -9 NIL 502327 NIL) (-242 501251 501325 501466 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 500997 501032 501086 "ELTAB" 501170 ELTAB (NIL T T) -9 NIL 501222 NIL) (-240 500248 500418 500617 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 499972 500046 500074 "ELEMFUN" 500179 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 499872 499899 499967 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 495159 497897 497938 "ELAGG" 498871 ELAGG (NIL T) -9 NIL 499332 NIL) (-236 493957 494495 495154 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 493375 493542 493698 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 492288 492607 492886 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 485681 487679 488506 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 479660 481656 482466 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 477474 477880 478351 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 468474 470387 471928 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 467587 468088 468237 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 466285 466959 466999 "DVARCAT" 467282 DVARCAT (NIL T) -9 NIL 467422 NIL) (-227 465704 465968 466280 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 457771 465572 465699 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 456109 456900 456941 "DSEXT" 457304 DSEXT (NIL T) -9 NIL 457598 NIL) (-224 454914 455438 456104 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 454638 454703 454801 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 450789 452005 453136 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 446435 447790 448854 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 445110 445471 445857 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 444796 444855 444973 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 443771 444069 444359 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 443356 443431 443581 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 435769 437881 439996 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 431286 432305 433384 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 427910 429913 429954 "DQAGG" 430583 DQAGG (NIL T) -9 NIL 430856 NIL) (-213 414453 422093 422175 "DPOLCAT" 424012 DPOLCAT (NIL T T T T) -9 NIL 424555 NIL) (-212 410861 412509 414448 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 403912 410759 410856 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 396872 403741 403907 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 396465 396725 396814 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 395879 396327 396407 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 395165 395490 395641 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 388304 394901 395052 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 386053 387370 387410 "DMEXT" 387415 DMEXT (NIL T) -9 NIL 387590 NIL) (-204 385709 385771 385915 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 379311 385194 385384 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 376478 378140 378181 "DLAGG" 378722 DLAGG (NIL T) -9 NIL 378954 NIL) (-201 374829 375700 375728 "DIVRING" 375820 DIVRING (NIL) -9 NIL 375903 NIL) (-200 374280 374524 374824 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 372708 373125 373531 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 371745 371966 372231 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 365265 371677 371740 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 353611 360025 360078 "DIRPCAT" 360334 DIRPCAT (NIL NIL T) -9 NIL 361209 NIL) (-195 351617 352387 353274 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 351064 351230 351416 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 348347 349941 349982 "DIOPS" 350402 DIOPS (NIL T) -9 NIL 350630 NIL) (-192 348007 348151 348342 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 347014 347760 347788 "DIOID" 347793 DIOID (NIL) -9 NIL 347815 NIL) (-190 345842 346671 346699 "DIFRING" 346704 DIFRING (NIL) -9 NIL 346725 NIL) (-189 345478 345576 345604 "DIFFSPC" 345723 DIFFSPC (NIL) -9 NIL 345798 NIL) (-188 345219 345321 345473 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 344122 344747 344787 "DIFFMOD" 344792 DIFFMOD (NIL T) -9 NIL 344889 NIL) (-186 343806 343863 343904 "DIFFDOM" 344025 DIFFDOM (NIL T) -9 NIL 344093 NIL) (-185 343687 343717 343801 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 341360 342881 342921 "DIFEXT" 342926 DIFEXT (NIL T) -9 NIL 343078 NIL) (-183 339248 340842 340883 "DIAGG" 340888 DIAGG (NIL T) -9 NIL 340908 NIL) (-182 338804 338994 339243 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 334042 337994 338271 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 330500 331553 332563 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 325050 329654 329981 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 323616 323908 324283 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 320736 321988 322384 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 318520 320567 320656 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 317903 318048 318230 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 315221 315945 316745 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 313330 313788 314350 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 312713 313046 313160 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 305913 312438 312586 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 303833 304343 304847 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 303472 303521 303672 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 302731 303293 303384 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 300755 301197 301557 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 300047 300336 300482 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 299498 299644 299796 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 296860 297653 298380 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 296299 296445 296616 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 294371 294682 295049 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 293928 294183 294284 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 293129 293512 293540 "CTORCAT" 293721 CTORCAT (NIL) -9 NIL 293833 NIL) (-159 292832 292966 293124 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 292325 292582 292690 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 291741 292172 292245 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 291200 291317 291470 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 287594 288350 289105 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 287085 287388 287479 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 286304 286513 286741 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 285808 285913 286117 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 285561 285595 285701 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 282500 283262 283980 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 282019 282161 282300 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 277912 280482 280974 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 277786 277813 277841 "CONDUIT" 277878 CONDUIT (NIL) -9 NIL NIL NIL) (-146 276665 277396 277424 "COMRING" 277429 COMRING (NIL) -9 NIL 277479 NIL) (-145 275830 276197 276375 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 275526 275567 275695 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 275219 275282 275389 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 264061 275169 275214 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 263522 263661 263821 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 263275 263316 263414 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 244706 256956 256996 "COMPCAT" 257997 COMPCAT (NIL T) -9 NIL 259339 NIL) (-138 237244 240757 244350 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 237003 237037 237139 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 236833 236872 236930 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236414 236693 236767 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 235991 236232 236319 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235186 235434 235462 "COMBOPC" 235800 COMBOPC (NIL) -9 NIL 235975 NIL) (-132 234250 234502 234744 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231182 231866 232489 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 230062 230513 230748 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229553 229856 229947 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229240 229293 229418 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228710 229020 229118 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225230 226300 227380 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223525 224510 224748 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 220883 222161 222202 "CLAGG" 222765 CLAGG (NIL T) -9 NIL 223145 NIL) (-123 220441 220631 220878 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220070 220161 220301 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218007 218514 219062 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 216968 217699 217727 "CHARZ" 217732 CHARZ (NIL) -9 NIL 217746 NIL) (-119 216762 216808 216886 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215601 216364 216392 "CHARNZ" 216453 CHARNZ (NIL) -9 NIL 216501 NIL) (-117 213079 214176 214699 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 212787 212866 212894 "CFCAT" 213005 CFCAT (NIL) -9 NIL NIL NIL) (-115 212130 212259 212441 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208398 211543 211823 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 207776 207963 208140 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207304 207723 207771 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 206777 207086 207183 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206268 206571 206662 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205517 205677 205898 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201617 202874 203582 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 199983 201014 201265 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199564 199843 199917 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 198998 199251 199279 "CACHSET" 199411 CACHSET (NIL) -9 NIL 199489 NIL) (-104 198350 198765 198793 "CABMON" 198843 CABMON (NIL) -9 NIL 198899 NIL) (-103 197880 198144 198254 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193389 197548 197709 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192359 193063 193198 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193361) (-100 189884 192126 192232 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187380 189638 189746 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184634 186782 186821 "BTCAT" 186888 BTCAT (NIL T) -9 NIL 186969 NIL) (-97 184385 184483 184629 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179737 183577 183603 "BTAGG" 183714 BTAGG (NIL) -9 NIL 183822 NIL) (-95 179368 179529 179732 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176506 178860 179050 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 175776 175928 176106 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 172811 174491 174530 "BRAGG" 175159 BRAGG (NIL T) -9 NIL 175419 NIL) (-91 171886 172317 172806 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164420 171391 171572 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162412 164372 164415 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162145 162181 162292 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160384 160817 161265 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156350 157766 158656 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155226 156117 156239 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 154812 154969 154995 "BOOLE" 155103 BOOLE (NIL) -9 NIL 155184 NIL) (-83 154605 154686 154807 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153743 154270 154320 "BMODULE" 154325 BMODULE (NIL T T) -9 NIL 154389 NIL) (-81 149643 153600 153669 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149456 149496 149535 "BINOPC" 149540 BINOPC (NIL T) -9 NIL 149585 NIL) (-79 148998 149271 149373 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148519 148663 148801 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141725 148249 148394 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 139972 140945 140984 "BGAGG" 141240 BGAGG (NIL T) -9 NIL 141367 NIL) (-75 139841 139879 139967 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138692 138893 139178 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135406 137872 138177 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 134991 135084 135110 "BASTYPE" 135281 BASTYPE (NIL) -9 NIL 135377 NIL) (-71 134761 134857 134986 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134276 134364 134514 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133175 133850 134035 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 132923 132928 132954 "ATTREG" 132959 ATTREG (NIL) -9 NIL NIL NIL) (-67 132528 132800 132865 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 132028 132177 132203 "ATRIG" 132404 ATRIG (NIL) -9 NIL NIL NIL) (-65 131883 131936 132023 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131453 131684 131710 "ASTCAT" 131715 ASTCAT (NIL) -9 NIL 131745 NIL) (-63 131252 131329 131448 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129475 131085 131173 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128282 128595 128960 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 126134 128212 128277 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125325 125516 125737 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 121203 125056 125170 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115515 117519 117594 "ARR2CAT" 120106 ARR2CAT (NIL T T T) -9 NIL 120827 NIL) (-56 114476 114958 115510 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 113844 114215 114337 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 112776 112944 113240 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112477 112531 112649 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 111860 112006 112162 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111265 111555 111675 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 108833 109994 110317 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108358 108618 108714 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102053 107420 107862 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97587 99250 99300 "AMR" 100038 AMR (NIL T T) -9 NIL 100635 NIL) (-46 96941 97221 97582 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 78980 96875 96936 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75383 78656 78825 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72393 73053 73660 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71772 71885 72069 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68184 68809 69401 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57673 67877 68027 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 56990 57144 57322 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55703 56498 56536 "ALGEBRA" 56541 ALGEBRA (NIL T) -9 NIL 56581 NIL) (-37 55489 55566 55698 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33869 52596 52648 "ALAGG" 52783 ALAGG (NIL T T) -9 NIL 52941 NIL) (-35 33369 33518 33544 "AHYP" 33745 AHYP (NIL) -9 NIL NIL NIL) (-34 32851 32983 33009 "AGG" 33214 AGG (NIL) -9 NIL 33340 NIL) (-33 32694 32752 32846 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30833 31293 31693 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30328 30631 30720 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29698 29993 30149 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17256 26535 26573 "ACFS" 27180 ACFS (NIL T) -9 NIL 27419 NIL) (-28 15879 16489 17251 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11431 13810 13836 "ACF" 14715 ACF (NIL) -9 NIL 15127 NIL) (-26 10527 10933 11426 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10029 10269 10295 "ABELSG" 10387 ABELSG (NIL) -9 NIL 10452 NIL) (-24 9927 9958 10024 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9082 9456 9482 "ABELMON" 9707 ABELMON (NIL) -9 NIL 9840 NIL) (-22 8764 8904 9077 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 7976 8459 8485 "ABELGRP" 8557 ABELGRP (NIL) -9 NIL 8632 NIL) (-20 7529 7725 7971 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6756 6795 "A1AGG" 6800 A1AGG (NIL T) -9 NIL 6834 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 9 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1130) (-995)) (T -1130))
+NIL
+((-3718 (((-85)) 18 T ELT)) (-3715 (((-1185) (-583 |#1|) (-583 |#1|)) 22 T ELT) (((-1185) (-583 |#1|)) 23 T ELT)) (-3720 (((-85) |#1| |#1|) 37 (|has| |#1| (-756)) ELT)) (-3717 (((-85) |#1| |#1| (-1 (-85) |#1| |#1|)) 29 T ELT) (((-3 (-85) "failed") |#1| |#1|) 27 T ELT)) (-3719 ((|#1| (-583 |#1|)) 38 (|has| |#1| (-756)) ELT) ((|#1| (-583 |#1|) (-1 (-85) |#1| |#1|)) 32 T ELT)) (-3716 (((-2 (|:| -3230 (-583 |#1|)) (|:| -3229 (-583 |#1|)))) 20 T ELT)))
+(((-1131 |#1|) (-10 -7 (-15 -3715 ((-1185) (-583 |#1|))) (-15 -3715 ((-1185) (-583 |#1|) (-583 |#1|))) (-15 -3716 ((-2 (|:| -3230 (-583 |#1|)) (|:| -3229 (-583 |#1|))))) (-15 -3717 ((-3 (-85) "failed") |#1| |#1|)) (-15 -3717 ((-85) |#1| |#1| (-1 (-85) |#1| |#1|))) (-15 -3719 (|#1| (-583 |#1|) (-1 (-85) |#1| |#1|))) (-15 -3718 ((-85))) (IF (|has| |#1| (-756)) (PROGN (-15 -3719 (|#1| (-583 |#1|))) (-15 -3720 ((-85) |#1| |#1|))) |%noBranch|)) (-1013)) (T -1131))
+((-3720 (*1 *2 *3 *3) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1131 *2)))) (-3718 (*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2)) (-4 *2 (-1013)))) (-3717 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85)) (-5 *1 (-1131 *3)))) (-3717 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3716 (*1 *2) (-12 (-5 *2 (-2 (|:| -3230 (-583 *3)) (|:| -3229 (-583 *3)))) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))) (-3715 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))))
+((-3721 (((-1185) (-583 (-1090)) (-583 (-1090))) 14 T ELT) (((-1185) (-583 (-1090))) 12 T ELT)) (-3723 (((-1185)) 16 T ELT)) (-3722 (((-2 (|:| -3229 (-583 (-1090))) (|:| -3230 (-583 (-1090))))) 20 T ELT)))
+(((-1132) (-10 -7 (-15 -3721 ((-1185) (-583 (-1090)))) (-15 -3721 ((-1185) (-583 (-1090)) (-583 (-1090)))) (-15 -3722 ((-2 (|:| -3229 (-583 (-1090))) (|:| -3230 (-583 (-1090)))))) (-15 -3723 ((-1185))))) (T -1132))
+((-3723 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3722 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-583 (-1090))) (|:| -3230 (-583 (-1090))))) (-5 *1 (-1132)))) (-3721 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))))
+((-3776 (($ $) 17 T ELT)) (-3724 (((-85) $) 27 T ELT)))
+(((-1133 |#1|) (-10 -7 (-15 -3776 (|#1| |#1|)) (-15 -3724 ((-85) |#1|))) (-1134)) (T -1133))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 66 T ELT)) (-3972 (((-348 $) $) 67 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3724 (((-85) $) 68 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3733 (((-348 $) $) 65 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT)))
+(((-1134) (-113)) (T -1134))
+((-3724 (*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))) (-3776 (*1 *1 *1) (-4 *1 (-1134))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134)))))
+(-13 (-392) (-10 -8 (-15 -3724 ((-85) $)) (-15 -3972 ((-348 $) $)) (-15 -3776 ($ $)) (-15 -3733 ((-348 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-72) . T) ((-82 $ $) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-246) . T) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 $) . T) ((-590 $) . T) ((-582 $) . T) ((-654 $) . T) ((-663) . T) ((-963 $) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-1135) (-13 (-752) (-604) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1135))
+((-3727 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1135))) (-3725 (*1 *1) (-5 *1 (-1135))))
+((-694) (|%not| (|%ilt| 16 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-1136) (-13 (-752) (-604) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1136))
+((-3727 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1136))) (-3725 (*1 *1) (-5 *1 (-1136))))
+((-694) (|%not| (|%ilt| 32 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-1137) (-13 (-752) (-604) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1137))
+((-3727 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1137))) (-3725 (*1 *1) (-5 *1 (-1137))))
+((-694) (|%not| (|%ilt| 64 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-2313 (($ $) NIL T ELT)) (-3137 (((-694)) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2995 (($) NIL T ELT)) (-2532 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2858 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2010 (((-830) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2400 (($ (-830)) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT)) (-3726 (($ $ $) NIL T ELT)) (-3727 (($ $ $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2567 (((-85) $ $) NIL T ELT)) (-2568 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL T ELT)) (-2686 (((-85) $ $) NIL T ELT)) (-2312 (($ $ $) NIL T ELT)))
+(((-1138) (-13 (-752) (-604) (-10 -8 (-15 -3727 ($ $ $)) (-15 -3726 ($ $ $)) (-15 -3725 ($) -3953)))) (T -1138))
+((-3727 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3726 (*1 *1 *1 *1) (-5 *1 (-1138))) (-3725 (*1 *1) (-5 *1 (-1138))))
+((-694) (|%not| (|%ilt| 8 (|%ilength| |#1|))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3130 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 10 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2063 (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2061 (((-85) $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3772 (($ $ (-484)) NIL T ELT) (($ $ (-484) (-484)) NIL T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) NIL T ELT)) (-3732 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3729 (((-3 (-1169 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-3730 (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3624 (((-484) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1169 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3157 (((-1169 |#1| |#2| |#3|) $) NIL T ELT) (((-1090) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT) (((-484) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) NIL T ELT) (($ (-484) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-1169 |#1| |#2| |#3|)) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3728 (((-350 (-857 |#1|)) $ (-484)) NIL (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) NIL (|has| |#1| (-495)) ELT)) (-2995 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3773 (((-484) $) NIL T ELT) (((-484) $ (-484)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (((-632 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-830)) NIL T ELT)) (-3816 (($ (-1 |#1| (-484)) $) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-484)) 18 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2532 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2858 (($ $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 (-1169 |#1| |#2| |#3|)) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-1169 |#1| |#2| |#3|))) (|:| |vec| (-1179 (-1169 |#1| |#2| |#3|)))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-484) (-1169 |#1| |#2| |#3|)) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 27 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 28 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-258)) (|has| |#1| (-312))) ELT)) (-3131 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-484)) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-455 (-1090) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 (-1169 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-249 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1169 |#1| |#2| |#3|)) (-583 (-1169 |#1| |#2| |#3|))) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-260 (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-484)) NIL T ELT) (($ $ $) NIL (|has| (-484) (-1025)) ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-241 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) 26 T ELT) (($ $) 25 (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 (((-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT)) (-3949 (((-484) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3973 (((-473) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-473))) (|has| |#1| (-312))) ELT) (((-330) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-179) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-933)) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1169 |#1| |#2| |#3|)) NIL T ELT) (($ (-1176 |#2|)) 24 T ELT) (($ (-1090)) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT) (($ (-350 (-484))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-950 (-484))) (|has| |#1| (-312))) (|has| |#1| (-38 (-350 (-484))))) ELT)) (-3678 ((|#1| $ (-484)) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-118)) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 11 T ELT)) (-3132 (((-1169 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-821)) (|has| |#1| (-312))) (|has| |#1| (-495))) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-484)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3384 (($ $) NIL (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) ELT)) (-2661 (($) 20 T CONST)) (-2667 (($) 15 T CONST)) (-2670 (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|))) NIL (|has| |#1| (-312)) ELT) (($ $ (-1176 |#2|)) NIL T ELT) (($ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-190)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-809 (-1090))) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2567 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2568 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-2685 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-2686 (((-85) $ $) NIL (OR (-12 (|has| (-1169 |#1| |#2| |#3|) (-740)) (|has| |#1| (-312))) (-12 (|has| (-1169 |#1| |#2| |#3|) (-756)) (|has| |#1| (-312)))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 22 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1169 |#1| |#2| |#3|)) NIL (|has| |#1| (-312)) ELT) (($ (-1169 |#1| |#2| |#3|) $) NIL (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1139 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1169 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3947 ($ (-1176 |#2|))) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1139))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-3959 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23 T ELT)))
+(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-961) (-961) (-1090) (-1090) |#1| |#2|) (T -1140))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-350 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) 127 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1894 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-484)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3949 (((-484) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-484)) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-484) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1141 |#1|) (-113) (-961)) (T -1141))
+((-3819 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1141 *3)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1141 *3)) (-4 *3 (-961)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-350 (-857 *4))))) (-3728 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495)) (-5 *2 (-350 (-857 *4))))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3082 ((-583 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))))
+(-13 (-1158 |t#1| (-484)) (-10 -8 (-15 -3819 ($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |t#1|))))) (-15 -3816 ($ (-1 |t#1| (-484)) $)) (IF (|has| |t#1| (-495)) (PROGN (-15 -3728 ((-350 (-857 |t#1|)) $ (-484))) (-15 -3728 ((-350 (-857 |t#1|)) $ (-484) (-484)))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-583 (-1090)) |t#1|))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-484) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-484) |#1|) . T) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-484)) . T))
+((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1090) #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT)) (-3157 ((|#3| $) 14 T ELT) (((-1090) $) NIL T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT)))
+(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 (-484) #1="failed") |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3158 ((-3 (-1090) #1#) |#1|)) (-15 -3157 ((-1090) |#1|)) (-15 -3158 ((-3 |#3| #1#) |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1143 |#2| |#3|) (-961) (-1172 |#2|)) (T -1142))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3130 ((|#2| $) 266 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-484)) 124 T ELT) (($ $ (-484) (-484)) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 130 T ELT)) (-3732 ((|#2| $) 302 T ELT)) (-3729 (((-3 |#2| "failed") $) 298 T ELT)) (-3730 ((|#2| $) 299 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 275 (-2563 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 272 (-2563 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3624 (((-484) $) 284 (-2563 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 201 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| #2="failed") $) 305 T ELT) (((-3 (-484) #2#) $) 295 (-2563 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-350 (-484)) #2#) $) 293 (-2563 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-3 (-1090) #2#) $) 277 (-2563 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT)) (-3157 ((|#2| $) 306 T ELT) (((-484) $) 294 (-2563 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-350 (-484)) $) 292 (-2563 (|has| |#2| (-950 (-484))) (|has| |#1| (-312))) ELT) (((-1090) $) 276 (-2563 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT)) (-3731 (($ $) 301 T ELT) (($ (-484) $) 300 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-2279 (((-630 |#2|) (-630 $)) 254 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) 253 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 252 (-2563 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-630 $)) 251 (-2563 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3728 (((-350 (-857 |#1|)) $ (-484)) 199 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 198 (|has| |#1| (-495)) ELT)) (-2995 (($) 268 (-2563 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) 282 (-2563 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 260 (-2563 (|has| |#2| (-796 (-330))) (|has| |#1| (-312))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 259 (-2563 (|has| |#2| (-796 (-484))) (|has| |#1| (-312))) ELT)) (-3773 (((-484) $) 126 T ELT) (((-484) $ (-484)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2997 (($ $) 264 (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 262 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (((-632 $) $) 296 (-2563 (|has| |#2| (-1066)) (|has| |#1| (-312))) ELT)) (-3188 (((-85) $) 283 (-2563 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-3778 (($ $ (-830)) 127 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 200 T ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-484)) 81 T ELT) (($ $ (-994) (-484)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-484))) 96 T ELT)) (-2532 (($ $ $) 291 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2858 (($ $ $) 290 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT) (($ (-1 |#2| |#2|) $) 244 (|has| |#1| (-312)) ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1179 $)) 256 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) 255 (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 250 (-2563 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT) (((-630 (-484)) (-1179 $)) 249 (-2563 (|has| |#2| (-580 (-484))) (|has| |#1| (-312))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1894 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3780 (($ (-484) |#2|) 303 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3447 (($) 297 (-2563 (|has| |#2| (-1066)) (|has| |#1| (-312))) CONST)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3129 (($ $) 267 (-2563 (|has| |#2| (-258)) (|has| |#1| (-312))) ELT)) (-3131 ((|#2| $) 270 (-2563 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 273 (-2563 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 274 (-2563 (|has| |#2| (-821)) (|has| |#1| (-312))) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-484)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) |#2|) 243 (-2563 (|has| |#2| (-455 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) 242 (-2563 (|has| |#2| (-455 (-1090) |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 (-249 |#2|))) 241 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-249 |#2|)) 240 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ |#2| |#2|) 239 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) 238 (-2563 (|has| |#2| (-260 |#2|)) (|has| |#1| (-312))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-484)) 131 T ELT) (($ $ $) 107 (|has| (-484) (-1025)) ELT) (($ $ |#2|) 237 (-2563 (|has| |#2| (-241 |#2| |#2|)) (|has| |#1| (-312))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) 246 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 245 (|has| |#1| (-312)) ELT) (($ $) 111 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 109 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 119 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) 117 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) 116 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2996 (($ $) 265 (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 263 (|has| |#1| (-312)) ELT)) (-3949 (((-484) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3973 (((-179) $) 281 (-2563 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-330) $) 280 (-2563 (|has| |#2| (-933)) (|has| |#1| (-312))) ELT) (((-473) $) 279 (-2563 (|has| |#2| (-553 (-473))) (|has| |#1| (-312))) ELT) (((-800 (-330)) $) 258 (-2563 (|has| |#2| (-553 (-800 (-330)))) (|has| |#1| (-312))) ELT) (((-800 (-484)) $) 257 (-2563 (|has| |#2| (-553 (-800 (-484)))) (|has| |#1| (-312))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 271 (-2563 (-2563 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#1| (-312))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 304 T ELT) (($ (-1090)) 278 (-2563 (|has| |#2| (-950 (-1090))) (|has| |#1| (-312))) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-484)) 79 T ELT)) (-2703 (((-632 $) $) 68 (OR (-2563 (OR (|has| |#2| (-118)) (-2563 (|has| $ (-118)) (|has| |#2| (-821)))) (|has| |#1| (-312))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-3132 ((|#2| $) 269 (-2563 (|has| |#2| (-483)) (|has| |#1| (-312))) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-484)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3384 (($ $) 285 (-2563 (|has| |#2| (-740)) (|has| |#1| (-312))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) 248 (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) 247 (|has| |#1| (-312)) ELT) (($ $) 110 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) 108 (OR (-2563 (|has| |#2| (-189)) (|has| |#1| (-312))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 118 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090))) 114 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-1090) (-694)) 113 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (OR (-2563 (|has| |#2| (-811 (-1090))) (|has| |#1| (-312))) (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|))))) ELT)) (-2567 (((-85) $ $) 289 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2568 (((-85) $ $) 287 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-2685 (((-85) $ $) 288 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-2686 (((-85) $ $) 286 (-2563 (|has| |#2| (-756)) (|has| |#1| (-312))) ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 261 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ $ |#2|) 236 (|has| |#1| (-312)) ELT) (($ |#2| $) 235 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1143 |#1| |#2|) (-113) (-961) (-1172 |t#1|)) (T -1143))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)) (-5 *2 (-484)))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))) (-3731 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1172 *2)))) (-3731 (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))) (-3729 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))))
+(-13 (-1141 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3780 ($ (-484) |t#2|)) (-15 -3949 ((-484) $)) (-15 -3732 (|t#2| $)) (-15 -3731 ($ $)) (-15 -3731 ($ (-484) $)) (-15 -3730 (|t#2| $)) (-15 -3729 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-312)) (-6 (-904 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-484)) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 |#2|) |has| |#1| (-312)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 |#2| |#2|) |has| |#1| (-312)) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-118))) (|has| |#1| (-118))) ((-120) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) (-12 (|has| |#1| (-312)) (|has| |#2| (-120))) (|has| |#1| (-120))) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-179)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-553 (-473)) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ((-186 $) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-184 |#2|) |has| |#1| (-312)) ((-190) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-189) OR (|has| |#1| (-15 * (|#1| (-484) |#1|))) (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (-12 (|has| |#1| (-312)) (|has| |#2| (-190)))) ((-225 |#2|) |has| |#1| (-312)) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-484) |#1|) . T) ((-241 |#2| $) -12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ((-241 $ $) |has| (-484) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-312) |has| |#1| (-312)) ((-288 |#2|) |has| |#1| (-312)) ((-329 |#2|) |has| |#1| (-312)) ((-343 |#2|) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-455 (-1090) |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ((-455 |#2| |#2|) -12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 |#2|) |has| |#1| (-312)) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-590 |#1|) . T) ((-590 |#2|) |has| |#1| (-312)) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 |#2|) |has| |#1| (-312)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-580 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ((-580 |#2|) |has| |#1| (-312)) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 |#2|) |has| |#1| (-312)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-714) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-716) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-718) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-721) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-740) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-755) -12 (|has| |#1| (-312)) (|has| |#2| (-740))) ((-756) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-759) OR (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) (-12 (|has| |#1| (-312)) (|has| |#2| (-740)))) ((-806 $ (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-809 (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-811 (-1090)) OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-809 (-1090))))) ((-796 (-330)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ((-794 |#2|) |has| |#1| (-312)) ((-821) -12 (|has| |#1| (-312)) (|has| |#2| (-821))) ((-886 |#1| (-484) (-994)) . T) ((-832) |has| |#1| (-312)) ((-904 |#2|) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-933) -12 (|has| |#1| (-312)) (|has| |#2| (-933))) ((-950 (-350 (-484))) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-484)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ((-950 (-1090)) -12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ((-950 |#2|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 |#2|) |has| |#1| (-312)) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 |#2|) |has| |#1| (-312)) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) -12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1141 |#1|) . T) ((-1158 |#1| (-484)) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 83 T ELT)) (-3130 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 102 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-484)) 111 T ELT) (($ $ (-484) (-484)) 114 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|))) $) 51 T ELT)) (-3732 ((|#2| $) 11 T ELT)) (-3729 (((-3 |#2| #1="failed") $) 35 T ELT)) (-3730 ((|#2| $) 36 T ELT)) (-3493 (($ $) 208 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1#) $ $) NIL T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3624 (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-484)) (|:| |c| |#1|)))) 59 T ELT)) (-3495 (($ $) 212 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 188 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-484) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-3 (-1090) #1#) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT)) (-3157 ((|#2| $) 158 T ELT) (((-484) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-350 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-484)))) ELT) (((-1090) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT)) (-3731 (($ $) 65 T ELT) (($ (-484) $) 28 T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 |#2|) (-630 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-630 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-3468 (((-3 $ #1#) $) 90 T ELT)) (-3728 (((-350 (-857 |#1|)) $ (-484)) 126 (|has| |#1| (-495)) ELT) (((-350 (-857 |#1|)) $ (-484) (-484)) 128 (|has| |#1| (-495)) ELT)) (-2995 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-3187 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2893 (((-85) $) 76 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-796 (-484)))) ELT)) (-3773 (((-484) $) 107 T ELT) (((-484) $ (-484)) 109 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2997 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2999 ((|#2| $) 167 (|has| |#1| (-312)) ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3446 (((-632 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) ELT)) (-3188 (((-85) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-3778 (($ $ (-830)) 150 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 146 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-484)) 20 T ELT) (($ $ (-994) (-484)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-484))) NIL T ELT)) (-2532 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2858 (($ $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-312)) ELT)) (-3943 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2280 (((-630 |#2|) (-1179 $)) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT) (((-630 (-484)) (-1179 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-580 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3780 (($ (-484) |#2|) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 161 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 230 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 235 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT)) (-3447 (($) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-1066))) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3129 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-258))) ELT)) (-3131 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-484)) 140 T ELT)) (-3467 (((-3 $ #1#) $ $) 130 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) ELT) (($ $ (-1090) |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ELT) (($ $ (-583 (-1090)) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-455 (-1090) |#2|))) ELT) (($ $ (-583 (-249 |#2|))) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-249 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-260 |#2|))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-484)) 105 T ELT) (($ $ $) 92 (|has| (-484) (-1025)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-241 |#2| |#2|))) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) 151 (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) 155 (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT)) (-2996 (($ $) NIL (|has| |#1| (-312)) ELT)) (-2998 ((|#2| $) 168 (|has| |#1| (-312)) ELT)) (-3949 (((-484) $) 12 T ELT)) (-3496 (($ $) 214 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 210 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3973 (((-179) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-330) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-933))) ELT) (((-473) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-473)))) ELT) (((-800 (-330)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-553 (-800 (-484))))) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) ELT)) (-2892 (($ $) 138 T ELT)) (-3947 (((-772) $) 268 T ELT) (($ (-484)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-146)) ELT) (($ |#2|) 21 T ELT) (($ (-1090)) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-950 (-1090)))) ELT) (($ (-350 (-484))) 171 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-484)) 87 T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#1| (-312)) (|has| |#2| (-821))) (|has| |#1| (-118)) (-12 (|has| |#1| (-312)) (|has| |#2| (-118)))) ELT)) (-3127 (((-694)) 157 T CONST)) (-3774 ((|#1| $) 104 T ELT)) (-3132 ((|#2| $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-483))) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 220 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 196 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) 216 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 224 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-484)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-484)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 226 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 222 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 198 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 218 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3384 (($ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-740))) ELT)) (-2661 (($) 13 T CONST)) (-2667 (($) 18 T CONST)) (-2670 (($ $ (-1 |#2| |#2|) (-694)) NIL (|has| |#1| (-312)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-312)) ELT) (($ $) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-694)) NIL (OR (-12 (|has| |#1| (-312)) (|has| |#2| (-189))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-1090) (-694)) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (OR (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-484) |#1|)))) (-12 (|has| |#1| (-312)) (|has| |#2| (-811 (-1090))))) ELT)) (-2567 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2568 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3057 (((-85) $ $) 74 T ELT)) (-2685 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-2686 (((-85) $ $) NIL (-12 (|has| |#1| (-312)) (|has| |#2| (-756))) ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 165 (|has| |#1| (-312)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-3840 (($ $ $) 78 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 86 T ELT) (($ $ (-484)) 162 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 174 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-312)) ELT) (($ |#2| $) 163 (|has| |#1| (-312)) ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-961) (-1172 |#1|)) (T -1144))
+NIL
+((-3735 (((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)) 13 T ELT)) (-3734 (((-348 |#1|) |#1|) 26 T ELT)) (-3733 (((-348 |#1|) |#1|) 24 T ELT)))
+(((-1145 |#1|) (-10 -7 (-15 -3733 ((-348 |#1|) |#1|)) (-15 -3734 ((-348 |#1|) |#1|)) (-15 -3735 ((-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| |#1|) (|:| -2395 (-484)))))) |#1| (-85)))) (-1155 (-484))) (T -1145))
+((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-5 *2 (-2 (|:| |contp| (-484)) (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484))))))) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))) (-3733 (*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3737 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3959 (((-1069 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-755)) ELT)) (-3230 ((|#1| $) 15 T ELT)) (-3232 ((|#1| $) 12 T ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-3228 (((-484) $) 19 T ELT)) (-3229 ((|#1| $) 18 T ELT)) (-3231 ((|#1| $) 13 T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3736 (((-85) $) 17 T ELT)) (-3964 (((-1069 |#1|) $) 41 (|has| |#1| (-755)) ELT) (((-1069 |#1|) (-583 $)) 40 (|has| |#1| (-755)) ELT)) (-3973 (($ |#1|) 26 T ELT)) (-3947 (($ (-1001 |#1|)) 25 T ELT) (((-772) $) 37 (|has| |#1| (-1013)) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-1013)) ELT)) (-3738 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3233 (($ $ (-484)) 14 T ELT)) (-3057 (((-85) $ $) 30 (|has| |#1| (-1013)) ELT)))
+(((-1146 |#1|) (-13 (-1006 |#1|) (-10 -8 (-15 -3738 ($ |#1|)) (-15 -3737 ($ |#1|)) (-15 -3947 ($ (-1001 |#1|))) (-15 -3736 ((-85) $)) (IF (|has| |#1| (-1013)) (-6 (-1013)) |%noBranch|) (IF (|has| |#1| (-755)) (-6 (-1007 |#1| (-1069 |#1|))) |%noBranch|))) (-1129)) (T -1146))
+((-3738 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3737 (*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129)))))
+((-3959 (((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 23 (|has| |#1| (-755)) ELT) (((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|)) 17 T ELT)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -3959 ((-1146 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) (IF (|has| |#1| (-755)) (-15 -3959 ((-1069 |#2|) (-1 |#2| |#1|) (-1146 |#1|))) |%noBranch|)) (-1129) (-1129)) (T -1147))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-755)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3768 (((-1179 |#2|) $ (-694)) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3766 (($ (-1085 |#2|)) NIL T ELT)) (-3084 (((-1085 $) $ (-994)) NIL T ELT) (((-1085 |#2|) $) NIL T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#2| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#2| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#2| (-495)) ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3756 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3776 (($ $) NIL (|has| |#2| (-392)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#2| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1#) (-583 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-1608 (((-85) $ $) NIL (|has| |#2| (-312)) ELT)) (-3762 (($ $ (-694)) NIL T ELT)) (-3761 (($ $ (-694)) NIL T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-392)) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-3 (-484) #1#) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT) (((-350 (-484)) $) NIL (|has| |#2| (-950 (-350 (-484)))) ELT) (((-484) $) NIL (|has| |#2| (-950 (-484))) ELT) (((-994) $) NIL T ELT)) (-3757 (($ $ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $ $) NIL (|has| |#2| (-146)) ELT)) (-2565 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-2279 (((-630 (-484)) (-630 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-630 $) (-1179 $)) NIL T ELT) (((-630 |#2|) (-630 $)) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-2564 (($ $ $) NIL (|has| |#2| (-312)) ELT)) (-3760 (($ $ $) NIL T ELT)) (-3754 (($ $ $) NIL (|has| |#2| (-495)) ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#2| (-312)) ELT)) (-3504 (($ $) NIL (|has| |#2| (-392)) ELT) (($ $ (-994)) NIL (|has| |#2| (-392)) ELT)) (-2819 (((-583 $) $) NIL T ELT)) (-3724 (((-85) $) NIL (|has| |#2| (-821)) ELT)) (-1624 (($ $ |#2| (-694) $) NIL T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) NIL (-12 (|has| (-994) (-796 (-330))) (|has| |#2| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) NIL (-12 (|has| (-994) (-796 (-484))) (|has| |#2| (-796 (-484)))) ELT)) (-3773 (((-694) $ $) NIL (|has| |#2| (-495)) ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-3446 (((-632 $) $) NIL (|has| |#2| (-1066)) ELT)) (-3085 (($ (-1085 |#2|) (-994)) NIL T ELT) (($ (-1085 $) (-994)) NIL T ELT)) (-3778 (($ $ (-694)) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#2| (-694)) 18 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-994)) NIL T ELT) (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL T ELT)) (-2821 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-1625 (($ (-1 (-694) (-694)) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3767 (((-1085 |#2|) $) NIL T ELT)) (-3083 (((-3 (-994) #1#) $) NIL T ELT)) (-2280 (((-630 (-484)) (-1179 $)) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) NIL (|has| |#2| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#2|)) (|:| |vec| (-1179 |#2|))) (-1179 $) $) NIL T ELT) (((-630 |#2|) (-1179 $)) NIL T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) NIL T ELT)) (-2824 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2823 (((-3 (-583 $) #1#) $) NIL T ELT)) (-2825 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #1#) $) NIL T ELT)) (-3813 (($ $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT)) (-3447 (($) NIL (|has| |#2| (-1066)) CONST)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 ((|#2| $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#2| (-392)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#2| (-392)) ELT) (($ $ $) NIL (|has| |#2| (-392)) ELT)) (-3739 (($ $ (-694) |#2| $) NIL T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) NIL (|has| |#2| (-821)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#2| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3467 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-495)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#2| (-312)) ELT)) (-3769 (($ $ (-583 (-249 $))) NIL T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) NIL T ELT) (($ $ (-583 (-994)) (-583 |#2|)) NIL T ELT) (($ $ (-994) $) NIL T ELT) (($ $ (-583 (-994)) (-583 $)) NIL T ELT)) (-1607 (((-694) $) NIL (|has| |#2| (-312)) ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) NIL (|has| |#2| (-495)) ELT) ((|#2| (-350 $) |#2|) NIL (|has| |#2| (-312)) ELT) (((-350 $) $ (-350 $)) NIL (|has| |#2| (-495)) ELT)) (-3765 (((-3 $ #1#) $ (-694)) NIL T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#2| (-312)) ELT)) (-3758 (($ $ (-994)) NIL (|has| |#2| (-146)) ELT) ((|#2| $) NIL (|has| |#2| (-146)) ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3949 (((-694) $) NIL T ELT) (((-694) $ (-994)) NIL T ELT) (((-583 (-694)) $ (-583 (-994))) NIL T ELT)) (-3973 (((-800 (-330)) $) NIL (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#2| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) NIL (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#2| (-553 (-800 (-484))))) ELT) (((-473) $) NIL (-12 (|has| (-994) (-553 (-473))) (|has| |#2| (-553 (-473)))) ELT)) (-2818 ((|#2| $) NIL (|has| |#2| (-392)) ELT) (($ $ (-994)) NIL (|has| |#2| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) NIL (-12 (|has| $ (-118)) (|has| |#2| (-821))) ELT)) (-3755 (((-3 $ #1#) $ $) NIL (|has| |#2| (-495)) ELT) (((-3 (-350 $) #1#) (-350 $) $) NIL (|has| |#2| (-495)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) NIL T ELT) (($ (-1176 |#1|)) 20 T ELT) (($ (-350 (-484))) NIL (OR (|has| |#2| (-38 (-350 (-484)))) (|has| |#2| (-950 (-350 (-484))))) ELT) (($ $) NIL (|has| |#2| (-495)) ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-694)) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2703 (((-632 $) $) NIL (OR (-12 (|has| $ (-118)) (|has| |#2| (-821))) (|has| |#2| (-118))) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL (|has| |#2| (-495)) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) 14 T CONST)) (-2670 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1090)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) NIL (|has| |#2| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (|has| |#2| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#2|) NIL (|has| |#2| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-350 (-484))) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) NIL (|has| |#2| (-38 (-350 (-484)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1148 |#1| |#2|) (-13 (-1155 |#2|) (-555 (-1176 |#1|)) (-10 -8 (-15 -3739 ($ $ (-694) |#2| $)))) (-1090) (-961)) (T -1148))
+((-3739 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-961)))))
+((-3959 (((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)) 15 T ELT)))
+(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-1148 |#3| |#4|) (-1 |#4| |#2|) (-1148 |#1| |#2|)))) (-1090) (-961) (-1090) (-961)) (T -1149))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1090)))))
+((-3742 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3740 ((|#1| |#3|) 13 T ELT)) (-3741 ((|#3| |#3|) 19 T ELT)))
+(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -3740 (|#1| |#3|)) (-15 -3741 (|#3| |#3|)) (-15 -3742 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-495) (-904 |#1|) (-1155 |#2|)) (T -1150))
+((-3742 (*1 *2 *3) (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1155 *5)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1155 *4)))) (-3740 (*1 *2 *3) (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1155 *4)))))
+((-3744 (((-3 |#2| #1="failed") |#2| (-694) |#1|) 35 T ELT)) (-3743 (((-3 |#2| #1#) |#2| (-694)) 36 T ELT)) (-3746 (((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|) 50 T ELT)) (-3747 (((-583 |#2|) |#2|) 52 T ELT)) (-3745 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT)))
+(((-1151 |#1| |#2|) (-10 -7 (-15 -3743 ((-3 |#2| #1="failed") |#2| (-694))) (-15 -3744 ((-3 |#2| #1#) |#2| (-694) |#1|)) (-15 -3745 ((-3 |#2| #1#) |#2| |#2|)) (-15 -3746 ((-3 (-2 (|:| -3139 |#2|) (|:| -3138 |#2|)) #1#) |#2|)) (-15 -3747 ((-583 |#2|) |#2|))) (-13 (-495) (-120)) (-1155 |#1|)) (T -1151))
+((-3747 (*1 *2 *3) (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3746 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1155 *4)))) (-3745 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1155 *3)))) (-3744 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))) (-3743 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
+((-3748 (((-3 (-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -3748 ((-3 (-2 (|:| -1972 |#2|) (|:| -2903 |#2|)) "failed") |#2| |#2|))) (-495) (-1155 |#1|)) (T -1152))
+((-3748 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
+((-3749 ((|#2| |#2| |#2|) 22 T ELT)) (-3750 ((|#2| |#2| |#2|) 36 T ELT)) (-3751 ((|#2| |#2| |#2| (-694) (-694)) 44 T ELT)))
+(((-1153 |#1| |#2|) (-10 -7 (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2| |#2| (-694) (-694)))) (-961) (-1155 |#1|)) (T -1153))
+((-3751 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+((-3768 (((-1179 |#2|) $ (-694)) 129 T ELT)) (-3082 (((-583 (-994)) $) 16 T ELT)) (-3766 (($ (-1085 |#2|)) 80 T ELT)) (-2820 (((-694) $) NIL T ELT) (((-694) $ (-583 (-994))) 21 T ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 217 T ELT)) (-3776 (($ $) 207 T ELT)) (-3972 (((-348 $) $) 205 T ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 95 T ELT)) (-3762 (($ $ (-694)) 84 T ELT)) (-3761 (($ $ (-694)) 86 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3158 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-350 (-484)) #1#) $) NIL T ELT) (((-3 (-484) #1#) $) NIL T ELT) (((-3 (-994) #1#) $) NIL T ELT)) (-3157 ((|#2| $) 130 T ELT) (((-350 (-484)) $) NIL T ELT) (((-484) $) NIL T ELT) (((-994) $) NIL T ELT)) (-3754 (($ $ $) 182 T ELT)) (-3753 (((-2 (|:| -3955 |#2|) (|:| -1972 $) (|:| -2903 $)) $ $) 185 T ELT)) (-3773 (((-694) $ $) 202 T ELT)) (-3446 (((-632 $) $) 149 T ELT)) (-2894 (($ |#2| (-694)) NIL T ELT) (($ $ (-994) (-694)) 59 T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-2821 (((-694) $) NIL T ELT) (((-694) $ (-994)) 54 T ELT) (((-583 (-694)) $ (-583 (-994))) 55 T ELT)) (-3767 (((-1085 |#2|) $) 72 T ELT)) (-3083 (((-3 (-994) #1#) $) 52 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) 83 T ELT)) (-3813 (($ $) 232 T ELT)) (-3447 (($) 134 T CONST)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 214 T ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 101 T ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 99 T ELT)) (-3733 (((-348 $) $) 120 T ELT)) (-3769 (($ $ (-583 (-249 $))) 51 T ELT) (($ $ (-249 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-583 $) (-583 $)) NIL T ELT) (($ $ (-994) |#2|) 39 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 36 T ELT) (($ $ (-994) $) 32 T ELT) (($ $ (-583 (-994)) (-583 $)) 30 T ELT)) (-1607 (((-694) $) 220 T ELT)) (-3801 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-350 $) (-350 $) (-350 $)) 176 T ELT) ((|#2| (-350 $) |#2|) 219 T ELT) (((-350 $) $ (-350 $)) 201 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 225 T ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994))) NIL T ELT) (($ $ (-994)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-694)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1090)) NIL T ELT) (($ $ (-583 (-1090))) NIL T ELT) (($ $ (-1090) (-694)) NIL T ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL T ELT)) (-3949 (((-694) $) NIL T ELT) (((-694) $ (-994)) 17 T ELT) (((-583 (-694)) $ (-583 (-994))) 23 T ELT)) (-2818 ((|#2| $) NIL T ELT) (($ $ (-994)) 151 T ELT)) (-3755 (((-3 $ #1#) $ $) 193 T ELT) (((-3 (-350 $) #1#) (-350 $) $) 189 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-994)) 64 T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT)))
+(((-1154 |#1| |#2|) (-10 -7 (-15 -3947 (|#1| |#1|)) (-15 -2709 ((-1085 |#1|) (-1085 |#1|) (-1085 |#1|))) (-15 -3759 (|#1| |#1| (-583 (-1090)) (-583 (-694)))) (-15 -3759 (|#1| |#1| (-1090) (-694))) (-15 -3759 (|#1| |#1| (-583 (-1090)))) (-15 -3759 (|#1| |#1| (-1090))) (-15 -3972 ((-348 |#1|) |#1|)) (-15 -3776 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3447 (|#1|) -3953) (-15 -3446 ((-632 |#1|) |#1|)) (-15 -3801 ((-350 |#1|) |#1| (-350 |#1|))) (-15 -1607 ((-694) |#1|)) (-15 -2880 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -3801 (|#2| (-350 |#1|) |#2|)) (-15 -3752 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3753 ((-2 (|:| -3955 |#2|) (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| |#1|)) (-15 -3754 (|#1| |#1| |#1|)) (-15 -3755 ((-3 (-350 |#1|) #1="failed") (-350 |#1|) |#1|)) (-15 -3755 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3773 ((-694) |#1| |#1|)) (-15 -3801 ((-350 |#1|) (-350 |#1|) (-350 |#1|))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3761 (|#1| |#1| (-694))) (-15 -3762 (|#1| |#1| (-694))) (-15 -3763 ((-2 (|:| -1972 |#1|) (|:| -2903 |#1|)) |#1| (-694))) (-15 -3766 (|#1| (-1085 |#2|))) (-15 -3767 ((-1085 |#2|) |#1|)) (-15 -3768 ((-1179 |#2|) |#1| (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|) (-694))) (-15 -3759 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3759 (|#1| |#1| (-694))) (-15 -3759 (|#1| |#1|)) (-15 -3801 (|#1| |#1| |#1|)) (-15 -3801 (|#2| |#1| |#2|)) (-15 -3733 ((-348 |#1|) |#1|)) (-15 -2708 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2707 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2706 ((-348 (-1085 |#1|)) (-1085 |#1|))) (-15 -2705 ((-3 (-583 (-1085 |#1|)) #1#) (-583 (-1085 |#1|)) (-1085 |#1|))) (-15 -2818 (|#1| |#1| (-994))) (-15 -3082 ((-583 (-994)) |#1|)) (-15 -2820 ((-694) |#1| (-583 (-994)))) (-15 -2820 ((-694) |#1|)) (-15 -2894 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -2894 (|#1| |#1| (-994) (-694))) (-15 -2821 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -2821 ((-694) |#1| (-994))) (-15 -3083 ((-3 (-994) #1#) |#1|)) (-15 -3949 ((-583 (-694)) |#1| (-583 (-994)))) (-15 -3949 ((-694) |#1| (-994))) (-15 -3947 (|#1| (-994))) (-15 -3158 ((-3 (-994) #1#) |#1|)) (-15 -3157 ((-994) |#1|)) (-15 -3769 (|#1| |#1| (-583 (-994)) (-583 |#1|))) (-15 -3769 (|#1| |#1| (-994) |#1|)) (-15 -3769 (|#1| |#1| (-583 (-994)) (-583 |#2|))) (-15 -3769 (|#1| |#1| (-994) |#2|)) (-15 -3769 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -3769 (|#1| |#1| |#1| |#1|)) (-15 -3769 (|#1| |#1| (-249 |#1|))) (-15 -3769 (|#1| |#1| (-583 (-249 |#1|)))) (-15 -3949 ((-694) |#1|)) (-15 -2894 (|#1| |#2| (-694))) (-15 -3158 ((-3 (-484) #1#) |#1|)) (-15 -3157 ((-484) |#1|)) (-15 -3158 ((-3 (-350 (-484)) #1#) |#1|)) (-15 -3157 ((-350 (-484)) |#1|)) (-15 -3157 (|#2| |#1|)) (-15 -3158 ((-3 |#2| #1#) |#1|)) (-15 -3947 (|#1| |#2|)) (-15 -2821 ((-694) |#1|)) (-15 -2818 (|#2| |#1|)) (-15 -3759 (|#1| |#1| (-994))) (-15 -3759 (|#1| |#1| (-583 (-994)))) (-15 -3759 (|#1| |#1| (-994) (-694))) (-15 -3759 (|#1| |#1| (-583 (-994)) (-583 (-694)))) (-15 -3947 (|#1| (-484))) (-15 -3947 ((-772) |#1|))) (-1155 |#2|) (-961)) (T -1154))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3768 (((-1179 |#1|) $ (-694)) 271 T ELT)) (-3082 (((-583 (-994)) $) 123 T ELT)) (-3766 (($ (-1085 |#1|)) 269 T ELT)) (-3084 (((-1085 $) $ (-994)) 138 T ELT) (((-1085 |#1|) $) 137 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 100 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 101 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 103 (|has| |#1| (-495)) ELT)) (-2820 (((-694) $) 125 T ELT) (((-694) $ (-583 (-994))) 124 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3756 (($ $ $) 256 (|has| |#1| (-495)) ELT)) (-2708 (((-348 (-1085 $)) (-1085 $)) 113 (|has| |#1| (-821)) ELT)) (-3776 (($ $) 111 (|has| |#1| (-392)) ELT)) (-3972 (((-348 $) $) 110 (|has| |#1| (-392)) ELT)) (-2705 (((-3 (-583 (-1085 $)) #1="failed") (-583 (-1085 $)) (-1085 $)) 116 (|has| |#1| (-821)) ELT)) (-1608 (((-85) $ $) 241 (|has| |#1| (-312)) ELT)) (-3762 (($ $ (-694)) 264 T ELT)) (-3761 (($ $ (-694)) 263 T ELT)) (-3752 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 251 (|has| |#1| (-392)) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| #2="failed") $) 181 T ELT) (((-3 (-350 (-484)) #2#) $) 178 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-3 (-484) #2#) $) 176 (|has| |#1| (-950 (-484))) ELT) (((-3 (-994) #2#) $) 153 T ELT)) (-3157 ((|#1| $) 180 T ELT) (((-350 (-484)) $) 179 (|has| |#1| (-950 (-350 (-484)))) ELT) (((-484) $) 177 (|has| |#1| (-950 (-484))) ELT) (((-994) $) 154 T ELT)) (-3757 (($ $ $ (-994)) 121 (|has| |#1| (-146)) ELT) ((|#1| $ $) 259 (|has| |#1| (-146)) ELT)) (-2565 (($ $ $) 245 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 171 T ELT)) (-2279 (((-630 (-484)) (-630 $)) 149 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-630 $) (-1179 $)) 148 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-630 $) (-1179 $)) 147 T ELT) (((-630 |#1|) (-630 $)) 146 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 244 (|has| |#1| (-312)) ELT)) (-3760 (($ $ $) 262 T ELT)) (-3754 (($ $ $) 253 (|has| |#1| (-495)) ELT)) (-3753 (((-2 (|:| -3955 |#1|) (|:| -1972 $) (|:| -2903 $)) $ $) 252 (|has| |#1| (-495)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 239 (|has| |#1| (-312)) ELT)) (-3504 (($ $) 193 (|has| |#1| (-392)) ELT) (($ $ (-994)) 118 (|has| |#1| (-392)) ELT)) (-2819 (((-583 $) $) 122 T ELT)) (-3724 (((-85) $) 109 (|has| |#1| (-821)) ELT)) (-1624 (($ $ |#1| (-694) $) 189 T ELT)) (-2797 (((-798 (-330) $) $ (-800 (-330)) (-798 (-330) $)) 97 (-12 (|has| (-994) (-796 (-330))) (|has| |#1| (-796 (-330)))) ELT) (((-798 (-484) $) $ (-800 (-484)) (-798 (-484) $)) 96 (-12 (|has| (-994) (-796 (-484))) (|has| |#1| (-796 (-484)))) ELT)) (-3773 (((-694) $ $) 257 (|has| |#1| (-495)) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-2420 (((-694) $) 186 T ELT)) (-3446 (((-632 $) $) 237 (|has| |#1| (-1066)) ELT)) (-3085 (($ (-1085 |#1|) (-994)) 130 T ELT) (($ (-1085 $) (-994)) 129 T ELT)) (-3778 (($ $ (-694)) 268 T ELT)) (-1605 (((-3 (-583 $) #3="failed") (-583 $) $) 248 (|has| |#1| (-312)) ELT)) (-2822 (((-583 $) $) 139 T ELT)) (-3938 (((-85) $) 169 T ELT)) (-2894 (($ |#1| (-694)) 170 T ELT) (($ $ (-994) (-694)) 132 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 131 T ELT)) (-3764 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $ (-994)) 133 T ELT) (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 266 T ELT)) (-2821 (((-694) $) 187 T ELT) (((-694) $ (-994)) 135 T ELT) (((-583 (-694)) $ (-583 (-994))) 134 T ELT)) (-1625 (($ (-1 (-694) (-694)) $) 188 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 168 T ELT)) (-3767 (((-1085 |#1|) $) 270 T ELT)) (-3083 (((-3 (-994) #4="failed") $) 136 T ELT)) (-2280 (((-630 (-484)) (-1179 $)) 151 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 (-484))) (|:| |vec| (-1179 (-484)))) (-1179 $) $) 150 (|has| |#1| (-580 (-484))) ELT) (((-2 (|:| |mat| (-630 |#1|)) (|:| |vec| (-1179 |#1|))) (-1179 $) $) 145 T ELT) (((-630 |#1|) (-1179 $)) 144 T ELT)) (-2895 (($ $) 166 T ELT)) (-3175 ((|#1| $) 165 T ELT)) (-1894 (($ (-583 $)) 107 (|has| |#1| (-392)) ELT) (($ $ $) 106 (|has| |#1| (-392)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3763 (((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694)) 265 T ELT)) (-2824 (((-3 (-583 $) #4#) $) 127 T ELT)) (-2823 (((-3 (-583 $) #4#) $) 128 T ELT)) (-2825 (((-3 (-2 (|:| |var| (-994)) (|:| -2401 (-694))) #4#) $) 126 T ELT)) (-3813 (($ $) 249 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3447 (($) 236 (|has| |#1| (-1066)) CONST)) (-3244 (((-1033) $) 12 T ELT)) (-1800 (((-85) $) 183 T ELT)) (-1799 ((|#1| $) 184 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 108 (|has| |#1| (-392)) ELT)) (-3145 (($ (-583 $)) 105 (|has| |#1| (-392)) ELT) (($ $ $) 104 (|has| |#1| (-392)) ELT)) (-2706 (((-348 (-1085 $)) (-1085 $)) 115 (|has| |#1| (-821)) ELT)) (-2707 (((-348 (-1085 $)) (-1085 $)) 114 (|has| |#1| (-821)) ELT)) (-3733 (((-348 $) $) 112 (|has| |#1| (-821)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 247 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 246 (|has| |#1| (-312)) ELT)) (-3467 (((-3 $ "failed") $ |#1|) 191 (|has| |#1| (-495)) ELT) (((-3 $ "failed") $ $) 99 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 240 (|has| |#1| (-312)) ELT)) (-3769 (($ $ (-583 (-249 $))) 162 T ELT) (($ $ (-249 $)) 161 T ELT) (($ $ $ $) 160 T ELT) (($ $ (-583 $) (-583 $)) 159 T ELT) (($ $ (-994) |#1|) 158 T ELT) (($ $ (-583 (-994)) (-583 |#1|)) 157 T ELT) (($ $ (-994) $) 156 T ELT) (($ $ (-583 (-994)) (-583 $)) 155 T ELT)) (-1607 (((-694) $) 242 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ |#1|) 281 T ELT) (($ $ $) 280 T ELT) (((-350 $) (-350 $) (-350 $)) 258 (|has| |#1| (-495)) ELT) ((|#1| (-350 $) |#1|) 250 (|has| |#1| (-312)) ELT) (((-350 $) $ (-350 $)) 238 (|has| |#1| (-495)) ELT)) (-3765 (((-3 $ "failed") $ (-694)) 267 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 243 (|has| |#1| (-312)) ELT)) (-3758 (($ $ (-994)) 120 (|has| |#1| (-146)) ELT) ((|#1| $) 260 (|has| |#1| (-146)) ELT)) (-3759 (($ $ (-583 (-994)) (-583 (-694))) 52 T ELT) (($ $ (-994) (-694)) 51 T ELT) (($ $ (-583 (-994))) 50 T ELT) (($ $ (-994)) 48 T ELT) (($ $) 279 T ELT) (($ $ (-694)) 277 T ELT) (($ $ (-1 |#1| |#1|)) 275 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 274 T ELT) (($ $ (-1 |#1| |#1|) $) 261 T ELT) (($ $ (-1090)) 235 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 233 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 232 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 231 (|has| |#1| (-811 (-1090))) ELT)) (-3949 (((-694) $) 167 T ELT) (((-694) $ (-994)) 143 T ELT) (((-583 (-694)) $ (-583 (-994))) 142 T ELT)) (-3973 (((-800 (-330)) $) 95 (-12 (|has| (-994) (-553 (-800 (-330)))) (|has| |#1| (-553 (-800 (-330))))) ELT) (((-800 (-484)) $) 94 (-12 (|has| (-994) (-553 (-800 (-484)))) (|has| |#1| (-553 (-800 (-484))))) ELT) (((-473) $) 93 (-12 (|has| (-994) (-553 (-473))) (|has| |#1| (-553 (-473)))) ELT)) (-2818 ((|#1| $) 192 (|has| |#1| (-392)) ELT) (($ $ (-994)) 119 (|has| |#1| (-392)) ELT)) (-2704 (((-3 (-1179 $) #1#) (-630 $)) 117 (-2563 (|has| $ (-118)) (|has| |#1| (-821))) ELT)) (-3755 (((-3 $ "failed") $ $) 255 (|has| |#1| (-495)) ELT) (((-3 (-350 $) "failed") (-350 $) $) 254 (|has| |#1| (-495)) ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 182 T ELT) (($ (-994)) 152 T ELT) (($ (-350 (-484))) 91 (OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ELT) (($ $) 98 (|has| |#1| (-495)) ELT)) (-3818 (((-583 |#1|) $) 185 T ELT)) (-3678 ((|#1| $ (-694)) 172 T ELT) (($ $ (-994) (-694)) 141 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 140 T ELT)) (-2703 (((-632 $) $) 92 (OR (-2563 (|has| $ (-118)) (|has| |#1| (-821))) (|has| |#1| (-118))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1623 (($ $ $ (-694)) 190 (|has| |#1| (-146)) ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 102 (|has| |#1| (-495)) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-583 (-994)) (-583 (-694))) 55 T ELT) (($ $ (-994) (-694)) 54 T ELT) (($ $ (-583 (-994))) 53 T ELT) (($ $ (-994)) 49 T ELT) (($ $) 278 T ELT) (($ $ (-694)) 276 T ELT) (($ $ (-1 |#1| |#1|)) 273 T ELT) (($ $ (-1 |#1| |#1|) (-694)) 272 T ELT) (($ $ (-1090)) 234 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090))) 230 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-1090) (-694)) 229 (|has| |#1| (-811 (-1090))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 228 (|has| |#1| (-811 (-1090))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 173 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ (-350 (-484)) $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ |#1| $) 164 T ELT) (($ $ |#1|) 163 T ELT)))
+(((-1155 |#1|) (-113) (-961)) (T -1155))
+((-3768 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-5 *2 (-1085 *3)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-961)) (-4 *1 (-1155 *3)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3765 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3764 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-1155 *3)))) (-3763 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-1155 *4)))) (-3762 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3761 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3760 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)))) (-3759 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))) (-3758 (*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3757 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))) (-3801 (*1 *2 *2 *2) (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3755 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3755 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))) (-3753 (*1 *2 *1 *1) (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3955 *3) (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-1155 *3)))) (-3752 (*1 *2 *1 *1) (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))) (-3801 (*1 *2 *3 *2) (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))))
+(-13 (-861 |t#1| (-694) (-994)) (-241 |t#1| |t#1|) (-241 $ $) (-190) (-184 |t#1|) (-10 -8 (-15 -3768 ((-1179 |t#1|) $ (-694))) (-15 -3767 ((-1085 |t#1|) $)) (-15 -3766 ($ (-1085 |t#1|))) (-15 -3778 ($ $ (-694))) (-15 -3765 ((-3 $ "failed") $ (-694))) (-15 -3764 ((-2 (|:| -1972 $) (|:| -2903 $)) $ $)) (-15 -3763 ((-2 (|:| -1972 $) (|:| -2903 $)) $ (-694))) (-15 -3762 ($ $ (-694))) (-15 -3761 ($ $ (-694))) (-15 -3760 ($ $ $)) (-15 -3759 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-146)) (PROGN (-15 -3758 (|t#1| $)) (-15 -3757 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-495)) (PROGN (-6 (-241 (-350 $) (-350 $))) (-15 -3801 ((-350 $) (-350 $) (-350 $))) (-15 -3773 ((-694) $ $)) (-15 -3756 ($ $ $)) (-15 -3755 ((-3 $ "failed") $ $)) (-15 -3755 ((-3 (-350 $) "failed") (-350 $) $)) (-15 -3754 ($ $ $)) (-15 -3753 ((-2 (|:| -3955 |t#1|) (|:| -1972 $) (|:| -2903 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-392)) (-15 -3752 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-312)) (PROGN (-6 (-258)) (-6 -3992) (-15 -3801 (|t#1| (-350 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (-15 -3813 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-950 (-350 (-484)))) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 (-994)) . T) ((-555 |#1|) . T) ((-555 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-553 (-473)) -12 (|has| |#1| (-553 (-473))) (|has| (-994) (-553 (-473)))) ((-553 (-800 (-330))) -12 (|has| |#1| (-553 (-800 (-330)))) (|has| (-994) (-553 (-800 (-330))))) ((-553 (-800 (-484))) -12 (|has| |#1| (-553 (-800 (-484)))) (|has| (-994) (-553 (-800 (-484))))) ((-186 $) . T) ((-184 |#1|) . T) ((-190) . T) ((-189) . T) ((-225 |#1|) . T) ((-241 (-350 $) (-350 $)) |has| |#1| (-495)) ((-241 |#1| |#1|) . T) ((-241 $ $) . T) ((-246) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-260 $) . T) ((-277 |#1| (-694)) . T) ((-329 |#1|) . T) ((-355 |#1|) . T) ((-392) OR (|has| |#1| (-821)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-455 (-994) |#1|) . T) ((-455 (-994) $) . T) ((-455 $ $) . T) ((-495) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 (-484)) |has| |#1| (-580 (-484))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-580 (-484)) |has| |#1| (-580 (-484))) ((-580 |#1|) . T) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-994)) . T) ((-806 $ (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-809 (-994)) . T) ((-809 (-1090)) |has| |#1| (-809 (-1090))) ((-811 (-994)) . T) ((-811 (-1090)) OR (|has| |#1| (-811 (-1090))) (|has| |#1| (-809 (-1090)))) ((-796 (-330)) -12 (|has| |#1| (-796 (-330))) (|has| (-994) (-796 (-330)))) ((-796 (-484)) -12 (|has| |#1| (-796 (-484))) (|has| (-994) (-796 (-484)))) ((-861 |#1| (-694) (-994)) . T) ((-821) |has| |#1| (-821)) ((-832) |has| |#1| (-312)) ((-950 (-350 (-484))) |has| |#1| (-950 (-350 (-484)))) ((-950 (-484)) |has| |#1| (-950 (-484))) ((-950 (-994)) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-821)) (|has| |#1| (-495)) (|has| |#1| (-392)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1066) |has| |#1| (-1066)) ((-1129) . T) ((-1134) |has| |#1| (-821)))
+((-3959 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
+(((-1156 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1155 |#1|) (-961) (-1155 |#3|)) (T -1156))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1155 *6)) (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5)))))
+((-3082 (((-583 (-994)) $) 34 T ELT)) (-3960 (($ $) 31 T ELT)) (-2894 (($ |#2| |#3|) NIL T ELT) (($ $ (-994) |#3|) 28 T ELT) (($ $ (-583 (-994)) (-583 |#3|)) 27 T ELT)) (-2895 (($ $) 14 T ELT)) (-3175 ((|#2| $) 12 T ELT)) (-3949 ((|#3| $) 10 T ELT)))
+(((-1157 |#1| |#2| |#3|) (-10 -7 (-15 -3082 ((-583 (-994)) |#1|)) (-15 -2894 (|#1| |#1| (-583 (-994)) (-583 |#3|))) (-15 -2894 (|#1| |#1| (-994) |#3|)) (-15 -3960 (|#1| |#1|)) (-15 -2894 (|#1| |#2| |#3|)) (-15 -3949 (|#3| |#1|)) (-15 -2895 (|#1| |#1|)) (-15 -3175 (|#2| |#1|))) (-1158 |#2| |#3|) (-961) (-716)) (T -1157))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ |#2|) 124 T ELT) (($ $ |#2| |#2|) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 130 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3773 ((|#2| $) 126 T ELT) ((|#2| $ |#2|) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3778 (($ $ (-830)) 127 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| |#2|) 81 T ELT) (($ $ (-994) |#2|) 97 T ELT) (($ $ (-583 (-994)) (-583 |#2|)) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3770 (($ $ |#2|) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3801 ((|#1| $ |#2|) 131 T ELT) (($ $ $) 107 (|has| |#2| (-1025)) ELT)) (-3759 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3949 ((|#2| $) 84 T ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3678 ((|#1| $ |#2|) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3771 ((|#1| $ |#2|) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1158 |#1| |#2|) (-113) (-961) (-716)) (T -1158))
+((-3775 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1090)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3773 (*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3772 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3772 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3771 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3947 (*2 (-1090)))) (-4 *2 (-961)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))) (-3769 (*1 *2 *1 *3) (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3)))))
+(-13 (-886 |t#1| |t#2| (-994)) (-241 |t#2| |t#1|) (-10 -8 (-15 -3775 ((-1069 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3832 ((-1090) $)) (-15 -3774 (|t#1| $)) (-15 -3778 ($ $ (-830))) (-15 -3773 (|t#2| $)) (-15 -3773 (|t#2| $ |t#2|)) (-15 -3772 ($ $ |t#2|)) (-15 -3772 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3947 (|t#1| (-1090)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3771 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3770 ($ $ |t#2|)) (IF (|has| |t#2| (-1025)) (-6 (-241 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-190)) (IF (|has| |t#1| (-809 (-1090))) (-6 (-809 (-1090))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3769 ((-1069 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-190) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-189) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-241 |#2| |#1|) . T) ((-241 $ $) |has| |#2| (-1025)) ((-246) |has| |#1| (-495)) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-886 |#1| |#2| (-994)) . T) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-3776 ((|#2| |#2|) 12 T ELT)) (-3972 (((-348 |#2|) |#2|) 14 T ELT)) (-3777 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))) 30 T ELT)))
+(((-1159 |#1| |#2|) (-10 -7 (-15 -3972 ((-348 |#2|) |#2|)) (-15 -3776 (|#2| |#2|)) (-15 -3777 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-484))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-484)))))) (-495) (-13 (-1155 |#1|) (-495) (-10 -8 (-15 -3145 ($ $ $))))) (T -1159))
+((-3777 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-484)))) (-4 *4 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-495)) (-5 *1 (-1159 *3 *4)))) (-3776 (*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-1159 *3 *2)) (-4 *2 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3145 ($ $ $))))))) (-3972 (*1 *2 *3) (-12 (-4 *4 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3)) (-4 *3 (-13 (-1155 *4) (-495) (-10 -8 (-15 -3145 ($ $ $))))))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 11 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) NIL T ELT) (($ $ (-350 (-484)) (-350 (-484))) NIL T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) NIL T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1169 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3157 (((-1139 |#1| |#2| |#3|) $) NIL T ELT) (((-1169 |#1| |#2| |#3|) $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3782 (((-350 (-484)) $) 68 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-484)) (-1139 |#1| |#2| |#3|)) NIL T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) NIL T ELT) (((-350 (-484)) $ (-350 (-484))) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) NIL T ELT) (($ $ (-350 (-484))) NIL T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-484))) 30 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 (((-1139 |#1| |#2| |#3|) $) 71 T ELT)) (-3779 (((-3 (-1139 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-3780 (((-1139 |#1| |#2| |#3|) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3813 (($ $) 39 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) NIL (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 40 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) NIL T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) NIL T ELT) (($ $ $) NIL (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) 38 T ELT)) (-3949 (((-350 (-484)) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) NIL T ELT)) (-3947 (((-772) $) 107 T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT) (($ (-1139 |#1| |#2| |#3|)) 16 T ELT) (($ (-1169 |#1| |#2| |#3|)) 17 T ELT) (($ (-1176 |#2|)) 36 T ELT) (($ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 12 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 32 T CONST)) (-2667 (($) 26 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 34 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ (-484)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1160 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1139 |#1| |#2| |#3|)) (-806 $ (-1176 |#2|)) (-950 (-1169 |#1| |#2| |#3|)) (-555 (-1176 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1160))
+((-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-3959 (((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)) 24 T ELT)))
+(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3959 ((-1160 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1160 |#1| |#3| |#5|)))) (-961) (-961) (-1090) (-1090) |#1| |#2|) (T -1161))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) 124 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) 126 T ELT) (((-350 (-484)) $ (-350 (-484))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) 127 T ELT) (($ $ (-350 (-484))) 198 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-484))) 81 T ELT) (($ $ (-994) (-350 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1894 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3949 (((-350 (-484)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1162 |#1|) (-113) (-961)) (T -1162))
+((-3819 (*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1162 *4)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-1162 *3)) (-4 *3 (-961)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3082 ((-583 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))))
+(-13 (-1158 |t#1| (-350 (-484))) (-10 -8 (-15 -3819 ($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |t#1|))))) (-15 -3778 ($ $ (-350 (-484)))) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-583 (-1090)) |t#1|))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|) (IF (|has| |t#1| (-312)) (-6 (-312)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-484))) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-350 (-484)) |#1|) . T) ((-241 $ $) |has| (-350 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-886 |#1| (-350 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-484))) . T))
+((-3189 (((-85) $) 12 T ELT)) (-3158 (((-3 |#3| "failed") $) 17 T ELT)) (-3157 ((|#3| $) 14 T ELT)))
+(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -3158 ((-3 |#3| "failed") |#1|)) (-15 -3157 (|#3| |#1|)) (-15 -3189 ((-85) |#1|))) (-1164 |#2| |#3|) (-961) (-1141 |#2|)) (T -1163))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) 124 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 190 (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) 191 (|has| |#1| (-312)) ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) 181 (|has| |#1| (-312)) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 199 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#2| "failed") $) 212 T ELT)) (-3157 ((|#2| $) 213 T ELT)) (-2565 (($ $ $) 185 (|has| |#1| (-312)) ELT)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3782 (((-350 (-484)) $) 209 T ELT)) (-2564 (($ $ $) 184 (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-484)) |#2|) 210 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 179 (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) 192 (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) 126 T ELT) (((-350 (-484)) $ (-350 (-484))) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) 127 T ELT) (($ $ (-350 (-484))) 198 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 188 (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-350 (-484))) 81 T ELT) (($ $ (-994) (-350 (-484))) 97 T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-1894 (($ (-583 $)) 177 (|has| |#1| (-312)) ELT) (($ $ $) 176 (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 208 T ELT)) (-3779 (((-3 |#2| "failed") $) 206 T ELT)) (-3780 ((|#2| $) 207 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 193 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 197 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 196 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 178 (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) 175 (|has| |#1| (-312)) ELT) (($ $ $) 174 (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) 189 (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 187 (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 186 (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 180 (|has| |#1| (-312)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) 182 (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) 131 T ELT) (($ $ $) 107 (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 183 (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3949 (((-350 (-484)) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT) (($ |#2|) 211 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT) (($ $ $) 195 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 194 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1164 |#1| |#2|) (-113) (-961) (-1141 |t#1|)) (T -1164))
+((-3949 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-484))))) (-3783 (*1 *1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-4 *4 (-961)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3)) (-5 *2 (-350 (-484))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))) (-3779 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))))
+(-13 (-1162 |t#1|) (-950 |t#2|) (-555 |t#2|) (-10 -8 (-15 -3783 ($ (-350 (-484)) |t#2|)) (-15 -3782 ((-350 (-484)) $)) (-15 -3781 (|t#2| $)) (-15 -3949 ((-350 (-484)) $)) (-15 -3780 (|t#2| $)) (-15 -3779 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-350 (-484))) . T) ((-25) . T) ((-38 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 |#2|) . T) ((-555 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ((-201) |has| |#1| (-312)) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-350 (-484)) |#1|) . T) ((-241 $ $) |has| (-350 (-484)) (-1025)) ((-246) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-258) |has| |#1| (-312)) ((-312) |has| |#1| (-312)) ((-392) |has| |#1| (-312)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-13) . T) ((-588 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-654 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) OR (|has| |#1| (-495)) (|has| |#1| (-312))) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ((-886 |#1| (-350 (-484)) (-994)) . T) ((-832) |has| |#1| (-312)) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-950 |#2|) . T) ((-963 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-968 (-350 (-484))) OR (|has| |#1| (-312)) (|has| |#1| (-38 (-350 (-484))))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-312)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1134) |has| |#1| (-312)) ((-1158 |#1| (-350 (-484))) . T) ((-1162 |#1|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 104 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-350 (-484))) 116 T ELT) (($ $ (-350 (-484)) (-350 (-484))) 118 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|))) $) 54 T ELT)) (-3493 (($ $) 192 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3776 (($ $) NIL (|has| |#1| (-312)) ELT)) (-3972 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1608 (((-85) $ $) NIL (|has| |#1| (-312)) ELT)) (-3491 (($ $) 188 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-694) (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#1|)))) 65 T ELT)) (-3495 (($ $) 196 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-2565 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 85 T ELT)) (-3782 (((-350 (-484)) $) 13 T ELT)) (-2564 (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3783 (($ (-350 (-484)) |#2|) 11 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) NIL (|has| |#1| (-312)) ELT)) (-3724 (((-85) $) NIL (|has| |#1| (-312)) ELT)) (-2893 (((-85) $) 74 T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-350 (-484)) $) 113 T ELT) (((-350 (-484)) $ (-350 (-484))) 114 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) 130 T ELT) (($ $ (-350 (-484))) 128 T ELT)) (-1605 (((-3 (-583 $) #1#) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-350 (-484))) 33 T ELT) (($ $ (-994) (-350 (-484))) NIL T ELT) (($ $ (-583 (-994)) (-583 (-350 (-484)))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-3943 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-1894 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3781 ((|#2| $) 12 T ELT)) (-3779 (((-3 |#2| #1#) $) 44 T ELT)) (-3780 ((|#2| $) 45 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-2485 (($ $) 101 (|has| |#1| (-312)) ELT)) (-3813 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 151 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) NIL (|has| |#1| (-312)) ELT)) (-3145 (($ (-583 $)) NIL (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-312)) ELT)) (-3733 (((-348 $) $) NIL (|has| |#1| (-312)) ELT)) (-1606 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-312)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3770 (($ $ (-350 (-484))) 122 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) NIL (|has| |#1| (-312)) ELT)) (-3944 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) ELT)) (-1607 (((-694) $) NIL (|has| |#1| (-312)) ELT)) (-3801 ((|#1| $ (-350 (-484))) 108 T ELT) (($ $ $) 94 (|has| (-350 (-484)) (-1025)) ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) NIL (|has| |#1| (-312)) ELT)) (-3759 (($ $ (-1090)) 138 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3949 (((-350 (-484)) $) 16 T ELT)) (-3496 (($ $) 198 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 174 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 194 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 190 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 120 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-146)) ELT) (($ |#2|) 34 T ELT) (($ (-350 (-484))) 139 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT)) (-3678 ((|#1| $ (-350 (-484))) 107 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 127 T CONST)) (-3774 ((|#1| $) 106 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) 204 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 180 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) 200 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 176 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 208 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 184 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-350 (-484))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-350 (-484))))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) 210 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 186 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 206 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 182 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 202 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 178 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 17 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-350 (-484)) |#1|))) ELT)) (-3057 (((-85) $ $) 72 T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT) (($ $ $) 100 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-3840 (($ $ $) 76 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 82 T ELT) (($ $ (-484)) 157 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-961) (-1141 |#1|)) (T -1165))
+NIL
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 37 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL T ELT)) (-2063 (($ $) NIL T ELT)) (-2061 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 (-484) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-3 (-350 (-484)) #1#) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) ELT) (((-3 (-1160 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3157 (((-484) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-484))) ELT) (((-350 (-484)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) ELT) (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3960 (($ $) 41 T ELT)) (-3468 (((-3 $ #1#) $) 27 T ELT)) (-3504 (($ $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-1624 (($ $ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) 11 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) 25 T ELT)) (-2821 (((-270 |#2| |#3| |#4|) $) NIL T ELT)) (-1625 (($ (-1 (-270 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) $) NIL T ELT)) (-3959 (($ (-1 (-1160 |#2| |#3| |#4|) (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3785 (((-3 (-750 |#2|) #1#) $) 91 T ELT)) (-2895 (($ $) NIL T ELT)) (-3175 (((-1160 |#2| |#3| |#4|) $) 20 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-1800 (((-85) $) NIL T ELT)) (-1799 (((-1160 |#2| |#3| |#4|) $) NIL T ELT)) (-3467 (((-3 $ #1#) $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-495)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-3784 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $) 74 T ELT)) (-3949 (((-270 |#2| |#3| |#4|) $) 17 T ELT)) (-2818 (((-1160 |#2| |#3| |#4|) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-392)) ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-350 (-484))) NIL (OR (|has| (-1160 |#2| |#3| |#4|) (-950 (-350 (-484)))) (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484))))) ELT)) (-3818 (((-583 (-1160 |#2| |#3| |#4|)) $) NIL T ELT)) (-3678 (((-1160 |#2| |#3| |#4|) $ (-270 |#2| |#3| |#4|)) NIL T ELT)) (-2703 (((-632 $) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-1623 (($ $ $ (-694)) NIL (|has| (-1160 |#2| |#3| |#4|) (-146)) ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-2062 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ (-1160 |#2| |#3| |#4|)) NIL (|has| (-1160 |#2| |#3| |#4|) (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1160 |#2| |#3| |#4|)) NIL T ELT) (($ (-1160 |#2| |#3| |#4|) $) NIL T ELT) (($ (-350 (-484)) $) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| (-1160 |#2| |#3| |#4|) (-38 (-350 (-484)))) ELT)))
+(((-1166 |#1| |#2| |#3| |#4|) (-13 (-277 (-1160 |#2| |#3| |#4|) (-270 |#2| |#3| |#4|)) (-495) (-10 -8 (-15 -3785 ((-3 (-750 |#2|) #1="failed") $)) (-15 -3784 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 |#2| |#3| |#4|)) (|:| |%expon| (-270 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) #1#) $)))) (-13 (-950 (-484)) (-580 (-484)) (-392)) (-13 (-27) (-1115) (-364 |#1|)) (-1090) |#2|) (T -1166))
+((-3785 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-750 *4)) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))) (-3784 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4)))))) (|:| |%type| (-1073)))) (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
+((-3403 ((|#2| $) 34 T ELT)) (-3796 ((|#2| $) 18 T ELT)) (-3798 (($ $) 43 T ELT)) (-3786 (($ $ (-484)) 78 T ELT)) (-3026 ((|#2| $ |#2|) 75 T ELT)) (-3787 ((|#2| $ |#2|) 71 T ELT)) (-3789 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 64 T ELT) (($ $ #3="rest" $) 68 T ELT) ((|#2| $ #4="last" |#2|) 66 T ELT)) (-3027 (($ $ (-583 $)) 74 T ELT)) (-3797 ((|#2| $) 17 T ELT)) (-3800 (($ $) NIL T ELT) (($ $ (-694)) 51 T ELT)) (-3032 (((-583 $) $) 31 T ELT)) (-3028 (((-85) $ $) 62 T ELT)) (-3528 (((-85) $) 33 T ELT)) (-3799 ((|#2| $) 25 T ELT) (($ $ (-694)) 57 T ELT)) (-3801 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-3634 (((-85) $) 23 T ELT)) (-3793 (($ $) 46 T ELT)) (-3791 (($ $) 79 T ELT)) (-3794 (((-694) $) 50 T ELT)) (-3795 (($ $) 49 T ELT)) (-3803 (($ $ $) 70 T ELT) (($ |#2| $) NIL T ELT)) (-3523 (((-583 $) $) 32 T ELT)) (-3057 (((-85) $ $) 60 T ELT)))
+(((-1167 |#1| |#2|) (-10 -7 (-15 -3057 ((-85) |#1| |#1|)) (-15 -3786 (|#1| |#1| (-484))) (-15 -3789 (|#2| |#1| #1="last" |#2|)) (-15 -3787 (|#2| |#1| |#2|)) (-15 -3789 (|#1| |#1| #2="rest" |#1|)) (-15 -3789 (|#2| |#1| #3="first" |#2|)) (-15 -3791 (|#1| |#1|)) (-15 -3793 (|#1| |#1|)) (-15 -3794 ((-694) |#1|)) (-15 -3795 (|#1| |#1|)) (-15 -3796 (|#2| |#1|)) (-15 -3797 (|#2| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3799 (|#1| |#1| (-694))) (-15 -3801 (|#2| |#1| #1#)) (-15 -3799 (|#2| |#1|)) (-15 -3800 (|#1| |#1| (-694))) (-15 -3801 (|#1| |#1| #2#)) (-15 -3800 (|#1| |#1|)) (-15 -3801 (|#2| |#1| #3#)) (-15 -3803 (|#1| |#2| |#1|)) (-15 -3803 (|#1| |#1| |#1|)) (-15 -3026 (|#2| |#1| |#2|)) (-15 -3789 (|#2| |#1| #4="value" |#2|)) (-15 -3027 (|#1| |#1| (-583 |#1|))) (-15 -3028 ((-85) |#1| |#1|)) (-15 -3634 ((-85) |#1|)) (-15 -3801 (|#2| |#1| #4#)) (-15 -3403 (|#2| |#1|)) (-15 -3528 ((-85) |#1|)) (-15 -3032 ((-583 |#1|) |#1|)) (-15 -3523 ((-583 |#1|) |#1|))) (-1168 |#2|) (-1129)) (T -1167))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3403 ((|#1| $) 43 T ELT)) (-3796 ((|#1| $) 62 T ELT)) (-3798 (($ $) 64 T ELT)) (-3786 (($ $ (-484)) 49 (|has| $ (-1035 |#1|)) ELT)) (-3026 ((|#1| $ |#1|) 34 (|has| $ (-1035 |#1|)) ELT)) (-3788 (($ $ $) 53 (|has| $ (-1035 |#1|)) ELT)) (-3787 ((|#1| $ |#1|) 51 (|has| $ (-1035 |#1|)) ELT)) (-3790 ((|#1| $ |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3789 ((|#1| $ #1="value" |#1|) 35 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ "first" |#1|) 54 (|has| $ (-1035 |#1|)) ELT) (($ $ "rest" $) 52 (|has| $ (-1035 |#1|)) ELT) ((|#1| $ "last" |#1|) 50 (|has| $ (-1035 |#1|)) ELT)) (-3027 (($ $ (-583 $)) 36 (|has| $ (-1035 |#1|)) ELT)) (-3797 ((|#1| $) 63 T ELT)) (-3725 (($) 6 T CONST)) (-3800 (($ $) 70 T ELT) (($ $ (-694)) 68 T ELT)) (-3032 (((-583 $) $) 45 T ELT)) (-3028 (((-85) $ $) 37 (|has| |#1| (-72)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -3997)) ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT)) (-3031 (((-583 |#1|) $) 40 T ELT)) (-3528 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-3799 ((|#1| $) 67 T ELT) (($ $ (-694)) 65 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 73 T ELT) (($ $ (-694)) 71 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ #1#) 42 T ELT) ((|#1| $ "first") 72 T ELT) (($ $ "rest") 69 T ELT) ((|#1| $ "last") 66 T ELT)) (-3030 (((-484) $ $) 39 T ELT)) (-3634 (((-85) $) 41 T ELT)) (-3793 (($ $) 59 T ELT)) (-3791 (($ $) 56 (|has| $ (-1035 |#1|)) ELT)) (-3794 (((-694) $) 60 T ELT)) (-3795 (($ $) 61 T ELT)) (-3401 (($ $) 9 T ELT)) (-3792 (($ $ $) 58 (|has| $ (-1035 |#1|)) ELT) (($ $ |#1|) 57 (|has| $ (-1035 |#1|)) ELT)) (-3803 (($ $ $) 75 T ELT) (($ |#1| $) 74 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-3523 (((-583 $) $) 46 T ELT)) (-3029 (((-85) $ $) 38 (|has| |#1| (-72)) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)))
+(((-1168 |#1|) (-113) (-1129)) (T -1168))
+((-3803 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3803 (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3801 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3799 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3795 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))) (-3793 (*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3791 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3790 (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3788 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3789 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (-4 *1 (-1035 *3)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))) (-3787 (*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3789 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1035 *3)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))))
+(-13 (-923 |t#1|) (-10 -8 (-15 -3803 ($ $ $)) (-15 -3803 ($ |t#1| $)) (-15 -3802 (|t#1| $)) (-15 -3801 (|t#1| $ "first")) (-15 -3802 ($ $ (-694))) (-15 -3800 ($ $)) (-15 -3801 ($ $ "rest")) (-15 -3800 ($ $ (-694))) (-15 -3799 (|t#1| $)) (-15 -3801 (|t#1| $ "last")) (-15 -3799 ($ $ (-694))) (-15 -3798 ($ $)) (-15 -3797 (|t#1| $)) (-15 -3796 (|t#1| $)) (-15 -3795 ($ $)) (-15 -3794 ((-694) $)) (-15 -3793 ($ $)) (IF (|has| $ (-1035 |t#1|)) (PROGN (-15 -3792 ($ $ $)) (-15 -3792 ($ $ |t#1|)) (-15 -3791 ($ $)) (-15 -3790 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "first" |t#1|)) (-15 -3788 ($ $ $)) (-15 -3789 ($ $ "rest" $)) (-15 -3787 (|t#1| $ |t#1|)) (-15 -3789 (|t#1| $ "last" |t#1|)) (-15 -3786 ($ $ (-484)))) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-552 (-772)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-429 |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-923 |#1|) . T) ((-1013) |has| |#1| (-1013)) ((-1129) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3082 (((-583 (-994)) $) NIL T ELT)) (-3832 (((-1090) $) 87 T ELT)) (-3812 (((-1148 |#2| |#1|) $ (-694)) 70 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) NIL (|has| |#1| (-495)) ELT)) (-2063 (($ $) NIL (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 139 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-694)) 125 T ELT) (($ $ (-694) (-694)) 127 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 42 T ELT)) (-3493 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3038 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 49 T ELT) (($ (-1069 |#1|)) NIL T ELT)) (-3495 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) NIL T CONST)) (-3806 (($ $) 131 T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3817 (($ $) 137 T ELT)) (-3815 (((-857 |#1|) $ (-694)) 60 T ELT) (((-857 |#1|) $ (-694) (-694)) 62 T ELT)) (-2893 (((-85) $) NIL T ELT)) (-3628 (($) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $) NIL T ELT) (((-694) $ (-694)) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3809 (($ $) 115 T ELT)) (-3012 (($ $ (-484)) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3805 (($ (-484) (-484) $) 133 T ELT)) (-3778 (($ $ (-830)) 136 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 109 T ELT)) (-3938 (((-85) $) NIL T ELT)) (-2894 (($ |#1| (-694)) 16 T ELT) (($ $ (-994) (-694)) NIL T ELT) (($ $ (-583 (-994)) (-583 (-694))) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 96 T ELT)) (-3943 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3810 (($ $) 113 T ELT)) (-3811 (($ $) 111 T ELT)) (-3804 (($ (-484) (-484) $) 135 T ELT)) (-3813 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 153 (OR (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115))) (-12 (|has| |#1| (-38 (-350 (-484)))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))))) ELT) (($ $ (-1176 |#2|)) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3807 (($ $ (-484) (-484)) 119 T ELT)) (-3770 (($ $ (-694)) 121 T ELT)) (-3467 (((-3 $ #1#) $ $) NIL (|has| |#1| (-495)) ELT)) (-3944 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3808 (($ $) 117 T ELT)) (-3769 (((-1069 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3801 ((|#1| $ (-694)) 93 T ELT) (($ $ $) 129 (|has| (-694) (-1025)) ELT)) (-3759 (($ $ (-1090)) 106 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) 101 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-3496 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 123 T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) 26 T ELT) (($ (-350 (-484))) 145 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) NIL (|has| |#1| (-495)) ELT) (($ |#1|) 25 (|has| |#1| (-146)) ELT) (($ (-1148 |#2| |#1|)) 78 T ELT) (($ (-1176 |#2|)) 22 T ELT)) (-3818 (((-1069 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ (-694)) 92 T ELT)) (-2703 (((-632 $) $) NIL (|has| |#1| (-118)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3774 ((|#1| $) 88 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-3497 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-694)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-3502 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 18 T CONST)) (-2667 (($) 13 T CONST)) (-2670 (($ $ (-1090)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) NIL (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) NIL (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-1176 |#2|)) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3950 (($ $ |#1|) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) 105 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#1|) 142 (|has| |#1| (-312)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 104 T ELT) (($ (-350 (-484)) $) NIL (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) NIL (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1169 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-806 $ (-1176 |#2|)) (-10 -8 (-15 -3947 ($ (-1148 |#2| |#1|))) (-15 -3812 ((-1148 |#2| |#1|) $ (-694))) (-15 -3947 ($ (-1176 |#2|))) (-15 -3811 ($ $)) (-15 -3810 ($ $)) (-15 -3809 ($ $)) (-15 -3808 ($ $)) (-15 -3807 ($ $ (-484) (-484))) (-15 -3806 ($ $)) (-15 -3805 ($ (-484) (-484) $)) (-15 -3804 ($ (-484) (-484) $)) (IF (|has| |#1| (-38 (-350 (-484)))) (-15 -3813 ($ $ (-1176 |#2|))) |%noBranch|))) (-961) (-1090) |#1|) (T -1169))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1169 *3 *4 *5)))) (-3812 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3810 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3809 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3807 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3806 (*1 *1 *1) (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))) (-3805 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3))) (-3813 (*1 *1 *1 *2) (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3))))
+((-3959 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
+(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1172 |#1|) (-1172 |#2|)) (T -1170))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
+((-3189 (((-85) $) 17 T ELT)) (-3493 (($ $) 105 T ELT)) (-3640 (($ $) 81 T ELT)) (-3491 (($ $) 101 T ELT)) (-3639 (($ $) 77 T ELT)) (-3495 (($ $) 109 T ELT)) (-3638 (($ $) 85 T ELT)) (-3943 (($ $) 75 T ELT)) (-3944 (($ $) 73 T ELT)) (-3496 (($ $) 111 T ELT)) (-3637 (($ $) 87 T ELT)) (-3494 (($ $) 107 T ELT)) (-3636 (($ $) 83 T ELT)) (-3492 (($ $) 103 T ELT)) (-3635 (($ $) 79 T ELT)) (-3947 (((-772) $) 61 T ELT) (($ (-484)) NIL T ELT) (($ (-350 (-484))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3499 (($ $) 117 T ELT)) (-3487 (($ $) 93 T ELT)) (-3497 (($ $) 113 T ELT)) (-3485 (($ $) 89 T ELT)) (-3501 (($ $) 121 T ELT)) (-3489 (($ $) 97 T ELT)) (-3502 (($ $) 123 T ELT)) (-3490 (($ $) 99 T ELT)) (-3500 (($ $) 119 T ELT)) (-3488 (($ $) 95 T ELT)) (-3498 (($ $) 115 T ELT)) (-3486 (($ $) 91 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-350 (-484))) 71 T ELT)))
+(((-1171 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-350 (-484)))) (-15 -3640 (|#1| |#1|)) (-15 -3639 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -3636 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3485 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3496 (|#1| |#1|)) (-15 -3495 (|#1| |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3502 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -3497 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -3943 (|#1| |#1|)) (-15 -3944 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3947 (|#1| |#2|)) (-15 -3947 (|#1| |#1|)) (-15 -3947 (|#1| (-350 (-484)))) (-15 -3947 (|#1| (-484))) (-15 ** (|#1| |#1| (-694))) (-15 ** (|#1| |#1| (-830))) (-15 -3189 ((-85) |#1|)) (-15 -3947 ((-772) |#1|))) (-1172 |#2|) (-961)) (T -1171))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3082 (((-583 (-994)) $) 95 T ELT)) (-3832 (((-1090) $) 129 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 71 (|has| |#1| (-495)) ELT)) (-2063 (($ $) 72 (|has| |#1| (-495)) ELT)) (-2061 (((-85) $) 74 (|has| |#1| (-495)) ELT)) (-3772 (($ $ (-694)) 124 T ELT) (($ $ (-694) (-694)) 123 T ELT)) (-3775 (((-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|))) $) 130 T ELT)) (-3493 (($ $) 163 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3640 (($ $) 146 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3038 (($ $) 145 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3491 (($ $) 162 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3639 (($ $) 147 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3819 (($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |#1|)))) 183 T ELT) (($ (-1069 |#1|)) 181 T ELT)) (-3495 (($ $) 161 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3638 (($ $) 148 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3725 (($) 23 T CONST)) (-3960 (($ $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3817 (($ $) 180 T ELT)) (-3815 (((-857 |#1|) $ (-694)) 178 T ELT) (((-857 |#1|) $ (-694) (-694)) 177 T ELT)) (-2893 (((-85) $) 94 T ELT)) (-3628 (($) 173 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3773 (((-694) $) 126 T ELT) (((-694) $ (-694)) 125 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3012 (($ $ (-484)) 144 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3778 (($ $ (-830)) 127 T ELT)) (-3816 (($ (-1 |#1| (-484)) $) 179 T ELT)) (-3938 (((-85) $) 82 T ELT)) (-2894 (($ |#1| (-694)) 81 T ELT) (($ $ (-994) (-694)) 97 T ELT) (($ $ (-583 (-994)) (-583 (-694))) 96 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 83 T ELT)) (-3943 (($ $) 170 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2895 (($ $) 85 T ELT)) (-3175 ((|#1| $) 86 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3813 (($ $) 175 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-1090)) 174 (OR (-12 (|has| |#1| (-29 (-484))) (|has| |#1| (-871)) (|has| |#1| (-1115)) (|has| |#1| (-38 (-350 (-484))))) (-12 (|has| |#1| (-15 -3082 ((-583 (-1090)) |#1|))) (|has| |#1| (-15 -3813 (|#1| |#1| (-1090)))) (|has| |#1| (-38 (-350 (-484)))))) ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3770 (($ $ (-694)) 121 T ELT)) (-3467 (((-3 $ "failed") $ $) 70 (|has| |#1| (-495)) ELT)) (-3944 (($ $) 171 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3769 (((-1069 |#1|) $ |#1|) 120 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) ELT)) (-3801 ((|#1| $ (-694)) 131 T ELT) (($ $ $) 107 (|has| (-694) (-1025)) ELT)) (-3759 (($ $ (-1090)) 119 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) 117 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) 116 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 115 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 111 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 109 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3949 (((-694) $) 84 T ELT)) (-3496 (($ $) 160 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3637 (($ $) 149 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3494 (($ $) 159 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3636 (($ $) 150 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3492 (($ $) 158 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3635 (($ $) 151 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2892 (($ $) 93 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ (-350 (-484))) 77 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $) 69 (|has| |#1| (-495)) ELT) (($ |#1|) 67 (|has| |#1| (-146)) ELT)) (-3818 (((-1069 |#1|) $) 182 T ELT)) (-3678 ((|#1| $ (-694)) 79 T ELT)) (-2703 (((-632 $) $) 68 (|has| |#1| (-118)) ELT)) (-3127 (((-694)) 40 T CONST)) (-3774 ((|#1| $) 128 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-3499 (($ $) 169 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3487 (($ $) 157 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2062 (((-85) $ $) 73 (|has| |#1| (-495)) ELT)) (-3497 (($ $) 168 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3485 (($ $) 156 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3501 (($ $) 167 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3489 (($ $) 155 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3771 ((|#1| $ (-694)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-694)))) (|has| |#1| (-15 -3947 (|#1| (-1090))))) ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3502 (($ $) 166 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3490 (($ $) 154 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3500 (($ $) 165 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3488 (($ $) 153 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3498 (($ $) 164 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-3486 (($ $) 152 (|has| |#1| (-38 (-350 (-484)))) ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-2670 (($ $ (-1090)) 118 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090))) 114 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-1090) (-694)) 113 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $ (-583 (-1090)) (-583 (-694))) 112 (-12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ELT) (($ $) 110 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT) (($ $ (-694)) 108 (|has| |#1| (-15 * (|#1| (-694) |#1|))) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 78 (|has| |#1| (-312)) ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ |#1|) 176 (|has| |#1| (-312)) ELT) (($ $ $) 172 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 143 (|has| |#1| (-38 (-350 (-484)))) ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 88 T ELT) (($ |#1| $) 87 T ELT) (($ (-350 (-484)) $) 76 (|has| |#1| (-38 (-350 (-484)))) ELT) (($ $ (-350 (-484))) 75 (|has| |#1| (-38 (-350 (-484)))) ELT)))
+(((-1172 |#1|) (-113) (-961)) (T -1172))
+((-3819 (*1 *1 *2) (-12 (-5 *2 (-1069 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1172 *3)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1172 *3)))) (-3817 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)))) (-3816 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1172 *3)) (-4 *3 (-961)))) (-3815 (*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (-3815 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-312)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))) (-3813 (*1 *1 *1 *2) (OR (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115)) (-4 *3 (-38 (-350 (-484)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -3082 ((-583 *2) *3))) (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484)))))))))
+(-13 (-1158 |t#1| (-694)) (-10 -8 (-15 -3819 ($ (-1069 (-2 (|:| |k| (-694)) (|:| |c| |t#1|))))) (-15 -3818 ((-1069 |t#1|) $)) (-15 -3819 ($ (-1069 |t#1|))) (-15 -3817 ($ $)) (-15 -3816 ($ (-1 |t#1| (-484)) $)) (-15 -3815 ((-857 |t#1|) $ (-694))) (-15 -3815 ((-857 |t#1|) $ (-694) (-694))) (IF (|has| |t#1| (-312)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-350 (-484)))) (PROGN (-15 -3813 ($ $)) (IF (|has| |t#1| (-15 -3813 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -3082 ((-583 (-1090)) |t#1|))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1115)) (IF (|has| |t#1| (-871)) (IF (|has| |t#1| (-29 (-484))) (-15 -3813 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-915)) (-6 (-1115))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| (-694)) . T) ((-25) . T) ((-38 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-38 |#1|) |has| |#1| (-146)) ((-38 $) |has| |#1| (-495)) ((-35) |has| |#1| (-38 (-350 (-484)))) ((-66) |has| |#1| (-38 (-350 (-484)))) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-82 |#1| |#1|) . T) ((-82 $ $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-104) . T) ((-118) |has| |#1| (-118)) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-555 (-484)) . T) ((-555 |#1|) |has| |#1| (-146)) ((-555 $) |has| |#1| (-495)) ((-552 (-772)) . T) ((-146) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-186 $) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-190) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-189) |has| |#1| (-15 * (|#1| (-694) |#1|))) ((-239) |has| |#1| (-38 (-350 (-484)))) ((-241 (-694) |#1|) . T) ((-241 $ $) |has| (-694) (-1025)) ((-246) |has| |#1| (-495)) ((-433) |has| |#1| (-38 (-350 (-484)))) ((-495) |has| |#1| (-495)) ((-13) . T) ((-588 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-582 |#1|) |has| |#1| (-146)) ((-582 $) |has| |#1| (-495)) ((-654 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-654 |#1|) |has| |#1| (-146)) ((-654 $) |has| |#1| (-495)) ((-663) . T) ((-806 $ (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-809 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-811 (-1090)) -12 (|has| |#1| (-809 (-1090))) (|has| |#1| (-15 * (|#1| (-694) |#1|)))) ((-886 |#1| (-694) (-994)) . T) ((-915) |has| |#1| (-38 (-350 (-484)))) ((-963 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-963 |#1|) . T) ((-963 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-968 (-350 (-484))) |has| |#1| (-38 (-350 (-484)))) ((-968 |#1|) . T) ((-968 $) OR (|has| |#1| (-495)) (|has| |#1| (-146))) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1115) |has| |#1| (-38 (-350 (-484)))) ((-1118) |has| |#1| (-38 (-350 (-484)))) ((-1129) . T) ((-1158 |#1| (-694)) . T))
+((-3822 (((-1 (-1069 |#1|) (-583 (-1069 |#1|))) (-1 |#2| (-583 |#2|))) 24 T ELT)) (-3821 (((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-3820 (((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3825 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3824 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-3826 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 60 T ELT)) (-3827 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 66 T ELT)) (-3823 ((|#2| |#2| |#2|) 43 T ELT)))
+(((-1173 |#1| |#2|) (-10 -7 (-15 -3820 ((-1 (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2|))) (-15 -3821 ((-1 (-1069 |#1|) (-1069 |#1|) (-1069 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3822 ((-1 (-1069 |#1|) (-583 (-1069 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -3823 (|#2| |#2| |#2|)) (-15 -3824 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3825 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3826 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -3827 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-38 (-350 (-484))) (-1172 |#1|)) (T -1173))
+((-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-38 (-350 (-484)))) (-4 *6 (-1172 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1173 *5 *6)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-350 (-484)))) (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))) (-3825 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-484)))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2)) (-4 *4 (-38 (-350 (-484)))))) (-3823 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-583 (-1069 *4)))) (-5 *1 (-1173 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))) (-3820 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484)))) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
+((-3829 ((|#2| |#4| (-694)) 31 T ELT)) (-3828 ((|#4| |#2|) 26 T ELT)) (-3831 ((|#4| (-350 |#2|)) 49 (|has| |#1| (-495)) ELT)) (-3830 (((-1 |#4| (-583 |#4|)) |#3|) 43 T ELT)))
+(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3828 (|#4| |#2|)) (-15 -3829 (|#2| |#4| (-694))) (-15 -3830 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-495)) (-15 -3831 (|#4| (-350 |#2|))) |%noBranch|)) (-961) (-1155 |#1|) (-600 |#2|) (-1172 |#1|)) (T -1174))
+((-3831 (*1 *2 *3) (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-495)) (-4 *4 (-961)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-600 *5)))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1172 *4)))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1172 *5)))) (-3828 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
+NIL
+(((-1175) (-113)) (T -1175))
+NIL
+(-13 (-10 -7 (-6 -2287)))
+((-2569 (((-85) $ $) NIL T ELT)) (-3832 (((-1090)) 12 T ELT)) (-3243 (((-1073) $) 18 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 11 T ELT) (((-1090) $) 8 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 15 T ELT)))
+(((-1176 |#1|) (-13 (-1013) (-552 (-1090)) (-10 -8 (-15 -3947 ((-1090) $)) (-15 -3832 ((-1090))))) (-1090)) (T -1176))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))) (-3832 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
+((-3839 (($ (-694)) 19 T ELT)) (-3836 (((-630 |#2|) $ $) 41 T ELT)) (-3833 ((|#2| $) 51 T ELT)) (-3834 ((|#2| $) 50 T ELT)) (-3837 ((|#2| $ $) 36 T ELT)) (-3835 (($ $ $) 47 T ELT)) (-3838 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-3840 (($ $ $) 15 T ELT)) (* (($ (-484) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3833 (|#2| |#1|)) (-15 -3834 (|#2| |#1|)) (-15 -3835 (|#1| |#1| |#1|)) (-15 -3836 ((-630 |#2|) |#1| |#1|)) (-15 -3837 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-484) |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3839 (|#1| (-694))) (-15 -3840 (|#1| |#1| |#1|))) (-1178 |#2|) (-1129)) (T -1177))
+NIL
+((-2569 (((-85) $ $) 17 (|has| |#1| (-72)) ELT)) (-3839 (($ (-694)) 122 (|has| |#1| (-23)) ELT)) (-2198 (((-1185) $ (-484) (-484)) 35 (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) 97 T ELT) (((-85) $) 91 (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) 88 (|has| $ (-1035 |#1|)) ELT) (($ $) 87 (-12 (|has| |#1| (-756)) (|has| $ (-1035 |#1|))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) 98 T ELT) (($ $) 92 (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) 47 (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) 55 (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) 70 (|has| $ (-318 |#1|)) ELT)) (-3725 (($) 6 T CONST)) (-2297 (($ $) 89 (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) 99 T ELT)) (-1353 (($ $) 72 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT)) (-3407 (($ |#1| $) 71 (-12 (|has| |#1| (-72)) (|has| $ (-318 |#1|))) ELT) (($ (-1 (-85) |#1|) $) 69 (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 110 (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 107 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 106 T ELT)) (-1576 ((|#1| $ (-484) |#1|) 48 (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) 46 T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) 96 T ELT) (((-484) |#1| $) 95 (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) 94 (|has| |#1| (-72)) ELT)) (-3836 (((-630 |#1|) $ $) 115 (|has| |#1| (-961)) ELT)) (-3615 (($ (-694) |#1|) 65 T ELT)) (-2200 (((-484) $) 38 (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) 81 (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) 100 T ELT) (($ $ $) 93 (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 105 T ELT)) (-3246 (((-85) |#1| $) 109 (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 39 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) 82 (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) 26 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 60 T ELT)) (-3833 ((|#1| $) 112 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3834 ((|#1| $) 113 (-12 (|has| |#1| (-961)) (|has| |#1| (-915))) ELT)) (-3243 (((-1073) $) 20 (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) 57 T ELT) (($ $ $ (-484)) 56 T ELT)) (-2203 (((-583 (-484)) $) 41 T ELT)) (-2204 (((-85) (-484) $) 42 T ELT)) (-3244 (((-1033) $) 19 (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) 37 (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) 68 T ELT)) (-2199 (($ $ |#1|) 36 (|has| $ (-1035 |#1|)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) 103 T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) 22 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) 21 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) 10 T ELT)) (-2202 (((-85) |#1| $) 40 (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) 43 T ELT)) (-3404 (((-85) $) 7 T ELT)) (-3566 (($) 8 T ELT)) (-3801 ((|#1| $ (-484) |#1|) 45 T ELT) ((|#1| $ (-484)) 44 T ELT) (($ $ (-1146 (-484))) 66 T ELT)) (-3837 ((|#1| $ $) 116 (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) 59 T ELT) (($ $ (-1146 (-484))) 58 T ELT)) (-3835 (($ $ $) 114 (|has| |#1| (-961)) ELT)) (-1730 (((-694) |#1| $) 108 (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) 104 T ELT)) (-1734 (($ $ $ (-484)) 90 (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) 9 T ELT)) (-3973 (((-473) $) 73 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 67 T ELT)) (-3803 (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3947 (((-772) $) 15 (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) 102 T ELT)) (-2567 (((-85) $ $) 83 (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) 85 (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) 16 (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) 84 (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) 86 (|has| |#1| (-756)) ELT)) (-3838 (($ $) 121 (|has| |#1| (-21)) ELT) (($ $ $) 120 (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) 123 (|has| |#1| (-25)) ELT)) (* (($ (-484) $) 119 (|has| |#1| (-21)) ELT) (($ |#1| $) 118 (|has| |#1| (-663)) ELT) (($ $ |#1|) 117 (|has| |#1| (-663)) ELT)) (-3958 (((-694) $) 101 T ELT)))
+(((-1178 |#1|) (-113) (-1129)) (T -1178))
+((-3840 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129)))) (-3838 (*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663)))) (-3837 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))) (-3836 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-961)) (-5 *2 (-630 *3)))) (-3835 (*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961)))) (-3833 (*1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3840 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3839 ($ (-694))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3838 ($ $)) (-15 -3838 ($ $ $)) (-15 * ($ (-484) $))) |%noBranch|) (IF (|has| |t#1| (-663)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3837 (|t#1| $ $)) (-15 -3836 ((-630 |t#1|) $ $)) (-15 -3835 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-915)) (IF (|has| |t#1| (-961)) (PROGN (-15 -3834 (|t#1| $)) (-15 -3833 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-72) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-72))) ((-552 (-772)) OR (|has| |#1| (-1013)) (|has| |#1| (-756)) (|has| |#1| (-552 (-772)))) ((-124 |#1|) . T) ((-553 (-473)) |has| |#1| (-553 (-473))) ((-241 (-484) |#1|) . T) ((-241 (-1146 (-484)) $) . T) ((-243 (-484) |#1|) . T) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-318 |#1|) . T) ((-324 |#1|) . T) ((-429 |#1|) . T) ((-538 (-484) |#1|) . T) ((-455 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ((-13) . T) ((-593 |#1|) . T) ((-19 |#1|) . T) ((-756) |has| |#1| (-756)) ((-759) |has| |#1| (-756)) ((-1013) OR (|has| |#1| (-1013)) (|has| |#1| (-756))) ((-1035 |#1|) . T) ((-1129) . T))
+((-2569 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-3839 (($ (-694)) NIL (|has| |#1| (-23)) ELT)) (-3841 (($ (-583 |#1|)) 9 T ELT)) (-2198 (((-1185) $ (-484) (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-1735 (((-85) (-1 (-85) |#1| |#1|) $) NIL T ELT) (((-85) $) NIL (|has| |#1| (-756)) ELT)) (-1733 (($ (-1 (-85) |#1| |#1|) $) NIL (|has| $ (-1035 |#1|)) ELT) (($ $) NIL (-12 (|has| $ (-1035 |#1|)) (|has| |#1| (-756))) ELT)) (-2910 (($ (-1 (-85) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-756)) ELT)) (-3789 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT) ((|#1| $ (-1146 (-484)) |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-3711 (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3725 (($) NIL T CONST)) (-2297 (($ $) NIL (|has| $ (-1035 |#1|)) ELT)) (-2298 (($ $) NIL T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-3407 (($ |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT) (($ (-1 (-85) |#1|) $) NIL (|has| $ (-318 |#1|)) ELT)) (-3843 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (|has| |#1| (-72)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL T ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL T ELT)) (-1576 ((|#1| $ (-484) |#1|) NIL (|has| $ (-6 -3997)) ELT)) (-3113 ((|#1| $ (-484)) NIL T ELT)) (-3420 (((-484) (-1 (-85) |#1|) $) NIL T ELT) (((-484) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-484) |#1| $ (-484)) NIL (|has| |#1| (-72)) ELT)) (-3836 (((-630 |#1|) $ $) NIL (|has| |#1| (-961)) ELT)) (-3615 (($ (-694) |#1|) NIL T ELT)) (-2200 (((-484) $) NIL (|has| (-484) (-756)) ELT)) (-2532 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3519 (($ (-1 (-85) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-2609 (((-583 |#1|) $) 15 T ELT)) (-3246 (((-85) |#1| $) NIL (|has| |#1| (-72)) ELT)) (-2201 (((-484) $) 11 (|has| (-484) (-756)) ELT)) (-2858 (($ $ $) NIL (|has| |#1| (-756)) ELT)) (-3327 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3833 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3834 ((|#1| $) NIL (-12 (|has| |#1| (-915)) (|has| |#1| (-961))) ELT)) (-3243 (((-1073) $) NIL (|has| |#1| (-1013)) ELT)) (-2304 (($ |#1| $ (-484)) NIL T ELT) (($ $ $ (-484)) NIL T ELT)) (-2203 (((-583 (-484)) $) NIL T ELT)) (-2204 (((-85) (-484) $) NIL T ELT)) (-3244 (((-1033) $) NIL (|has| |#1| (-1013)) ELT)) (-3802 ((|#1| $) NIL (|has| (-484) (-756)) ELT)) (-1354 (((-3 |#1| "failed") (-1 (-85) |#1|) $) NIL T ELT)) (-2199 (($ $ |#1|) NIL (|has| $ (-1035 |#1|)) ELT)) (-1731 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-3769 (($ $ (-583 (-249 |#1|))) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-249 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-2202 (((-85) |#1| $) NIL (-12 (|has| $ (-318 |#1|)) (|has| |#1| (-72))) ELT)) (-2205 (((-583 |#1|) $) NIL T ELT)) (-3404 (((-85) $) NIL T ELT)) (-3566 (($) NIL T ELT)) (-3801 ((|#1| $ (-484) |#1|) NIL T ELT) ((|#1| $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3837 ((|#1| $ $) NIL (|has| |#1| (-961)) ELT)) (-2305 (($ $ (-484)) NIL T ELT) (($ $ (-1146 (-484))) NIL T ELT)) (-3835 (($ $ $) NIL (|has| |#1| (-961)) ELT)) (-1730 (((-694) |#1| $) NIL (|has| |#1| (-72)) ELT) (((-694) (-1 (-85) |#1|) $) NIL T ELT)) (-1734 (($ $ $ (-484)) NIL (|has| $ (-1035 |#1|)) ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) 19 (|has| |#1| (-553 (-473))) ELT)) (-3531 (($ (-583 |#1|)) 8 T ELT)) (-3803 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-583 $)) NIL T ELT)) (-3947 (((-772) $) NIL (|has| |#1| (-552 (-772))) ELT)) (-1265 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-1732 (((-85) (-1 (-85) |#1|) $) NIL T ELT)) (-2567 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2568 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3057 (((-85) $ $) NIL (|has| |#1| (-72)) ELT)) (-2685 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-2686 (((-85) $ $) NIL (|has| |#1| (-756)) ELT)) (-3838 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-3840 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-484) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-663)) ELT) (($ $ |#1|) NIL (|has| |#1| (-663)) ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1179 |#1|) (-13 (-1178 |#1|) (-10 -8 (-15 -3841 ($ (-583 |#1|))))) (-1129)) (T -1179))
+((-3841 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3)))))
+((-3842 (((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 13 T ELT)) (-3843 ((|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|) 15 T ELT)) (-3959 (((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)) 30 T ELT) (((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|)) 18 T ELT)))
+(((-1180 |#1| |#2|) (-10 -7 (-15 -3842 ((-1179 |#2|) (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3843 (|#2| (-1 |#2| |#1| |#2|) (-1179 |#1|) |#2|)) (-15 -3959 ((-1179 |#2|) (-1 |#2| |#1|) (-1179 |#1|))) (-15 -3959 ((-3 (-1179 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1179 |#1|)))) (-1129) (-1129)) (T -1180))
+((-3959 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6)))) (-3843 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129)) (-5 *1 (-1180 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+((-3844 (((-408) (-583 (-583 (-854 (-179)))) (-583 (-221))) 22 T ELT) (((-408) (-583 (-583 (-854 (-179))))) 21 T ELT) (((-408) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 20 T ELT)) (-3845 (((-1182) (-583 (-583 (-854 (-179)))) (-583 (-221))) 30 T ELT) (((-1182) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221))) 29 T ELT)) (-3947 (((-1182) (-408)) 46 T ELT)))
+(((-1181) (-10 -7 (-15 -3844 ((-408) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3844 ((-408) (-583 (-583 (-854 (-179)))))) (-15 -3844 ((-408) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3845 ((-1182) (-583 (-583 (-854 (-179)))) (-783) (-783) (-830) (-583 (-221)))) (-15 -3845 ((-1182) (-583 (-583 (-854 (-179)))) (-583 (-221)))) (-15 -3947 ((-1182) (-408))))) (T -1181))
+((-3947 (*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3845 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3845 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181)))) (-3844 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *6 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3863 (((-1073) $ (-1073)) 107 T ELT) (((-1073) $ (-1073) (-1073)) 105 T ELT) (((-1073) $ (-1073) (-583 (-1073))) 104 T ELT)) (-3859 (($) 69 T ELT)) (-3846 (((-1185) $ (-408) (-830)) 54 T ELT)) (-3852 (((-1185) $ (-830) (-1073)) 89 T ELT) (((-1185) $ (-830) (-783)) 90 T ELT)) (-3874 (((-1185) $ (-830) (-330) (-330)) 57 T ELT)) (-3884 (((-1185) $ (-1073)) 84 T ELT)) (-3847 (((-1185) $ (-830) (-1073)) 94 T ELT)) (-3848 (((-1185) $ (-830) (-330) (-330)) 58 T ELT)) (-3885 (((-1185) $ (-830) (-830)) 55 T ELT)) (-3865 (((-1185) $) 85 T ELT)) (-3850 (((-1185) $ (-830) (-1073)) 93 T ELT)) (-3854 (((-1185) $ (-408) (-830)) 41 T ELT)) (-3851 (((-1185) $ (-830) (-1073)) 92 T ELT)) (-3887 (((-583 (-221)) $) 29 T ELT) (($ $ (-583 (-221))) 30 T ELT)) (-3886 (((-1185) $ (-694) (-694)) 52 T ELT)) (-3858 (($ $) 70 T ELT) (($ (-408) (-583 (-221))) 71 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3861 (((-484) $) 48 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3855 (((-1179 (-3 (-408) "undefined")) $) 47 T ELT)) (-3856 (((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-484)) (|:| -3849 (-484)) (|:| |spline| (-484)) (|:| -3880 (-484)) (|:| |axesColor| (-783)) (|:| -3852 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $) 46 T ELT)) (-3857 (((-1185) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484)) 83 T ELT)) (-3860 (((-583 (-854 (-179))) $) NIL T ELT)) (-3853 (((-408) $ (-830)) 43 T ELT)) (-3883 (((-1185) $ (-694) (-694) (-830) (-830)) 50 T ELT)) (-3881 (((-1185) $ (-1073)) 95 T ELT)) (-3849 (((-1185) $ (-830) (-1073)) 91 T ELT)) (-3947 (((-772) $) 102 T ELT)) (-3862 (((-1185) $) 96 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3880 (((-1185) $ (-830) (-1073)) 87 T ELT) (((-1185) $ (-830) (-783)) 88 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1182) (-13 (-1013) (-10 -8 (-15 -3860 ((-583 (-854 (-179))) $)) (-15 -3859 ($)) (-15 -3858 ($ $)) (-15 -3887 ((-583 (-221)) $)) (-15 -3887 ($ $ (-583 (-221)))) (-15 -3858 ($ (-408) (-583 (-221)))) (-15 -3857 ((-1185) $ (-830) (-179) (-179) (-179) (-179) (-484) (-484) (-484) (-484) (-783) (-484) (-783) (-484))) (-15 -3856 ((-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-484)) (|:| -3849 (-484)) (|:| |spline| (-484)) (|:| -3880 (-484)) (|:| |axesColor| (-783)) (|:| -3852 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))) $)) (-15 -3855 ((-1179 (-3 (-408) "undefined")) $)) (-15 -3884 ((-1185) $ (-1073))) (-15 -3854 ((-1185) $ (-408) (-830))) (-15 -3853 ((-408) $ (-830))) (-15 -3880 ((-1185) $ (-830) (-1073))) (-15 -3880 ((-1185) $ (-830) (-783))) (-15 -3852 ((-1185) $ (-830) (-1073))) (-15 -3852 ((-1185) $ (-830) (-783))) (-15 -3851 ((-1185) $ (-830) (-1073))) (-15 -3850 ((-1185) $ (-830) (-1073))) (-15 -3849 ((-1185) $ (-830) (-1073))) (-15 -3881 ((-1185) $ (-1073))) (-15 -3862 ((-1185) $)) (-15 -3883 ((-1185) $ (-694) (-694) (-830) (-830))) (-15 -3848 ((-1185) $ (-830) (-330) (-330))) (-15 -3874 ((-1185) $ (-830) (-330) (-330))) (-15 -3847 ((-1185) $ (-830) (-1073))) (-15 -3886 ((-1185) $ (-694) (-694))) (-15 -3846 ((-1185) $ (-408) (-830))) (-15 -3885 ((-1185) $ (-830) (-830))) (-15 -3863 ((-1073) $ (-1073))) (-15 -3863 ((-1073) $ (-1073) (-1073))) (-15 -3863 ((-1073) $ (-1073) (-583 (-1073)))) (-15 -3865 ((-1185) $)) (-15 -3861 ((-484) $)) (-15 -3947 ((-772) $))))) (T -1182))
+((-3947 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1182)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1182)))) (-3859 (*1 *1) (-5 *1 (-1182))) (-3858 (*1 *1 *1) (-5 *1 (-1182))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182)))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-583 (-221))) (-5 *1 (-1182)))) (-3857 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-1179 (-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)) (|:| -3851 (-484)) (|:| -3849 (-484)) (|:| |spline| (-484)) (|:| -3880 (-484)) (|:| |axesColor| (-783)) (|:| -3852 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484))))) (-5 *1 (-1182)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3853 (*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-408)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3880 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3852 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3851 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3849 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3848 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3874 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3847 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3846 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3875 (((-1185) $ (-330)) 168 T ELT) (((-1185) $ (-330) (-330) (-330)) 169 T ELT)) (-3863 (((-1073) $ (-1073)) 177 T ELT) (((-1073) $ (-1073) (-1073)) 175 T ELT) (((-1073) $ (-1073) (-583 (-1073))) 174 T ELT)) (-3891 (($) 67 T ELT)) (-3882 (((-1185) $ (-330) (-330) (-330) (-330) (-330)) 140 T ELT) (((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $) 138 T ELT) (((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) 139 T ELT) (((-1185) $ (-484) (-484) (-330) (-330) (-330)) 143 T ELT) (((-1185) $ (-330) (-330)) 144 T ELT) (((-1185) $ (-330) (-330) (-330)) 151 T ELT)) (-3894 (((-330)) 121 T ELT) (((-330) (-330)) 122 T ELT)) (-3896 (((-330)) 116 T ELT) (((-330) (-330)) 118 T ELT)) (-3895 (((-330)) 119 T ELT) (((-330) (-330)) 120 T ELT)) (-3892 (((-330)) 125 T ELT) (((-330) (-330)) 126 T ELT)) (-3893 (((-330)) 123 T ELT) (((-330) (-330)) 124 T ELT)) (-3874 (((-1185) $ (-330) (-330)) 170 T ELT)) (-3884 (((-1185) $ (-1073)) 152 T ELT)) (-3889 (((-1047 (-179)) $) 68 T ELT) (($ $ (-1047 (-179))) 69 T ELT)) (-3870 (((-1185) $ (-1073)) 186 T ELT)) (-3869 (((-1185) $ (-1073)) 187 T ELT)) (-3876 (((-1185) $ (-330) (-330)) 150 T ELT) (((-1185) $ (-484) (-484)) 167 T ELT)) (-3885 (((-1185) $ (-830) (-830)) 159 T ELT)) (-3865 (((-1185) $) 136 T ELT)) (-3873 (((-1185) $ (-1073)) 185 T ELT)) (-3878 (((-1185) $ (-1073)) 133 T ELT)) (-3887 (((-583 (-221)) $) 70 T ELT) (($ $ (-583 (-221))) 71 T ELT)) (-3886 (((-1185) $ (-694) (-694)) 158 T ELT)) (-3888 (((-1185) $ (-694) (-854 (-179))) 192 T ELT)) (-3890 (($ $) 73 T ELT) (($ (-1047 (-179)) (-1073)) 74 T ELT) (($ (-1047 (-179)) (-583 (-221))) 75 T ELT)) (-3867 (((-1185) $ (-330) (-330) (-330)) 130 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3861 (((-484) $) 127 T ELT)) (-3866 (((-1185) $ (-330)) 172 T ELT)) (-3871 (((-1185) $ (-330)) 190 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3872 (((-1185) $ (-330)) 189 T ELT)) (-3877 (((-1185) $ (-1073)) 135 T ELT)) (-3883 (((-1185) $ (-694) (-694) (-830) (-830)) 157 T ELT)) (-3879 (((-1185) $ (-1073)) 132 T ELT)) (-3881 (((-1185) $ (-1073)) 134 T ELT)) (-3864 (((-1185) $ (-130) (-130)) 156 T ELT)) (-3947 (((-772) $) 165 T ELT)) (-3862 (((-1185) $) 137 T ELT)) (-3868 (((-1185) $ (-1073)) 188 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3880 (((-1185) $ (-1073)) 131 T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1183) (-13 (-1013) (-10 -8 (-15 -3896 ((-330))) (-15 -3896 ((-330) (-330))) (-15 -3895 ((-330))) (-15 -3895 ((-330) (-330))) (-15 -3894 ((-330))) (-15 -3894 ((-330) (-330))) (-15 -3893 ((-330))) (-15 -3893 ((-330) (-330))) (-15 -3892 ((-330))) (-15 -3892 ((-330) (-330))) (-15 -3891 ($)) (-15 -3890 ($ $)) (-15 -3890 ($ (-1047 (-179)) (-1073))) (-15 -3890 ($ (-1047 (-179)) (-583 (-221)))) (-15 -3889 ((-1047 (-179)) $)) (-15 -3889 ($ $ (-1047 (-179)))) (-15 -3888 ((-1185) $ (-694) (-854 (-179)))) (-15 -3887 ((-583 (-221)) $)) (-15 -3887 ($ $ (-583 (-221)))) (-15 -3886 ((-1185) $ (-694) (-694))) (-15 -3885 ((-1185) $ (-830) (-830))) (-15 -3884 ((-1185) $ (-1073))) (-15 -3883 ((-1185) $ (-694) (-694) (-830) (-830))) (-15 -3882 ((-1185) $ (-330) (-330) (-330) (-330) (-330))) (-15 -3882 ((-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))) $)) (-15 -3882 ((-1185) $ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179))))) (-15 -3882 ((-1185) $ (-484) (-484) (-330) (-330) (-330))) (-15 -3882 ((-1185) $ (-330) (-330))) (-15 -3882 ((-1185) $ (-330) (-330) (-330))) (-15 -3881 ((-1185) $ (-1073))) (-15 -3880 ((-1185) $ (-1073))) (-15 -3879 ((-1185) $ (-1073))) (-15 -3878 ((-1185) $ (-1073))) (-15 -3877 ((-1185) $ (-1073))) (-15 -3876 ((-1185) $ (-330) (-330))) (-15 -3876 ((-1185) $ (-484) (-484))) (-15 -3875 ((-1185) $ (-330))) (-15 -3875 ((-1185) $ (-330) (-330) (-330))) (-15 -3874 ((-1185) $ (-330) (-330))) (-15 -3873 ((-1185) $ (-1073))) (-15 -3872 ((-1185) $ (-330))) (-15 -3871 ((-1185) $ (-330))) (-15 -3870 ((-1185) $ (-1073))) (-15 -3869 ((-1185) $ (-1073))) (-15 -3868 ((-1185) $ (-1073))) (-15 -3867 ((-1185) $ (-330) (-330) (-330))) (-15 -3866 ((-1185) $ (-330))) (-15 -3865 ((-1185) $)) (-15 -3864 ((-1185) $ (-130) (-130))) (-15 -3863 ((-1073) $ (-1073))) (-15 -3863 ((-1073) $ (-1073) (-1073))) (-15 -3863 ((-1073) $ (-1073) (-583 (-1073)))) (-15 -3862 ((-1185) $)) (-15 -3861 ((-484) $))))) (T -1183))
+((-3896 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3896 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3895 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3895 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3893 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))) (-3891 (*1 *1) (-5 *1 (-1183))) (-3890 (*1 *1 *1) (-5 *1 (-1183))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183)))) (-3890 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1183)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3889 (*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))) (-3888 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))) (-3887 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))) (-3886 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3883 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179)) (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179)) (|:| |deltaX| (-179)) (|:| |deltaY| (-179)))) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-484)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3881 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3879 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3878 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3876 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3875 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3873 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3872 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3870 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3869 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3868 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3867 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3864 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3863 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1183)))))
+((-3905 (((-583 (-1073)) (-583 (-1073))) 103 T ELT) (((-583 (-1073))) 96 T ELT)) (-3906 (((-583 (-1073))) 94 T ELT)) (-3903 (((-583 (-830)) (-583 (-830))) 69 T ELT) (((-583 (-830))) 64 T ELT)) (-3902 (((-583 (-694)) (-583 (-694))) 61 T ELT) (((-583 (-694))) 55 T ELT)) (-3904 (((-1185)) 71 T ELT)) (-3908 (((-830) (-830)) 87 T ELT) (((-830)) 86 T ELT)) (-3907 (((-830) (-830)) 85 T ELT) (((-830)) 84 T ELT)) (-3900 (((-783) (-783)) 81 T ELT) (((-783)) 80 T ELT)) (-3910 (((-179)) 91 T ELT) (((-179) (-330)) 93 T ELT)) (-3909 (((-830)) 88 T ELT) (((-830) (-830)) 89 T ELT)) (-3901 (((-830) (-830)) 83 T ELT) (((-830)) 82 T ELT)) (-3897 (((-783) (-783)) 75 T ELT) (((-783)) 73 T ELT)) (-3898 (((-783) (-783)) 77 T ELT) (((-783)) 76 T ELT)) (-3899 (((-783) (-783)) 79 T ELT) (((-783)) 78 T ELT)))
+(((-1184) (-10 -7 (-15 -3897 ((-783))) (-15 -3897 ((-783) (-783))) (-15 -3898 ((-783))) (-15 -3898 ((-783) (-783))) (-15 -3899 ((-783))) (-15 -3899 ((-783) (-783))) (-15 -3900 ((-783))) (-15 -3900 ((-783) (-783))) (-15 -3901 ((-830))) (-15 -3901 ((-830) (-830))) (-15 -3902 ((-583 (-694)))) (-15 -3902 ((-583 (-694)) (-583 (-694)))) (-15 -3903 ((-583 (-830)))) (-15 -3903 ((-583 (-830)) (-583 (-830)))) (-15 -3904 ((-1185))) (-15 -3905 ((-583 (-1073)))) (-15 -3905 ((-583 (-1073)) (-583 (-1073)))) (-15 -3906 ((-583 (-1073)))) (-15 -3907 ((-830))) (-15 -3908 ((-830))) (-15 -3907 ((-830) (-830))) (-15 -3908 ((-830) (-830))) (-15 -3909 ((-830) (-830))) (-15 -3909 ((-830))) (-15 -3910 ((-179) (-330))) (-15 -3910 ((-179))))) (T -1184))
+((-3910 (*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184)))) (-3909 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3908 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3907 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3906 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3905 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))) (-3904 (*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))) (-3903 (*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))) (-3902 (*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))) (-3901 (*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3901 (*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))) (-3900 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3900 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3899 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3898 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3898 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))) (-3897 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))))
+((-3911 (($) 6 T ELT)) (-3947 (((-772) $) 9 T ELT)))
+(((-1185) (-13 (-552 (-772)) (-10 -8 (-15 -3911 ($))))) (T -1185))
+((-3911 (*1 *1) (-5 *1 (-1185))))
+((-3950 (($ $ |#2|) 10 T ELT)))
+(((-1186 |#1| |#2|) (-10 -7 (-15 -3950 (|#1| |#1| |#2|))) (-1187 |#2|) (-312)) (T -1186))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-1214 (((-85) $ $) 20 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3912 (((-107)) 39 T ELT)) (-3947 (((-772) $) 13 T ELT)) (-1265 (((-85) $ $) 6 T ELT)) (-2661 (($) 24 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ |#1|) 40 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ |#1| $) 33 T ELT) (($ $ |#1|) 37 T ELT)))
+(((-1187 |#1|) (-113) (-312)) (T -1187))
+((-3950 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312)))) (-3912 (*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
+(-13 (-654 |t#1|) (-10 -8 (-15 -3950 ($ $ |t#1|)) (-15 -3912 ((-107)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-590 |#1|) . T) ((-582 |#1|) . T) ((-654 |#1|) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-1013) . T) ((-1129) . T))
+((-3917 (((-583 (-1122 |#1|)) (-1090) (-1122 |#1|)) 83 T ELT)) (-3915 (((-1069 (-1069 (-857 |#1|))) (-1090) (-1069 (-857 |#1|))) 63 T ELT)) (-3918 (((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-694) (-1122 |#1|) (-1069 (-1122 |#1|))) 74 T ELT)) (-3913 (((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694)) 65 T ELT)) (-3916 (((-1 (-1085 (-857 |#1|)) (-857 |#1|)) (-1090)) 32 T ELT)) (-3914 (((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694)) 64 T ELT)))
+(((-1188 |#1|) (-10 -7 (-15 -3913 ((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694))) (-15 -3914 ((-1 (-1069 (-857 |#1|)) (-1069 (-857 |#1|))) (-694))) (-15 -3915 ((-1069 (-1069 (-857 |#1|))) (-1090) (-1069 (-857 |#1|)))) (-15 -3916 ((-1 (-1085 (-857 |#1|)) (-857 |#1|)) (-1090))) (-15 -3917 ((-583 (-1122 |#1|)) (-1090) (-1122 |#1|))) (-15 -3918 ((-1 (-1069 (-1122 |#1|)) (-1069 (-1122 |#1|))) (-694) (-1122 |#1|) (-1069 (-1122 |#1|))))) (-312)) (T -1188))
+((-3918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1122 *6)) (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4)))) (-3917 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-583 (-1122 *5))) (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-857 *4)) (-857 *4))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-857 *5)))) (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-857 *5))))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4)))) (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
+((-3920 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|) 80 T ELT)) (-3919 (((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|)))) 79 T ELT)))
+(((-1189 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3919 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))))) (-15 -3920 ((-2 (|:| -2012 (-630 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-630 |#2|))) |#2|))) (-299) (-1155 |#1|) (-1155 |#2|) (-353 |#2| |#3|)) (T -1189))
+((-3920 (*1 *2 *3) (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3)) (-5 *2 (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3)))) (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))) (-3919 (*1 *2) (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4)))) (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3921 (((-1049) $) 12 T ELT)) (-3922 (((-1049) $) 10 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 18 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1190) (-13 (-995) (-10 -8 (-15 -3922 ((-1049) $)) (-15 -3921 ((-1049) $))))) (T -1190))
+((-3922 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3923 (((-1049) $) 11 T ELT)) (-3947 (((-772) $) 17 T ELT) (($ (-1095)) NIL T ELT) (((-1095) $) NIL T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)))
+(((-1191) (-13 (-995) (-10 -8 (-15 -3923 ((-1049) $))))) (T -1191))
+((-3923 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 59 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 82 T ELT) (($ (-484)) NIL T ELT) (($ |#4|) 66 T ELT) ((|#4| $) 71 T ELT) (($ |#1|) NIL (|has| |#1| (-146)) ELT)) (-3127 (((-694)) NIL T CONST)) (-3924 (((-1185) (-694)) 16 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 36 T CONST)) (-2667 (($) 85 T CONST)) (-3057 (((-85) $ $) 88 T ELT)) (-3950 (((-3 $ #1#) $ $) NIL (|has| |#1| (-312)) ELT)) (-3838 (($ $) 90 T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 64 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 92 T ELT) (($ |#1| $) NIL (|has| |#1| (-146)) ELT) (($ $ |#1|) NIL (|has| |#1| (-146)) ELT)))
+(((-1192 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-430 |#4|) (-10 -8 (IF (|has| |#1| (-146)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3950 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3924 ((-1185) (-694))))) (-961) (-756) (-717) (-861 |#1| |#3| |#2|) (-583 |#2|) (-583 (-694)) (-694)) (T -1192))
+((-3950 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717)) (-14 *6 (-583 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717)) (-14 *8 (-583 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3682 (((-583 (-2 (|:| -3862 $) (|:| -1702 (-583 |#4|)))) (-583 |#4|)) NIL T ELT)) (-3683 (((-583 $) (-583 |#4|)) 95 T ELT)) (-3082 (((-583 |#3|) $) NIL T ELT)) (-2909 (((-85) $) NIL T ELT)) (-2900 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3694 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3689 ((|#4| |#4| $) NIL T ELT)) (-2910 (((-2 (|:| |under| $) (|:| -3131 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3711 (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-3725 (($) NIL T CONST)) (-2905 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-2907 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2906 (((-85) $ $) NIL (|has| |#1| (-495)) ELT)) (-2908 (((-85) $) NIL (|has| |#1| (-495)) ELT)) (-3690 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) 31 T ELT)) (-2901 (((-583 |#4|) (-583 |#4|) $) 28 (|has| |#1| (-495)) ELT)) (-2902 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-495)) ELT)) (-3158 (((-3 $ #1#) (-583 |#4|)) NIL T ELT)) (-3157 (($ (-583 |#4|)) NIL T ELT)) (-3800 (((-3 $ #1#) $) 77 T ELT)) (-3686 ((|#4| |#4| $) 82 T ELT)) (-1353 (($ $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT)) (-3407 (($ |#4| $) NIL (-12 (|has| $ (-318 |#4|)) (|has| |#4| (-72))) ELT) (($ (-1 (-85) |#4|) $) NIL (|has| $ (-318 |#4|)) ELT)) (-2903 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3695 (((-85) |#4| $ (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3684 ((|#4| |#4| $) NIL T ELT)) (-3843 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (|has| |#4| (-72)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL T ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL T ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3697 (((-2 (|:| -3862 (-583 |#4|)) (|:| -1702 (-583 |#4|))) $) NIL T ELT)) (-3696 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3181 ((|#3| $) 83 T ELT)) (-2609 (((-583 |#4|) $) 32 T ELT)) (-3246 (((-85) |#4| $) NIL (|has| |#4| (-72)) ELT)) (-3927 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-583 |#4|)) 38 T ELT)) (-3327 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3959 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2915 (((-583 |#3|) $) NIL T ELT)) (-2914 (((-85) |#3| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3799 (((-3 |#4| #1#) $) NIL T ELT)) (-3698 (((-583 |#4|) $) 53 T ELT)) (-3692 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3687 ((|#4| |#4| $) 81 T ELT)) (-3700 (((-85) $ $) 92 T ELT)) (-2904 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-495)) ELT)) (-3693 (((-85) |#4| $) NIL T ELT) (((-85) $) NIL T ELT)) (-3688 ((|#4| |#4| $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3802 (((-3 |#4| #1#) $) 76 T ELT)) (-1354 (((-3 |#4| #1#) (-1 (-85) |#4|) $) NIL T ELT)) (-3680 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-3770 (($ $ |#4|) NIL T ELT)) (-1731 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3769 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-249 |#4|)) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT) (($ $ (-583 (-249 |#4|))) NIL (-12 (|has| |#4| (-260 |#4|)) (|has| |#4| (-1013))) ELT)) (-1222 (((-85) $ $) NIL T ELT)) (-3404 (((-85) $) 74 T ELT)) (-3566 (($) 45 T ELT)) (-3949 (((-694) $) NIL T ELT)) (-1730 (((-694) |#4| $) NIL (|has| |#4| (-72)) ELT) (((-694) (-1 (-85) |#4|) $) NIL T ELT)) (-3401 (($ $) NIL T ELT)) (-3973 (((-473) $) NIL (|has| |#4| (-553 (-473))) ELT)) (-3531 (($ (-583 |#4|)) NIL T ELT)) (-2911 (($ $ |#3|) NIL T ELT)) (-2913 (($ $ |#3|) NIL T ELT)) (-3685 (($ $) NIL T ELT)) (-2912 (($ $ |#3|) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (((-583 |#4|) $) 62 T ELT)) (-3679 (((-694) $) NIL (|has| |#3| (-320)) ELT)) (-3926 (((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43 T ELT) (((-3 $ #1#) (-583 |#4|)) 44 T ELT)) (-3925 (((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72 T ELT) (((-583 $) (-583 |#4|)) 73 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3699 (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3324 (-583 |#4|))) #1#) (-583 |#4|) (-1 (-85) |#4|) (-1 (-85) |#4| |#4|)) NIL T ELT)) (-3691 (((-85) $ (-1 (-85) |#4| (-583 |#4|))) NIL T ELT)) (-1732 (((-85) (-1 (-85) |#4|) $) NIL T ELT)) (-3681 (((-583 |#3|) $) NIL T ELT)) (-3934 (((-85) |#3| $) NIL T ELT)) (-3057 (((-85) $ $) NIL T ELT)) (-3958 (((-694) $) NIL T ELT)))
+(((-1193 |#1| |#2| |#3| |#4|) (-13 (-1124 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3927 ((-3 $ #1="failed") (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3927 ((-3 $ #1#) (-583 |#4|))) (-15 -3926 ((-3 $ #1#) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3926 ((-3 $ #1#) (-583 |#4|))) (-15 -3925 ((-583 $) (-583 |#4|) (-1 (-85) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3925 ((-583 $) (-583 |#4|))))) (-495) (-717) (-756) (-977 |#1| |#2| |#3|)) (T -1193))
+((-3927 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3927 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3926 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))) (-3926 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6)))) (-3925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756)) (-5 *2 (-583 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 (-1193 *4 *5 *6 *7))) (-5 *1 (-1193 *4 *5 *6 *7)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3725 (($) 23 T CONST)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#1|) 53 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ |#1|) 55 T ELT) (($ |#1| $) 54 T ELT)))
+(((-1194 |#1|) (-113) (-961)) (T -1194))
+NIL
+(-13 (-961) (-82 |t#1| |t#1|) (-555 |t#1|) (-10 -7 (IF (|has| |t#1| (-146)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-146)) ((-72) . T) ((-82 |#1| |#1|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 |#1|) |has| |#1| (-146)) ((-654 |#1|) |has| |#1| (-146)) ((-663) . T) ((-963 |#1|) . T) ((-968 |#1|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T))
+((-2569 (((-85) $ $) 69 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-583 |#1|) $) 54 T ELT)) (-3948 (($ $ (-694)) 47 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ (-694)) 25 (|has| |#2| (-146)) ELT) (($ $ $) 26 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ $) 72 T ELT) (($ $ (-739 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-3158 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3157 (((-739 |#1|) $) NIL T ELT)) (-3960 (($ $) 40 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-739 |#1|) |#2|) 39 T ELT)) (-3937 (($ $) 41 T ELT)) (-3942 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 13 T ELT)) (-3956 (((-739 |#1|) $) NIL T ELT)) (-3957 (((-739 |#1|) $) 42 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ $) 71 T ELT) (($ $ (-739 |#1|)) 60 T ELT) (($ $ |#1|) 64 T ELT)) (-1752 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-739 |#1|) $) 36 T ELT)) (-3175 ((|#2| $) 38 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3949 (((-694) $) 44 T ELT)) (-3954 (((-85) $) 48 T ELT)) (-3953 ((|#2| $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-739 |#1|)) 31 T ELT) (($ |#1|) 32 T ELT) (($ |#2|) NIL T ELT) (($ (-484)) NIL T ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3955 ((|#2| $ $) 78 T ELT) ((|#2| $ (-739 |#1|)) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 14 T CONST)) (-2667 (($) 20 T CONST)) (-2666 (((-583 (-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3057 (((-85) $ $) 45 T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-694)) NIL T ELT) (($ $ (-830)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ |#2| $) 28 T ELT) (($ $ |#2|) 70 T ELT) (($ |#2| (-739 |#1|)) NIL T ELT) (($ |#1| $) 34 T ELT) (($ $ $) NIL T ELT)))
+(((-1195 |#1| |#2|) (-13 (-335 |#2| (-739 |#1|)) (-1202 |#1| |#2|)) (-756) (-961)) (T -1195))
+NIL
+((-3943 ((|#3| |#3| (-694)) 28 T ELT)) (-3944 ((|#3| |#3| (-694)) 34 T ELT)) (-3928 ((|#3| |#3| |#3| (-694)) 35 T ELT)))
+(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -3944 (|#3| |#3| (-694))) (-15 -3943 (|#3| |#3| (-694))) (-15 -3928 (|#3| |#3| |#3| (-694)))) (-13 (-961) (-654 (-350 (-484)))) (-756) (-1202 |#2| |#1|)) (T -1196))
+((-3928 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3943 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))) (-3944 (*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756)) (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))))
+((-3933 (((-85) $) 15 T ELT)) (-3934 (((-85) $) 14 T ELT)) (-3929 (($ $) 19 T ELT) (($ $ (-694)) 21 T ELT)))
+(((-1197 |#1| |#2|) (-10 -7 (-15 -3929 (|#1| |#1| (-694))) (-15 -3929 (|#1| |#1|)) (-15 -3933 ((-85) |#1|)) (-15 -3934 ((-85) |#1|))) (-1198 |#2|) (-312)) (T -1197))
+NIL
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-2064 (((-2 (|:| -1775 $) (|:| -3983 $) (|:| |associate| $)) $) 55 T ELT)) (-2063 (($ $) 54 T ELT)) (-2061 (((-85) $) 52 T ELT)) (-3933 (((-85) $) 114 T ELT)) (-3930 (((-694)) 110 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3776 (($ $) 91 T ELT)) (-3972 (((-348 $) $) 90 T ELT)) (-1608 (((-85) $ $) 75 T ELT)) (-3725 (($) 23 T CONST)) (-3158 (((-3 |#1| "failed") $) 121 T ELT)) (-3157 ((|#1| $) 122 T ELT)) (-2565 (($ $ $) 71 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-2564 (($ $ $) 72 T ELT)) (-2742 (((-2 (|:| -3955 (-583 $)) (|:| -2409 $)) (-583 $)) 66 T ELT)) (-1767 (($ $ (-694)) 107 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT) (($ $) 106 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3724 (((-85) $) 89 T ELT)) (-3773 (((-743 (-830)) $) 104 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-1605 (((-3 (-583 $) #1="failed") (-583 $) $) 68 T ELT)) (-1894 (($ $ $) 60 T ELT) (($ (-583 $)) 59 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-2485 (($ $) 88 T ELT)) (-3932 (((-85) $) 113 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-2709 (((-1085 $) (-1085 $) (-1085 $)) 58 T ELT)) (-3145 (($ $ $) 62 T ELT) (($ (-583 $)) 61 T ELT)) (-3733 (((-348 $) $) 92 T ELT)) (-3931 (((-743 (-830))) 111 T ELT)) (-1606 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2409 $)) $ $) 70 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 69 T ELT)) (-3467 (((-3 $ "failed") $ $) 56 T ELT)) (-2741 (((-632 (-583 $)) (-583 $) $) 65 T ELT)) (-1607 (((-694) $) 74 T ELT)) (-2880 (((-2 (|:| -1972 $) (|:| -2903 $)) $ $) 73 T ELT)) (-1768 (((-3 (-694) "failed") $ $) 105 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3912 (((-107)) 119 T ELT)) (-3949 (((-743 (-830)) $) 112 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ $) 57 T ELT) (($ (-350 (-484))) 84 T ELT) (($ |#1|) 120 T ELT)) (-2703 (((-632 $) $) 103 (OR (|has| |#1| (-118)) (|has| |#1| (-320))) ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-2062 (((-85) $ $) 53 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-3934 (((-85) $) 115 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3929 (($ $) 109 (|has| |#1| (-320)) ELT) (($ $ (-694)) 108 (|has| |#1| (-320)) ELT)) (-3057 (((-85) $ $) 8 T ELT)) (-3950 (($ $ $) 83 T ELT) (($ $ |#1|) 118 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT) (($ $ (-484)) 87 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ $ (-350 (-484))) 86 T ELT) (($ (-350 (-484)) $) 85 T ELT) (($ $ |#1|) 117 T ELT) (($ |#1| $) 116 T ELT)))
+(((-1198 |#1|) (-113) (-312)) (T -1198))
+((-3934 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3931 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))) (-3930 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-694)))) (-3929 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320)))))
+(-13 (-312) (-950 |t#1|) (-1187 |t#1|) (-10 -8 (IF (|has| |t#1| (-120)) (-6 (-120)) |%noBranch|) (IF (|has| |t#1| (-118)) (-6 (-345)) |%noBranch|) (-15 -3934 ((-85) $)) (-15 -3933 ((-85) $)) (-15 -3932 ((-85) $)) (-15 -3949 ((-743 (-830)) $)) (-15 -3931 ((-743 (-830)))) (-15 -3930 ((-694))) (IF (|has| |t#1| (-320)) (PROGN (-6 (-345)) (-15 -3929 ($ $)) (-15 -3929 ($ $ (-694)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-350 (-484))) . T) ((-38 $) . T) ((-72) . T) ((-82 (-350 (-484)) (-350 (-484))) . T) ((-82 |#1| |#1|) . T) ((-82 $ $) . T) ((-104) . T) ((-118) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-120) |has| |#1| (-120)) ((-555 (-350 (-484))) . T) ((-555 (-484)) . T) ((-555 |#1|) . T) ((-555 $) . T) ((-552 (-772)) . T) ((-146) . T) ((-201) . T) ((-246) . T) ((-258) . T) ((-312) . T) ((-345) OR (|has| |#1| (-320)) (|has| |#1| (-118))) ((-392) . T) ((-495) . T) ((-13) . T) ((-588 (-350 (-484))) . T) ((-588 (-484)) . T) ((-588 |#1|) . T) ((-588 $) . T) ((-590 (-350 (-484))) . T) ((-590 |#1|) . T) ((-590 $) . T) ((-582 (-350 (-484))) . T) ((-582 |#1|) . T) ((-582 $) . T) ((-654 (-350 (-484))) . T) ((-654 |#1|) . T) ((-654 $) . T) ((-663) . T) ((-832) . T) ((-950 |#1|) . T) ((-963 (-350 (-484))) . T) ((-963 |#1|) . T) ((-963 $) . T) ((-968 (-350 (-484))) . T) ((-968 |#1|) . T) ((-968 $) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1134) . T) ((-1187 |#1|) . T))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-583 |#1|) $) 55 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3157 (((-739 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-739 |#1|) $) 76 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
+(((-1199 |#1| |#2|) (-113) (-756) (-961)) (T -1199))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))) (-3955 (*1 *2 *1 *3) (-12 (-5 *3 (-739 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3941 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3941 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3941 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3940 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3940 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3939 (*1 *1 *2 *3) (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-961)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3937 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3947 (*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3954 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))) (-3951 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-4 *4 (-146)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+(-13 (-961) (-1194 |t#2|) (-950 (-739 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3956 ((-739 |t#1|) $)) (-15 -3942 ((-2 (|:| |k| (-739 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3955 (|t#2| $ (-739 |t#1|))) (-15 -3955 (|t#2| $ $)) (-15 -3941 ($ $ |t#1|)) (-15 -3941 ($ $ (-739 |t#1|))) (-15 -3941 ($ $ $)) (-15 -3940 ($ $ |t#1|)) (-15 -3940 ($ $ (-739 |t#1|))) (-15 -3940 ($ $ $)) (-15 -3939 ($ (-739 |t#1|) |t#2|)) (-15 -3938 ((-85) $)) (-15 -3937 ($ $)) (-15 -3947 ($ |t#1|)) (-15 -3954 ((-85) $)) (-15 -3953 (|t#2| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (IF (|has| |t#2| (-146)) (PROGN (-15 -3936 ($ $ $)) (-15 -3936 ($ $ (-694)))) |%noBranch|) (-15 -3959 ($ (-1 |t#2| |t#2|) $)) (-15 -3935 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -3989)) (-6 -3989) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1194 |#2|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-583 |#1|) $) 99 T ELT)) (-3948 (($ $ (-694)) 103 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#2| (-146)) ELT) (($ $ (-694)) NIL (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-739 |#1|) #1#) $) NIL T ELT) (((-3 (-803 |#1|) #1#) $) NIL T ELT)) (-3157 (((-739 |#1|) $) NIL T ELT) (((-803 |#1|) $) NIL T ELT)) (-3960 (($ $) 102 T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) 90 T ELT)) (-3951 (($ $) 93 T ELT)) (-3945 (($ $ $ (-694)) 104 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-739 |#1|) |#2|) NIL T ELT) (($ (-803 |#1|) |#2|) 28 T ELT)) (-3937 (($ $) 120 T ELT)) (-3942 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-739 |#1|) $) NIL T ELT)) (-3957 (((-739 |#1|) $) NIL T ELT)) (-3959 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3941 (($ $ |#1|) NIL T ELT) (($ $ (-739 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3943 (($ $ (-694)) 113 (|has| |#2| (-654 (-350 (-484)))) ELT)) (-1752 (((-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-2895 (((-803 |#1|) $) 84 T ELT)) (-3175 ((|#2| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3944 (($ $ (-694)) 110 (|has| |#2| (-654 (-350 (-484)))) ELT)) (-3949 (((-694) $) 100 T ELT)) (-3954 (((-85) $) 85 T ELT)) (-3953 ((|#2| $) 88 T ELT)) (-3947 (((-772) $) 70 T ELT) (($ (-484)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-739 |#1|)) NIL T ELT) (($ |#1|) 72 T ELT) (($ (-803 |#1|)) NIL T ELT) (($ (-606 |#1| |#2|)) 47 T ELT) (((-1195 |#1| |#2|) $) 77 T ELT) (((-1204 |#1| |#2|) $) 82 T ELT)) (-3818 (((-583 |#2|) $) NIL T ELT)) (-3678 ((|#2| $ (-803 |#1|)) NIL T ELT)) (-3955 ((|#2| $ (-739 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 21 T CONST)) (-2667 (($) 27 T CONST)) (-2666 (((-583 (-2 (|:| |k| (-803 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3946 (((-3 (-606 |#1| |#2|) #1#) $) 119 T ELT)) (-3057 (((-85) $ $) 78 T ELT)) (-3838 (($ $) 112 T ELT) (($ $ $) 111 T ELT)) (-3840 (($ $ $) 20 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-803 |#1|)) NIL T ELT)))
+(((-1200 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-335 |#2| (-803 |#1|)) (-10 -8 (-15 -3947 ($ (-606 |#1| |#2|))) (-15 -3947 ((-1195 |#1| |#2|) $)) (-15 -3947 ((-1204 |#1| |#2|) $)) (-15 -3946 ((-3 (-606 |#1| |#2|) "failed") $)) (-15 -3945 ($ $ $ (-694))) (IF (|has| |#2| (-654 (-350 (-484)))) (PROGN (-15 -3944 ($ $ (-694))) (-15 -3943 ($ $ (-694)))) |%noBranch|))) (-756) (-146)) (T -1200))
+((-3947 (*1 *1 *2) (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *1 (-1200 *3 *4)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3946 (*1 *2 *1) (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3945 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))) (-3944 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484)))) (-4 *3 (-756)) (-4 *4 (-146)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-583 (-1090)) $) NIL T ELT)) (-3963 (($ (-1195 (-1090) |#1|)) NIL T ELT)) (-3948 (($ $ (-694)) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) NIL (|has| |#1| (-146)) ELT) (($ $ (-694)) NIL (|has| |#1| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ (-1090)) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3158 (((-3 (-739 (-1090)) #1#) $) NIL T ELT)) (-3157 (((-739 (-1090)) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) NIL T ELT)) (-3952 (((-85) $) NIL T ELT)) (-3951 (($ $) NIL T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-739 (-1090)) |#1|) NIL T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-739 (-1090))) (|:| |c| |#1|)) $) NIL T ELT)) (-3956 (((-739 (-1090)) $) NIL T ELT)) (-3957 (((-739 (-1090)) $) NIL T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3941 (($ $ (-1090)) NIL T ELT) (($ $ (-739 (-1090))) NIL T ELT) (($ $ $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3964 (((-1195 (-1090) |#1|) $) NIL T ELT)) (-3949 (((-694) $) NIL T ELT)) (-3954 (((-85) $) NIL T ELT)) (-3953 ((|#1| $) NIL T ELT)) (-3947 (((-772) $) NIL T ELT) (($ (-484)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-739 (-1090))) NIL T ELT) (($ (-1090)) NIL T ELT)) (-3955 ((|#1| $ (-739 (-1090))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3127 (((-694)) NIL T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) NIL T CONST)) (-3962 (((-583 (-2 (|:| |k| (-1090)) (|:| |c| $))) $) NIL T ELT)) (-2667 (($) NIL T CONST)) (-3057 (((-85) $ $) NIL T ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) NIL T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) NIL T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1090) $) NIL T ELT)))
+(((-1201 |#1|) (-13 (-1202 (-1090) |#1|) (-10 -8 (-15 -3964 ((-1195 (-1090) |#1|) $)) (-15 -3963 ($ (-1195 (-1090) |#1|))) (-15 -3962 ((-583 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) (-961)) (T -1201))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-961)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-961)))))
+((-2569 (((-85) $ $) 7 T ELT)) (-3189 (((-85) $) 22 T ELT)) (-3935 (((-583 |#1|) $) 55 T ELT)) (-3948 (($ $ (-694)) 89 T ELT)) (-1312 (((-3 $ "failed") $ $) 26 T ELT)) (-3936 (($ $ $) 58 (|has| |#2| (-146)) ELT) (($ $ (-694)) 57 (|has| |#2| (-146)) ELT)) (-3725 (($) 23 T CONST)) (-3940 (($ $ |#1|) 69 T ELT) (($ $ (-739 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3158 (((-3 (-739 |#1|) "failed") $) 79 T ELT)) (-3157 (((-739 |#1|) $) 80 T ELT)) (-3468 (((-3 $ "failed") $) 42 T ELT)) (-3952 (((-85) $) 60 T ELT)) (-3951 (($ $) 59 T ELT)) (-1214 (((-85) $ $) 20 T ELT)) (-2410 (((-85) $) 44 T ELT)) (-3938 (((-85) $) 65 T ELT)) (-3939 (($ (-739 |#1|) |#2|) 66 T ELT)) (-3937 (($ $) 64 T ELT)) (-3942 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) 75 T ELT)) (-3956 (((-739 |#1|) $) 76 T ELT)) (-3957 (((-739 |#1|) $) 91 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 56 T ELT)) (-3941 (($ $ |#1|) 72 T ELT) (($ $ (-739 |#1|)) 71 T ELT) (($ $ $) 70 T ELT)) (-3243 (((-1073) $) 11 T ELT)) (-3244 (((-1033) $) 12 T ELT)) (-3949 (((-694) $) 90 T ELT)) (-3954 (((-85) $) 62 T ELT)) (-3953 ((|#2| $) 61 T ELT)) (-3947 (((-772) $) 13 T ELT) (($ (-484)) 41 T ELT) (($ |#2|) 83 T ELT) (($ (-739 |#1|)) 78 T ELT) (($ |#1|) 63 T ELT)) (-3955 ((|#2| $ (-739 |#1|)) 74 T ELT) ((|#2| $ $) 73 T ELT)) (-3127 (((-694)) 40 T CONST)) (-1265 (((-85) $ $) 6 T ELT)) (-3126 (((-85) $ $) 33 T ELT)) (-2661 (($) 24 T CONST)) (-2667 (($) 45 T CONST)) (-3057 (((-85) $ $) 8 T ELT)) (-3838 (($ $) 29 T ELT) (($ $ $) 28 T ELT)) (-3840 (($ $ $) 18 T ELT)) (** (($ $ (-830)) 35 T ELT) (($ $ (-694)) 43 T ELT)) (* (($ (-830) $) 17 T ELT) (($ (-694) $) 21 T ELT) (($ (-484) $) 30 T ELT) (($ $ $) 34 T ELT) (($ |#2| $) 82 T ELT) (($ $ |#2|) 81 T ELT) (($ |#1| $) 77 T ELT)))
+(((-1202 |#1| |#2|) (-113) (-756) (-961)) (T -1202))
+((-3957 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3)))) (-3949 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))) (-3948 (*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
+(-13 (-1199 |t#1| |t#2|) (-10 -8 (-15 -3957 ((-739 |t#1|) $)) (-15 -3949 ((-694) $)) (-15 -3948 ($ $ (-694)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-146)) ((-72) . T) ((-82 |#2| |#2|) . T) ((-104) . T) ((-555 (-484)) . T) ((-555 (-739 |#1|)) . T) ((-555 |#2|) . T) ((-552 (-772)) . T) ((-13) . T) ((-588 (-484)) . T) ((-588 |#2|) . T) ((-588 $) . T) ((-590 |#2|) . T) ((-590 $) . T) ((-582 |#2|) |has| |#2| (-146)) ((-654 |#2|) |has| |#2| (-146)) ((-663) . T) ((-950 (-739 |#1|)) . T) ((-963 |#2|) . T) ((-968 |#2|) . T) ((-961) . T) ((-970) . T) ((-1025) . T) ((-1061) . T) ((-1013) . T) ((-1129) . T) ((-1194 |#2|) . T) ((-1199 |#1| |#2|) . T))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) NIL T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3725 (($) NIL T CONST)) (-3158 (((-3 |#2| #1#) $) NIL T ELT)) (-3157 ((|#2| $) NIL T ELT)) (-3960 (($ $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 43 T ELT)) (-3952 (((-85) $) 37 T ELT)) (-3951 (($ $) 38 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-2420 (((-694) $) NIL T ELT)) (-2822 (((-583 $) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ |#2| |#1|) NIL T ELT)) (-3956 ((|#2| $) 25 T ELT)) (-3957 ((|#2| $) 23 T ELT)) (-3959 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1752 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-2895 ((|#2| $) NIL T ELT)) (-3175 ((|#1| $) NIL T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3954 (((-85) $) 33 T ELT)) (-3953 ((|#1| $) 34 T ELT)) (-3947 (((-772) $) 66 T ELT) (($ (-484)) 47 T ELT) (($ |#1|) 42 T ELT) (($ |#2|) NIL T ELT)) (-3818 (((-583 |#1|) $) NIL T ELT)) (-3678 ((|#1| $ |#2|) NIL T ELT)) (-3955 ((|#1| $ |#2|) 29 T ELT)) (-3127 (((-694)) 14 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 30 T CONST)) (-2667 (($) 11 T CONST)) (-2666 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3057 (((-85) $ $) 31 T ELT)) (-3950 (($ $ |#1|) 68 (|has| |#1| (-312)) ELT)) (-3838 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3840 (($ $ $) 51 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 53 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) NIL T ELT) (($ $ $) 52 T ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-3958 (((-694) $) 18 T ELT)))
+(((-1203 |#1| |#2|) (-13 (-961) (-1194 |#1|) (-335 |#1| |#2|) (-555 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3958 ((-694) $)) (-15 -3957 (|#2| $)) (-15 -3956 (|#2| $)) (-15 -3960 ($ $)) (-15 -3955 (|#1| $ |#2|)) (-15 -3954 ((-85) $)) (-15 -3953 (|#1| $)) (-15 -3952 ((-85) $)) (-15 -3951 ($ $)) (-15 -3959 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-312)) (-15 -3950 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -3989)) (-6 -3989) |%noBranch|) (IF (|has| |#1| (-6 -3993)) (-6 -3993) |%noBranch|) (IF (|has| |#1| (-6 -3994)) (-6 -3994) |%noBranch|))) (-961) (-754)) (T -1203))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3960 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3959 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-754)))) (-3958 (*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3957 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))) (-3956 (*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))) (-3955 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3953 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))) (-3952 (*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754)))))
+((-2569 (((-85) $ $) 27 T ELT)) (-3189 (((-85) $) NIL T ELT)) (-3935 (((-583 |#1|) $) 132 T ELT)) (-3963 (($ (-1195 |#1| |#2|)) 50 T ELT)) (-3948 (($ $ (-694)) 38 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3936 (($ $ $) 54 (|has| |#2| (-146)) ELT) (($ $ (-694)) 52 (|has| |#2| (-146)) ELT)) (-3725 (($) NIL T CONST)) (-3940 (($ $ |#1|) 114 T ELT) (($ $ (-739 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3158 (((-3 (-739 |#1|) #1#) $) NIL T ELT)) (-3157 (((-739 |#1|) $) NIL T ELT)) (-3468 (((-3 $ #1#) $) 122 T ELT)) (-3952 (((-85) $) 117 T ELT)) (-3951 (($ $) 118 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) NIL T ELT)) (-3938 (((-85) $) NIL T ELT)) (-3939 (($ (-739 |#1|) |#2|) 20 T ELT)) (-3937 (($ $) NIL T ELT)) (-3942 (((-2 (|:| |k| (-739 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3956 (((-739 |#1|) $) 123 T ELT)) (-3957 (((-739 |#1|) $) 126 T ELT)) (-3959 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-3941 (($ $ |#1|) 112 T ELT) (($ $ (-739 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3964 (((-1195 |#1| |#2|) $) 94 T ELT)) (-3949 (((-694) $) 129 T ELT)) (-3954 (((-85) $) 81 T ELT)) (-3953 ((|#2| $) 32 T ELT)) (-3947 (((-772) $) 73 T ELT) (($ (-484)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-739 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-3955 ((|#2| $ (-739 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3127 (((-694)) 120 T CONST)) (-1265 (((-85) $ $) NIL T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 15 T CONST)) (-3962 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2667 (($) 33 T CONST)) (-3057 (((-85) $ $) 14 T ELT)) (-3838 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-3840 (($ $ $) 61 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 55 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) 53 T ELT) (($ (-484) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
+(((-1204 |#1| |#2|) (-13 (-1202 |#1| |#2|) (-10 -8 (-15 -3964 ((-1195 |#1| |#2|) $)) (-15 -3963 ($ (-1195 |#1| |#2|))) (-15 -3962 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-756) (-961)) (T -1204))
+((-3964 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *1 (-1204 *3 *4)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4))))) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3966 (($ (-583 (-830))) 11 T ELT)) (-3965 (((-884) $) 12 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3947 (((-772) $) 25 T ELT) (($ (-884)) 14 T ELT) (((-884) $) 13 T ELT)) (-1265 (((-85) $ $) NIL T ELT)) (-3057 (((-85) $ $) 17 T ELT)))
+(((-1205) (-13 (-1013) (-430 (-884)) (-10 -8 (-15 -3966 ($ (-583 (-830)))) (-15 -3965 ((-884) $))))) (T -1205))
+((-3966 (*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1205)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1205)))))
+((-3967 (((-583 (-1069 |#1|)) (-1 (-583 (-1069 |#1|)) (-583 (-1069 |#1|))) (-484)) 16 T ELT) (((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|))) 13 T ELT)))
+(((-1206 |#1|) (-10 -7 (-15 -3967 ((-1069 |#1|) (-1 (-1069 |#1|) (-1069 |#1|)))) (-15 -3967 ((-583 (-1069 |#1|)) (-1 (-583 (-1069 |#1|)) (-583 (-1069 |#1|))) (-484)))) (-1129)) (T -1206))
+((-3967 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1069 *5)) (-583 (-1069 *5)))) (-5 *4 (-484)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129)))) (-3967 (*1 *2 *3) (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4)) (-4 *4 (-1129)))))
+((-3969 (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|))) 174 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85)) 173 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85)) 172 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 171 T ELT) (((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-958 |#1| |#2|)) 156 T ELT)) (-3968 (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|))) 85 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85)) 84 T ELT) (((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85)) 83 T ELT)) (-3972 (((-583 (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|)) 73 T ELT)) (-3970 (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|))) 140 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85)) 139 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 138 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85)) 137 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|)) 132 T ELT)) (-3971 (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|))) 145 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85)) 144 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85)) 143 T ELT) (((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|)) 142 T ELT)) (-3973 (((-583 (-703 |#1| (-773 |#3|))) (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) 111 T ELT) (((-1085 (-937 (-350 |#1|))) (-1085 |#1|)) 102 T ELT) (((-857 (-937 (-350 |#1|))) (-703 |#1| (-773 |#3|))) 109 T ELT) (((-857 (-937 (-350 |#1|))) (-857 |#1|)) 107 T ELT) (((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|))) 33 T ELT)))
+(((-1207 |#1| |#2| |#3|) (-10 -7 (-15 -3968 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3968 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)) (-85))) (-15 -3968 ((-583 (-958 |#1| |#2|)) (-583 (-857 |#1|)))) (-15 -3969 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-958 |#1| |#2|))) (-15 -3969 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3969 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3969 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)) (-85))) (-15 -3969 ((-583 (-2 (|:| -1750 (-1085 |#1|)) (|:| -3225 (-583 (-857 |#1|))))) (-583 (-857 |#1|)))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85) (-85))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3970 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)))) (-15 -3971 ((-583 (-583 (-937 (-350 |#1|)))) (-958 |#1| |#2|))) (-15 -3971 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85) (-85))) (-15 -3971 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)) (-85))) (-15 -3971 ((-583 (-583 (-937 (-350 |#1|)))) (-583 (-857 |#1|)))) (-15 -3972 ((-583 (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))) (-958 |#1| |#2|))) (-15 -3973 ((-703 |#1| (-773 |#3|)) (-703 |#1| (-773 |#2|)))) (-15 -3973 ((-857 (-937 (-350 |#1|))) (-857 |#1|))) (-15 -3973 ((-857 (-937 (-350 |#1|))) (-703 |#1| (-773 |#3|)))) (-15 -3973 ((-1085 (-937 (-350 |#1|))) (-1085 |#1|))) (-15 -3973 ((-583 (-703 |#1| (-773 |#3|))) (-1060 |#1| (-469 (-773 |#3|)) (-773 |#3|) (-703 |#1| (-773 |#3|)))))) (-13 (-755) (-258) (-120) (-933)) (-583 (-1090)) (-583 (-1090))) (T -1207))
+((-3973 (*1 *2 *3) (-12 (-5 *3 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-1085 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090))) (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3971 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3970 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3970 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3969 (*1 *2 *3) (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3969 (*1 *2 *3 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5)))))) (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4)))))) (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))) (-3968 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))) (-3968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090))))))
+((-3976 (((-3 (-1179 (-350 (-484))) #1="failed") (-1179 |#1|) |#1|) 21 T ELT)) (-3974 (((-85) (-1179 |#1|)) 12 T ELT)) (-3975 (((-3 (-1179 (-484)) #1#) (-1179 |#1|)) 16 T ELT)))
+(((-1208 |#1|) (-10 -7 (-15 -3974 ((-85) (-1179 |#1|))) (-15 -3975 ((-3 (-1179 (-484)) #1="failed") (-1179 |#1|))) (-15 -3976 ((-3 (-1179 (-350 (-484))) #1#) (-1179 |#1|) |#1|))) (-13 (-961) (-580 (-484)))) (T -1208))
+((-3976 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1179 (-350 (-484)))) (-5 *1 (-1208 *4)))) (-3975 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-1179 (-484))) (-5 *1 (-1208 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85)) (-5 *1 (-1208 *4)))))
+((-2569 (((-85) $ $) NIL T ELT)) (-3189 (((-85) $) 12 T ELT)) (-1312 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3137 (((-694)) 9 T ELT)) (-3725 (($) NIL T CONST)) (-3468 (((-3 $ #1#) $) 57 T ELT)) (-2995 (($) 46 T ELT)) (-1214 (((-85) $ $) NIL T ELT)) (-2410 (((-85) $) 38 T ELT)) (-3446 (((-632 $) $) 36 T ELT)) (-2010 (((-830) $) 14 T ELT)) (-3243 (((-1073) $) NIL T ELT)) (-3447 (($) 26 T CONST)) (-2400 (($ (-830)) 47 T ELT)) (-3244 (((-1033) $) NIL T ELT)) (-3973 (((-484) $) 16 T ELT)) (-3947 (((-772) $) 21 T ELT) (($ (-484)) 18 T ELT)) (-3127 (((-694)) 10 T CONST)) (-1265 (((-85) $ $) 59 T ELT)) (-3126 (((-85) $ $) NIL T ELT)) (-2661 (($) 23 T CONST)) (-2667 (($) 25 T CONST)) (-3057 (((-85) $ $) 31 T ELT)) (-3838 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-3840 (($ $ $) 29 T ELT)) (** (($ $ (-830)) NIL T ELT) (($ $ (-694)) 52 T ELT)) (* (($ (-830) $) NIL T ELT) (($ (-694) $) NIL T ELT) (($ (-484) $) 41 T ELT) (($ $ $) 40 T ELT)))
+(((-1209 |#1|) (-13 (-146) (-320) (-553 (-484)) (-1066)) (-830)) (T -1209))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 2792496 2792501 2792506 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2792481 2792486 2792491 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2792466 2792471 2792476 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2792451 2792456 2792461 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1209 2791430 2792369 2792446 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1208 2790645 2790824 2791043 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1207 2781804 2783673 2785607 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1206 2781192 2781345 2781534 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1205 2780654 2780957 2781070 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1204 2778214 2780116 2780319 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1203 2774978 2776631 2777202 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1202 2772235 2773965 2774019 "XPOLYC" 2774304 XPOLYC (NIL T T) -9 NIL 2774417 NIL) (-1201 2769754 2771739 2771942 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1200 2766002 2768613 2769001 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1199 2760849 2762482 2762536 "XFALG" 2764681 XFALG (NIL T T) -9 NIL 2765465 NIL) (-1198 2756005 2758738 2758780 "XF" 2759398 XF (NIL T) -9 NIL 2759794 NIL) (-1197 2755723 2755833 2756000 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1196 2754950 2755072 2755276 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1195 2752692 2754850 2754945 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1194 2751273 2752068 2752110 "XALG" 2752115 XALG (NIL T) -9 NIL 2752224 NIL) (-1193 2745124 2749683 2750161 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1192 2743367 2744369 2744690 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1191 2742966 2743238 2743307 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1190 2742453 2742756 2742849 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1189 2741530 2741740 2742035 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1188 2739826 2740289 2740751 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1187 2738715 2739300 2739342 "VSPACE" 2739478 VSPACE (NIL T) -9 NIL 2739552 NIL) (-1186 2738586 2738619 2738710 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1185 2738429 2738483 2738551 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1184 2735412 2736207 2736944 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1183 2726510 2729111 2731284 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1182 2720087 2721978 2723557 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1181 2718571 2718966 2719372 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1180 2717398 2717679 2717995 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1179 2712799 2717225 2717317 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1178 2706148 2710472 2710515 "VECTCAT" 2711503 VECTCAT (NIL T) -9 NIL 2712087 NIL) (-1177 2705427 2705753 2706143 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1176 2704921 2705163 2705283 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1175 2704854 2704859 2704889 "UTYPE" 2704894 UTYPE (NIL) -9 NIL NIL NIL) (-1174 2703841 2704017 2704278 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1173 2701692 2702200 2702724 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1172 2691574 2697544 2697586 "UTSCAT" 2698684 UTSCAT (NIL T) -9 NIL 2699441 NIL) (-1171 2689639 2690582 2691569 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1170 2689313 2689362 2689493 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1169 2681024 2687509 2687988 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1168 2675527 2677859 2677902 "URAGG" 2679942 URAGG (NIL T) -9 NIL 2680667 NIL) (-1167 2673598 2674530 2675522 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1166 2669305 2672574 2673036 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1165 2661734 2669229 2669300 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1164 2650385 2657872 2657933 "UPXSCCA" 2658501 UPXSCCA (NIL T T) -9 NIL 2658733 NIL) (-1163 2650106 2650208 2650380 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1162 2638658 2645870 2645912 "UPXSCAT" 2646552 UPXSCAT (NIL T) -9 NIL 2647160 NIL) (-1161 2638171 2638256 2638433 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1160 2629857 2637762 2638024 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2628752 2629022 2629372 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1158 2621455 2624940 2624994 "UPSCAT" 2626063 UPSCAT (NIL T T) -9 NIL 2626827 NIL) (-1157 2620875 2621127 2621450 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1156 2620549 2620598 2620729 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1155 2604679 2613633 2613675 "UPOLYC" 2615753 UPOLYC (NIL T) -9 NIL 2616973 NIL) (-1154 2598734 2601582 2604674 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1153 2598170 2598295 2598458 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1152 2597804 2597891 2598030 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1151 2596617 2596884 2597188 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1150 2595950 2596080 2596265 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1149 2595542 2595617 2595764 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1148 2586306 2595308 2595436 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1147 2585668 2585805 2586010 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1146 2584269 2585116 2585392 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1145 2583498 2583695 2583920 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1144 2570308 2583422 2583493 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1143 2550114 2563349 2563410 "ULSCCAT" 2564041 ULSCCAT (NIL T T) -9 NIL 2564328 NIL) (-1142 2549449 2549735 2550109 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1141 2537821 2544955 2544997 "ULSCAT" 2545850 ULSCAT (NIL T) -9 NIL 2546580 NIL) (-1140 2537334 2537419 2537596 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1139 2519451 2536833 2537074 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1138 2518485 2519178 2519292 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2519403) (-1137 2517518 2518211 2518325 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2518436) (-1136 2516551 2517244 2517358 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2517469) (-1135 2515584 2516277 2516391 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2516502) (-1134 2513591 2514812 2514842 "UFD" 2515053 UFD (NIL) -9 NIL 2515166 NIL) (-1133 2513435 2513492 2513586 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1132 2512687 2512894 2513110 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1131 2510907 2511360 2511825 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1130 2510632 2510872 2510902 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1129 2510570 2510575 2510605 "TYPE" 2510610 TYPE (NIL) -9 NIL 2510617 NIL) (-1128 2509729 2509949 2510189 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1127 2508907 2509338 2509573 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1126 2507061 2507634 2508173 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1125 2506095 2506331 2506567 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1124 2494712 2498888 2498984 "TSETCAT" 2504199 TSETCAT (NIL T T T T) -9 NIL 2505703 NIL) (-1123 2491049 2492865 2494707 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1122 2485441 2490275 2490557 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1121 2480778 2481791 2482720 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1120 2480275 2480350 2480513 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1119 2478351 2478641 2478996 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1118 2477835 2477984 2478014 "TRIGCAT" 2478227 TRIGCAT (NIL) -9 NIL NIL NIL) (-1117 2477586 2477689 2477830 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1116 2474641 2476692 2476973 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1115 2473747 2474443 2474473 "TRANFUN" 2474508 TRANFUN (NIL) -9 NIL 2474574 NIL) (-1114 2473211 2473462 2473742 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1113 2473048 2473086 2473147 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1112 2472505 2472636 2472787 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1111 2471246 2471903 2472139 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1110 2471058 2471095 2471167 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1109 2469272 2469918 2470347 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1108 2467652 2467989 2468311 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1107 2457594 2465432 2465488 "TBAGG" 2465805 TBAGG (NIL T T) -9 NIL 2466015 NIL) (-1106 2454784 2456143 2457589 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1105 2454261 2454386 2454531 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1104 2453771 2454091 2454181 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1103 2453268 2453385 2453523 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1102 2445633 2453196 2453263 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1101 2441386 2442681 2443926 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1100 2440755 2440914 2441095 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1099 2437909 2438662 2439445 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1098 2437683 2437873 2437904 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1097 2436637 2437322 2437448 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2437634) (-1096 2435901 2436449 2436528 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2436588) (-1095 2432724 2433883 2434583 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1094 2430407 2431090 2431724 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1093 2426485 2427531 2428508 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1092 2423584 2426140 2426369 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1091 2423180 2423267 2423389 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1090 2419804 2421278 2422097 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1089 2412764 2419001 2419294 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2404450 2412355 2412617 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1087 2403729 2403868 2404085 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1086 2403413 2403478 2403589 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1085 2394136 2403125 2403250 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1084 2392866 2393164 2393519 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1083 2392271 2392349 2392540 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1082 2374423 2391770 2392011 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1081 2374022 2374294 2374363 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1080 2373358 2373639 2373779 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1079 2367960 2369219 2370172 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1078 2367492 2367592 2367756 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1077 2362603 2363885 2365032 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1076 2357061 2358532 2359843 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1075 2349976 2352040 2353831 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1074 2342004 2349914 2349971 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1073 2336961 2341718 2341833 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1072 2336548 2336631 2336775 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1071 2335699 2335900 2336135 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1070 2335439 2335497 2335590 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1069 2328916 2333642 2334250 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1068 2328092 2328297 2328528 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1067 2327337 2327708 2327855 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1066 2326825 2327067 2327097 "STEP" 2327191 STEP (NIL) -9 NIL 2327262 NIL) (-1065 2319184 2326743 2326820 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1064 2314113 2317982 2318025 "STAGG" 2318452 STAGG (NIL T) -9 NIL 2318626 NIL) (-1063 2312492 2313240 2314108 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1062 2310713 2312319 2312411 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1061 2309993 2310532 2310562 "SRING" 2310567 SRING (NIL) -9 NIL 2310587 NIL) (-1060 2302908 2308531 2308970 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1059 2296682 2298121 2299625 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1058 2289328 2293977 2294007 "SRAGG" 2295306 SRAGG (NIL) -9 NIL 2295910 NIL) (-1057 2288625 2288945 2289323 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1056 2282725 2287947 2288370 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1055 2276737 2280078 2280829 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1054 2273166 2273985 2274622 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1053 2272141 2272446 2272476 "SPFCAT" 2272920 SPFCAT (NIL) -9 NIL NIL NIL) (-1052 2271078 2271330 2271594 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1051 2261836 2264110 2264140 "SPADXPT" 2268777 SPADXPT (NIL) -9 NIL 2270901 NIL) (-1050 2261638 2261684 2261753 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1049 2259294 2261602 2261633 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1048 2250968 2253057 2253099 "SPACEC" 2257414 SPACEC (NIL T) -9 NIL 2259219 NIL) (-1047 2248797 2250915 2250963 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1046 2247776 2247965 2248248 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1045 2246180 2246513 2246924 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1044 2245445 2245679 2245940 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1043 2241625 2242585 2243580 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1042 2237983 2238682 2239411 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1041 2232024 2237286 2237382 "SNTSCAT" 2237387 SNTSCAT (NIL T T T T) -9 NIL 2237457 NIL) (-1040 2225845 2230665 2231055 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1039 2219617 2225764 2225840 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1038 2218049 2218380 2218778 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1037 2209681 2214615 2214717 "SMATCAT" 2216060 SMATCAT (NIL NIL T T T) -9 NIL 2216608 NIL) (-1036 2207522 2208506 2209676 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1035 2206128 2206980 2207023 "SMAGG" 2207108 SMAGG (NIL T) -9 NIL 2207183 NIL) (-1034 2203747 2205295 2205338 "SKAGG" 2205599 SKAGG (NIL T) -9 NIL 2205735 NIL) (-1033 2199793 2203567 2203678 "SINT" NIL SINT (NIL) -8 NIL NIL 2203719) (-1032 2199603 2199647 2199713 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1031 2198678 2198910 2199178 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1030 2197682 2197844 2198120 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1029 2197028 2197368 2197491 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1028 2196374 2196681 2196821 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1027 2194485 2194977 2195483 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1026 2187971 2194404 2194480 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1025 2187474 2187711 2187741 "SGROUP" 2187834 SGROUP (NIL) -9 NIL 2187896 NIL) (-1024 2187364 2187396 2187469 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1023 2187002 2187042 2187083 "SGPOPC" 2187088 SGPOPC (NIL T) -9 NIL 2187289 NIL) (-1022 2186536 2186813 2186919 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1021 2183959 2184728 2185450 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1020 2178099 2183361 2183457 "SFRTCAT" 2183462 SFRTCAT (NIL T T T T) -9 NIL 2183500 NIL) (-1019 2172491 2173604 2174731 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1018 2166667 2167828 2168992 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1017 2165639 2166541 2166662 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1016 2161247 2162142 2162237 "SEXCAT" 2164850 SEXCAT (NIL T T T T T) -9 NIL 2165401 NIL) (-1015 2160220 2161174 2161242 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1014 2158611 2159196 2159498 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1013 2158134 2158319 2158349 "SETCAT" 2158466 SETCAT (NIL) -9 NIL 2158550 NIL) (-1012 2157966 2158030 2158129 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1011 2154919 2156420 2156463 "SETAGG" 2157331 SETAGG (NIL T) -9 NIL 2157669 NIL) (-1010 2154525 2154677 2154914 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1009 2151770 2154472 2154520 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1008 2151236 2151546 2151646 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1007 2150363 2150729 2150790 "SEGXCAT" 2151076 SEGXCAT (NIL T T) -9 NIL 2151196 NIL) (-1006 2149288 2149556 2149599 "SEGCAT" 2150121 SEGCAT (NIL T) -9 NIL 2150342 NIL) (-1005 2148968 2149033 2149146 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1004 2148034 2148504 2148712 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1003 2147612 2147891 2147967 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1002 2146977 2147113 2147317 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1001 2146043 2146790 2146972 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1000 2145296 2145991 2146038 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-999 2136783 2145165 2145291 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-998 2135643 2135933 2136250 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-997 2134949 2135161 2135349 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-996 2134299 2134456 2134632 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-995 2133872 2134103 2134131 "SASTCAT" 2134136 SASTCAT (NIL) -9 NIL 2134149 NIL) (-994 2133339 2133764 2133838 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-993 2132942 2132983 2133154 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-992 2132573 2132614 2132771 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-991 2125654 2132490 2132568 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-990 2124304 2124633 2125029 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-989 2123065 2123426 2123726 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-988 2122689 2122910 2122991 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-987 2120149 2120783 2121236 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-986 2119988 2120021 2120089 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-985 2119479 2119782 2119873 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-984 2115107 2115975 2116886 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-983 2104181 2109443 2109537 "RSETCAT" 2113593 RSETCAT (NIL T T T T) -9 NIL 2114681 NIL) (-982 2102719 2103361 2104176 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-981 2096493 2097938 2099445 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-980 2094375 2094932 2095004 "RRCC" 2096077 RRCC (NIL T T) -9 NIL 2096418 NIL) (-979 2093900 2094099 2094370 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-978 2093370 2093680 2093778 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-977 2065922 2076635 2076699 "RPOLCAT" 2087173 RPOLCAT (NIL T T T) -9 NIL 2090318 NIL) (-976 2060021 2062844 2065917 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-975 2056188 2059769 2059907 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-974 2054516 2055255 2055511 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-973 2050159 2052971 2052999 "RNS" 2053261 RNS (NIL) -9 NIL 2053513 NIL) (-972 2049062 2049549 2050086 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-971 2048180 2048581 2048781 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-970 2047318 2047880 2047908 "RNG" 2047968 RNG (NIL) -9 NIL 2048022 NIL) (-969 2047207 2047241 2047313 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-968 2046469 2046974 2047014 "RMODULE" 2047019 RMODULE (NIL T) -9 NIL 2047045 NIL) (-967 2045408 2045514 2045844 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-966 2042299 2044998 2045291 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-965 2034988 2037433 2037545 "RMATCAT" 2040850 RMATCAT (NIL NIL NIL T T T) -9 NIL 2041816 NIL) (-964 2034505 2034684 2034983 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-963 2034073 2034284 2034325 "RLINSET" 2034386 RLINSET (NIL T) -9 NIL 2034430 NIL) (-962 2033718 2033799 2033925 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-961 2032564 2033295 2033323 "RING" 2033378 RING (NIL) -9 NIL 2033470 NIL) (-960 2032409 2032465 2032559 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-959 2031463 2031730 2031986 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-958 2022687 2031091 2031292 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-957 2021912 2022423 2022462 "RGBCSPC" 2022519 RGBCSPC (NIL T) -9 NIL 2022570 NIL) (-956 2020946 2021432 2021471 "RGBCMDL" 2021699 RGBCMDL (NIL T) -9 NIL 2021813 NIL) (-955 2020658 2020727 2020828 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-954 2020421 2020462 2020557 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-953 2018845 2019275 2019655 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-952 2016432 2017100 2017768 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-951 2015982 2016080 2016240 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-950 2015604 2015702 2015743 "RETRACT" 2015874 RETRACT (NIL T) -9 NIL 2015961 NIL) (-949 2015484 2015515 2015599 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-948 2015086 2015358 2015425 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-947 2013566 2014457 2014654 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-946 2013257 2013318 2013414 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-945 2013000 2013041 2013146 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-944 2012735 2012776 2012885 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-943 2007806 2009257 2010472 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-942 2004905 2005663 2006471 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-941 2002874 2003496 2004096 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-940 1995802 2001425 2001861 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-939 1995114 1995394 1995543 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-938 1994599 1994714 1994879 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-937 1990192 1994002 1994223 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-936 1989424 1989623 1989836 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-935 1986714 1987552 1988434 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-934 1983296 1984332 1985391 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-933 1983132 1983185 1983213 "REAL" 1983218 REAL (NIL) -9 NIL 1983253 NIL) (-932 1982622 1982926 1983017 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-931 1982102 1982180 1982385 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-930 1981335 1981527 1981738 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-929 1980223 1980520 1980887 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-928 1978490 1978960 1979493 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-927 1977412 1977689 1978076 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-926 1976239 1976548 1976967 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-925 1969587 1973099 1973127 "RCFIELD" 1974404 RCFIELD (NIL) -9 NIL 1975134 NIL) (-924 1968205 1968817 1969514 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-923 1964918 1966309 1966350 "RCAGG" 1967404 RCAGG (NIL T) -9 NIL 1967866 NIL) (-922 1964645 1964755 1964913 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-921 1964090 1964219 1964380 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-920 1963707 1963786 1963905 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-919 1963122 1963272 1963422 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-918 1962904 1962954 1963025 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-917 1955346 1962022 1962330 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-916 1945048 1955213 1955341 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-915 1944682 1944775 1944803 "RADCAT" 1944960 RADCAT (NIL) -9 NIL NIL NIL) (-914 1944520 1944580 1944677 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-913 1942684 1944351 1944440 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-912 1942365 1942414 1942541 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-911 1934652 1938736 1938776 "QUATCAT" 1939554 QUATCAT (NIL T) -9 NIL 1940318 NIL) (-910 1931902 1933182 1934558 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-909 1927742 1931852 1931897 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-908 1925156 1926757 1926798 "QUAGG" 1927173 QUAGG (NIL T) -9 NIL 1927349 NIL) (-907 1924758 1925030 1925097 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-906 1923764 1924394 1924557 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-905 1923445 1923494 1923621 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-904 1913045 1919214 1919254 "QFCAT" 1919912 QFCAT (NIL T) -9 NIL 1920905 NIL) (-903 1909929 1911368 1912951 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-902 1909475 1909609 1909739 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-901 1903671 1904832 1905994 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-900 1903090 1903270 1903502 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-899 1900912 1901440 1901863 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-898 1899811 1900053 1900370 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-897 1898172 1898370 1898723 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-896 1893928 1895144 1895185 "PTRANFN" 1897069 PTRANFN (NIL T) -9 NIL NIL NIL) (-895 1892575 1892920 1893241 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-894 1892268 1892331 1892438 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-893 1886594 1891027 1891067 "PTCAT" 1891359 PTCAT (NIL T) -9 NIL 1891512 NIL) (-892 1886287 1886328 1886452 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-891 1885166 1885482 1885816 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-890 1874045 1876606 1878915 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-889 1867206 1869828 1869922 "PSETCAT" 1872896 PSETCAT (NIL T T T T) -9 NIL 1873705 NIL) (-888 1865656 1866390 1867201 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-887 1864975 1865170 1865198 "PSCURVE" 1865466 PSCURVE (NIL) -9 NIL 1865633 NIL) (-886 1860577 1862397 1862461 "PSCAT" 1863296 PSCAT (NIL T T T) -9 NIL 1863535 NIL) (-885 1859891 1860173 1860572 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-884 1858288 1859203 1859466 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-883 1857779 1858082 1858173 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-882 1848799 1851221 1853409 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-881 1846569 1848080 1848120 "PRQAGG" 1848303 PRQAGG (NIL T) -9 NIL 1848406 NIL) (-880 1845742 1846188 1846216 "PROPLOG" 1846355 PROPLOG (NIL) -9 NIL 1846469 NIL) (-879 1845417 1845480 1845603 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-878 1844853 1844992 1845164 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-877 1843101 1843864 1844161 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-876 1842653 1842785 1842913 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-875 1837094 1841593 1842413 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-874 1836923 1836961 1837020 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-873 1836362 1836502 1836653 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-872 1834830 1835249 1835715 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-871 1834547 1834608 1834636 "PRIMCAT" 1834760 PRIMCAT (NIL) -9 NIL NIL NIL) (-870 1833718 1833914 1834142 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-869 1829883 1833668 1833713 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-868 1829582 1829644 1829755 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-867 1826718 1829231 1829464 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-866 1826169 1826326 1826354 "PPCURVE" 1826559 PPCURVE (NIL) -9 NIL 1826695 NIL) (-865 1825782 1826027 1826110 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-864 1823538 1823959 1824551 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-863 1822981 1823045 1823278 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-862 1819701 1820187 1820798 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-861 1805292 1811421 1811485 "POLYCAT" 1814970 POLYCAT (NIL T T T) -9 NIL 1816847 NIL) (-860 1800802 1802949 1805287 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-859 1800459 1800533 1800652 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-858 1800152 1800215 1800322 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-857 1793515 1799885 1800044 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-856 1792402 1792665 1792941 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-855 1791006 1791319 1791649 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-854 1786459 1790956 1791001 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-853 1784947 1785358 1785733 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-852 1783704 1784013 1784409 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-851 1783375 1783459 1783576 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-850 1782954 1783029 1783203 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-849 1782440 1782536 1782696 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-848 1781912 1782032 1782186 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-847 1780807 1781025 1781402 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-846 1780418 1780503 1780655 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-845 1779969 1780051 1780232 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-844 1779661 1779742 1779855 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-843 1779174 1779249 1779457 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-842 1778522 1778650 1778852 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-841 1777884 1778018 1778181 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-840 1777188 1777370 1777551 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-839 1776911 1776985 1777079 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-838 1773479 1774668 1775584 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-837 1772563 1772764 1772999 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-836 1768128 1769512 1770654 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-835 1748049 1752936 1757783 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-834 1747789 1747842 1747945 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-833 1747230 1747364 1747544 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-832 1745239 1746460 1746488 "PID" 1746685 PID (NIL) -9 NIL 1746812 NIL) (-831 1745027 1745070 1745145 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-830 1744214 1744874 1744961 "PI" NIL PI (NIL) -8 NIL NIL 1745001) (-829 1743666 1743817 1743993 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-828 1739994 1740952 1741857 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-827 1738358 1738647 1739013 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-826 1737800 1737915 1738076 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-825 1734341 1736669 1737022 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-824 1732947 1733227 1733552 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-823 1731712 1731966 1732314 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-822 1730422 1730649 1731001 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-821 1727432 1728992 1729020 "PFECAT" 1729613 PFECAT (NIL) -9 NIL 1729990 NIL) (-820 1727055 1727220 1727427 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-819 1725879 1726161 1726462 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-818 1724061 1724448 1724878 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-817 1720031 1723987 1724056 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-816 1715934 1717081 1717948 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-815 1713866 1714955 1714996 "PERMCAT" 1715395 PERMCAT (NIL T) -9 NIL 1715692 NIL) (-814 1713562 1713609 1713732 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-813 1710011 1711692 1712337 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-812 1707977 1709766 1709887 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-811 1706846 1707109 1707150 "PDSPC" 1707683 PDSPC (NIL T) -9 NIL 1707928 NIL) (-810 1706213 1706479 1706841 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-809 1704848 1705841 1705882 "PDRING" 1705887 PDRING (NIL T) -9 NIL 1705914 NIL) (-808 1703558 1704347 1704400 "PDMOD" 1704405 PDMOD (NIL T T) -9 NIL 1704508 NIL) (-807 1702651 1702863 1703112 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-806 1702256 1702323 1702377 "PDDOM" 1702542 PDDOM (NIL T T) -9 NIL 1702622 NIL) (-805 1702108 1702144 1702251 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-804 1701894 1701933 1702022 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-803 1700211 1700965 1701264 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-802 1699900 1699963 1700072 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-801 1698038 1698468 1698919 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-800 1691658 1693487 1694779 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-799 1691289 1691362 1691494 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-798 1688991 1689671 1690152 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-797 1687195 1687623 1688026 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-796 1686641 1686889 1686930 "PATMAB" 1687037 PATMAB (NIL T) -9 NIL 1687120 NIL) (-795 1685288 1685692 1685949 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-794 1684826 1684957 1684998 "PATAB" 1685003 PATAB (NIL T) -9 NIL 1685175 NIL) (-793 1683369 1683806 1684229 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-792 1683047 1683122 1683224 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-791 1682736 1682799 1682908 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-790 1682541 1682587 1682654 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-789 1682219 1682294 1682396 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-788 1681908 1681971 1682080 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-787 1681599 1681669 1681766 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-786 1681288 1681351 1681460 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-785 1680449 1680828 1681007 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-784 1680056 1680154 1680273 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-783 1679024 1679449 1679668 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-782 1677689 1678343 1678703 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-781 1670779 1677093 1677287 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-780 1663200 1670277 1670461 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-779 1659925 1661840 1661880 "PADICCT" 1662461 PADICCT (NIL NIL) -9 NIL 1662743 NIL) (-778 1657915 1659875 1659920 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-777 1657077 1657287 1657553 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-776 1656419 1656562 1656766 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-775 1654800 1655827 1656105 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-774 1654324 1654583 1654680 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-773 1653383 1654061 1654233 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-772 1643805 1646674 1648873 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-771 1643197 1643511 1643637 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-770 1642474 1642669 1642697 "OUTBCON" 1643015 OUTBCON (NIL) -9 NIL 1643181 NIL) (-769 1642182 1642312 1642469 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-768 1641563 1641708 1641869 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-767 1640934 1641361 1641450 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-766 1640349 1640764 1640792 "OSGROUP" 1640797 OSGROUP (NIL) -9 NIL 1640819 NIL) (-765 1639313 1639574 1639859 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-764 1636582 1639188 1639308 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-763 1633723 1636333 1636459 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-762 1631741 1632269 1632829 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-761 1625083 1627623 1627663 "OREPCAT" 1629984 OREPCAT (NIL T) -9 NIL 1631086 NIL) (-760 1623109 1624043 1625078 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-759 1622306 1622577 1622605 "ORDTYPE" 1622910 ORDTYPE (NIL) -9 NIL 1623068 NIL) (-758 1621840 1622051 1622301 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-757 1621302 1621678 1621835 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-756 1620796 1621159 1621187 "ORDSET" 1621192 ORDSET (NIL) -9 NIL 1621214 NIL) (-755 1619361 1620383 1620411 "ORDRING" 1620416 ORDRING (NIL) -9 NIL 1620444 NIL) (-754 1618609 1619166 1619194 "ORDMON" 1619199 ORDMON (NIL) -9 NIL 1619220 NIL) (-753 1617913 1618075 1618267 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-752 1617124 1617632 1617660 "ORDFIN" 1617725 ORDFIN (NIL) -9 NIL 1617799 NIL) (-751 1616518 1616657 1616843 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-750 1613193 1615486 1615892 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-749 1612600 1612955 1613060 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-748 1612408 1612453 1612519 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-747 1611709 1611985 1612026 "OPERCAT" 1612237 OPERCAT (NIL T) -9 NIL 1612333 NIL) (-746 1611521 1611588 1611704 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-745 1608887 1610323 1610819 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-744 1608308 1608435 1608609 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-743 1605209 1607447 1607813 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-742 1602093 1604602 1604642 "OMSAGG" 1604703 OMSAGG (NIL T) -9 NIL 1604767 NIL) (-741 1600505 1601764 1601932 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-740 1598701 1599942 1599970 "OINTDOM" 1599975 OINTDOM (NIL) -9 NIL 1599996 NIL) (-739 1596131 1597703 1598032 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-738 1595385 1596081 1596126 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-737 1592587 1595226 1595380 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-736 1584124 1592458 1592582 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-735 1577581 1584015 1584119 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-734 1576553 1576790 1577063 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-733 1574187 1574857 1575561 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-732 1569964 1570924 1571947 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-731 1569472 1569560 1569754 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-730 1566921 1567503 1568176 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-729 1564316 1564824 1565420 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-728 1561313 1561852 1562498 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-727 1560668 1560776 1561034 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-726 1559826 1559951 1560172 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-725 1556110 1556906 1557819 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-724 1555550 1555645 1555867 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-723 1555231 1555280 1555407 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-722 1551834 1555030 1555149 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-721 1550994 1551616 1551644 "OCAMON" 1551649 OCAMON (NIL) -9 NIL 1551670 NIL) (-720 1545206 1548020 1548060 "OC" 1549155 OC (NIL T) -9 NIL 1550011 NIL) (-719 1543206 1544132 1545112 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-718 1542622 1543040 1543068 "OASGP" 1543073 OASGP (NIL) -9 NIL 1543093 NIL) (-717 1541685 1542334 1542362 "OAMONS" 1542402 OAMONS (NIL) -9 NIL 1542445 NIL) (-716 1540830 1541411 1541439 "OAMON" 1541496 OAMON (NIL) -9 NIL 1541547 NIL) (-715 1540726 1540758 1540825 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-714 1539477 1540251 1540279 "OAGROUP" 1540425 OAGROUP (NIL) -9 NIL 1540517 NIL) (-713 1539268 1539355 1539472 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-712 1539008 1539064 1539152 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-711 1534070 1535633 1537160 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-710 1530765 1531799 1532834 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-709 1529875 1530108 1530326 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-708 1518736 1521764 1524212 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-707 1512878 1518140 1518234 "NTSCAT" 1518239 NTSCAT (NIL T T T T) -9 NIL 1518277 NIL) (-706 1512219 1512398 1512591 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-705 1511912 1511975 1512082 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-704 1499579 1509532 1510342 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-703 1488588 1499444 1499574 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-702 1487308 1487633 1487990 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-701 1486144 1486408 1486766 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-700 1485311 1485444 1485660 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-699 1483629 1483948 1484354 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-698 1483342 1483376 1483500 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-697 1483161 1483196 1483265 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-696 1482937 1483127 1483156 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-695 1482501 1482568 1482745 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-694 1480787 1481864 1482119 "NNI" NIL NNI (NIL) -8 NIL NIL 1482466) (-693 1479515 1479852 1480216 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-692 1478492 1478744 1479046 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-691 1477579 1478144 1478185 "NETCLT" 1478356 NETCLT (NIL T) -9 NIL 1478437 NIL) (-690 1476483 1476750 1477031 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-689 1476282 1476325 1476400 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-688 1474813 1475201 1475621 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-687 1473446 1474412 1474440 "NASRING" 1474550 NASRING (NIL) -9 NIL 1474630 NIL) (-686 1473291 1473347 1473441 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-685 1472220 1472898 1472926 "NARNG" 1473043 NARNG (NIL) -9 NIL 1473134 NIL) (-684 1471996 1472081 1472215 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-683 1470762 1471516 1471556 "NAALG" 1471635 NAALG (NIL T) -9 NIL 1471696 NIL) (-682 1470632 1470667 1470757 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-681 1465611 1466796 1467982 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-680 1465006 1465093 1465277 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-679 1457016 1461510 1461562 "MTSCAT" 1462622 MTSCAT (NIL T T) -9 NIL 1463136 NIL) (-678 1456782 1456842 1456934 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-677 1456608 1456647 1456707 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-676 1454197 1456140 1456181 "MSETAGG" 1456186 MSETAGG (NIL T) -9 NIL 1456220 NIL) (-675 1450567 1453240 1453561 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-674 1446841 1448664 1449404 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-673 1446478 1446551 1446680 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-672 1446131 1446172 1446316 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-671 1443996 1444333 1444764 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-670 1437394 1443895 1443991 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-669 1436919 1436960 1437168 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-668 1436478 1436527 1436710 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1435752 1435845 1436064 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-666 1434369 1434730 1435120 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-665 1433890 1433957 1433996 "MONOPC" 1434056 MONOPC (NIL T) -9 NIL 1434275 NIL) (-664 1433341 1433677 1433805 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-663 1432483 1432862 1432890 "MONOID" 1433108 MONOID (NIL) -9 NIL 1433252 NIL) (-662 1432142 1432292 1432478 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-661 1421080 1427950 1428009 "MONOGEN" 1428683 MONOGEN (NIL T T) -9 NIL 1429139 NIL) (-660 1419092 1419978 1420961 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-659 1417806 1418350 1418378 "MONADWU" 1418769 MONADWU (NIL) -9 NIL 1419004 NIL) (-658 1417354 1417554 1417801 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-657 1416631 1416932 1416960 "MONAD" 1417167 MONAD (NIL) -9 NIL 1417279 NIL) (-656 1416398 1416494 1416626 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-655 1414788 1415558 1415837 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-654 1413922 1414449 1414489 "MODULE" 1414494 MODULE (NIL T) -9 NIL 1414532 NIL) (-653 1413601 1413727 1413917 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-652 1411312 1412198 1412512 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-651 1408491 1409908 1410421 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-650 1407125 1407699 1407975 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-649 1396344 1405790 1406203 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-648 1393300 1395344 1395613 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-647 1392384 1392751 1392941 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-646 1391953 1392002 1392181 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-645 1389778 1390774 1390814 "MLO" 1391231 MLO (NIL T) -9 NIL 1391471 NIL) (-644 1387659 1388186 1388781 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-643 1387127 1387223 1387377 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-642 1386797 1386873 1386996 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-641 1386009 1386195 1386423 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-640 1385502 1385618 1385774 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-639 1384874 1384988 1385173 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-638 1383901 1384174 1384451 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-637 1383334 1383422 1383593 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-636 1380492 1381371 1382250 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-635 1379159 1379507 1379860 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-634 1376543 1378264 1378305 "MDAGG" 1378562 MDAGG (NIL T) -9 NIL 1378707 NIL) (-633 1375817 1375981 1376181 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-632 1374895 1375181 1375411 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-631 1372992 1373569 1374130 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-630 1368790 1372582 1372829 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-629 1365139 1365908 1366642 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-628 1363892 1364061 1364390 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-627 1353415 1356979 1357055 "MATCAT" 1362043 MATCAT (NIL T T T) -9 NIL 1363489 NIL) (-626 1350696 1352002 1353410 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-625 1349097 1349457 1349841 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-624 1348230 1348427 1348649 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-623 1346981 1347307 1347634 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-622 1346143 1346545 1346721 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-621 1345812 1345876 1345999 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-620 1345460 1345533 1345647 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-619 1344995 1345110 1345252 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-618 1343204 1343972 1344273 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-617 1342698 1343000 1343090 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-616 1336929 1341013 1341054 "LZSTAGG" 1341831 LZSTAGG (NIL T) -9 NIL 1342121 NIL) (-615 1334278 1335590 1336924 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-614 1331665 1332631 1333114 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-613 1331246 1331525 1331599 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-612 1323455 1331107 1331241 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-611 1322818 1322963 1323191 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-610 1320302 1321000 1321712 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-609 1318518 1318841 1319275 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-608 1311921 1317568 1317609 "LSAGG" 1317671 LSAGG (NIL T) -9 NIL 1317749 NIL) (-607 1309615 1310714 1311916 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-606 1307095 1308964 1309213 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-605 1306762 1306853 1306976 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-604 1306433 1306512 1306540 "LOGIC" 1306651 LOGIC (NIL) -9 NIL 1306733 NIL) (-603 1306328 1306357 1306428 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-602 1305647 1305805 1305998 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-601 1304432 1304681 1305032 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-600 1300254 1303053 1303093 "LODOCAT" 1303525 LODOCAT (NIL T) -9 NIL 1303736 NIL) (-599 1300047 1300123 1300249 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-598 1297047 1299924 1300042 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-597 1294145 1296997 1297042 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-596 1291232 1294075 1294140 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-595 1290285 1290460 1290762 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-594 1288417 1289547 1289800 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-593 1284237 1286576 1286617 "LNAGG" 1287476 LNAGG (NIL T) -9 NIL 1287914 NIL) (-592 1283624 1283891 1284232 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-591 1280196 1281137 1281774 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-590 1279458 1279963 1280003 "LMODULE" 1280008 LMODULE (NIL T) -9 NIL 1280034 NIL) (-589 1276927 1279194 1279317 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-588 1276495 1276706 1276747 "LLINSET" 1276808 LLINSET (NIL T) -9 NIL 1276852 NIL) (-587 1276171 1276431 1276490 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-586 1275770 1275850 1275989 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-585 1274221 1274569 1274968 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-584 1273392 1273588 1273816 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-583 1266709 1272648 1272902 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-582 1266286 1266519 1266560 "LINSET" 1266565 LINSET (NIL T) -9 NIL 1266598 NIL) (-581 1265187 1265909 1266076 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-580 1263453 1264208 1264248 "LINEXP" 1264734 LINEXP (NIL T) -9 NIL 1265007 NIL) (-579 1262075 1263062 1263243 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-578 1260902 1261174 1261476 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-577 1260115 1260704 1260814 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-576 1257665 1258387 1259137 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-575 1256295 1256592 1256983 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-574 1255088 1255690 1255730 "LIECAT" 1255870 LIECAT (NIL T) -9 NIL 1256021 NIL) (-573 1254962 1254995 1255083 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-572 1249218 1254652 1254880 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-571 1240719 1248894 1249050 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-570 1237171 1238120 1239055 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-569 1235795 1236703 1236731 "LFCAT" 1236938 LFCAT (NIL) -9 NIL 1237077 NIL) (-568 1234034 1234364 1234709 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-567 1231551 1232216 1232897 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-566 1228563 1229541 1230044 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-565 1228054 1228357 1228448 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-564 1226761 1227085 1227485 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-563 1226027 1226112 1226338 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-562 1221030 1224595 1225131 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-561 1220655 1220705 1220865 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-560 1219426 1220199 1220239 "LALG" 1220300 LALG (NIL T) -9 NIL 1220358 NIL) (-559 1219209 1219286 1219421 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-558 1217062 1218477 1218728 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-557 1216891 1216921 1216962 "KVTFROM" 1217024 KVTFROM (NIL T) -9 NIL NIL NIL) (-556 1215707 1216422 1216611 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-555 1215536 1215566 1215607 "KRCFROM" 1215669 KRCFROM (NIL T) -9 NIL NIL NIL) (-554 1214638 1214835 1215130 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-553 1214467 1214497 1214538 "KONVERT" 1214600 KONVERT (NIL T) -9 NIL NIL NIL) (-552 1214296 1214326 1214367 "KOERCE" 1214429 KOERCE (NIL T) -9 NIL NIL NIL) (-551 1213866 1213959 1214091 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-550 1211919 1212813 1213185 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-549 1204866 1209703 1209757 "KDAGG" 1210133 KDAGG (NIL T T) -9 NIL 1210359 NIL) (-548 1204524 1204659 1204861 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-547 1197817 1204316 1204462 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-546 1197467 1197749 1197812 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-545 1196437 1196936 1197185 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-544 1195563 1196012 1196217 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-543 1194427 1194919 1195219 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-542 1193709 1194108 1194269 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-541 1193419 1193655 1193704 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-540 1187674 1193109 1193337 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-539 1187092 1187425 1187545 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-538 1183763 1185278 1185332 "IXAGG" 1186247 IXAGG (NIL T T) -9 NIL 1186707 NIL) (-537 1182969 1183340 1183758 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-536 1181936 1182211 1182474 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-535 1180598 1180805 1181098 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-534 1179549 1179771 1180054 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-533 1179224 1179287 1179410 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-532 1178486 1178858 1179032 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-531 1176462 1177762 1178036 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-530 1166010 1171779 1172936 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-529 1165255 1165407 1165643 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-528 1164746 1165049 1165140 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-527 1164039 1164130 1164343 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-526 1163171 1163396 1163636 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-525 1161584 1161965 1162393 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-524 1161369 1161413 1161489 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-523 1160219 1160516 1160811 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-522 1159492 1159843 1159994 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-521 1158695 1158826 1159039 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-520 1156850 1157347 1157891 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-519 1153931 1155199 1155888 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-518 1153756 1153796 1153856 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-517 1149754 1153682 1153751 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-516 1147757 1149693 1149749 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-515 1147128 1147427 1147557 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-514 1146581 1146869 1147001 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-513 1145662 1146287 1146413 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-512 1145072 1145566 1145594 "IOBCON" 1145599 IOBCON (NIL) -9 NIL 1145620 NIL) (-511 1144643 1144707 1144889 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-510 1136687 1139058 1141383 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-509 1133798 1134581 1135445 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-508 1133475 1133572 1133689 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-507 1130917 1133411 1133470 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-506 1129029 1129558 1130125 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-505 1128531 1128645 1128785 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-504 1126915 1127321 1127783 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-503 1124694 1125288 1125899 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-502 1122067 1122677 1123397 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-501 1121471 1121629 1121837 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-500 1120990 1121076 1121264 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-499 1119195 1119716 1120173 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-498 1112277 1113930 1115659 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-497 1111643 1111805 1111978 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-496 1109516 1109980 1110524 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-495 1107642 1108592 1108620 "INTDOM" 1108919 INTDOM (NIL) -9 NIL 1109124 NIL) (-494 1107195 1107397 1107637 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-493 1103002 1105474 1105528 "INTCAT" 1106324 INTCAT (NIL T) -9 NIL 1106640 NIL) (-492 1102567 1102687 1102814 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-491 1101407 1101579 1101885 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-490 1100980 1101076 1101233 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-489 1093328 1100887 1100975 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-488 1092626 1093181 1093246 "INT8" NIL INT8 (NIL) -8 NIL NIL 1093280) (-487 1091923 1092478 1092543 "INT64" NIL INT64 (NIL) -8 NIL NIL 1092577) (-486 1091220 1091775 1091840 "INT32" NIL INT32 (NIL) -8 NIL NIL 1091874) (-485 1090517 1091072 1091137 "INT16" NIL INT16 (NIL) -8 NIL NIL 1091171) (-484 1086980 1090436 1090512 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-483 1081037 1084520 1084548 "INS" 1085478 INS (NIL) -9 NIL 1086137 NIL) (-482 1079099 1080017 1080964 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-481 1078158 1078381 1078656 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-480 1077372 1077513 1077710 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-479 1076362 1076503 1076740 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-478 1075514 1075678 1075938 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-477 1074794 1074909 1075097 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-476 1073533 1073802 1074126 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-475 1072813 1072954 1073137 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-474 1072476 1072548 1072646 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-473 1069554 1071040 1071563 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-472 1069153 1069260 1069374 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-471 1068309 1068954 1069055 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-470 1067159 1067427 1067748 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-469 1066149 1067089 1067154 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-468 1065774 1065854 1065971 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-467 1064688 1065233 1065437 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-466 1060783 1061838 1062781 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-465 1059637 1059960 1059988 "INBCON" 1060501 INBCON (NIL) -9 NIL 1060767 NIL) (-464 1059091 1059356 1059632 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-463 1058585 1058887 1058977 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-462 1058042 1058351 1058456 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-461 1056881 1057022 1057339 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-460 1055304 1055573 1055912 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-459 1050147 1055235 1055299 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-458 1049527 1049861 1049976 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-457 1044629 1048965 1049151 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-456 1043659 1044551 1044624 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-455 1043231 1043308 1043362 "IEVALAB" 1043569 IEVALAB (NIL T T) -9 NIL NIL NIL) (-454 1042986 1043066 1043226 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-453 1042371 1042598 1042755 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-452 1041364 1042291 1042366 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-451 1040427 1041284 1041359 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-450 1039509 1040156 1040293 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-449 1037872 1038443 1038494 "IDPC" 1039000 IDPC (NIL T T) -9 NIL 1039313 NIL) (-448 1037160 1037794 1037867 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-447 1036330 1037082 1037155 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-446 1036023 1036236 1036296 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-445 1035727 1035767 1035806 "IDEMOPC" 1035811 IDEMOPC (NIL T) -9 NIL 1035948 NIL) (-444 1032798 1033679 1034571 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-443 1026424 1027701 1028740 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-442 1025686 1025816 1026015 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-441 1024859 1025358 1025496 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-440 1023248 1023579 1023970 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-439 1020506 1021130 1021825 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1018732 1019212 1019745 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1016606 1018638 1018727 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1012758 1016544 1016601 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1006337 1011722 1012190 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1005905 1005968 1006141 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1005397 1005546 1005574 "HYPCAT" 1005781 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1005053 1005206 1005392 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1004666 1004911 1004994 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1004499 1004548 1004589 "HOMOTOP" 1004594 HOMOTOP (NIL T) -9 NIL 1004627 NIL) (-429 1002684 1003555 1003596 "HOAGG" 1003783 HOAGG (NIL T) -9 NIL 1004178 NIL) (-428 1002311 1002458 1002679 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 995511 1002036 1002184 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 994446 994704 994967 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 993381 994311 994441 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 991639 993214 993302 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 990954 991306 991439 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 984454 990887 990949 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 977593 984190 984341 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 977046 977203 977366 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 969411 976963 977041 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 968902 969205 969296 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 966452 968689 968868 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 962138 966335 966447 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 954480 962035 962133 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 946417 953849 954104 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 945441 945950 945978 "GROUP" 946181 GROUP (NIL) -9 NIL 946315 NIL) (-412 944984 945185 945436 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 943656 943995 944382 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 942478 942835 942886 "GRMOD" 943415 GRMOD (NIL T T) -9 NIL 943581 NIL) (-409 942297 942345 942473 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 938420 939631 940631 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 937142 937466 937781 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 936695 936823 936964 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 935768 936267 936318 "GRALG" 936471 GRALG (NIL T T) -9 NIL 936561 NIL) (-404 935487 935588 935763 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 932506 935178 935345 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 931919 931982 932239 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 927773 928669 929194 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 926948 927150 927388 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 921951 922878 923897 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 921699 921756 921845 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 921181 921270 921435 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 920690 920731 920944 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 919491 919774 920078 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 912766 919181 919342 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 902549 907556 908660 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 900601 901704 901732 "GCDDOM" 901987 GCDDOM (NIL) -9 NIL 902144 NIL) (-391 900224 900381 900596 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 891017 893487 895875 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 889152 889477 889895 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 888093 888282 888549 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 886964 887171 887475 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 886427 886569 886717 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 885039 885387 885700 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 883584 883905 884227 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 881210 881566 881971 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 874462 876123 877701 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 874114 874335 874403 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 873738 873959 874040 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 871835 872518 872978 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 870428 870735 871127 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 869083 869442 869766 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 868386 868510 868697 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 867360 867626 867973 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 865018 865548 866030 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 864601 864661 864830 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 862901 863815 864118 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 862049 862183 862406 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 861220 861381 861608 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 857454 860115 860156 "FSAGG" 860526 FSAGG (NIL T) -9 NIL 860787 NIL) (-368 855808 856567 857359 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 853764 854060 854604 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 852811 852993 853293 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 852492 852541 852668 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 832648 842149 842190 "FS" 846060 FS (NIL T) -9 NIL 848338 NIL) (-363 824879 828372 832351 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 824413 824540 824692 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 818936 822094 822134 "FRNAALG" 823454 FRNAALG (NIL T) -9 NIL 824052 NIL) (-360 815677 816928 818186 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 815358 815407 815534 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 813845 814402 814696 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 813131 813224 813511 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 810965 811731 812047 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 810074 810517 810558 "FRETRCT" 810563 FRETRCT (NIL T) -9 NIL 810734 NIL) (-354 809447 809725 810069 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 806191 807711 807770 "FRAMALG" 808652 FRAMALG (NIL T T) -9 NIL 808944 NIL) (-352 804787 805338 805968 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 804480 804543 804650 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 798121 804285 804475 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 797814 797877 797984 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 790122 794693 796021 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 783900 787403 787431 "FPS" 788550 FPS (NIL) -9 NIL 789106 NIL) (-346 783457 783590 783754 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 780267 782310 782338 "FPC" 782563 FPC (NIL) -9 NIL 782705 NIL) (-344 780113 780165 780262 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 778890 779599 779640 "FPATMAB" 779645 FPATMAB (NIL T) -9 NIL 779797 NIL) (-342 777320 777916 778263 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 776895 776953 777126 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 775398 776293 776467 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 774013 774518 774546 "FNCAT" 775003 FNCAT (NIL) -9 NIL 775260 NIL) (-338 773470 773980 774008 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 772057 773419 773465 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 768645 770003 770044 "FMONCAT" 771261 FMONCAT (NIL T) -9 NIL 771865 NIL) (-335 765503 766581 766634 "FMCAT" 767815 FMCAT (NIL T T) -9 NIL 768307 NIL) (-334 764203 765326 765425 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 763251 764051 764198 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 761438 761890 762384 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 759373 759909 760487 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 752759 757710 758324 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 751240 752341 752381 "FLINEXP" 752386 FLINEXP (NIL T) -9 NIL 752479 NIL) (-328 750649 750908 751235 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 749898 750057 750271 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 746781 747860 747912 "FLALG" 749139 FLALG (NIL T T) -9 NIL 749606 NIL) (-325 745952 746113 746340 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 739621 743366 743407 "FLAGG" 744646 FLAGG (NIL T) -9 NIL 745294 NIL) (-323 738729 739133 739616 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 735290 736554 736613 "FINRALG" 737741 FINRALG (NIL T T) -9 NIL 738249 NIL) (-321 734681 734946 735285 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 733979 734275 734303 "FINITE" 734499 FINITE (NIL) -9 NIL 734606 NIL) (-319 733887 733913 733974 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 730821 732148 732189 "FINAGG" 733094 FINAGG (NIL T) -9 NIL 733548 NIL) (-317 729852 730317 730816 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 721813 724404 724444 "FINAALG" 728096 FINAALG (NIL T) -9 NIL 729534 NIL) (-315 718080 719325 720448 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 716632 717051 717105 "FILECAT" 717789 FILECAT (NIL T T) -9 NIL 718005 NIL) (-313 715983 716457 716560 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 713231 715109 715137 "FIELD" 715177 FIELD (NIL) -9 NIL 715257 NIL) (-311 712256 712717 713226 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 710260 711206 711552 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 709503 709684 709903 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 704773 709441 709498 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 704435 704502 704637 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 703975 704017 704226 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 700655 701532 702309 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 695939 700587 700650 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 690618 695428 695618 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 685099 689899 690157 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 679306 684550 684761 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 678329 678539 678854 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 673769 676474 676502 "FFIELDC" 677121 FFIELDC (NIL) -9 NIL 677496 NIL) (-298 672838 673278 673764 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 672453 672511 672635 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 670597 671120 671637 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 665691 670396 670497 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 660791 665480 665587 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 655457 660582 660690 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 654911 654960 655195 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 633486 644520 644606 "FFCAT" 649756 FFCAT (NIL T T T) -9 NIL 651192 NIL) (-290 629726 630952 632258 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 624569 629657 629721 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 623461 623930 623971 "FEVALAB" 624055 FEVALAB (NIL T) -9 NIL 624316 NIL) (-287 622866 623118 623456 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 619693 620604 620719 "FDIVCAT" 622286 FDIVCAT (NIL T T T T) -9 NIL 622722 NIL) (-285 619487 619519 619688 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 618794 618887 619164 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 617280 618278 618481 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 616373 616757 616959 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 615495 615984 616124 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 607082 611725 611765 "FAXF" 613566 FAXF (NIL T) -9 NIL 614256 NIL) (-279 604998 605802 606617 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 600157 604520 604694 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 594615 597038 597090 "FAMR" 598101 FAMR (NIL T T) -9 NIL 598560 NIL) (-276 593814 594179 594610 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 592835 593756 593809 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 590429 591308 591361 "FAMONC" 592302 FAMONC (NIL T T) -9 NIL 592687 NIL) (-273 588985 590287 590424 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 587065 587426 587828 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 586342 586539 586761 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 578202 585789 585988 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 576221 576791 577377 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 573123 573765 574485 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 568280 568987 569792 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 567969 568032 568141 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 552762 567018 567444 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 543289 552082 552370 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 542783 543085 543175 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 542559 542749 542778 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 542248 542316 542429 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 541765 541907 541948 "EVALAB" 542118 EVALAB (NIL T) -9 NIL 542222 NIL) (-259 541393 541539 541760 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 538436 540031 540059 "EUCDOM" 540613 EUCDOM (NIL) -9 NIL 540962 NIL) (-257 537363 537856 538431 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 537088 537144 537244 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 536776 536840 536949 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 530547 532447 532475 "ES" 535217 ES (NIL) -9 NIL 536601 NIL) (-253 527062 528594 530386 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 526410 526563 526739 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 518781 526340 526405 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 518470 518533 518642 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 512097 515222 516655 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 508400 509496 510589 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 507229 507579 507884 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 506114 506845 506873 "ENTIRER" 506878 ENTIRER (NIL) -9 NIL 506922 NIL) (-245 506003 506037 506109 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 502636 504433 504782 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 501728 501939 501993 "ELTAGG" 502373 ELTAGG (NIL T T) -9 NIL 502584 NIL) (-242 501508 501582 501723 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 501254 501289 501343 "ELTAB" 501427 ELTAB (NIL T T) -9 NIL 501479 NIL) (-240 500505 500675 500874 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 500229 500303 500331 "ELEMFUN" 500436 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 500129 500156 500224 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 495410 498154 498195 "ELAGG" 499128 ELAGG (NIL T) -9 NIL 499589 NIL) (-236 494208 494746 495405 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 493626 493793 493949 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 492539 492858 493137 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 485932 487930 488757 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 479911 481907 482717 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 477725 478131 478602 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 468725 470638 472179 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 467838 468339 468488 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 466536 467210 467250 "DVARCAT" 467533 DVARCAT (NIL T) -9 NIL 467673 NIL) (-227 465955 466219 466531 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 458022 465823 465950 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 456360 457151 457192 "DSEXT" 457555 DSEXT (NIL T) -9 NIL 457849 NIL) (-224 455165 455689 456355 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 454889 454954 455052 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 451040 452256 453387 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 446686 448041 449105 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 445361 445722 446108 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 445047 445106 445224 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 444022 444320 444610 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 443607 443682 443832 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 436020 438132 440247 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 431537 432556 433635 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 428161 430164 430205 "DQAGG" 430834 DQAGG (NIL T) -9 NIL 431107 NIL) (-213 414704 422344 422426 "DPOLCAT" 424263 DPOLCAT (NIL T T T T) -9 NIL 424806 NIL) (-212 411112 412760 414699 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 404163 411010 411107 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 397123 403992 404158 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 396716 396976 397065 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 396130 396578 396658 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 395416 395741 395892 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 388555 395152 395303 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 386304 387621 387661 "DMEXT" 387666 DMEXT (NIL T) -9 NIL 387841 NIL) (-204 385960 386022 386166 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 379562 385445 385635 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 376729 378391 378432 "DLAGG" 378973 DLAGG (NIL T) -9 NIL 379205 NIL) (-201 375080 375951 375979 "DIVRING" 376071 DIVRING (NIL) -9 NIL 376154 NIL) (-200 374531 374775 375075 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 372959 373376 373782 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 371996 372217 372482 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 365516 371928 371991 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 353862 360276 360329 "DIRPCAT" 360585 DIRPCAT (NIL NIL T) -9 NIL 361460 NIL) (-195 351868 352638 353525 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 351315 351481 351667 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 348598 350192 350233 "DIOPS" 350653 DIOPS (NIL T) -9 NIL 350881 NIL) (-192 348258 348402 348593 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 347265 348011 348039 "DIOID" 348044 DIOID (NIL) -9 NIL 348066 NIL) (-190 346093 346922 346950 "DIFRING" 346955 DIFRING (NIL) -9 NIL 346976 NIL) (-189 345729 345827 345855 "DIFFSPC" 345974 DIFFSPC (NIL) -9 NIL 346049 NIL) (-188 345470 345572 345724 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 344373 344998 345038 "DIFFMOD" 345043 DIFFMOD (NIL T) -9 NIL 345140 NIL) (-186 344057 344114 344155 "DIFFDOM" 344276 DIFFDOM (NIL T) -9 NIL 344344 NIL) (-185 343938 343968 344052 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 341611 343132 343172 "DIFEXT" 343177 DIFEXT (NIL T) -9 NIL 343329 NIL) (-183 339499 341093 341134 "DIAGG" 341139 DIAGG (NIL T) -9 NIL 341159 NIL) (-182 339055 339245 339494 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 334293 338245 338522 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 330751 331804 332814 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 325301 329905 330232 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 323867 324159 324534 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 320987 322239 322635 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 318771 320818 320907 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 318154 318299 318481 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 315472 316196 316996 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 313581 314039 314601 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 312964 313297 313411 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 306164 312689 312837 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 304084 304594 305098 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 303723 303772 303923 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 302982 303544 303635 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 301006 301448 301808 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 300298 300587 300733 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 299749 299895 300047 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 297111 297904 298631 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 296550 296696 296867 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 294622 294933 295300 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 294179 294434 294535 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 293380 293763 293791 "CTORCAT" 293972 CTORCAT (NIL) -9 NIL 294084 NIL) (-159 293083 293217 293375 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 292576 292833 292941 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 291992 292423 292496 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 291451 291568 291721 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 287845 288601 289356 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 287336 287639 287730 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 286555 286764 286992 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 286059 286164 286368 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 285812 285846 285952 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 282751 283513 284231 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 282270 282412 282551 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 278163 280733 281225 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 278037 278064 278092 "CONDUIT" 278129 CONDUIT (NIL) -9 NIL NIL NIL) (-146 276916 277647 277675 "COMRING" 277680 COMRING (NIL) -9 NIL 277730 NIL) (-145 276081 276448 276626 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 275777 275818 275946 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 275470 275533 275640 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 264312 275420 275465 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 263773 263912 264072 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 263526 263567 263665 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 244957 257207 257247 "COMPCAT" 258248 COMPCAT (NIL T) -9 NIL 259590 NIL) (-138 237495 241008 244601 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 237254 237288 237390 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 237084 237123 237181 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 236665 236944 237018 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 236242 236483 236570 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 235437 235685 235713 "COMBOPC" 236051 COMBOPC (NIL) -9 NIL 236226 NIL) (-132 234501 234753 234995 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 231433 232117 232740 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 230313 230764 230999 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 229804 230107 230198 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 229491 229544 229669 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 228961 229271 229369 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 225481 226551 227631 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 223776 224761 224999 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 221134 222412 222453 "CLAGG" 223016 CLAGG (NIL T) -9 NIL 223396 NIL) (-123 220692 220882 221129 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 220321 220412 220552 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 218258 218765 219313 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 217219 217950 217978 "CHARZ" 217983 CHARZ (NIL) -9 NIL 217997 NIL) (-119 217013 217059 217137 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 215852 216615 216643 "CHARNZ" 216704 CHARNZ (NIL) -9 NIL 216752 NIL) (-117 213330 214427 214950 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 213038 213117 213145 "CFCAT" 213256 CFCAT (NIL) -9 NIL NIL NIL) (-115 212381 212510 212692 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 208649 211794 212074 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 208027 208214 208391 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 207555 207974 208022 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 207028 207337 207434 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 206519 206822 206913 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 205768 205928 206149 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 201868 203125 203833 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 200234 201265 201516 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 199815 200094 200168 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 199249 199502 199530 "CACHSET" 199662 CACHSET (NIL) -9 NIL 199740 NIL) (-104 198601 199016 199044 "CABMON" 199094 CABMON (NIL) -9 NIL 199150 NIL) (-103 198131 198395 198505 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 193640 197799 197960 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 192610 193314 193449 "BYTE" NIL BYTE (NIL) -8 NIL NIL 193612) (-100 190135 192377 192483 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 187631 189889 189997 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 184885 187033 187072 "BTCAT" 187139 BTCAT (NIL T) -9 NIL 187220 NIL) (-97 184636 184734 184880 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 179979 183828 183854 "BTAGG" 183965 BTAGG (NIL) -9 NIL 184073 NIL) (-95 179610 179771 179974 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 176748 179102 179292 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 176018 176170 176348 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 173053 174733 174772 "BRAGG" 175401 BRAGG (NIL T) -9 NIL 175661 NIL) (-91 172128 172559 173048 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 164662 171633 171814 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 162654 164614 164657 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 162387 162423 162534 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 160626 161059 161507 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 156592 158008 158898 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 155468 156359 156481 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 155054 155211 155237 "BOOLE" 155345 BOOLE (NIL) -9 NIL 155426 NIL) (-83 154847 154928 155049 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 153985 154512 154562 "BMODULE" 154567 BMODULE (NIL T T) -9 NIL 154631 NIL) (-81 149885 153842 153911 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 149698 149738 149777 "BINOPC" 149782 BINOPC (NIL T) -9 NIL 149827 NIL) (-79 149240 149513 149615 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 148761 148905 149043 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 141967 148491 148636 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 140214 141187 141226 "BGAGG" 141482 BGAGG (NIL T) -9 NIL 141609 NIL) (-75 140083 140121 140209 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 138934 139135 139420 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 135648 138114 138419 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 135233 135326 135352 "BASTYPE" 135523 BASTYPE (NIL) -9 NIL 135619 NIL) (-71 135003 135099 135228 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 134518 134606 134756 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 133417 134092 134277 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133165 133170 133196 "ATTREG" 133201 ATTREG (NIL) -9 NIL NIL NIL) (-67 132770 133042 133107 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 132270 132419 132445 "ATRIG" 132646 ATRIG (NIL) -9 NIL NIL NIL) (-65 132125 132178 132265 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 131695 131926 131952 "ASTCAT" 131957 ASTCAT (NIL) -9 NIL 131987 NIL) (-63 131494 131571 131690 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 129717 131327 131415 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 128524 128837 129202 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 126376 128454 128519 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 125567 125758 125979 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 121445 125298 125412 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 115757 117761 117836 "ARR2CAT" 120348 ARR2CAT (NIL T T T) -9 NIL 121069 NIL) (-56 114718 115200 115752 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 114086 114457 114579 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 113018 113186 113482 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 112719 112773 112891 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 112102 112248 112404 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 111507 111797 111917 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 109075 110236 110559 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 108600 108860 108956 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 102295 107662 108104 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 97829 99492 99542 "AMR" 100280 AMR (NIL T T) -9 NIL 100877 NIL) (-46 97183 97463 97824 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79104 97117 97178 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 75507 78780 78949 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 72517 73177 73784 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 71896 72009 72193 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68308 68933 69525 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 57797 68001 68151 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57114 57268 57446 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 55827 56622 56660 "ALGEBRA" 56665 ALGEBRA (NIL T) -9 NIL 56705 NIL) (-37 55613 55690 55822 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 33875 52720 52772 "ALAGG" 52907 ALAGG (NIL T T) -9 NIL 53065 NIL) (-35 33375 33524 33550 "AHYP" 33751 AHYP (NIL) -9 NIL NIL NIL) (-34 32857 32989 33015 "AGG" 33220 AGG (NIL) -9 NIL 33346 NIL) (-33 32700 32758 32852 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30839 31299 31699 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30334 30637 30726 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29704 29999 30155 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17262 26541 26579 "ACFS" 27186 ACFS (NIL T) -9 NIL 27425 NIL) (-28 15885 16495 17257 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11437 13816 13842 "ACF" 14721 ACF (NIL) -9 NIL 15133 NIL) (-26 10533 10939 11432 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10035 10275 10301 "ABELSG" 10393 ABELSG (NIL) -9 NIL 10458 NIL) (-24 9933 9964 10030 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9088 9462 9488 "ABELMON" 9713 ABELMON (NIL) -9 NIL 9846 NIL) (-22 8770 8910 9083 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 7982 8465 8491 "ABELGRP" 8563 ABELGRP (NIL) -9 NIL 8638 NIL) (-20 7535 7731 7977 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6762 6801 "A1AGG" 6806 A1AGG (NIL T) -9 NIL 6840 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index eaeda7ff..1024f6c4 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,793 +1,793 @@
-(630408 . 3577992039)
+(630282 . 3577996048)
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485))))
- (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484))))
+ (-5 *2 (-1179 (-350 (-484)))) (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485))))
- (-5 *2 (-1180 (-485))) (-5 *1 (-1209 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484))))
+ (-5 *2 (-1179 (-484))) (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-85))
- (-5 *1 (-1209 *4)))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-1208 *4)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-554 *2) (-146))) (-5 *2 (-801 *4)) (-5 *1 (-144 *4 *5 *3))
- (-4 *4 (-1014)) (-4 *3 (-139 *5))))
+ (-12 (-4 *5 (-13 (-553 *2) (-146))) (-5 *2 (-800 *4)) (-5 *1 (-144 *4 *5 *3))
+ (-4 *4 (-1013)) (-4 *3 (-139 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
- (-4 *4 (-1156 *3))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
+ (-4 *4 (-1155 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3))
- (-5 *2 (-1180 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-496)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-348 *1)) (-4 *1 (-364 *3)) (-4 *3 (-495)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-403 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-474))))
- ((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-403 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-473))))
+ ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5))
- (-4 *5 (-554 (-1091))) (-4 *4 (-718)) (-4 *5 (-757))))
+ (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5))
+ (-4 *5 (-553 (-1090))) (-4 *4 (-717)) (-4 *5 (-756))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)))))
((*1 *1 *2)
- (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074))
- (-5 *1 (-982 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-1021 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1074))
- (-5 *1 (-1060 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1016)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1096))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-773)) (-5 *3 (-485)) (-5 *1 (-1110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-704 *4 (-774 *5))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *5 (-584 (-1091))) (-5 *2 (-704 *4 (-774 *6))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-858 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-704 *4 (-774 *6))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *6 (-584 (-1091))) (-5 *2 (-858 (-938 (-350 *4))))
- (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-1086 (-938 (-350 *4)))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6))))
- (-4 *4 (-13 (-756) (-258) (-120) (-934))) (-14 *6 (-584 (-1091)))
- (-5 *2 (-584 (-704 *4 (-774 *6)))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *5 (-584 (-1091))))))
-(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
- (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-348 (-1086 *7))) (-5 *1 (-682 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-392)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-348 *1)) (-4 *1 (-862 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-392)) (-5 *2 (-348 *3))
- (-5 *1 (-893 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7))
- (-5 *3 (-1086 (-350 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-1160 *4 *3))
- (-4 *3 (-13 (-1156 *4) (-496) (-10 -8 (-15 -3146 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *5 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *4 (-470 (-774 *6)) (-774 *6) (-704 *4 (-774 *6)))))
- (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4)))))
- (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091)))))
+ (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073))
+ (-5 *1 (-981 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-1020 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1073))
+ (-5 *1 (-1059 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1015)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1095))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-484)) (-5 *1 (-1109))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-703 *4 (-773 *5))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *5 (-583 (-1090))) (-5 *2 (-703 *4 (-773 *6))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *6 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-857 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-703 *4 (-773 *6))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *6 (-583 (-1090))) (-5 *2 (-857 (-937 (-350 *4))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-1085 (-937 (-350 *4)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6))))
+ (-4 *4 (-13 (-755) (-258) (-120) (-933))) (-14 *6 (-583 (-1090)))
+ (-5 *2 (-583 (-703 *4 (-773 *6)))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-583 (-1090))))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-4 *7 (-861 *6 *4 *5))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-681 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-392)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-348 *1)) (-4 *1 (-861 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-392)) (-5 *2 (-348 *3))
+ (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5))
+ (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7))
+ (-5 *3 (-1085 (-350 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-1159 *4 *3))
+ (-4 *3 (-13 (-1155 *4) (-495) (-10 -8 (-15 -3145 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *5 (-583 (-1090)))
+ (-5 *2 (-583 (-1060 *4 (-469 (-773 *6)) (-773 *6) (-703 *4 (-773 *6)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 (-330)))) (-5 *1 (-937)) (-5 *5 (-330))))
+ (-12 (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-583 (-1090)))
+ (-5 *2 (-583 (-583 (-330)))) (-5 *1 (-936)) (-5 *5 (-330))))
((*1 *2 *3)
- (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *5 (-584 (-1091))) (-5 *2 (-584 (-584 (-938 (-350 *4)))))
- (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091)))))
+ (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *5 (-583 (-1090))) (-5 *2 (-583 (-583 (-937 (-350 *4)))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *5))))) (-5 *1 (-1208 *5 *6 *7))
- (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-584 (-938 (-350 *4))))) (-5 *1 (-1208 *4 *5 *6))
- (-14 *5 (-584 (-1091))) (-14 *6 (-584 (-1091))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-959 *4 *5)) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-14 *5 (-584 (-1091)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4))))))
- (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-584 (-1091)))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *5))))) (-5 *1 (-1207 *5 *6 *7))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-583 (-937 (-350 *4))))) (-5 *1 (-1207 *4 *5 *6))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-583 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-14 *5 (-583 (-1090)))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4))))))
+ (-5 *1 (-1207 *4 *5 *6)) (-14 *6 (-583 (-1090)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))
- (-14 *7 (-584 (-1091)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))
+ (-14 *7 (-583 (-1090)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))
- (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5))))))
- (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))
- (-14 *7 (-584 (-1091)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4))))))
- (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091)))
- (-14 *6 (-584 (-1091))))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))
+ (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5))))))
+ (-5 *1 (-1207 *5 *6 *7)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))
+ (-14 *7 (-583 (-1090)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4))))))
+ (-5 *1 (-1207 *4 *5 *6)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-583 (-1090))))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
- (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
+ (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-85))
- (-4 *5 (-13 (-756) (-258) (-120) (-934))) (-5 *2 (-584 (-959 *5 *6)))
- (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-584 (-1091))) (-14 *7 (-584 (-1091)))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-85))
+ (-4 *5 (-13 (-755) (-258) (-120) (-933))) (-5 *2 (-583 (-958 *5 *6)))
+ (-5 *1 (-1207 *5 *6 *7)) (-14 *6 (-583 (-1090))) (-14 *7 (-583 (-1090)))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-756) (-258) (-120) (-934)))
- (-5 *2 (-584 (-959 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-584 (-1091))))))
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-755) (-258) (-120) (-933)))
+ (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1207 *4 *5 *6)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-583 (-1090))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1070 *4) (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1207 *4))
- (-4 *4 (-1130))))
+ (-12 (-5 *3 (-1 (-1069 *4) (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1206 *4))
+ (-4 *4 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-584 (-1070 *5)) (-584 (-1070 *5)))) (-5 *4 (-485))
- (-5 *2 (-584 (-1070 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1130)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1206)))))
-(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-1206)))))
+ (-12 (-5 *3 (-1 (-583 (-1069 *5)) (-583 (-1069 *5)))) (-5 *4 (-484))
+ (-5 *2 (-583 (-1069 *5))) (-5 *1 (-1206 *5)) (-4 *5 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1205)))))
+(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-1205)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-4 *6 (-496)) (-5 *2 (-584 (-265 *6)))
- (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-962))))
- ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496))))
+ (-12 (-5 *4 (-830)) (-4 *6 (-495)) (-5 *2 (-583 (-265 *6)))
+ (-5 *1 (-175 *5 *6)) (-5 *3 (-265 *6)) (-4 *5 (-961))))
+ ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495))))
((*1 *2 *3)
- (-12 (-5 *3 (-520 *5)) (-4 *5 (-13 (-29 *4) (-1116)))
- (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 *5))
- (-5 *1 (-522 *4 *5))))
+ (-12 (-5 *3 (-519 *5)) (-4 *5 (-13 (-29 *4) (-1115)))
+ (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 *5))
+ (-5 *1 (-521 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-520 (-350 (-858 *4))))
- (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-584 (-265 *4)))
- (-5 *1 (-526 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1008 *3 *2)) (-4 *3 (-756)) (-4 *2 (-1065 *3))))
+ (-12 (-5 *3 (-519 (-350 (-857 *4))))
+ (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-583 (-265 *4)))
+ (-5 *1 (-525 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1007 *3 *2)) (-4 *3 (-755)) (-4 *2 (-1064 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *1)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
- (-4 *2 (-1065 *4))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755))
+ (-4 *2 (-1064 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116)))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1196 (-1091) *3)) (-5 *1 (-1202 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-1195 (-1090) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-962)))))
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-756))
+ (-4 *4 (-961)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1196 (-1091) *3)) (-4 *3 (-962)) (-5 *1 (-1202 *3))))
+ (-12 (-5 *2 (-1195 (-1090) *3)) (-4 *3 (-961)) (-5 *1 (-1201 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
- (-5 *1 (-1205 *3 *4)))))
+ (-12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
+ (-5 *1 (-1204 *3 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |k| (-1091)) (|:| |c| (-1202 *3)))))
- (-5 *1 (-1202 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-1090)) (|:| |c| (-1201 *3)))))
+ (-5 *1 (-1201 *3)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |k| *3) (|:| |c| (-1205 *3 *4)))))
- (-5 *1 (-1205 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-695))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-831))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1204 *3 *4)))))
+ (-5 *1 (-1204 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-694))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-830))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
((*1 *1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-130))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116))) (-5 *1 (-181 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1026)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115))) (-5 *1 (-181 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1025)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-334 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695)))
+ (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-694)))
(-14 *7
- (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
- (-2 (|:| -2401 *5) (|:| -2402 *6))))
- (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-757))
- (-4 *2 (-862 *4 *6 (-774 *3)))))
+ (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
+ (-2 (|:| -2400 *5) (|:| -2401 *6))))
+ (-5 *1 (-401 *3 *4 *5 *6 *7 *2)) (-4 *5 (-756))
+ (-4 *2 (-861 *4 *6 (-773 *3)))))
((*1 *1 *1 *2) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *2 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-1026))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-1 *7 *5)) (-5 *1 (-626 *5 *6 *7))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-1 *7 *5)) (-5 *1 (-625 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-628 *3 *2 *4)) (-4 *3 (-962)) (-4 *2 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-324 *3))
(-4 *4 (-324 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-628 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *2 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-658))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *1 *1) (-4 *1 (-657))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496))
- (-5 *1 (-883 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-1026))))
- ((*1 *1 *1 *1) (-4 *1 (-1026)))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495))
+ (-5 *1 (-882 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-963 *2)) (-4 *2 (-1025))))
+ ((*1 *1 *1 *1) (-4 *1 (-1025)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *2 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-196 *3 *4))
(-4 *5 (-196 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1038 *3 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2))
- (-4 *2 (-862 *3 (-470 *4) *4))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-855 (-179))) (-5 *3 (-179)) (-5 *1 (-1127))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-664))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2))
+ (-4 *2 (-861 *3 (-469 *4) *4))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-854 (-179))) (-5 *3 (-179)) (-5 *1 (-1126))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-663))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-485)) (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-21))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
- ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
+ ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
- (-14 *3 (-584 (-1091)))))
- ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1014))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
+ (-14 *3 (-583 (-1090)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1013))))
((*1 *1 *1)
- (-12 (-14 *2 (-584 (-1091))) (-4 *3 (-146)) (-4 *5 (-196 (-3959 *2) (-695)))
+ (-12 (-14 *2 (-583 (-1090))) (-4 *3 (-146)) (-4 *5 (-196 (-3958 *2) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5))
- (-2 (|:| -2401 *4) (|:| -2402 *5))))
- (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-757))
- (-4 *7 (-862 *3 *5 (-774 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
- ((*1 *1 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
+ (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5))
+ (-2 (|:| -2400 *4) (|:| -2401 *5))))
+ (-5 *1 (-401 *2 *3 *4 *5 *6 *7)) (-4 *4 (-756))
+ (-4 *7 (-861 *3 *5 (-773 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
+ ((*1 *1 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
((*1 *1 *1)
- (-12 (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *2 (-962)) (-4 *3 (-664))))
- ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (-12 (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *2 (-961)) (-4 *3 (-663))))
+ ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-583 (-1090)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
(-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485))
- (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
+ (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-142 *5)) (-4 *5 (-146)) (-4 *6 (-146))
(-5 *2 (-142 *6)) (-5 *1 (-143 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-962) (-757)))
- (-5 *1 (-177 *3 *4)) (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-1 (-265 *3) (-265 *3))) (-4 *3 (-13 (-961) (-756)))
+ (-5 *1 (-177 *3 *4)) (-14 *4 (-583 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695)) (-4 *6 (-1130))
- (-4 *7 (-1130)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-249 *3))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694)) (-4 *6 (-1129))
+ (-4 *7 (-1129)) (-5 *2 (-197 *5 *7)) (-5 *1 (-198 *5 *6 *7))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-249 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-249 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
(-5 *2 (-249 *6)) (-5 *1 (-250 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-551 *1)) (-4 *1 (-254))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-550 *1)) (-4 *1 (-254))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-551 *6)) (-4 *6 (-254))
- (-4 *2 (-1130)) (-5 *1 (-255 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-550 *6)) (-4 *6 (-254))
+ (-4 *2 (-1129)) (-5 *1 (-255 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-551 *5)) (-4 *5 (-254)) (-4 *2 (-254))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-550 *5)) (-4 *5 (-254)) (-4 *2 (-254))
(-5 *1 (-256 *5 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
(-5 *2 (-265 *6)) (-5 *1 (-266 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-283 *5 *6 *7 *8)) (-4 *5 (-312))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *9 (-312)) (-4 *10 (-1156 *9)) (-4 *11 (-1156 (-350 *10)))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *9 (-312)) (-4 *10 (-1155 *9)) (-4 *11 (-1155 (-350 *10)))
(-5 *2 (-283 *9 *10 *11 *12)) (-5 *1 (-284 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-291 *9 *10 *11))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1135)) (-4 *8 (-1135)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-350 *6))) (-4 *9 (-1156 *8)) (-4 *2 (-291 *8 *9 *10))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1134)) (-4 *8 (-1134)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-4 *9 (-1155 *8)) (-4 *2 (-291 *8 *9 *10))
(-5 *1 (-292 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-291 *5 *6 *7))
- (-4 *10 (-1156 (-350 *9)))))
+ (-4 *10 (-1155 (-350 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *2 (-324 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *2 (-324 *6))
(-5 *1 (-325 *5 *4 *6 *2)) (-4 *4 (-324 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-496)) (-5 *1 (-348 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-495)) (-5 *1 (-348 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-496)) (-4 *6 (-496))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-348 *5)) (-4 *5 (-495)) (-4 *6 (-495))
(-5 *2 (-348 *6)) (-5 *1 (-349 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-496)) (-4 *6 (-496))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-350 *5)) (-4 *5 (-495)) (-4 *6 (-495))
(-5 *2 (-350 *6)) (-5 *1 (-351 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-356 *5 *6 *7 *8)) (-4 *5 (-258))
- (-4 *6 (-905 *5)) (-4 *7 (-1156 *6)) (-4 *8 (-13 (-353 *6 *7) (-951 *6)))
- (-4 *9 (-258)) (-4 *10 (-905 *9)) (-4 *11 (-1156 *10))
+ (-4 *6 (-904 *5)) (-4 *7 (-1155 *6)) (-4 *8 (-13 (-353 *6 *7) (-950 *6)))
+ (-4 *9 (-258)) (-4 *10 (-904 *9)) (-4 *11 (-1155 *10))
(-5 *2 (-356 *9 *10 *11 *12)) (-5 *1 (-357 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-353 *10 *11) (-951 *10)))))
+ (-4 *12 (-13 (-353 *10 *11) (-950 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-361 *6))
(-5 *1 (-359 *4 *5 *2 *6)) (-4 *4 (-361 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-364 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-364 *6))
(-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-364 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-369 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-369 *6))
(-5 *1 (-370 *5 *4 *6 *2)) (-4 *4 (-369 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1130))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-429 *3)) (-4 *3 (-1129))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-520 *5)) (-4 *5 (-312)) (-4 *6 (-312))
- (-5 *2 (-520 *6)) (-5 *1 (-521 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-519 *5)) (-4 *5 (-312)) (-4 *6 (-312))
+ (-5 *2 (-519 *6)) (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2137 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312))
- (-4 *6 (-312)) (-5 *2 (-2 (|:| -2137 *6) (|:| |coeff| *6)))
- (-5 *1 (-521 *5 *6))))
+ (-5 *4 (-3 (-2 (|:| -2136 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-312))
+ (-4 *6 (-312)) (-5 *2 (-2 (|:| -2136 *6) (|:| |coeff| *6)))
+ (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-312))
- (-4 *2 (-312)) (-5 *1 (-521 *5 *2))))
+ (-4 *2 (-312)) (-5 *1 (-520 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-312)) (-4 *6 (-312))
(-5 *2
(-2 (|:| |mainpart| *6)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-521 *5 *6))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-520 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-537 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-537 *6)) (-5 *1 (-534 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-536 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-536 *6)) (-5 *1 (-533 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-537 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-537 *8))
- (-5 *1 (-535 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-536 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-536 *8))
+ (-5 *1 (-534 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-537 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-535 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-536 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-534 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-537 *6)) (-5 *5 (-1070 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-535 *6 *7 *8))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-536 *6)) (-5 *5 (-1069 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-534 *6 *7 *8))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-584 *6)) (-5 *1 (-585 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-583 *6)) (-5 *1 (-584 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-584 *6)) (-5 *5 (-584 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-584 *8))
- (-5 *1 (-587 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-583 *8))
+ (-5 *1 (-586 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-593 *3)) (-4 *3 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-324 *5))
- (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10))
- (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-324 *5))
+ (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10))
+ (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
(-4 *9 (-324 *8)) (-4 *10 (-324 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-962)) (-4 *8 (-962))
- (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-628 *8 *9 *10))
- (-5 *1 (-629 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-628 *5 *6 *7))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961))
+ (-4 *6 (-324 *5)) (-4 *7 (-324 *5)) (-4 *2 (-627 *8 *9 *10))
+ (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-627 *5 *6 *7))
(-4 *9 (-324 *8)) (-4 *10 (-324 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-496)) (-4 *7 (-496)) (-4 *6 (-1156 *5))
- (-4 *2 (-1156 (-350 *8))) (-5 *1 (-647 *5 *6 *4 *7 *8 *2))
- (-4 *4 (-1156 (-350 *6))) (-4 *8 (-1156 *7))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-495)) (-4 *7 (-495)) (-4 *6 (-1155 *5))
+ (-4 *2 (-1155 (-350 *8))) (-5 *1 (-646 *5 *6 *4 *7 *8 *2))
+ (-4 *4 (-1155 (-350 *6))) (-4 *8 (-1155 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-962)) (-4 *9 (-962)) (-4 *5 (-757))
- (-4 *6 (-718)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5))))
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-756))
+ (-4 *6 (-717)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-757)) (-4 *6 (-757)) (-4 *7 (-718))
- (-4 *9 (-962)) (-4 *2 (-862 *9 *8 *6)) (-5 *1 (-669 *5 *6 *7 *8 *9 *4 *2))
- (-4 *8 (-718)) (-4 *4 (-862 *9 *7 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-756)) (-4 *6 (-756)) (-4 *7 (-717))
+ (-4 *9 (-961)) (-4 *2 (-861 *9 *8 *6)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *8 (-717)) (-4 *4 (-861 *9 *7 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-675 *5 *7)) (-4 *5 (-962)) (-4 *6 (-962))
- (-4 *7 (-664)) (-5 *2 (-675 *6 *7)) (-5 *1 (-674 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-674 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961))
+ (-4 *7 (-663)) (-5 *2 (-674 *6 *7)) (-5 *1 (-673 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-675 *3 *4)) (-4 *4 (-664))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-674 *3 *4)) (-4 *4 (-663))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-705 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-705 *6)) (-5 *1 (-706 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-704 *5)) (-4 *5 (-961)) (-4 *6 (-961))
+ (-5 *2 (-704 *6)) (-5 *1 (-705 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-721 *6))
- (-5 *1 (-724 *4 *5 *2 *6)) (-4 *4 (-721 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-720 *6))
+ (-5 *1 (-723 *4 *5 *2 *6)) (-4 *4 (-720 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-744 *6)) (-5 *1 (-745 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-743 *6)) (-5 *1 (-744 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-744 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-744 *5)) (-4 *5 (-1014))
- (-4 *6 (-1014)) (-5 *1 (-745 *5 *6))))
+ (-12 (-5 *2 (-743 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-743 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *1 (-744 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-751 *6)) (-5 *1 (-752 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-750 *6)) (-5 *1 (-751 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-751 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-751 *5)) (-4 *5 (-1014))
- (-4 *6 (-1014)) (-5 *1 (-752 *5 *6))))
+ (-12 (-5 *2 (-750 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-750 *5)) (-4 *5 (-1013))
+ (-4 *6 (-1013)) (-5 *1 (-751 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-787 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-787 *6)) (-5 *1 (-786 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-789 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-789 *6)) (-5 *1 (-788 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-793 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-793 *6)) (-5 *1 (-792 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-792 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-792 *6)) (-5 *1 (-791 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-799 *5 *6)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-799 *5 *7)) (-5 *1 (-800 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-798 *5 *6)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-798 *5 *7)) (-5 *1 (-799 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-801 *6)) (-5 *1 (-803 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-800 *6)) (-5 *1 (-802 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-858 *6)) (-5 *1 (-859 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-857 *5)) (-4 *5 (-961)) (-4 *6 (-961))
+ (-5 *2 (-857 *6)) (-5 *1 (-858 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-757)) (-4 *8 (-962))
- (-4 *6 (-718))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-756)) (-4 *8 (-961))
+ (-4 *6 (-717))
(-4 *2
- (-13 (-1014)
- (-10 -8 (-15 -3841 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-695))))))
- (-5 *1 (-864 *6 *7 *8 *5 *2)) (-4 *5 (-862 *8 *6 *7))))
+ (-13 (-1013)
+ (-10 -8 (-15 -3840 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-694))))))
+ (-5 *1 (-863 *6 *7 *8 *5 *2)) (-4 *5 (-861 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-870 *6)) (-5 *1 (-871 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-869 *6)) (-5 *1 (-870 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-878 *6)) (-5 *1 (-880 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-877 *6)) (-5 *1 (-879 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-855 *6)) (-5 *1 (-895 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-961)) (-4 *6 (-961))
+ (-5 *2 (-854 *6)) (-5 *1 (-894 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-858 *4))) (-4 *4 (-962)) (-4 *2 (-862 (-858 *4) *5 *6))
- (-4 *5 (-718))
+ (-12 (-5 *3 (-1 *2 (-857 *4))) (-4 *4 (-961)) (-4 *2 (-861 (-857 *4) *5 *6))
+ (-4 *5 (-717))
(-4 *6
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *6 *2))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))))
+ (-5 *1 (-897 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-496)) (-4 *6 (-496)) (-4 *2 (-905 *6))
- (-5 *1 (-906 *5 *6 *4 *2)) (-4 *4 (-905 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-495)) (-4 *6 (-495)) (-4 *2 (-904 *6))
+ (-5 *1 (-905 *5 *6 *4 *2)) (-4 *4 (-904 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-912 *6))
- (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-146)) (-4 *6 (-146)) (-4 *2 (-911 *6))
+ (-5 *1 (-912 *4 *5 *2 *6)) (-4 *4 (-911 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-962)) (-4 *10 (-962)) (-14 *5 (-695))
- (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
- (-4 *2 (-966 *5 *6 *10 *11 *12))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-694))
+ (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-4 *2 (-965 *5 *6 *10 *11 *12))
+ (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *11 (-196 *6 *10))
(-4 *12 (-196 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1002 *6)) (-5 *1 (-1003 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1001 *6)) (-5 *1 (-1002 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1002 *5)) (-4 *5 (-756)) (-4 *5 (-1130))
- (-4 *6 (-1130)) (-5 *2 (-584 *6)) (-5 *1 (-1003 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1001 *5)) (-4 *5 (-755)) (-4 *5 (-1129))
+ (-4 *6 (-1129)) (-5 *2 (-583 *6)) (-5 *1 (-1002 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1005 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1005 *6)) (-5 *1 (-1006 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1004 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1004 *6)) (-5 *1 (-1005 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1008 *4 *2)) (-4 *4 (-756))
- (-4 *2 (-1065 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1007 *4 *2)) (-4 *4 (-755))
+ (-4 *2 (-1064 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1070 *6)) (-5 *1 (-1072 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1069 *6)) (-5 *1 (-1071 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1070 *6)) (-5 *5 (-1070 *7))
- (-4 *6 (-1130)) (-4 *7 (-1130)) (-4 *8 (-1130)) (-5 *2 (-1070 *8))
- (-5 *1 (-1073 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1069 *6)) (-5 *5 (-1069 *7))
+ (-4 *6 (-1129)) (-4 *7 (-1129)) (-4 *8 (-1129)) (-5 *2 (-1069 *8))
+ (-5 *1 (-1072 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-962)) (-4 *6 (-962))
- (-5 *2 (-1086 *6)) (-5 *1 (-1087 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-961)) (-4 *6 (-961))
+ (-5 *2 (-1085 *6)) (-5 *1 (-1086 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1108 *3 *4)) (-4 *3 (-1014))
- (-4 *4 (-1014))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1107 *3 *4)) (-4 *3 (-1013))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5 *7 *9)) (-4 *5 (-962))
- (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1140 *6 *8 *10)) (-5 *1 (-1141 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1091))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961))
+ (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1147 *6)) (-5 *1 (-1148 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1146 *6)) (-5 *1 (-1147 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1147 *5)) (-4 *5 (-756)) (-4 *5 (-1130))
- (-4 *6 (-1130)) (-5 *2 (-1070 *6)) (-5 *1 (-1148 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1146 *5)) (-4 *5 (-755)) (-4 *5 (-1129))
+ (-4 *6 (-1129)) (-5 *2 (-1069 *6)) (-5 *1 (-1147 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1149 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-962))
- (-4 *8 (-962)) (-5 *2 (-1149 *7 *8)) (-5 *1 (-1150 *5 *6 *7 *8))
- (-14 *7 (-1091))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1148 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-961))
+ (-4 *8 (-961)) (-5 *2 (-1148 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8))
+ (-14 *7 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1156 *6))
- (-5 *1 (-1157 *5 *4 *6 *2)) (-4 *4 (-1156 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1155 *6))
+ (-5 *1 (-1156 *5 *4 *6 *2)) (-4 *4 (-1155 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1161 *5 *7 *9)) (-4 *5 (-962))
- (-4 *6 (-962)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1161 *6 *8 *10)) (-5 *1 (-1162 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1091))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1160 *5 *7 *9)) (-4 *5 (-961))
+ (-4 *6 (-961)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1160 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1090))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-962)) (-4 *6 (-962)) (-4 *2 (-1173 *6))
- (-5 *1 (-1171 *5 *6 *4 *2)) (-4 *4 (-1173 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1172 *6))
+ (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *6 (-1130))
- (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *6 (-1129))
+ (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1180 *5))
- (-4 *5 (-1130)) (-4 *6 (-1130)) (-5 *2 (-1180 *6)) (-5 *1 (-1181 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1179 *5))
+ (-4 *5 (-1129)) (-4 *6 (-1129)) (-5 *2 (-1179 *6)) (-5 *1 (-1180 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-1204 *3 *4)) (-4 *4 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-209))))
- ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-885))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1203 *3 *4)) (-4 *4 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-209))))
+ ((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-884))))
((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))))
+ (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-740 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-755)) (-5 *1 (-1204 *3 *2)) (-4 *3 (-962)))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-739 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-754)) (-5 *1 (-1203 *3 *2)) (-4 *3 (-961)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1205 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-757))
+ (-12 (-5 *3 (-1204 *4 *2)) (-4 *1 (-326 *4 *2)) (-4 *4 (-756))
(-4 *2 (-146))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-740 *4)) (-4 *1 (-1200 *4 *2)) (-4 *4 (-757)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))))
+ (-12 (-5 *3 (-739 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-756)) (-4 *2 (-961))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4)) (-5 *1 (-625 *4 *5))
- (-4 *4 (-1014))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1200 *3 *2)) (-4 *3 (-757)) (-4 *2 (-962))))
- ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-1204 *2 *3)) (-4 *3 (-755)))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4)) (-5 *1 (-624 *4 *5))
+ (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-756)) (-4 *2 (-961))))
+ ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1203 *2 *3)) (-4 *3 (-754)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1204 *3 *4)) (-4 *3 (-962)) (-4 *4 (-755)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *1 *1) (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-962)) (-4 *3 (-755)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-961)) (-4 *4 (-754)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-961)) (-4 *3 (-754)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-179))))
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-179))))
((*1 *1 *1 *1)
- (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130)))
- (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))
+ (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129)))
+ (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129)))))
((*1 *1 *1 *1) (-4 *1 (-312)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-364 *3))))
((*1 *1 *1 *1) (-4 *1 (-413)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-559 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-664) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-664) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146)) (-4 *2 (-312))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-663) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146)) (-4 *2 (-312))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-595 *2 *4 *3)) (-4 *2 (-655 *4))
- (-4 *3 (|SubsetCategory| (-664) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-594 *2 *4 *3)) (-4 *2 (-654 *4))
+ (-4 *3 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-146)) (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))
- (-4 *2 (|SubsetCategory| (-664) *4))))
+ (-12 (-4 *4 (-146)) (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))
+ (-4 *2 (|SubsetCategory| (-663) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-776 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-962))
- (-14 *3 (-584 (-1091))) (-14 *4 (-584 (-695))) (-14 *5 (-695))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496))))
+ (|partial| -12 (-5 *1 (-775 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *2 (-961))
+ (-14 *3 (-583 (-1090))) (-14 *4 (-583 (-694))) (-14 *5 (-694))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962)) (-4 *5 (-196 *4 *2))
+ (-12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-196 *4 *2))
(-4 *6 (-196 *3 *2)) (-4 *2 (-312))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-312))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2)) (-4 *2 (-312))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-757)) (-4 *4 (-718))
- (-14 *6 (-584 *3)) (-5 *1 (-1193 *2 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-862 *2 *4 *3)) (-14 *7 (-584 (-695))) (-14 *8 (-695))))
+ (|partial| -12 (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-756)) (-4 *4 (-717))
+ (-14 *6 (-583 *3)) (-5 *1 (-1192 *2 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-861 *2 *4 *3)) (-14 *7 (-583 (-694))) (-14 *8 (-694))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1204 *2 *3)) (-4 *2 (-312)) (-4 *2 (-962)) (-4 *3 (-755)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
+ (-12 (-5 *1 (-1203 *2 *3)) (-4 *2 (-312)) (-4 *2 (-961)) (-4 *3 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-485)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-229))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
+ (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-229))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *8)) (-5 *4 (-584 *6)) (-4 *6 (-757))
- (-4 *8 (-862 *7 *5 *6)) (-4 *5 (-718)) (-4 *7 (-962)) (-5 *2 (-584 (-695)))
+ (-12 (-5 *3 (-1085 *8)) (-5 *4 (-583 *6)) (-4 *6 (-756))
+ (-4 *8 (-861 *7 *5 *6)) (-4 *5 (-717)) (-4 *7 (-961)) (-5 *2 (-583 (-694)))
(-5 *1 (-272 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830))))
((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-694))))
((*1 *2 *1) (-12 (-4 *1 (-410 *3 *2)) (-4 *3 (-146)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-695))))
+ (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-887 *3 *2 *4)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *2 (-717))))
+ (-12 (-4 *1 (-886 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *2 (-716))))
((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3))
- (-5 *2 (-350 (-485)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3))
+ (-5 *2 (-350 (-484)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-694)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-1202 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-14 *6 (-1180 (-631 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-14 *6 (-1179 (-630 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1129))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146))
- (-5 *2 (-1180 (-631 (-350 (-858 *4))))) (-5 *1 (-163 *4))))
+ (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146))
+ (-5 *2 (-1179 (-630 (-350 (-857 *4))))) (-5 *1 (-163 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1005 (-265 *4))) (-4 *4 (-13 (-757) (-496) (-554 (-330))))
- (-5 *2 (-1005 (-330))) (-5 *1 (-219 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229))))
+ (-12 (-5 *3 (-1004 (-265 *4))) (-4 *4 (-13 (-756) (-495) (-553 (-330))))
+ (-5 *2 (-1004 (-330))) (-5 *1 (-219 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229))))
((*1 *2 *1)
- (-12 (-4 *2 (-1156 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-244 *3 *2 *4 *5 *6 *7)) (-4 *3 (-146))
(-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3)))
- (-14 *5 (-1091)) (-14 *6 *4)
- (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
+ (-12 (-5 *2 (-1160 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *5 (-1090)) (-14 *6 *4)
+ (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392)))
(-5 *1 (-264 *3 *4 *5 *6))))
((*1 *2 *3)
(-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *3 *4 *2))
@@ -796,10358 +796,10358 @@
(-12 (-4 *4 (-299)) (-4 *2 (-280 *4)) (-5 *1 (-297 *2 *4 *3))
(-4 *3 (-280 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
- (-5 *2 (-1205 *3 *4))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
+ (-5 *2 (-1204 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
- (-5 *2 (-1196 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
+ (-5 *2 (-1195 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-350 (-858 (-350 *3)))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-12 (-5 *2 (-350 (-857 (-350 *3)))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-858 (-350 *3))) (-4 *3 (-496)) (-4 *3 (-1014))
+ (-12 (-5 *2 (-857 (-350 *3))) (-4 *3 (-495)) (-4 *3 (-1013))
(-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-350 *3)) (-4 *3 (-496)) (-4 *3 (-1014)) (-4 *1 (-364 *3))))
+ (-12 (-5 *2 (-350 *3)) (-4 *3 (-495)) (-4 *3 (-1013)) (-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1040 *3 (-551 *1))) (-4 *3 (-962)) (-4 *3 (-1014))
+ (-12 (-5 *2 (-1039 *3 (-550 *1))) (-4 *3 (-961)) (-4 *3 (-1013))
(-4 *1 (-364 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-757) (-21))) (-5 *1 (-372 *3 *4))
- (-4 *3 (-13 (-146) (-38 (-350 (-485)))))))
+ (-12 (-5 *2 (-281 *4)) (-4 *4 (-13 (-756) (-21))) (-5 *1 (-372 *3 *4))
+ (-4 *3 (-13 (-146) (-38 (-350 (-484)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-485)))))
- (-4 *3 (-13 (-757) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-377))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-377))))
+ (-12 (-5 *1 (-372 *2 *3)) (-4 *2 (-13 (-146) (-38 (-350 (-484)))))
+ (-4 *3 (-13 (-756) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-377))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-377))))
((*1 *1 *2) (-12 (-5 *2 (-377)) (-5 *1 (-379))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 (-350 (-858 *3)))) (-4 *3 (-146))
- (-14 *6 (-1180 (-631 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-831))
- (-14 *5 (-584 (-1091)))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))
- ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-408))))
+ (-12 (-5 *2 (-1179 (-350 (-857 *3)))) (-4 *3 (-146))
+ (-14 *6 (-1179 (-630 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *4 (-830))
+ (-14 *5 (-583 (-1090)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-408))))
((*1 *1 *2)
- (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3)
(-5 *1 (-414 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5))
- (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5))
+ (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-541 *3 *2)) (-4 *2 (-684 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-962))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1201 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-573 *3 *2)) (-4 *2 (-684 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-619 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *1 *2) (-12 (-5 *2 (-1029)) (-5 *1 (-623))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-540 *3 *2)) (-4 *2 (-683 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-552 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-961))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1200 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-5 *1 (-572 *3 *2)) (-4 *2 (-683 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-618 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1028)) (-5 *1 (-622))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013))))
((*1 *1 *2)
- (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *2)) (-4 *4 (-324 *3))
+ (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *2)) (-4 *4 (-324 *3))
(-4 *2 (-324 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648))))
+ ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-146)) (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-4 *3 (-962))
- (-4 *4 (-664)) (-5 *1 (-675 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-688))))
- ((*1 *2 *3) (-12 (-5 *2 (-697)) (-5 *1 (-698 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-768))))
- ((*1 *2 *3) (-12 (-5 *3 (-858 (-48))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 (-48)))) (-5 *2 (-265 (-485))) (-5 *1 (-785))))
- ((*1 *1 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-740 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-826 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-832 *4)) (-4 *4 (-496))))
- ((*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-947 *3)) (-4 *3 (-1130))))
- ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-947 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-4 *3 (-961))
+ (-4 *4 (-663)) (-5 *1 (-674 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-687))))
+ ((*1 *2 *3) (-12 (-5 *2 (-696)) (-5 *1 (-697 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-767))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857 (-48))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-350 (-857 (-48)))) (-5 *2 (-265 (-484))) (-5 *1 (-784))))
+ ((*1 *1 *2) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-739 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-350 (-348 *3))) (-4 *3 (-258)) (-5 *1 (-825 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-417)) (-5 *2 (-265 *4)) (-5 *1 (-831 *4)) (-4 *4 (-495))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1185)) (-5 *1 (-946 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *3) (-12 (-5 *3 (-262)) (-5 *1 (-946 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
- ((*1 *2 *3) (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-953 *3)) (-4 *3 (-496))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
+ ((*1 *2 *3) (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-952 *3)) (-4 *3 (-495))))
((*1 *1 *2)
- (-12 (-4 *3 (-962)) (-4 *4 (-757)) (-5 *1 (-1041 *3 *4 *2))
- (-4 *2 (-862 *3 (-470 *4) *4))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-756)) (-5 *1 (-1040 *3 *4 *2))
+ (-4 *2 (-861 *3 (-469 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-962)) (-4 *2 (-757)) (-5 *1 (-1041 *3 *2 *4))
- (-4 *4 (-862 *3 (-470 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-773))))
- ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1059))))
- ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))
+ (-12 (-4 *3 (-961)) (-4 *2 (-756)) (-5 *1 (-1040 *3 *2 *4))
+ (-4 *4 (-861 *3 (-469 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-117)) (-4 *1 (-1058))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)
- (-5 *1 (-1090 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103 (-1091) (-379))) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1104 *3)) (-4 *3 (-1014))))
- ((*1 *2 *3) (-12 (-5 *2 (-1110)) (-5 *1 (-1111 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-12 (-5 *2 (-858 *3)) (-4 *3 (-962)) (-5 *1 (-1123 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3)
+ (-5 *1 (-1089 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102 (-1090) (-379))) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1103 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1109)) (-5 *1 (-1110 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-857 *3)) (-4 *3 (-961)) (-5 *1 (-1122 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-961))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-962)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1002 *3)) (-4 *3 (-1130)) (-5 *1 (-1147 *3))))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-961)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1001 *3)) (-4 *3 (-1129)) (-5 *1 (-1146 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5))
- (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1149 *4 *3)) (-4 *3 (-962)) (-14 *4 (-1091)) (-14 *5 *3)
- (-5 *1 (-1170 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1183)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-773)) (-5 *1 (-1183))))
- ((*1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1205 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
+ (-12 (-5 *2 (-1148 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1090)) (-14 *5 *3)
+ (-5 *1 (-1169 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-408)) (-5 *2 (-1182)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1182))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1204 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756))
(-4 *4 (-146))))
((*1 *2 *1)
- (-12 (-5 *2 (-1196 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756))
(-4 *4 (-146))))
((*1 *1 *2)
- (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
- (-5 *1 (-1201 *3 *4)))))
+ (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
+ (-5 *1 (-1200 *3 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1196 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146))
- (-5 *1 (-607 *3 *4))))
+ (|partial| -12 (-5 *2 (-1195 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146))
+ (-5 *1 (-606 *3 *4))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-607 *3 *4)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757))
+ (|partial| -12 (-5 *2 (-606 *3 *4)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756))
(-4 *4 (-146)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090))))
((*1 *1 *1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-485))) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *1 *2)
- (-12 (-5 *2 (-607 *3 *4)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-5 *1 (-567 *3 *4 *5))
- (-14 *5 (-831))))
+ (-12 (-5 *2 (-606 *3 *4)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-5 *1 (-566 *3 *4 *5))
+ (-14 *5 (-830))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485))))
- (-4 *3 (-757)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484))))
+ (-4 *3 (-756)) (-4 *4 (-146)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-239)))
((*1 *2 *3)
- (-12 (-5 *3 (-348 *4)) (-4 *4 (-496))
- (-5 *2 (-584 (-2 (|:| -3956 (-695)) (|:| |logand| *4)))) (-5 *1 (-271 *4))))
+ (-12 (-5 *3 (-348 *4)) (-4 *4 (-495))
+ (-5 *2 (-583 (-2 (|:| -3955 (-694)) (|:| |logand| *4)))) (-5 *1 (-271 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-607 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
+ (-12 (-5 *2 (-606 *3 *4)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-1201 *3 *4)) (-4 *4 (-655 (-350 (-485))))
- (-4 *3 (-757)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-654 (-350 (-484))))
+ (-4 *3 (-756)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
- (-5 *2 (-2 (|:| |k| (-740 *3)) (|:| |c| *4))))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
+ (-5 *2 (-2 (|:| |k| (-739 *3)) (|:| |c| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757))
+ (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1205 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-757))
+ (-12 (-5 *2 (-1204 *3 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-756))
(-4 *4 (-146))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-336 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-740 *3)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
+ (-12 (-5 *2 (-739 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-740 *4)) (-4 *4 (-757)) (-4 *1 (-1200 *4 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-739 *4)) (-4 *4 (-756)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-961)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-4 *3 (-496)) (-5 *2 (-85)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-85)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-757))
- (-4 *3 (-13 (-146) (-655 (-350 (-485))))) (-14 *4 (-831))))
- ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)))))
+ (-12 (-5 *1 (-566 *2 *3 *4)) (-4 *2 (-756))
+ (-4 *3 (-13 (-146) (-654 (-350 (-484))))) (-14 *4 (-830))))
+ ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962))
+ (-12 (-5 *2 (-694)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961))
(-4 *4 (-146))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1200 *2 *3)) (-4 *2 (-757)) (-4 *3 (-962)) (-4 *3 (-146)))))
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-756)) (-4 *3 (-961)) (-4 *3 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-757)) (-4 *4 (-146)) (-5 *2 (-584 *3))))
+ (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-756)) (-4 *4 (-146)) (-5 *2 (-583 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-757)) (-4 *4 (-962)) (-5 *2 (-584 *3)))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-756)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *3 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *3 (-757))
- (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *3 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-831)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-830)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-744 (-831))) (-5 *1 (-279 *3 *4))
+ (-12 (-4 *4 (-312)) (-5 *2 (-743 (-830))) (-5 *1 (-279 *3 *4))
(-4 *3 (-280 *4))))
- ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-831))))
- ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-744 (-831))))))
+ ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-830))))
+ ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-743 (-830))))))
(((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
- ((*1 *2) (-12 (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-5 *2 (-695)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-5 *2 (-694)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1156 *4))
- (-5 *1 (-701 *3 *4 *5 *2 *6)) (-4 *2 (-1156 *5)) (-14 *6 (-831))))
+ (-12 (-4 *3 (-299)) (-4 *4 (-280 *3)) (-4 *5 (-1155 *4))
+ (-5 *1 (-700 *3 *4 *5 *2 *6)) (-4 *2 (-1155 *5)) (-14 *6 (-830))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-1199 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
- ((*1 *1 *1) (-12 (-4 *1 (-1199 *2)) (-4 *2 (-312)) (-4 *2 (-320)))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-1198 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-312)) (-4 *2 (-320)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-13 (-962) (-655 (-350 (-485))))) (-4 *5 (-757))
- (-5 *1 (-1197 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-13 (-961) (-654 (-350 (-484))))) (-4 *5 (-756))
+ (-5 *1 (-1196 *4 *5 *2)) (-4 *2 (-1202 *5 *4)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
+ (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1194 *3 *4 *5 *6))))
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1193 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *1 (-1194 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
+ (-4 *7 (-756)) (-5 *1 (-1193 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-1194 *4 *5 *6 *7)))
- (-5 *1 (-1194 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 (-1193 *4 *5 *6 *7)))
+ (-5 *1 (-1193 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
- (-5 *2 (-584 (-1194 *6 *7 *8 *9))) (-5 *1 (-1194 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-85) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-5 *2 (-583 (-1193 *6 *7 *8 *9))) (-5 *1 (-1193 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-776 *4 *5 *6 *7)) (-4 *4 (-962))
- (-14 *5 (-584 (-1091))) (-14 *6 (-584 *3)) (-14 *7 *3)))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-775 *4 *5 *6 *7)) (-4 *4 (-961))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-583 *3)) (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
- (-14 *8 (-584 *5)) (-5 *2 (-1186)) (-5 *1 (-1193 *4 *5 *6 *7 *8 *9 *10))
- (-4 *7 (-862 *4 *6 *5)) (-14 *9 (-584 *3)) (-14 *10 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
+ (-14 *8 (-583 *5)) (-5 *2 (-1185)) (-5 *1 (-1192 *4 *5 *6 *7 *8 *9 *10))
+ (-4 *7 (-861 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *2))
- (-4 *3 (-13 (-1014) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1192)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1191)))))
+ (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *2))
+ (-4 *3 (-13 (-1013) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1191)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1190)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3))
+ (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
(-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-1156 *3))
+ (-12 (-5 *3 (-484)) (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-693 *4 *5)) (-4 *5 (-353 *3 *4))))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-5 *1 (-692 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3))
+ (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-899 *4 *3 *5 *6)) (-4 *6 (-662 *3 *5))))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-5 *1 (-898 *4 *3 *5 *6)) (-4 *6 (-661 *3 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 *3))
+ (-12 (-4 *4 (-299)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 *3))
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-5 *1 (-1189 *4 *3 *5 *6)) (-4 *6 (-353 *3 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5))))
+ (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3))
+ (-12 (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3))
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
(-5 *1 (-300 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-1156 (-485)))
+ (-12 (-4 *3 (-1155 (-484)))
(-5 *2
- (-2 (|:| -2013 (-631 (-485))) (|:| |basisDen| (-485))
- (|:| |basisInv| (-631 (-485)))))
- (-5 *1 (-693 *3 *4)) (-4 *4 (-353 (-485) *3))))
+ (-2 (|:| -2012 (-630 (-484))) (|:| |basisDen| (-484))
+ (|:| |basisInv| (-630 (-484)))))
+ (-5 *1 (-692 *3 *4)) (-4 *4 (-353 (-484) *3))))
((*1 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4))
+ (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
- (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-662 *4 *5))))
+ (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
+ (-5 *1 (-898 *3 *4 *5 *6)) (-4 *6 (-661 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-299)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 *4))
+ (-12 (-4 *3 (-299)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 *4))
(-5 *2
- (-2 (|:| -2013 (-631 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-631 *4))))
- (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
+ (-2 (|:| -2012 (-630 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-630 *4))))
+ (-5 *1 (-1189 *3 *4 *5 *6)) (-4 *6 (-353 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-695)) (-4 *6 (-312)) (-5 *4 (-1123 *6))
- (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1070 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *6 (-312)) (-5 *4 (-1122 *6))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1188 *6)) (-5 *5 (-1069 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-584 (-1123 *5)))
- (-5 *1 (-1189 *5)) (-5 *4 (-1123 *5)))))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-583 (-1122 *5)))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1122 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1086 (-858 *4)) (-858 *4)))
- (-5 *1 (-1189 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1085 (-857 *4)) (-857 *4)))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-4 *5 (-312)) (-5 *2 (-1070 (-1070 (-858 *5))))
- (-5 *1 (-1189 *5)) (-5 *4 (-1070 (-858 *5))))))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-312)) (-5 *2 (-1069 (-1069 (-857 *5))))
+ (-5 *1 (-1188 *5)) (-5 *4 (-1069 (-857 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1 (-1070 (-858 *4)) (-1070 (-858 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-312)))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1 (-1069 (-857 *4)) (-1069 (-857 *4))))
+ (-5 *1 (-1188 *4)) (-4 *4 (-312)))))
(((*1 *2)
- (-12 (-14 *4 (-695)) (-4 *5 (-1130)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 (-694)) (-4 *5 (-1129)) (-5 *2 (-107)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
(-12 (-4 *4 (-312)) (-5 *2 (-107)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
((*1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
- (-5 *2 (-485)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-4 *3 (-962)) (-5 *2 (-831))))
- ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
-(((*1 *1) (-5 *1 (-1186))))
-(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1185))))
- ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1185)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185))))
- ((*1 *2 *2) (-12 (-5 *2 (-784)) (-5 *1 (-1185)))))
-(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))))
-(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1184)))))
-(((*1 *1) (-5 *1 (-1184))))
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
+ (-5 *2 (-484)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-893 *3)) (-4 *3 (-961)) (-5 *2 (-830))))
+ ((*1 *2) (-12 (-4 *1 (-1187 *3)) (-4 *3 (-312)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-1185))))
+(((*1 *2 *3) (-12 (-5 *3 (-330)) (-5 *2 (-179)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))
+ ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))))
+(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184))))
+ ((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *2 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183))))
+ ((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-1183))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-584 (-221))) (-5 *1 (-1184))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1074)) (-5 *1 (-1184))))
- ((*1 *1 *1) (-5 *1 (-1184))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-1080 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184))))
- ((*1 *2 *1) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1184)))))
+ (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-583 (-221))) (-5 *1 (-1183))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1073)) (-5 *1 (-1183))))
+ ((*1 *1 *1) (-5 *1 (-1183))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-1079 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1183)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-695)) (-5 *3 (-855 *4)) (-4 *1 (-1049 *4)) (-4 *4 (-962))))
+ (-12 (-5 *2 (-694)) (-5 *3 (-854 *4)) (-4 *1 (-1048 *4)) (-4 *4 (-961))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1183))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-221))) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-221))) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
(-5 *1 (-221))))
((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *3 (-584 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))
+ (-5 *3 (-583 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-485)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *2 (-1186)) (-5 *1 (-1184))))
+ (-5 *2 (-1185)) (-5 *1 (-1183))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3849 (-179))
+ (-2 (|:| |theta| (-179)) (|:| |phi| (-179)) (|:| -3848 (-179))
(|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |scaleZ| (-179))
(|:| |deltaX| (-179)) (|:| |deltaY| (-179))))
- (-5 *1 (-1184))))
+ (-5 *1 (-1183))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
- ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
+ ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1186)) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-330)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-130)) (-5 *2 (-1185)) (-5 *1 (-1183)))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1182))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1074)) (-5 *1 (-1184))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1183)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-408))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-855 (-179)))) (-5 *1 (-1183)))))
-(((*1 *1) (-5 *1 (-1183))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-584 (-221))) (-5 *1 (-1183))))
- ((*1 *1 *1) (-5 *1 (-1183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1182))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1183)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-854 (-179)))) (-5 *1 (-1182)))))
+(((*1 *1) (-5 *1 (-1182))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-408)) (-5 *3 (-583 (-221))) (-5 *1 (-1182))))
+ ((*1 *1 *1) (-5 *1 (-1182))))
(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-831)) (-5 *4 (-179)) (-5 *5 (-485)) (-5 *6 (-784))
- (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-179)) (-5 *5 (-484)) (-5 *6 (-783))
+ (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-1180
+ (-1179
(-2 (|:| |scaleX| (-179)) (|:| |scaleY| (-179)) (|:| |deltaX| (-179))
- (|:| |deltaY| (-179)) (|:| -3852 (-485)) (|:| -3850 (-485))
- (|:| |spline| (-485)) (|:| -3881 (-485)) (|:| |axesColor| (-784))
- (|:| -3853 (-485)) (|:| |unitsColor| (-784)) (|:| |showing| (-485)))))
- (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1180 (-3 (-408) "undefined"))) (-5 *1 (-1183)))))
+ (|:| |deltaY| (-179)) (|:| -3851 (-484)) (|:| -3849 (-484))
+ (|:| |spline| (-484)) (|:| -3880 (-484)) (|:| |axesColor| (-783))
+ (|:| -3852 (-484)) (|:| |unitsColor| (-783)) (|:| |showing| (-484)))))
+ (-5 *1 (-1182)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1179 (-3 (-408) "undefined"))) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-831)) (-5 *2 (-408)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-830)) (-5 *2 (-408)) (-5 *1 (-1182)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 (-330))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-408))))
+ (-12 (-5 *2 (-583 (-330))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-408))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-1183))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-1182))))
((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
- ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-330)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-408)) (-5 *4 (-831)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-408)) (-5 *4 (-830)) (-5 *2 (-1185)) (-5 *1 (-1182)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *6 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-1182))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
+ (-5 *6 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-1181))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221)))
- (-5 *2 (-1183)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221)))
+ (-5 *2 (-1182)) (-5 *1 (-1181)))))
(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *6 (-584 (-221))) (-5 *2 (-408)) (-5 *1 (-1182))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-783)) (-5 *5 (-830))
+ (-5 *6 (-583 (-221))) (-5 *2 (-408)) (-5 *1 (-1181))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-408)) (-5 *1 (-1182))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-408)) (-5 *1 (-1181))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-584 (-221))) (-5 *2 (-408))
- (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-583 (-221))) (-5 *2 (-408))
+ (-5 *1 (-1181)))))
(((*1 *1 *1) (-5 *1 (-48)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
(-5 *1 (-59 *5 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-5 *2 (-2 (|:| -2005 (-1086 *4)) (|:| |deg| (-831))))
- (-5 *1 (-175 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-496))))
+ (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -2004 (-1085 *4)) (|:| |deg| (-830))))
+ (-5 *1 (-175 *4 *5)) (-5 *3 (-1085 *4)) (-4 *5 (-495))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-695))
- (-4 *6 (-1130)) (-4 *2 (-1130)) (-5 *1 (-198 *5 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-197 *5 *6)) (-14 *5 (-694))
+ (-4 *6 (-1129)) (-4 *2 (-1129)) (-5 *1 (-198 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1156 *4))
+ (-12 (-4 *4 (-146)) (-5 *1 (-244 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1155 *4))
(-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-496)) (-4 *2 (-1014))))
+ ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-495)) (-4 *2 (-1013))))
((*1 *1 *1)
- (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-350 *3))) (-4 *5 (-291 *2 *3 *4))))
+ (-12 (-4 *1 (-286 *2 *3 *4 *5)) (-4 *2 (-312)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3))) (-4 *5 (-291 *2 *3 *4))))
((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1129))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1129))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1130)) (-4 *2 (-1130))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1129)) (-4 *2 (-1129))
(-5 *1 (-325 *5 *4 *2 *6)) (-4 *4 (-324 *5)) (-4 *6 (-324 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1014)) (-4 *2 (-1014))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1013)) (-4 *2 (-1013))
(-5 *1 (-370 *5 *4 *2 *6)) (-4 *4 (-369 *5)) (-4 *6 (-369 *2))))
((*1 *1 *1) (-5 *1 (-435)))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-584 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-585 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-584 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-962)) (-4 *2 (-962)) (-4 *6 (-324 *5))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-324 *5))
(-4 *7 (-324 *5)) (-4 *8 (-324 *2)) (-4 *9 (-324 *2))
- (-5 *1 (-629 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-628 *5 *6 *7))
- (-4 *10 (-628 *2 *8 *9))))
+ (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-627 *5 *6 *7))
+ (-4 *10 (-627 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3))))
+ ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-312))
- (-4 *3 (-146)) (-4 *1 (-662 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-662 *3 *2)) (-4 *2 (-1156 *3))))
+ (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-312))
+ (-4 *3 (-146)) (-4 *1 (-661 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *3 (-146)) (-4 *1 (-661 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-870 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-871 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-869 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-870 *5 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *2 (-862 *3 *4 *5)) (-14 *6 (-584 *2))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-861 *3 *4 *5)) (-14 *6 (-583 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-962)) (-4 *2 (-962)) (-14 *5 (-695))
- (-14 *6 (-695)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-694))
+ (-14 *6 (-694)) (-4 *8 (-196 *6 *7)) (-4 *9 (-196 *5 *7))
(-4 *10 (-196 *6 *2)) (-4 *11 (-196 *5 *2))
- (-5 *1 (-968 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-966 *5 *6 *7 *8 *9)) (-4 *12 (-966 *5 *6 *2 *10 *11))))
+ (-5 *1 (-967 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-965 *5 *6 *7 *8 *9)) (-4 *12 (-965 *5 *6 *2 *10 *11))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1070 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-1072 *5 *2))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1069 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-1071 *5 *2))))
((*1 *2 *2 *1 *3 *4)
(-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-85) *2 *2))
- (-4 *1 (-1125 *5 *6 *7 *2)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *2 (-978 *5 *6 *7))))
+ (-4 *1 (-1124 *5 *6 *7 *2)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *2 (-977 *5 *6 *7))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1180 *5)) (-4 *5 (-1130)) (-4 *2 (-1130))
- (-5 *1 (-1181 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1179 *5)) (-4 *5 (-1129)) (-4 *2 (-1129))
+ (-5 *1 (-1180 *5 *2)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
(-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-695))
- (-4 *7 (-1130)) (-4 *5 (-1130)) (-5 *2 (-197 *6 *5))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-197 *6 *7)) (-14 *6 (-694))
+ (-4 *7 (-1129)) (-4 *5 (-1129)) (-5 *2 (-197 *6 *5))
(-5 *1 (-198 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1130)) (-4 *5 (-1130)) (-4 *2 (-324 *5))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1129)) (-4 *5 (-1129)) (-4 *2 (-324 *5))
(-5 *1 (-325 *6 *4 *5 *2)) (-4 *4 (-324 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1014)) (-4 *5 (-1014)) (-4 *2 (-369 *5))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1013)) (-4 *5 (-1013)) (-4 *2 (-369 *5))
(-5 *1 (-370 *6 *4 *5 *2)) (-4 *4 (-369 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-584 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-584 *5)) (-5 *1 (-585 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-583 *5)) (-5 *1 (-584 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-870 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-870 *5)) (-5 *1 (-871 *6 *5))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-869 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-869 *5)) (-5 *1 (-870 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1070 *6)) (-4 *6 (-1130)) (-4 *3 (-1130))
- (-5 *2 (-1070 *3)) (-5 *1 (-1072 *6 *3))))
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1069 *6)) (-4 *6 (-1129)) (-4 *3 (-1129))
+ (-5 *2 (-1069 *3)) (-5 *1 (-1071 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1180 *6)) (-4 *6 (-1130)) (-4 *5 (-1130))
- (-5 *2 (-1180 *5)) (-5 *1 (-1181 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1180 *3)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1179 *6)) (-4 *6 (-1129)) (-4 *5 (-1129))
+ (-5 *2 (-1179 *5)) (-5 *1 (-1180 *6 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1179 *3)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-130)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $))
- (-15 -1964 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $))
+ (-15 -1963 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-25)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-474)))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-473)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-25)))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-25)))))
(((*1 *1 *2 *2)
- (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-1178 *3)) (-4 *3 (-23)) (-4 *3 (-1129)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-107)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-167 *2))
(-4 *2
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $))
- (-15 -1964 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $))
+ (-15 -1963 ((-1185) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129))))
((*1 *1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
- ((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-21)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1130)) (-4 *2 (-962))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-179)) (-5 *1 (-1127))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
+ ((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-21)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-196 *3 *2)) (-4 *2 (-1129)) (-4 *2 (-961))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-179)) (-5 *1 (-1126))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1130)) (-4 *3 (-962)) (-5 *2 (-631 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-894 *2)) (-4 *2 (-962))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-962)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
- ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1128 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1130)) (-4 *2 (-916)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-1178 *3)) (-4 *3 (-1129)) (-4 *3 (-961)) (-5 *2 (-630 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-893 *2)) (-4 *2 (-961))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-961)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *1 *1) (-4 *1 (-483)))
+ ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-739 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-4 *1 (-908 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1127 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1178 *2)) (-4 *2 (-1129)) (-4 *2 (-915)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-228 *2)) (-4 *2 (-756))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-774 *3)) (-14 *3 (-584 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-903))))
+ (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-773 *3)) (-14 *3 (-583 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-902))))
((*1 *2 *1)
- (-12 (-4 *4 (-1130)) (-5 *2 (-1091)) (-5 *1 (-972 *3 *4))
- (-4 *3 (-1007 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))
+ (-12 (-4 *4 (-1129)) (-5 *2 (-1090)) (-5 *1 (-971 *3 *4))
+ (-4 *3 (-1006 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004 *3)) (-4 *3 (-1129))))
((*1 *2 *1)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-1091))))
- ((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-1090))))
+ ((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1176 *3)) (-14 *3 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-350 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-496)) (-4 *4 (-962))
- (-4 *2 (-1173 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-601 *5)))))
+ (-12 (-5 *3 (-350 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-495)) (-4 *4 (-961))
+ (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *5 *6 *2)) (-4 *6 (-600 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-1156 *4)) (-5 *2 (-1 *6 (-584 *6)))
- (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-1173 *4)))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-1155 *4)) (-5 *2 (-1 *6 (-583 *6)))
+ (-5 *1 (-1174 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-1172 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-4 *2 (-1156 *5))
- (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-601 *2)) (-4 *3 (-1173 *5)))))
+ (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-4 *2 (-1155 *5))
+ (-5 *1 (-1174 *5 *2 *6 *3)) (-4 *6 (-600 *2)) (-4 *3 (-1172 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *3 (-1156 *4)) (-4 *2 (-1173 *4))
- (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-601 *3)))))
+ (-12 (-4 *4 (-961)) (-4 *3 (-1155 *4)) (-4 *2 (-1172 *4))
+ (-5 *1 (-1174 *4 *3 *5 *2)) (-4 *5 (-600 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 (-1 *6 (-584 *6))))
- (-4 *5 (-38 (-350 (-485)))) (-4 *6 (-1173 *5)) (-5 *2 (-584 *6))
- (-5 *1 (-1174 *5 *6)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6))))
+ (-4 *5 (-38 (-350 (-484)))) (-4 *6 (-1172 *5)) (-5 *2 (-583 *6))
+ (-5 *1 (-1173 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-584 *2))) (-5 *4 (-584 *5)) (-4 *5 (-38 (-350 (-485))))
- (-4 *2 (-1173 *5)) (-5 *1 (-1174 *5 *2)))))
+ (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-38 (-350 (-484))))
+ (-4 *2 (-1172 *5)) (-5 *1 (-1173 *5 *2)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-38 (-350 (-485)))))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-38 (-350 (-484)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1173 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-38 (-350 (-485)))))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1173 *4 *2))
+ (-4 *4 (-38 (-350 (-484)))))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1173 *3)))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-584 *5))) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485))))
- (-5 *2 (-1 (-1070 *4) (-584 (-1070 *4)))) (-5 *1 (-1174 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484))))
+ (-5 *2 (-1 (-1069 *4) (-583 (-1069 *4)))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485))))
- (-5 *2 (-1 (-1070 *4) (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484))))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1173 *4)) (-4 *4 (-38 (-350 (-485))))
- (-5 *2 (-1 (-1070 *4) (-1070 *4))) (-5 *1 (-1174 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-38 (-350 (-484))))
+ (-5 *2 (-1 (-1069 *4) (-1069 *4))) (-5 *1 (-1173 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485)))
- (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6))
- (-4 *6 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6))
+ (-4 *6 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485)))
- (-4 *7 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485)))
- (-4 *3 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8))
- (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485)))
- (-4 *8 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8))
+ (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484)))
+ (-4 *8 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485))))
- (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8)))
- (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484))))
+ (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8)))
+ (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
- (-5 *1 (-531 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-532 *3))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961))
+ (-5 *1 (-530 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-531 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-4 *3 (-962))
- (-4 *1 (-1142 *3))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-4 *3 (-961))
+ (-4 *1 (-1141 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-695)) (-5 *3 (-1070 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4))))
- (-4 *4 (-962)) (-4 *1 (-1163 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-4 *1 (-1173 *3))))
+ (-12 (-5 *2 (-694)) (-5 *3 (-1069 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4))))
+ (-4 *4 (-961)) (-4 *1 (-1162 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1172 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1070 (-2 (|:| |k| (-695)) (|:| |c| *3)))) (-4 *3 (-962))
- (-4 *1 (-1173 *3)))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-694)) (|:| |c| *3)))) (-4 *3 (-961))
+ (-4 *1 (-1172 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-584 *3))))
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-583 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 *3)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664))))
- ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1173 *3)) (-4 *3 (-962)) (-5 *2 (-1070 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-531 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1142 *3)) (-4 *3 (-962))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-485))) (-4 *1 (-1173 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-583 *3)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663))))
+ ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-530 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1141 *3)) (-4 *3 (-961))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-484))) (-4 *1 (-1172 *3)) (-4 *3 (-961)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
- (-5 *2 (-858 *4))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
+ (-5 *2 (-857 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *5)) (-4 *4 (-962)) (-4 *5 (-757))
- (-5 *2 (-858 *4))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *5)) (-4 *4 (-961)) (-4 *5 (-756))
+ (-5 *2 (-857 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1173 *4)) (-4 *4 (-962)) (-5 *2 (-858 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1172 *4)) (-4 *4 (-961)) (-5 *2 (-857 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-350 (-485))) (-4 *4 (-951 (-485))) (-4 *4 (-496))
+ (-12 (-5 *3 (-350 (-484))) (-4 *4 (-950 (-484))) (-4 *4 (-495))
(-5 *1 (-32 *4 *2)) (-4 *2 (-364 *4))))
((*1 *1 *1 *1) (-5 *1 (-107)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
((*1 *1 *1 *1) (-5 *1 (-179)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-485))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-201)) (-5 *2 (-484))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1173 *4))
- (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1144 *4 *5))))
+ (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1172 *4))
+ (-5 *1 (-232 *4 *5 *2)) (-4 *2 (-1143 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-350 (-485))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1142 *4))
- (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1165 *4 *5)) (-4 *6 (-897 *5))))
+ (-12 (-5 *3 (-350 (-484))) (-4 *4 (-312)) (-4 *4 (-38 *3)) (-4 *5 (-1141 *4))
+ (-5 *1 (-233 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-896 *5))))
((*1 *1 *1 *1) (-4 *1 (-239)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *1) (-5 *1 (-330)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-336 *2)) (-4 *2 (-1014))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-336 *2)) (-4 *2 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-4 *3 (-1026))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-485))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-4 *3 (-1025))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-413)) (-5 *2 (-484))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (-12 (-5 *2 (-694)) (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-474))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-474))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-473))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-473))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *4 (-1014)) (-5 *1 (-624 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *4 (-1013)) (-5 *1 (-623 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)) (-4 *3 (-312))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-694)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4))))
+ (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *3 (-962)) (-5 *1 (-652 *3 *4)) (-4 *4 (-591 *3))))
+ (-12 (-5 *2 (-484)) (-4 *3 (-961)) (-5 *1 (-651 *3 *4)) (-4 *4 (-590 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-652 *4 *5))
- (-4 *5 (-591 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-664)) (-5 *2 (-695))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-746 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-651 *4 *5))
+ (-4 *5 (-590 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-694))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-745 *3)) (-4 *3 (-961))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-485)) (-5 *1 (-746 *4)) (-4 *4 (-962))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-350 (-485)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1026)) (-5 *2 (-831))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-484)) (-5 *1 (-745 *4)) (-4 *4 (-961))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-350 (-484)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-830))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-1038 *3 *4 *5 *6)) (-4 *4 (-962))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1037 *3 *4 *5 *6)) (-4 *4 (-961))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)) (-4 *4 (-312))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-751 *3))) (-4 *3 (-13 (-1116) (-872) (-29 *5)))
- (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-1004 (-750 *3))) (-4 *3 (-13 (-1115) (-871) (-29 *5)))
+ (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3)))
+ (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3)))
(|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")))
(-5 *1 (-173 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-751 *3))) (-5 *5 (-1074))
- (-4 *3 (-13 (-1116) (-872) (-29 *6)))
- (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-1004 (-750 *3))) (-5 *5 (-1073))
+ (-4 *3 (-13 (-1115) (-871) (-29 *6)))
+ (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| #1#)
+ (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| #1#)
(|:| |pole| #2#)))
(-5 *1 (-173 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1005 (-751 (-265 *5))))
- (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1004 (-750 (-265 *5))))
+ (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5))))
+ (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5))))
(|:| |fail| #3="failed") (|:| |pole| #4="potentialPole")))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1005 (-751 (-265 *6))))
- (-5 *5 (-1074)) (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1004 (-750 (-265 *6))))
+ (-5 *5 (-1073)) (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6))))
+ (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-751 (-350 (-858 *5))))) (-5 *3 (-350 (-858 *5)))
- (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-1004 (-750 (-350 (-857 *5))))) (-5 *3 (-350 (-857 *5)))
+ (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 (-265 *5))) (|:| |f2| (-584 (-751 (-265 *5))))
+ (-3 (|:| |f1| (-750 (-265 *5))) (|:| |f2| (-583 (-750 (-265 *5))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-751 (-350 (-858 *6))))) (-5 *5 (-1074))
- (-5 *3 (-350 (-858 *6)))
- (-4 *6 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-1004 (-750 (-350 (-857 *6))))) (-5 *5 (-1073))
+ (-5 *3 (-350 (-857 *6)))
+ (-4 *6 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (|:| |f1| (-751 (-265 *6))) (|:| |f2| (-584 (-751 (-265 *6))))
+ (-3 (|:| |f1| (-750 (-265 *6))) (|:| |f2| (-583 (-750 (-265 *6))))
(|:| |fail| #3#) (|:| |pole| #4#)))
(-5 *1 (-174 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-3 *3 (-584 *3))) (-5 *1 (-373 *5 *3))
- (-4 *3 (-13 (-1116) (-872) (-29 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-373 *5 *3))
+ (-4 *3 (-13 (-1115) (-871) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-414 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-414 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-520 (-350 *5))) (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5))))
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-519 (-350 *5))) (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-3 (-265 *5) (-584 (-265 *5)))) (-5 *1 (-526 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-3 (-265 *5) (-583 (-265 *5)))) (-5 *1 (-525 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-680 *3 *2)) (-4 *3 (-962)) (-4 *2 (-757))
- (-4 *3 (-38 (-350 (-485))))))
+ (-12 (-4 *1 (-679 *3 *2)) (-4 *3 (-961)) (-4 *2 (-756))
+ (-4 *3 (-38 (-350 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1091)) (-5 *1 (-858 *3)) (-4 *3 (-38 (-350 (-485))))
- (-4 *3 (-962))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-857 *3)) (-4 *3 (-38 (-350 (-484))))
+ (-4 *3 (-961))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-4 *2 (-757))
- (-5 *1 (-1041 *3 *2 *4)) (-4 *4 (-862 *3 (-470 *2) *2))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-4 *2 (-756))
+ (-5 *1 (-1040 *3 *2 *4)) (-4 *4 (-861 *3 (-469 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962))
- (-5 *1 (-1076 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961))
+ (-5 *1 (-1075 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1083 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-5 *1 (-1123 *3)) (-4 *3 (-38 (-350 (-485))))
- (-4 *3 (-962))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-1122 *3)) (-4 *3 (-38 (-350 (-484))))
+ (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1140 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1139 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962))
- (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-38 (-350 (-485))))))
- (-12 (-5 *2 (-1091)) (-4 *1 (-1142 *3)) (-4 *3 (-962))
- (-12 (|has| *3 (-15 -3083 ((-584 *2) *3)))
- (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-484))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1141 *3)) (-4 *3 (-961))
+ (-12 (|has| *3 (-15 -3082 ((-583 *2) *3)))
+ (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1142 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
+ (-12 (-4 *1 (-1141 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
+ (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1161 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1160 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962))
- (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-38 (-350 (-485))))))
- (-12 (-5 *2 (-1091)) (-4 *1 (-1163 *3)) (-4 *3 (-962))
- (-12 (|has| *3 (-15 -3083 ((-584 *2) *3)))
- (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-484))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1162 *3)) (-4 *3 (-961))
+ (-12 (|has| *3 (-15 -3082 ((-583 *2) *3)))
+ (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485))))))
+ (-12 (-4 *1 (-1162 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1091)) (-5 *1 (-1170 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1176 *4)) (-14 *4 (-1090)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)) (-14 *5 *3)))
((*1 *1 *1 *2)
(OR
- (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962))
- (-12 (-4 *3 (-29 (-485))) (-4 *3 (-872)) (-4 *3 (-1116))
- (-4 *3 (-38 (-350 (-485))))))
- (-12 (-5 *2 (-1091)) (-4 *1 (-1173 *3)) (-4 *3 (-962))
- (-12 (|has| *3 (-15 -3083 ((-584 *2) *3)))
- (|has| *3 (-15 -3814 (*3 *3 *2))) (-4 *3 (-38 (-350 (-485))))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961))
+ (-12 (-4 *3 (-29 (-484))) (-4 *3 (-871)) (-4 *3 (-1115))
+ (-4 *3 (-38 (-350 (-484))))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-1172 *3)) (-4 *3 (-961))
+ (-12 (|has| *3 (-15 -3082 ((-583 *2) *3)))
+ (|has| *3 (-15 -3813 (*3 *3 *2))) (-4 *3 (-38 (-350 (-484))))))))
((*1 *1 *1)
- (-12 (-4 *1 (-1173 *2)) (-4 *2 (-962)) (-4 *2 (-38 (-350 (-485)))))))
+ (-12 (-4 *1 (-1172 *2)) (-4 *2 (-961)) (-4 *2 (-38 (-350 (-484)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1090 *4 *5 *6))
- (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4)))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1089 *4 *5 *6))
+ (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1149 *5 *4)) (-5 *1 (-1170 *4 *5 *6))
- (-4 *4 (-962)) (-14 *5 (-1091)) (-14 *6 *4))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1148 *5 *4)) (-5 *1 (-1169 *4 *5 *6))
+ (-4 *4 (-961)) (-14 *5 (-1090)) (-14 *6 *4))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090))
(-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1170 *2 *3 *4)) (-4 *2 (-962)) (-14 *3 (-1091)) (-14 *4 *2))))
+ (-12 (-5 *1 (-1169 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1090)) (-14 *4 *2))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090))
(-14 *5 *3))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-962)) (-5 *1 (-1076 *4))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-961)) (-5 *1 (-1075 *4))))
((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-485)) (-5 *1 (-1170 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-1091))
+ (-12 (-5 *2 (-484)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1090))
(-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-594 *2)) (-4 *2 (-1130))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1071 *4))
- (-4 *4 (-1130))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-539 *3 *2)) (-4 *3 (-1014)) (-4 *3 (-757)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *2 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-615 *3)) (-5 *1 (-804 *3)) (-4 *3 (-757))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-593 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-593 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1070 *4))
+ (-4 *4 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-538 *3 *2)) (-4 *3 (-1013)) (-4 *3 (-756)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *2 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *2 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-614 *3)) (-5 *1 (-803 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
(-4 *5 (-324 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
- (-4 *5 (-324 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-92 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 (-485))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
- (-14 *4 (-485)) (-14 *5 (-695))))
+ (-12 (-5 *3 (-583 (-484))) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2))
+ (-14 *4 (-484)) (-14 *5 (-694))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-695))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-694))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-695))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-694))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
- (-14 *5 (-695))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-146)) (-5 *1 (-108 *4 *5 *2)) (-14 *4 *3)
+ (-14 *5 (-694))))
((*1 *2 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-485)) (-14 *4 (-695))))
+ (-12 (-4 *2 (-146)) (-5 *1 (-108 *3 *4 *2)) (-14 *3 (-484)) (-14 *4 (-694))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-203 (-1074))) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-203 (-1073))) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ *3)) (-15 -3619 ((-1186) $))
- (-15 -1964 ((-1186) $)))))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ *3)) (-15 -3618 ((-1185) $))
+ (-15 -1963 ((-1185) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-903)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-902)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 ((-1186) $))
- (-15 -1964 ((-1186) $)))))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 ((-1185) $))
+ (-15 -1963 ((-1185) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-695)) (-5 *1 (-203 *4)) (-4 *4 (-757))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-757))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1130)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254))))
+ (-12 (-5 *3 "count") (-5 *2 (-694)) (-5 *1 (-203 *4)) (-4 *4 (-756))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-203 *3)) (-4 *3 (-756))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-203 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-241 *3 *2)) (-4 *3 (-1129)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-350 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-442))))
+ (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-441))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
+ (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-584 (-801 *4))) (-5 *1 (-801 *4))
- (-4 *4 (-1014))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-583 (-800 *4))) (-5 *1 (-800 *4))
+ (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-923 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *2 (-962))
+ (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *2 (-961))
(-4 *6 (-196 *5 *2)) (-4 *7 (-196 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-962))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-961))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-831)) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
- (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
+ (-12 (-5 *3 (-830)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-831)) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-990 *4 *5 *2))
- (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1059)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091))))
+ (-12 (-5 *3 (-830)) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-989 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1058)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-350 *1)) (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-350 *1)) (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757))))
+ (-12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-739 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718))
- (-4 *4 (-757)) (-4 *5 (-978 *2 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1009))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))
+ (|partial| -12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717))
+ (-4 *4 (-756)) (-4 *5 (-977 *2 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1008))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
- ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1130)) (-5 *1 (-783 *3 *2)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1129)) (-5 *1 (-782 *3 *2)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
(-4 *5 (-324 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 "right") (-4 *1 (-1035 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (-4 *1 (-1036 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 "left") (-4 *1 (-1035 *3)) (-4 *1 (-92 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3998)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014))
- (-4 *2 (-1130))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-572))))
+ (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1129))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-571))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1147 (-485))) (|has| *1 (-6 -3998)) (-4 *1 (-594 *2))
- (-4 *2 (-1130))))
+ (-12 (-5 *3 (-1146 (-484))) (-4 *1 (-1035 *2)) (-4 *1 (-593 *2))
+ (-4 *2 (-1129))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-584 (-485))) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962))
+ (-12 (-5 *2 (-583 (-484))) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 "value") (-4 *1 (-1035 *2)) (-4 *1 (-923 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 "last") (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1035 *3)) (-4 *1 (-1168 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1070 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-1169 *2)) (-4 *2 (-1130)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1069 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-1168 *2)) (-4 *2 (-1129)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-1169 *3)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1035 *3)) (-4 *1 (-1168 *3)) (-4 *3 (-1129)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *2 (-751 *4)) (-5 *1 (-264 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4)))
+ (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392)))
+ (-5 *2 (-750 *4)) (-5 *1 (-264 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4)))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
- (-5 *2 (-751 *4)) (-5 *1 (-1167 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1116) (-364 *3))) (-14 *5 (-1091)) (-14 *6 *4))))
+ (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392)))
+ (-5 *2 (-750 *4)) (-5 *1 (-1166 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1115) (-364 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-951 (-485)) (-581 (-485)) (-392)))
+ (|partial| -12 (-4 *3 (-13 (-950 (-484)) (-580 (-484)) (-392)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1161 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6))
- (|:| |%expTerms| (-584 (-2 (|:| |k| (-350 (-485))) (|:| |c| *4))))))
- (|:| |%type| (-1074))))
- (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1116) (-364 *3)))
- (-14 *5 (-1091)) (-14 *6 *4))))
+ (-2 (|:| |%coef| (-1160 *4 *5 *6)) (|:| |%expon| (-270 *4 *5 *6))
+ (|:| |%expTerms| (-583 (-2 (|:| |k| (-350 (-484))) (|:| |c| *4))))))
+ (|:| |%type| (-1073))))
+ (-5 *1 (-1166 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *5 (-1090)) (-14 *6 *4))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-350 (-485))) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (-12 (-5 *4 (-350 (-484))) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-485)))
- (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-350 (-484)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-350 (-485)))) (-5 *4 (-249 *8))
- (-5 *5 (-1147 (-350 (-485)))) (-5 *6 (-350 (-485)))
- (-4 *8 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *8 (-350 (-484)))) (-5 *4 (-249 *8))
+ (-5 *5 (-1146 (-350 (-484)))) (-5 *6 (-350 (-484)))
+ (-4 *8 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-350 (-485))))
- (-5 *7 (-350 (-485))) (-4 *3 (-13 (-27) (-1116) (-364 *8)))
- (-4 *8 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-350 (-484))))
+ (-5 *7 (-350 (-484))) (-4 *3 (-13 (-27) (-1115) (-364 *8)))
+ (-4 *8 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *8 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-350 (-485))) (-4 *4 (-962)) (-4 *1 (-1165 *4 *3))
- (-4 *3 (-1142 *4)))))
+ (-12 (-5 *2 (-350 (-484))) (-4 *4 (-961)) (-4 *1 (-1164 *4 *3))
+ (-4 *3 (-1141 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1142 *3))
- (-5 *2 (-350 (-485))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
+ (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1141 *3))
+ (-5 *2 (-350 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-4 *5 (-13 (-392) (-951 *4) (-581 *4))) (-5 *2 (-51))
- (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (-12 (-5 *4 (-484)) (-4 *5 (-13 (-392) (-950 *4) (-580 *4))) (-5 *2 (-51))
+ (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-951 *5) (-581 *5))) (-5 *5 (-485)) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-950 *5) (-580 *5))) (-5 *5 (-484)) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-485)))
- (-4 *7 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-484)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-485)))
- (-4 *3 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-484)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-485)) (-4 *4 (-962)) (-4 *1 (-1144 *4 *3)) (-4 *3 (-1173 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
+ (-12 (-5 *2 (-484)) (-4 *4 (-961)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1142 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962))))
+ (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1141 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-831)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-1163 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-830)) (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-1162 *3)) (-4 *3 (-961)))))
(((*1 *2 *2)
(-12
(-5 *2
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-485))))
- (-4 *4 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))) (-4 *3 (-496))
- (-5 *1 (-1160 *3 *4)))))
+ (|:| |xpnt| (-484))))
+ (-4 *4 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3145 ($ $ $))))) (-4 *3 (-495))
+ (-5 *1 (-1159 *3 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1135)))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1134)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-1160 *3 *2))
- (-4 *2 (-13 (-1156 *3) (-496) (-10 -8 (-15 -3146 ($ $ $))))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-1159 *3 *2))
+ (-4 *2 (-13 (-1155 *3) (-495) (-10 -8 (-15 -3145 ($ $ $))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))
- (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4))))))
+ (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))
+ (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4))))))
((*1 *2 *1)
- (-12 (-4 *1 (-450 *3 *4)) (-4 *3 (-72)) (-4 *4 (-760))
- (-5 *2 (-584 (-454 *3 *4)))))
+ (-12 (-4 *1 (-449 *3 *4)) (-4 *3 (-72)) (-4 *4 (-759))
+ (-5 *2 (-583 (-453 *3 *4)))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| -3956 *3) (|:| -3940 *4)))) (-5 *1 (-675 *3 *4))
- (-4 *3 (-962)) (-4 *4 (-664))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3955 *3) (|:| -3939 *4)))) (-5 *1 (-674 *3 *4))
+ (-4 *3 (-961)) (-4 *4 (-663))))
((*1 *2 *1)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
- (-5 *2 (-1070 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
+ (-5 *2 (-1069 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-584 (-1074))) (-5 *3 (-485)) (-5 *4 (-1074)) (-5 *1 (-199))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)))))
+ (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-484)) (-5 *4 (-1073)) (-5 *1 (-199))))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
+ (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-831))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
+ (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-830))))
((*1 *2 *3)
(-12 (-5 *3 (-283 *4 *5 *6 *7)) (-4 *4 (-13 (-320) (-312)))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *7 (-291 *4 *5 *6))
- (-5 *2 (-695)) (-5 *1 (-341 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-744 (-831)))))
- ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-496)) (-5 *2 (-485)) (-5 *1 (-563 *3 *4)) (-4 *4 (-1156 *3))))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *7 (-291 *4 *5 *6))
+ (-5 *2 (-694)) (-5 *1 (-341 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-743 (-830)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-495)) (-5 *2 (-484)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1155 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-680 *4 *3)) (-4 *4 (-962)) (-4 *3 (-757)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (-12 (-4 *1 (-679 *4 *3)) (-4 *4 (-961)) (-4 *3 (-756)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
((*1 *2 *3)
(|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-695))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-694))
+ (-5 *1 (-822 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6))
- (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4)))
- (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-695)) (-5 *1 (-824 *4 *5 *6))))
+ (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6))
+ (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4)))
+ (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-694)) (-5 *1 (-823 *4 *5 *6))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-283 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-312))
- (-4 *7 (-1156 *6)) (-4 *4 (-1156 (-350 *7))) (-4 *8 (-291 *6 *7 *4))
- (-4 *9 (-13 (-320) (-312))) (-5 *2 (-695)) (-5 *1 (-932 *6 *7 *4 *8 *9))))
+ (-4 *7 (-1155 *6)) (-4 *4 (-1155 (-350 *7))) (-4 *8 (-291 *6 *7 *4))
+ (-4 *9 (-13 (-320) (-312))) (-5 *2 (-694)) (-5 *1 (-931 *6 *7 *4 *8 *9))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-4 *3 (-496)) (-5 *2 (-695))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
-(((*1 *1 *1) (-4 *1 (-974)))
- ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+ (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-4 *3 (-495)) (-5 *2 (-694))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
+(((*1 *1 *1) (-4 *1 (-973)))
+ ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-485))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-90 *4)) (-14 *4 *3) (-5 *3 (-484))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-781 *4)) (-14 *4 *3) (-5 *3 (-485))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-780 *4)) (-14 *4 *3) (-5 *3 (-484))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-350 (-485))) (-5 *1 (-782 *4 *5)) (-5 *3 (-485))
- (-4 *5 (-780 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-350 (-485)))))
+ (-12 (-14 *4 *3) (-5 *2 (-350 (-484))) (-5 *1 (-781 *4 *5)) (-5 *3 (-484))
+ (-4 *5 (-779 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-925)) (-5 *2 (-350 (-484)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2))))
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-717)) (|has| *2 (-15 ** (*2 *2 *3)))
- (|has| *2 (-15 -3948 (*2 (-1091)))) (-4 *2 (-962)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-148 *3)) (-4 *3 (-258))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
+ (-12 (-4 *1 (-1158 *2 *3)) (-4 *3 (-716)) (|has| *2 (-15 ** (*2 *2 *3)))
+ (|has| *2 (-15 -3947 (*2 (-1090)))) (-4 *2 (-961)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-148 *3)) (-4 *3 (-258))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-616 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-680 *3 *4)) (-4 *3 (-962)) (-4 *4 (-757))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-894 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-679 *3 *4)) (-4 *3 (-961)) (-4 *4 (-756))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-893 *3)) (-4 *3 (-961))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1158 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-350 *5)) (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-5 *3 (-350 *5)) (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *1 (-121 *4 *5 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164))))
+ (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1014))
- (-4 *3 (-1130)) (-5 *1 (-249 *3))))
+ (-12 (-5 *2 (-583 (-249 *3))) (-4 *3 (-260 *3)) (-4 *3 (-1013))
+ (-4 *3 (-1129)) (-5 *1 (-249 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-260 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)) (-5 *1 (-249 *2))))
+ (-12 (-4 *2 (-260 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)) (-5 *1 (-249 *2))))
((*1 *1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
+ (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-584 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-254))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-1 *1 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 (-249 *3))) (-4 *1 (-260 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-249 *3)) (-4 *1 (-260 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-485))) (-5 *4 (-1093 (-350 (-485)))) (-5 *1 (-261 *2))
- (-4 *2 (-38 (-350 (-485))))))
+ (-12 (-5 *3 (-1 *2 (-484))) (-5 *4 (-1092 (-350 (-484)))) (-5 *1 (-261 *2))
+ (-4 *2 (-38 (-350 (-484))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-757))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-326 *4 *5)) (-4 *4 (-756))
(-4 *5 (-146))))
- ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-757)) (-4 *3 (-146))))
+ ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-756)) (-4 *3 (-146))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5))
- (-4 *5 (-1014)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 *1)) (-4 *1 (-364 *5))
+ (-4 *5 (-1013)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *4 (-1 *1 (-584 *1)))
- (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *4 (-1 *1 (-583 *1)))
+ (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695)))
- (-5 *4 (-584 (-1 *1 (-584 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1014))
- (-4 *5 (-962))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694)))
+ (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-364 *5)) (-4 *5 (-1013))
+ (-4 *5 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-584 (-695))) (-5 *4 (-584 (-1 *1 *1)))
- (-4 *1 (-364 *5)) (-4 *5 (-1014)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-583 (-694))) (-5 *4 (-583 (-1 *1 *1)))
+ (-4 *1 (-364 *5)) (-4 *5 (-1013)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-86))) (-5 *3 (-584 *1)) (-5 *4 (-1091)) (-4 *1 (-364 *5))
- (-4 *5 (-1014)) (-4 *5 (-554 (-474)))))
+ (-12 (-5 *2 (-583 (-86))) (-5 *3 (-583 *1)) (-5 *4 (-1090)) (-4 *1 (-364 *5))
+ (-4 *5 (-1013)) (-4 *5 (-553 (-473)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1091)) (-4 *1 (-364 *4)) (-4 *4 (-1014))
- (-4 *4 (-554 (-474)))))
- ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-554 (-474)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1090)) (-4 *1 (-364 *4)) (-4 *4 (-1013))
+ (-4 *4 (-553 (-473)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-553 (-473)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-1091))) (-4 *1 (-364 *3)) (-4 *3 (-1014))
- (-4 *3 (-554 (-474)))))
+ (-12 (-5 *2 (-583 (-1090))) (-4 *1 (-364 *3)) (-4 *3 (-1013))
+ (-4 *3 (-553 (-473)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))
- (-4 *3 (-554 (-474)))))
- ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-456 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013))
+ (-4 *3 (-553 (-473)))))
+ ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-455 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 *5)) (-4 *1 (-456 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1130))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-744 *3)) (-4 *3 (-312)) (-5 *1 (-656 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-455 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1129))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-743 *3)) (-4 *3 (-312)) (-5 *1 (-655 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091)) (-4 *4 (-496))
- (-5 *1 (-953 *4))))
+ (-12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090)) (-4 *4 (-495))
+ (-5 *1 (-952 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1091))) (-5 *4 (-584 (-350 (-858 *5))))
- (-5 *2 (-350 (-858 *5))) (-4 *5 (-496)) (-5 *1 (-953 *5))))
+ (-12 (-5 *3 (-583 (-1090))) (-5 *4 (-583 (-350 (-857 *5))))
+ (-5 *2 (-350 (-857 *5))) (-4 *5 (-495)) (-5 *1 (-952 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-5 *2 (-350 (-858 *4))) (-4 *4 (-496))
- (-5 *1 (-953 *4))))
+ (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-5 *2 (-350 (-857 *4))) (-4 *4 (-495))
+ (-5 *1 (-952 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-5 *2 (-350 (-858 *4)))
- (-4 *4 (-496)) (-5 *1 (-953 *4))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3))))
+ (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-5 *2 (-350 (-857 *4)))
+ (-4 *4 (-495)) (-5 *1 (-952 *4))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1070 *3)))))
+ (-12 (-4 *1 (-1158 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1069 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1156 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-962)) (-5 *2 (-1086 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-962)) (-4 *1 (-1156 *3)))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1155 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-961)) (-5 *2 (-1085 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-961)) (-4 *1 (-1155 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
+ (|partial| -12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-862 *4 *5 *3))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-861 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-1156 *3)))))
+ (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-1156 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-312)) (-4 *2 (-810 *3)) (-5 *1 (-520 *2)) (-5 *3 (-1091))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-520 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))
+ (-12 (-4 *2 (-312)) (-4 *2 (-809 *3)) (-5 *1 (-519 *2)) (-5 *3 (-1090))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-519 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
- (-4 *4 (-1014))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014))))
- ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1156 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
+ (-4 *4 (-1013))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-961)))))
(((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-138 *3 *2)) (-4 *3 (-139 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1156 *2))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *2 *4)) (-4 *4 (-1155 *2))
(-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *4 (-1156 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-146)) (-5 *1 (-352 *3 *2 *4))
(-4 *3 (-353 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146))))
+ ((*1 *2) (-12 (-4 *1 (-353 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2)
- (-12 (-4 *3 (-1156 *2)) (-5 *2 (-485)) (-5 *1 (-693 *3 *4))
+ (-12 (-4 *3 (-1155 *2)) (-5 *2 (-484)) (-5 *1 (-692 *3 *4))
(-4 *4 (-353 *2 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
(-4 *3 (-146))))
- ((*1 *2 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
+ ((*1 *2 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
(-4 *3 (-146))))
- ((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2))))
+ ((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-146)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-146)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1156 *3)) (-4 *3 (-962))
- (-4 *3 (-496))))
+ (|partial| -12 (-5 *2 (-350 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-961))
+ (-4 *3 (-495))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-962)) (-4 *2 (-496)))))
+ (|partial| -12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-961)) (-4 *2 (-495)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -3956 *4) (|:| -1973 *3) (|:| -2904 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -3955 *4) (|:| -1972 *3) (|:| -2903 *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-978 *3 *4 *5))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-977 *3 *4 *5))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| -3956 *3) (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-1156 *3)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961))
+ (-5 *2 (-2 (|:| -3955 *3) (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *4 (-496)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -1766 (-563 *4 *5)) (|:| -1765 (-350 *5))))
- (-5 *1 (-563 *4 *5)) (-5 *3 (-350 *5))))
+ (-12 (-4 *4 (-312)) (-4 *4 (-495)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -1765 (-562 *4 *5)) (|:| -1764 (-350 *5))))
+ (-5 *1 (-562 *4 *5)) (-5 *3 (-350 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))
- (-4 *4 (-962))))
+ (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))
+ (-4 *4 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-392)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1156 *3)))))
+ (-12 (-4 *3 (-392)) (-4 *3 (-961))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1155 *3)))))
(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1156 *4)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1155 *4)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3)))
- (-5 *1 (-1153 *4 *3)) (-4 *3 (-1156 *4)))))
+ (|partial| -12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3)))
+ (-5 *1 (-1152 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-120))) (-5 *2 (-584 *3)) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-13 (-495) (-120))) (-5 *2 (-583 *3)) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-496) (-120)))
- (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-120)))
+ (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-1151 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1152 *3 *2))
- (-4 *2 (-1156 *3)))))
+ (|partial| -12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1151 *3 *2))
+ (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120)))
- (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-695)) (-4 *4 (-13 (-496) (-120)))
- (-5 *1 (-1152 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1151 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
+ (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-115 *4 *5 *3))
(-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-443 *4 *5 *6 *3))
+ (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-442 *4 *5 *6 *3))
(-4 *6 (-324 *4)) (-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |num| (-631 *4)) (|:| |den| *4))) (-5 *1 (-634 *4 *5))))
+ (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |num| (-630 *4)) (|:| |den| *4))) (-5 *1 (-633 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-2 (|:| -3268 *7) (|:| |rh| (-584 (-350 *6)))))
- (-5 *1 (-729 *5 *6 *7 *3)) (-5 *4 (-584 (-350 *6))) (-4 *7 (-601 *6))
- (-4 *3 (-601 (-350 *6)))))
+ (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -3267 *7) (|:| |rh| (-583 (-350 *6)))))
+ (-5 *1 (-728 *5 *6 *7 *3)) (-5 *4 (-583 (-350 *6))) (-4 *7 (-600 *6))
+ (-4 *3 (-600 (-350 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-905 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1151 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-904 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-115 *3 *4 *2))
+ (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-115 *3 *4 *2))
(-4 *2 (-324 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-905 *4)) (-4 *2 (-324 *4))
- (-5 *1 (-443 *4 *5 *2 *3)) (-4 *3 (-324 *5))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-904 *4)) (-4 *2 (-324 *4))
+ (-5 *1 (-442 *4 *5 *2 *3)) (-4 *3 (-324 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-905 *4)) (-4 *4 (-496)) (-5 *2 (-631 *4))
- (-5 *1 (-634 *4 *5))))
+ (-12 (-5 *3 (-630 *5)) (-4 *5 (-904 *4)) (-4 *4 (-495)) (-5 *2 (-630 *4))
+ (-5 *1 (-633 *4 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-4 *4 (-905 *3)) (-5 *1 (-1151 *3 *4 *2))
- (-4 *2 (-1156 *4)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-904 *3)) (-5 *1 (-1150 *3 *4 *2))
+ (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-115 *2 *4 *3))
+ (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-115 *2 *4 *3))
(-4 *3 (-324 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-443 *2 *4 *5 *3))
+ (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-442 *2 *4 *5 *3))
(-4 *5 (-324 *2)) (-4 *3 (-324 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-905 *2)) (-4 *2 (-496))
- (-5 *1 (-634 *2 *4))))
+ (-12 (-5 *3 (-630 *4)) (-4 *4 (-904 *2)) (-4 *2 (-495))
+ (-5 *1 (-633 *2 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-905 *2)) (-4 *2 (-496)) (-5 *1 (-1151 *2 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (-12 (-4 *4 (-904 *2)) (-4 *2 (-495)) (-5 *1 (-1150 *2 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-704 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-868 *3 *2)) (-4 *2 (-104)) (-4 *3 (-496)) (-4 *3 (-962))
- (-4 *2 (-717))))
- ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-695)) (-5 *1 (-1086 *3)) (-4 *3 (-962))))
+ (-12 (-5 *1 (-867 *3 *2)) (-4 *2 (-104)) (-4 *3 (-495)) (-4 *3 (-961))
+ (-4 *2 (-716))))
+ ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-694)) (-5 *1 (-1085 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-885)) (-4 *2 (-104)) (-5 *1 (-1093 *3)) (-4 *3 (-496))
- (-4 *3 (-962))))
+ (-12 (-5 *2 (-884)) (-4 *2 (-104)) (-5 *1 (-1092 *3)) (-4 *3 (-495))
+ (-4 *3 (-961))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-1149 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1007 *3)) (-5 *1 (-972 *2 *3)) (-4 *3 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1002 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2) (-12 (-5 *1 (-1147 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1147 *3)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1148 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1006 *3)) (-5 *1 (-971 *2 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1001 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1146 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1146 *3)) (-4 *3 (-1129)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
- (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
+ (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85))
(-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
- (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
+ (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))))
(((*1 *2 *3)
(-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1156 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485))))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484))))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1156 (-48)))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))
+ (-12 (-5 *4 (-583 (-48))) (-5 *2 (-348 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1155 (-48)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3))
- (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-862 (-48) *6 *5))))
+ (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3))
+ (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-861 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-48))) (-4 *5 (-757)) (-4 *6 (-718))
- (-4 *7 (-862 (-48) *6 *5)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-42 *5 *6 *7))
- (-5 *3 (-1086 *7))))
+ (-12 (-5 *4 (-583 (-48))) (-4 *5 (-756)) (-4 *6 (-717))
+ (-4 *7 (-861 (-48) *6 *5)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-42 *5 *6 *7))
+ (-5 *3 (-1085 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-140 *4 *3))
- (-4 *3 (-1156 (-142 *4)))))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1156 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1156 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-299)) (-5 *2 (-348 *3)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-1156 *4))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
+ (-4 *3 (-1155 *4))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-695))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-583 (-694))) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-584 (-695))) (-5 *5 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-583 (-694))) (-5 *5 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-695)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *4 (-694)) (-5 *2 (-348 *3)) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-348 (-142 (-485)))) (-5 *1 (-386)) (-5 *3 (-142 (-485)))))
+ (-12 (-5 *2 (-348 (-142 (-484)))) (-5 *1 (-386)) (-5 *3 (-142 (-484)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))))
- (-4 *5 (-718)) (-4 *7 (-496)) (-5 *2 (-348 *3))
- (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-496)) (-4 *3 (-862 *7 *5 *4))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))))
+ (-4 *5 (-717)) (-4 *7 (-495)) (-5 *2 (-348 *3))
+ (-5 *1 (-396 *4 *5 *6 *7 *3)) (-4 *6 (-495)) (-4 *3 (-861 *7 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1086 *4))) (-5 *1 (-398 *4))
- (-5 *3 (-1086 *4))))
+ (-12 (-4 *4 (-258)) (-5 *2 (-348 (-1085 *4))) (-5 *1 (-398 *4))
+ (-5 *3 (-1085 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
- (-4 *7 (-13 (-312) (-120) (-662 *5 *6))) (-5 *2 (-348 *3))
- (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1156 *7))))
+ (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-4 *7 (-13 (-312) (-120) (-661 *5 *6))) (-5 *2 (-348 *3))
+ (-5 *1 (-434 *5 *6 *7 *3)) (-4 *3 (-1155 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120)))
- (-4 *5 (-757)) (-4 *6 (-718)) (-5 *2 (-348 *3)) (-5 *1 (-479 *5 *6 *7 *3))
- (-4 *3 (-862 *7 *6 *5))))
+ (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120)))
+ (-4 *5 (-756)) (-4 *6 (-717)) (-5 *2 (-348 *3)) (-5 *1 (-478 *5 *6 *7 *3))
+ (-4 *3 (-861 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-348 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-258) (-120)))
- (-4 *5 (-757)) (-4 *6 (-718)) (-4 *8 (-862 *7 *6 *5))
- (-5 *2 (-348 (-1086 *8))) (-5 *1 (-479 *5 *6 *7 *8)) (-5 *3 (-1086 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484))))
+ (-12 (-5 *4 (-1 (-348 (-1085 *7)) (-1085 *7))) (-4 *7 (-13 (-258) (-120)))
+ (-4 *5 (-756)) (-4 *6 (-717)) (-4 *8 (-861 *7 *6 *5))
+ (-5 *2 (-348 (-1085 *8))) (-5 *1 (-478 *5 *6 *7 *8)) (-5 *3 (-1085 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-598 (-350 *6)))) (-5 *1 (-602 *5 *6))
- (-5 *3 (-598 (-350 *6)))))
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-583 (-597 (-350 *6)))) (-5 *1 (-601 *5 *6))
+ (-5 *3 (-597 (-350 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5))
- (-5 *3 (-598 (-350 *5)))))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5))
+ (-5 *3 (-597 (-350 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-615 *4)))
- (-5 *1 (-615 *4))))
+ (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-614 *4)))
+ (-5 *1 (-614 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-5 *2 (-584 *3)) (-5 *1 (-636 *3)) (-4 *3 (-1156 *4))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-583 *3)) (-5 *1 (-635 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-5 *2 (-348 *3))
- (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
+ (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-5 *2 (-348 *3))
+ (-5 *1 (-637 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-299)) (-4 *7 (-862 *6 *5 *4))
- (-5 *2 (-348 (-1086 *7))) (-5 *1 (-638 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-299)) (-4 *7 (-861 *6 *5 *4))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-637 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-718))
+ (-12 (-4 *4 (-717))
(-4 *5
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ "failed") (-1091))))))
- (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-670 *4 *5 *6 *3))
- (-4 *3 (-862 (-858 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))
- (-4 *6 (-496)) (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3))
- (-4 *3 (-862 (-350 (-858 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-13 (-258) (-120)))
- (-5 *2 (-348 *3)) (-5 *1 (-673 *4 *5 *6 *3))
- (-4 *3 (-862 (-350 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120)))
- (-5 *2 (-348 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-862 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-4 *5 (-718)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-862 *6 *5 *4)) (-5 *2 (-348 (-1086 *7))) (-5 *1 (-681 *4 *5 *6 *7))
- (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-348 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1156 (-350 (-485))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-348 *3)) (-5 *1 (-955 *3))
- (-4 *3 (-1156 (-350 (-858 (-485)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1156 (-350 (-485))))
- (-4 *5 (-13 (-312) (-120) (-662 (-350 (-485)) *4))) (-5 *2 (-348 *3))
- (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1156 (-350 (-858 (-485)))))
- (-4 *5 (-13 (-312) (-120) (-662 (-350 (-858 (-485))) *4))) (-5 *2 (-348 *3))
- (-5 *1 (-994 *4 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-392)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-348 (-1086 (-350 *7)))) (-5 *1 (-1088 *4 *5 *6 *7))
- (-5 *3 (-1086 (-350 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1135))))
- ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-90 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-485))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-781 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-781 *2)) (-14 *2 (-485))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ "failed") (-1090))))))
+ (-4 *6 (-258)) (-5 *2 (-348 *3)) (-5 *1 (-669 *4 *5 *6 *3))
+ (-4 *3 (-861 (-857 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)))))
+ (-4 *6 (-495)) (-5 *2 (-348 *3)) (-5 *1 (-671 *4 *5 *6 *3))
+ (-4 *3 (-861 (-350 (-857 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-13 (-258) (-120)))
+ (-5 *2 (-348 *3)) (-5 *1 (-672 *4 *5 *6 *3))
+ (-4 *3 (-861 (-350 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120)))
+ (-5 *2 (-348 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-861 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-756)) (-4 *5 (-717)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-861 *6 *5 *4)) (-5 *2 (-348 (-1085 *7))) (-5 *1 (-680 *4 *5 *6 *7))
+ (-5 *3 (-1085 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-920 *3)) (-4 *3 (-1155 (-350 (-484))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-348 *3)) (-5 *1 (-954 *3))
+ (-4 *3 (-1155 (-350 (-857 (-484)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 (-484))))
+ (-4 *5 (-13 (-312) (-120) (-661 (-350 (-484)) *4))) (-5 *2 (-348 *3))
+ (-5 *1 (-992 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1155 (-350 (-857 (-484)))))
+ (-4 *5 (-13 (-312) (-120) (-661 (-350 (-857 (-484))) *4))) (-5 *2 (-348 *3))
+ (-5 *1 (-993 *4 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-392)) (-4 *7 (-861 *6 *4 *5))
+ (-5 *2 (-348 (-1085 (-350 *7)))) (-5 *1 (-1087 *4 *5 *6 *7))
+ (-5 *3 (-1085 (-350 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-348 *1)) (-4 *1 (-1134))))
+ ((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-1145 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-90 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-90 *2)) (-14 *2 (-484))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-780 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-780 *2)) (-14 *2 (-484))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-485)) (-14 *3 *2) (-5 *1 (-782 *3 *4)) (-4 *4 (-780 *3))))
- ((*1 *1 *1) (-12 (-14 *2 (-485)) (-5 *1 (-782 *2 *3)) (-4 *3 (-780 *2))))
+ (-12 (-5 *2 (-484)) (-14 *3 *2) (-5 *1 (-781 *3 *4)) (-4 *4 (-779 *3))))
+ ((*1 *1 *1) (-12 (-14 *2 (-484)) (-5 *1 (-781 *2 *3)) (-4 *3 (-779 *2))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-485)) (-4 *1 (-1144 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1173 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-1144 *2 *3)) (-4 *2 (-962)) (-4 *3 (-1173 *2)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1172 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1172 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *4 *5)) (-4 *5 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
- (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
+ (-5 *1 (-267 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (-12 (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-51)) (-5 *1 (-267 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-249 *3)) (-5 *5 (-695)) (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-249 *3)) (-5 *5 (-694)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-267 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-485))) (-5 *4 (-249 *6))
- (-4 *6 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *6 (-484))) (-5 *4 (-249 *6))
+ (-4 *6 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *6 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-485))) (-5 *4 (-249 *7)) (-5 *5 (-1147 (-695)))
- (-4 *7 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-1 *7 (-484))) (-5 *4 (-249 *7)) (-5 *5 (-1146 (-694)))
+ (-4 *7 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1091)) (-5 *5 (-249 *3)) (-5 *6 (-1147 (-695)))
- (-4 *3 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *2 (-51))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-249 *3)) (-5 *6 (-1146 (-694)))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *2 (-51))
(-5 *1 (-399 *7 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1144 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1173 *3)))))
+ (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1172 *3)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496))
- (-5 *2 (-350 (-858 *4)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495))
+ (-5 *2 (-350 (-857 *4)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-1142 *4)) (-4 *4 (-962)) (-4 *4 (-496))
- (-5 *2 (-350 (-858 *4))))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-1141 *4)) (-4 *4 (-961)) (-4 *4 (-495))
+ (-5 *2 (-350 (-857 *4))))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))
- ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830))))
+ ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))
+ ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))))
(((*1 *1 *1 *1) (-5 *1 (-101)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831))))
- ((*1 *1 *1 *1) (-5 *1 (-1136))) ((*1 *1 *1 *1) (-5 *1 (-1137)))
- ((*1 *1 *1 *1) (-5 *1 (-1138))) ((*1 *1 *1 *1) (-5 *1 (-1139))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830))))
+ ((*1 *1 *1 *1) (-5 *1 (-1135))) ((*1 *1 *1 *1) (-5 *1 (-1136)))
+ ((*1 *1 *1 *1) (-5 *1 (-1137))) ((*1 *1 *1 *1) (-5 *1 (-1138))))
(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-101)))
((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
- ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487))) ((*1 *1) (-5 *1 (-488)))
- ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-664))) ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-831))))
- ((*1 *1) (-12 (-5 *1 (-1098 *2)) (-14 *2 (-831)))) ((*1 *1) (-5 *1 (-1136)))
- ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))) ((*1 *1) (-5 *1 (-1139))))
-(((*1 *2 *3) (-12 (-5 *3 (-142 (-485))) (-5 *2 (-85)) (-5 *1 (-386))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
+ ((*1 *1) (-5 *1 (-485))) ((*1 *1) (-5 *1 (-486))) ((*1 *1) (-5 *1 (-487)))
+ ((*1 *1) (-5 *1 (-488))) ((*1 *1) (-4 *1 (-663))) ((*1 *1) (-5 *1 (-1090)))
+ ((*1 *1) (-12 (-5 *1 (-1096 *2)) (-14 *2 (-830))))
+ ((*1 *1) (-12 (-5 *1 (-1097 *2)) (-14 *2 (-830)))) ((*1 *1) (-5 *1 (-1135)))
+ ((*1 *1) (-5 *1 (-1136))) ((*1 *1) (-5 *1 (-1137))) ((*1 *1) (-5 *1 (-1138))))
+(((*1 *2 *3) (-12 (-5 *3 (-142 (-484))) (-5 *2 (-85)) (-5 *1 (-386))))
((*1 *2 *3)
(-12
(-5 *3
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
- (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-874 *3)) (-4 *3 (-484))))
- ((*1 *2 *1) (-12 (-4 *1 (-1135)) (-5 *2 (-85)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1133)))))
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))
+ (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-873 *3)) (-4 *3 (-483))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134)) (-5 *2 (-85)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1132)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3230 (-584 (-1091))) (|:| -3231 (-584 (-1091)))))
- (-5 *1 (-1133)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1133)))))
+ (-12 (-5 *2 (-2 (|:| -3229 (-583 (-1090))) (|:| -3230 (-583 (-1090)))))
+ (-5 *1 (-1132)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1132)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-757)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-756)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1132 *2))
- (-4 *2 (-1014))))
+ (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-85) *2 *2)) (-5 *1 (-1131 *2))
+ (-4 *2 (-1013))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-757)) (-5 *1 (-1132 *2)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-756)) (-5 *1 (-1131 *2)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85))))
((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1132 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-1131 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1014)) (-5 *2 (-85))
- (-5 *1 (-1132 *3)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *3 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-1131 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3231 (-584 *3)) (|:| -3230 (-584 *3))))
- (-5 *1 (-1132 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-2 (|:| -3230 (-583 *3)) (|:| -3229 (-583 *3))))
+ (-5 *1 (-1131 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-5 *2 (-1186)) (-5 *1 (-1132 *4)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-5 *2 (-1185)) (-5 *1 (-1131 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-4 *5 (-299)) (-5 *2 (-348 (-1086 (-1086 *5))))
- (-5 *1 (-1129 *5)) (-5 *3 (-1086 (-1086 *5))))))
+ (-12 (-5 *4 (-484)) (-4 *5 (-299)) (-5 *2 (-348 (-1085 (-1085 *5))))
+ (-5 *1 (-1128 *5)) (-5 *3 (-1085 (-1085 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4))
- (-5 *3 (-1086 (-1086 *4))))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-1085 (-1085 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1086 (-1086 *4)))) (-5 *1 (-1129 *4))
- (-5 *3 (-1086 (-1086 *4))))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-348 (-1085 (-1085 *4)))) (-5 *1 (-1128 *4))
+ (-5 *3 (-1085 (-1085 *4))))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3))
- (-4 *3 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
+ (-4 *3 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129))))
((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1125 *4 *5 *3 *2)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *3 (-757)) (-4 *2 (-978 *4 *5 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-1128 *2)) (-4 *2 (-1130)))))
+ (|partial| -12 (-4 *1 (-1124 *4 *5 *3 *2)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *3 (-756)) (-4 *2 (-977 *4 *5 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-1127 *2)) (-4 *2 (-1129)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-584 (-584 (-179)))) (-5 *4 (-179)) (-5 *2 (-584 (-855 *4)))
- (-5 *1 (-1127)) (-5 *3 (-855 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-1127)))))
+ (-12 (-5 *5 (-583 (-583 (-179)))) (-5 *4 (-179)) (-5 *2 (-583 (-854 *4)))
+ (-5 *1 (-1126)) (-5 *3 (-854 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-1126)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-831)) (-4 *1 (-196 *3 *4)) (-4 *4 (-962)) (-4 *4 (-1130))))
+ (-12 (-5 *2 (-830)) (-4 *1 (-196 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1129))))
((*1 *1 *2)
- (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695)))
+ (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5))
- (-2 (|:| -2401 *2) (|:| -2402 *5))))
- (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-757))
- (-4 *7 (-862 *4 *5 (-774 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)))))
+ (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5))
+ (-2 (|:| -2400 *2) (|:| -2401 *5))))
+ (-5 *1 (-401 *3 *4 *2 *5 *6 *7)) (-4 *2 (-756))
+ (-4 *7 (-861 *4 *5 (-773 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *2 (-1186)) (-5 *1 (-408))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-894 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-855 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-855 *3)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *2 (-1185)) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-893 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-854 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-855 (-179))) (-5 *1 (-1127)) (-5 *3 (-179)))))
+ (-12 (-5 *2 (-854 (-179))) (-5 *1 (-1126)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-179)) (-5 *5 (-485)) (-5 *2 (-1126 *3)) (-5 *1 (-713 *3))
- (-4 *3 (-888))))
+ (-12 (-5 *4 (-179)) (-5 *5 (-484)) (-5 *2 (-1125 *3)) (-5 *1 (-712 *3))
+ (-4 *3 (-887))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *4 (-85)) (-5 *1 (-1126 *2))
- (-4 *2 (-888)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *4 (-85)) (-5 *1 (-1125 *2))
+ (-4 *2 (-887)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1125 *3)) (-4 *3 (-887)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-1126 *3)) (-4 *3 (-888)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-888)))))
+ (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-1125 *3)) (-4 *3 (-887)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-887)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *4 (-1 (-85) *9)) (-5 *5 (-1 (-85) *9 *9))
- (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718)) (-4 *8 (-757))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *9)))) (-5 *3 (-584 *9))
- (-4 *1 (-1125 *6 *7 *8 *9))))
+ (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-583 *9)))) (-5 *3 (-583 *9))
+ (-4 *1 (-1124 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-978 *5 *6 *7))
- (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3325 (-584 *8)))) (-5 *3 (-584 *8))
- (-4 *1 (-1125 *5 *6 *7 *8)))))
+ (|partial| -12 (-5 *4 (-1 (-85) *8 *8)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3324 (-583 *8)))) (-5 *3 (-583 *8))
+ (-4 *1 (-1124 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *6)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-2 (|:| -3863 (-584 *6)) (|:| -1703 (-584 *6)))))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3862 (-583 *6)) (|:| -1702 (-583 *6)))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85))))
((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1125 *5 *6 *7 *3)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7)) (-5 *2 (-85)))))
+ (-12 (-5 *4 (-1 (-85) *3 *3)) (-4 *1 (-1124 *5 *6 *7 *3)) (-4 *5 (-495))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *1)) (-4 *1 (-978 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-583 *1)) (-4 *1 (-977 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1125 *4 *5 *6 *3)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1124 *4 *5 *6 *3)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-85) *7 (-584 *7))) (-4 *1 (-1125 *4 *5 *6 *7))
- (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
+ (-12 (-5 *3 (-1 (-85) *7 (-583 *7))) (-4 *1 (-1124 *4 *5 *6 *7))
+ (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
(-5 *2 (-85)))))
(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
- (-4 *1 (-1125 *5 *6 *7 *8)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-85) *8 *8))
+ (-4 *1 (-1124 *5 *6 *7 *8)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-977 *5 *6 *7)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1125 *2 *3 *4 *5)) (-4 *2 (-496)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-978 *2 *3 *4)))))
+ (-12 (-4 *1 (-1124 *2 *3 *4 *5)) (-4 *2 (-495)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *5 (-977 *2 *3 *4)))))
(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *10))
- (-5 *1 (-564 *5 *6 *7 *8 *9 *10)) (-4 *9 (-984 *5 *6 *7 *8))
- (-4 *10 (-1021 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *10))
+ (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-983 *5 *6 *7 *8))
+ (-4 *10 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
- (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6))))
+ (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
- (-14 *6 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
- (-5 *1 (-568 *5 *6))))
+ (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-583 (-1090)))
+ (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
+ (-5 *1 (-567 *5 *6))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
+ (-5 *1 (-940 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
+ (-5 *1 (-940 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
- (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-959 *5 *6))))
+ (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-1125 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-1124 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| -3863 *1) (|:| -1703 (-584 *7))))) (-5 *3 (-584 *7))
- (-4 *1 (-1125 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| -3862 *1) (|:| -1702 (-583 *7))))) (-5 *3 (-583 *7))
+ (-4 *1 (-1124 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1125 *3 *4 *5 *2)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *2 (-978 *3 *4 *5)))))
+ (|partial| -12 (-4 *1 (-1124 *3 *4 *5 *2)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *2 (-977 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1125 *3 *4 *5 *6)) (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-695)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
+ (-12 (-4 *1 (-1124 *3 *4 *5 *6)) (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *5 (-320)) (-5 *2 (-694)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091)))))
+ (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 (-831))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5))
- (-14 *4 (-831)) (-14 *5 (-907 *4 *2))))
+ (-12 (-5 *3 (-583 (-830))) (-4 *2 (-312)) (-5 *1 (-125 *4 *2 *5))
+ (-14 *4 (-830)) (-14 *5 (-906 *4 *2))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091)))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-104))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
- ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-454 *2 *3)) (-4 *3 (-760))))
+ (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090)))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-274 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-104))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961))))
+ ((*1 *2 *1) (-12 (-4 *2 (-72)) (-5 *1 (-453 *2 *3)) (-4 *3 (-759))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-664))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
+ ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-663))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
+ (-4 *4 (-961)) (-4 *5 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
+ (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *2 (-757))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *2 (-756))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *2 (-862 *4 (-470 *5) *5)) (-5 *1 (-1041 *4 *5 *2))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (-12 (-5 *3 (-694)) (-4 *2 (-861 *4 (-469 *5) *5)) (-5 *1 (-1040 *4 *5 *2))
+ (-4 *4 (-961)) (-4 *5 (-756))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-858 *4)) (-5 *1 (-1123 *4)) (-4 *4 (-962)))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-857 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-961)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1041 *4 *3 *5))) (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962))
- (-4 *3 (-757)) (-5 *1 (-1041 *4 *3 *5)) (-4 *5 (-862 *4 (-470 *3) *3))))
+ (-12 (-5 *2 (-1 (-1040 *4 *3 *5))) (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961))
+ (-4 *3 (-756)) (-5 *1 (-1040 *4 *3 *5)) (-4 *5 (-861 *4 (-469 *3) *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1123 *4))) (-5 *3 (-1091)) (-5 *1 (-1123 *4))
- (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
+ (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1090)) (-5 *1 (-1122 *4))
+ (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-554 (-801 *3))) (-4 *3 (-797 *3)) (-4 *3 (-392))
- (-5 *1 (-1122 *3 *2)) (-4 *2 (-554 (-801 *3))) (-4 *2 (-797 *3))
- (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-553 (-800 *3))) (-4 *3 (-796 *3)) (-4 *3 (-392))
+ (-5 *1 (-1121 *3 *2)) (-4 *2 (-553 (-800 *3))) (-4 *2 (-796 *3))
+ (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
-(((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
+(((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3))))
((*1 *1 *1)
- (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-757))
- (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5)) (-4 *5 (-862 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-485))) (-5 *1 (-1033))))
+ (-12 (-4 *2 (-120)) (-4 *2 (-258)) (-4 *2 (-392)) (-4 *3 (-756))
+ (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5)) (-4 *5 (-861 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-265 (-484))) (-5 *1 (-1032))))
((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-5 *1 (-1122 *3 *2)) (-4 *2 (-13 (-364 *3) (-1116))))))
+ (-12 (-4 *3 (-392)) (-5 *1 (-1121 *3 *2)) (-4 *2 (-13 (-364 *3) (-1115))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-496)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-1121 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-1120 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-142 (-265 *4)))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-142 (-265 *4)))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-142 *3))
- (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-142 *3))
+ (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85)) (-5 *1 (-162 *4 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-85))
- (-5 *1 (-1120 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-1119 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-265 *4))
- (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 (-142 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-265 *4))
+ (-5 *1 (-162 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 (-142 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3))))))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3)))))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *3))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *1 (-162 *4 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 (-142 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *1 (-162 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 (-142 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1120 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3)))))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1120 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-1119 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3))))
- ((*1 *1 *1) (-4 *1 (-1119))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-1117 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3))))
+ ((*1 *1 *1) (-4 *1 (-1118))))
+(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-1116 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-584 (-1117 *2))) (-5 *1 (-1117 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1117 *2)) (-4 *2 (-1014)))))
+ (-12 (-5 *3 (-583 (-1116 *2))) (-5 *1 (-1116 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-1117 *3))) (-5 *1 (-1117 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-583 (-1116 *3))) (-5 *1 (-1116 *3)) (-4 *3 (-1013)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496))))
- ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1116))))
-(((*1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-1114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-1113 *4)) (-4 *4 (-962)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-485))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495))))
+ ((*1 *1) (-5 *1 (-417))) ((*1 *1) (-4 *1 (-1115))))
+(((*1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-1113)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-1112 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4))
- (-5 *2 (-485))))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4))
+ (-5 *2 (-484))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *4 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *4)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484))
+ (-5 *1 (-1030 *4 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *4)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *6 *3))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484))
+ (-5 *1 (-1030 *6 *3))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074))
- (-4 *6 (-13 (-496) (-951 *2) (-581 *2) (-392))) (-5 *2 (-485))
- (-5 *1 (-1031 *6 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *6)))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073))
+ (-4 *6 (-13 (-495) (-950 *2) (-580 *2) (-392))) (-5 *2 (-484))
+ (-5 *1 (-1030 *6 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-485))
- (-5 *1 (-1032 *4))))
+ (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-484))
+ (-5 *1 (-1031 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-751 (-350 (-858 *6))))
- (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-750 (-350 (-857 *6))))
+ (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-350 (-858 *6))) (-5 *4 (-1091)) (-5 *5 (-1074))
- (-4 *6 (-392)) (-5 *2 (-485)) (-5 *1 (-1032 *6))))
- ((*1 *2 *3) (|partial| -12 (-5 *2 (-485)) (-5 *1 (-1113 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-773))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-773) (-584 (-773)))) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-773) (-584 (-773))))) (-5 *1 (-86))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3))
+ (|partial| -12 (-5 *3 (-350 (-857 *6))) (-5 *4 (-1090)) (-5 *5 (-1073))
+ (-4 *6 (-392)) (-5 *2 (-484)) (-5 *1 (-1031 *6))))
+ ((*1 *2 *3) (|partial| -12 (-5 *2 (-484)) (-5 *1 (-1112 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-313 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1111)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1111)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-772) (-583 (-772)))) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-772) (-583 (-772))))) (-5 *1 (-86))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $))
- (-15 -1964 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442))))
- ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-648))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1110))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $))
+ (-15 -1963 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-647))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1109))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-695)) (-4 *3 (-1130)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-694)) (-4 *3 (-1129)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3))))
((*1 *1) (-5 *1 (-145)))
- ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-831)) (-4 *3 (-1014))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
+ ((*1 *1) (-12 (-5 *1 (-166 *2 *3)) (-14 *2 (-830)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-4 *1 (-593 *3)) (-4 *3 (-1129))))
((*1 *1)
- (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
- (-4 *4 (-609 *3))))
- ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
- ((*1 *1 *2) (-12 (-5 *1 (-1057 *3 *2)) (-14 *3 (-695)) (-4 *2 (-962))))
- ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962))))
- ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091)))
- ((*1 *1) (-5 *1 (-1110))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-1110)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-237 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-695)) (-4 *1 (-635 *2)) (-4 *2 (-1014))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1014)) (-5 *1 (-1109 *3 *2)) (-4 *3 (-1014)))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-608 *3))))
+ ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-14 *3 (-694)) (-4 *2 (-961))))
+ ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961))))
+ ((*1 *1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1090)))
+ ((*1 *1) (-5 *1 (-1109))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1109)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-99 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-237 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-694)) (-4 *1 (-634 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1013)) (-5 *1 (-1108 *3 *2)) (-4 *3 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1014)))))
+ (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1013)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1109 *4 *5)) (-4 *4 (-1014))
- (-4 *5 (-1014)))))
+ (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1108 *4 *5)) (-4 *4 (-1013))
+ (-4 *5 (-1013)))))
(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1109 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-1108 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| -3862 *3) (|:| |entry| *4)))) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *1 (-1108 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1108 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3861 *3) (|:| |entry| *4)))) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *1 (-1107 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1107 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))))
+ (-12 (-5 *4 (-830)) (-5 *2 (-1085 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-312)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-312)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-55)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-695)) (-5 *1 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-86))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-32 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-55)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-694)) (-5 *1 (-86))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-86)) (-5 *1 (-136))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-131 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-86)) (-5 *1 (-136))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-230 *3 *4))
- (-4 *4 (-13 (-364 *3) (-916)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-230 *3 *4))
+ (-4 *4 (-13 (-364 *3) (-915)))))
((*1 *2 *2) (-12 (-5 *2 (-86)) (-5 *1 (-253 *3)) (-4 *3 (-254))))
((*1 *2 *2) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *4 (-1014)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
+ (-12 (-5 *2 (-86)) (-4 *4 (-1013)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-374 *3 *4)) (-4 *4 (-364 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-86)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
((*1 *2 *2)
- (-12 (-5 *2 (-86)) (-4 *3 (-496)) (-5 *1 (-569 *3 *4))
- (-4 *4 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1105 *2)) (-4 *2 (-1014)))))
+ (-12 (-5 *2 (-86)) (-4 *3 (-495)) (-5 *1 (-568 *3 *4))
+ (-4 *4 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1104 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-584 (-584 *3)))))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-583 (-583 *3)))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-584 (-584 *5)))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-584 *3))) (-5 *1 (-1104 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-1104 *3)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-583 (-583 *5)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1103 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-1103 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-757))
+ (-12 (-4 *4 (-756))
(-5 *2
- (-2 (|:| |f1| (-584 *4)) (|:| |f2| (-584 (-584 (-584 *4))))
- (|:| |f3| (-584 (-584 *4))) (|:| |f4| (-584 (-584 (-584 *4))))))
- (-5 *1 (-1102 *4)) (-5 *3 (-584 (-584 (-584 *4)))))))
+ (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4))))
+ (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4))))))
+ (-5 *1 (-1101 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-757)) (-5 *3 (-584 *6)) (-5 *5 (-584 *3))
+ (-12 (-4 *6 (-756)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3))
(-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-584 *5)) (|:| |f3| *5) (|:| |f4| (-584 *5))))
- (-5 *1 (-1102 *6)) (-5 *4 (-584 *5)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5))))
+ (-5 *1 (-1101 *6)) (-5 *4 (-583 *5)))))
(((*1 *2 *2)
(|partial| -12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-4 *7 (-905 *4)) (-4 *2 (-628 *7 *8 *9))
- (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-628 *4 *5 *6))
+ (|partial| -12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-4 *7 (-904 *4)) (-4 *2 (-627 *7 *8 *9))
+ (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-627 *4 *5 *6))
(-4 *8 (-324 *7)) (-4 *9 (-324 *7))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)) (-4 *2 (-312))))
((*1 *2 *2)
(|partial| -12 (-4 *3 (-312)) (-4 *3 (-146)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
- ((*1 *1 *1) (|partial| -12 (-5 *1 (-631 *2)) (-4 *2 (-312)) (-4 *2 (-962))))
+ (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ ((*1 *1 *1) (|partial| -12 (-5 *1 (-630 *2)) (-4 *2 (-312)) (-4 *2 (-961))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1038 *2 *3 *4 *5)) (-4 *3 (-962))
+ (|partial| -12 (-4 *1 (-1037 *2 *3 *4 *5)) (-4 *3 (-961))
(-4 *4 (-196 *2 *3)) (-4 *5 (-196 *2 *3)) (-4 *3 (-312))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-1102 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-1101 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 *4))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-757)) (-5 *1 (-1102 *3)))))
+ (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1101 *4))
+ (-5 *3 (-583 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-756)) (-5 *1 (-1101 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-5 *2 (-1104 (-584 *4))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 *4)))))
+ (-12 (-4 *4 (-756)) (-5 *2 (-1103 (-583 *4))) (-5 *1 (-1101 *4))
+ (-5 *3 (-583 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-757)) (-5 *2 (-584 (-584 (-584 *4)))) (-5 *1 (-1102 *4))
- (-5 *3 (-584 (-584 *4))))))
+ (-12 (-4 *4 (-756)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1101 *4))
+ (-5 *3 (-583 (-583 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1104 (-584 *4))) (-4 *4 (-757)) (-5 *2 (-584 (-584 *4)))
- (-5 *1 (-1102 *4)))))
+ (-12 (-5 *3 (-1103 (-583 *4))) (-4 *4 (-756)) (-5 *2 (-583 (-583 *4)))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4)))
- (-5 *1 (-1102 *4)) (-4 *4 (-757)))))
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4)))
+ (-5 *1 (-1101 *4)) (-4 *4 (-756)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-584 *4)))) (-5 *2 (-584 (-584 *4))) (-4 *4 (-757))
- (-5 *1 (-1102 *4)))))
+ (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-756))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-584 *4)) (-4 *4 (-757))
- (-5 *1 (-1102 *4)))))
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-756))
+ (-5 *1 (-1101 *4)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-1 (-85) *5 *5))
- (-5 *4 (-584 *5)) (-4 *5 (-757)) (-5 *1 (-1102 *5)))))
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-85) *5 *5))
+ (-5 *4 (-583 *5)) (-4 *5 (-756)) (-5 *1 (-1101 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-757)) (-5 *4 (-584 *6))
- (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-584 *4))))
- (-5 *1 (-1102 *6)) (-5 *5 (-584 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1101)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1101)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-1101)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-858 *5)))) (-5 *1 (-1100 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 (-485)))))
- (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4))
- (-4 *4 (-13 (-756) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-249 (-350 (-858 (-485))))))
- (-5 *2 (-584 (-584 (-249 (-858 *4))))) (-5 *1 (-332 *4))
- (-4 *4 (-13 (-756) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 (-249 (-858 *4))))
- (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-350 (-858 (-485))))) (-5 *2 (-584 (-249 (-858 *4))))
- (-5 *1 (-332 *4)) (-4 *4 (-13 (-756) (-312)))))
+ (-12 (-5 *3 (-1 (-85) *6 *6)) (-4 *6 (-756)) (-5 *4 (-583 *6))
+ (-5 *2 (-2 (|:| |fs| (-85)) (|:| |sd| *4) (|:| |td| (-583 *4))))
+ (-5 *1 (-1101 *6)) (-5 *5 (-583 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-103)) (-5 *1 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-857 *5)))) (-5 *1 (-1099 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-350 (-857 (-484)))))
+ (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-755) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-249 (-350 (-857 (-484))))))
+ (-5 *2 (-583 (-583 (-249 (-857 *4))))) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-755) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 (-249 (-857 *4))))
+ (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-249 (-350 (-857 (-484))))) (-5 *2 (-583 (-249 (-857 *4))))
+ (-5 *1 (-332 *4)) (-4 *4 (-13 (-755) (-312)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1091))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1116) (-872)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4))))
- (-5 *1 (-596 *6 *4 *3)) (-4 *3 (-601 *4))))
+ (|partial| -12 (-5 *5 (-1090))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1115) (-871)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4))))
+ (-5 *1 (-595 *6 *4 *3)) (-4 *3 (-600 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *2))
- (-4 *2 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *1 (-596 *6 *2 *3)) (-4 *3 (-601 *2))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *1 (-595 *6 *2 *3)) (-4 *3 (-600 *2))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5)))
+ (-4 *4 (-13 (-324 *5) (-1035 *5)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-609 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-4 *7 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-5 *2 (-584 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2013 (-584 *7)))))
- (-5 *1 (-610 *5 *6 *7 *3)) (-5 *4 (-584 *7)) (-4 *3 (-628 *5 *6 *7))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5)))
+ (-4 *7 (-13 (-324 *5) (-1035 *5)))
+ (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2012 (-583 *7)))))
+ (-5 *1 (-609 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-627 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-312))
+ (-12 (-5 *3 (-630 *5)) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |particular| (-3 (-1180 *5) #2="failed"))
- (|:| -2013 (-584 (-1180 *5)))))
- (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))
+ (-2 (|:| |particular| (-3 (-1179 *5) #2="failed"))
+ (|:| -2012 (-583 (-1179 *5)))))
+ (-5 *1 (-610 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312))
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |particular| (-3 (-1180 *5) #2#)) (|:| -2013 (-584 (-1180 *5)))))
- (-5 *1 (-611 *5)) (-5 *4 (-1180 *5))))
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#)) (|:| -2012 (-583 (-1179 *5)))))
+ (-5 *1 (-610 *5)) (-5 *4 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-4 *5 (-312))
+ (-12 (-5 *3 (-630 *5)) (-4 *5 (-312))
(-5 *2
- (-584
- (-2 (|:| |particular| (-3 (-1180 *5) #2#))
- (|:| -2013 (-584 (-1180 *5))))))
- (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5)))))
+ (-583
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2012 (-583 (-1179 *5))))))
+ (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-584 *5))) (-4 *5 (-312))
+ (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-312))
(-5 *2
- (-584
- (-2 (|:| |particular| (-3 (-1180 *5) #2#))
- (|:| -2013 (-584 (-1180 *5))))))
- (-5 *1 (-611 *5)) (-5 *4 (-584 (-1180 *5)))))
+ (-583
+ (-2 (|:| |particular| (-3 (-1179 *5) #2#))
+ (|:| -2012 (-583 (-1179 *5))))))
+ (-5 *1 (-610 *5)) (-5 *4 (-583 (-1179 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4))))
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1091))
- (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120))) (-5 *1 (-696 *5 *2))
- (-4 *2 (-13 (-29 *5) (-1116) (-872)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-1090))
+ (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120))) (-5 *1 (-695 *5 *2))
+ (-4 *2 (-13 (-29 *5) (-1115) (-871)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-631 *7)) (-5 *5 (-1091))
- (-4 *7 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7)) (-5 *4 (-1180 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-631 *6)) (-5 *4 (-1091))
- (-4 *6 (-13 (-29 *5) (-1116) (-872)))
- (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-1180 *6))) (-5 *1 (-726 *5 *6))))
+ (|partial| -12 (-5 *3 (-630 *7)) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7)))))
+ (-5 *1 (-725 *6 *7)) (-5 *4 (-1179 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-630 *6)) (-5 *4 (-1090))
+ (-4 *6 (-13 (-29 *5) (-1115) (-871)))
+ (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-1179 *6))) (-5 *1 (-725 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-1091))
- (-4 *7 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7))))
+ (|partial| -12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7)))))
+ (-5 *1 (-725 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-1091))
- (-4 *7 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-2 (|:| |particular| (-1180 *7)) (|:| -2013 (-584 (-1180 *7)))))
- (-5 *1 (-726 *6 *7))))
+ (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-2 (|:| |particular| (-1179 *7)) (|:| -2012 (-583 (-1179 *7)))))
+ (-5 *1 (-725 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1091))
- (-4 *7 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2013 (-584 *7))) *7 #3="failed"))
- (-5 *1 (-726 *6 *7))))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-1090))
+ (-4 *7 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2012 (-583 *7))) *7 #3="failed"))
+ (-5 *1 (-725 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-86)) (-5 *5 (-1091))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2013 (-584 *3))) *3 #3#))
- (-5 *1 (-726 *6 *3)) (-4 *3 (-13 (-29 *6) (-1116) (-872)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-1090))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2012 (-583 *3))) *3 #3#))
+ (-5 *1 (-725 *6 *3)) (-4 *3 (-13 (-29 *6) (-1115) (-871)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-584 *2))
- (-4 *2 (-13 (-29 *6) (-1116) (-872))) (-5 *1 (-726 *6 *2))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))))
+ (|partial| -12 (-5 *3 (-249 *2)) (-5 *4 (-86)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-871))) (-5 *1 (-725 *6 *2))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-584 *2))
- (-4 *2 (-13 (-29 *6) (-1116) (-872)))
- (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *1 (-726 *6 *2))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-249 *2)) (-5 *5 (-583 *2))
+ (-4 *2 (-13 (-29 *6) (-1115) (-871)))
+ (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *1 (-725 *6 *2))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
- (-1 (-3 (-2 (|:| |particular| *6) (|:| -2013 (-584 *6))) "failed") *7 *6))
- (-4 *6 (-312)) (-4 *7 (-601 *6))
- (-5 *2 (-2 (|:| |particular| (-1180 *6)) (|:| -2013 (-631 *6))))
- (-5 *1 (-734 *6 *7)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *6))))
+ (-1 (-3 (-2 (|:| |particular| *6) (|:| -2012 (-583 *6))) "failed") *7 *6))
+ (-4 *6 (-312)) (-4 *7 (-600 *6))
+ (-5 *2 (-2 (|:| |particular| (-1179 *6)) (|:| -2012 (-630 *6))))
+ (-5 *1 (-733 *6 *7)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 (-330))) (-5 *1 (-937))
+ (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 (-330))) (-5 *1 (-936))
(-5 *4 (-330))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 (-330))) (-5 *1 (-937))
+ (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 (-330))) (-5 *1 (-936))
(-5 *4 (-330))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4)) (-5 *3 (-265 *4))))
+ (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4)) (-5 *3 (-265 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1046 *4))
+ (-12 (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1045 *4))
(-5 *3 (-249 (-265 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5))
(-5 *3 (-249 (-265 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1046 *5)) (-5 *3 (-265 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1091)))
- (-4 *5 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-584 (-584 (-249 (-265 *5))))) (-5 *1 (-1046 *5))
- (-5 *3 (-584 (-249 (-265 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-1100 *5))
- (-5 *3 (-584 (-249 (-350 (-858 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-1100 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 (-584 (-249 (-350 (-858 *4))))))
- (-5 *1 (-1100 *4)) (-5 *3 (-584 (-249 (-350 (-858 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5)))))
- (-5 *1 (-1100 *5)) (-5 *3 (-350 (-858 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *5)))))
- (-5 *1 (-1100 *5)) (-5 *3 (-249 (-350 (-858 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4))
- (-5 *3 (-350 (-858 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 (-249 (-350 (-858 *4))))) (-5 *1 (-1100 *4))
- (-5 *3 (-249 (-350 (-858 *4)))))))
-(((*1 *2 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-786))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-786))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-485))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1074))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-447))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-529))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-418))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-129))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1082))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1009))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1004))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-986))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-884))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-949))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-263))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-614))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1068))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-464))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1192))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-979))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-459))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-623))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-67))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1030))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-106))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-540))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-111))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-1191))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-618))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-1052)) (-5 *2 (-463))))
- ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1096))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-1096)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-485) (-179) (-447) (-1074) (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-584 (-234))) (-5 *1 (-234))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1096)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1096)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2857)) (-5 *2 (-85)) (-5 *1 (-557))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2241)) (-5 *2 (-85)) (-5 *1 (-557))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-557))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1045 *5)) (-5 *3 (-265 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1090)))
+ (-4 *5 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-583 (-583 (-249 (-265 *5))))) (-5 *1 (-1045 *5))
+ (-5 *3 (-583 (-249 (-265 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1090))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-1099 *5))
+ (-5 *3 (-583 (-249 (-350 (-857 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-1099 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 (-583 (-249 (-350 (-857 *4))))))
+ (-5 *1 (-1099 *4)) (-5 *3 (-583 (-249 (-350 (-857 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5)))))
+ (-5 *1 (-1099 *5)) (-5 *3 (-350 (-857 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *5)))))
+ (-5 *1 (-1099 *5)) (-5 *3 (-249 (-350 (-857 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4))
+ (-5 *3 (-350 (-857 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 (-249 (-350 (-857 *4))))) (-5 *1 (-1099 *4))
+ (-5 *3 (-249 (-350 (-857 *4)))))))
+(((*1 *2 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-785))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-785))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-446))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-528))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-418))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1081))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-565))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1008))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1003))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-985))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-883))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-948))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-263))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-613))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-463))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1191))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-978))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-458))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-622))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-67))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1029))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-106))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-539))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-111))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-1190))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-617))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1051)) (-5 *2 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-179)) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-1095)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-484) (-179) (-446) (-1073) (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-234))) (-5 *1 (-234))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1095)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2856)) (-5 *2 (-85)) (-5 *1 (-556))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2240)) (-5 *2 (-85)) (-5 *1 (-556))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2855)) (-5 *2 (-85)) (-5 *1 (-556))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2366)) (-5 *2 (-85)) (-5 *1 (-633 *4))
- (-4 *4 (-553 (-773)))))
+ (-12 (-5 *3 (|[\|\|]| -2365)) (-5 *2 (-85)) (-5 *1 (-632 *4))
+ (-4 *4 (-552 (-772)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-553 (-773))) (-5 *2 (-85))
- (-5 *1 (-633 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-786))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-786))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1009))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1004))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-986))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-884))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-614))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-464))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1192))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-979))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-459))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1030))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-540))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-1052)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-85)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-447))) (-5 *2 (-85)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1096))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-485))) (-5 *2 (-85)) (-5 *1 (-1096)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-773)))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-552 (-772))) (-5 *2 (-85))
+ (-5 *1 (-632 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-785))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-785))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-418))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-110))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-129))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1081))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-565))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1008))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1003))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-985))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-883))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-948))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-263))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-613))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-127))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-463))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1191))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-978))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-458))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-622))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-67))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1029))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-106))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-111))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-1190))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-172))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-1051)) (-5 *3 (|[\|\|]| (-462))) (-5 *2 (-85))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-446))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-179))) (-5 *2 (-85)) (-5 *1 (-1095))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-484))) (-5 *2 (-85)) (-5 *1 (-1095)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-247))) ((*1 *1) (-5 *1 (-772)))
((*1 *1)
- (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-998)))
+ (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-997)))
((*1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34)))))
- ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
+ ((*1 *1) (-5 *1 (-1093))) ((*1 *1) (-5 *1 (-1094))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1091)) (-5 *1 (-1095))))
- ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-584 (-1091))) (-5 *1 (-1095)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-379)) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))))
+ (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-1090)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-379)) (-5 *3 (-583 (-1090))) (-5 *1 (-1094)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-379)) (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))))
(((*1 *2 *3 *1)
(-12 (-5 *3 (-377))
(-5 *2
- (-584
- (-3 (|:| -3544 (-1091))
- (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485)))))))))
- (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1095)))))
+ (-583
+ (-3 (|:| -3543 (-1090))
+ (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484)))))))))
+ (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1094)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-584
- (-584
- (-3 (|:| -3544 (-1091))
- (|:| -3227 (-584 (-3 (|:| S (-1091)) (|:| P (-858 (-485))))))))))
- (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-1095)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1095)))))
+ (-583
+ (-583
+ (-3 (|:| -3543 (-1090))
+ (|:| -3226 (-583 (-3 (|:| S (-1090)) (|:| P (-857 (-484))))))))))
+ (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1094)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| (-379)))))
- (-5 *1 (-1095)))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-1091))) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| (-379)))))
+ (-5 *1 (-1094)))))
+(((*1 *1) (-5 *1 (-1093))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1090))) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-584 (-1091))) (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
+ (-12 (-5 *4 (-583 (-1090))) (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void"))) (-5 *2 (-1186))
- (-5 *1 (-1094))))
+ (-12 (-5 *3 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void"))) (-5 *2 (-1185))
+ (-5 *1 (-1093))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))
- (-5 *2 (-1186)) (-5 *1 (-1094))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1093))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3912 #1#)))
- (-5 *2 (-1186)) (-5 *1 (-1094)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1186)) (-5 *1 (-1094)))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-377)) (|:| -3911 #1#)))
+ (-5 *2 (-1185)) (-5 *1 (-1093)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1185)) (-5 *1 (-1093)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 "void")))
- (-5 *1 (-1094)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-962)) (-5 *2 (-1180 *4)) (-5 *1 (-1092 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-5 *2 (-1180 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-962)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1091)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-67))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-1014))))
- ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-380 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-423))))
- ((*1 *2 *1) (-12 (-4 *1 (-748 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-775))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-877))))
- ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-989 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1030)))) ((*1 *1 *1) (-5 *1 (-1091))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 "void")))
+ (-5 *1 (-1093)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1179 *4)) (-5 *1 (-1091 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-830)) (-5 *2 (-1179 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-67))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-78))))
+ ((*1 *2 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-380 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-423))))
+ ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-774))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-876))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-988 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1029)))) ((*1 *1 *1) (-5 *1 (-1090))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773)))
- (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773)))
- (|:| |args| (-584 (-773)))))
- (-5 *1 (-1091)))))
+ (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772)))
+ (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772)))
+ (|:| |args| (-583 (-772)))))
+ (-5 *1 (-1090)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2586 (-584 (-773))) (|:| -2485 (-584 (-773)))
- (|:| |presup| (-584 (-773))) (|:| -2584 (-584 (-773)))
- (|:| |args| (-584 (-773)))))
- (-5 *1 (-1091))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-1091)))))
-(((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1074))))
- ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1074))))
- ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))))
-(((*1 *1 *2) (-12 (-4 *1 (-609 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-1091)))))
+ (-2 (|:| -2585 (-583 (-772))) (|:| -2484 (-583 (-772)))
+ (|:| |presup| (-583 (-772))) (|:| -2583 (-583 (-772)))
+ (|:| |args| (-583 (-772)))))
+ (-5 *1 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-1090)))))
+(((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-1073))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))))
+(((*1 *1 *2) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-1090)))))
(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-773) (-773) (-773))) (-5 *4 (-485)) (-5 *2 (-773))
- (-5 *1 (-592 *5 *6 *7)) (-4 *5 (-1014)) (-4 *6 (-23)) (-14 *7 *6)))
+ (-12 (-5 *3 (-1 (-772) (-772) (-772))) (-5 *4 (-484)) (-5 *2 (-772))
+ (-5 *1 (-591 *5 *6 *7)) (-4 *5 (-1013)) (-4 *6 (-23)) (-14 *7 *6)))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-773)) (-5 *1 (-764 *3 *4 *5)) (-4 *3 (-962)) (-14 *4 (-69 *3))
+ (-12 (-5 *2 (-772)) (-5 *1 (-763 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-69 *3))
(-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-773))))
- ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-773))))
- ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-773)) (-5 *1 (-1086 *3)) (-4 *3 (-962)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-772))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1085 *3)) (-4 *3 (-961)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1002 *3)) (-4 *3 (-862 *7 *6 *4)) (-4 *6 (-718)) (-4 *4 (-757))
- (-4 *7 (-496)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485))))
- (-5 *1 (-530 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-496))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-485)))) (-5 *1 (-530 *5 *4 *6 *3))
- (-4 *3 (-862 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773)))
+ (-12 (-5 *5 (-1001 *3)) (-4 *3 (-861 *7 *6 *4)) (-4 *6 (-717)) (-4 *4 (-756))
+ (-4 *7 (-495)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484))))
+ (-5 *1 (-529 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-495))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-484)))) (-5 *1 (-529 *5 *4 *6 *3))
+ (-4 *3 (-861 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1) (-5 *1 (-772)))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-1084 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1116)))
- (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-1084 *4 *2))))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-133) (-27) (-1115)))
+ (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-1083 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485))))
- (-5 *2 (-350 (-858 *5))) (-5 *1 (-1085 *5)) (-5 *3 (-858 *5))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484))))
+ (-5 *2 (-350 (-857 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-857 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485))))
- (-5 *2 (-3 (-350 (-858 *5)) (-265 *5))) (-5 *1 (-1085 *5))
- (-5 *3 (-350 (-858 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484))))
+ (-5 *2 (-3 (-350 (-857 *5)) (-265 *5))) (-5 *1 (-1084 *5))
+ (-5 *3 (-350 (-857 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-858 *5))) (-5 *3 (-858 *5))
- (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 *3)) (-5 *1 (-1085 *5))))
+ (-12 (-5 *4 (-1004 (-857 *5))) (-5 *3 (-857 *5))
+ (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 *3)) (-5 *1 (-1084 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)))) (-5 *2 (-3 *3 (-265 *5)))
- (-5 *1 (-1085 *5)))))
+ (-12 (-5 *4 (-1004 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)))) (-5 *2 (-3 *3 (-265 *5)))
+ (-5 *1 (-1084 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5))
- (-5 *1 (-802 *4 *5)) (-4 *5 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1082)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-124 *3))))
+ (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5))
+ (-5 *1 (-801 *4 *5)) (-4 *5 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1081)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-124 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4))))
- (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))
+ (-12 (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3774 *4) (|:| |num| *4))))
+ (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120))) (-5 *1 (-342 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1="void")))
- (-5 *3 (-584 (-858 (-485)))) (-5 *4 (-85)) (-5 *1 (-379))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1="void")))
+ (-5 *3 (-583 (-857 (-484)))) (-5 *4 (-85)) (-5 *1 (-379))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 #1#))) (-5 *3 (-584 (-1091)))
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 #1#))) (-5 *3 (-583 (-1090)))
(-5 *4 (-85)) (-5 *1 (-379))))
- ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-537 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-575 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-536 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-146))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-5 *1 (-607 *3 *4)) (-4 *4 (-146))))
+ (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-5 *1 (-606 *3 *4)) (-4 *4 (-146))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-651 *2 *3 *4)) (-4 *2 (-757)) (-4 *3 (-1014))
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-756)) (-4 *3 (-1013))
(-14 *4
- (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3))
- (-2 (|:| -2401 *2) (|:| -2402 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-750))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130))))
+ (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3))
+ (-2 (|:| -2400 *2) (|:| -2401 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-749))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4)))) (-4 *4 (-1014))
- (-5 *1 (-799 *3 *4)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| *4)))) (-4 *4 (-1013))
+ (-5 *1 (-798 *3 *4)) (-4 *3 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *5)) (-4 *5 (-13 (-1014) (-34)))
- (-5 *2 (-584 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5))
- (-4 *3 (-13 (-1014) (-34)))))
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *2 (-583 (-1054 *3 *5))) (-5 *1 (-1054 *3 *5))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| |val| *4) (|:| -1601 *5))))
- (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34)))
- (-5 *2 (-584 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5))))
+ (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -1600 *5))))
+ (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *2 (-583 (-1054 *4 *5))) (-5 *1 (-1054 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1601 *4))) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1055 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1600 *4))) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1054 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34)))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34)))))
+ (-12 (-5 *4 (-85)) (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3))
- (-4 *2 (-13 (-1014) (-34)))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3))
+ (-4 *2 (-13 (-1013) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1055 *2 *3))) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))) (-5 *1 (-1056 *2 *3))))
+ (-12 (-5 *4 (-583 (-1054 *2 *3))) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))) (-5 *1 (-1055 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1056 *2 *3))) (-5 *1 (-1056 *2 *3))
- (-4 *2 (-13 (-1014) (-34))) (-4 *3 (-13 (-1014) (-34)))))
+ (-12 (-5 *4 (-583 (-1055 *2 *3))) (-5 *1 (-1055 *2 *3))
+ (-4 *2 (-13 (-1013) (-34))) (-4 *3 (-13 (-1013) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-129))))
- ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-418))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-529))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))))
- ((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-85))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-129))))
+ ((*1 *2 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-418))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-528))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-565))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-85))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))
- (-4 *4 (-962)))))
+ (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))
+ (-4 *4 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))
- (-4 *4 (-962))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-583 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))
+ (-4 *4 (-961))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *2 (-695)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831))))
+ (-12 (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *2 (-694)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
- (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
+ (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-855 *4)) (-4 *4 (-962)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)))))
+ (-12 (-5 *2 (-854 *4)) (-4 *4 (-961)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-855 *5)) (-5 *3 (-695)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831)))))
+ (-12 (-5 *2 (-854 *5)) (-5 *3 (-694)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-695)) (-5 *3 (-855 *5)) (-4 *5 (-962)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831))))
+ (-12 (-5 *2 (-694)) (-5 *3 (-854 *5)) (-4 *5 (-961)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-695)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-694)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-855 *5)) (-4 *5 (-962))
- (-5 *1 (-1080 *4 *5)) (-14 *4 (-831)))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-854 *5)) (-4 *5 (-961))
+ (-5 *1 (-1079 *4 *5)) (-14 *4 (-830)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-85)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831)) (-4 *5 (-962)))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-85)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830)) (-4 *5 (-961)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-695))) (-5 *3 (-145)) (-5 *1 (-1080 *4 *5))
- (-14 *4 (-831)) (-4 *5 (-962)))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *3 (-145)) (-5 *1 (-1079 *4 *5))
+ (-14 *4 (-830)) (-4 *5 (-961)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-695))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))
- (-4 *4 (-962)))))
+ (-12 (-5 *2 (-583 (-694))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))
+ (-4 *4 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-855 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+ (-12 (-5 *2 (-854 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-145)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-263))))
+ (-12 (-5 *2 (-145)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-263))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831)) (-4 *4 (-962)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-831)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-830)) (-4 *3 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-855 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-831))
- (-4 *4 (-962)))))
+ (-12 (-5 *2 (-583 (-854 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-830))
+ (-4 *4 (-961)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *2 (-392))))
+ (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *2 (-392))))
((*1 *1 *1)
- (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-1156 *2))
- (-4 *4 (-1156 (-350 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
+ (-12 (-4 *1 (-291 *2 *3 *4)) (-4 *2 (-1134)) (-4 *3 (-1155 *2))
+ (-4 *4 (-1155 (-350 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
(-4 *3 (-392))))
((*1 *1 *1)
- (-12 (-4 *1 (-862 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-861 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-258)) (-4 *3 (-496)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-4 *3 (-258)) (-4 *3 (-495)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-870 *3)) (-5 *1 (-1079 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-869 *3)) (-5 *1 (-1078 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1) (-4 *1 (-433)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66))) ((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *1 *1 *1) (-5 *1 (-330)))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *1 *1) (-4 *1 (-66)))
((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1173 *3)) (-5 *1 (-232 *3 *4 *2))
- (-4 *2 (-1144 *3 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1172 *3)) (-5 *1 (-232 *3 *4 *2))
+ (-4 *2 (-1143 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *4 (-1142 *3))
- (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1165 *3 *4)) (-4 *5 (-897 *4))))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *4 (-1141 *3))
+ (-5 *1 (-233 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-896 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1077 *3))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-38 (-350 (-485)))) (-5 *1 (-1078 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-38 (-350 (-484)))) (-5 *1 (-1077 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-350 (-485))))
- (-5 *2 (-2 (|:| -3492 (-1070 *4)) (|:| -3493 (-1070 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))))
+ (-12 (-4 *4 (-38 (-350 (-484))))
+ (-5 *2 (-2 (|:| -3491 (-1069 *4)) (|:| -3492 (-1069 *4))))
+ (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-350 (-485))))
- (-5 *2 (-2 (|:| -3640 (-1070 *4)) (|:| -3636 (-1070 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1070 *4)))))
+ (-12 (-4 *4 (-38 (-350 (-484))))
+ (-5 *2 (-2 (|:| -3639 (-1069 *4)) (|:| -3635 (-1069 *4))))
+ (-5 *1 (-1076 *4)) (-5 *3 (-1069 *4)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-485))) (-5 *5 (-1 (-1070 *4))) (-4 *4 (-312))
- (-4 *4 (-962)) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4)))))
+ (-12 (-5 *3 (-1 *4 (-484))) (-5 *5 (-1 (-1069 *4))) (-4 *4 (-312))
+ (-4 *4 (-961)) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-312)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-312)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1070 *4)) (-4 *4 (-38 *3)) (-4 *4 (-962)) (-5 *3 (-350 (-485)))
- (-5 *1 (-1076 *4)))))
+ (-12 (-5 *2 (-1069 *4)) (-4 *4 (-38 *3)) (-4 *4 (-961)) (-5 *3 (-350 (-484)))
+ (-5 *1 (-1075 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))
- (-4 *4 (-38 (-350 (-485)))) (-4 *4 (-962)))))
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4))
+ (-4 *4 (-38 (-350 (-484)))) (-4 *4 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1070 *3))) (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3))
- (-4 *3 (-38 (-350 (-485)))) (-4 *3 (-962)))))
+ (-12 (-5 *4 (-1 (-1069 *3))) (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *3 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1070 (-1070 *4))) (-5 *2 (-1070 *4)) (-5 *1 (-1076 *4))
- (-4 *4 (-962)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-805 *2 *3)) (-4 *2 (-1156 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *3 (-1069 (-1069 *4))) (-5 *2 (-1069 *4)) (-5 *1 (-1075 *4))
+ (-4 *4 (-961)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-804 *2 *3)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1070 *4)) (-5 *3 (-1 *4 (-485))) (-4 *4 (-962))
- (-5 *1 (-1076 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-1 *4 (-484))) (-4 *4 (-961))
+ (-5 *1 (-1075 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962))
- (-5 *3 (-485)))))
+ (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961))
+ (-5 *3 (-484)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-1076 *4)) (-4 *4 (-962))
- (-5 *3 (-485)))))
+ (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-1075 *4)) (-4 *4 (-961))
+ (-5 *3 (-484)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-831)) (-4 *3 (-312))
- (-14 *4 (-907 *2 *3))))
+ (|partial| -12 (-5 *1 (-125 *2 *3 *4)) (-14 *2 (-830)) (-4 *3 (-312))
+ (-14 *4 (-906 *2 *3))))
((*1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
- ((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))) ((*1 *1 *1) (|partial| -4 *1 (-664)))
+ ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ ((*1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *1 *1) (|partial| -4 *1 (-663)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-700 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-699 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312)))
- (-4 *2 (-1156 *3))))
+ (|partial| -12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312)))
+ (-4 *2 (-1155 *3))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
+ (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
+ (|partial| -12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))
- (-4 *2 (-496))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-496)))
+ (|partial| -12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))
+ (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-495)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
- (-4 *4 (-324 *2)) (-4 *2 (-496))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-695)))
+ (|partial| -12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
+ (-4 *4 (-324 *2)) (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-694)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-496))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
+ (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-495))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-496))
- (-5 *1 (-883 *3 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-495))
+ (-5 *1 (-882 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-966 *3 *4 *2 *5 *6)) (-4 *2 (-962))
- (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-496))))
+ (|partial| -12 (-4 *1 (-965 *3 *4 *2 *5 *6)) (-4 *2 (-961))
+ (-4 *5 (-196 *4 *2)) (-4 *6 (-196 *3 *2)) (-4 *2 (-495))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1070 *3)) (-4 *3 (-962)) (-5 *1 (-1076 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
+ (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-5 *1 (-1075 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85))
- (-5 *1 (-1070 *4)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85))
+ (-5 *1 (-1069 *4)))))
(((*1 *2 *3 *1)
(-12
- (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2597 (-695)) (|:| |period| (-695))))
- (-5 *1 (-1070 *4)) (-4 *4 (-1130)) (-5 *3 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1070 *3))) (-5 *1 (-1070 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1070 *2)) (-4 *2 (-1130)))))
-(((*1 *1) (-5 *1 (-515)))
- ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-769))))
- ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-769))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-769))))
+ (-5 *2 (-2 (|:| |cycle?| (-85)) (|:| -2596 (-694)) (|:| |period| (-694))))
+ (-5 *1 (-1069 *4)) (-4 *4 (-1129)) (-5 *3 (-694)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1069 *3))) (-5 *1 (-1069 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1069 *2)) (-4 *2 (-1129)))))
+(((*1 *1) (-5 *1 (-514)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-768))))
+ ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-768))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-768))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-1070 *4)) (-4 *4 (-1014))
- (-4 *4 (-1130)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-1069 *4)) (-4 *4 (-1013))
+ (-4 *4 (-1129)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-773)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))))
(((*1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1070 *3)) (-4 *3 (-1014)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1069 *3)) (-4 *3 (-1013)) (-4 *3 (-1129)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1180 (-584 (-485)))) (-5 *1 (-420))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-537 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1130)) (-5 *1 (-1070 *3)))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-1179 (-583 (-484)))) (-5 *1 (-420))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-536 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *3 (-1129)) (-5 *1 (-1069 *3)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120))) (-5 *1 (-476 *4 *2))
- (-4 *2 (-1173 *4))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120))) (-5 *1 (-475 *4 *2))
+ (-4 *2 (-1172 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3))) (-4 *5 (-1156 *4))
- (-4 *6 (-662 *4 *5)) (-5 *1 (-480 *4 *5 *6 *2)) (-4 *2 (-1173 *6))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3))) (-4 *5 (-1155 *4))
+ (-4 *6 (-661 *4 *5)) (-5 *1 (-479 *4 *5 *6 *2)) (-4 *2 (-1172 *6))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-13 (-312) (-320) (-554 *3)))
- (-5 *1 (-481 *4 *2)) (-4 *2 (-1173 *4))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-13 (-312) (-320) (-553 *3)))
+ (-5 *1 (-480 *4 *2)) (-4 *2 (-1172 *4))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1070 *4)) (-5 *3 (-485)) (-4 *4 (-13 (-496) (-120)))
- (-5 *1 (-1069 *4)))))
+ (-12 (-5 *2 (-1069 *4)) (-5 *3 (-484)) (-4 *4 (-13 (-495) (-120)))
+ (-5 *1 (-1068 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-120))) (-5 *1 (-476 *3 *2)) (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-495) (-120))) (-5 *1 (-475 *3 *2)) (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-4 *4 (-1156 *3))
- (-4 *5 (-662 *3 *4)) (-5 *1 (-480 *3 *4 *5 *2)) (-4 *2 (-1173 *5))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-4 *4 (-1155 *3))
+ (-4 *5 (-661 *3 *4)) (-5 *1 (-479 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-320) (-554 (-485)))) (-5 *1 (-481 *3 *2))
- (-4 *2 (-1173 *3))))
+ (-12 (-4 *3 (-13 (-312) (-320) (-553 (-484)))) (-5 *1 (-480 *3 *2))
+ (-4 *2 (-1172 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1070 *3)) (-4 *3 (-13 (-496) (-120))) (-5 *1 (-1069 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-464))))
- ((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 (-1050))) (-5 *1 (-1068)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-1068)))))
+ (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-495) (-120))) (-5 *1 (-1068 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-463))))
+ ((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 (-1049))) (-5 *1 (-1067)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-1067)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))))
- ((*1 *1) (-4 *1 (-1067))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-1067)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))))
+ ((*1 *1) (-4 *1 (-1066))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-1066)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-1065 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-1063 *3)))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-1064 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-1062 *3)))))
(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-584 (-941 *5 *6 *7 *3))) (-5 *1 (-941 *5 *6 *7 *3))
- (-4 *3 (-978 *5 *6 *7))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-583 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3))
+ (-4 *3 (-977 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-584 *6)) (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))))
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *2 (-978 *3 *4 *5))))
+ (-12 (-4 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *2 (-977 *3 *4 *5))))
((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-584 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3))
- (-4 *3 (-978 *5 *6 *7)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-583 (-1060 *5 *6 *7 *3))) (-5 *1 (-1060 *5 *6 *7 *3))
+ (-4 *3 (-977 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-941 *5 *6 *7 *8)))
- (-5 *1 (-941 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-940 *5 *6 *7 *8)))
+ (-5 *1 (-940 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-85)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-584 (-1061 *5 *6 *7 *8)))
- (-5 *1 (-1061 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-85)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-583 (-1060 *5 *6 *7 *8)))
+ (-5 *1 (-1060 *5 *6 *7 *8)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-941 *5 *6 *7 *8)))))
- (-5 *1 (-941 *5 *6 *7 *8)) (-5 *3 (-584 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-940 *5 *6 *7 *8)))))
+ (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-583 *8))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7))
- (-5 *2 (-2 (|:| |val| (-584 *8)) (|:| |towers| (-584 (-1061 *5 *6 *7 *8)))))
- (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-584 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186))
- (-5 *1 (-982 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *4 (-695))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-1186))
- (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-977 *5 *6 *7))
+ (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1060 *5 *6 *7 *8)))))
+ (-5 *1 (-1060 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185))
+ (-5 *1 (-981 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *4 (-694))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-1185))
+ (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-584 *11))
- (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11))))))
- (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11))))
- (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
- (-4 *11 (-984 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
- (-5 *1 (-982 *7 *8 *9 *10 *11))))
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11))))))
+ (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
+ (-4 *11 (-983 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756))
+ (-5 *1 (-981 *7 *8 *9 *10 *11))))
((*1 *2 *3 *4 *2 *5 *6)
(-12
(-5 *5
- (-2 (|:| |done| (-584 *11))
- (|:| |todo| (-584 (-2 (|:| |val| *3) (|:| -1601 *11))))))
- (-5 *6 (-695)) (-5 *2 (-584 (-2 (|:| |val| (-584 *10)) (|:| -1601 *11))))
- (-5 *3 (-584 *10)) (-5 *4 (-584 *11)) (-4 *10 (-978 *7 *8 *9))
- (-4 *11 (-1021 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-718)) (-4 *9 (-757))
- (-5 *1 (-1060 *7 *8 *9 *10 *11)))))
+ (-2 (|:| |done| (-583 *11))
+ (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -1600 *11))))))
+ (-5 *6 (-694)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -1600 *11))))
+ (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-977 *7 *8 *9))
+ (-4 *11 (-1020 *7 *8 *9 *10)) (-4 *7 (-392)) (-4 *8 (-717)) (-4 *9 (-756))
+ (-5 *1 (-1059 *7 *8 *9 *10 *11)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
(-5 *2
- (-2 (|:| -2337 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6)))))
+ (-2 (|:| -2336 (-356 *4 (-350 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| |poly| *6) (|:| -3091 (-350 *6)) (|:| |special| (-350 *6))))
- (-5 *1 (-667 *5 *6)) (-5 *3 (-350 *6))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| |poly| *6) (|:| -3090 (-350 *6)) (|:| |special| (-350 *6))))
+ (-5 *1 (-666 *5 *6)) (-5 *3 (-350 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-808 *3 *4))
- (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-807 *3 *4))
+ (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-695)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3140 *3) (|:| -3139 *3))) (-5 *1 (-808 *3 *5))
- (-4 *3 (-1156 *5))))
+ (|partial| -12 (-5 *4 (-694)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3139 *3) (|:| -3138 *3))) (-5 *1 (-807 *3 *5))
+ (-4 *3 (-1155 *5))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9))))
((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-584 *9)) (-5 *3 (-584 *8)) (-5 *4 (-85))
- (-4 *8 (-978 *5 *6 *7)) (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-85))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718))
- (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
+ (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717))
+ (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *7 *8 *9 *3 *4)) (-4 *4 (-984 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *7 *8 *9 *3 *4)) (-4 *4 (-983 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
+ (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-695)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-718))
- (-4 *9 (-757)) (-4 *3 (-978 *7 *8 *9))
+ (-12 (-5 *5 (-694)) (-5 *6 (-85)) (-4 *7 (-392)) (-4 *8 (-717))
+ (-4 *9 (-756)) (-4 *3 (-977 *7 *8 *9))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1021 *7 *8 *9 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *7 *8 *9 *3 *4)) (-4 *4 (-1020 *7 *8 *9 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
+ (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
+ (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-695)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
+ (-12 (-5 *5 (-694)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1021 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *6 *7 *8 *3 *4)) (-4 *4 (-1020 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-982 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
(-5 *2
- (-2 (|:| |done| (-584 *4))
- (|:| |todo| (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1021 *5 *6 *7 *3)))))
+ (-2 (|:| |done| (-583 *4))
+ (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))))
+ (-5 *1 (-1059 *5 *6 *7 *3 *4)) (-4 *4 (-1020 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-984 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-982 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-983 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-694)) (-5 *1 (-981 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *9)) (-4 *8 (-978 *5 *6 *7))
- (-4 *9 (-1021 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-695)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *9 (-1020 *5 *6 *7 *8)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-694)) (-5 *1 (-1059 *5 *6 *7 *8 *9)))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *1) (-4 *1 (-1059))))
+ ((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *1 *1) (-4 *1 (-1058))))
(((*1 *1) (-5 *1 (-114))) ((*1 *1 *1) (-5 *1 (-117)))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-85)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-485)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014)) (-4 *6 (-1130))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-586 *5 *6))))
+ ((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *1 *1) (-4 *1 (-1058))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-85)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-484)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013)) (-4 *6 (-1129))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130))
- (-5 *1 (-586 *5 *2))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129))
+ (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 *5)) (-4 *6 (-1014)) (-4 *5 (-1130))
- (-5 *2 (-1 *5 *6)) (-5 *1 (-586 *6 *5))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1013)) (-4 *5 (-1129))
+ (-5 *2 (-1 *5 *6)) (-5 *1 (-585 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-4 *5 (-1014)) (-4 *2 (-1130))
- (-5 *1 (-586 *5 *2))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1013)) (-4 *2 (-1129))
+ (-5 *1 (-585 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-584 *5)) (-5 *4 (-584 *6)) (-4 *5 (-1014))
- (-4 *6 (-1130)) (-5 *1 (-586 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1013))
+ (-4 *6 (-1129)) (-5 *1 (-585 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-584 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1014))
- (-4 *2 (-1130)) (-5 *1 (-586 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-695)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-117)) (-5 *2 (-85)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1147 (-485))))))
-(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1013))
+ (-4 *2 (-1129)) (-5 *1 (-585 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-694)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1058)) (-5 *3 (-117)) (-5 *2 (-85)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1058)) (-5 *2 (-1146 (-484))))))
+(((*1 *2 *1) (-12 (-4 *1 (-105)) (-5 *2 (-694))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-72))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-484))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130)) (-5 *2 (-485))))
- ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-468))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)) (-5 *3 (-114))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-485)))))
-(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-467))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)) (-5 *3 (-114))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48)))))
((*1 *2 *3 *1)
(-12 (-5 *2 (-2 (|:| |less| (-94 *3)) (|:| |greater| (-94 *3))))
- (-5 *1 (-94 *3)) (-4 *3 (-757))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-520 *4)) (-4 *4 (-13 (-29 *3) (-1116)))
- (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-522 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-520 (-350 (-858 *3))))
- (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-526 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3091 *3) (|:| |special| *3))) (-5 *1 (-667 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1180 (-1180 *5))) (-4 *5 (-312)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-584 *1)) (-4 *1 (-1059))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-584 *1)) (-4 *1 (-1059)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-114))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-117)))))
+ (-5 *1 (-94 *3)) (-4 *3 (-756))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-519 *4)) (-4 *4 (-13 (-29 *3) (-1115)))
+ (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-521 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-519 (-350 (-857 *3))))
+ (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-525 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3090 *3) (|:| |special| *3))) (-5 *1 (-666 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-4 *5 (-961))
+ (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1179 (-1179 *5))) (-4 *5 (-312)) (-4 *5 (-961))
+ (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-583 *1)) (-4 *1 (-1058))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-117)) (-5 *2 (-583 *1)) (-4 *1 (-1058)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-114))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1058)) (-5 *2 (-117)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
(-4 *5 (-146))))
((*1 *1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146))))
((*1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-962)) (-4 *1 (-628 *3 *2 *4)) (-4 *2 (-324 *3))
+ (-12 (-4 *3 (-961)) (-4 *1 (-627 *3 *2 *4)) (-4 *2 (-324 *3))
(-4 *4 (-324 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-695)) (-4 *3 (-962)))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-14 *2 (-694)) (-4 *3 (-961)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 *4)) (-4 *4 (-962)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-695)))))
+ (-12 (-5 *2 (-630 *4)) (-4 *4 (-961)) (-5 *1 (-1056 *3 *4)) (-14 *3 (-694)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))))))
+ (|partial| -12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))))))
+ (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))))))
+ (-12 (-5 *2 (-583 *4)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4)))) (-5 *1 (-1056 *3 *4))
- (-4 *3 (-13 (-1014) (-34))) (-4 *4 (-13 (-1014) (-34))))))
+ (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4)))) (-5 *1 (-1055 *3 *4))
+ (-4 *3 (-13 (-1013) (-34))) (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34)))
- (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85)) (-5 *1 (-1056 *4 *5)))))
+ (-12 (-5 *3 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34)))
+ (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85)) (-5 *1 (-1055 *4 *5)))))
(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85))
- (-5 *1 (-1056 *5 *6)))))
+ (-12 (-5 *3 (-1054 *5 *6)) (-5 *4 (-1 (-85) *6 *6))
+ (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1055 *5 *6)))))
(((*1 *1 *2 *1)
- (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72))))
+ (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-72))))
((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-124 *3))
- (-4 *3 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-617 *3)) (-4 *3 (-1130))))
+ (-4 *3 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-616 *3)) (-4 *3 (-1129))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3))
- (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2)) (-4 *1 (-193 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-72))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014))))
+ (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-485)) (-4 *4 (-1014)) (-5 *1 (-676 *4))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-676 *2)) (-4 *2 (-1014))))
+ (-12 (-5 *2 (-1 (-85) *4)) (-5 *3 (-484)) (-4 *4 (-1013)) (-5 *1 (-675 *4))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-675 *2)) (-4 *2 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))))
+ (-12 (-5 *2 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1055 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
- (-4 *4 (-13 (-1014) (-34))) (-4 *5 (-13 (-1014) (-34)))
- (-5 *1 (-1056 *4 *5))))
+ (-12 (-5 *2 (-583 (-1054 *4 *5))) (-5 *3 (-1 (-85) *5 *5))
+ (-4 *4 (-13 (-1013) (-34))) (-4 *5 (-13 (-1013) (-34)))
+ (-5 *1 (-1055 *4 *5))))
((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-1055 *3 *4))) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))) (-5 *1 (-1056 *3 *4)))))
+ (-12 (-5 *2 (-583 (-1054 *3 *4))) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))) (-5 *1 (-1055 *3 *4)))))
(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-768))))
- ((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-877))))
- ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-903))))
- ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-767))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-876))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-902))))
+ ((*1 *2 *1) (-12 (-4 *1 (-923 *2)) (-4 *2 (-1129))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1014) (-34))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-13 (-1014) (-34))))))
+ (-12 (-4 *2 (-13 (-1013) (-34))) (-5 *1 (-1054 *2 *3))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-85))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4))))
+ (|partial| -12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-85))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-86)))
- ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-484)))
- ((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962))))
+ ((*1 *1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961))))
((*1 *1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *2 (-13 (-1014) (-34))))))
+ (-12 (-5 *1 (-1054 *3 *2)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *2 (-13 (-1013) (-34))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1014) (-34)))
- (-4 *4 (-13 (-1014) (-34))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-13 (-1013) (-34)))
+ (-4 *4 (-13 (-1013) (-34))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1014) (-34)))
- (-4 *3 (-13 (-1014) (-34))))))
+ (-12 (-5 *1 (-1054 *2 *3)) (-4 *2 (-13 (-1013) (-34)))
+ (-4 *3 (-13 (-1013) (-34))))))
(((*1 *2 *1 *1 *3 *4)
(-12 (-5 *3 (-1 (-85) *5 *5)) (-5 *4 (-1 (-85) *6 *6))
- (-4 *5 (-13 (-1014) (-34))) (-4 *6 (-13 (-1014) (-34))) (-5 *2 (-85))
- (-5 *1 (-1055 *5 *6)))))
+ (-4 *5 (-13 (-1013) (-34))) (-4 *6 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1054 *5 *6)))))
(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1014) (-34))) (-5 *2 (-85))
- (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1014) (-34))))))
+ (-12 (-5 *3 (-1 (-85) *5 *5)) (-4 *5 (-13 (-1013) (-34))) (-5 *2 (-85))
+ (-5 *1 (-1054 *4 *5)) (-4 *4 (-13 (-1013) (-34))))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-695)) (-5 *1 (-180))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-695)) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))) ((*1 *1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-179)) (-5 *3 (-694)) (-5 *1 (-180))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-142 (-179))) (-5 *3 (-694)) (-5 *1 (-180))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
(((*1 *1 *1 *1) (-5 *1 (-179)))
((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *1 *1) (-4 *1 (-715)))
- ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)) (-4 *2 (-974))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1074)) (-5 *4 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-773))) (-5 *2 (-1186)) (-5 *1 (-1053)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-1051)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
- ((*1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953))))
+ ((*1 *1 *1 *1) (-4 *1 (-1053))))
+(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *1) (-4 *1 (-714)))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)) (-4 *2 (-973))))
+ ((*1 *1 *1) (-4 *1 (-1053))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1073)) (-5 *4 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-1052))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-772))) (-5 *2 (-1185)) (-5 *1 (-1052)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-1050)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5)))
- (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-962)) (-5 *2 (-584 *1)) (-4 *1 (-1049 *3)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1048 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 (-855 *4))) (-4 *1 (-1049 *4)) (-4 *4 (-962))
- (-5 *2 (-695)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (-12 (-5 *3 (-583 (-854 *4))) (-4 *1 (-1048 *4)) (-4 *4 (-961))
+ (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-787 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-789 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3)))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-855 *3))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-854 *3))) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-584 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-855 *3))) (-4 *1 (-1049 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
+ (-12 (-5 *2 (-583 (-854 *3))) (-4 *1 (-1048 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-855 *3))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-854 *3))))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *4 (-962))
- (-4 *1 (-1049 *4))))
+ (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *4 (-961))
+ (-4 *1 (-1048 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-584 (-855 *3)))) (-4 *3 (-962)) (-4 *1 (-1049 *3))))
+ (-12 (-5 *2 (-583 (-583 (-854 *3)))) (-4 *3 (-961)) (-4 *1 (-1048 *3))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-584 (-584 (-584 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4))
- (-4 *4 (-962))))
+ (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4))
+ (-4 *4 (-961))))
((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-584 (-584 (-855 *4)))) (-5 *3 (-85)) (-4 *1 (-1049 *4))
- (-4 *4 (-962))))
+ (-12 (-5 *2 (-583 (-583 (-854 *4)))) (-5 *3 (-85)) (-4 *1 (-1048 *4))
+ (-4 *4 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-584 (-584 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
- (-4 *1 (-1049 *5)) (-4 *5 (-962))))
+ (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1048 *5)) (-4 *5 (-961))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-584 (-855 *5)))) (-5 *3 (-584 (-145))) (-5 *4 (-145))
- (-4 *1 (-1049 *5)) (-4 *5 (-962)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-855 *3))))))
+ (-12 (-5 *2 (-583 (-583 (-854 *5)))) (-5 *3 (-583 (-145))) (-5 *4 (-145))
+ (-4 *1 (-1048 *5)) (-4 *5 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-854 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-584 (-695))))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-694))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962))
- (-5 *2 (-584 (-584 (-584 (-855 *3))))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961))
+ (-5 *2 (-583 (-583 (-583 (-854 *3))))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-584 (-145)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962)) (-5 *2 (-584 (-145))))))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-145)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-145))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3)) (-4 *3 (-962))
+ (-12 (-4 *1 (-1048 *3)) (-4 *3 (-961))
(-5 *2
- (-2 (|:| -3852 (-695)) (|:| |curves| (-695)) (|:| |polygons| (-695))
- (|:| |constructs| (-695)))))))
+ (-2 (|:| -3851 (-694)) (|:| |curves| (-694)) (|:| |polygons| (-694))
+ (|:| |constructs| (-694)))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485)))))
- (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1049 *2)) (-4 *2 (-962)))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3733 (-1085 *6)) (|:| -2401 (-484)))))
+ (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1048 *2)) (-4 *2 (-961)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2))
- (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4)))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2))
+ (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-1035 *4)))))
((*1 *2 *2)
- (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2))
- (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))))
+ (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2))
+ (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-1035 *3))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-1047 *4 *2))
- (-4 *2 (-13 (-539 (-485) *4) (-318 *4) (-1036 *4)))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-1046 *4 *2))
+ (-4 *2 (-13 (-538 (-484) *4) (-318 *4) (-1035 *4)))))
((*1 *2 *2)
- (-12 (-4 *3 (-757)) (-4 *3 (-1130)) (-5 *1 (-1047 *3 *2))
- (-4 *2 (-13 (-539 (-485) *3) (-318 *3) (-1036 *3))))))
+ (-12 (-4 *3 (-756)) (-4 *3 (-1129)) (-5 *1 (-1046 *3 *2))
+ (-4 *2 (-13 (-538 (-484) *3) (-318 *3) (-1035 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-962)) (-4 *2 (-1156 *4))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-961)) (-4 *2 (-1155 *4))
(-5 *1 (-384 *4 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-350 (-1086 (-265 *5)))) (-5 *3 (-1180 (-265 *5)))
- (-5 *4 (-485)) (-4 *5 (-496)) (-5 *1 (-1045 *5)))))
+ (-12 (-5 *2 (-350 (-1085 (-265 *5)))) (-5 *3 (-1179 (-265 *5)))
+ (-5 *4 (-484)) (-4 *5 (-495)) (-5 *1 (-1044 *5)))))
(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-350 (-1086 (-265 *3)))) (-4 *3 (-496)) (-5 *1 (-1045 *3)))))
+ (-12 (-5 *2 (-350 (-1085 (-265 *3)))) (-4 *3 (-495)) (-5 *1 (-1044 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091))
+ (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090))
(-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5)))))
- (-5 *1 (-1044 *5))))
+ (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-1081 (-584 (-265 *5)) (-584 (-249 (-265 *5)))))
- (-5 *1 (-1044 *5)))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-1080 (-583 (-265 *5)) (-583 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-584 (-265 *5))) (-5 *1 (-1044 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-265 *5))) (-5 *1 (-1043 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-265 *5))))
- (-5 *1 (-1044 *5)))))
+ (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-265 *5))))
+ (-5 *1 (-1043 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-584 (-249 (-265 *5)))) (-5 *1 (-1044 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-249 (-265 *5)))) (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4))))
+ (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-350 (-858 *5)))) (-5 *4 (-1091))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-249 (-265 *5))))
- (-5 *1 (-1044 *5))))
+ (-12 (-5 *3 (-249 (-350 (-857 *5)))) (-5 *4 (-1090))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-249 (-265 *5))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-249 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-584 (-249 (-265 *4)))) (-5 *1 (-1044 *4))))
+ (-12 (-5 *3 (-249 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-249 (-265 *4)))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 *5)))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5)))))
- (-5 *1 (-1044 *5))))
+ (-12 (-5 *3 (-583 (-350 (-857 *5)))) (-5 *4 (-583 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-350 (-858 *4)))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4))))
+ (-12 (-5 *3 (-583 (-350 (-857 *4)))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-249 (-350 (-858 *5))))) (-5 *4 (-584 (-1091)))
- (-4 *5 (-13 (-258) (-120))) (-5 *2 (-584 (-584 (-249 (-265 *5)))))
- (-5 *1 (-1044 *5))))
+ (-12 (-5 *3 (-583 (-249 (-350 (-857 *5))))) (-5 *4 (-583 (-1090)))
+ (-4 *5 (-13 (-258) (-120))) (-5 *2 (-583 (-583 (-249 (-265 *5)))))
+ (-5 *1 (-1043 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-249 (-350 (-858 *4))))) (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-584 (-584 (-249 (-265 *4))))) (-5 *1 (-1044 *4)))))
+ (-12 (-5 *3 (-583 (-249 (-350 (-857 *4))))) (-4 *4 (-13 (-258) (-120)))
+ (-5 *2 (-583 (-583 (-249 (-265 *4))))) (-5 *1 (-1043 *4)))))
(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *4)) (-5 *1 (-1043 *3 *4)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *4)) (-5 *1 (-1042 *3 *4)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *2 (-584 *3)) (-5 *1 (-1043 *4 *3)) (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *2 (-583 *3)) (-5 *1 (-1042 *4 *3)) (-4 *4 (-1155 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
+ (-4 *5 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
(-5 *2
- (-2 (|:| |solns| (-584 *5))
- (|:| |maps| (-584 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1043 *3 *5)) (-4 *3 (-1156 *5)))))
+ (-2 (|:| |solns| (-583 *5))
+ (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1042 *3 *5)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-10 -7 (-6 -3998))))
- (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))) (-5 *1 (-610 *4 *5 *2 *3))
- (-4 *3 (-628 *4 *5 *2))))
+ (|partial| -12 (-4 *4 (-312)) (-4 *5 (-13 (-324 *4) (-1035 *4)))
+ (-4 *2 (-13 (-324 *4) (-1035 *4))) (-5 *1 (-609 *4 *5 *2 *3))
+ (-4 *3 (-627 *4 *5 *2))))
((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1180 *4)) (-5 *3 (-631 *4)) (-4 *4 (-312))
- (-5 *1 (-611 *4))))
+ (|partial| -12 (-5 *2 (-1179 *4)) (-5 *3 (-630 *4)) (-4 *4 (-312))
+ (-5 *1 (-610 *4))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-584 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312))
- (-5 *1 (-735 *2 *3)) (-4 *3 (-601 *2))))
+ (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-312))
+ (-5 *1 (-734 *2 *3)) (-4 *3 (-600 *2))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-485)))))))
- (-5 *1 (-1043 *3 *2)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-10 -8 (-15 ** ($ $ (-350 (-484)))))))
+ (-5 *1 (-1042 *3 *2)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1070 *7))) (-4 *6 (-757))
- (-4 *7 (-862 *5 (-470 *6) *6)) (-4 *5 (-962)) (-5 *2 (-1 (-1070 *7) *7))
- (-5 *1 (-1041 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1069 *7))) (-4 *6 (-756))
+ (-4 *7 (-861 *5 (-469 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1069 *7) *7))
+ (-5 *1 (-1040 *5 *6 *7)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-258)) (-4 *6 (-324 *5)) (-4 *4 (-324 *5))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-1039 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-1038 *5 *6 *4 *3)) (-4 *3 (-627 *5 *6 *4)))))
(((*1 *2 *3)
(-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
(-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1039 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6)))))
+ (-5 *1 (-1038 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
(((*1 *2 *3)
(-12 (-4 *4 (-258)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1039 *4 *5 *6 *3))
- (-4 *3 (-628 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485))))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1038 *4 *5 *6 *3))
+ (-4 *3 (-627 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484))))
((*1 *2 *2)
(-12 (-4 *3 (-258)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-1039 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (-5 *1 (-1038 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-695)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-694)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-4 *2 (-962)) (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
+ (-12 (-4 *2 (-961)) (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2))
(-4 *5 (-196 *3 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 *1)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-631 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-630 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *4)) (-4 *4 (-962)) (-4 *1 (-1038 *3 *4 *5 *6))
+ (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1037 *3 *4 *5 *6))
(-4 *5 (-196 *3 *4)) (-4 *6 (-196 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *4 *2 *5)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-1037 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
(-4 *2 (-196 *3 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
+ (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-962)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 *2)) (-4 *4 (-1156 *2))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
+ (-12 (-5 *3 (-630 *2)) (-4 *4 (-1155 *2))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
(-5 *1 (-439 *2 *4 *5)) (-4 *5 (-353 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (-4 *2 (-962)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (-4 *2 (-961)))))
(((*1 *2 *3)
(-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-312))
- (-5 *1 (-461 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
+ (-5 *1 (-460 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
- (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962))))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
+ (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-961))))
((*1 *2 *3)
(-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146))
- (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
+ (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-961)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
- (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962))))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *3 (-324 *2)) (-4 *4 (-324 *2))
+ (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-961))))
((*1 *2 *3)
(-12 (-4 *4 (-324 *2)) (-4 *5 (-324 *2)) (-4 *2 (-146))
- (-5 *1 (-630 *2 *4 *5 *3)) (-4 *3 (-628 *2 *4 *5))))
+ (-5 *1 (-629 *2 *4 *5 *3)) (-4 *3 (-627 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1038 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
- (|has| *2 (-6 (-3999 "*"))) (-4 *2 (-962)))))
+ (-12 (-4 *1 (-1037 *3 *2 *4 *5)) (-4 *4 (-196 *3 *2)) (-4 *5 (-196 *3 *2))
+ (|has| *2 (-6 (-3998 "*"))) (-4 *2 (-961)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3998)) (-4 *1 (-429 *3))
- (-4 *3 (-1130))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1036 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -3997)) (-4 *1 (-429 *3))
+ (-4 *3 (-1129))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-1129)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1034 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96)))
- ((*1 *1 *1 *1) (-5 *1 (-1034))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1029)) (-5 *1 (-1030)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-381))))
- ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-750))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1096))) (-5 *3 (-1096)) (-5 *1 (-1029))))
- ((*1 *2 *1) (-12 (-5 *2 (-1029)) (-5 *1 (-1030)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-623))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-884))))
- ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-986))))
- ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-1029)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-623))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-1029)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091))
- (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-1033))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1028)) (-5 *1 (-1029)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-381))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-749))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1095))) (-5 *3 (-1095)) (-5 *1 (-1028))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1028)) (-5 *1 (-1029)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-622))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-883))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1130)) (-5 *1 (-985))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-1028)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-622))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-1028)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090))
+ (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-392)) (-4 *4 (-741)) (-14 *5 (-1091))
- (-5 *2 (-485)) (-5 *1 (-1028 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-392)) (-4 *4 (-740)) (-14 *5 (-1090))
+ (-5 *2 (-484)) (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485))
- (-5 *1 (-1028 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-485))
- (-5 *1 (-1028 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-484))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1149 *5 *4)) (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 *4))
- (-5 *1 (-1028 *4 *5)))))
+ (-12 (-5 *3 (-1148 *5 *4)) (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 *4))
+ (-5 *1 (-1027 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4)))
- (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
+ (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-741)) (-14 *5 (-1091)) (-5 *2 (-584 (-1149 *5 *4)))
- (-5 *1 (-1028 *4 *5)) (-5 *3 (-1149 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1023 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-1022)) (-5 *3 (-485)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-1022)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-485)) (-5 *1 (-1022))))
+ (-12 (-4 *4 (-740)) (-14 *5 (-1090)) (-5 *2 (-583 (-1148 *5 *4)))
+ (-5 *1 (-1027 *4 *5)) (-5 *3 (-1148 *5 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-1022 *3)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-1021)) (-5 *3 (-484)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-1021)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-484)) (-5 *1 (-1021))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1180 (-485))) (-5 *3 (-584 (-485))) (-5 *4 (-485))
- (-5 *1 (-1022)))))
+ (-12 (-5 *2 (-1179 (-484))) (-5 *3 (-583 (-484))) (-5 *4 (-484))
+ (-5 *1 (-1021)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-584 (-485))) (-5 *3 (-584 (-831))) (-5 *4 (-85))
- (-5 *1 (-1022)))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *3 (-583 (-830))) (-5 *4 (-85))
+ (-5 *1 (-1021)))))
(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-631 (-485))) (-5 *3 (-584 (-485))) (-5 *1 (-1022)))))
+ (-12 (-5 *2 (-630 (-484))) (-5 *3 (-583 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-485))) (-5 *2 (-631 (-485)))
- (-5 *1 (-1022)))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-484))) (-5 *2 (-630 (-484)))
+ (-5 *1 (-1021)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-1022)))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-1021)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-584 (-485))) (-5 *3 (-631 (-485))) (-5 *1 (-1022)))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *3 (-630 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-1022)))))
+ (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-1021)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-1020 *5 *6 *7 *3 *4))
- (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 *4)) (-5 *1 (-1019 *5 *6 *7 *3 *4))
+ (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-1020 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-1019 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85))
- (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
- (-4 *7 (-718)) (-4 *4 (-757))
- (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9))))
- (-5 *1 (-1020 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85))
+ (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392))
+ (-4 *7 (-717)) (-4 *4 (-756))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9))))
+ (-5 *1 (-1019 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))
- (-5 *1 (-1020 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))
+ (-5 *1 (-1019 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1020 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-985 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-984 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1020 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *9 (-978 *6 *7 *8))
- (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9))))
- (-5 *1 (-902 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9)) (-4 *4 (-984 *6 *7 *8 *9))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *9 (-977 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-901 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-983 *6 *7 *8 *9))))
((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *9 (-978 *6 *7 *8))
- (-5 *2 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *4) (|:| |ineq| (-584 *9))))
- (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-584 *9))
- (-4 *4 (-984 *6 *7 *8 *9)))))
+ (|partial| -12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *9 (-977 *6 *7 *8))
+ (-5 *2 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *4) (|:| |ineq| (-583 *9))))
+ (-5 *1 (-1018 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9))
+ (-4 *4 (-983 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9))
- (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8))
(-5 *2
- (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9)))))
- (-5 *1 (-902 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9))))
+ (-583 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-901 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-584 *10)) (-5 *5 (-85)) (-4 *10 (-984 *6 *7 *8 *9))
- (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-978 *6 *7 *8))
+ (-12 (-5 *4 (-583 *10)) (-5 *5 (-85)) (-4 *10 (-983 *6 *7 *8 *9))
+ (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-977 *6 *7 *8))
(-5 *2
- (-584 (-2 (|:| -3268 (-584 *9)) (|:| -1601 *10) (|:| |ineq| (-584 *9)))))
- (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-584 *9)))))
+ (-583 (-2 (|:| -3267 (-583 *9)) (|:| -1600 *10) (|:| |ineq| (-583 *9)))))
+ (-5 *1 (-1018 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7))))
- (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-902 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7))))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-901 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-584 (-2 (|:| |val| (-584 *6)) (|:| -1601 *7))))
- (-4 *6 (-978 *3 *4 *5)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -1600 *7))))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-584 *7)) (|:| -1601 *8)))
- (-4 *7 (-978 *4 *5 *6)) (-4 *8 (-984 *4 *5 *6 *7)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -1600 *8)))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *8 (-983 *4 *5 *6 *7)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-902 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-901 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-902 *5 *6 *7 *8 *3))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-901 *5 *6 *7 *8 *3))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-984 *5 *6 *7 *8)) (-4 *5 (-392))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85))
- (-5 *1 (-1019 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-983 *5 *6 *7 *8)) (-4 *5 (-392))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85))
+ (-5 *1 (-1018 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3))
- (-4 *3 (-984 *4 *5 *6 *7))))
+ (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3))
- (-4 *3 (-984 *4 *5 *6 *7)))))
+ (|partial| -12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3))
+ (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-902 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-901 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-584 *7)) (-4 *7 (-984 *3 *4 *5 *6)) (-4 *3 (-392))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-4 *7 (-983 *3 *4 *5 *6)) (-4 *3 (-392))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-1018 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-902 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-901 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-85)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-984 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-85)) (-5 *1 (-1018 *4 *5 *6 *7 *3)) (-4 *3 (-983 *4 *5 *6 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-902 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-901 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *2 (-1186)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-984 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *2 (-1185)) (-5 *1 (-1018 *3 *4 *5 *6 *7)) (-4 *7 (-983 *3 *4 *5 *6)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-902 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-901 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1019 *4 *5 *6 *7 *8))
- (-4 *8 (-984 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-987))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6)) (-5 *2 (-1185)) (-5 *1 (-1018 *4 *5 *6 *7 *8))
+ (-4 *8 (-983 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-986))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
- ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-506 *3)) (-4 *3 (-951 (-485)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-505 *3)) (-4 *3 (-950 (-484)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *7)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *7 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *7)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *7 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| -3862 (-1091)) (|:| |entry| *4))))
- (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3861 (-1090)) (|:| |entry| *4))))
+ (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))))
((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *7 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-1017 *3 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *7 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-1016 *3 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *2 *4 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2))))
+ (-12 (-4 *1 (-1016 *3 *2 *4 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *2 *5 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-831)) (-4 *1 (-347))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-4 *1 (-347))))
+ (-12 (-4 *1 (-1016 *3 *4 *2 *5 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-830)) (-4 *1 (-347))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-4 *1 (-347))))
((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *2 *6)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *2 *6)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1017 *3 *4 *5 *6 *2)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-1014)) (-4 *2 (-1014)))))
+ (-12 (-4 *1 (-1016 *3 *4 *5 *6 *2)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-1013)) (-4 *2 (-1013)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1017 *2 *3 *4 *5 *6)) (-4 *2 (-1014)) (-4 *3 (-1014))
- (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014)))))
+ (-12 (-4 *1 (-1016 *2 *3 *4 *5 *6)) (-4 *2 (-1013)) (-4 *3 (-1013))
+ (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+ (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-831)) (-5 *1 (-1015 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-614))))
+ (|partial| -12 (-5 *2 (-830)) (-5 *1 (-1014 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-613))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
- (-14 *4 (-831)))))
+ (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
+ (-14 *4 (-830)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-831))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
- (-14 *4 (-831)))))
+ (-12 (-5 *2 (-583 (-830))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
+ (-14 *4 (-830)))))
(((*1 *2)
- (-12 (-5 *2 (-1180 (-1015 *3 *4))) (-5 *1 (-1015 *3 *4)) (-14 *3 (-831))
- (-14 *4 (-831)))))
+ (-12 (-5 *2 (-1179 (-1014 *3 *4))) (-5 *1 (-1014 *3 *4)) (-14 *3 (-830))
+ (-14 *4 (-830)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-817 *4))))
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-816 *4))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-831)) (-5 *2 (-85)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-830)) (-5 *2 (-85)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-695)) (-5 *1 (-1015 *4 *5)) (-14 *4 *3)
+ (-12 (-5 *3 (-830)) (-5 *2 (-694)) (-5 *1 (-1014 *4 *5)) (-14 *4 *3)
(-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1034)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1014)) (-5 *2 (-1074)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
- ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-1012 *3))))
- ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1033)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-1073)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-1011 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-444 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (-12 (-5 *2 (-583 (-443 *3 *4 *5 *6))) (-4 *3 (-312)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1012 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 (-551 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1014))
- (-5 *1 (-510 *3 *4))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-111))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-172))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-618))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-933))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-979))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1009)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-1007 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-903))))
+ (-12 (-5 *2 (-583 (-550 *4))) (-4 *4 (-364 *3)) (-4 *3 (-1013))
+ (-5 *1 (-509 *3 *4))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-111))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-172))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-617))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-932))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-978))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1008)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-1006 *3)) (-4 *3 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-902))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-4 *4 (-1130)) (-5 *1 (-972 *3 *4))
- (-4 *3 (-1007 *4))))
+ (-12 (-5 *2 (-1090)) (-4 *4 (-1129)) (-5 *1 (-971 *3 *4))
+ (-4 *3 (-1006 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-5 *3 (-1002 *4)) (-4 *4 (-1130)) (-5 *1 (-1005 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-1004)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1001 *4)) (-4 *4 (-1129)) (-5 *1 (-1004 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1180 *3))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-280 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1179 *3))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1180 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-1179 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-630 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1156 *4)) (-5 *2 (-1180 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1179 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-353 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-630 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3))
- (-5 *2 (-1180 *3))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-1179 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 *3))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-361 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1180 *3)) (-5 *1 (-580 *3 *4)) (-4 *3 (-312))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-1179 *3)) (-5 *1 (-579 *3 *4)) (-4 *3 (-312))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-1180 *3)) (-5 *1 (-582 *3 *4)) (-4 *3 (-312))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-1179 *3)) (-5 *1 (-581 *3 *4)) (-4 *3 (-312))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-631 *5))) (-5 *3 (-631 *5)) (-4 *5 (-312))
- (-5 *2 (-1180 *5)) (-5 *1 (-999 *5)))))
+ (-12 (-5 *4 (-583 (-630 *5))) (-5 *3 (-630 *5)) (-4 *5 (-312))
+ (-5 *2 (-1179 *5)) (-5 *1 (-998 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
- (-5 *2 (-1180 (-631 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
+ (-5 *2 (-1179 (-630 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
- ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1180 (-631 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312))
- (-5 *2 (-1180 (-631 (-350 (-858 *5))))) (-5 *1 (-999 *5))
- (-5 *4 (-631 (-350 (-858 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1091))) (-4 *5 (-312)) (-5 *2 (-1180 (-631 (-858 *5))))
- (-5 *1 (-999 *5)) (-5 *4 (-631 (-858 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-5 *2 (-1180 (-631 *4)))
- (-5 *1 (-999 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-149))) (-5 *1 (-998)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-149))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-78))) (-5 *1 (-998)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-998)))))
-(((*1 *1) (-5 *1 (-998))))
-(((*1 *1) (-5 *1 (-998))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-997 *2))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-1179 (-630 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312))
+ (-5 *2 (-1179 (-630 (-350 (-857 *5))))) (-5 *1 (-998 *5))
+ (-5 *4 (-630 (-350 (-857 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-1090))) (-4 *5 (-312)) (-5 *2 (-1179 (-630 (-857 *5))))
+ (-5 *1 (-998 *5)) (-5 *4 (-630 (-857 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-5 *2 (-1179 (-630 *4)))
+ (-5 *1 (-998 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-149))) (-5 *1 (-997)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-149))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-78))) (-5 *1 (-997)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-997)))))
+(((*1 *1) (-5 *1 (-997))))
+(((*1 *1) (-5 *1 (-997))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-85) *2)) (-4 *2 (-105)) (-5 *1 (-996 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-485) *2 *2)) (-4 *2 (-105)) (-5 *1 (-997 *2)))))
-(((*1 *2) (-12 (-5 *2 (-584 *3)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-997 *3)) (-4 *3 (-105)))))
-(((*1 *1) (-5 *1 (-995))))
+ (-12 (-5 *3 (-1 (-484) *2 *2)) (-4 *2 (-105)) (-5 *1 (-996 *2)))))
+(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-996 *3)) (-4 *3 (-105)))))
+(((*1 *1) (-5 *1 (-994))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-584 *3)) (-5 *1 (-528 *5 *6 *7 *8 *3))
- (-4 *3 (-1021 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-527 *5 *6 *7 *8 *3))
+ (-4 *3 (-1020 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5))))))
- (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091)))))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5))))))
+ (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-258) (-120)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *4)) (|:| -3226 (-584 (-858 *4))))))
- (-5 *1 (-991 *4 *5)) (-5 *3 (-584 (-858 *4))) (-14 *5 (-584 (-1091)))))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *4)) (|:| -3225 (-583 (-857 *4))))))
+ (-5 *1 (-990 *4 *5)) (-5 *3 (-583 (-857 *4))) (-14 *5 (-583 (-1090)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-584 (-2 (|:| -1751 (-1086 *5)) (|:| -3226 (-584 (-858 *5))))))
- (-5 *1 (-991 *5 *6)) (-5 *3 (-584 (-858 *5))) (-14 *6 (-584 (-1091))))))
+ (-5 *2 (-583 (-2 (|:| -1750 (-1085 *5)) (|:| -3225 (-583 (-857 *5))))))
+ (-5 *1 (-990 *5 *6)) (-5 *3 (-583 (-857 *5))) (-14 *6 (-583 (-1090))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-988 *3 *4 *5))) (-4 *3 (-1014))
- (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
- (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))) (-5 *1 (-990 *3 *4 *5)))))
+ (-12 (-5 *2 (-583 (-987 *3 *4 *5))) (-4 *3 (-1013))
+ (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
+ (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))) (-5 *1 (-989 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *2 (-584 (-988 *3 *4 *5))) (-5 *1 (-990 *3 *4 *5))
- (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
+ (-5 *2 (-583 (-987 *3 *4 *5))) (-5 *1 (-989 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *2))
- (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4))))))
+ (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4))))))
((*1 *1 *2 *2)
- (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *1 (-988 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
+ (-5 *1 (-987 *3 *4 *2)) (-4 *2 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-801 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1014)) (-4 *5 (-1130))
- (-5 *1 (-802 *4 *5))))
+ (-12 (-5 *2 (-800 *4)) (-5 *3 (-1 (-85) *5)) (-4 *4 (-1013)) (-4 *5 (-1129))
+ (-5 *1 (-801 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-801 *4)) (-5 *3 (-584 (-1 (-85) *5))) (-4 *4 (-1014))
- (-4 *5 (-1130)) (-5 *1 (-802 *4 *5))))
+ (-12 (-5 *2 (-800 *4)) (-5 *3 (-583 (-1 (-85) *5))) (-4 *4 (-1013))
+ (-4 *5 (-1129)) (-5 *1 (-801 *4 *5))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-801 *5)) (-5 *3 (-584 (-1091))) (-5 *4 (-1 (-85) (-584 *6)))
- (-4 *5 (-1014)) (-4 *6 (-1130)) (-5 *1 (-802 *5 *6))))
+ (-12 (-5 *2 (-800 *5)) (-5 *3 (-583 (-1090))) (-5 *4 (-1 (-85) (-583 *6)))
+ (-4 *5 (-1013)) (-4 *6 (-1129)) (-5 *1 (-801 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1130))
- (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-85) *5)) (-4 *5 (-1129))
+ (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-5 *4 (-584 (-1 (-85) *5))) (-4 *5 (-1130))
- (-5 *2 (-265 (-485))) (-5 *1 (-849 *5))))
+ (-12 (-5 *3 (-1090)) (-5 *4 (-583 (-1 (-85) *5))) (-4 *5 (-1129))
+ (-5 *2 (-265 (-484))) (-5 *1 (-848 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1130)) (-4 *4 (-1014))
- (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))
+ (-12 (-5 *3 (-1 (-85) *5)) (-4 *5 (-1129)) (-4 *4 (-1013))
+ (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-1 (-85) *5))) (-4 *5 (-1130)) (-4 *4 (-1014))
- (-5 *1 (-850 *4 *2 *5)) (-4 *2 (-364 *4))))
+ (-12 (-5 *3 (-583 (-1 (-85) *5))) (-4 *5 (-1129)) (-4 *4 (-1013))
+ (-5 *1 (-849 *4 *2 *5)) (-4 *2 (-364 *4))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1 (-85) (-584 *6)))
- (-4 *6 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-988 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 *2)))
- (-5 *2 (-801 *3)) (-5 *1 (-988 *3 *4 *5))
- (-4 *5 (-13 (-364 *4) (-797 *3) (-554 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1014)) (-4 *4 (-13 (-962) (-797 *3) (-554 (-801 *3))))
- (-5 *2 (-584 (-1091))) (-5 *1 (-988 *3 *4 *5))
- (-4 *5 (-13 (-364 *4) (-797 *3) (-554 (-801 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-263))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-884))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-908))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-949))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-986)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 *4)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-85)) (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1 (-85) (-583 *6)))
+ (-4 *6 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-987 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 *2)))
+ (-5 *2 (-800 *3)) (-5 *1 (-987 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-796 *3) (-553 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1013)) (-4 *4 (-13 (-961) (-796 *3) (-553 (-800 *3))))
+ (-5 *2 (-583 (-1090))) (-5 *1 (-987 *3 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-796 *3) (-553 (-800 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-263))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-883))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-907))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-948))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-985)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 *4)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-85)) (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *3 (-978 *6 *7 *8)) (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-985 *6 *7 *8 *3 *4)) (-4 *4 (-984 *6 *7 *8 *3))))
+ (-12 (-5 *5 (-85)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *3 (-977 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-984 *6 *7 *8 *3 *4)) (-4 *4 (-983 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-2 (|:| |val| (-584 *8)) (|:| -1601 *9)))) (-5 *5 (-85))
- (-4 *8 (-978 *6 *7 *4)) (-4 *9 (-984 *6 *7 *4 *8)) (-4 *6 (-392))
- (-4 *7 (-718)) (-4 *4 (-757))
- (-5 *2 (-584 (-2 (|:| |val| *8) (|:| -1601 *9))))
- (-5 *1 (-985 *6 *7 *4 *8 *9)))))
+ (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -1600 *9)))) (-5 *5 (-85))
+ (-4 *8 (-977 *6 *7 *4)) (-4 *9 (-983 *6 *7 *4 *8)) (-4 *6 (-392))
+ (-4 *7 (-717)) (-4 *4 (-756))
+ (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -1600 *9))))
+ (-5 *1 (-984 *6 *7 *4 *8 *9)))))
(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-584 *3)) (|:| -1601 *4))))
- (-5 *1 (-985 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -1600 *4))))
+ (-5 *1 (-984 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-984 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-983 *3 *4 *5 *6)) (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-3 (-85) (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-3 (-85) (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-3 *3 (-584 *1))) (-4 *1 (-984 *4 *5 *6 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-496)) (-4 *2 (-962))))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-983 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-495)) (-4 *2 (-961))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495))))
((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *1))))
- (-4 *1 (-984 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *1))))
+ (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-5 *3 (-584 *7)) (-4 *1 (-984 *4 *5 *6 *7))
- (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-983 *4 *5 *6 *7))
+ (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *7))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-978 *4 *5 *6))
- (-5 *2 (-584 *1)) (-4 *1 (-984 *4 *5 *6 *3)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-977 *4 *5 *6))
+ (-5 *2 (-583 *1)) (-4 *1 (-983 *4 *5 *6 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85))))
((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-715)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-714)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-717)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-716)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-981 *4 *3)) (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4))
+ (-12 (-4 *1 (-980 *4 *3)) (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4))
(-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-951 (-485))) (-4 *3 (-496)) (-5 *1 (-32 *3 *2))
+ (-12 (-4 *3 (-950 (-484))) (-4 *3 (-495)) (-5 *1 (-32 *3 *2))
(-4 *2 (-364 *3))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1086 *4)) (-5 *1 (-138 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 *4)) (-5 *1 (-138 *3 *4))
(-4 *3 (-139 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-962)) (-4 *1 (-254))))
- ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3))))
- ((*1 *2) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-981 *3 *2)) (-4 *3 (-13 (-756) (-312))) (-4 *2 (-1156 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-858 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-858 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-350 (-485)))) (-5 *2 (-584 *1)) (-4 *1 (-926))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-926)) (-5 *2 (-584 *1))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-756) (-312))) (-4 *3 (-1156 *4)) (-5 *2 (-584 *1))
- (-4 *1 (-981 *4 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1091)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2))
- (-4 *5 (-496))))
+ ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-254))))
+ ((*1 *2) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3))))
+ ((*1 *2) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *2)) (-4 *3 (-13 (-755) (-312))) (-4 *2 (-1155 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-857 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-857 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1085 (-350 (-484)))) (-5 *2 (-583 *1)) (-4 *1 (-925))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-925)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-755) (-312))) (-4 *3 (-1155 *4)) (-5 *2 (-583 *1))
+ (-4 *1 (-980 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *2)) (-5 *4 (-1090)) (-4 *2 (-364 *5)) (-5 *1 (-32 *5 *2))
+ (-4 *5 (-495))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-4 *1 (-926))))
+ (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-4 *1 (-925))))
((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-831)) (-5 *4 (-773))
- (-4 *1 (-926))))
+ (|partial| -12 (-5 *2 (-1085 *1)) (-5 *3 (-830)) (-5 *4 (-772))
+ (-4 *1 (-925))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-831)) (-4 *4 (-13 (-756) (-312)))
- (-4 *1 (-981 *4 *2)) (-4 *2 (-1156 *4)))))
+ (|partial| -12 (-5 *3 (-830)) (-4 *4 (-13 (-755) (-312)))
+ (-4 *1 (-980 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-938 *3))
- (-4 *3 (-13 (-756) (-312) (-934)))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-937 *3))
+ (-4 *3 (-13 (-755) (-312) (-933)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2))))
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-981 *2 *3)) (-4 *2 (-13 (-756) (-312))) (-4 *3 (-1156 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-127))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1050))) (-5 *1 (-979)))))
+ (-12 (-4 *1 (-980 *2 *3)) (-4 *2 (-13 (-755) (-312))) (-4 *3 (-1155 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1049))) (-5 *1 (-978)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-978 *3 *4 *2)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-977 *3 *4 *2)) (-4 *2 (-756))))
((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-695)))))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-694)))))
(((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-172))))
- ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-618))))
+ ((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1) (-12 (-5 *2 (-423)) (-5 *1 (-617))))
((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
- ((*1 *2 *1) (-12 (-4 *2 (-962)) (-5 *1 (-50 *2 *3)) (-14 *3 (-584 (-1091)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
+ ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-50 *2 *3)) (-14 *3 (-583 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091)))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1014)) (-4 *2 (-962))))
+ (-12 (-5 *2 (-265 *3)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *3 (-1013)) (-4 *2 (-961))))
((*1 *2 *1)
- (-12 (-14 *3 (-584 (-1091))) (-4 *5 (-196 (-3959 *3) (-695)))
+ (-12 (-14 *3 (-583 (-1090))) (-4 *5 (-196 (-3958 *3) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *4) (|:| -2402 *5))
- (-2 (|:| -2401 *4) (|:| -2402 *5))))
- (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-757))
- (-4 *7 (-862 *2 *5 (-774 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *3 (-760)) (-4 *2 (-72))))
- ((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-962))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-962)) (-5 *1 (-675 *2 *3)) (-4 *3 (-757)) (-4 *3 (-664))))
- ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *3 (-717)) (-4 *4 (-757)) (-4 *2 (-962))))
+ (-1 (-85) (-2 (|:| -2400 *4) (|:| -2401 *5))
+ (-2 (|:| -2400 *4) (|:| -2401 *5))))
+ (-4 *2 (-146)) (-5 *1 (-401 *3 *2 *4 *5 *6 *7)) (-4 *4 (-756))
+ (-4 *7 (-861 *2 *5 (-773 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-449 *2 *3)) (-4 *3 (-759)) (-4 *2 (-72))))
+ ((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-961))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-961)) (-5 *1 (-674 *2 *3)) (-4 *3 (-756)) (-4 *3 (-663))))
+ ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *3 (-716)) (-4 *4 (-756)) (-4 *2 (-961))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757)))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-961)) (-5 *2 (-85)) (-5 *1 (-384 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *2 (-85)))))
+ (|partial| -12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
+ (-12 (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-978 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-977 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1)))
- (-4 *1 (-978 *4 *5 *3))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -2903 *1)))
+ (-4 *1 (-977 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -2904 *1)))
- (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -2903 *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3956 *3) (|:| |gap| (-695)) (|:| -1973 (-705 *3))
- (|:| -2904 (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (-2 (|:| -3955 *3) (|:| |gap| (-694)) (|:| -1972 (-704 *3))
+ (|:| -2903 (-704 *3))))
+ (-5 *1 (-704 *3)) (-4 *3 (-961))))
((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-978 *4 *5 *3))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-977 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3956 *1) (|:| |gap| (-695)) (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-978 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -3955 *1) (|:| |gap| (-694)) (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| |polnum| (-705 *3)) (|:| |polden| *3) (|:| -3483 (-695))))
- (-5 *1 (-705 *3)) (-4 *3 (-962))))
+ (-5 *2 (-2 (|:| |polnum| (-704 *3)) (|:| |polden| *3) (|:| -3482 (-694))))
+ (-5 *1 (-704 *3)) (-4 *3 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3483 (-695))))
- (-4 *1 (-978 *3 *4 *5)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5))
- (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6))
- (-14 *7 (-831))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3482 (-694))))
+ (-4 *1 (-977 *3 *4 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1085 (-1085 *4))) (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6))
+ (-14 *7 (-830))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-951 *2)) (-4 *2 (-1130))))
+ (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485)))))
- (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-2561 (-4 *3 (-38 (-484))))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-483))) (-2561 (-4 *3 (-38 (-350 (-484)))))
+ (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484))))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
((*1 *1 *2)
(|partial| OR
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1130))))
+ (|partial| -12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *1 (-890 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *1 (-889 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1129))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-2562 (-4 *3 (-38 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-484))) (-2562 (-4 *3 (-38 (-350 (-485)))))
- (-4 *3 (-38 (-485))) (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 *3))
- (-12 (-2562 (-4 *3 (-905 (-485)))) (-4 *3 (-38 (-350 (-485))))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *1 (-978 *3 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-2561 (-4 *3 (-38 (-484))))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-483))) (-2561 (-4 *3 (-38 (-350 (-484)))))
+ (-4 *3 (-38 (-484))) (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 *3))
+ (-12 (-2561 (-4 *3 (-904 (-484)))) (-4 *3 (-38 (-350 (-484))))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *1 (-977 *3 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756)))))
((*1 *1 *2)
(OR
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-2562 (-4 *3 (-38 (-350 (-485))))) (-4 *3 (-38 (-485)))
- (-4 *5 (-554 (-1091))))
- (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)))
- (-12 (-5 *2 (-858 (-485))) (-4 *1 (-978 *3 *4 *5))
- (-12 (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091)))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-2561 (-4 *3 (-38 (-350 (-484))))) (-4 *3 (-38 (-484)))
+ (-4 *5 (-553 (-1090))))
+ (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)))
+ (-12 (-5 *2 (-857 (-484))) (-4 *1 (-977 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090)))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)))))
((*1 *1 *2)
- (-12 (-5 *2 (-858 (-350 (-485)))) (-4 *1 (-978 *3 *4 *5))
- (-4 *3 (-38 (-350 (-485)))) (-4 *5 (-554 (-1091))) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)))))
+ (-12 (-5 *2 (-857 (-350 (-484)))) (-4 *1 (-977 *3 *4 *5))
+ (-4 *3 (-38 (-350 (-484)))) (-4 *5 (-553 (-1090))) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495)))))
(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (-2 (|:| -3145 (-704 *3)) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
+ (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef1| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-2 (|:| -3145 (-704 *3)) (|:| |coef1| (-704 *3))))
+ (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3146 *1) (|:| |coef1| *1))) (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef1| *1))) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3146 (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962))))
+ (-12 (-5 *2 (-2 (|:| -3145 (-704 *3)) (|:| |coef2| (-704 *3))))
+ (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-2 (|:| -3146 *1) (|:| |coef2| *1))) (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-2 (|:| -3145 *1) (|:| |coef2| *1))) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-584 *1)) (-4 *1 (-978 *3 *4 *5)))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-583 *1)) (-4 *1 (-977 *3 *4 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *3 (-496)))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *3 (-495)))))
(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-978 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *3 (-496)))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-977 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *3 (-495)))))
(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *2 (-496)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392))))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392))))
((*1 *1 *1 *1) (-4 *1 (-392)))
- ((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485)))))
- ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-695)))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484)))))
+ ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-694)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2))
- (-4 *2 (-862 *5 *3 *4))))
+ (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2))
+ (-4 *2 (-861 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-1086 *7))) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258))
- (-5 *2 (-1086 *7)) (-5 *1 (-828 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-831)))
+ (-12 (-5 *3 (-583 (-1085 *7))) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258))
+ (-5 *2 (-1085 *7)) (-5 *1 (-827 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-830)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-392)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *3 (-392)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-978 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-718)) (-4 *4 (-757))
+ (-12 (-4 *1 (-977 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-717)) (-4 *4 (-756))
(-4 *2 (-392)))))
-(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-976))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-976)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-12 (-5 *1 (-615 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-12 (-5 *1 (-619 *2)) (-4 *2 (-757))))
- ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-975))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-975)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-92 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (-5 *1 (-614 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-12 (-5 *1 (-618 *2)) (-4 *2 (-756))))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)) (-5 *2 (-694))))
((*1 *2)
- (-12 (-4 *4 (-312)) (-5 *2 (-695)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
- ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014)) (-5 *2 (-695))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-694)) (-5 *1 (-279 *3 *4)) (-4 *3 (-280 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-4 *1 (-320)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013)) (-5 *2 (-694))))
((*1 *2)
- (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23))
+ (-12 (-5 *2 (-694)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
(-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-695)) (-5 *1 (-661 *3 *4 *5))
- (-4 *3 (-662 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-694)) (-5 *1 (-660 *3 *4 *5))
+ (-4 *3 (-661 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-179)) (-5 *1 (-30))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-496)) (-5 *2 (-348 *4))
+ (-12 (-5 *3 (-1 (-348 *4) *4)) (-4 *4 (-495)) (-5 *2 (-348 *4))
(-5 *1 (-362 *4))))
- ((*1 *1 *1) (-5 *1 (-837)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
- ((*1 *1 *1) (-5 *1 (-839)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
+ ((*1 *1 *1) (-5 *1 (-836)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
+ ((*1 *1 *1) (-5 *1 (-838)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))
- (-5 *4 (-350 (-485))) (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))
+ (-5 *4 (-350 (-484))) (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
+ (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))
+ (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))
- (-5 *4 (-350 (-485))) (-5 *1 (-936 *3)) (-4 *3 (-1156 *4))))
+ (-12 (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))
+ (-5 *4 (-350 (-484))) (-5 *1 (-935 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *2 *2)
(|partial| -12
- (-5 *2 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485))))))
+ (-5 *2 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484))))))
((*1 *1 *1)
- (-12 (-4 *2 (-13 (-756) (-312))) (-5 *1 (-975 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-13 (-755) (-312))) (-5 *1 (-974 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-756) (-312))) (-5 *2 (-85)) (-5 *1 (-975 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-48))) (-5 *1 (-48))))
+ (-12 (-4 *4 (-13 (-755) (-312))) (-5 *2 (-85)) (-5 *1 (-974 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-48))) (-5 *1 (-48))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-584 (-551 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-48))) (-5 *3 (-551 (-48))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-583 (-550 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-1085 (-48))) (-5 *3 (-550 (-48))) (-5 *1 (-48))))
((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1156 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-831)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
+ (-12 (-5 *2 (-830)) (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))))
((*1 *2 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-312))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1156 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *2 *3)) (-4 *3 (-1155 *2)) (-4 *2 (-146))))
((*1 *2 *1)
- (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-356 *3 *2 *4 *5))
- (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-951 *2)))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-356 *3 *2 *4 *5))
+ (-4 *3 (-258)) (-4 *5 (-13 (-353 *2 *4) (-950 *2)))))
((*1 *2 *1)
- (-12 (-4 *4 (-1156 *2)) (-4 *2 (-905 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6))
- (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1180 *5))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-904 *3)) (-5 *1 (-358 *3 *2 *4 *5 *6))
+ (-4 *3 (-258)) (-4 *5 (-353 *2 *4)) (-14 *6 (-1179 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2))
- (-4 *3 (-1156 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-551 (-435)))) (-5 *1 (-435))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-551 (-435))) (-5 *1 (-435))))
+ (-12 (-5 *4 (-830)) (-4 *5 (-961))
+ (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2))
+ (-4 *3 (-1155 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-550 (-435)))) (-5 *1 (-435))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-550 (-435))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-584 (-551 (-435)))) (-5 *1 (-435))))
+ (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-583 (-550 (-435)))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-435))) (-5 *3 (-551 (-435))) (-5 *1 (-435))))
+ (-12 (-5 *2 (-1085 (-435))) (-5 *3 (-550 (-435))) (-5 *1 (-435))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-831)) (-4 *4 (-299)) (-5 *1 (-467 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-662 *4 *2)) (-4 *2 (-1156 *4))
- (-5 *1 (-699 *4 *2 *5 *3)) (-4 *3 (-1156 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-484))))
- ((*1 *1 *1) (-4 *1 (-974))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-830)) (-4 *4 (-299)) (-5 *1 (-466 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-392)) (-4 *5 (-661 *4 *2)) (-4 *2 (-1155 *4))
+ (-5 *1 (-698 *4 *2 *5 *3)) (-4 *3 (-1155 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-483))))
+ ((*1 *1 *1) (-4 *1 (-973))))
(((*1 *2 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-485)))))
-(((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))
- ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427))))
- ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)) (-4 *2 (-258))))
- ((*1 *2 *1) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485))))
- ((*1 *1 *1) (-4 *1 (-974))))
-(((*1 *1 *1) (-4 *1 (-974))))
+ ((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427))))
+ ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)) (-4 *2 (-258))))
+ ((*1 *2 *1) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484))))
+ ((*1 *1 *1) (-4 *1 (-973))))
+(((*1 *1 *1) (-4 *1 (-973))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1130)) (-5 *2 (-695)) (-5 *1 (-195 *3 *4 *5))
+ (-12 (-14 *4 *2) (-4 *5 (-1129)) (-5 *2 (-694)) (-5 *1 (-195 *3 *4 *5))
(-4 *3 (-196 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-1014)) (-5 *2 (-695)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
- ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-483 *3)) (-4 *3 (-484))))
- ((*1 *2) (-12 (-4 *1 (-688)) (-5 *2 (-695))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-694)) (-5 *1 (-363 *3 *4)) (-4 *3 (-364 *4))))
+ ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-482 *3)) (-4 *3 (-483))))
+ ((*1 *2) (-12 (-4 *1 (-687)) (-5 *2 (-694))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-720 *3 *4)) (-4 *3 (-721 *4))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-719 *3 *4)) (-4 *3 (-720 *4))))
((*1 *2)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-904 *3 *4)) (-4 *3 (-905 *4))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-903 *3 *4)) (-4 *3 (-904 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-695)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4))))
- ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-925 *3)) (-4 *3 (-926))))
- ((*1 *2) (-12 (-4 *1 (-962)) (-5 *2 (-695))))
- ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-973 *3)) (-4 *3 (-974)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-971)) (-5 *2 (-85)))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-694)) (-5 *1 (-910 *3 *4)) (-4 *3 (-911 *4))))
+ ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-924 *3)) (-4 *3 (-925))))
+ ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-694))))
+ ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-972 *3)) (-4 *3 (-973)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-970)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-631 *5)) (-4 *5 (-962)) (-5 *1 (-967 *3 *4 *5)) (-14 *3 (-695))
- (-14 *4 (-695)))))
+ (-12 (-5 *2 (-630 *5)) (-4 *5 (-961)) (-5 *1 (-966 *3 *4 *5)) (-14 *3 (-694))
+ (-14 *4 (-694)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-695)) (-5 *3 (-1 *4 (-485) (-485))) (-4 *4 (-962))
- (-4 *1 (-628 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))
+ (-12 (-5 *2 (-694)) (-5 *3 (-1 *4 (-484) (-484))) (-4 *4 (-961))
+ (-4 *1 (-627 *4 *5 *6)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-962)) (-4 *1 (-628 *3 *4 *5))
+ (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-627 *3 *4 *5))
(-4 *4 (-324 *3)) (-4 *5 (-324 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-773)))) (-5 *1 (-773))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-772)))) (-5 *1 (-772))))
((*1 *2 *1)
- (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-907 *3 *4)) (-14 *3 (-831))
+ (-12 (-5 *2 (-1056 *3 *4)) (-5 *1 (-906 *3 *4)) (-14 *3 (-830))
(-4 *4 (-312))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 (-584 *5))) (-4 *5 (-962)) (-4 *1 (-966 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-965 *3 *4 *5 *6 *7))
(-4 *6 (-196 *4 *5)) (-4 *7 (-196 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
(-4 *7 (-196 *3 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-485))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-484))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-485)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-484)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1129)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-5 *2 (-694)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
- (-4 *5 (-324 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-324 *2))
+ (-4 *5 (-324 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-695)) (-4 *2 (-1014)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1130))))
+ (-12 (-5 *3 (-694)) (-4 *2 (-1013)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-243 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1129))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
- (-4 *7 (-196 *4 *2)) (-4 *2 (-962)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *2 *6 *7)) (-4 *6 (-196 *5 *2))
+ (-4 *7 (-196 *4 *2)) (-4 *2 (-961)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1130)) (-4 *5 (-324 *4))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
(-4 *2 (-324 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *2 *7)) (-4 *6 (-962))
+ (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *2 *7)) (-4 *6 (-961))
(-4 *7 (-196 *4 *6)) (-4 *2 (-196 *5 *6)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1130)) (-4 *5 (-324 *4))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
(-4 *2 (-324 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-966 *4 *5 *6 *7 *2)) (-4 *6 (-962))
+ (-12 (-5 *3 (-484)) (-4 *1 (-965 *4 *5 *6 *7 *2)) (-4 *6 (-961))
(-4 *7 (-196 *5 *6)) (-4 *2 (-196 *4 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
+ (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-905 *4))
- (-4 *2 (-628 *7 *8 *9)) (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *2))
- (-4 *3 (-628 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-4 *7 (-904 *4))
+ (-4 *2 (-627 *7 *8 *9)) (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *2))
+ (-4 *3 (-627 *4 *5 *6)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7))))
((*1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)) (-4 *2 (-258))))
((*1 *2 *2)
(-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5))))
- ((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3))))
+ (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5))))
+ ((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-966 *2 *3 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-196 *3 *4))
+ (-12 (-4 *1 (-965 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-196 *3 *4))
(-4 *6 (-196 *2 *4)) (-4 *4 (-258)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485)) (-14 *4 *2)
+ (-12 (-5 *2 (-694)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484)) (-14 *4 *2)
(-4 *5 (-146))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-831)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
- ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-831))))
+ (-12 (-4 *4 (-146)) (-5 *2 (-830)) (-5 *1 (-138 *3 *4)) (-4 *3 (-139 *4))))
+ ((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-830))))
((*1 *2)
- (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-831))))
+ (-12 (-4 *1 (-322 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-830))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695))
- (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694))
+ (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-695))
- (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5)))
+ (-4 *4 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-694)) (-5 *1 (-609 *5 *6 *4 *3))
+ (-4 *3 (-627 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-695))
- (-5 *1 (-611 *5))))
+ (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-694))
+ (-5 *1 (-610 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-695))
- (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)) (-5 *2 (-694))
+ (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-694))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-695)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-694)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-694)))))
(((*1 *2 *3)
- (-12 (-4 *6 (-1036 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-584 *6)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *6 (-1035 *4)) (-4 *4 (-312)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-583 *6)) (-5 *1 (-460 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *9 (-1036 *4)) (-4 *4 (-496)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-4 *7 (-905 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-584 *6))
- (-5 *1 (-462 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-628 *4 *5 *6))
- (-4 *10 (-628 *7 *8 *9))))
+ (-12 (-4 *9 (-1035 *4)) (-4 *4 (-495)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-4 *7 (-904 *4)) (-4 *8 (-324 *7)) (-4 *9 (-324 *7)) (-5 *2 (-583 *6))
+ (-5 *1 (-461 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-627 *4 *5 *6))
+ (-4 *10 (-627 *7 *8 *9))))
((*1 *2 *1)
- (-12 (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-4 *3 (-496)) (-5 *2 (-584 *5))))
+ (-12 (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-4 *3 (-495)) (-5 *2 (-583 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-584 *6)) (-5 *1 (-630 *4 *5 *6 *3)) (-4 *3 (-628 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-583 *6)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-627 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-966 *3 *4 *5 *6 *7)) (-4 *5 (-962)) (-4 *6 (-196 *4 *5))
- (-4 *7 (-196 *3 *5)) (-4 *5 (-496)) (-5 *2 (-584 *7)))))
+ (-12 (-4 *1 (-965 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-196 *4 *5))
+ (-4 *7 (-196 *3 *5)) (-4 *5 (-495)) (-5 *2 (-583 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1149 *4 *5)) (-5 *3 (-584 *5)) (-14 *4 (-1091)) (-4 *5 (-312))
- (-5 *1 (-834 *4 *5))))
+ (-12 (-5 *2 (-1148 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1090)) (-4 *5 (-312))
+ (-5 *1 (-833 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *5)) (-4 *5 (-312)) (-5 *2 (-1086 *5)) (-5 *1 (-834 *4 *5))
- (-14 *4 (-1091))))
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-312)) (-5 *2 (-1085 *5)) (-5 *1 (-833 *4 *5))
+ (-14 *4 (-1090))))
((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-695)) (-4 *6 (-312)) (-5 *2 (-350 (-858 *6)))
- (-5 *1 (-963 *5 *6)) (-14 *5 (-1091)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-960)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-694)) (-4 *6 (-312)) (-5 *2 (-350 (-857 *6)))
+ (-5 *1 (-962 *5 *6)) (-14 *5 (-1090)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-959)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-485))) (-5 *1 (-960))
- (-5 *3 (-485)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1010 *4)) (-4 *4 (-1014)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4))))
- ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330))))
- ((*1 *2 *3) (-12 (-5 *3 (-1002 (-485))) (-5 *2 (-1 (-485))) (-5 *1 (-960)))))
-(((*1 *1) (-12 (-4 *1 (-958 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-858 *4))))
- (-5 *1 (-956 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1 (-330))) (-5 *1 (-954)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-484))) (-5 *1 (-959))
+ (-5 *3 (-484)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1009 *4)) (-4 *4 (-1013)) (-5 *2 (-1 *4)) (-5 *1 (-930 *4))))
+ ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1001 (-484))) (-5 *2 (-1 (-484))) (-5 *1 (-959)))))
+(((*1 *1) (-12 (-4 *1 (-957 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-130))) ((*1 *2 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-4 *1 (-956 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-258)) (-5 *2 (-350 (-348 (-857 *4))))
+ (-5 *1 (-955 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1 (-330))) (-5 *1 (-953)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1161 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1091)) (-14 *5 *3)
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-4 *3 (-312)) (-14 *4 (-1090)) (-14 *5 *3)
(-5 *1 (-270 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-954)) (-5 *3 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-330)) (-5 *1 (-954)))))
-(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
-(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
-(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-954)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-330))) (-5 *1 (-953)) (-5 *3 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-330)) (-5 *1 (-953)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))))
+(((*1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-953)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1086 (-350 (-1086 *2)))) (-5 *4 (-551 *2))
- (-4 *2 (-13 (-364 *5) (-27) (-1116)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *1 (-499 *5 *2 *6)) (-4 *6 (-1014))))
+ (-12 (-5 *3 (-1085 (-350 (-1085 *2)))) (-5 *4 (-550 *2))
+ (-4 *2 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *1 (-498 *5 *2 *6)) (-4 *6 (-1013))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1086 *1)) (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *3 (-757))))
+ (-12 (-5 *2 (-1085 *1)) (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *3 (-756))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1086 *4)) (-4 *4 (-962)) (-4 *1 (-862 *4 *5 *3)) (-4 *5 (-718))
- (-4 *3 (-757))))
+ (-12 (-5 *2 (-1085 *4)) (-4 *4 (-961)) (-4 *1 (-861 *4 *5 *3)) (-4 *5 (-717))
+ (-4 *3 (-756))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-1086 *2))) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
+ (-12 (-5 *3 (-350 (-1085 *2))) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
(-4 *2
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))
- (-5 *1 (-863 *5 *4 *6 *7 *2)) (-4 *7 (-862 *6 *5 *4))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))
+ (-5 *1 (-862 *5 *4 *6 *7 *2)) (-4 *7 (-861 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-1086 (-350 (-858 *5))))) (-5 *4 (-1091))
- (-5 *2 (-350 (-858 *5))) (-5 *1 (-953 *5)) (-4 *5 (-496)))))
+ (-12 (-5 *3 (-350 (-1085 (-350 (-857 *5))))) (-5 *4 (-1090))
+ (-5 *2 (-350 (-857 *5))) (-5 *1 (-952 *5)) (-4 *5 (-495)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-551 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014)) (-4 *4 (-496))
- (-5 *2 (-350 (-1086 *1)))))
+ (-12 (-5 *3 (-550 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013)) (-4 *4 (-495))
+ (-5 *2 (-350 (-1085 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-1086 (-350 (-1086 *3)))) (-5 *1 (-499 *6 *3 *7)) (-5 *5 (-1086 *3))
- (-4 *7 (-1014))))
+ (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-1085 (-350 (-1085 *3)))) (-5 *1 (-498 *6 *3 *7)) (-5 *5 (-1085 *3))
+ (-4 *7 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1091)) (-4 *6 (-962))
- (-5 *2 (-1149 *5 (-858 *6))) (-5 *1 (-860 *5 *6)) (-5 *3 (-858 *6))))
+ (-12 (-5 *4 (-1176 *5)) (-14 *5 (-1090)) (-4 *6 (-961))
+ (-5 *2 (-1148 *5 (-857 *6))) (-5 *1 (-859 *5 *6)) (-5 *3 (-857 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-1086 *3))))
+ (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-1085 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-5 *2 (-1086 *1))
- (-4 *1 (-862 *4 *5 *3))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-5 *2 (-1085 *1))
+ (-4 *1 (-861 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *5 *4))
- (-5 *2 (-350 (-1086 *3))) (-5 *1 (-863 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *5 *4))
+ (-5 *2 (-350 (-1085 *3))) (-5 *1 (-862 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1086 *3))
+ (-12 (-5 *2 (-1085 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))
- (-4 *7 (-862 *6 *5 *4)) (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-962))
- (-5 *1 (-863 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))
+ (-4 *7 (-861 *6 *5 *4)) (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-961))
+ (-5 *1 (-862 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-496)) (-5 *2 (-350 (-1086 (-350 (-858 *5)))))
- (-5 *1 (-953 *5)) (-5 *3 (-350 (-858 *5))))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-495)) (-5 *2 (-350 (-1085 (-350 (-857 *5)))))
+ (-5 *1 (-952 *5)) (-5 *3 (-350 (-857 *5))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *2 (-757))))
+ (|partial| -12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *2 (-756))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-718)) (-4 *5 (-962)) (-4 *6 (-862 *5 *4 *2))
- (-4 *2 (-757)) (-5 *1 (-863 *4 *2 *5 *6 *3))
+ (|partial| -12 (-4 *4 (-717)) (-4 *5 (-961)) (-4 *6 (-861 *5 *4 *2))
+ (-4 *2 (-756)) (-5 *1 (-862 *4 *2 *5 *6 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *6)) (-15 -3000 (*6 $)) (-15 -2999 (*6 $)))))))
+ (-10 -8 (-15 -3947 ($ *6)) (-15 -2999 (*6 $)) (-15 -2998 (*6 $)))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-1091))
- (-5 *1 (-953 *4)))))
+ (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-1090))
+ (-5 *1 (-952 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-962)) (-5 *2 (-584 *5)) (-5 *1 (-272 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-584 (-1091)))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-272 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-583 (-1090)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-584 *5))))
+ (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-583 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962)) (-4 *7 (-862 *6 *4 *5))
- (-5 *2 (-584 *5)) (-5 *1 (-863 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961)) (-4 *7 (-861 *6 *4 *5))
+ (-5 *2 (-583 *5)) (-5 *1 (-862 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $)))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $)))))))
((*1 *2 *1)
- (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
- (-5 *2 (-584 *5))))
+ (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
+ (-5 *2 (-583 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-5 *2 (-584 (-1091)))
- (-5 *1 (-953 *4)))))
+ (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-5 *2 (-583 (-1090)))
+ (-5 *1 (-952 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091)))
- (-4 *6 (-13 (-496) (-951 *5))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *6)))))) (-5 *1 (-952 *5 *6)))))
+ (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090)))
+ (-4 *6 (-13 (-495) (-950 *5))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *6)))))) (-5 *1 (-951 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-551 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1116)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-1086 (-350 (-1086 *6)))) (-5 *1 (-499 *5 *6 *7)) (-5 *3 (-1086 *6))
- (-4 *7 (-1014))))
- ((*1 *2 *1) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
- ((*1 *2 *1) (-12 (-4 *1 (-662 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3))))
+ (-12 (-5 *4 (-550 *6)) (-4 *6 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-1085 (-350 (-1085 *6)))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-1085 *6))
+ (-4 *7 (-1013))))
+ ((*1 *2 *1) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
+ ((*1 *2 *1) (-12 (-4 *1 (-661 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-584 *10)) (-5 *7 (-584 (-695)))
- (-5 *8 (-584 *11)) (-4 *10 (-757)) (-4 *11 (-258)) (-4 *9 (-718))
- (-4 *5 (-862 *11 *9 *10)) (-5 *2 (-584 (-1086 *5)))
- (-5 *1 (-682 *9 *10 *11 *5)) (-5 *3 (-1086 *5))))
+ (|partial| -12 (-5 *4 (-1085 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-694)))
+ (-5 *8 (-583 *11)) (-4 *10 (-756)) (-4 *11 (-258)) (-4 *9 (-717))
+ (-4 *5 (-861 *11 *9 *10)) (-5 *2 (-583 (-1085 *5)))
+ (-5 *1 (-681 *9 *10 *11 *5)) (-5 *3 (-1085 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-862 *3 *4 *5)) (-5 *1 (-948 *3 *4 *5 *2 *6)) (-4 *3 (-312))
- (-4 *4 (-718)) (-4 *5 (-757)) (-14 *6 (-584 *2)))))
+ (-12 (-4 *2 (-861 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-312))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-14 *6 (-583 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *1 (-946 *2))
- (-4 *2 (-13 (-1014) (-10 -8 (-15 * ($ $ $))))))))
+ (-12 (-5 *3 (-830)) (-5 *1 (-945 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 * ($ $ $))))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-831)) (-5 *1 (-945 *2))
- (-4 *2 (-13 (-1014) (-10 -8 (-15 -3841 ($ $ $))))))))
+ (-12 (-5 *3 (-830)) (-5 *1 (-944 *2))
+ (-4 *2 (-13 (-1013) (-10 -8 (-15 -3840 ($ $ $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1180 *5))) (-5 *4 (-485)) (-5 *2 (-1180 *5))
- (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962)))))
+ (-12 (-5 *3 (-583 (-1179 *5))) (-5 *4 (-484)) (-5 *2 (-1179 *5))
+ (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961)))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-85)) (-5 *5 (-485)) (-4 *6 (-312)) (-4 *6 (-320))
- (-4 *6 (-962)) (-5 *2 (-584 (-584 (-631 *6)))) (-5 *1 (-944 *6))
- (-5 *3 (-584 (-631 *6)))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-484)) (-4 *6 (-312)) (-4 *6 (-320))
+ (-4 *6 (-961)) (-5 *2 (-583 (-583 (-630 *6)))) (-5 *1 (-943 *6))
+ (-5 *3 (-583 (-630 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-962))
- (-5 *2 (-584 (-584 (-631 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-584 (-631 *4)))))
+ (-12 (-4 *4 (-312)) (-4 *4 (-320)) (-4 *4 (-961))
+ (-5 *2 (-583 (-583 (-630 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-583 (-630 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961))
+ (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-962))
- (-5 *2 (-584 (-584 (-631 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-584 (-631 *5))))))
+ (-12 (-5 *4 (-830)) (-4 *5 (-312)) (-4 *5 (-320)) (-4 *5 (-961))
+ (-5 *2 (-583 (-583 (-630 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-583 (-630 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-4 *5 (-312)) (-4 *5 (-962))
- (-5 *2 (-85)) (-5 *1 (-944 *5))))
+ (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-4 *5 (-312)) (-4 *5 (-961))
+ (-5 *2 (-85)) (-5 *1 (-943 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-631 *4))) (-4 *4 (-312)) (-4 *4 (-962)) (-5 *2 (-85))
- (-5 *1 (-944 *4)))))
+ (-12 (-5 *3 (-583 (-630 *4))) (-4 *4 (-312)) (-4 *4 (-961)) (-5 *2 (-85))
+ (-5 *1 (-943 *4)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-584 (-631 *6))) (-5 *4 (-85)) (-5 *5 (-485)) (-5 *2 (-631 *6))
- (-5 *1 (-944 *6)) (-4 *6 (-312)) (-4 *6 (-962))))
+ (-12 (-5 *3 (-583 (-630 *6))) (-5 *4 (-85)) (-5 *5 (-484)) (-5 *2 (-630 *6))
+ (-5 *1 (-943 *6)) (-4 *6 (-312)) (-4 *6 (-961))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-5 *1 (-944 *4))
- (-4 *4 (-312)) (-4 *4 (-962))))
+ (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-5 *1 (-943 *4))
+ (-4 *4 (-312)) (-4 *4 (-961))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-485)) (-5 *2 (-631 *5))
- (-5 *1 (-944 *5)) (-4 *5 (-312)) (-4 *5 (-962)))))
+ (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-484)) (-5 *2 (-630 *5))
+ (-5 *1 (-943 *5)) (-4 *5 (-312)) (-4 *5 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-631 *5))) (-5 *4 (-1180 *5)) (-4 *5 (-258))
- (-4 *5 (-962)) (-5 *2 (-631 *5)) (-5 *1 (-944 *5)))))
+ (-12 (-5 *3 (-583 (-630 *5))) (-5 *4 (-1179 *5)) (-4 *5 (-258))
+ (-4 *5 (-961)) (-5 *2 (-630 *5)) (-5 *1 (-943 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-631 *5))) (-4 *5 (-258)) (-4 *5 (-962))
- (-5 *2 (-1180 (-1180 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1180 *5)))))
+ (-12 (-5 *3 (-583 (-630 *5))) (-4 *5 (-258)) (-4 *5 (-961))
+ (-5 *2 (-1179 (-1179 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1179 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-584 (-631 *4))) (-5 *2 (-631 *4)) (-4 *4 (-962))
- (-5 *1 (-944 *4)))))
+ (-12 (-5 *3 (-583 (-630 *4))) (-5 *2 (-630 *4)) (-4 *4 (-961))
+ (-5 *1 (-943 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-1180 *4))) (-4 *4 (-962)) (-5 *2 (-631 *4))
- (-5 *1 (-944 *4)))))
+ (-12 (-5 *3 (-1179 (-1179 *4))) (-4 *4 (-961)) (-5 *2 (-630 *4))
+ (-5 *1 (-943 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-814 (-485))) (-5 *4 (-485)) (-5 *2 (-631 *4)) (-5 *1 (-943 *5))
- (-4 *5 (-962))))
+ (-12 (-5 *3 (-813 (-484))) (-5 *4 (-484)) (-5 *2 (-630 *4)) (-5 *1 (-942 *5))
+ (-4 *5 (-961))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-485))) (-5 *2 (-631 (-485))) (-5 *1 (-943 *4))
- (-4 *4 (-962))))
+ (-12 (-5 *3 (-583 (-484))) (-5 *2 (-630 (-484))) (-5 *1 (-942 *4))
+ (-4 *4 (-961))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-814 (-485)))) (-5 *4 (-485)) (-5 *2 (-584 (-631 *4)))
- (-5 *1 (-943 *5)) (-4 *5 (-962))))
+ (-12 (-5 *3 (-583 (-813 (-484)))) (-5 *4 (-484)) (-5 *2 (-583 (-630 *4)))
+ (-5 *1 (-942 *5)) (-4 *5 (-961))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-485)))) (-5 *2 (-584 (-631 (-485))))
- (-5 *1 (-943 *4)) (-4 *4 (-962)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
+ (-12 (-5 *3 (-583 (-583 (-484)))) (-5 *2 (-583 (-630 (-484))))
+ (-5 *1 (-942 *4)) (-4 *4 (-961)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-943 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-631 *3))) (-4 *3 (-962)) (-5 *1 (-943 *3)))))
+ (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-942 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-630 *3))) (-4 *3 (-961)) (-5 *1 (-942 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (-4 *4 (-962)) (-5 *1 (-943 *4))))
+ (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (-4 *4 (-961)) (-5 *1 (-942 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (-4 *4 (-962))
- (-5 *1 (-943 *4)))))
+ (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (-4 *4 (-961))
+ (-5 *1 (-942 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-631 (-858 *4))) (-5 *1 (-943 *4))
- (-4 *4 (-962)))))
+ (-12 (-5 *3 (-694)) (-5 *2 (-630 (-857 *4))) (-5 *1 (-942 *4))
+ (-4 *4 (-961)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*")))
- (-4 *4 (-962)) (-5 *1 (-943 *4))))
+ (-12 (-5 *2 (-630 *4)) (-5 *3 (-830)) (|has| *4 (-6 (-3998 "*")))
+ (-4 *4 (-961)) (-5 *1 (-942 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-631 *4))) (-5 *3 (-831)) (|has| *4 (-6 (-3999 "*")))
- (-4 *4 (-962)) (-5 *1 (-943 *4)))))
+ (-12 (-5 *2 (-583 (-630 *4))) (-5 *3 (-830)) (|has| *4 (-6 (-3998 "*")))
+ (-4 *4 (-961)) (-5 *1 (-942 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485)))))
- (-5 *1 (-942)))))
-(((*1 *2 *2) (-12 (-5 *2 (-584 (-631 (-265 (-485))))) (-5 *1 (-942)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))))
+ (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484)))))
+ (-5 *1 (-941)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-630 (-265 (-484))))) (-5 *1 (-941)))))
+(((*1 *2 *2) (-12 (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-631 (-350 (-858 (-485)))))
- (-5 *2 (-631 (-265 (-485)))) (-5 *1 (-942)))))
+ (|partial| -12 (-5 *3 (-630 (-350 (-857 (-484)))))
+ (-5 *2 (-630 (-265 (-484)))) (-5 *1 (-941)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-265 (-485))))
- (-5 *1 (-942)))))
+ (-12 (-5 *3 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-265 (-484))))
+ (-5 *1 (-941)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-631 (-350 (-858 (-485))))) (-5 *2 (-584 (-631 (-265 (-485)))))
- (-5 *1 (-942)) (-5 *3 (-265 (-485))))))
+ (-12 (-5 *4 (-630 (-350 (-857 (-484))))) (-5 *2 (-583 (-630 (-265 (-484)))))
+ (-5 *1 (-941)) (-5 *3 (-265 (-484))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-858 (-485)))))
+ (-12 (-5 *3 (-630 (-350 (-857 (-484)))))
(-5 *2
- (-584
- (-2 (|:| |radval| (-265 (-485))) (|:| |radmult| (-485))
- (|:| |radvect| (-584 (-631 (-265 (-485))))))))
- (-5 *1 (-942)))))
+ (-583
+ (-2 (|:| |radval| (-265 (-484))) (|:| |radmult| (-484))
+ (|:| |radvect| (-583 (-630 (-265 (-484))))))))
+ (-5 *1 (-941)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129))))
((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-940 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-939 *3 *2)) (-4 *2 (-601 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3268 *3) (|:| -2515 (-584 *5))))
- (-5 *1 (-939 *5 *3)) (-5 *4 (-584 *5)) (-4 *3 (-601 *5)))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-939 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-938 *3 *2)) (-4 *2 (-600 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-312)) (-5 *2 (-2 (|:| -3267 *3) (|:| -2514 (-583 *5))))
+ (-5 *1 (-938 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-600 *5)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-975 (-938 *4) (-1086 (-938 *4)))) (-5 *3 (-773))
- (-5 *1 (-938 *4)) (-4 *4 (-13 (-756) (-312) (-934))))))
+ (-12 (-5 *2 (-974 (-937 *4) (-1085 (-937 *4)))) (-5 *3 (-772))
+ (-5 *1 (-937 *4)) (-4 *4 (-13 (-755) (-312) (-933))))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-975 (-938 *3) (-1086 (-938 *3)))) (-5 *1 (-938 *3))
- (-4 *3 (-13 (-756) (-312) (-934))))))
+ (|partial| -12 (-5 *2 (-974 (-937 *3) (-1085 (-937 *3)))) (-5 *1 (-937 *3))
+ (-4 *3 (-13 (-755) (-312) (-933))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))
- (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))
+ (-5 *4 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485))) (-5 *4 (-350 (-485)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484))) (-5 *4 (-350 (-484)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5))))
- (-5 *1 (-935 *3)) (-4 *3 (-1156 (-485)))
- (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5)))))
+ (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *5) (|:| -3138 *5))))
+ (-5 *1 (-934 *3)) (-4 *3 (-1155 (-484)))
+ (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5)))))
((*1 *2 *3)
- (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485))))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 (-350 (-485))))
- (-5 *4 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 (-350 (-484))))
+ (-5 *4 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *4) (|:| -3139 *4))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 *4))))
+ (-12 (-5 *4 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *4) (|:| -3138 *4))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-350 (-485))) (-5 *2 (-584 (-2 (|:| -3140 *5) (|:| -3139 *5))))
- (-5 *1 (-936 *3)) (-4 *3 (-1156 *5))
- (-5 *4 (-2 (|:| -3140 *5) (|:| -3139 *5))))))
+ (-12 (-5 *5 (-350 (-484))) (-5 *2 (-583 (-2 (|:| -3139 *5) (|:| -3138 *5))))
+ (-5 *1 (-935 *3)) (-4 *3 (-1155 *5))
+ (-5 *4 (-2 (|:| -3139 *5) (|:| -3138 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485))))))
- (-5 *2 (-584 (-350 (-485)))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484))))))
+ (-5 *2 (-583 (-350 (-484)))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3140 (-350 (-485))) (|:| -3139 (-350 (-485)))))
- (-5 *2 (-350 (-485))) (-5 *1 (-935 *4)) (-4 *4 (-1156 (-485))))))
+ (-12 (-5 *3 (-2 (|:| -3139 (-350 (-484))) (|:| -3138 (-350 (-484)))))
+ (-5 *2 (-350 (-484))) (-5 *1 (-934 *4)) (-4 *4 (-1155 (-484))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1180 *6)) (-5 *4 (-1180 (-485))) (-5 *5 (-485)) (-4 *6 (-1014))
- (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))))
+ (-12 (-5 *3 (-1179 *6)) (-5 *4 (-1179 (-484))) (-5 *5 (-484)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6)) (-5 *1 (-930 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3404 *4) (|:| -1523 (-485))))) (-4 *4 (-1014))
- (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3403 *4) (|:| -1522 (-484))))) (-4 *4 (-1013))
+ (-5 *2 (-1 *4)) (-5 *1 (-930 *4)))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-350 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-350 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-583 (-350 *5))) (-5 *1 (-929 *4 *5)) (-5 *3 (-350 *5)))))
(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484))))
(-5 *2
(-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |h| *6) (|:| |c1| (-350 *6))
- (|:| |c2| (-350 *6)) (|:| -3095 *6)))
- (-5 *1 (-930 *5 *6)) (-5 *3 (-350 *6)))))
+ (|:| |c2| (-350 *6)) (|:| -3094 *6)))
+ (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1156 *6))
- (-4 *6 (-13 (-312) (-120) (-951 *4))) (-5 *4 (-485))
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1155 *6))
+ (-4 *6 (-13 (-312) (-120) (-950 *4))) (-5 *4 (-484))
(-5 *2
(-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-85))))
- (|:| -3268
+ (|:| -3267
(-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
(|:| |beta| *3)))))
- (-5 *1 (-929 *6 *3)))))
+ (-5 *1 (-928 *6 *3)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-929 *4 *5))
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |ans| (-350 *5)) (|:| |nosol| (-85)))) (-5 *1 (-928 *4 *5))
(-5 *3 (-350 *5)))))
(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484))))
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3095 *6)))
- (-5 *1 (-929 *5 *6)) (-5 *3 (-350 *6)))))
+ (-2 (|:| |a| *6) (|:| |b| (-350 *6)) (|:| |c| (-350 *6)) (|:| -3094 *6)))
+ (-5 *1 (-928 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1091))
+ (|partial| -12 (-5 *5 (-1090))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-584 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1116) (-27) (-364 *8)))
- (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485))
- (-5 *2 (-584 *4)) (-5 *1 (-928 *8 *4)))))
+ *4 (-583 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1115) (-27) (-364 *8)))
+ (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484))
+ (-5 *2 (-583 *4)) (-5 *1 (-927 *8 *4)))))
(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1091))
+ (-12 (-5 *5 (-1090))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-584 *4)))
- (-5 *7 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1116) (-27) (-364 *8)))
- (-4 *8 (-13 (-392) (-120) (-951 *3) (-581 *3))) (-5 *3 (-485))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))))
- (-5 *1 (-927 *8 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485))))
- ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-926))))
- ((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-4 *1 (-926))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-831))))
- ((*1 *1 *1) (-4 *1 (-926))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-926)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-773)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1130)) (-5 *2 (-584 *1)) (-4 *1 (-924 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-5 *2 (-485)))))
+ *4 (-583 *4)))
+ (-5 *7 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1115) (-27) (-364 *8)))
+ (-4 *8 (-13 (-392) (-120) (-950 *3) (-580 *3))) (-5 *3 (-484))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))))
+ (-5 *1 (-926 *8 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484))))
+ ((*1 *1 *1) (-4 *1 (-915))) ((*1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-925))))
+ ((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-4 *1 (-925))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-830))))
+ ((*1 *1 *1) (-4 *1 (-925))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-925)) (-5 *2 (-772)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085 *1)) (-4 *1 (-925)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-925)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1129)) (-5 *2 (-583 *1)) (-4 *1 (-923 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-5 *2 (-484)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-924 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-923 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 *1)) (-4 *1 (-1036 *3)) (-4 *1 (-924 *3)) (-4 *3 (-1130)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-924 *2)) (-4 *2 (-1130)))))
+ (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *1 (-923 *3)) (-4 *3 (-1129)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-923 *2)) (-4 *2 (-1129)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484))
- (-5 *2 (-350 (-485)))))
+ (|partial| -12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484))
- (-4 *3 (-496))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-484)) (-5 *2 (-350 (-485)))))
+ (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483))
+ (-4 *3 (-495))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-483)) (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484))
- (-5 *2 (-350 (-485)))))
+ (|partial| -12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484))
- (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484))
- (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484))
- (-5 *2 (-350 (-485)))))
+ (|partial| -12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483))
+ (-5 *2 (-350 (-484)))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
+ (|partial| -12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
- ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *2 (-85)) (-5 *1 (-922 *3)) (-4 *3 (-951 (-350 (-485)))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-921 *3)) (-4 *3 (-950 (-350 (-484)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-348 *3)) (-4 *3 (-484)) (-4 *3 (-496))))
- ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-350 (-485)))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-348 *3)) (-4 *3 (-483)) (-4 *3 (-495))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (-12 (-4 *1 (-721 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
+ (-12 (-4 *1 (-720 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484)))))
((*1 *2 *1)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-744 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-743 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-751 *3)) (-4 *3 (-484)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-750 *3)) (-4 *3 (-483)) (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-912 *3)) (-4 *3 (-146)) (-4 *3 (-484)) (-5 *2 (-350 (-485)))))
- ((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-922 *3)) (-4 *3 (-951 *2)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
-(((*1 *2 *3) (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-920)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920))))
- ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-920)))))
+ (-12 (-4 *1 (-911 *3)) (-4 *3 (-146)) (-4 *3 (-483)) (-5 *2 (-350 (-484)))))
+ ((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-921 *3)) (-4 *3 (-950 *2)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
+(((*1 *2 *3) (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-919)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-919)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-485))) (-5 *4 (-485)) (-5 *2 (-51)) (-5 *1 (-919)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-918 *3)) (-14 *3 (-485)))))
+ (-12 (-5 *3 (-350 (-484))) (-5 *4 (-484)) (-5 *2 (-51)) (-5 *1 (-918)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-917 *3)) (-14 *3 (-484)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-348 *5)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *5) (|:| |radicand| (-584 *5))))
- (-5 *1 (-271 *5)) (-5 *4 (-695))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-485)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-914 *3)))))
+ (-12 (-5 *3 (-348 *5)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *5) (|:| |radicand| (-583 *5))))
+ (-5 *1 (-271 *5)) (-5 *4 (-694))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-915)) (-5 *2 (-484)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-913 *3)))))
(((*1 *1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146))))
((*1 *1 *1 *1) (-4 *1 (-413)))
- ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-794))))
- ((*1 *1 *1) (-5 *1 (-885)))
- ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-146)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1130)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-793))))
+ ((*1 *1 *1) (-5 *1 (-884)))
+ ((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-911 *2)) (-4 *2 (-146)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-908 *2)) (-4 *2 (-1129)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-831)) (-4 *4 (-312))
- (-5 *1 (-907 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *2 (-1056 *3 *4)) (-14 *3 (-830)) (-4 *4 (-312))
+ (-5 *1 (-906 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
- (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1)))
+ (-12 (-4 *3 (-961)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1)))
(-4 *1 (-364 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-559 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-664) *3))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-38 *3)) (-5 *1 (-558 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-663) *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-146)) (-4 *2 (-655 *3)) (-5 *1 (-595 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-664) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-48)))) (-5 *1 (-48))))
+ (-12 (-4 *3 (-146)) (-4 *2 (-654 *3)) (-5 *1 (-594 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-663) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-905 *2)) (-4 *4 (-1156 *3)) (-4 *2 (-258))
- (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3)))))
+ (-12 (-4 *3 (-904 *2)) (-4 *4 (-1155 *3)) (-4 *2 (-258))
+ (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-1014)) (-5 *2 (-1040 *3 (-551 *1)))
+ (-12 (-4 *3 (-495)) (-4 *3 (-1013)) (-5 *2 (-1039 *3 (-550 *1)))
(-4 *1 (-364 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1040 (-485) (-551 (-435)))) (-5 *1 (-435))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1039 (-484) (-550 (-435)))) (-5 *1 (-435))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
- (-5 *1 (-559 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
+ (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-664) *4))
- (-5 *1 (-595 *3 *4 *2)) (-4 *3 (-655 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-962))))
- ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)) (-4 *2 (-496))))
- ((*1 *1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-496)))))
+ (-12 (-4 *4 (-146)) (-4 *2 (|SubsetCategory| (-663) *4))
+ (-5 *1 (-594 *3 *4 *2)) (-4 *3 (-654 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-961))))
+ ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)) (-4 *2 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299))))
((*1 *1) (-4 *1 (-320)))
((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))
- ((*1 *1 *1) (-4 *1 (-484))) ((*1 *1) (-4 *1 (-484)))
- ((*1 *1 *1) (-5 *1 (-695)))
- ((*1 *2 *1) (-12 (-5 *2 (-814 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))
+ ((*1 *1 *1) (-4 *1 (-483))) ((*1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1) (-5 *1 (-694)))
+ ((*1 *2 *1) (-12 (-5 *2 (-813 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-5 *2 (-814 *4)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *1) (-12 (-4 *1 (-905 *2)) (-4 *2 (-484)) (-4 *2 (-496)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-813 *4)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
+ ((*1 *1) (-12 (-4 *1 (-904 *2)) (-4 *2 (-483)) (-4 *2 (-495)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-900 (-350 (-485)) (-774 *3) (-197 *4 (-695)) (-206 *3 (-350 (-485)))))
- (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-901 *3 *4)))))
+ (-899 (-350 (-484)) (-773 *3) (-197 *4 (-694)) (-206 *3 (-350 (-484)))))
+ (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-900 *3 *4)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-862 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-757))
- (-4 *6 (-718)) (-5 *1 (-900 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-861 *4 *6 *5)) (-4 *4 (-392)) (-4 *5 (-756))
+ (-4 *6 (-717)) (-5 *1 (-899 *4 *5 *6 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
+ (-12 (-5 *2 (-3 (-85) "failed")) (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-392)) (-4 *4 (-757)) (-4 *5 (-718)) (-5 *2 (-584 *6))
- (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-862 *3 *5 *4)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-756)) (-4 *5 (-717)) (-5 *2 (-583 *6))
+ (-5 *1 (-899 *3 *4 *5 *6)) (-4 *6 (-861 *3 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *3 (-392))
- (-4 *4 (-757)) (-4 *5 (-718)))))
+ (-12 (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-899 *3 *4 *5 *2)) (-4 *3 (-392))
+ (-4 *4 (-756)) (-4 *5 (-717)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-392)) (-4 *3 (-757)) (-4 *4 (-718)) (-5 *1 (-900 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *4 *3)))))
+ (-12 (-4 *2 (-392)) (-4 *3 (-756)) (-4 *4 (-717)) (-5 *1 (-899 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *4 *3)))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1156 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-899 *4 *2 *3 *5))
- (-4 *4 (-299)) (-4 *5 (-662 *2 *3)))))
+ (-12 (-4 *3 (-1155 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-898 *4 *2 *3 *5))
+ (-4 *4 (-299)) (-4 *5 (-661 *2 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))
- (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
- (-4 *2 (-862 (-350 (-858 *5)) *4 *3))))
+ (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)))))
+ (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2))
+ (-4 *2 (-861 (-350 (-857 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717))
(-4 *3
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $))
- (-15 -3833 ((-3 $ #1="failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $))
+ (-15 -3832 ((-3 $ #1="failed") (-1090))))))
+ (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *6))
+ (-12 (-5 *3 (-583 *6))
(-4 *6
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091))))))
- (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
- (-4 *2 (-862 (-858 *4) *5 *6)))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090))))))
+ (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
+ (-4 *2 (-861 (-857 *4) *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *3 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))
- (-4 *5 (-496)) (-5 *1 (-672 *4 *3 *5 *2))
- (-4 *2 (-862 (-350 (-858 *5)) *4 *3))))
+ (-12 (-4 *4 (-717)) (-4 *3 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)))))
+ (-4 *5 (-495)) (-5 *1 (-671 *4 *3 *5 *2))
+ (-4 *2 (-861 (-350 (-857 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717))
(-4 *3
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $))
- (-15 -3833 ((-3 $ #1="failed") (-1091))))))
- (-5 *1 (-898 *4 *5 *3 *2)) (-4 *2 (-862 (-858 *4) *5 *3))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $))
+ (-15 -3832 ((-3 $ #1="failed") (-1090))))))
+ (-5 *1 (-897 *4 *5 *3 *2)) (-4 *2 (-861 (-857 *4) *5 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *6))
+ (-12 (-5 *3 (-583 *6))
(-4 *6
- (-13 (-757)
- (-10 -8 (-15 -3974 ((-1091) $)) (-15 -3833 ((-3 $ #1#) (-1091))))))
- (-4 *4 (-962)) (-4 *5 (-718)) (-5 *1 (-898 *4 *5 *6 *2))
- (-4 *2 (-862 (-858 *4) *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
+ (-13 (-756)
+ (-10 -8 (-15 -3973 ((-1090) $)) (-15 -3832 ((-3 $ #1#) (-1090))))))
+ (-4 *4 (-961)) (-4 *5 (-717)) (-5 *1 (-897 *4 *5 *6 *2))
+ (-4 *2 (-861 (-857 *4) *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-695)) (-4 *1 (-897 *2)) (-4 *2 (-1116)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-784))))
- ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-784))))
- ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-130))))
- ((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855 *2)) (-5 *1 (-896 *2)) (-4 *2 (-962)))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *1 (-896 *2)) (-4 *2 (-1115)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-783))))
+ ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-130)) (-5 *1 (-783))))
+ ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-130))))
+ ((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-854 *2)) (-5 *1 (-895 *2)) (-4 *2 (-961)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-312))
- (-5 *2 (-584 (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5))))) (-5 *1 (-892 *5))
- (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)))))
+ (-5 *2 (-583 (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5))))) (-5 *1 (-891 *5))
+ (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-631 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
- (-5 *1 (-892 *5)))))
+ (-12 (-5 *2 (-630 *5)) (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
+ (-5 *1 (-891 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *2))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-312)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *2))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-69 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-312))
- (-5 *2 (-2 (|:| R (-631 *6)) (|:| A (-631 *6)) (|:| |Ainv| (-631 *6))))
- (-5 *1 (-892 *6)) (-5 *3 (-631 *6)))))
+ (-5 *2 (-2 (|:| R (-630 *6)) (|:| A (-630 *6)) (|:| |Ainv| (-630 *6))))
+ (-5 *1 (-891 *6)) (-5 *3 (-630 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
- (-4 *3 (-496)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-120)) (-4 *3 (-258))
+ (-4 *3 (-495)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-496))
- (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-392)) (-4 *3 (-495))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-392))
- (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-584 *3)) (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-5 *2 (-583 *3)) (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-584 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
- (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *1 (-891 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-85) *8 *8)) (-5 *4 (-1 *8 *8 *8))
+ (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *1 (-890 *5 *6 *7 *8)))))
(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-584 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-978 *6 *7 *8)) (-4 *6 (-496)) (-4 *7 (-718))
- (-4 *8 (-757)) (-5 *1 (-891 *6 *7 *8 *9)))))
+ (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-85) *9)) (-5 *4 (-1 (-85) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-977 *6 *7 *8)) (-4 *6 (-495)) (-4 *7 (-717))
+ (-4 *8 (-756)) (-5 *1 (-890 *6 *7 *8 *9)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3325 (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (|partial| -12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-416 *4 *5 *6 *7)) (|:| -3324 (-583 *7))))
+ (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *2)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-85)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-85)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
+ (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
+ (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
+ (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-978 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-584 *7)) (|:| |badPols| (-584 *7))))
- (-5 *1 (-891 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-977 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7))))
+ (-5 *1 (-890 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+ (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-1 (-85) *8))) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+ (-12 (-5 *3 (-583 (-1 (-85) *8))) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-978 *5 *6 *7)) (-4 *5 (-496))
- (-4 *6 (-718)) (-4 *7 (-757))
- (-5 *2 (-2 (|:| |goodPols| (-584 *8)) (|:| |badPols| (-584 *8))))
- (-5 *1 (-891 *5 *6 *7 *8)) (-5 *4 (-584 *8)))))
+ (-12 (-5 *3 (-1 (-85) *8)) (-4 *8 (-977 *5 *6 *7)) (-4 *5 (-495))
+ (-4 *6 (-717)) (-4 *7 (-756))
+ (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8))))
+ (-5 *1 (-890 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-978 *5 *6 *7))
- (-4 *5 (-496)) (-4 *6 (-718)) (-4 *7 (-757)) (-5 *2 (-85))
- (-5 *1 (-891 *5 *6 *7 *8)))))
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-977 *5 *6 *7))
+ (-4 *5 (-495)) (-4 *6 (-717)) (-4 *7 (-756)) (-5 *2 (-85))
+ (-5 *1 (-890 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-85)) (-5 *1 (-891 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-85)) (-5 *1 (-890 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
+ (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-891 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *1 (-890 *4 *5 *6 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-584 *7) (-584 *7))) (-5 *2 (-584 *7))
- (-4 *7 (-978 *4 *5 *6)) (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *1 (-891 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7))
+ (-4 *7 (-977 *4 *5 *6)) (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-5 *1 (-890 *4 *5 *6 *7)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-584 *3))
- (-5 *1 (-891 *4 *5 *6 *3)) (-4 *3 (-978 *4 *5 *6)))))
+ (-12 (-4 *4 (-495)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-583 *3))
+ (-5 *1 (-890 *4 *5 *6 *3)) (-4 *3 (-977 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-891 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-890 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-584 *5)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-583 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-890 *4 *5 *3 *6)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-4 *6 (-978 *4 *5 *3)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-4 *6 (-977 *4 *5 *3)) (-5 *2 (-85)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
+ (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-4 *5 (-977 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
+ (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-4 *5 (-977 *3 *4 *2)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
- (-4 *5 (-978 *3 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-889 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
+ (-4 *5 (-977 *3 *4 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-813 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757)) (-4 *6 (-978 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3132 *1) (|:| |upper| *1)))
- (-4 *1 (-890 *4 *5 *3 *6)))))
+ (-12 (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756)) (-4 *6 (-977 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3131 *1) (|:| |upper| *1)))
+ (-4 *1 (-889 *4 *5 *3 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
+ (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
(-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-890 *4 *5 *6 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *3 (-978 *4 *5 *6)) (-4 *4 (-496))
+ (-12 (-4 *1 (-889 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *3 (-977 *4 *5 *6)) (-4 *4 (-495))
(-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-584 *6)) (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-978 *3 *4 *5)) (-4 *3 (-496)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-584 (-584 (-855 (-179)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-584 (-584 (-855 (-179))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-867)) (-5 *2 (-1002 (-179)))))
- ((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
-(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1002 (-179))))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-962)) (-4 *2 (-1014))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *6 (-196 (-3959 *3) (-695)))
+ (-12 (-5 *2 (-583 *6)) (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-889 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-977 *3 *4 *5)) (-4 *3 (-495)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-583 (-583 (-854 (-179)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-583 (-583 (-854 (-179))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-866)) (-5 *2 (-1001 (-179)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
+(((*1 *2 *1) (-12 (-4 *1 (-887)) (-5 *2 (-1001 (-179))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
+ ((*1 *2 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1013))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *6 (-196 (-3958 *3) (-694)))
(-14 *7
- (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
- (-2 (|:| -2401 *5) (|:| -2402 *6))))
- (-5 *2 (-651 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-757))
- (-4 *8 (-862 *4 *6 (-774 *3)))))
+ (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
+ (-2 (|:| -2400 *5) (|:| -2401 *6))))
+ (-5 *2 (-650 *5 *6 *7)) (-5 *1 (-401 *3 *4 *5 *6 *7 *8)) (-4 *5 (-756))
+ (-4 *8 (-861 *4 *6 (-773 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-664)) (-4 *2 (-757)) (-5 *1 (-675 *3 *2)) (-4 *3 (-962))))
+ (-12 (-4 *2 (-663)) (-4 *2 (-756)) (-5 *1 (-674 *3 *2)) (-4 *3 (-961))))
((*1 *1 *1)
- (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717))))
+ (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-584 (-831))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-831))
- (-4 *2 (-312)) (-14 *5 (-907 *4 *2))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *1 (-125 *4 *2 *5)) (-14 *4 (-830))
+ (-4 *2 (-312)) (-14 *5 (-906 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-651 *5 *6 *7)) (-4 *5 (-757)) (-4 *6 (-196 (-3959 *4) (-695)))
+ (-12 (-5 *3 (-650 *5 *6 *7)) (-4 *5 (-756)) (-4 *6 (-196 (-3958 *4) (-694)))
(-14 *7
- (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *6))
- (-2 (|:| -2401 *5) (|:| -2402 *6))))
- (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8))
- (-4 *8 (-862 *2 *6 (-774 *4)))))
- ((*1 *1 *2 *3) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-72)) (-4 *3 (-760))))
+ (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *6))
+ (-2 (|:| -2400 *5) (|:| -2401 *6))))
+ (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-5 *1 (-401 *4 *2 *5 *6 *7 *8))
+ (-4 *8 (-861 *2 *6 (-773 *4)))))
+ ((*1 *1 *2 *3) (-12 (-4 *1 (-449 *2 *3)) (-4 *2 (-72)) (-4 *3 (-759))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-496)) (-5 *1 (-563 *2 *4)) (-4 *4 (-1156 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-646 *2)) (-4 *2 (-962))))
- ((*1 *1 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-962)) (-4 *3 (-664))))
+ (-12 (-5 *3 (-484)) (-4 *2 (-495)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1155 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-645 *2)) (-4 *2 (-961))))
+ ((*1 *1 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-961)) (-4 *3 (-663))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *5)) (-5 *3 (-584 (-695))) (-4 *1 (-680 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-757))))
+ (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-694))) (-4 *1 (-679 *4 *5))
+ (-4 *4 (-961)) (-4 *5 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-680 *4 *2)) (-4 *4 (-962)) (-4 *2 (-757))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-679 *4 *2)) (-4 *4 (-961)) (-4 *2 (-756))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-761 *2)) (-4 *2 (-961))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 (-695))) (-4 *1 (-862 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-718)) (-4 *6 (-757))))
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-694))) (-4 *1 (-861 *4 *5 *6))
+ (-4 *4 (-961)) (-4 *5 (-717)) (-4 *6 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *1 (-862 *4 *5 *2)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *2 (-757))))
+ (-12 (-5 *3 (-694)) (-4 *1 (-861 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *2 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *6)) (-5 *3 (-584 *5)) (-4 *1 (-887 *4 *5 *6))
- (-4 *4 (-962)) (-4 *5 (-717)) (-4 *6 (-757))))
+ (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-886 *4 *5 *6))
+ (-4 *4 (-961)) (-4 *5 (-716)) (-4 *6 (-756))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-887 *4 *3 *2)) (-4 *4 (-962)) (-4 *3 (-717)) (-4 *2 (-757)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-532 *3)) (-4 *3 (-962))))
+ (-12 (-4 *1 (-886 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-716)) (-4 *2 (-756)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-4 *1 (-887 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-717)) (-4 *5 (-757))
+ (-12 (-4 *1 (-886 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-716)) (-4 *5 (-756))
(-5 *2 (-85)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258))))
- ((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164))))
- ((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-4 *1 (-780 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164))))
+ ((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-4 *1 (-779 *2)))
((*1 *1 *1)
- (-12 (-4 *1 (-887 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-717)) (-4 *4 (-757)))))
-(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-831))) (-5 *1 (-885)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1070 (-885))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-831) (-831)))) (-5 *1 (-885)))))
-(((*1 *2 *1) (-12 (-5 *2 (-831)) (-5 *1 (-885)))))
+ (-12 (-4 *1 (-886 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-716)) (-4 *4 (-756)))))
+(((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-830))) (-5 *1 (-884)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1069 (-884))) (-5 *1 (-884)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-830) (-830)))) (-5 *1 (-884)))))
+(((*1 *2 *1) (-12 (-5 *2 (-830)) (-5 *1 (-884)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-496)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-495)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *3 (-496)) (-5 *1 (-883 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-5 *4 (-694)) (-4 *3 (-495)) (-5 *1 (-882 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *2 (-496)) (-5 *1 (-883 *2 *4)) (-4 *4 (-1156 *2)))))
+ (-12 (-5 *3 (-694)) (-4 *2 (-495)) (-5 *1 (-882 *2 *4)) (-4 *4 (-1155 *2)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1))) (-4 *1 (-258))))
+ (-12 (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1))) (-4 *1 (-258))))
((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
+ (|partial| -12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1)))
(-4 *1 (-336 *3))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1973 (-695)) (|:| -2904 (-695)))) (-5 *1 (-695))))
+ (-12 (-5 *2 (-2 (|:| -1972 (-694)) (|:| -2903 (-694)))) (-5 *1 (-694))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -2878 *4))) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2877 *4))) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2878 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-392)) (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2877 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *2 (-496)) (-4 *2 (-392)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-495)) (-4 *2 (-392)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 (-695))) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 (-694))) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-883 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-882 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3759 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3146 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3145 *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3146 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3145 *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3146 *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3145 *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496))
+ (-12 (-4 *4 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (-12 (-5 *4 (-694)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-496))
+ (-12 (-5 *4 (-694)) (-4 *5 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))))
+ (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-496))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-883 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (-12 (-5 *4 (-694)) (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-882 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-496))
+ (-12 (-5 *4 (-694)) (-4 *5 (-495))
(-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-883 *5 *3)) (-4 *3 (-1156 *5)))))
+ (-5 *1 (-882 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-496)) (-5 *1 (-883 *4 *2)) (-4 *2 (-1156 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-495)) (-5 *1 (-882 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3758 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3757 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3758 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-496))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3758 *4)))
- (-5 *1 (-883 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-495))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3757 *4)))
+ (-5 *1 (-882 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *1)
- (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988)))
- (-2562 (|has| *1 (-6 -3980)))))
- ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
- ((*1 *1) (-4 *1 (-753))) ((*1 *1 *1 *1) (-4 *1 (-760)))
- ((*1 *2 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987)))
+ (-2561 (|has| *1 (-6 -3979)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))
+ ((*1 *1) (-4 *1 (-752))) ((*1 *1 *1 *1) (-4 *1 (-759)))
+ ((*1 *2 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-882 *2)) (-4 *2 (-757)))))
-(((*1 *1) (-4 *1 (-881))))
-(((*1 *1) (-4 *1 (-881))))
-(((*1 *1 *1 *1) (-4 *1 (-881))))
-(((*1 *1 *1 *1) (-4 *1 (-881))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-168 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-584 (-1091))) (-5 *1 (-578 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-1014)) (-5 *1 (-879 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *4)) (-5 *1 (-796 *3 *4 *5))
- (-4 *3 (-1014)) (-4 *5 (-609 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-878 *4)) (-4 *4 (-1014)) (-5 *2 (-1010 *4)) (-5 *1 (-879 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-633 (-783 (-878 *3) (-878 *3)))) (-5 *1 (-878 *3))
- (-4 *3 (-1014)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-697))) (-5 *1 (-86))))
- ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-697)) (-5 *1 (-86))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-877)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-876 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *2 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1014)) (-5 *1 (-876 *3 *2)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-773))))
- ((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1186)) (-5 *1 (-875)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-584 *3)) (-5 *1 (-874 *3)) (-4 *3 (-484)))))
-(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-484)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-881 *2)) (-4 *2 (-756)))))
+(((*1 *1) (-4 *1 (-880))))
+(((*1 *1) (-4 *1 (-880))))
+(((*1 *1 *1 *1) (-4 *1 (-880))))
+(((*1 *1 *1 *1) (-4 *1 (-880))))
+(((*1 *1 *2) (-12 (-5 *2 (-577 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-168 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-168 *3)) (-14 *3 (-583 (-1090))) (-5 *1 (-577 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1013)) (-5 *1 (-878 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *4)) (-5 *1 (-795 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-608 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-877 *4)) (-4 *4 (-1013)) (-5 *2 (-1009 *4)) (-5 *1 (-878 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 (-877 *3))) (-5 *1 (-877 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
+ (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-632 (-782 (-877 *3) (-877 *3)))) (-5 *1 (-877 *3))
+ (-4 *3 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-696))) (-5 *1 (-86))))
+ ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-696)) (-5 *1 (-86))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-876)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-875 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *2 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1013)) (-5 *1 (-875 *3 *2)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-772))))
+ ((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1185)) (-5 *1 (-874)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-873 *3)) (-4 *3 (-483)))))
+(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-483)))))
(((*1 *1) (-4 *1 (-299)))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-496) (-120)))
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-13 (-495) (-120)))
(-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-584 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
+ (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1085 *5)))
+ (|:| |prim| (-1085 *5))))
(-5 *1 (-375 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-496) (-120)))
+ (-12 (-4 *4 (-13 (-495) (-120)))
(-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3))
- (|:| |prim| (-1086 *3))))
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1085 *3)) (|:| |pol2| (-1085 *3))
+ (|:| |prim| (-1085 *3))))
(-5 *1 (-375 *4 *3)) (-4 *3 (-27)) (-4 *3 (-364 *4))))
((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-858 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-312) (-120)))
+ (-12 (-5 *3 (-857 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| |coef1| (-485)) (|:| |coef2| (-485)) (|:| |prim| (-1086 *5))))
- (-5 *1 (-873 *5))))
+ (-2 (|:| |coef1| (-484)) (|:| |coef2| (-484)) (|:| |prim| (-1085 *5))))
+ (-5 *1 (-872 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091)))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090)))
(-4 *5 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-873 *5))))
+ (-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 *5)))
+ (|:| |prim| (-1085 *5))))
+ (-5 *1 (-872 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-5 *5 (-1091))
+ (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-5 *5 (-1090))
(-4 *6 (-13 (-312) (-120)))
(-5 *2
- (-2 (|:| -3956 (-584 (-485))) (|:| |poly| (-584 (-1086 *6)))
- (|:| |prim| (-1086 *6))))
- (-5 *1 (-873 *6)))))
+ (-2 (|:| -3955 (-583 (-484))) (|:| |poly| (-583 (-1085 *6)))
+ (|:| |prim| (-1085 *6))))
+ (-5 *1 (-872 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1091)) (-5 *1 (-520 *2)) (-4 *2 (-951 *3)) (-4 *2 (-312))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-1090)) (-5 *1 (-519 *2)) (-4 *2 (-950 *3)) (-4 *2 (-312))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-569 *4 *2))
- (-4 *2 (-13 (-364 *4) (-916) (-1116)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-568 *4 *2))
+ (-4 *2 (-13 (-364 *4) (-915) (-1115)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496))
- (-5 *1 (-569 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-872)) (-5 *2 (-1091))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-872)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-831)) (-4 *5 (-496)) (-5 *2 (-631 *5))
- (-5 *1 (-869 *5 *3)) (-4 *3 (-601 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-866)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496)) (-4 *3 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| (-584 *3))))
- (-5 *1 (-865 *5 *6 *7 *3 *8)) (-5 *4 (-695))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495))
+ (-5 *1 (-568 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-871)) (-5 *2 (-1090))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-871)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-830)) (-4 *5 (-495)) (-5 *2 (-630 *5))
+ (-5 *1 (-868 *5 *3)) (-4 *3 (-600 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-865)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495)) (-4 *3 (-861 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| (-583 *3))))
+ (-5 *1 (-864 *5 *6 *7 *3 *8)) (-5 *4 (-694))
(-4 *8
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *3)) (-15 -3000 (*3 $)) (-15 -2999 (*3 $))))))))
+ (-10 -8 (-15 -3947 ($ *3)) (-15 -2999 (*3 $)) (-15 -2998 (*3 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
- (-4 *8 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *3)))
- (-5 *1 (-865 *5 *6 *7 *8 *3)) (-5 *4 (-695))
+ (-12 (-4 *7 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495))
+ (-4 *8 (-861 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| *3)))
+ (-5 *1 (-864 *5 *6 *7 *8 *3)) (-5 *4 (-694))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))))
+ (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-485))) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-496))
- (-4 *8 (-862 *7 *5 *6))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *9) (|:| |radicand| *9)))
- (-5 *1 (-865 *5 *6 *7 *8 *9)) (-5 *4 (-695))
+ (-12 (-5 *3 (-350 (-484))) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-495))
+ (-4 *8 (-861 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *9) (|:| |radicand| *9)))
+ (-5 *1 (-864 *5 *6 *7 *8 *9)) (-5 *4 (-694))
(-4 *9
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *8)) (-15 -3000 (*8 $)) (-15 -2999 (*8 $))))))))
+ (-10 -8 (-15 -3947 ($ *8)) (-15 -2999 (*8 $)) (-15 -2998 (*8 $))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-718)) (-4 *6 (-757)) (-4 *3 (-496)) (-4 *7 (-862 *3 *5 *6))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *8) (|:| |radicand| *8)))
- (-5 *1 (-865 *5 *6 *3 *7 *8)) (-5 *4 (-695))
+ (-12 (-4 *5 (-717)) (-4 *6 (-756)) (-4 *3 (-495)) (-4 *7 (-861 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *8) (|:| |radicand| *8)))
+ (-5 *1 (-864 *5 *6 *3 *7 *8)) (-5 *4 (-694))
(-4 *8
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-962)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| |val| *1) (|:| -2402 (-485)))) (-4 *1 (-364 *3))))
+ (|partial| -12 (-4 *3 (-961)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2401 (-484)))) (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-801 *3))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-800 *3))))
+ (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2402 (-485))))
- (-5 *1 (-863 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
+ (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2401 (-484))))
+ (-5 *1 (-862 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-962)) (-4 *4 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4))))
+ (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-961)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-4 *4 (-962)) (-4 *4 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *4))))
+ (|partial| -12 (-5 *3 (-86)) (-4 *4 (-961)) (-4 *4 (-1013))
+ (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| |var| (-551 *1)) (|:| -2402 (-485)))) (-4 *1 (-364 *3))))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| |var| (-550 *1)) (|:| -2401 (-484)))) (-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-801 *3)) (|:| -2402 (-695))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-800 *3)) (|:| -2401 (-694))))
+ (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-695))))))
+ (|partial| -12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-694))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2402 (-485))))
- (-5 *1 (-863 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
+ (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2401 (-484))))
+ (-5 *1 (-862 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1026)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
+ (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-1013)) (-5 *2 (-583 *1))
(-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-861 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
+ (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014)) (-5 *2 (-584 *1))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013)) (-5 *2 (-583 *1))
(-4 *1 (-364 *3))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5))))
+ (|partial| -12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-861 *3 *4 *5))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-962))
- (-4 *7 (-862 *6 *4 *5)) (-5 *2 (-584 *3)) (-5 *1 (-863 *4 *5 *6 *7 *3))
+ (|partial| -12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-961))
+ (-4 *7 (-861 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-862 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-584 *1)) (-4 *1 (-335 *3 *4))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-583 *1)) (-4 *1 (-335 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-675 *3 *4))) (-5 *1 (-675 *3 *4)) (-4 *3 (-962))
- (-4 *4 (-664))))
+ (-12 (-5 *2 (-583 (-674 *3 *4))) (-5 *1 (-674 *3 *4)) (-4 *3 (-961))
+ (-4 *4 (-663))))
((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-962)) (-4 *2 (-717))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-762 *3)) (-4 *3 (-962)) (-5 *2 (-695))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-861 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277 *3 *2)) (-4 *3 (-961)) (-4 *2 (-716))))
+ ((*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-761 *3)) (-4 *3 (-961)) (-5 *2 (-694))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-584 (-695)))))
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-583 (-694)))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-862 *4 *5 *3)) (-4 *4 (-962)) (-4 *5 (-718)) (-4 *3 (-757))
- (-5 *2 (-695)))))
+ (-12 (-4 *1 (-861 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-717)) (-4 *3 (-756))
+ (-5 *2 (-694)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *1 (-862 *4 *5 *6)) (-4 *4 (-962)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-583 *6)) (-4 *1 (-861 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-862 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-695)))))
+ (-12 (-4 *1 (-861 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-694)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *1))
- (-4 *1 (-862 *3 *4 *5)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *1))
+ (-4 *1 (-861 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962)) (-4 *2 (-392))))
+ (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961)) (-4 *2 (-392))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-1156 (-485))) (-5 *2 (-584 (-485)))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-1155 (-484))) (-5 *2 (-583 (-484)))
(-5 *1 (-426 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-392))))
+ ((*1 *2 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-392))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-862 *3 *4 *2)) (-4 *3 (-962)) (-4 *4 (-718)) (-4 *2 (-757))
+ (-12 (-4 *1 (-861 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-717)) (-4 *2 (-756))
(-4 *3 (-392)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-485)) (-4 *5 (-756)) (-4 *5 (-312))
- (-5 *2 (-695)) (-5 *1 (-857 *5 *6)) (-4 *6 (-1156 *5)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-484)) (-4 *5 (-755)) (-4 *5 (-312))
+ (-5 *2 (-694)) (-5 *1 (-856 *5 *6)) (-4 *6 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-756)) (-4 *4 (-312)) (-5 *2 (-695))
- (-5 *1 (-857 *4 *5)) (-4 *5 (-1156 *4)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-755)) (-4 *4 (-312)) (-5 *2 (-694))
+ (-5 *1 (-856 *4 *5)) (-4 *5 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-312)) (-4 *2 (-756)) (-5 *1 (-857 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *2 (-312)) (-4 *2 (-755)) (-5 *1 (-856 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
- (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
+ (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-584 *3)) (-5 *1 (-857 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-206 *4 *5))
- (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-858 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-858 *5)) (-4 *5 (-962)) (-5 *2 (-421 *4 *5))
- (-5 *1 (-856 *4 *5)) (-14 *4 (-584 (-1091))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-206 *4 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-962))
- (-5 *2 (-421 *4 *5)) (-5 *1 (-856 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1086 (-485))) (-5 *2 (-485)) (-5 *1 (-854)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-165)) (-5 *3 (-485))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *1 (-854)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485))))
- ((*1 *2 *3) (-12 (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-854)) (-5 *3 (-485)))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-583 *3)) (-5 *1 (-856 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-206 *4 *5))
+ (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961))
+ (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961))
+ (-5 *2 (-857 *5)) (-5 *1 (-855 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-857 *5)) (-4 *5 (-961)) (-5 *2 (-421 *4 *5))
+ (-5 *1 (-855 *4 *5)) (-14 *4 (-583 (-1090))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-421 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961))
+ (-5 *2 (-206 *4 *5)) (-5 *1 (-855 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-961))
+ (-5 *2 (-421 *4 *5)) (-5 *1 (-855 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085 (-484))) (-5 *2 (-484)) (-5 *1 (-853)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-165)) (-5 *3 (-484))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *1 (-853)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-853)) (-5 *3 (-484)))))
(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-801 *6)))
- (-5 *5 (-1 (-799 *6 *8) *8 (-801 *6) (-799 *6 *8))) (-4 *6 (-1014))
- (-4 *8 (-13 (-962) (-554 (-801 *6)) (-951 *7))) (-5 *2 (-799 *6 *8))
- (-4 *7 (-962)) (-5 *1 (-853 *6 *7 *8)))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-800 *6)))
+ (-5 *5 (-1 (-798 *6 *8) *8 (-800 *6) (-798 *6 *8))) (-4 *6 (-1013))
+ (-4 *8 (-13 (-961) (-553 (-800 *6)) (-950 *7))) (-5 *2 (-798 *6 *8))
+ (-4 *7 (-961)) (-5 *1 (-852 *6 *7 *8)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *3 (-139 *6))
- (-4 (-858 *6) (-797 *5)) (-4 *6 (-13 (-797 *5) (-146)))
+ (-12 (-5 *2 (-798 *5 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *3 (-139 *6))
+ (-4 (-857 *6) (-796 *5)) (-4 *6 (-13 (-796 *5) (-146)))
(-5 *1 (-152 *5 *6 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-799 *4 *1)) (-5 *3 (-801 *4)) (-4 *1 (-797 *4))
- (-4 *4 (-1014))))
+ (-12 (-5 *2 (-798 *4 *1)) (-5 *3 (-800 *4)) (-4 *1 (-796 *4))
+ (-4 *4 (-1013))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
- (-4 *6 (-13 (-1014) (-951 *3))) (-4 *3 (-797 *5)) (-5 *1 (-843 *5 *3 *6))))
+ (-12 (-5 *2 (-798 *5 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-1013) (-950 *3))) (-4 *3 (-796 *5)) (-5 *1 (-842 *5 *3 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
- (-4 *3 (-13 (-364 *6) (-554 *4) (-797 *5) (-951 (-551 $))))
- (-5 *4 (-801 *5)) (-4 *6 (-13 (-496) (-797 *5))) (-5 *1 (-844 *5 *6 *3))))
+ (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-364 *6) (-553 *4) (-796 *5) (-950 (-550 $))))
+ (-5 *4 (-800 *5)) (-4 *6 (-13 (-495) (-796 *5))) (-5 *1 (-843 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 (-485) *3)) (-5 *4 (-801 (-485))) (-4 *3 (-484))
- (-5 *1 (-845 *3))))
+ (-12 (-5 *2 (-798 (-484) *3)) (-5 *4 (-800 (-484))) (-4 *3 (-483))
+ (-5 *1 (-844 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *6)) (-5 *3 (-551 *6)) (-4 *5 (-1014))
- (-4 *6 (-13 (-1014) (-951 (-551 $)) (-554 *4) (-797 *5))) (-5 *4 (-801 *5))
- (-5 *1 (-846 *5 *6))))
+ (-12 (-5 *2 (-798 *5 *6)) (-5 *3 (-550 *6)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-1013) (-950 (-550 $)) (-553 *4) (-796 *5))) (-5 *4 (-800 *5))
+ (-5 *1 (-845 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-796 *5 *6 *3)) (-5 *4 (-801 *5)) (-4 *5 (-1014))
- (-4 *6 (-797 *5)) (-4 *3 (-609 *6)) (-5 *1 (-847 *5 *6 *3))))
+ (-12 (-5 *2 (-795 *5 *6 *3)) (-5 *4 (-800 *5)) (-4 *5 (-1013))
+ (-4 *6 (-796 *5)) (-4 *3 (-608 *6)) (-5 *1 (-846 *5 *6 *3))))
((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-799 *6 *3) *8 (-801 *6) (-799 *6 *3))) (-4 *8 (-757))
- (-5 *2 (-799 *6 *3)) (-5 *4 (-801 *6)) (-4 *6 (-1014))
- (-4 *3 (-13 (-862 *9 *7 *8) (-554 *4))) (-4 *7 (-718))
- (-4 *9 (-13 (-962) (-797 *6))) (-5 *1 (-848 *6 *7 *8 *9 *3))))
+ (-12 (-5 *5 (-1 (-798 *6 *3) *8 (-800 *6) (-798 *6 *3))) (-4 *8 (-756))
+ (-5 *2 (-798 *6 *3)) (-5 *4 (-800 *6)) (-4 *6 (-1013))
+ (-4 *3 (-13 (-861 *9 *7 *8) (-553 *4))) (-4 *7 (-717))
+ (-4 *9 (-13 (-961) (-796 *6))) (-5 *1 (-847 *6 *7 *8 *9 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014))
- (-4 *3 (-13 (-862 *8 *6 *7) (-554 *4))) (-5 *4 (-801 *5)) (-4 *7 (-797 *5))
- (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-13 (-962) (-797 *5)))
- (-5 *1 (-848 *5 *6 *7 *8 *3))))
+ (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013))
+ (-4 *3 (-13 (-861 *8 *6 *7) (-553 *4))) (-5 *4 (-800 *5)) (-4 *7 (-796 *5))
+ (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-13 (-961) (-796 *5)))
+ (-5 *1 (-847 *5 *6 *7 *8 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 *3)) (-4 *5 (-1014)) (-4 *3 (-905 *6))
- (-4 *6 (-13 (-496) (-797 *5) (-554 *4))) (-5 *4 (-801 *5))
- (-5 *1 (-851 *5 *6 *3))))
+ (-12 (-5 *2 (-798 *5 *3)) (-4 *5 (-1013)) (-4 *3 (-904 *6))
+ (-4 *6 (-13 (-495) (-796 *5) (-553 *4))) (-5 *4 (-800 *5))
+ (-5 *1 (-850 *5 *6 *3))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-799 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-801 *5))
- (-4 *5 (-1014)) (-5 *1 (-852 *5))))
+ (-12 (-5 *2 (-798 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-800 *5))
+ (-4 *5 (-1013)) (-5 *1 (-851 *5))))
((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-584 (-801 *7))) (-5 *5 (-1 *9 (-584 *9)))
- (-5 *6 (-1 (-799 *7 *9) *9 (-801 *7) (-799 *7 *9))) (-4 *7 (-1014))
- (-4 *9 (-13 (-962) (-554 (-801 *7)) (-951 *8))) (-5 *2 (-799 *7 *9))
- (-5 *3 (-584 *9)) (-4 *8 (-962)) (-5 *1 (-853 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1014) (-951 *5))) (-4 *5 (-797 *4))
- (-4 *4 (-1014)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-843 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
- ((*1 *2 *2) (-12 (-4 *3 (-1014)) (-5 *1 (-842 *3 *2)) (-4 *2 (-364 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1091)) (-5 *4 (-447)) (-5 *2 (-265 (-485))) (-5 *1 (-841))))
+ (-12 (-5 *4 (-583 (-800 *7))) (-5 *5 (-1 *9 (-583 *9)))
+ (-5 *6 (-1 (-798 *7 *9) *9 (-800 *7) (-798 *7 *9))) (-4 *7 (-1013))
+ (-4 *9 (-13 (-961) (-553 (-800 *7)) (-950 *8))) (-5 *2 (-798 *7 *9))
+ (-5 *3 (-583 *9)) (-4 *8 (-961)) (-5 *1 (-852 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-85) *6)) (-4 *6 (-13 (-1013) (-950 *5))) (-4 *5 (-796 *4))
+ (-4 *4 (-1013)) (-5 *2 (-1 (-85) *5)) (-5 *1 (-842 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
+ ((*1 *2 *2) (-12 (-4 *3 (-1013)) (-5 *1 (-841 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1090)) (-5 *4 (-446)) (-5 *2 (-265 (-484))) (-5 *1 (-840))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-447)) (-4 *4 (-1014)) (-5 *1 (-842 *4 *2)) (-4 *2 (-364 *4)))))
+ (-12 (-5 *3 (-446)) (-4 *4 (-1013)) (-5 *1 (-841 *4 *2)) (-4 *2 (-364 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-1002 (-179))))
- (-5 *1 (-840)))))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-1001 (-179))))
+ (-5 *1 (-839)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-836))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-836))))
((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-839))))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-838))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-855 (-179)) (-179))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-839)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-179))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-838)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-837))))
+ (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-836))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1 (-179) (-179)))) (-5 *3 (-1002 (-179)))
- (-5 *1 (-837))))
+ (-12 (-5 *2 (-583 (-1 (-179) (-179)))) (-5 *3 (-1001 (-179)))
+ (-5 *1 (-836))))
((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
+ (-4 *3 (-553 (-473)))))
((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
+ (-4 *3 (-553 (-473)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838))))
((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838))))
((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-837))))
- ((*1 *2 *1) (-12 (-5 *2 (-1002 (-179))) (-5 *1 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-179)))) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-839)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-839)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-838)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-836))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1001 (-179))) (-5 *1 (-838)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-179)))) (-5 *1 (-838)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-838)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-838)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-836))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1002 (-179))) (-5 *1 (-837))))
+ (-12 (-5 *2 (-1 (-179) (-179))) (-5 *3 (-1001 (-179))) (-5 *1 (-836))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091)) (-5 *5 (-1002 (-179))) (-5 *2 (-837)) (-5 *1 (-838 *3))
- (-4 *3 (-554 (-474)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-5 *2 (-837)) (-5 *1 (-838 *3)) (-4 *3 (-554 (-474))))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-407))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
-(((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-837)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85))
- (-5 *1 (-836 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-85))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091))))
- (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-862 *3 *5 *4)))))
+ (-12 (-5 *4 (-1090)) (-5 *5 (-1001 (-179))) (-5 *2 (-836)) (-5 *1 (-837 *3))
+ (-4 *3 (-553 (-473)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-5 *2 (-836)) (-5 *1 (-837 *3)) (-4 *3 (-553 (-473))))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
+(((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-836)))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-836)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85))
+ (-5 *1 (-835 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-85))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090))))
+ (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *2)) (-4 *2 (-861 *3 *5 *4)))))
(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
- (-5 *4 (-631 *12)) (-5 *5 (-584 (-350 (-858 *9)))) (-5 *6 (-584 (-584 *12)))
- (-5 *7 (-695)) (-5 *8 (-485)) (-4 *9 (-13 (-258) (-120)))
- (-4 *12 (-862 *9 *11 *10)) (-4 *10 (-13 (-757) (-554 (-1091))))
- (-4 *11 (-718))
- (-5 *2
- (-2 (|:| |eqzro| (-584 *12)) (|:| |neqzro| (-584 *12))
- (|:| |wcond| (-584 (-858 *9)))
+ (-2 (|:| |det| *12) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))
+ (-5 *4 (-630 *12)) (-5 *5 (-583 (-350 (-857 *9)))) (-5 *6 (-583 (-583 *12)))
+ (-5 *7 (-694)) (-5 *8 (-484)) (-4 *9 (-13 (-258) (-120)))
+ (-4 *12 (-861 *9 *11 *10)) (-4 *10 (-13 (-756) (-553 (-1090))))
+ (-4 *11 (-717))
+ (-5 *2
+ (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12))
+ (|:| |wcond| (-583 (-857 *9)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *9))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *9)))))))))
- (-5 *1 (-836 *9 *10 *11 *12)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *9))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *9)))))))))
+ (-5 *1 (-835 *9 *10 *11 *12)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-631 *7)) (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5))
- (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-695)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091))))
- (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (-5 *1 (-836 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-584 *8))) (-5 *3 (-584 *8)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091))))
- (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-836 *5 *6 *7 *8)))))
+ (-12 (-5 *2 (-630 *7)) (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5))
+ (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)) (-5 *1 (-835 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *8)) (-5 *4 (-694)) (-4 *8 (-861 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090))))
+ (-4 *7 (-717))
+ (-5 *2
+ (-583
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-484)))
+ (|:| |cols| (-583 (-484))))))
+ (-5 *1 (-835 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-861 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090))))
+ (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-835 *5 *6 *7 *8)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-584 (-584 (-485)))) (-5 *1 (-836 *4 *5 *6 *7))
- (-5 *3 (-485)) (-4 *7 (-862 *4 *6 *5)))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)) (-5 *2 (-583 (-583 (-484)))) (-5 *1 (-835 *4 *5 *6 *7))
+ (-5 *3 (-484)) (-4 *7 (-861 *4 *6 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 (-584 *6))) (-4 *6 (-862 *3 *5 *4))
- (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-757) (-554 (-1091))))
- (-4 *5 (-718)) (-5 *1 (-836 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-861 *3 *5 *4))
+ (-4 *3 (-13 (-258) (-120))) (-4 *4 (-13 (-756) (-553 (-1090))))
+ (-4 *5 (-717)) (-5 *1 (-835 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-584
- (-2 (|:| -3110 (-695))
+ (-583
+ (-2 (|:| -3109 (-694))
(|:| |eqns|
- (-584
- (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *7)))))
- (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695))
- (-5 *1 (-836 *4 *5 *6 *7)))))
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-484)))
+ (|:| |cols| (-583 (-484))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694))
+ (-5 *1 (-835 *4 *5 *6 *7)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-584
- (-2 (|:| -3110 (-695))
+ (-583
+ (-2 (|:| -3109 (-694))
(|:| |eqns|
- (-584
- (-2 (|:| |det| *7) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *7)))))
- (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718)) (-5 *2 (-695))
- (-5 *1 (-836 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-584 *3)) (-5 *1 (-836 *4 *5 *6 *3))
- (-4 *3 (-862 *4 *6 *5)))))
+ (-583
+ (-2 (|:| |det| *7) (|:| |rows| (-583 (-484)))
+ (|:| |cols| (-583 (-484))))))
+ (|:| |fgb| (-583 *7)))))
+ (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717)) (-5 *2 (-694))
+ (-5 *1 (-835 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)) (-5 *2 (-583 *3)) (-5 *1 (-835 *4 *5 *6 *3))
+ (-4 *3 (-861 *4 *6 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |mat| (-631 (-350 (-858 *4)))) (|:| |vec| (-584 (-350 (-858 *4))))
- (|:| -3110 (-695)) (|:| |rows| (-584 (-485))) (|:| |cols| (-584 (-485)))))
- (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718))
- (-5 *2
- (-2 (|:| |partsol| (-1180 (-350 (-858 *4))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
+ (-2 (|:| |mat| (-630 (-350 (-857 *4)))) (|:| |vec| (-583 (-350 (-857 *4))))
+ (|:| -3109 (-694)) (|:| |rows| (-583 (-484))) (|:| |cols| (-583 (-484)))))
+ (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717))
+ (-5 *2
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *4))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
(((*1 *2 *2 *3)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1180 (-350 (-858 *4))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *4)))))))
- (-5 *3 (-584 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-862 *4 *6 *5))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *1 (-836 *4 *5 *6 *7)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *4))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *4)))))))
+ (-5 *3 (-583 *7)) (-4 *4 (-13 (-258) (-120))) (-4 *7 (-861 *4 *6 *5))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
+ (-5 *1 (-835 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
- (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718))
+ (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
+ (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717))
(-5 *2
- (-584
- (-2 (|:| -3110 (-695))
+ (-583
+ (-2 (|:| -3109 (-694))
(|:| |eqns|
- (-584
- (-2 (|:| |det| *8) (|:| |rows| (-584 (-485)))
- (|:| |cols| (-584 (-485))))))
- (|:| |fgb| (-584 *8)))))
- (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-695)))))
+ (-583
+ (-2 (|:| |det| *8) (|:| |rows| (-583 (-484)))
+ (|:| |cols| (-583 (-484))))))
+ (|:| |fgb| (-583 *8)))))
+ (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-694)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-4 *7 (-862 *4 *6 *5))
- (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-584 *7)) (|:| |n0| (-584 *7))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-5 *3 (-584 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-858 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-862 *4 *6 *5))
- (-5 *1 (-836 *4 *5 *6 *2)) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))
- (-4 *7 (-862 *4 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-757) (-554 (-1091))))
- (-4 *6 (-718)) (-5 *2 (-350 (-858 *4))) (-5 *1 (-836 *4 *5 *6 *3))
- (-4 *3 (-862 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-631 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
- (-5 *2 (-584 (-350 (-858 *4)))) (-5 *1 (-836 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)) (-4 *7 (-861 *4 *6 *5))
+ (-5 *2 (-2 (|:| |sysok| (-85)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7))))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-857 *4)) (-4 *4 (-13 (-258) (-120))) (-4 *2 (-861 *4 *6 *5))
+ (-5 *1 (-835 *4 *5 *6 *2)) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
+ (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))
+ (-4 *7 (-861 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-13 (-756) (-553 (-1090))))
+ (-4 *6 (-717)) (-5 *2 (-350 (-857 *4))) (-5 *1 (-835 *4 *5 *6 *3))
+ (-4 *3 (-861 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
+ (-5 *2 (-630 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
+ (-5 *2 (-583 (-350 (-857 *4)))) (-5 *1 (-835 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-631 *11)) (-5 *4 (-584 (-350 (-858 *8)))) (-5 *5 (-695))
- (-5 *6 (-1074)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-862 *8 *10 *9))
- (-4 *9 (-13 (-757) (-554 (-1091)))) (-4 *10 (-718))
+ (-12 (-5 *3 (-630 *11)) (-5 *4 (-583 (-350 (-857 *8)))) (-5 *5 (-694))
+ (-5 *6 (-1073)) (-4 *8 (-13 (-258) (-120))) (-4 *11 (-861 *8 *10 *9))
+ (-4 *9 (-13 (-756) (-553 (-1090)))) (-4 *10 (-717))
(-5 *2
(-2
(|:| |rgl|
- (-584
- (-2 (|:| |eqzro| (-584 *11)) (|:| |neqzro| (-584 *11))
- (|:| |wcond| (-584 (-858 *8)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11))
+ (|:| |wcond| (-583 (-857 *8)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *8))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *8))))))))))
- (|:| |rgsz| (-485))))
- (-5 *1 (-836 *8 *9 *10 *11)) (-5 *7 (-485)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *8))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *8))))))))))
+ (|:| |rgsz| (-484))))
+ (-5 *1 (-835 *8 *9 *10 *11)) (-5 *7 (-484)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
- (|:| |wcond| (-584 (-858 *4)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-857 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *4))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))))))
- (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-862 *4 *6 *5)))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *4))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))))))
+ (-5 *1 (-835 *4 *5 *6 *7)) (-4 *7 (-861 *4 *6 *5)))))
(((*1 *2 *3 *4)
(-12
(-5 *3
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-857 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *5))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *5))))))))))
- (-5 *4 (-1074)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-862 *5 *7 *6))
- (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-4 *8 (-862 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
- (-4 *6 (-13 (-757) (-554 (-1091)))) (-4 *7 (-718))
- (-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *5))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *5))))))))))
+ (-5 *4 (-1073)) (-4 *5 (-13 (-258) (-120))) (-4 *8 (-861 *5 *7 *6))
+ (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717)) (-5 *2 (-484))
+ (-5 *1 (-835 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *8)) (-4 *8 (-861 *5 *7 *6)) (-4 *5 (-13 (-258) (-120)))
+ (-4 *6 (-13 (-756) (-553 (-1090)))) (-4 *7 (-717))
+ (-5 *2
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-857 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *5))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8)) (-5 *4 (-584 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *5))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *5))))))))))
+ (-5 *1 (-835 *5 *6 *7 *8)) (-5 *4 (-583 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-584 (-1091))) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091))))
- (-4 *7 (-718))
+ (-12 (-5 *3 (-630 *8)) (-5 *4 (-583 (-1090))) (-4 *8 (-861 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090))))
+ (-4 *7 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-857 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *5))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *5))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *5))))))))))
+ (-5 *1 (-835 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *7)) (-4 *7 (-862 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
- (-4 *5 (-13 (-757) (-554 (-1091)))) (-4 *6 (-718))
+ (-12 (-5 *3 (-630 *7)) (-4 *7 (-861 *4 *6 *5)) (-4 *4 (-13 (-258) (-120)))
+ (-4 *5 (-13 (-756) (-553 (-1090)))) (-4 *6 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *7)) (|:| |neqzro| (-584 *7))
- (|:| |wcond| (-584 (-858 *4)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7))
+ (|:| |wcond| (-583 (-857 *4)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *4))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *4))))))))))
- (-5 *1 (-836 *4 *5 *6 *7))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *4))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *4))))))))))
+ (-5 *1 (-835 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *5 (-831)) (-4 *9 (-862 *6 *8 *7))
- (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091))))
- (-4 *8 (-718))
+ (-12 (-5 *3 (-630 *9)) (-5 *5 (-830)) (-4 *9 (-861 *6 *8 *7))
+ (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090))))
+ (-4 *8 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
- (|:| |wcond| (-584 (-858 *6)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-857 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *6))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *6))))))))))
- (-5 *1 (-836 *6 *7 *8 *9)) (-5 *4 (-584 *9))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *6))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *6))))))))))
+ (-5 *1 (-835 *6 *7 *8 *9)) (-5 *4 (-583 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-831))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718))
+ (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-830))
+ (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *9)) (|:| |neqzro| (-584 *9))
- (|:| |wcond| (-584 (-858 *6)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9))
+ (|:| |wcond| (-583 (-857 *6)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *6))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *6))))))))))
- (-5 *1 (-836 *6 *7 *8 *9))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *6))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *6))))))))))
+ (-5 *1 (-835 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-831)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091))))
- (-4 *7 (-718))
+ (-12 (-5 *3 (-630 *8)) (-5 *4 (-830)) (-4 *8 (-861 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090))))
+ (-4 *7 (-717))
(-5 *2
- (-584
- (-2 (|:| |eqzro| (-584 *8)) (|:| |neqzro| (-584 *8))
- (|:| |wcond| (-584 (-858 *5)))
+ (-583
+ (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8))
+ (|:| |wcond| (-583 (-857 *5)))
(|:| |bsoln|
- (-2 (|:| |partsol| (-1180 (-350 (-858 *5))))
- (|:| -2013 (-584 (-1180 (-350 (-858 *5))))))))))
- (-5 *1 (-836 *5 *6 *7 *8))))
+ (-2 (|:| |partsol| (-1179 (-350 (-857 *5))))
+ (|:| -2012 (-583 (-1179 (-350 (-857 *5))))))))))
+ (-5 *1 (-835 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 *9)) (-5 *5 (-1074))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1073))
+ (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484))
+ (-5 *1 (-835 *6 *7 *8 *9))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *4 (-584 (-1091))) (-5 *5 (-1074))
- (-4 *9 (-862 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
- (-4 *7 (-13 (-757) (-554 (-1091)))) (-4 *8 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *8)) (-5 *4 (-1074)) (-4 *8 (-862 *5 *7 *6))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-757) (-554 (-1091))))
- (-4 *7 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-630 *9)) (-5 *4 (-583 (-1090))) (-5 *5 (-1073))
+ (-4 *9 (-861 *6 *8 *7)) (-4 *6 (-13 (-258) (-120)))
+ (-4 *7 (-13 (-756) (-553 (-1090)))) (-4 *8 (-717)) (-5 *2 (-484))
+ (-5 *1 (-835 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 *8)) (-5 *4 (-1073)) (-4 *8 (-861 *5 *7 *6))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-13 (-756) (-553 (-1090))))
+ (-4 *7 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 *10)) (-5 *5 (-831)) (-5 *6 (-1074))
- (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
- (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 *10)) (-5 *5 (-830)) (-5 *6 (-1073))
+ (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
+ (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484))
+ (-5 *1 (-835 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-631 *10)) (-5 *4 (-584 (-1091))) (-5 *5 (-831)) (-5 *6 (-1074))
- (-4 *10 (-862 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
- (-4 *8 (-13 (-757) (-554 (-1091)))) (-4 *9 (-718)) (-5 *2 (-485))
- (-5 *1 (-836 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-630 *10)) (-5 *4 (-583 (-1090))) (-5 *5 (-830)) (-5 *6 (-1073))
+ (-4 *10 (-861 *7 *9 *8)) (-4 *7 (-13 (-258) (-120)))
+ (-4 *8 (-13 (-756) (-553 (-1090)))) (-4 *9 (-717)) (-5 *2 (-484))
+ (-5 *1 (-835 *7 *8 *9 *10))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *9)) (-5 *4 (-831)) (-5 *5 (-1074)) (-4 *9 (-862 *6 *8 *7))
- (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-757) (-554 (-1091))))
- (-4 *8 (-718)) (-5 *2 (-485)) (-5 *1 (-836 *6 *7 *8 *9)))))
+ (-12 (-5 *3 (-630 *9)) (-5 *4 (-830)) (-5 *5 (-1073)) (-4 *9 (-861 *6 *8 *7))
+ (-4 *6 (-13 (-258) (-120))) (-4 *7 (-13 (-756) (-553 (-1090))))
+ (-4 *8 (-717)) (-5 *2 (-484)) (-5 *1 (-835 *6 *7 *8 *9)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-4 *2 (-1156 *4))
- (-5 *1 (-835 *4 *2)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-4 *2 (-1155 *4))
+ (-5 *1 (-834 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-833)) (-5 *2 (-2 (|:| -3956 (-584 *1)) (|:| -2410 *1)))
- (-5 *3 (-584 *1)))))
+ (-12 (-4 *1 (-832)) (-5 *2 (-2 (|:| -3955 (-583 *1)) (|:| -2409 *1)))
+ (-5 *3 (-583 *1)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-833)) (-5 *2 (-633 (-584 *1))) (-5 *3 (-584 *1)))))
+ (-12 (-4 *1 (-832)) (-5 *2 (-632 (-583 *1))) (-5 *3 (-583 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-830 *4)))))
+ (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-829 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-858 *4))) (-5 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-830 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-12 (-5 *3 (-885)) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2) (-12 (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-817 (-485))) (-5 *1 (-829))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-485))) (-5 *2 (-817 (-485))) (-5 *1 (-829)))))
+ (-12 (-5 *2 (-583 (-857 *4))) (-5 *3 (-583 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-829 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2 *3) (-12 (-5 *3 (-884)) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2) (-12 (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-816 (-484))) (-5 *1 (-828))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-484))) (-5 *2 (-816 (-484))) (-5 *1 (-828)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *2))
- (-4 *2 (-862 *5 *3 *4))))
+ (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *2))
+ (-4 *2 (-861 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-258)) (-5 *1 (-828 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *5 (-258)) (-5 *1 (-827 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *6 *4 *5)) (-5 *1 (-828 *4 *5 *6 *2))
- (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-826 *2))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *6 *4 *5)) (-5 *1 (-827 *4 *5 *6 *2))
+ (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-348 *2)) (-4 *2 (-258)) (-5 *1 (-825 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120)))
- (-5 *2 (-51)) (-5 *1 (-827 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120)))
+ (-5 *2 (-51)) (-5 *1 (-826 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-348 (-858 *6))) (-5 *5 (-1091)) (-5 *3 (-858 *6))
- (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-827 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-826 *3)) (-4 *3 (-258)))))
-(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-258)))))
+ (-12 (-5 *4 (-348 (-857 *6))) (-5 *5 (-1090)) (-5 *3 (-857 *6))
+ (-4 *6 (-13 (-258) (-120))) (-5 *2 (-51)) (-5 *1 (-826 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-348 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1085 *3)) (-5 *1 (-825 *3)) (-4 *3 (-258)))))
+(((*1 *1 *1) (-12 (-5 *1 (-825 *2)) (-4 *2 (-258)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1156 (-350 (-485)))) (-5 *1 (-825 *3 *2))
- (-4 *2 (-1156 (-350 *3))))))
+ (-12 (-4 *3 (-1155 (-350 (-484)))) (-5 *1 (-824 *3 *2))
+ (-4 *2 (-1155 (-350 *3))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
- (-4 *3 (-1156 (-350 *4))))))
+ (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))))
- (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *5))
- (-4 *5 (-1156 (-350 *4))))))
+ (-12 (-5 *3 (-583 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))))
+ (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *5))
+ (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *3)
- (-12 (-4 *3 (-1156 (-350 (-485))))
- (-5 *2 (-2 (|:| |den| (-485)) (|:| |gcdnum| (-485)))) (-5 *1 (-825 *3 *4))
- (-4 *4 (-1156 (-350 *3)))))
+ (-12 (-4 *3 (-1155 (-350 (-484))))
+ (-5 *2 (-2 (|:| |den| (-484)) (|:| |gcdnum| (-484)))) (-5 *1 (-824 *3 *4))
+ (-4 *4 (-1155 (-350 *3)))))
((*1 *2 *3)
- (-12 (-4 *4 (-1156 (-350 *2))) (-5 *2 (-485)) (-5 *1 (-825 *4 *3))
- (-4 *3 (-1156 (-350 *4))))))
+ (-12 (-4 *4 (-1155 (-350 *2))) (-5 *2 (-484)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-1156 (-350 *3))) (-5 *2 (-831))
- (-5 *1 (-825 *4 *5)) (-4 *5 (-1156 (-350 *4))))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-1155 (-350 *3))) (-5 *2 (-830))
+ (-5 *1 (-824 *4 *5)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-496) (-951 (-485))))
- (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *8)))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6))
- (-4 *4 (-1156 (-350 (-485)))) (-4 *5 (-1156 (-350 *4)))
- (-4 *6 (-291 (-350 (-485)) *4 *5))
- (-5 *2 (-2 (|:| -3774 (-695)) (|:| -2384 *6))) (-5 *1 (-824 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
- (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-85))
- (-5 *1 (-823 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-283 (-350 (-485)) *4 *5 *6)) (-4 *4 (-1156 (-350 (-485))))
- (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 (-350 (-485)) *4 *5)) (-5 *2 (-85))
- (-5 *1 (-824 *4 *5 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-392))))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-950 (-484))))
+ (-5 *2 (-2 (|:| -3773 (-694)) (|:| -2383 *8)))
+ (-5 *1 (-822 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6))
+ (-4 *4 (-1155 (-350 (-484)))) (-4 *5 (-1155 (-350 *4)))
+ (-4 *6 (-291 (-350 (-484)) *4 *5))
+ (-5 *2 (-2 (|:| -3773 (-694)) (|:| -2383 *6))) (-5 *1 (-823 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-283 *5 *6 *7 *8)) (-4 *5 (-364 *4)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-4 *8 (-291 *5 *6 *7))
+ (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-85))
+ (-5 *1 (-822 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-283 (-350 (-484)) *4 *5 *6)) (-4 *4 (-1155 (-350 (-484))))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 (-350 (-484)) *4 *5)) (-5 *2 (-85))
+ (-5 *1 (-823 *4 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-392))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-862 *5 *3 *4)) (-4 *3 (-718)) (-4 *4 (-757))
- (-4 *5 (-822)) (-5 *1 (-397 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-822)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1))
- (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
- ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-348 (-1086 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1086 *1))
- (-4 *4 (-392)) (-4 *4 (-496)) (-4 *4 (-1014))))
- ((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *2 (-348 (-1086 *1))) (-5 *3 (-1086 *1)))))
+ (-12 (-5 *2 (-1085 *6)) (-4 *6 (-861 *5 *3 *4)) (-4 *3 (-717)) (-4 *4 (-756))
+ (-4 *5 (-821)) (-5 *1 (-397 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-821)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1))
+ (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-348 (-1085 *1))) (-5 *1 (-265 *4)) (-5 *3 (-1085 *1))
+ (-4 *4 (-392)) (-4 *4 (-495)) (-4 *4 (-1013))))
+ ((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
+(((*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *2 (-348 (-1085 *1))) (-5 *3 (-1085 *1)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-139 *4))
- (-4 *4 (-484)) (-5 *1 (-122 *4 *5))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5)) (-4 *5 (-139 *4))
+ (-4 *4 (-483)) (-5 *1 (-122 *4 *5))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-1156 *4))
+ (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-1155 *4))
(-4 *4 (-299)) (-5 *1 (-307 *4 *5 *3))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 (-485)))) (-5 *3 (-1086 (-485)))
- (-5 *1 (-509))))
+ (|partial| -12 (-5 *2 (-583 (-1085 (-484)))) (-5 *3 (-1085 (-484)))
+ (-5 *1 (-508))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-822)))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *1))) (-5 *3 (-1085 *1)) (-4 *1 (-821)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-299)) (-5 *2 (-1180 *1))))
+ (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-299)) (-5 *2 (-1179 *1))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-631 *1)) (-4 *1 (-118)) (-4 *1 (-822))
- (-5 *2 (-1180 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118))))
+ (|partial| -12 (-5 *3 (-630 *1)) (-4 *1 (-118)) (-4 *1 (-821))
+ (-5 *2 (-1179 *1)))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118))))
((*1 *1 *1) (-4 *1 (-299)))
- ((*1 *2 *1) (-12 (-5 *2 (-633 *1)) (-4 *1 (-118)) (-4 *1 (-822)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-632 *1)) (-4 *1 (-118)) (-4 *1 (-821)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-757)) (-4 *5 (-822)) (-4 *6 (-718))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-348 (-1086 *8))) (-5 *1 (-819 *5 *6 *7 *8))
- (-5 *4 (-1086 *8))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-756)) (-4 *5 (-821)) (-4 *6 (-717))
+ (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-348 (-1085 *8))) (-5 *1 (-818 *5 *6 *7 *8))
+ (-5 *4 (-1085 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
+ (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2)
- (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-397 *3 *4 *2 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-397 *3 *4 *2 *5))
+ (-4 *5 (-861 *2 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-718)) (-4 *4 (-757)) (-4 *2 (-822)) (-5 *1 (-819 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-822)) (-5 *1 (-820 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-4 *3 (-717)) (-4 *4 (-756)) (-4 *2 (-821)) (-5 *1 (-818 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-821)) (-5 *1 (-819 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
- (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
+ (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-862 *4 *5 *6))
- (-5 *2 (-348 (-1086 *7))) (-5 *1 (-819 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (-12 (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-861 *4 *5 *6))
+ (-5 *2 (-348 (-1085 *7))) (-5 *1 (-818 *4 *5 *6 *7)) (-5 *3 (-1085 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-822)) (-4 *5 (-1156 *4)) (-5 *2 (-348 (-1086 *5)))
- (-5 *1 (-820 *4 *5)) (-5 *3 (-1086 *5)))))
+ (-12 (-4 *4 (-821)) (-4 *5 (-1155 *4)) (-5 *2 (-348 (-1085 *5)))
+ (-5 *1 (-819 *4 *5)) (-5 *3 (-1085 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-822)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *1 (-819 *4 *5 *6 *7))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7))
+ (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-821)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-5 *1 (-818 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 *5))) (-5 *3 (-1086 *5))
- (-4 *5 (-1156 *4)) (-4 *4 (-822)) (-5 *1 (-820 *4 *5)))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *5))) (-5 *3 (-1085 *5))
+ (-4 *5 (-1155 *4)) (-4 *4 (-821)) (-5 *1 (-819 *4 *5)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-584 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-862 *5 *6 *4)) (-4 *5 (-822)) (-4 *6 (-718)) (-4 *4 (-757))
- (-5 *1 (-819 *5 *6 *4 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-584 *6))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))) ((*1 *1) (-4 *1 (-484)))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-814 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-584 (-695)))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-814 *3))) (-4 *3 (-1014)) (-5 *1 (-817 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *7))) (-5 *3 (-1085 *7))
+ (-4 *7 (-861 *5 *6 *4)) (-4 *5 (-821)) (-4 *6 (-717)) (-4 *4 (-756))
+ (-5 *1 (-818 *5 *6 *4 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-583 *6))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))) ((*1 *1) (-4 *1 (-483)))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-813 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-583 (-694)))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-813 *3))) (-4 *3 (-1013)) (-5 *1 (-816 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-584 *4))) (-5 *1 (-817 *4))
- (-5 *3 (-584 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-583 *4))) (-5 *1 (-816 *4))
+ (-5 *3 (-583 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1014)) (-5 *2 (-1010 (-1010 *4))) (-5 *1 (-817 *4))
- (-5 *3 (-1010 *4))))
- ((*1 *2 *1 *3) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-1009 (-1009 *4))) (-5 *1 (-816 *4))
+ (-5 *3 (-1009 *4))))
+ ((*1 *2 *1 *3) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1010 (-1010 *3))) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-1009 (-1009 *3))) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
- (-5 *1 (-817 *4)))))
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694)))
+ (-5 *1 (-816 *4)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-814 *4)) (-4 *4 (-1014)) (-5 *2 (-584 (-695)))
- (-5 *1 (-817 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-1010 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1010 *3)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-816 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *3 (-813 *4)) (-4 *4 (-1013)) (-5 *2 (-583 (-694)))
+ (-5 *1 (-816 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-1009 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1009 *3)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-815 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-485)) (-5 *2 (-1186)) (-5 *1 (-817 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-817 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-4 *1 (-816 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-831))
- (-4 *2 (-13 (-962) (-10 -7 (-6 (-3999 "*"))))) (-5 *1 (-815 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-584 *3)) (|:| |image| (-584 *3))))
- (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-584 *3))) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-885)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *1 (-951 (-485))) (-4 *1 (-254)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-814 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1010 *3)) (-5 *1 (-814 *3)) (-4 *3 (-320)) (-4 *3 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-814 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-1185)) (-5 *1 (-816 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-816 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-815 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-4 *1 (-815 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1056 *4 *2)) (-14 *4 (-830))
+ (-4 *2 (-13 (-961) (-10 -7 (-6 (-3998 "*"))))) (-5 *1 (-814 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3))))
+ (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-884)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-950 (-484))) (-4 *1 (-254)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-813 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1009 *3)) (-5 *1 (-813 *3)) (-4 *3 (-320)) (-4 *3 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-813 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-186 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-189)) (-5 *2 (-694))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-695)) (-4 *1 (-225 *4)) (-4 *4 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1130))))
- ((*1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-807 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1130))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-694)) (-4 *1 (-225 *4)) (-4 *4 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1129))))
+ ((*1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-806 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 *4)) (-5 *3 (-584 (-695))) (-4 *1 (-812 *4))
- (-4 *4 (-1014))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-812 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *1 (-812 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-694))) (-4 *1 (-811 *4))
+ (-4 *4 (-1013))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-811 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-811 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-5 *1 (-808 *2 *4)) (-4 *2 (-1156 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-5 *1 (-807 *2 *4)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-5 *1 (-808 *2 *3)) (-4 *2 (-1156 *3)))))
+ (|partial| -12 (-4 *3 (-312)) (-5 *1 (-807 *2 *3)) (-4 *2 (-1155 *3)))))
(((*1 *1) (-12 (-4 *1 (-405 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-4 *1 (-660))) ((*1 *1) (-4 *1 (-664)))
- ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014))))
- ((*1 *1) (-12 (-5 *1 (-804 *2)) (-4 *2 (-757)))))
+ ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-4 *1 (-663)))
+ ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
- (-5 *2 (-584 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))
+ (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |k| (-804 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-615 *3))) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-803 *3)) (|:| |c| *4))))
+ (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-614 *3))) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1130))))
+ (-12 (-5 *3 (-51)) (-5 *2 (-85)) (-5 *1 (-52 *4)) (-4 *4 (-1129))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091)))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-804 *3)) (-4 *3 (-757)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-803 *3)) (-4 *3 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-584 *5)) (-5 *1 (-802 *4 *5))
- (-4 *5 (-1130)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-583 *5)) (-5 *1 (-801 *4 *5))
+ (-4 *5 (-1129)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-802 *4 *3)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-801 *4 *3)) (-4 *3 (-1129)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-5 *2 (-85))
- (-5 *1 (-799 *4 *5)) (-4 *5 (-1014))))
+ (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-798 *4 *5)) (-4 *5 (-1013))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-802 *5 *3))
- (-4 *3 (-1130))))
+ (-12 (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-801 *5 *3))
+ (-4 *3 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-801 *5)) (-4 *5 (-1014)) (-4 *6 (-1130))
- (-5 *2 (-85)) (-5 *1 (-802 *5 *6)))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-800 *5)) (-4 *5 (-1013)) (-4 *6 (-1129))
+ (-5 *2 (-85)) (-5 *1 (-801 *5 *6)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-410 *2 *3)) (-4 *2 (-146)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-474))) ((*1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
+ ((*1 *1) (-5 *1 (-473))) ((*1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| -2515 (-86)) (|:| |arg| (-584 (-801 *3)))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014))))
+ (|partial| -12 (-5 *2 (-2 (|:| -2514 (-86)) (|:| |arg| (-583 (-800 *3)))))
+ (-5 *1 (-800 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-801 *4))) (-5 *1 (-801 *4))
- (-4 *4 (-1014)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |num| (-801 *3)) (|:| |den| (-801 *3))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-800 *4))) (-5 *1 (-800 *4))
+ (-4 *4 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |num| (-800 *3)) (|:| |den| (-800 *3))))
+ (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1091)) (-5 *3 (-85)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-85)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-51)) (-5 *1 (-801 *4)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-51)) (-5 *1 (-800 *4)) (-4 *4 (-1013)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-584 (-1091))) (|:| |pred| (-51))))
- (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-51))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-583 (-1090))) (|:| |pred| (-51))))
+ (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-584 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-1014)))))
+ (|partial| -12 (-5 *2 (-583 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1014)) (-5 *2 (-85)) (-5 *1 (-796 *3 *4 *5)) (-4 *3 (-1014))
- (-4 *5 (-609 *4))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-85)) (-5 *1 (-795 *3 *4 *5)) (-4 *3 (-1013))
+ (-4 *5 (-608 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-799 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-798 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1)
- (-12 (-4 *3 (-1014)) (-5 *1 (-796 *2 *3 *4)) (-4 *2 (-1014))
- (-4 *4 (-609 *3))))
- ((*1 *1) (-12 (-5 *1 (-799 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (-12 (-4 *3 (-1013)) (-5 *1 (-795 *2 *3 *4)) (-4 *2 (-1013))
+ (-4 *4 (-608 *3))))
+ ((*1 *1) (-12 (-5 *1 (-798 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-801 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
- (-5 *1 (-799 *4 *2)))))
+ (|partial| -12 (-5 *3 (-800 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-798 *4 *2)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-801 *4)) (-4 *4 (-1014)) (-5 *1 (-799 *4 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-800 *4)) (-4 *4 (-1013)) (-5 *1 (-798 *4 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1014)) (-4 *6 (-797 *5)) (-5 *2 (-796 *5 *6 (-584 *6)))
- (-5 *1 (-798 *5 *6 *4)) (-5 *3 (-584 *6)) (-4 *4 (-554 (-801 *5)))))
+ (-12 (-4 *5 (-1013)) (-4 *6 (-796 *5)) (-5 *2 (-795 *5 *6 (-583 *6)))
+ (-5 *1 (-797 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-553 (-800 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 *3))) (-5 *1 (-798 *5 *3 *4))
- (-4 *3 (-951 (-1091))) (-4 *3 (-797 *5)) (-4 *4 (-554 (-801 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 *3))) (-5 *1 (-797 *5 *3 *4))
+ (-4 *3 (-950 (-1090))) (-4 *3 (-796 *5)) (-4 *4 (-553 (-800 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1014)) (-5 *2 (-584 (-249 (-858 *3)))) (-5 *1 (-798 *5 *3 *4))
- (-4 *3 (-962)) (-2562 (-4 *3 (-951 (-1091)))) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-583 (-249 (-857 *3)))) (-5 *1 (-797 *5 *3 *4))
+ (-4 *3 (-961)) (-2561 (-4 *3 (-950 (-1090)))) (-4 *3 (-796 *5))
+ (-4 *4 (-553 (-800 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1014)) (-5 *2 (-799 *5 *3)) (-5 *1 (-798 *5 *3 *4))
- (-2562 (-4 *3 (-951 (-1091)))) (-2562 (-4 *3 (-962))) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-798 *5 *3)) (-5 *1 (-797 *5 *3 *4))
+ (-2561 (-4 *3 (-950 (-1090)))) (-2561 (-4 *3 (-961))) (-4 *3 (-796 *5))
+ (-4 *4 (-553 (-800 *5))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85))))
((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-551 *4)) (-4 *4 (-1014))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-85))))
+ (-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-550 *4)) (-4 *4 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-85))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-798 *5 *3 *4)) (-4 *3 (-797 *5))
- (-4 *4 (-554 (-801 *5)))))
+ (-12 (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-797 *5 *3 *4)) (-4 *3 (-796 *5))
+ (-4 *4 (-553 (-800 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *6)) (-4 *6 (-797 *5)) (-4 *5 (-1014)) (-5 *2 (-85))
- (-5 *1 (-798 *5 *6 *4)) (-4 *4 (-554 (-801 *5))))))
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-796 *5)) (-4 *5 (-1013)) (-5 *2 (-85))
+ (-5 *1 (-797 *5 *6 *4)) (-4 *4 (-553 (-800 *5))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-799 *4 *5)) (-5 *3 (-799 *4 *6)) (-4 *4 (-1014))
- (-4 *5 (-1014)) (-4 *6 (-609 *5)) (-5 *1 (-796 *4 *5 *6)))))
+ (-12 (-5 *2 (-798 *4 *5)) (-5 *3 (-798 *4 *6)) (-4 *4 (-1013))
+ (-4 *5 (-1013)) (-4 *6 (-608 *5)) (-5 *1 (-795 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1014)) (-5 *2 (-799 *3 *5)) (-5 *1 (-796 *3 *4 *5))
- (-4 *3 (-1014)) (-4 *5 (-609 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-485)))))
+ (-12 (-4 *4 (-1013)) (-5 *2 (-798 *3 *5)) (-5 *1 (-795 *3 *4 *5))
+ (-4 *3 (-1013)) (-4 *5 (-608 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-484)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485)))))
+ (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
+ (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *3 (-584 (-485))) (-5 *1 (-794)))))
+ (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *3 (-583 (-484))) (-5 *1 (-793)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1070 (-584 (-485)))) (-5 *1 (-794)) (-5 *3 (-584 (-485))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1070 (-584 (-831)))) (-5 *1 (-794)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-788 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-790 *2)) (-4 *2 (-1130))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-793 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-1096))) (-5 *1 (-791)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
-(((*1 *2 *3) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199)) (-5 *3 (-1074))))
- ((*1 *2 *2) (-12 (-5 *2 (-584 (-1074))) (-5 *1 (-199))))
- ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
-(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-784)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-783 *2 *3)) (-4 *2 (-1130)) (-4 *3 (-1130)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-90 *3)) (-14 *3 (-485))))
- ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))
+ (-12 (-5 *2 (-1069 (-583 (-484)))) (-5 *1 (-793)) (-5 *3 (-583 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 (-583 (-830)))) (-5 *1 (-793)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-787 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-789 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *1 (-792 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-792 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-1095))) (-5 *1 (-790)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199)) (-5 *3 (-1073))))
+ ((*1 *2 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-199))))
+ ((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
+(((*1 *1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-783)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-782 *2 *3)) (-4 *2 (-1129)) (-4 *3 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-90 *3)) (-14 *3 (-484))))
+ ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2))))
((*1 *1 *2) (-12 (-5 *2 (-350 *3)) (-4 *3 (-258)) (-5 *1 (-148 *3))))
- ((*1 *2 *3) (-12 (-5 *2 (-148 (-485))) (-5 *1 (-690 *3)) (-4 *3 (-347))))
+ ((*1 *2 *3) (-12 (-5 *2 (-148 (-484))) (-5 *1 (-689 *3)) (-4 *3 (-347))))
((*1 *2 *1)
- (-12 (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-781 *3)) (-14 *3 (-485))))
+ (-12 (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-780 *3)) (-14 *3 (-484))))
((*1 *2 *1)
- (-12 (-14 *3 (-485)) (-5 *2 (-148 (-350 (-485)))) (-5 *1 (-782 *3 *4))
- (-4 *4 (-780 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
- ((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347))))
- ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831))))
- ((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-1070 (-485))))))
+ (-12 (-14 *3 (-484)) (-5 *2 (-148 (-350 (-484)))) (-5 *1 (-781 *3 *4))
+ (-4 *4 (-779 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
+ ((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-346 *3)) (-4 *3 (-347))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830))))
+ ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-1069 (-484))))))
(((*1 *2 *1)
(-12 (-4 *3 (-146)) (-4 *2 (-23)) (-5 *1 (-244 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1156 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-4 *4 (-1155 *3)) (-14 *5 (-1 *4 *4 *2))
(-14 *6 (-1 (-3 *2 "failed") *2 *2))
(-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-649 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1156 *3)) (-5 *1 (-650 *3 *2)) (-4 *3 (-962))))
+ ((*1 *2) (-12 (-4 *2 (-1155 *3)) (-5 *1 (-649 *3 *2)) (-4 *3 (-961))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-653 *3 *2 *4 *5 *6)) (-4 *3 (-146))
+ (-12 (-4 *2 (-23)) (-5 *1 (-652 *3 *2 *4 *5 *6)) (-4 *3 (-146))
(-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
(-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
-(((*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-5 *2 (-485)))))
-(((*1 *1 *1) (-4 *1 (-780 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-485))) (-5 *3 (-485)) (-4 *1 (-780 *4)))))
+ ((*1 *2) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))))
+(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-5 *2 (-484)))))
+(((*1 *1 *1) (-4 *1 (-779 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1085 (-484))) (-5 *3 (-484)) (-4 *1 (-779 *4)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-350 *6))
- (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-350 *6))
+ (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5))))
((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312))
- (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5)))
- (-5 *1 (-778 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312))
+ (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5)))
+ (-5 *1 (-777 *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-695)) (-5 *4 (-1170 *5 *6 *7)) (-4 *5 (-312))
- (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-350 (-1149 *6 *5)))
- (-5 *1 (-778 *5 *6 *7)))))
+ (|partial| -12 (-5 *3 (-694)) (-5 *4 (-1169 *5 *6 *7)) (-4 *5 (-312))
+ (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-350 (-1148 *6 *5)))
+ (-5 *1 (-777 *5 *6 *7)))))
(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-695)) (-4 *5 (-312)) (-5 *2 (-148 *6))
- (-5 *1 (-777 *5 *4 *6)) (-4 *4 (-1173 *5)) (-4 *6 (-1156 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-381))) (-5 *1 (-775)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-773)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1130)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-695))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
- ((*1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-773)))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254))))
- ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-773))) ((*1 *1 *1 *1) (-5 *1 (-773)))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-254))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *5 (-312)) (-5 *2 (-148 *6))
+ (-5 *1 (-776 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1155 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-5 *2 (-583 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-381))) (-5 *1 (-774)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-772)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *3)) (-4 *3 (-1129)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-694))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254))))
+ ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1) (-5 *1 (-117))) ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-772))))
+ ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-772))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-254))))
((*1 *1 *1) (-4 *1 (-254)))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773))))
- ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-773))) (-5 *1 (-773)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772))))
+ ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-772))) (-5 *1 (-772)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-760)) (-5 *2 (-85))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-759)) (-5 *2 (-85))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-740 *3)) (|:| |rm| (-740 *3))))
- (-5 *1 (-740 *3)) (-4 *3 (-757))))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695)))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-695)))
- ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-773))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-772))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-514))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-772)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-101))) (-5 *3 (-101)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-489))) (-5 *3 (-489)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *2 (-633 (-1139))) (-5 *3 (-1139)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-771)) (-5 *3 (-102)) (-5 *2 (-695)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-51))) (-5 *2 (-1186)) (-5 *1 (-769)))))
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-739 *3)) (|:| |rm| (-739 *3))))
+ (-5 *1 (-739 *3)) (-4 *3 (-756))))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694)))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-4 *1 (-258))) ((*1 *1 *1 *1) (-5 *1 (-694)))
+ ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *1) (-4 *1 (-84))) ((*1 *1 *1) (-5 *1 (-772))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-771))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-513))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-101))) (-5 *3 (-101)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-488))) (-5 *3 (-488)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *2 (-632 (-1138))) (-5 *3 (-1138)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-102)) (-5 *2 (-694)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1185)) (-5 *1 (-768)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-350 (-485))))
+ (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-38 (-350 (-484))))
(-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146))))
- ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-695)) (-5 *1 (-766 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146))))
+ ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-694)) (-5 *1 (-765 *2)) (-4 *2 (-146)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-762 *3))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-761 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961))
+ (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3))
+ (-4 *3 (-761 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3)))
- (-5 *1 (-691 *3 *4)) (-4 *3 (-646 *4))))
+ (-12 (-4 *4 (-312)) (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3)))
+ (-5 *1 (-690 *3 *4)) (-4 *3 (-645 *4))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-762 *3))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-761 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-312)) (-4 *5 (-961))
+ (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3))
+ (-4 *3 (-761 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-762 *3))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-761 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961))
+ (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3))
+ (-4 *3 (-761 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-496)) (-4 *3 (-962)) (-5 *2 (-2 (|:| -1973 *1) (|:| -2904 *1)))
- (-4 *1 (-762 *3))))
+ (-12 (-4 *3 (-495)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1972 *1) (|:| -2903 *1)))
+ (-4 *1 (-761 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-69 *5)) (-4 *5 (-496)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-763 *5 *3))
- (-4 *3 (-762 *5)))))
+ (-12 (-5 *4 (-69 *5)) (-4 *5 (-495)) (-4 *5 (-961))
+ (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-762 *5 *3))
+ (-4 *3 (-761 *5)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-591 *5)) (-4 *5 (-962))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-762 *5))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-631 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-590 *5)) (-4 *5 (-961))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-761 *5))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-630 *3)) (-4 *1 (-361 *3)) (-4 *3 (-146))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-962)) (-5 *1 (-763 *2 *3))
- (-4 *3 (-762 *2)))))
+ (-12 (-5 *4 (-69 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-762 *2 *3))
+ (-4 *3 (-761 *2)))))
(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-962)) (-5 *1 (-763 *5 *2))
- (-4 *2 (-762 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (-12 (-5 *3 (-69 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-762 *5 *2))
+ (-4 *2 (-761 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
+ (|partial| -12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
- (-4 *1 (-762 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-961))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
+ (-4 *1 (-761 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (|partial| -12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *3 (-962))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
- (-4 *1 (-762 *3)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-691 *2 *3)) (-4 *2 (-646 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
+ (-12 (-4 *3 (-312)) (-4 *3 (-961))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
+ (-4 *1 (-761 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-312)) (-5 *1 (-690 *2 *3)) (-4 *2 (-645 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-761 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
(((*1 *1)
- (-12 (-4 *1 (-347)) (-2562 (|has| *1 (-6 -3988)))
- (-2562 (|has| *1 (-6 -3980)))))
- ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-757))))
- ((*1 *2 *1) (-12 (-4 *1 (-743 *2)) (-4 *2 (-757)))) ((*1 *1) (-4 *1 (-753)))
- ((*1 *1 *1 *1) (-4 *1 (-760))))
+ (-12 (-4 *1 (-347)) (-2561 (|has| *1 (-6 -3987)))
+ (-2561 (|has| *1 (-6 -3979)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-756))))
+ ((*1 *2 *1) (-12 (-4 *1 (-742 *2)) (-4 *2 (-756)))) ((*1 *1) (-4 *1 (-752)))
+ ((*1 *1 *1 *1) (-4 *1 (-759))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
- (-14 *4 (-695)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
+ (-14 *4 (-694)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
- (-14 *4 (-695)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
+ (-14 *4 (-694)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1180 *5)) (-4 *5 (-717)) (-5 *2 (-85)) (-5 *1 (-754 *4 *5))
- (-14 *4 (-695)))))
-(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
-(((*1 *2) (-12 (-5 *2 (-751 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-1014)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-716)) (-5 *2 (-85)) (-5 *1 (-753 *4 *5))
+ (-14 *4 (-694)))))
+(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))))
+(((*1 *2) (-12 (-5 *2 (-750 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-750 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-744 *3)) (-4 *3 (-1014))))
- ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-751 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-167 (-442))) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-4 *1 (-748 *3)) (-4 *3 (-1014)) (-5 *2 (-55)))))
-(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-630 *4 *5 *6 *3))
- (-4 *3 (-628 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-743 *3)) (-4 *3 (-1013))))
+ ((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1033)) (-5 *1 (-750 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-167 (-441))) (-5 *1 (-748)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-1013)) (-5 *2 (-55)))))
+(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-629 *4 *5 *6 *3))
+ (-4 *3 (-627 *4 *5 *6))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962))))
- ((*1 *1 *1) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961))))
+ ((*1 *1 *1) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-146)) (-4 *2 (-962)) (-5 *1 (-652 *2 *3)) (-4 *3 (-591 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-746 *2)) (-4 *2 (-146)) (-4 *2 (-962)))))
+ (-12 (-4 *2 (-146)) (-4 *2 (-961)) (-5 *1 (-651 *2 *3)) (-4 *3 (-590 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-745 *2)) (-4 *2 (-146)) (-4 *2 (-961)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-86)) (-5 *4 (-584 *2)) (-5 *1 (-87 *2))
- (-4 *2 (-1014))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *4 (-583 *2)) (-5 *1 (-87 *2))
+ (-4 *2 (-1013))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-584 *4))) (-4 *4 (-1014))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1013))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-584 *4))) (-5 *1 (-87 *4))
- (-4 *4 (-1014))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-87 *4))
+ (-4 *4 (-1013))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
- (-5 *1 (-652 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
+ (-5 *1 (-651 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-591 *3)) (-4 *3 (-962))
- (-5 *1 (-652 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-746 *3)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-590 *3)) (-4 *3 (-961))
+ (-5 *1 (-651 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-745 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-86)) (-4 *4 (-962)) (-5 *1 (-652 *4 *2)) (-4 *2 (-591 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-961)) (-5 *1 (-651 *4 *2)) (-4 *2 (-590 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-86)) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-310 (-86))) (-4 *2 (-962)) (-5 *1 (-652 *2 *4))
- (-4 *4 (-591 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-746 *2)) (-4 *2 (-962)))))
-(((*1 *2) (-12 (-5 *2 (-744 (-485))) (-5 *1 (-473))))
- ((*1 *1) (-12 (-5 *1 (-744 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-12 (-4 *3 (-962)) (-5 *1 (-742 *2 *3)) (-4 *2 (-646 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-646 *3)) (-5 *1 (-742 *2 *3)) (-4 *3 (-962)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-615 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-619 *3)) (-4 *3 (-757))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-740 *3)) (-4 *3 (-757)))))
+ (-12 (-5 *3 (-310 (-86))) (-4 *2 (-961)) (-5 *1 (-651 *2 *4))
+ (-4 *4 (-590 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-310 (-86))) (-5 *1 (-745 *2)) (-4 *2 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-743 (-484))) (-5 *1 (-472))))
+ ((*1 *1) (-12 (-5 *1 (-743 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-741 *2 *3)) (-4 *2 (-645 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-645 *3)) (-5 *1 (-741 *2 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-614 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-618 *3)) (-4 *3 (-756))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-739 *3)) (-4 *3 (-756)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-1180 *4))
- (-5 *1 (-735 *4 *3)) (-4 *3 (-601 *4)))))
+ (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-1179 *4))
+ (-5 *1 (-734 *4 *3)) (-4 *3 (-600 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-312)) (-5 *2 (-631 *4)) (-5 *1 (-735 *4 *5))
- (-4 *5 (-601 *4))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-312)) (-5 *2 (-630 *4)) (-5 *1 (-734 *4 *5))
+ (-4 *5 (-600 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-312)) (-5 *2 (-631 *5))
- (-5 *1 (-735 *5 *6)) (-4 *6 (-601 *5)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-312)) (-5 *2 (-630 *5))
+ (-5 *1 (-734 *5 *6)) (-4 *6 (-600 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-858 *5))) (-5 *4 (-584 (-1091))) (-4 *5 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *5)))))) (-5 *1 (-694 *5))))
+ (-12 (-5 *3 (-583 (-857 *5))) (-5 *4 (-583 (-1090))) (-4 *5 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *5)))))) (-5 *1 (-693 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-496))
- (-5 *2 (-584 (-584 (-249 (-350 (-858 *4)))))) (-5 *1 (-694 *4))))
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-495))
+ (-5 *2 (-583 (-583 (-249 (-350 (-857 *4)))))) (-5 *1 (-693 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *7))
+ (-12 (-5 *3 (-630 *7))
(-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2013 (-584 *6))) *7 *6))
- (-4 *6 (-312)) (-4 *7 (-601 *6))
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2012 (-583 *6))) *7 *6))
+ (-4 *6 (-312)) (-4 *7 (-600 *6))
(-5 *2
- (-2 (|:| |particular| (-3 (-1180 *6) "failed"))
- (|:| -2013 (-584 (-1180 *6)))))
- (-5 *1 (-734 *6 *7)) (-5 *4 (-1180 *6)))))
+ (-2 (|:| |particular| (-3 (-1179 *6) "failed"))
+ (|:| -2012 (-583 (-1179 *6)))))
+ (-5 *1 (-733 *6 *7)) (-5 *4 (-1179 *6)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-312))
(-5 *2
- (-2 (|:| A (-631 *5))
+ (-2 (|:| A (-630 *5))
(|:| |eqs|
- (-584
- (-2 (|:| C (-631 *5)) (|:| |g| (-1180 *5)) (|:| -3268 *6)
+ (-583
+ (-2 (|:| C (-630 *5)) (|:| |g| (-1179 *5)) (|:| -3267 *6)
(|:| |rh| *5))))))
- (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *5)) (-5 *4 (-1180 *5))
- (-4 *6 (-601 *5))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *5)) (-5 *4 (-1179 *5))
+ (-4 *6 (-600 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-601 *5))
- (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5))))
- (-5 *1 (-734 *5 *6)) (-5 *3 (-631 *6)) (-5 *4 (-1180 *5)))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-600 *5))
+ (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-733 *5 *6)) (-5 *3 (-630 *6)) (-5 *4 (-1179 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
+ (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-598 (-350 *7))) (-5 *4 (-1 (-584 *6) *7))
+ (-12 (-5 *3 (-597 (-350 *7))) (-5 *4 (-1 (-583 *6) *7))
(-5 *5 (-1 (-348 *7) *7))
- (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7))))
+ (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *6 (-1156 *5)) (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
+ (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *6 (-1155 *5)) (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-599 *7 (-350 *7))) (-5 *4 (-1 (-584 *6) *7))
+ (-12 (-5 *3 (-598 *7 (-350 *7))) (-5 *4 (-1 (-583 *6) *7))
(-5 *5 (-1 (-348 *7) *7))
- (-4 *6 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *7 (-1156 *6)) (-5 *2 (-584 (-350 *7))) (-5 *1 (-733 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-598 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-599 *5 (-350 *5))) (-4 *5 (-1156 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-350 *5))) (-5 *1 (-733 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-350 *6))) (-5 *1 (-733 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 *3))))
- (-5 *1 (-730 *5 *6 *3 *7)) (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| |poly| *6) (|:| -3268 (-599 *6 (-350 *6))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))))
+ (-4 *6 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *7 (-1155 *6)) (-5 *2 (-583 (-350 *7))) (-5 *1 (-732 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *5 (-350 *5))) (-4 *5 (-1155 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-350 *5))) (-5 *1 (-732 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-27)) (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-350 *6))) (-5 *1 (-732 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3267 *3))))
+ (-5 *1 (-729 *5 *6 *3 *7)) (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *6 (-1155 *5))
+ (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -3267 (-598 *6 (-350 *6))))))
+ (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-584 *7) *7 (-1086 *7))) (-5 *5 (-1 (-348 *7) *7))
- (-4 *7 (-1156 *6)) (-4 *6 (-13 (-312) (-120) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-2 (|:| |frac| (-350 *7)) (|:| -3268 *3))))
- (-5 *1 (-730 *6 *7 *3 *8)) (-4 *3 (-601 *7)) (-4 *8 (-601 (-350 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-584 (-2 (|:| |frac| (-350 *6)) (|:| -3268 (-599 *6 (-350 *6))))))
- (-5 *1 (-733 *5 *6)) (-5 *3 (-599 *6 (-350 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *7 (-1156 *5)) (-4 *4 (-662 *5 *7))
- (-5 *2 (-2 (|:| |mat| (-631 *6)) (|:| |vec| (-1180 *5))))
- (-5 *1 (-732 *5 *6 *7 *4 *3)) (-4 *6 (-601 *5)) (-4 *3 (-601 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-598 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-599 *2 (-350 *2))) (-4 *2 (-1156 *4)) (-5 *1 (-731 *4 *2))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-731 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 (-350 *6))) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5))))
- (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4))))
- (-5 *1 (-731 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *6 (-350 *6))) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-2 (|:| -2013 (-584 (-350 *6))) (|:| |mat| (-631 *5))))
- (-5 *1 (-731 *5 *6)) (-5 *4 (-584 (-350 *6))))))
+ (-12 (-5 *4 (-1 (-583 *7) *7 (-1085 *7))) (-5 *5 (-1 (-348 *7) *7))
+ (-4 *7 (-1155 *6)) (-4 *6 (-13 (-312) (-120) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-2 (|:| |frac| (-350 *7)) (|:| -3267 *3))))
+ (-5 *1 (-729 *6 *7 *3 *8)) (-4 *3 (-600 *7)) (-4 *8 (-600 (-350 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-583 (-2 (|:| |frac| (-350 *6)) (|:| -3267 (-598 *6 (-350 *6))))))
+ (-5 *1 (-732 *5 *6)) (-5 *3 (-598 *6 (-350 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-312)) (-4 *7 (-1155 *5)) (-4 *4 (-661 *5 *7))
+ (-5 *2 (-2 (|:| |mat| (-630 *6)) (|:| |vec| (-1179 *5))))
+ (-5 *1 (-731 *5 *6 *7 *4 *3)) (-4 *6 (-600 *5)) (-4 *3 (-600 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2 (-350 *2))) (-4 *2 (-1155 *4)) (-5 *1 (-730 *4 *2))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-730 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 (-350 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5))))
+ (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *6 (-350 *6))) (-5 *4 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4))))
+ (-5 *1 (-730 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *6 (-350 *6))) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-2 (|:| -2012 (-583 (-350 *6))) (|:| |mat| (-630 *5))))
+ (-5 *1 (-730 *5 *6)) (-5 *4 (-583 (-350 *6))))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-1156 *4))
- (-5 *1 (-730 *4 *3 *2 *5)) (-4 *2 (-601 *3)) (-4 *5 (-601 (-350 *3)))))
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-1155 *4))
+ (-5 *1 (-729 *4 *3 *2 *5)) (-4 *2 (-600 *3)) (-4 *5 (-600 (-350 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *2 (-601 *5))
- (-4 *6 (-601 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-584 *5) *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *6 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3954 *5) (|:| -3268 *3)))) (-5 *1 (-730 *5 *6 *3 *7))
- (-4 *3 (-601 *6)) (-4 *7 (-601 (-350 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -3268 *5))))
- (-5 *1 (-730 *4 *5 *3 *6)) (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1156 *4)) (-5 *1 (-730 *4 *2 *3 *5))
- (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
- (-4 *5 (-601 (-350 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *3 *5))
- (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
- (-4 *5 (-601 (-350 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1156 *4)) (-5 *1 (-729 *4 *2 *5 *3))
- (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-601 *2))
- (-4 *3 (-601 (-350 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *3 *6))
- (-4 *3 (-601 *5)) (-4 *6 (-601 (-350 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *3 *6))
- (-4 *3 (-601 *4)) (-4 *6 (-601 (-350 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *5 (-1156 *4))
- (-5 *2 (-584 (-2 (|:| -3775 *5) (|:| -3228 *5)))) (-5 *1 (-729 *4 *5 *6 *3))
- (-4 *6 (-601 *5)) (-4 *3 (-601 (-350 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *4 (-1156 *5))
- (-5 *2 (-584 (-2 (|:| -3775 *4) (|:| -3228 *4)))) (-5 *1 (-729 *5 *4 *6 *3))
- (-4 *6 (-601 *4)) (-4 *3 (-601 (-350 *4))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1156 *5))
- (-5 *1 (-729 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485)))))
- (-4 *3 (-601 *2)) (-4 *6 (-601 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-350 *2))) (-4 *2 (-1156 *5)) (-5 *1 (-729 *5 *2 *3 *6))
- (-4 *5 (-13 (-312) (-120) (-951 (-350 (-485))))) (-4 *3 (-601 *2))
- (-4 *6 (-601 (-350 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-598 *4)) (-4 *4 (-291 *5 *6 *7))
- (-4 *5 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *6 (-1156 *5)) (-4 *7 (-1156 (-350 *6)))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-728 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-727 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1116) (-872))))))
+ (-12 (-5 *3 (-350 *5)) (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484)))))
+ (-4 *5 (-1155 *4)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *2 (-600 *5))
+ (-4 *6 (-600 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-583 *5) *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *6 (-1155 *5))
+ (-5 *2 (-583 (-2 (|:| -3953 *5) (|:| -3267 *3)))) (-5 *1 (-729 *5 *6 *3 *7))
+ (-4 *3 (-600 *6)) (-4 *7 (-600 (-350 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -3267 *5))))
+ (-5 *1 (-729 *4 *5 *3 *6)) (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-729 *4 *2 *3 *5))
+ (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2))
+ (-4 *5 (-600 (-350 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *3 *5))
+ (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2))
+ (-4 *5 (-600 (-350 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1155 *4)) (-5 *1 (-728 *4 *2 *5 *3))
+ (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-600 *2))
+ (-4 *3 (-600 (-350 *2))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-583 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-728 *4 *5 *3 *6))
+ (-4 *3 (-600 *5)) (-4 *6 (-600 (-350 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-583 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-728 *5 *4 *3 *6))
+ (-4 *3 (-600 *4)) (-4 *6 (-600 (-350 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *5 (-1155 *4))
+ (-5 *2 (-583 (-2 (|:| -3774 *5) (|:| -3227 *5)))) (-5 *1 (-728 *4 *5 *6 *3))
+ (-4 *6 (-600 *5)) (-4 *3 (-600 (-350 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *4 (-1155 *5))
+ (-5 *2 (-583 (-2 (|:| -3774 *4) (|:| -3227 *4)))) (-5 *1 (-728 *5 *4 *6 *3))
+ (-4 *6 (-600 *4)) (-4 *3 (-600 (-350 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-350 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-728 *5 *2 *3 *6)) (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484)))))
+ (-4 *3 (-600 *2)) (-4 *6 (-600 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-350 *2))) (-4 *2 (-1155 *5)) (-5 *1 (-728 *5 *2 *3 *6))
+ (-4 *5 (-13 (-312) (-120) (-950 (-350 (-484))))) (-4 *3 (-600 *2))
+ (-4 *6 (-600 (-350 *2))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-597 *4)) (-4 *4 (-291 *5 *6 *7))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *6 (-1155 *5)) (-4 *7 (-1155 (-350 *6)))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-727 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-726 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1115) (-871))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-5 *1 (-727 *4 *2)) (-4 *2 (-13 (-29 *4) (-1116) (-872))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-5 *1 (-726 *4 *2)) (-4 *2 (-13 (-29 *4) (-1115) (-871))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-258) (-951 (-485)) (-581 (-485)) (-120)))
- (-4 *4 (-13 (-29 *6) (-1116) (-872)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2013 (-584 *4))))
- (-5 *1 (-725 *6 *4 *3)) (-4 *3 (-601 *4)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-146)) (-5 *1 (-723 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)))))
+ (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-258) (-950 (-484)) (-580 (-484)) (-120)))
+ (-4 *4 (-13 (-29 *6) (-1115) (-871)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2012 (-583 *4))))
+ (-5 *1 (-724 *6 *4 *3)) (-4 *3 (-600 *4)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-909 *3)) (-4 *3 (-146)) (-5 *1 (-722 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
+(((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)))))
(((*1 *1 *1) (-4 *1 (-201)))
((*1 *1 *1)
- (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *2))
+ (-12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *2))
(-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1130)))
- (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1130)))))
+ (OR (-12 (-5 *1 (-249 *2)) (-4 *2 (-312)) (-4 *2 (-1129)))
+ (-12 (-5 *1 (-249 *2)) (-4 *2 (-413)) (-4 *2 (-1129)))))
((*1 *1 *1) (-4 *1 (-413)))
- ((*1 *2 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-299)) (-5 *1 (-467 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-299)) (-5 *1 (-466 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (-12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-721 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
-(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))
- ((*1 *1 *1 *1) (-4 *1 (-718))))
+ ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-146)) (-4 *2 (-312)))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *1 *1 *1) (-4 *1 (-717))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
(-12 (-5 *3 (-1 (-330) (-330))) (-5 *4 (-330))
(-5 *2
- (-2 (|:| -3404 *4) (|:| -1597 *4) (|:| |totalpts| (-485))
+ (-2 (|:| -3403 *4) (|:| -1596 *4) (|:| |totalpts| (-484))
(|:| |success| (-85))))
- (-5 *1 (-712)) (-5 *5 (-485)))))
+ (-5 *1 (-711)) (-5 *5 (-484)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330)))
- (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))))
(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-485))
- (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))))
- (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330)))
- (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))
+ (-12 (-5 *4 (-484))
+ (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330)))
+ (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))
((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-485))
- (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1476 (-330))))
- (-5 *7 (-1 (-1186) (-1180 *5) (-1180 *5) (-330))) (-5 *3 (-1180 (-330)))
- (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (-12 (-5 *4 (-484))
+ (-5 *6 (-2 (|:| |tryValue| (-330)) (|:| |did| (-330)) (|:| -1475 (-330))))
+ (-5 *7 (-1 (-1185) (-1179 *5) (-1179 *5) (-330))) (-5 *3 (-1179 (-330)))
+ (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))))
(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330)))
- (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330)))
- (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710))))
((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-485)) (-5 *6 (-1 (-1186) (-1180 *5) (-1180 *5) (-330)))
- (-5 *3 (-1180 (-330))) (-5 *5 (-330)) (-5 *2 (-1186)) (-5 *1 (-711)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-330)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-831)) (-5 *1 (-710)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1074)) (-5 *1 (-710)))))
+ (-12 (-5 *4 (-484)) (-5 *6 (-1 (-1185) (-1179 *5) (-1179 *5) (-330)))
+ (-5 *3 (-1179 (-330))) (-5 *5 (-330)) (-5 *2 (-1185)) (-5 *1 (-710)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-330)) (-5 *1 (-709)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-830)) (-5 *1 (-709)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1073)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496))
- (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495))
+ (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756))
+ (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756))
+ (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-757)) (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330)))
- (-5 *1 (-709 *5)))))
+ (|partial| -12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-756)) (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330)))
+ (-5 *1 (-708 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2))
- (-5 *2 (-330)) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2))
+ (-5 *2 (-330)) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961))
+ (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2))
- (-5 *2 (-330)) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2))
+ (-5 *2 (-330)) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5))))
+ (|partial| -12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *4))))
+ (|partial| -12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756))
+ (-4 *4 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))))
+ (|partial| -12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
+ (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 (-330))) (-5 *1 (-709 *3)) (-4 *3 (-554 (-330)))))
+ (-12 (-5 *2 (-142 (-330))) (-5 *1 (-708 *3)) (-4 *3 (-553 (-330)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-5 *2 (-142 (-330))) (-5 *1 (-709 *3))
- (-4 *3 (-554 (-330)))))
+ (-12 (-5 *4 (-830)) (-5 *2 (-142 (-330))) (-5 *1 (-708 *3))
+ (-4 *3 (-553 (-330)))))
((*1 *2 *3)
- (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-142 *4)) (-4 *4 (-146)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-142 *5)) (-5 *4 (-831)) (-4 *5 (-146)) (-4 *5 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-142 *5)) (-5 *4 (-830)) (-4 *5 (-146)) (-4 *5 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-858 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-857 (-142 *4))) (-4 *4 (-146)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-146))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-857 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-146))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 (-142 *4)))) (-4 *4 (-496)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-350 (-857 (-142 *4)))) (-4 *4 (-495)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 (-142 *5)))) (-5 *4 (-831)) (-4 *5 (-496))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-350 (-857 (-142 *5)))) (-5 *4 (-830)) (-4 *5 (-495))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 (-330)))
- (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 (-330)))
+ (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-496)) (-4 *4 (-757))
- (-4 *4 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-265 (-142 *4))) (-4 *4 (-495)) (-4 *4 (-756))
+ (-4 *4 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-709 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
+ (-12 (-5 *3 (-265 (-142 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
+ (-4 *5 (-553 (-330))) (-5 *2 (-142 (-330))) (-5 *1 (-708 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-5 *2 (-330)) (-5 *1 (-709 *3)) (-4 *3 (-554 *2))))
+ (-12 (-5 *4 (-830)) (-5 *2 (-330)) (-5 *1 (-708 *3)) (-4 *3 (-553 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-858 *4)) (-4 *4 (-962)) (-4 *4 (-554 *2)) (-5 *2 (-330))
- (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-857 *4)) (-4 *4 (-961)) (-4 *4 (-553 *2)) (-5 *2 (-330))
+ (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 *5)) (-5 *4 (-831)) (-4 *5 (-962)) (-4 *5 (-554 *2))
- (-5 *2 (-330)) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-857 *5)) (-5 *4 (-830)) (-4 *5 (-961)) (-4 *5 (-553 *2))
+ (-5 *2 (-330)) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-350 (-858 *4))) (-4 *4 (-496)) (-4 *4 (-554 *2)) (-5 *2 (-330))
- (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-350 (-857 *4))) (-4 *4 (-495)) (-4 *4 (-553 *2)) (-5 *2 (-330))
+ (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-554 *2))
- (-5 *2 (-330)) (-5 *1 (-709 *5))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-553 *2))
+ (-5 *2 (-330)) (-5 *1 (-708 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-265 *4)) (-4 *4 (-496)) (-4 *4 (-757)) (-4 *4 (-554 *2))
- (-5 *2 (-330)) (-5 *1 (-709 *4))))
+ (-12 (-5 *3 (-265 *4)) (-4 *4 (-495)) (-4 *4 (-756)) (-4 *4 (-553 *2))
+ (-5 *2 (-330)) (-5 *1 (-708 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-265 *5)) (-5 *4 (-831)) (-4 *5 (-496)) (-4 *5 (-757))
- (-4 *5 (-554 *2)) (-5 *2 (-330)) (-5 *1 (-709 *5)))))
+ (-12 (-5 *3 (-265 *5)) (-5 *4 (-830)) (-4 *5 (-495)) (-4 *5 (-756))
+ (-4 *5 (-553 *2)) (-5 *2 (-330)) (-5 *1 (-708 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485))))
+ (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484))))
(-4 *2 (-146)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-5 *1 (-707 *2)) (-4 *2 (-38 (-350 (-485))))
+ (-12 (-5 *3 (-694)) (-5 *1 (-706 *2)) (-4 *2 (-38 (-350 (-484))))
(-4 *2 (-146)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-705 *2)) (-4 *2 (-962)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-704 *2)) (-4 *2 (-961)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-584 (-705 *3))) (-5 *1 (-705 *3)) (-4 *3 (-496))
- (-4 *3 (-962)))))
+ (-12 (-5 *2 (-583 (-704 *3))) (-5 *1 (-704 *3)) (-4 *3 (-495))
+ (-4 *3 (-961)))))
(((*1 *2 *1 *1)
(-12
- (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)) (|:| |coef2| (-705 *3))))
- (-5 *1 (-705 *3)) (-4 *3 (-496)) (-4 *3 (-962)))))
+ (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-704 *3)) (|:| |coef2| (-704 *3))))
+ (-5 *1 (-704 *3)) (-4 *3 (-495)) (-4 *3 (-961)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef1| (-705 *3)))) (-5 *1 (-705 *3))
- (-4 *3 (-496)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef1| (-704 *3)))) (-5 *1 (-704 *3))
+ (-4 *3 (-495)) (-4 *3 (-961)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3758 *3) (|:| |coef2| (-705 *3)))) (-5 *1 (-705 *3))
- (-4 *3 (-496)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-2 (|:| -3757 *3) (|:| |coef2| (-704 *3)))) (-5 *1 (-704 *3))
+ (-4 *3 (-495)) (-4 *3 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-350 (-485))))
+ (-12 (-5 *3 (-630 (-350 (-484))))
(-5 *2
- (-584
- (-2 (|:| |outval| *4) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 *4))))))
- (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756))))))
+ (-583
+ (-2 (|:| |outval| *4) (|:| |outmult| (-484))
+ (|:| |outvect| (-583 (-630 *4))))))
+ (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-703 *4))
- (-4 *4 (-13 (-312) (-756))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-631 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
+ (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-702 *4))
+ (-4 *4 (-13 (-312) (-755))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-630 *2)) (-4 *2 (-146)) (-5 *1 (-119 *2))))
((*1 *2 *3)
- (-12 (-4 *4 (-146)) (-4 *2 (-1156 *4)) (-5 *1 (-151 *4 *2 *3))
- (-4 *3 (-662 *4 *2))))
+ (-12 (-4 *4 (-146)) (-4 *2 (-1155 *4)) (-5 *1 (-151 *4 *2 *3))
+ (-4 *3 (-661 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-350 (-858 *5)))) (-5 *4 (-1091)) (-5 *2 (-858 *5))
+ (-12 (-5 *3 (-630 (-350 (-857 *5)))) (-5 *4 (-1090)) (-5 *2 (-857 *5))
(-5 *1 (-248 *5)) (-4 *5 (-392))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-5 *2 (-858 *4)) (-5 *1 (-248 *4))
+ (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-5 *2 (-857 *4)) (-5 *1 (-248 *4))
(-4 *4 (-392))))
- ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1156 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-858 (-142 (-350 (-485)))))
- (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756)))))
+ (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-857 (-142 (-350 (-484)))))
+ (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *4 (-1091))
- (-5 *2 (-858 (-142 (-350 (-485))))) (-5 *1 (-689 *5))
- (-4 *5 (-13 (-312) (-756)))))
+ (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *4 (-1090))
+ (-5 *2 (-857 (-142 (-350 (-484))))) (-5 *1 (-688 *5))
+ (-4 *5 (-13 (-312) (-755)))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *2 (-858 (-350 (-485))))
- (-5 *1 (-703 *4)) (-4 *4 (-13 (-312) (-756)))))
+ (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *2 (-857 (-350 (-484))))
+ (-5 *1 (-702 *4)) (-4 *4 (-13 (-312) (-755)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-350 (-485)))) (-5 *4 (-1091))
- (-5 *2 (-858 (-350 (-485)))) (-5 *1 (-703 *5)) (-4 *5 (-13 (-312) (-756))))))
+ (-12 (-5 *3 (-630 (-350 (-484)))) (-5 *4 (-1090))
+ (-5 *2 (-857 (-350 (-484)))) (-5 *1 (-702 *5)) (-4 *5 (-13 (-312) (-755))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-584 (-695)))
- (-5 *1 (-702 *3 *4 *5 *6 *7)) (-4 *3 (-1156 *6)) (-4 *7 (-862 *6 *4 *5)))))
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-583 (-694)))
+ (-5 *1 (-701 *3 *4 *5 *6 *7)) (-4 *3 (-1155 *6)) (-4 *7 (-861 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1156 *9)) (-4 *7 (-718)) (-4 *8 (-757)) (-4 *9 (-258))
- (-4 *10 (-862 *9 *7 *8))
+ (-12 (-4 *6 (-1155 *9)) (-4 *7 (-717)) (-4 *8 (-756)) (-4 *9 (-258))
+ (-4 *10 (-861 *9 *7 *8))
(-5 *2
- (-2 (|:| |deter| (-584 (-1086 *10)))
- (|:| |dterm| (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-584 *6)) (|:| |nlead| (-584 *10))))
- (-5 *1 (-702 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-584 *6))
- (-5 *5 (-584 *10)))))
+ (-2 (|:| |deter| (-583 (-1085 *10)))
+ (|:| |dterm| (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10))))
+ (-5 *1 (-701 *6 *7 *8 *9 *10)) (-5 *3 (-1085 *10)) (-5 *4 (-583 *6))
+ (-5 *5 (-583 *10)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1156 *5)) (-5 *2 (-584 *3))
- (-5 *1 (-701 *4 *5 *6 *3 *7)) (-4 *3 (-1156 *6)) (-14 *7 (-831)))))
+ (-12 (-4 *4 (-299)) (-4 *5 (-280 *4)) (-4 *6 (-1155 *5)) (-5 *2 (-583 *3))
+ (-5 *1 (-700 *4 *5 *6 *3 *7)) (-4 *3 (-1155 *6)) (-14 *7 (-830)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| (-85)) (|:| -1601 *4))))
- (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| (-85)) (|:| -1600 *4))))
+ (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1074)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
- (-4 *4 (-978 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-700 *6 *7 *8 *4 *5))
- (-4 *5 (-984 *6 *7 *8 *4)))))
+ (-12 (-5 *3 (-1073)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
+ (-4 *4 (-977 *6 *7 *8)) (-5 *2 (-1185)) (-5 *1 (-699 *6 *7 *8 *4 *5))
+ (-4 *5 (-983 *6 *7 *8 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3)))))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))))
((*1 *1 *1) (-5 *1 (-330)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *3 (-978 *5 *6 *7))
- (-5 *2 (-584 (-2 (|:| |val| *3) (|:| -1601 *4))))
- (-5 *1 (-700 *5 *6 *7 *3 *4)) (-4 *4 (-984 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *3 (-977 *5 *6 *7))
+ (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -1600 *4))))
+ (-5 *1 (-699 *5 *6 *7 *3 *4)) (-4 *4 (-983 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *2 (-978 *4 *5 *6))
- (-5 *1 (-700 *4 *5 *6 *2 *3)) (-4 *3 (-984 *4 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-330))))
- ((*1 *1 *1 *1) (-4 *1 (-484)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
- ((*1 *1 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-431)) (-5 *4 (-866)) (-5 *2 (-633 (-472))) (-5 *1 (-472))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-866)) (-4 *3 (-1014)) (-5 *2 (-633 *1)) (-4 *1 (-692 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-692 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-142 (-350 (-485)))))
- (-5 *2
- (-584
- (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 (-142 *4)))))))
- (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 (-142 (-350 (-485))))) (-5 *2 (-584 (-142 *4)))
- (-5 *1 (-689 *4)) (-4 *4 (-13 (-312) (-756))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *1) (-4 *1 (-686))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-684 *3)) (-4 *3 (-146)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *2 (-977 *4 *5 *6))
+ (-5 *1 (-699 *4 *5 *6 *2 *3)) (-4 *3 (-983 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-330))))
+ ((*1 *1 *1 *1) (-4 *1 (-483)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ ((*1 *1 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-694)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-431)) (-5 *4 (-865)) (-5 *2 (-632 (-471))) (-5 *1 (-471))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-865)) (-4 *3 (-1013)) (-5 *2 (-632 *1)) (-4 *1 (-691 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 (-142 (-350 (-484)))))
+ (-5 *2
+ (-583
+ (-2 (|:| |outval| (-142 *4)) (|:| |outmult| (-484))
+ (|:| |outvect| (-583 (-630 (-142 *4)))))))
+ (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-630 (-142 (-350 (-484))))) (-5 *2 (-583 (-142 *4)))
+ (-5 *1 (-688 *4)) (-4 *4 (-13 (-312) (-755))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-685))))
+(((*1 *1 *1 *1) (-4 *1 (-413))) ((*1 *1 *1 *1) (-4 *1 (-685))))
+(((*1 *1 *1 *1) (-4 *1 (-685))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-683 *3)) (-4 *3 (-146)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 *6)) (-5 *3 (-485)) (-4 *6 (-258)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
+ (-12 (-5 *2 (-1085 *6)) (-5 *3 (-484)) (-4 *6 (-258)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-4 *7 (-757))
- (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-4 *8 (-258)) (-5 *2 (-584 (-695)))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *5 (-695)))))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-4 *7 (-756))
+ (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-4 *8 (-258)) (-5 *2 (-583 (-694)))
+ (-5 *1 (-681 *6 *7 *8 *9)) (-5 *5 (-694)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-485)) (-5 *4 (-348 *2)) (-4 *2 (-862 *7 *5 *6))
- (-5 *1 (-682 *5 *6 *7 *2)) (-4 *5 (-718)) (-4 *6 (-757)) (-4 *7 (-258)))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-348 *2)) (-4 *2 (-861 *7 *5 *6))
+ (-5 *1 (-681 *5 *6 *7 *2)) (-4 *5 (-717)) (-4 *6 (-756)) (-4 *7 (-258)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8)))
- (-4 *7 (-757)) (-4 *8 (-258)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8)))
+ (-4 *7 (-756)) (-4 *8 (-258)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717))
(-5 *2
- (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-584 *8))
- (|:| |Lfact| (-584 (-2 (|:| -3734 (-1086 *8)) (|:| -2402 (-485)))))
+ (-2 (|:| |upol| (-1085 *8)) (|:| |Lval| (-583 *8))
+ (|:| |Lfact| (-583 (-2 (|:| -3733 (-1085 *8)) (|:| -2401 (-484)))))
(|:| |ctpol| *8)))
- (-5 *1 (-682 *6 *7 *8 *9)))))
+ (-5 *1 (-681 *6 *7 *8 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-584 *7)) (-5 *5 (-584 (-584 *8))) (-4 *7 (-757)) (-4 *8 (-258))
- (-4 *6 (-718)) (-4 *9 (-862 *8 *6 *7))
+ (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-756)) (-4 *8 (-258))
+ (-4 *6 (-717)) (-4 *9 (-861 *8 *6 *7))
(-5 *2
(-2 (|:| |unitPart| *9)
- (|:| |suPart| (-584 (-2 (|:| -3734 (-1086 *9)) (|:| -2402 (-485)))))))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))))
+ (|:| |suPart| (-583 (-2 (|:| -3733 (-1085 *9)) (|:| -2401 (-484)))))))
+ (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-485)) (-4 *6 (-718)) (-4 *7 (-757)) (-4 *8 (-258))
- (-4 *9 (-862 *8 *6 *7))
- (-5 *2 (-2 (|:| -2005 (-1086 *9)) (|:| |polval| (-1086 *8))))
- (-5 *1 (-682 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))))
+ (-12 (-5 *5 (-484)) (-4 *6 (-717)) (-4 *7 (-756)) (-4 *8 (-258))
+ (-4 *9 (-861 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2004 (-1085 *9)) (|:| |polval| (-1085 *8))))
+ (-5 *1 (-681 *6 *7 *8 *9)) (-5 *3 (-1085 *9)) (-5 *4 (-1085 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-718)) (-4 *4 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
- (-5 *1 (-682 *5 *4 *6 *3)) (-4 *3 (-862 *6 *5 *4)))))
+ (-12 (-4 *5 (-717)) (-4 *4 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-681 *5 *4 *6 *3)) (-4 *3 (-861 *6 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3734 (-1086 *6)) (|:| -2402 (-485)))))
- (-4 *6 (-258)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-485))
- (-5 *1 (-682 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3733 (-1085 *6)) (|:| -2401 (-484)))))
+ (-4 *6 (-258)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-484))
+ (-5 *1 (-681 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-258)) (-5 *2 (-348 *3))
- (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-862 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-679 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-678)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-676 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014))))
- ((*1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1014)))))
+ (-12 (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-258)) (-5 *2 (-348 *3))
+ (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-861 *6 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-678 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-677)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-675 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013))))
+ ((*1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-675 *3)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-675 *3 *4)) (-4 *3 (-962)) (-4 *4 (-664)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-674 *3 *4)) (-4 *3 (-961)) (-4 *4 (-663)))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-496)) (-4 *2 (-862 *3 *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
- (-5 *3 (-350 (-858 *6))) (-4 *5 (-718))
- (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))))
+ (-12 (-4 *6 (-495)) (-4 *2 (-861 *3 *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
+ (-5 *3 (-350 (-857 *6))) (-4 *5 (-717))
+ (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 (-858 *6))) (-4 *6 (-496))
- (-4 *2 (-862 (-350 (-858 *6)) *5 *4)) (-5 *1 (-672 *5 *4 *6 *2))
- (-4 *5 (-718)) (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))))))
+ (-12 (-5 *3 (-1085 (-857 *6))) (-4 *6 (-495))
+ (-4 *2 (-861 (-350 (-857 *6)) *5 *4)) (-5 *1 (-671 *5 *4 *6 *2))
+ (-4 *5 (-717)) (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-862 (-350 (-858 *6)) *5 *4))
- (-5 *1 (-672 *5 *4 *6 *2)) (-4 *5 (-718))
- (-4 *4 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $))))) (-4 *6 (-496)))))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-861 (-350 (-857 *6)) *5 *4))
+ (-5 *1 (-671 *5 *4 *6 *2)) (-4 *5 (-717))
+ (-4 *4 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $))))) (-4 *6 (-495)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-718)) (-4 *5 (-13 (-757) (-10 -8 (-15 -3974 ((-1091) $)))))
- (-4 *6 (-496)) (-5 *2 (-2 (|:| -2485 (-858 *6)) (|:| -2059 (-858 *6))))
- (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-862 (-350 (-858 *6)) *4 *5)))))
+ (-12 (-4 *4 (-717)) (-4 *5 (-13 (-756) (-10 -8 (-15 -3973 ((-1090) $)))))
+ (-4 *6 (-495)) (-5 *2 (-2 (|:| -2484 (-857 *6)) (|:| -2058 (-857 *6))))
+ (-5 *1 (-671 *4 *5 *6 *3)) (-4 *3 (-861 (-350 (-857 *6)) *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-485))
- (-14 *6 (-695)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-108 *5 *6 *7)) (-14 *5 (-484))
+ (-14 *6 (-694)) (-4 *7 (-146)) (-4 *8 (-146)) (-5 *2 (-108 *5 *6 *8))
(-5 *1 (-109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *9)) (-4 *9 (-962)) (-4 *5 (-757)) (-4 *6 (-718))
- (-4 *8 (-962)) (-4 *2 (-862 *9 *7 *5)) (-5 *1 (-668 *5 *6 *7 *8 *9 *4 *2))
- (-4 *7 (-718)) (-4 *4 (-862 *8 *6 *5)))))
+ (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-756)) (-4 *6 (-717))
+ (-4 *8 (-961)) (-4 *2 (-861 *9 *7 *5)) (-5 *1 (-667 *5 *6 *7 *8 *9 *4 *2))
+ (-4 *7 (-717)) (-4 *4 (-861 *8 *6 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1156 *5))
- (-5 *1 (-667 *5 *2)) (-4 *5 (-312)))))
+ (-12 (-5 *3 (-350 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1155 *5))
+ (-5 *1 (-666 *5 *2)) (-4 *5 (-312)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -3091 (-348 *3)) (|:| |special| (-348 *3))))
- (-5 *1 (-667 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-72)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-665 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -3090 (-348 *3)) (|:| |special| (-348 *3))))
+ (-5 *1 (-666 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-72)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-72)) (-5 *1 (-664 *3)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-660)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-664)) (-5 *2 (-85)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-663)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
+ (-14 *4 (-583 (-1090)))))
((*1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090)))))
((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *2 (-291 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-286 *3 *4 *5 *2)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *2 (-291 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-694)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-146))))
- ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-662 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1180 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
- (-4 *1 (-662 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-658)) (-5 *2 (-831))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-660)) (-5 *2 (-695)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-496))))
- ((*1 *1 *1) (|partial| -4 *1 (-660))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-656 *2)) (-4 *2 (-312)))))
+ ((*1 *1) (-12 (-4 *2 (-146)) (-4 *1 (-661 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312))
+ (-4 *1 (-661 *5 *6)) (-4 *5 (-146)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-830))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-694)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-146)) (-4 *2 (-495))))
+ ((*1 *1 *1) (|partial| -4 *1 (-659))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-655 *2)) (-4 *2 (-312)))))
(((*1 *1 *1 *1)
(|partial| -12 (-4 *2 (-146)) (-5 *1 (-244 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1156 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1155 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-649 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-653 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
+ (|partial| -12 (-5 *1 (-652 *2 *3 *4 *5 *6)) (-4 *2 (-146)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1161 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
- (-14 *4 (-1091)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496))))
+ (-12 (-5 *2 (-1160 *3 *4 *5)) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
+ (-14 *4 (-1090)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484))))
+ ((*1 *2 *1) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495))))
((*1 *2 *1)
- (-12 (-4 *2 (-1014)) (-5 *1 (-651 *3 *2 *4)) (-4 *3 (-757))
+ (-12 (-4 *2 (-1013)) (-5 *1 (-650 *3 *2 *4)) (-4 *3 (-756))
(-14 *4
- (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *2))
- (-2 (|:| -2401 *3) (|:| -2402 *2)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-831)) (-4 *1 (-320))))
- ((*1 *2 *1) (-12 (-4 *2 (-760)) (-5 *1 (-454 *3 *2)) (-4 *3 (-72))))
+ (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *2))
+ (-2 (|:| -2400 *3) (|:| -2401 *2)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-830)) (-4 *1 (-320))))
+ ((*1 *2 *1) (-12 (-4 *2 (-759)) (-5 *1 (-453 *3 *2)) (-4 *3 (-72))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299))))
((*1 *2 *1)
- (-12 (-4 *2 (-757)) (-5 *1 (-651 *2 *3 *4)) (-4 *3 (-1014))
+ (-12 (-4 *2 (-756)) (-5 *1 (-650 *2 *3 *4)) (-4 *3 (-1013))
(-14 *4
- (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *3))
- (-2 (|:| -2401 *2) (|:| -2402 *3)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-650 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *3))
+ (-2 (|:| -2400 *2) (|:| -2401 *3)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-649 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-962)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-961)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-962)) (-5 *2 (-1180 *3)) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-961)) (-5 *2 (-1179 *3)) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-962)) (-5 *2 (-870 (-650 *3 *4))) (-5 *1 (-650 *3 *4))
- (-4 *4 (-1156 *3)))))
+ (-12 (-4 *3 (-961)) (-5 *2 (-869 (-649 *3 *4))) (-5 *1 (-649 *3 *4))
+ (-4 *4 (-1155 *3)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-299)) (-4 *2 (-962)) (-5 *1 (-650 *2 *3)) (-4 *3 (-1156 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
-(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
-(((*1 *2 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1074)) (-5 *1 (-648)))))
+ (-12 (-4 *2 (-299)) (-4 *2 (-961)) (-5 *1 (-649 *2 *3)) (-4 *3 (-1155 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1073)) (-5 *1 (-647)))))
(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-584 (-1086 *13))) (-5 *3 (-1086 *13))
- (-5 *4 (-584 *12)) (-5 *5 (-584 *10)) (-5 *6 (-584 *13))
- (-5 *7 (-584 (-584 (-2 (|:| -3080 (-695)) (|:| |pcoef| *13)))))
- (-5 *8 (-584 (-695))) (-5 *9 (-1180 (-584 (-1086 *10)))) (-4 *12 (-757))
- (-4 *10 (-258)) (-4 *13 (-862 *10 *11 *12)) (-4 *11 (-718))
- (-5 *1 (-645 *11 *12 *10 *13)))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *13))) (-5 *3 (-1085 *13))
+ (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13))
+ (-5 *7 (-583 (-583 (-2 (|:| -3079 (-694)) (|:| |pcoef| *13)))))
+ (-5 *8 (-583 (-694))) (-5 *9 (-1179 (-583 (-1085 *10)))) (-4 *12 (-756))
+ (-4 *10 (-258)) (-4 *13 (-861 *10 *11 *12)) (-4 *11 (-717))
+ (-5 *1 (-644 *11 *12 *10 *13)))))
(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-584 *11)) (-5 *5 (-584 (-1086 *9))) (-5 *6 (-584 *9))
- (-5 *7 (-584 *12)) (-5 *8 (-584 (-695))) (-4 *11 (-757)) (-4 *9 (-258))
- (-4 *12 (-862 *9 *10 *11)) (-4 *10 (-718)) (-5 *2 (-584 (-1086 *12)))
- (-5 *1 (-645 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))))
+ (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1085 *9))) (-5 *6 (-583 *9))
+ (-5 *7 (-583 *12)) (-5 *8 (-583 (-694))) (-4 *11 (-756)) (-4 *9 (-258))
+ (-4 *12 (-861 *9 *10 *11)) (-4 *10 (-717)) (-5 *2 (-583 (-1085 *12)))
+ (-5 *1 (-644 *10 *11 *9 *12)) (-5 *3 (-1085 *12)))))
(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-584 (-1086 *11))) (-5 *3 (-1086 *11))
- (-5 *4 (-584 *10)) (-5 *5 (-584 *8)) (-5 *6 (-584 (-695)))
- (-5 *7 (-1180 (-584 (-1086 *8)))) (-4 *10 (-757)) (-4 *8 (-258))
- (-4 *11 (-862 *8 *9 *10)) (-4 *9 (-718)) (-5 *1 (-645 *9 *10 *8 *11)))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *11))) (-5 *3 (-1085 *11))
+ (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-694)))
+ (-5 *7 (-1179 (-583 (-1085 *8)))) (-4 *10 (-756)) (-4 *8 (-258))
+ (-4 *11 (-861 *8 *9 *10)) (-4 *9 (-717)) (-5 *1 (-644 *9 *10 *8 *11)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *3 *5 *6 *7))
- (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *3 *5 *6 *7))
+ (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *3 *5 *6))
- (-4 *3 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *3 *5 *6))
+ (-4 *3 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-644 *4 *5 *6))
- (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-643 *4 *5 *6))
+ (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-643 *3 *4))
- (-4 *3 (-1130)) (-4 *4 (-1130)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-584 (-1091))) (-5 *3 (-1091)) (-5 *1 (-474))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-642 *3 *4))
+ (-4 *3 (-1129)) (-4 *4 (-1129)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1090))) (-5 *3 (-1090)) (-5 *1 (-473))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1091)) (-5 *1 (-642 *3)) (-4 *3 (-554 (-474)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-641 *3)) (-4 *3 (-553 (-473)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-584 (-1091))) (-5 *2 (-1091)) (-5 *1 (-642 *3))
- (-4 *3 (-554 (-474))))))
+ (-12 (-5 *4 (-583 (-1090))) (-5 *2 (-1090)) (-5 *1 (-641 *3))
+ (-4 *3 (-553 (-473))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-641 *3))
- (-4 *3 (-554 (-474)))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179))) (-5 *1 (-640 *3))
+ (-4 *3 (-553 (-473)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-641 *3))
- (-4 *3 (-554 (-474))))))
+ (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-640 *3))
+ (-4 *3 (-553 (-473))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-640 *4 *5 *6 *7))
- (-4 *4 (-554 (-474))) (-4 *5 (-1130)) (-4 *6 (-1130)) (-4 *7 (-1130)))))
+ (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-639 *4 *5 *6 *7))
+ (-4 *4 (-553 (-473))) (-4 *5 (-1129)) (-4 *6 (-1129)) (-4 *7 (-1129)))))
(((*1 *2 *3 *3)
(-12 (-4 *3 (-258)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-630 *3 *4 *5 *6))
- (-4 *6 (-628 *3 *4 *5))))
+ (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-629 *3 *4 *5 *6))
+ (-4 *6 (-627 *3 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1973 *3) (|:| -2904 *3))) (-5 *1 (-639 *3))
+ (-12 (-5 *2 (-2 (|:| -1972 *3) (|:| -2903 *3))) (-5 *1 (-638 *3))
(-4 *3 (-258)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-258)) (-5 *1 (-639 *3)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-258)) (-5 *1 (-638 *3)))))
(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-1 (-179) (-179) (-179) (-179)))
- (-5 *2 (-1 (-855 (-179)) (-179) (-179))) (-5 *1 (-637)))))
+ (-5 *2 (-1 (-854 (-179)) (-179) (-179))) (-5 *1 (-636)))))
(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
- (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637)))))
+ (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636)))))
(((*1 *2 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179)))
- (-5 *1 (-637)))))
+ (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-636)))))
(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-179) (-179) (-179)))
(-5 *4 (-3 (-1 (-179) (-179) (-179) (-179)) "undefined"))
- (-5 *5 (-1002 (-179))) (-5 *6 (-584 (-221))) (-5 *2 (-1048 (-179)))
- (-5 *1 (-637))))
+ (-5 *5 (-1001 (-179))) (-5 *6 (-583 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-636))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-179)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-637))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-179)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-636))))
((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1048 (-179))) (-5 *3 (-1 (-855 (-179)) (-179) (-179)))
- (-5 *4 (-1002 (-179))) (-5 *5 (-584 (-221))) (-5 *1 (-637)))))
+ (-12 (-5 *2 (-1047 (-179))) (-5 *3 (-1 (-854 (-179)) (-179) (-179)))
+ (-5 *4 (-1001 (-179))) (-5 *5 (-583 (-221))) (-5 *1 (-636)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4))))
((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *5)))) (-4 *5 (-1156 *4))
- (-4 *4 (-299)) (-5 *2 (-584 *5)) (-5 *1 (-170 *4 *5))))
+ (-12 (-5 *3 (-583 (-2 (|:| |deg| (-694)) (|:| -2576 *5)))) (-4 *5 (-1155 *4))
+ (-4 *4 (-299)) (-5 *2 (-583 *5)) (-5 *1 (-170 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-2 (|:| -3734 *5) (|:| -3950 (-485))))) (-5 *4 (-485))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 *5)) (-5 *1 (-636 *5)))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3733 *5) (|:| -3949 (-484))))) (-5 *4 (-484))
+ (-4 *5 (-1155 *4)) (-5 *2 (-583 *5)) (-5 *1 (-635 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -3950 *4))))
- (-5 *1 (-636 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-636 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1130)) (-4 *2 (-72))))
- ((*1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1014)))))
+ (-12 (-5 *4 (-484)) (-5 *2 (-583 (-2 (|:| -3733 *3) (|:| -3949 *4))))
+ (-5 *1 (-635 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-635 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-1129)) (-4 *2 (-72))))
+ ((*1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3)) (-4 *3 (-1014))
- (-5 *2 (-584 (-2 (|:| |entry| *3) (|:| -1731 (-695))))))))
-(((*1 *1 *2) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
-(((*1 *1) (-12 (-5 *1 (-633 *2)) (-4 *2 (-553 (-773))))))
+ (-12 (-4 *1 (-634 *3)) (-4 *3 (-1013))
+ (-5 *2 (-583 (-2 (|:| |entry| *3) (|:| -1730 (-694))))))))
+(((*1 *1 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
+(((*1 *1) (-12 (-5 *1 (-632 *2)) (-4 *2 (-552 (-772))))))
(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-631 *4)) (-5 *3 (-695)) (-4 *4 (-962)) (-5 *1 (-632 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3))))
- ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-631 *3)) (-4 *3 (-962)) (-5 *1 (-632 *3)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3))
- (-4 *5 (-324 *3)) (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-630 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
+ (-12 (-5 *2 (-630 *4)) (-5 *3 (-694)) (-4 *4 (-961)) (-5 *1 (-631 *4)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3))))
+ ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-630 *3)) (-4 *3 (-961)) (-5 *1 (-631 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3))
+ (-4 *5 (-324 *3)) (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-495)) (-4 *3 (-146)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
+ (-5 *1 (-629 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
- (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
+ (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
+ (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-485)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
- (-5 *1 (-630 *3 *5 *6 *2)) (-4 *2 (-628 *3 *5 *6)))))
+ (-12 (-5 *4 (-484)) (-4 *3 (-146)) (-4 *5 (-324 *3)) (-4 *6 (-324 *3))
+ (-5 *1 (-629 *3 *5 *6 *2)) (-4 *2 (-627 *3 *5 *6)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
- (-5 *1 (-630 *4 *5 *6 *2)) (-4 *2 (-628 *4 *5 *6)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-146)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4))
+ (-5 *1 (-629 *4 *5 *6 *2)) (-4 *2 (-627 *4 *5 *6)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-628 *2 *3 *4)) (-4 *2 (-962)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-627 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)))))
(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-485)) (-4 *1 (-628 *3 *4 *5)) (-4 *3 (-962)) (-4 *4 (-324 *3))
+ (-12 (-5 *2 (-484)) (-4 *1 (-627 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-324 *3))
(-4 *5 (-324 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-626 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-625 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-626 *4 *5 *6)) (-4 *4 (-1014)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-625 *4 *5 *6)) (-4 *4 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1014)) (-4 *6 (-1014)) (-5 *2 (-1 *6 *4 *5))
- (-5 *1 (-626 *4 *5 *6)) (-4 *5 (-1014)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1013)) (-4 *6 (-1013)) (-5 *2 (-1 *6 *4 *5))
+ (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *4 *5 *6)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1014)) (-4 *4 (-1014)) (-4 *6 (-1014))
- (-5 *2 (-1 *6 *5)) (-5 *1 (-626 *5 *4 *6)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1013)) (-4 *4 (-1013)) (-4 *6 (-1013))
+ (-5 *2 (-1 *6 *5)) (-5 *1 (-625 *5 *4 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-625 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-624 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1014)) (-4 *5 (-1014)) (-5 *2 (-1 *5))
- (-5 *1 (-625 *4 *5)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1013)) (-4 *5 (-1013)) (-5 *2 (-1 *5))
+ (-5 *1 (-624 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-625 *4 *3)) (-4 *4 (-1014))
- (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-624 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1013)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-695) *2)) (-5 *4 (-695)) (-4 *2 (-1014))
- (-5 *1 (-620 *2))))
- ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-695) *3)) (-4 *3 (-1014)) (-5 *1 (-624 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-624 *2)) (-4 *2 (-1014))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-584 *5) (-584 *5))) (-5 *4 (-485)) (-5 *2 (-584 *5))
- (-5 *1 (-624 *5)) (-4 *5 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-584 (-1131))) (-5 *3 (-1131)) (-5 *1 (-623)))))
+ (-12 (-5 *3 (-1 *2 (-694) *2)) (-5 *4 (-694)) (-4 *2 (-1013))
+ (-5 *1 (-619 *2))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-694) *3)) (-4 *3 (-1013)) (-5 *1 (-623 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-623 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-623 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-484)) (-5 *2 (-583 *5))
+ (-5 *1 (-623 *5)) (-4 *5 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-623 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1130))) (-5 *3 (-1130)) (-5 *1 (-622)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1014)) (-4 *6 (-1014))
- (-4 *2 (-1014)) (-5 *1 (-622 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-621 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-621 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1013)) (-4 *6 (-1013))
+ (-4 *2 (-1013)) (-5 *1 (-621 *5 *6 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-620 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-620 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-695)) (-4 *2 (-1014)) (-5 *1 (-620 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-85)))))
-(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-617 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-740 *4)) (-4 *4 (-757)) (-5 *2 (-85)) (-5 *1 (-615 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-694)) (-4 *2 (-1013)) (-5 *1 (-619 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-85)))))
+(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-616 *3)) (-4 *3 (-1129)) (-5 *2 (-694)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-739 *4)) (-4 *4 (-756)) (-5 *2 (-85)) (-5 *1 (-614 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-740 *3)) (-4 *3 (-757)) (-5 *1 (-615 *3)))))
+ (|partial| -12 (-5 *2 (-739 *3)) (-4 *3 (-756)) (-5 *1 (-614 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757))
- (-5 *2 (-58 (-584 (-615 *5)))) (-5 *1 (-615 *5)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756))
+ (-5 *2 (-58 (-583 (-614 *5)))) (-5 *1 (-614 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *5)) (-5 *4 (-831)) (-4 *5 (-757)) (-5 *2 (-584 (-615 *5)))
- (-5 *1 (-615 *5)))))
+ (-12 (-5 *3 (-583 *5)) (-5 *4 (-830)) (-4 *5 (-756)) (-5 *2 (-583 (-614 *5)))
+ (-5 *1 (-614 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 *7)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-4 *5 (-496)) (-4 *6 (-718))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-756))
+ (-4 *8 (-861 *5 *6 *7)) (-4 *5 (-495)) (-4 *6 (-717))
(-5 *2
- (-2 (|:| |particular| (-3 (-1180 (-350 *8)) "failed"))
- (|:| -2013 (-584 (-1180 (-350 *8))))))
- (-5 *1 (-612 *5 *6 *7 *8)))))
+ (-2 (|:| |particular| (-3 (-1179 (-350 *8)) "failed"))
+ (|:| -2012 (-583 (-1179 (-350 *8))))))
+ (-5 *1 (-611 *5 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-10 -7 (-6 -3998))))
- (-4 *4 (-13 (-324 *5) (-10 -7 (-6 -3998)))) (-5 *2 (-85))
- (-5 *1 (-610 *5 *6 *4 *3)) (-4 *3 (-628 *5 *6 *4))))
+ (-12 (-4 *5 (-312)) (-4 *6 (-13 (-324 *5) (-1035 *5)))
+ (-4 *4 (-13 (-324 *5) (-1035 *5))) (-5 *2 (-85)) (-5 *1 (-609 *5 *6 *4 *3))
+ (-4 *3 (-627 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *5)) (-5 *4 (-1180 *5)) (-4 *5 (-312)) (-5 *2 (-85))
- (-5 *1 (-611 *5)))))
+ (-12 (-5 *3 (-630 *5)) (-5 *4 (-1179 *5)) (-4 *5 (-312)) (-5 *2 (-85))
+ (-5 *1 (-610 *5)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-822))
- (-5 *1 (-606 *4)))))
-(((*1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-4 *1 (-605))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
+ (|partial| -12 (-5 *2 (-583 (-1085 *4))) (-5 *3 (-1085 *4)) (-4 *4 (-821))
+ (-5 *1 (-605 *4)))))
+(((*1 *1 *1) (-4 *1 (-604))))
+(((*1 *1 *1 *1) (-4 *1 (-604))))
+(((*1 *1 *1 *1) (-4 *1 (-604))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2))
- (-4 *2 (-601 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2))
+ (-4 *2 (-600 *4)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-601 *3)) (-4 *3 (-962)) (-4 *3 (-312))))
+ (-12 (-5 *2 (-694)) (-4 *1 (-600 *3)) (-4 *3 (-961)) (-4 *3 (-312))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-603 *5 *2))
- (-4 *2 (-601 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-1 *5 *5)) (-4 *5 (-312)) (-5 *1 (-602 *5 *2))
+ (-4 *2 (-600 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-603 *4 *2))
- (-4 *2 (-601 *4)))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-312)) (-5 *1 (-602 *4 *2))
+ (-4 *2 (-600 *4)))))
(((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-312) (-120) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-584 (-598 (-350 *5)))) (-5 *1 (-602 *4 *5))
- (-5 *3 (-598 (-350 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-962)) (-4 *2 (-312)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-594 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-594 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4))))
- (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23)) (-14 *5 *4))))
+ (-4 *4 (-13 (-312) (-120) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-583 (-597 (-350 *5)))) (-5 *1 (-601 *4 *5))
+ (-5 *3 (-597 (-350 *5))))))
+(((*1 *1 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-961)) (-4 *2 (-312)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-593 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-593 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-593 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4))))
+ (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 *4)))) (-4 *3 (-1014))
- (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 *4)))) (-4 *3 (-1013))
+ (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-336 *4)) (-4 *4 (-1014)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-336 *4)) (-4 *4 (-1013)) (-5 *2 (-694))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-23)) (-5 *1 (-592 *4 *2 *5)) (-4 *4 (-1014))
+ (-12 (-5 *3 (-484)) (-4 *2 (-23)) (-5 *1 (-591 *4 *2 *5)) (-4 *4 (-1013))
(-14 *5 *2))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-310 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-4 *1 (-336 *2)) (-4 *2 (-1014))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-274 *2 *4)) (-4 *4 (-104)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-310 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-4 *1 (-336 *2)) (-4 *2 (-1013))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-1014)) (-5 *1 (-592 *2 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *3 (-484)) (-4 *2 (-1013)) (-5 *1 (-591 *2 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1130))))
- ((*1 *2 *2) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-1129))))
+ ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130))))
- ((*1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1129))))
((*1 *1 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *2 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3)))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-592 *2 *3 *4)) (-4 *2 (-1014)) (-4 *3 (-23)) (-14 *4 *3))))
+ (-12 (-5 *1 (-591 *2 *3 *4)) (-4 *2 (-1013)) (-4 *3 (-23)) (-14 *4 *3))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-592 *3 *4 *5)) (-4 *3 (-1014)) (-4 *4 (-23))
+ (-12 (-5 *2 (-85)) (-5 *1 (-591 *3 *4 *5)) (-4 *3 (-1013)) (-4 *4 (-23))
(-14 *5 *4))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-485) (-485))) (-5 *1 (-310 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-1 (-484) (-484))) (-5 *1 (-310 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-695) (-695))) (-4 *1 (-336 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-1 (-694) (-694))) (-4 *1 (-336 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-592 *3 *4 *5))
- (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-591 *3 *4 *5))
+ (-4 *3 (-1013)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-310 *3))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1014))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-310 *3))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-336 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-592 *3 *4 *5)) (-4 *4 (-23))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-591 *3 *4 *5)) (-4 *4 (-23))
(-14 *5 *4))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-590 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1014)))))
-(((*1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-584 *3)) (-4 *3 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1014)) (-4 *2 (-1130)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-589 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-589 *2)) (-4 *2 (-1013)))))
+(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-583 *3)) (-4 *3 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1013)) (-4 *2 (-1129)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-582 *3 *4))
- (-14 *4 (-584 (-1091))))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-581 *3 *4))
+ (-14 *4 (-583 (-1090))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962))
- (-5 *2 (-2 (|:| |mat| (-631 *4)) (|:| |vec| (-1180 *4))))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961))
+ (-5 *2 (-2 (|:| |mat| (-630 *4)) (|:| |vec| (-1179 *4))))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-631 *1)) (-5 *4 (-1180 *1)) (-4 *1 (-581 *5)) (-4 *5 (-962))
- (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 *5))))))
+ (-12 (-5 *3 (-630 *1)) (-5 *4 (-1179 *1)) (-4 *1 (-580 *5)) (-4 *5 (-961))
+ (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 *5))))))
((*1 *2 *3)
- (-12 (-5 *3 (-631 *1)) (-4 *1 (-581 *4)) (-4 *4 (-962)) (-5 *2 (-631 *4)))))
+ (-12 (-5 *3 (-630 *1)) (-4 *1 (-580 *4)) (-4 *4 (-961)) (-5 *2 (-630 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-312)) (-5 *1 (-580 *3 *4))
- (-14 *4 (-584 (-1091))))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-312)) (-5 *1 (-579 *3 *4))
+ (-14 *4 (-583 (-1090))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5)))
- (-4 *5 (-312)) (-4 *5 (-496)) (-5 *2 (-1180 *5)) (-5 *1 (-579 *5 *4))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5)))
+ (-4 *5 (-312)) (-4 *5 (-495)) (-5 *2 (-1179 *5)) (-5 *1 (-578 *5 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 *5)))
- (-2562 (-4 *5 (-312))) (-4 *5 (-496)) (-5 *2 (-1180 (-350 *5)))
- (-5 *1 (-579 *5 *4)))))
+ (|partial| -12 (-5 *3 (-1179 *4)) (-4 *4 (-13 (-961) (-580 *5)))
+ (-2561 (-4 *5 (-312))) (-4 *5 (-495)) (-5 *2 (-1179 (-350 *5)))
+ (-5 *1 (-578 *5 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4)))
- (-4 *4 (-496)) (-5 *2 (-1180 *4)) (-5 *1 (-579 *4 *5)))))
+ (|partial| -12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4)))
+ (-4 *4 (-495)) (-5 *2 (-1179 *4)) (-5 *1 (-578 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *5)) (-4 *5 (-13 (-962) (-581 *4))) (-4 *4 (-496))
- (-5 *2 (-85)) (-5 *1 (-579 *4 *5)))))
+ (-12 (-5 *3 (-1179 *5)) (-4 *5 (-13 (-961) (-580 *4))) (-4 *4 (-495))
+ (-5 *2 (-85)) (-5 *1 (-578 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-751 *3))) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-249 (-750 *3))) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-3 (-751 *3)
- (-2 (|:| |leftHandLimit| (-3 (-751 *3) #1="failed"))
- (|:| |rightHandLimit| (-3 (-751 *3) #1#)))
+ (-3 (-750 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-750 *3) #1="failed"))
+ (|:| |rightHandLimit| (-3 (-750 *3) #1#)))
"failed"))
- (-5 *1 (-576 *5 *3))))
+ (-5 *1 (-575 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1074))
- (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-751 *3))
- (-5 *1 (-576 *6 *3))))
+ (|partial| -12 (-5 *4 (-249 *3)) (-5 *5 (-1073))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-750 *3))
+ (-5 *1 (-575 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-751 (-858 *5)))) (-4 *5 (-392))
+ (-12 (-5 *4 (-249 (-750 (-857 *5)))) (-4 *5 (-392))
(-5 *2
- (-3 (-751 (-350 (-858 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-751 (-350 (-858 *5))) #2="failed"))
- (|:| |rightHandLimit| (-3 (-751 (-350 (-858 *5))) #2#)))
+ (-3 (-750 (-350 (-857 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-750 (-350 (-857 *5))) #2="failed"))
+ (|:| |rightHandLimit| (-3 (-750 (-350 (-857 *5))) #2#)))
#3="failed"))
- (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))
+ (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392))
+ (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392))
(-5 *2
- (-3 (-751 *3)
- (-2 (|:| |leftHandLimit| (-3 (-751 *3) #2#))
- (|:| |rightHandLimit| (-3 (-751 *3) #2#)))
+ (-3 (-750 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-750 *3) #2#))
+ (|:| |rightHandLimit| (-3 (-750 *3) #2#)))
#3#))
- (-5 *1 (-577 *5))))
+ (-5 *1 (-576 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-249 (-350 (-858 *6)))) (-5 *5 (-1074))
- (-5 *3 (-350 (-858 *6))) (-4 *6 (-392)) (-5 *2 (-751 *3))
- (-5 *1 (-577 *6)))))
+ (|partial| -12 (-5 *4 (-249 (-350 (-857 *6)))) (-5 *5 (-1073))
+ (-5 *3 (-350 (-857 *6))) (-4 *6 (-392)) (-5 *2 (-750 *3))
+ (-5 *1 (-576 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-249 (-744 *3)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-744 *3))
- (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (|partial| -12 (-5 *4 (-249 (-743 *3)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-743 *3))
+ (-5 *1 (-575 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-744 (-858 *5)))) (-4 *5 (-392))
- (-5 *2 (-744 (-350 (-858 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-350 (-858 *5)))))
+ (-12 (-5 *4 (-249 (-743 (-857 *5)))) (-4 *5 (-392))
+ (-5 *2 (-743 (-350 (-857 *5)))) (-5 *1 (-576 *5)) (-5 *3 (-350 (-857 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-249 (-350 (-858 *5)))) (-5 *3 (-350 (-858 *5))) (-4 *5 (-392))
- (-5 *2 (-744 *3)) (-5 *1 (-577 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-572)))))
-(((*1 *1 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-1014))))
- ((*1 *1 *1) (-5 *1 (-572))))
+ (-12 (-5 *4 (-249 (-350 (-857 *5)))) (-5 *3 (-350 (-857 *5))) (-4 *5 (-392))
+ (-5 *2 (-743 *3)) (-5 *1 (-576 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-571)))))
+(((*1 *1 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *1) (-5 *1 (-571))))
(((*1 *2 *3)
- (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-421 *4 *5)) (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *3 (-206 *4 *5)) (-14 *4 (-583 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-421 *4 *5)) (-5 *1 (-570 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-584 (-1091)))
- (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *3 (-583 (-206 *4 *5))) (-5 *2 (-206 *4 *5)) (-14 *4 (-583 (-1090)))
+ (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))))
(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-774 *4)) (-14 *4 (-584 (-1091)))
- (-4 *5 (-392)) (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-773 *4)) (-14 *4 (-583 (-1090)))
+ (-4 *5 (-392)) (-5 *1 (-570 *4 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-206 *5 *6))) (-4 *6 (-392))
- (-5 *2 (-206 *5 *6)) (-14 *5 (-584 (-1091))) (-5 *1 (-571 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *1 (-221))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-206 *5 *6))) (-4 *6 (-392))
+ (-5 *2 (-206 *5 *6)) (-14 *5 (-583 (-1090))) (-5 *1 (-570 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-855 (-179)) (-855 (-179)))) (-5 *3 (-584 (-221)))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-854 (-179)))) (-5 *3 (-583 (-221)))
(-5 *1 (-222))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-584 (-1091)))
- (-4 *6 (-392)) (-5 *2 (-1180 *6)) (-5 *1 (-571 *5 *6)))))
+ (-12 (-5 *4 (-583 (-421 *5 *6))) (-5 *3 (-421 *5 *6)) (-14 *5 (-583 (-1090)))
+ (-4 *6 (-392)) (-5 *2 (-1179 *6)) (-5 *1 (-570 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 (-421 *3 *4))) (-14 *3 (-584 (-1091))) (-4 *4 (-392))
- (-5 *1 (-571 *3 *4)))))
+ (-12 (-5 *2 (-583 (-421 *3 *4))) (-14 *3 (-583 (-1090))) (-4 *4 (-392))
+ (-5 *1 (-570 *3 *4)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091)))
- (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392))))
+ (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090)))
+ (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-421 *5 *6))) (-5 *4 (-774 *5)) (-14 *5 (-584 (-1091)))
- (-5 *2 (-421 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-392)))))
+ (-12 (-5 *3 (-583 (-421 *5 *6))) (-5 *4 (-773 *5)) (-14 *5 (-583 (-1090)))
+ (-5 *2 (-421 *5 *6)) (-5 *1 (-570 *5 *6)) (-4 *6 (-392)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-584 (-206 *4 *5))) (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-583 (-206 *4 *5))) (-5 *1 (-570 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-2 (|:| |glbase| (-584 (-206 *4 *5))) (|:| |glval| (-584 (-485)))))
- (-5 *1 (-571 *4 *5)) (-5 *3 (-584 (-206 *4 *5))))))
+ (-12 (-14 *4 (-583 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-2 (|:| |glbase| (-583 (-206 *4 *5))) (|:| |glval| (-583 (-484)))))
+ (-5 *1 (-570 *4 *5)) (-5 *3 (-583 (-206 *4 *5))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-421 *4 *5))) (-14 *4 (-584 (-1091))) (-4 *5 (-392))
- (-5 *2 (-2 (|:| |gblist| (-584 (-206 *4 *5))) (|:| |gvlist| (-584 (-485)))))
- (-5 *1 (-571 *4 *5)))))
+ (-12 (-5 *3 (-583 (-421 *4 *5))) (-14 *4 (-583 (-1090))) (-4 *5 (-392))
+ (-5 *2 (-2 (|:| |gblist| (-583 (-206 *4 *5))) (|:| |gvlist| (-583 (-484)))))
+ (-5 *1 (-570 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-569 *3 *2))
- (-4 *2 (-13 (-364 *3) (-916) (-1116)))))
- ((*1 *1 *1) (-4 *1 (-570))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-568 *3 *2))
+ (-4 *2 (-13 (-364 *3) (-915) (-1115)))))
+ ((*1 *1 *1) (-4 *1 (-569))))
(((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-32 *4 *5))
(-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-131 *4 *5))
(-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
- (-4 *5 (-13 (-364 *4) (-916)))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-915)))))
((*1 *2 *3)
(-12 (-5 *3 (-86)) (-5 *2 (-85)) (-5 *1 (-253 *4)) (-4 *4 (-254))))
((*1 *2 *3) (-12 (-4 *1 (-254)) (-5 *3 (-86)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *5 (-1014)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *5 (-1013)) (-5 *2 (-85)) (-5 *1 (-363 *4 *5))
(-4 *4 (-364 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-374 *4 *5))
(-4 *5 (-364 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-86)) (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-569 *4 *5))
- (-4 *5 (-13 (-364 *4) (-916) (-1116))))))
+ (-12 (-5 *3 (-86)) (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-568 *4 *5))
+ (-4 *5 (-13 (-364 *4) (-915) (-1115))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
- (-14 *6 (-584 (-1091)))
- (-5 *2 (-584 (-1061 *5 (-470 (-774 *6)) (-774 *6) (-704 *5 (-774 *6)))))
- (-5 *1 (-568 *5 *6)))))
+ (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-583 (-1090)))
+ (-5 *2 (-583 (-1060 *5 (-469 (-773 *6)) (-773 *6) (-703 *5 (-773 *6)))))
+ (-5 *1 (-567 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-704 *5 (-774 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
- (-14 *6 (-584 (-1091))) (-5 *2 (-584 (-959 *5 *6))) (-5 *1 (-568 *5 *6)))))
+ (-12 (-5 *3 (-583 (-703 *5 (-773 *6)))) (-5 *4 (-85)) (-4 *5 (-392))
+ (-14 *6 (-583 (-1090))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-567 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-387 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-387 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-387 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-387 *4 *5 *6 *7))))
((*1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
- (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))))
+ (-12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392))
+ (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-584 (-858 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
- (-14 *4 (-584 (-1091)))))
+ (|partial| -12 (-5 *2 (-583 (-857 *3))) (-4 *3 (-392)) (-5 *1 (-309 *3 *4))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-584 (-704 *3 (-774 *4)))) (-4 *3 (-392))
- (-14 *4 (-584 (-1091))) (-5 *1 (-568 *3 *4)))))
+ (|partial| -12 (-5 *2 (-583 (-703 *3 (-773 *4)))) (-4 *3 (-392))
+ (-14 *4 (-583 (-1090))) (-5 *1 (-567 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-858 *4))) (-4 *4 (-392)) (-5 *2 (-85))
- (-5 *1 (-309 *4 *5)) (-14 *5 (-584 (-1091)))))
+ (-12 (-5 *3 (-583 (-857 *4))) (-4 *4 (-392)) (-5 *2 (-85))
+ (-5 *1 (-309 *4 *5)) (-14 *5 (-583 (-1090)))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-704 *4 (-774 *5)))) (-4 *4 (-392))
- (-14 *5 (-584 (-1091))) (-5 *2 (-85)) (-5 *1 (-568 *4 *5)))))
+ (-12 (-5 *3 (-583 (-703 *4 (-773 *5)))) (-4 *4 (-392))
+ (-14 *5 (-583 (-1090))) (-5 *2 (-85)) (-5 *1 (-567 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *4)) (-4 *4 (-757)) (-5 *2 (-584 (-607 *4 *5)))
- (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-146) (-655 (-350 (-485)))))
- (-14 *6 (-831)))))
+ (-12 (-5 *3 (-583 *4)) (-4 *4 (-756)) (-5 *2 (-583 (-606 *4 *5)))
+ (-5 *1 (-566 *4 *5 *6)) (-4 *5 (-13 (-146) (-654 (-350 (-484)))))
+ (-14 *6 (-830)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |k| (-615 *3)) (|:| |c| *4))))
- (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
+ (-12 (-5 *2 (-583 (-2 (|:| |k| (-614 *3)) (|:| |c| *4))))
+ (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-584 (-249 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-757))
- (-4 *4 (-13 (-146) (-655 (-350 (-485))))) (-14 *5 (-831)))))
+ (-12 (-5 *2 (-583 (-249 *4))) (-5 *1 (-566 *3 *4 *5)) (-4 *3 (-756))
+ (-4 *4 (-13 (-146) (-654 (-350 (-484))))) (-14 *5 (-830)))))
(((*1 *2 *3 *4 *5 *6 *7 *6)
(|partial| -12
(-5 *5
(-2 (|:| |contp| *3)
- (|:| -1783 (-584 (-2 (|:| |irr| *10) (|:| -2396 (-485)))))))
- (-5 *6 (-584 *3)) (-5 *7 (-584 *8)) (-4 *8 (-757)) (-4 *3 (-258))
- (-4 *10 (-862 *3 *9 *8)) (-4 *9 (-718))
+ (|:| -1782 (-583 (-2 (|:| |irr| *10) (|:| -2395 (-484)))))))
+ (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-756)) (-4 *3 (-258))
+ (-4 *10 (-861 *3 *9 *8)) (-4 *9 (-717))
(-5 *2
- (-2 (|:| |polfac| (-584 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-584 (-1086 *3)))))
- (-5 *1 (-565 *8 *9 *3 *10)) (-5 *4 (-584 (-1086 *3))))))
+ (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-583 (-1085 *3)))))
+ (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-583 (-1085 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-695)) (-5 *5 (-584 *3)) (-4 *3 (-258)) (-4 *6 (-757))
- (-4 *7 (-718)) (-5 *2 (-85)) (-5 *1 (-565 *6 *7 *3 *8))
- (-4 *8 (-862 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *6 (-978 *3 *4 *5))
- (-5 *1 (-564 *3 *4 *5 *6 *7 *2)) (-4 *7 (-984 *3 *4 *5 *6))
- (-4 *2 (-1021 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *2 (-496)) (-5 *1 (-563 *2 *3)) (-4 *3 (-1156 *2)))))
+ (-12 (-5 *4 (-694)) (-5 *5 (-583 *3)) (-4 *3 (-258)) (-4 *6 (-756))
+ (-4 *7 (-717)) (-5 *2 (-85)) (-5 *1 (-564 *6 *7 *3 *8))
+ (-4 *8 (-861 *3 *7 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *6 (-977 *3 *4 *5))
+ (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-983 *3 *4 *5 *6))
+ (-4 *2 (-1020 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *2 (-495)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1155 *2)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-562 *4 *2)) (-4 *2 (-13 (-1116) (-872) (-29 *4))))))
-(((*1 *1) (-5 *1 (-557))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1115) (-871) (-29 *4))))))
+(((*1 *1) (-5 *1 (-556))))
(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))))
- (-4 *5 (-1156 *4)) (-5 *2 (-1086 (-350 *5))) (-5 *1 (-555 *4 *5))
+ (|partial| -12 (-4 *4 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484)))))
+ (-4 *5 (-1155 *4)) (-5 *2 (-1085 (-350 *5))) (-5 *1 (-554 *4 *5))
(-5 *3 (-350 *5))))
((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-120) (-27) (-951 (-485)) (-951 (-350 (-485)))))
- (-5 *2 (-1086 (-350 *6))) (-5 *1 (-555 *5 *6)) (-5 *3 (-350 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-551 *4)) (-4 *4 (-1014)) (-4 *2 (-1014))
- (-5 *1 (-552 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-551 *4)) (-5 *1 (-552 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
-(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1116))))
- ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-757))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 *3)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-584 *1)) (-4 *1 (-254))))
+ (|partial| -12 (-5 *4 (-1 (-348 *6) *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-120) (-27) (-950 (-484)) (-950 (-350 (-484)))))
+ (-5 *2 (-1085 (-350 *6))) (-5 *1 (-554 *5 *6)) (-5 *3 (-350 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-550 *4)) (-4 *4 (-1013)) (-4 *2 (-1013))
+ (-5 *1 (-551 *2 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-550 *4)) (-5 *1 (-551 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)) (-4 *2 (-1115))))
+ ((*1 *2 *1) (-12 (-5 *1 (-281 *2)) (-4 *2 (-756))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-86)) (-5 *3 (-583 *1)) (-4 *1 (-254))))
((*1 *1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-86))))
- ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-86)) (-5 *3 (-584 *5)) (-5 *4 (-695)) (-4 *5 (-1014))
- (-5 *1 (-551 *5)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-551 *3)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-583 *5)) (-5 *4 (-694)) (-4 *5 (-1013))
+ (-5 *1 (-550 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-550 *3)) (-4 *3 (-1013)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-584 *3)))))
+ (-12 (-4 *1 (-549 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-583 *3)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-545))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-543))) ((*1 *1) (-5 *1 (-546))))
-(((*1 *1) (-5 *1 (-546))))
+ (|partial| -12 (-4 *1 (-549 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
+(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
+(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
+(((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
+(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-544))) ((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-545))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
-(((*1 *1) (-5 *1 (-544))))
+(((*1 *1) (-5 *1 (-542))) ((*1 *1) (-5 *1 (-545))))
+(((*1 *1) (-5 *1 (-545))))
(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-544))))
(((*1 *1) (-5 *1 (-543))))
(((*1 *1) (-5 *1 (-543))))
-(((*1 *2 *1) (-12 (-5 *2 (-870 (-158 (-112)))) (-5 *1 (-282))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-540)))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-543))))
+(((*1 *1) (-5 *1 (-542))))
+(((*1 *1) (-5 *1 (-542))))
+(((*1 *2 *1) (-12 (-5 *2 (-869 (-158 (-112)))) (-5 *1 (-282))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-539)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *4)))))
+ (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *4)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-539 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1130)) (-5 *2 (-584 *3)))))
+ (-12 (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129)) (-5 *2 (-583 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-539 *4 *3)) (-4 *4 (-1014))
- (-4 *3 (-1130)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-318 *3)) (-4 *3 (-72)) (-4 *1 (-538 *4 *3)) (-4 *4 (-1013))
+ (-4 *3 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))))
+ (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-539 *2 *3)) (-4 *3 (-1130)) (-4 *2 (-1014)) (-4 *2 (-757)))))
+ (-12 (-4 *1 (-538 *2 *3)) (-4 *3 (-1129)) (-4 *2 (-1013)) (-4 *2 (-756)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-324 *2))
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1129)) (-4 *3 (-324 *2))
(-4 *4 (-324 *2))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -3998)) (-4 *1 (-539 *3 *2)) (-4 *3 (-1014))
- (-4 *2 (-1130)))))
+ (-12 (-4 *1 (-1035 *2)) (-4 *1 (-538 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1129)))))
(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -3998)) (-4 *1 (-539 *3 *4)) (-4 *3 (-1014))
- (-4 *4 (-1130)) (-5 *2 (-1186)))))
+ (-12 (-4 *1 (-1035 *4)) (-4 *1 (-538 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1129))
+ (-5 *2 (-1185)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-584 (-1091)))
- (-4 *2 (-13 (-364 (-142 *5)) (-916) (-1116))) (-4 *5 (-496))
- (-5 *1 (-536 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-916) (-1116))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-142 *5)) (-5 *1 (-536 *4 *5 *3))
- (-4 *5 (-13 (-364 *4) (-916) (-1116)))
- (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116)))
- (-5 *1 (-536 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-916) (-1116))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-4 *2 (-13 (-364 *4) (-916) (-1116)))
- (-5 *1 (-536 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-916) (-1116))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-916) (-1116))) (-4 *4 (-496))
- (-4 *2 (-13 (-364 (-142 *4)) (-916) (-1116))) (-5 *1 (-536 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1) (-5 *1 (-533))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-533))) (-5 *1 (-533)))))
+ (-12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-583 (-1090)))
+ (-4 *2 (-13 (-364 (-142 *5)) (-915) (-1115))) (-4 *5 (-495))
+ (-5 *1 (-535 *5 *6 *2)) (-4 *6 (-13 (-364 *5) (-915) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-5 *2 (-142 *5)) (-5 *1 (-535 *4 *5 *3))
+ (-4 *5 (-13 (-364 *4) (-915) (-1115)))
+ (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115)))
+ (-5 *1 (-535 *4 *3 *2)) (-4 *3 (-13 (-364 *4) (-915) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-495)) (-4 *2 (-13 (-364 *4) (-915) (-1115)))
+ (-5 *1 (-535 *4 *2 *3)) (-4 *3 (-13 (-364 (-142 *4)) (-915) (-1115))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-142 *5)) (-4 *5 (-13 (-364 *4) (-915) (-1115))) (-4 *4 (-495))
+ (-4 *2 (-13 (-364 (-142 *4)) (-915) (-1115))) (-5 *1 (-535 *4 *5 *2)))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1) (-5 *1 (-532))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-532))) (-5 *1 (-532)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-940 (-751 (-485))))
- (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *4)))) (-4 *4 (-962))
- (-5 *1 (-531 *4)))))
+ (-12 (-5 *2 (-939 (-750 (-484))))
+ (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *4)))) (-4 *4 (-961))
+ (-5 *1 (-530 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-940 (-751 (-485)))) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-939 (-750 (-484)))) (-5 *1 (-530 *3)) (-4 *3 (-961)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *3)))) (-5 *1 (-531 *3))
- (-4 *3 (-962)))))
+ (-12 (-5 *2 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *3)))) (-5 *1 (-530 *3))
+ (-4 *3 (-961)))))
(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *1 (-531 *3)) (-4 *3 (-962)))))
-(((*1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-531 *2)) (-4 *2 (-962)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *1 (-530 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-961)))))
(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1070 (-2 (|:| |k| (-485)) (|:| |c| *6))))
- (-5 *4 (-940 (-751 (-485)))) (-5 *5 (-1091)) (-5 *7 (-350 (-485)))
- (-4 *6 (-962)) (-5 *2 (-773)) (-5 *1 (-531 *6)))))
+ (-12 (-5 *3 (-1069 (-2 (|:| |k| (-484)) (|:| |c| *6))))
+ (-5 *4 (-939 (-750 (-484)))) (-5 *5 (-1090)) (-5 *7 (-350 (-484)))
+ (-4 *6 (-961)) (-5 *2 (-772)) (-5 *1 (-530 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-531 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-962)))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-530 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-531 *2)) (-4 *2 (-38 (-350 (-485)))) (-4 *2 (-962)))))
+ (-12 (-5 *1 (-530 *2)) (-4 *2 (-38 (-350 (-484)))) (-4 *2 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-1021 *5 *6 *7 *8))
- (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-978 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-528 *5 *6 *7 *8 *3)))))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1020 *5 *6 *7 *8))
+ (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-977 *5 *6 *7)) (-5 *2 (-85)) (-5 *1 (-527 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-831))) (-5 *4 (-814 (-485))) (-5 *2 (-631 (-485)))
- (-5 *1 (-527))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *4 (-813 (-484))) (-5 *2 (-630 (-484)))
+ (-5 *1 (-526))))
((*1 *2 *3)
- (-12 (-5 *3 (-584 (-831))) (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-831))) (-5 *4 (-584 (-814 (-485))))
- (-5 *2 (-584 (-631 (-485)))) (-5 *1 (-527)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-831))) (-5 *2 (-695)) (-5 *1 (-527)))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *4 (-583 (-813 (-484))))
+ (-5 *2 (-583 (-630 (-484)))) (-5 *1 (-526)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-830))) (-5 *2 (-694)) (-5 *1 (-526)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1116) (-29 *4)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-371 *4 *2)) (-4 *2 (-13 (-1115) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 *5))) (-5 *4 (-1091)) (-4 *5 (-120))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *5))
- (-5 *1 (-526 *5)))))
+ (-12 (-5 *3 (-350 (-857 *5))) (-5 *4 (-1090)) (-4 *5 (-120))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *5))
+ (-5 *1 (-525 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-520 *2)) (-4 *2 (-13 (-29 *4) (-1116))) (-5 *1 (-522 *4 *2))
- (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))))
+ (-12 (-5 *3 (-519 *2)) (-4 *2 (-13 (-29 *4) (-1115))) (-5 *1 (-521 *4 *2))
+ (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))))
((*1 *2 *3)
- (-12 (-5 *3 (-520 (-350 (-858 *4))))
- (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *2 (-265 *4))
- (-5 *1 (-526 *4)))))
+ (-12 (-5 *3 (-519 (-350 (-857 *4))))
+ (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *2 (-265 *4))
+ (-5 *1 (-525 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-525 *4)) (-4 *4 (-299)))))
-(((*1 *2 *2) (-12 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-524 *4)) (-4 *4 (-299)))))
+(((*1 *2 *2) (-12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-523 *2)) (-4 *2 (-483)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-695)) (-5 *1 (-524 *2)) (-4 *2 (-484))))
+ (|partial| -12 (-5 *3 (-694)) (-5 *1 (-523 *2)) (-4 *2 (-483))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2696 *3) (|:| -2402 (-695)))) (-5 *1 (-524 *3))
- (-4 *3 (-484)))))
+ (-12 (-5 *2 (-2 (|:| -2695 *3) (|:| -2401 (-694)))) (-5 *1 (-523 *3))
+ (-4 *3 (-483)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-5 *2 (-85)) (-5 *1 (-524 *3)) (-4 *3 (-484)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-533)) (-5 *1 (-523)))))
+ (-12 (-5 *4 (-694)) (-5 *2 (-85)) (-5 *1 (-523 *3)) (-4 *3 (-483)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-532)) (-5 *1 (-522)))))
(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-584
- (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *2))
- (|:| |logand| (-1086 *2)))))
- (-5 *4 (-584 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312))
- (-5 *1 (-520 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-520 *2)) (-4 *2 (-312)))))
+ (-583
+ (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *2))
+ (|:| |logand| (-1085 *2)))))
+ (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-312))
+ (-5 *1 (-519 *2)))))
+(((*1 *2 *1) (-12 (-5 *1 (-519 *2)) (-4 *2 (-312)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-584
- (-2 (|:| |scalar| (-350 (-485))) (|:| |coeff| (-1086 *3))
- (|:| |logand| (-1086 *3)))))
- (-5 *1 (-520 *3)) (-4 *3 (-312)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-520 *3)) (-4 *3 (-312)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-520 *3)) (-4 *3 (-312)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-519)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-516)))))
-(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-516)))))
-(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-633 (-516))) (-5 *1 (-516)))))
-(((*1 *2 *1) (-12 (-5 *2 (-633 (-1 (-474) (-584 (-474))))) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-474) (-584 (-474)))) (-5 *1 (-86))))
- ((*1 *1) (-5 *1 (-515))))
-(((*1 *1) (-5 *1 (-515))))
-(((*1 *1) (-5 *1 (-515))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-514))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-514)))))
+ (-583
+ (-2 (|:| |scalar| (-350 (-484))) (|:| |coeff| (-1085 *3))
+ (|:| |logand| (-1085 *3)))))
+ (-5 *1 (-519 *3)) (-4 *3 (-312)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-519 *3)) (-4 *3 (-312)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-519 *3)) (-4 *3 (-312)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-518)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-166 4 (-101))) (-5 *1 (-515)))))
+(((*1 *2 *3) (-12 (-5 *3 (-431)) (-5 *2 (-632 (-515))) (-5 *1 (-515)))))
+(((*1 *2 *1) (-12 (-5 *2 (-632 (-1 (-473) (-583 (-473))))) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-473) (-583 (-473)))) (-5 *1 (-86))))
+ ((*1 *1) (-5 *1 (-514))))
+(((*1 *1) (-5 *1 (-514))))
+(((*1 *1) (-5 *1 (-514))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-513))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-513)))))
(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1091))
- (-4 *4 (-13 (-258) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-512 *4 *2))
- (-4 *2 (-13 (-1116) (-872) (-1054) (-29 *4))))))
+ (|partial| -12 (-5 *3 (-1090))
+ (-4 *4 (-13 (-258) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-511 *4 *2))
+ (-4 *2 (-13 (-1115) (-871) (-1053) (-29 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-511 *5 *3)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-510 *5 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |ir| (-520 (-350 *6))) (|:| |specpart| (-350 *6))
+ (-2 (|:| |ir| (-519 (-350 *6))) (|:| |specpart| (-350 *6))
(|:| |polypart| *6)))
- (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))))
+ (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-563 *4 *5))
- (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3139 *4) (|:| |sol?| (-85))) (-485) *4))
- (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *1 (-511 *4 *5)))))
+ (|partial| -12 (-5 *2 (-562 *4 *5))
+ (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3138 *4) (|:| |sol?| (-85))) (-484) *4))
+ (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *1 (-510 *4 *5)))))
(((*1 *2 *2 *3 *4)
(|partial| -12
- (-5 *3 (-1 (-3 (-2 (|:| -2137 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-312)) (-5 *1 (-511 *4 *2)) (-4 *2 (-1156 *4)))))
+ (-5 *3 (-1 (-3 (-2 (|:| -2136 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-312)) (-5 *1 (-510 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-584 (-350 *7))) (-4 *7 (-1156 *6))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-350 *7))) (-4 *7 (-1155 *6))
(-5 *3 (-350 *7)) (-4 *6 (-312))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-511 *6 *7)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-510 *6 *7)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
- (-5 *2 (-2 (|:| -2137 (-350 *6)) (|:| |coeff| (-350 *6))))
- (-5 *1 (-511 *5 *6)) (-5 *3 (-350 *6)))))
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-5 *2 (-2 (|:| -2136 (-350 *6)) (|:| |coeff| (-350 *6))))
+ (-5 *1 (-510 *5 *6)) (-5 *3 (-350 *6)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3139 *7) (|:| |sol?| (-85))) (-485) *7))
- (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8))
+ (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3138 *7) (|:| |sol?| (-85))) (-484) *7))
+ (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-511 *7 *8)))))
+ (-5 *1 (-510 *7 *8)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5 (-1 (-3 (-2 (|:| -2137 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-584 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1156 *7)) (-5 *3 (-350 *8))
+ (-5 *5 (-1 (-3 (-2 (|:| -2136 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-583 (-350 *8))) (-4 *7 (-312)) (-4 *8 (-1155 *7)) (-5 *3 (-350 *8))
(-5 *2
(-2
(|:| |answer|
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
- (-5 *1 (-511 *7 *8)))))
+ (-5 *1 (-510 *7 *8)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6))
- (-4 *6 (-312)) (-4 *7 (-1156 *6))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-484) *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
(-5 *2
(-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6))
- (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+ (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-312)) (-4 *7 (-1156 *6))
+ (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
(-5 *2
(-3 (-2 (|:| |answer| (-350 *7)) (|:| |a0| *6))
- (-2 (|:| -2137 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+ (-2 (|:| -2136 (-350 *7)) (|:| |coeff| (-350 *7))) "failed"))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-584 *6) "failed") (-485) *6 *6))
- (-4 *6 (-312)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-484) *6 *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3139 *6) (|:| |sol?| (-85))) (-485) *6))
- (-4 *6 (-312)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+ (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3138 *6) (|:| |sol?| (-85))) (-484) *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2137 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-312)) (-4 *7 (-1156 *6))
- (-5 *2 (-2 (|:| |answer| (-520 (-350 *7))) (|:| |a0| *6)))
- (-5 *1 (-511 *6 *7)) (-5 *3 (-350 *7)))))
+ (-5 *5 (-1 (-3 (-2 (|:| -2136 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-312)) (-4 *7 (-1155 *6))
+ (-5 *2 (-2 (|:| |answer| (-519 (-350 *7))) (|:| |a0| *6)))
+ (-5 *1 (-510 *6 *7)) (-5 *3 (-350 *7)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-520 *3) *3 (-1091)))
+ (-12 (-5 *5 (-1 (-519 *3) *3 (-1090)))
(-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091)))
- (-4 *3 (-239)) (-4 *3 (-570)) (-4 *3 (-951 *4)) (-4 *3 (-364 *7))
- (-5 *4 (-1091)) (-4 *7 (-554 (-801 (-485)))) (-4 *7 (-392))
- (-4 *7 (-797 (-485))) (-4 *7 (-1014)) (-5 *2 (-520 *3))
- (-5 *1 (-510 *7 *3)))))
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090)))
+ (-4 *3 (-239)) (-4 *3 (-569)) (-4 *3 (-950 *4)) (-4 *3 (-364 *7))
+ (-5 *4 (-1090)) (-4 *7 (-553 (-800 (-484)))) (-4 *7 (-392))
+ (-4 *7 (-796 (-484))) (-4 *7 (-1013)) (-5 *2 (-519 *3))
+ (-5 *1 (-509 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-392)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-392)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
(-4 *2 (-239)) (-4 *2 (-364 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-4 *4 (-1014)) (-5 *1 (-510 *4 *2))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-4 *4 (-1013)) (-5 *1 (-509 *4 *2))
(-4 *2 (-364 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-1091)) (-4 *6 (-364 *5)) (-4 *5 (-1014))
- (-5 *2 (-584 (-551 *6))) (-5 *1 (-510 *5 *6)))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-1090)) (-4 *6 (-364 *5)) (-4 *5 (-1013))
+ (-5 *2 (-583 (-550 *6))) (-5 *1 (-509 *5 *6)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-584 (-551 *6))) (-5 *4 (-1091)) (-5 *2 (-551 *6))
- (-4 *6 (-364 *5)) (-4 *5 (-1014)) (-5 *1 (-510 *5 *6)))))
+ (-12 (-5 *3 (-583 (-550 *6))) (-5 *4 (-1090)) (-5 *2 (-550 *6))
+ (-4 *6 (-364 *5)) (-4 *5 (-1013)) (-5 *1 (-509 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-551 *5))) (-4 *4 (-1014)) (-5 *2 (-551 *5))
- (-5 *1 (-510 *4 *5)) (-4 *5 (-364 *4)))))
+ (-12 (-5 *3 (-583 (-550 *5))) (-4 *4 (-1013)) (-5 *2 (-550 *5))
+ (-5 *1 (-509 *4 *5)) (-4 *5 (-364 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-551 *5))) (-5 *3 (-1091)) (-4 *5 (-364 *4))
- (-4 *4 (-1014)) (-5 *1 (-510 *4 *5)))))
+ (-12 (-5 *2 (-583 (-550 *5))) (-5 *3 (-1090)) (-4 *5 (-364 *4))
+ (-4 *4 (-1013)) (-5 *1 (-509 *4 *5)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120)))
- (-5 *2 (-2 (|:| -2137 (-350 (-858 *5))) (|:| |coeff| (-350 (-858 *5)))))
- (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120)))
+ (-5 *2 (-2 (|:| -2136 (-350 (-857 *5))) (|:| |coeff| (-350 (-857 *5)))))
+ (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 (-350 (-858 *6))))
- (-5 *3 (-350 (-858 *6))) (-4 *6 (-13 (-496) (-951 (-485)) (-120)))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 (-350 (-857 *6))))
+ (-5 *3 (-350 (-857 *6))) (-4 *6 (-13 (-495) (-950 (-484)) (-120)))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-507 *6)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-506 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-350 (-858 *4))) (-5 *3 (-1091))
- (-4 *4 (-13 (-496) (-951 (-485)) (-120))) (-5 *1 (-507 *4)))))
+ (|partial| -12 (-5 *2 (-350 (-857 *4))) (-5 *3 (-1090))
+ (-4 *4 (-13 (-495) (-950 (-484)) (-120))) (-5 *1 (-506 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5)))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-120)))
- (-5 *2 (-520 (-350 (-858 *5)))) (-5 *1 (-507 *5)) (-5 *3 (-350 (-858 *5))))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-120)))
+ (-5 *2 (-519 (-350 (-857 *5)))) (-5 *1 (-506 *5)) (-5 *3 (-350 (-857 *5))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-485)) (-5 *1 (-506 *3)) (-4 *3 (-951 *2)))))
+ (|partial| -12 (-5 *2 (-484)) (-5 *1 (-505 *3)) (-4 *3 (-950 *2)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-584 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-312) (-120) (-951 (-485))))
+ (|partial| -12 (-5 *4 (-583 (-350 *6))) (-5 *3 (-350 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-312) (-120) (-950 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-505 *5 *6)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-504 *5 *6)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-312) (-120) (-951 (-485)))) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -2137 (-350 *5)) (|:| |coeff| (-350 *5))))
- (-5 *1 (-505 *4 *5)) (-5 *3 (-350 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-312) (-120) (-950 (-484)))) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -2136 (-350 *5)) (|:| |coeff| (-350 *5))))
+ (-5 *1 (-504 *4 *5)) (-5 *3 (-350 *5)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3))
- (-4 *3 (-13 (-312) (-120) (-951 (-485)))) (-5 *1 (-505 *3 *4)))))
+ (|partial| -12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3))
+ (-4 *3 (-13 (-312) (-120) (-950 (-484)))) (-5 *1 (-504 *3 *4)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))))
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484))))
+ (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))))
((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-751 *2)) (-4 *2 (-1054))
- (-4 *2 (-13 (-27) (-1116) (-364 *5))) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *1 (-504 *5 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-554 (-801 (-485))))
- (-4 *5 (-797 (-485))) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-570)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-951 (-485)) (-392) (-581 (-485))))
- (-5 *2 (-2 (|:| -2339 *3) (|:| |nconst| *3))) (-5 *1 (-504 *5 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
+ (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-750 *2)) (-4 *2 (-1053))
+ (-4 *2 (-13 (-27) (-1115) (-364 *5))) (-4 *5 (-553 (-800 (-484))))
+ (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484))))
+ (-5 *1 (-503 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-553 (-800 (-484))))
+ (-4 *5 (-796 (-484))) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-950 (-484)) (-392) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2338 *3) (|:| |nconst| *3))) (-5 *1 (-503 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-551 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-364 *7) (-27) (-1116)))
- (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-503 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
+ (-12 (-5 *5 (-550 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-502 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))))
(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091)))
- (-4 *2 (-13 (-364 *5) (-27) (-1116)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *1 (-503 *5 *2 *6)) (-4 *6 (-1014)))))
+ (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090)))
+ (-4 *2 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *1 (-502 *5 *2 *6)) (-4 *6 (-1013)))))
(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3))
- (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-503 *6 *3 *7)) (-4 *7 (-1014)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-502 *6 *3 *7)) (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-503 *5 *3 *6))
- (-4 *6 (-1014)))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-502 *5 *3 *6))
+ (-4 *6 (-1013)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-551 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1116)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-503 *5 *3 *6)) (-4 *6 (-1014)))))
+ (-12 (-5 *4 (-550 *3)) (-4 *3 (-13 (-364 *5) (-27) (-1115)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-502 *5 *3 *6)) (-4 *6 (-1013)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
- (-4 *7 (-1156 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2136 *3)))
- (-5 *1 (-501 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
+ (-4 *7 (-1155 (-350 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2135 *3)))
+ (-5 *1 (-500 *5 *6 *7 *3)) (-4 *3 (-291 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-312))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-312))
(-5 *2
- (-2 (|:| |answer| (-350 *6)) (|:| -2136 (-350 *6))
+ (-2 (|:| |answer| (-350 *6)) (|:| -2135 (-350 *6))
(|:| |specpart| (-350 *6)) (|:| |polypart| *6)))
- (-5 *1 (-502 *5 *6)) (-5 *3 (-350 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-485)) (-5 *3 (-695)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *3) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
-(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-500)) (-5 *3 (-485)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258))))
+ (-5 *1 (-501 *5 *6)) (-5 *3 (-350 *6)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-484)) (-5 *3 (-694)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *3) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-499)) (-5 *3 (-484)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-153 *2)) (-4 *2 (-258))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-584 (-584 *4))) (-5 *2 (-584 *4)) (-4 *4 (-258))
+ (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-258))
(-5 *1 (-153 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 *8))
+ (-12 (-5 *3 (-583 *8))
(-5 *4
- (-584
- (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-631 *7)))))
- (-5 *5 (-695)) (-4 *8 (-1156 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-299))
+ (-583
+ (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-630 *7)))))
+ (-5 *5 (-694)) (-4 *8 (-1155 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-299))
(-5 *2
- (-2 (|:| -2013 (-631 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-631 *7))))
+ (-2 (|:| -2012 (-630 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-630 *7))))
(-5 *1 (-438 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-500)))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-499)))))
(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-551 *4)) (-5 *6 (-1086 *4))
- (-4 *4 (-13 (-364 *7) (-27) (-1116)))
- (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2013 (-584 *4))))
- (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014))))
+ (-12 (-5 *5 (-550 *4)) (-5 *6 (-1085 *4))
+ (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2012 (-583 *4))))
+ (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013))))
((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-551 *4)) (-5 *6 (-350 (-1086 *4)))
- (-4 *4 (-13 (-364 *7) (-27) (-1116)))
- (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2013 (-584 *4))))
- (-5 *1 (-499 *7 *4 *3)) (-4 *3 (-601 *4)) (-4 *3 (-1014)))))
+ (-12 (-5 *5 (-550 *4)) (-5 *6 (-350 (-1085 *4)))
+ (-4 *4 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2012 (-583 *4))))
+ (-5 *1 (-498 *7 *4 *3)) (-4 *3 (-600 *4)) (-4 *3 (-1013)))))
(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-551 *2))
- (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1091))) (-5 *5 (-1086 *2))
- (-4 *2 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014))))
+ (|partial| -12 (-5 *3 (-550 *2))
+ (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1090))) (-5 *5 (-1085 *2))
+ (-4 *2 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013))))
((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-551 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1091)))
- (-5 *5 (-350 (-1086 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *1 (-499 *6 *2 *7)) (-4 *7 (-1014)))))
+ (|partial| -12 (-5 *3 (-550 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1090)))
+ (-5 *5 (-350 (-1085 *2))) (-4 *2 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *1 (-498 *6 *2 *7)) (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-1086 *3))
- (-4 *3 (-13 (-364 *7) (-27) (-1116)))
- (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1085 *3))
+ (-4 *3 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013))))
((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-584 *3)) (-5 *6 (-350 (-1086 *3)))
- (-4 *3 (-13 (-364 *7) (-27) (-1116)))
- (-4 *7 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-583 *3)) (-5 *6 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *7) (-27) (-1115)))
+ (-4 *7 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-499 *7 *3 *8)) (-4 *8 (-1014)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-498 *7 *3 *8)) (-4 *8 (-1013)))))
(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
- (-4 *7 (-1014))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
+ (-4 *7 (-1013))))
((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3)))
- (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485))))
- (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-499 *6 *3 *7))
- (-4 *7 (-1014)))))
+ (|partial| -12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-498 *6 *3 *7))
+ (-4 *7 (-1013)))))
(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-551 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014))))
+ (-12 (-5 *4 (-550 *3)) (-5 *5 (-1085 *3))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013))))
((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-551 *3)) (-5 *5 (-350 (-1086 *3)))
- (-4 *3 (-13 (-364 *6) (-27) (-1116)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-120) (-581 (-485)))) (-5 *2 (-520 *3))
- (-5 *1 (-499 *6 *3 *7)) (-4 *7 (-1014)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-498 *2)) (-4 *2 (-484)))))
-(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-498 *3)) (-4 *3 (-484)))))
+ (-12 (-5 *4 (-550 *3)) (-5 *5 (-350 (-1085 *3)))
+ (-4 *3 (-13 (-364 *6) (-27) (-1115)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-120) (-580 (-484)))) (-5 *2 (-519 *3))
+ (-5 *1 (-498 *6 *3 *7)) (-4 *7 (-1013)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-497 *2)) (-4 *2 (-483)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 *3)) (-5 *1 (-497 *3)) (-4 *3 (-483)))))
(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1091)) (-5 *6 (-584 (-551 *3))) (-5 *5 (-551 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *7)))
- (-4 *7 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-497 *5 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *6 (-583 (-550 *3))) (-5 *5 (-550 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *7)))
+ (-4 *7 (-13 (-392) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-496 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1091))
- (-4 *4 (-13 (-392) (-120) (-951 (-485)) (-581 (-485)))) (-5 *1 (-497 *4 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *4))))))
+ (|partial| -12 (-5 *3 (-1090))
+ (-4 *4 (-13 (-392) (-120) (-950 (-484)) (-580 (-484)))) (-5 *1 (-496 *4 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-584 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *6)))
- (-4 *6 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
+ (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-583 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6)))
+ (-4 *6 (-13 (-392) (-120) (-950 (-484)) (-580 (-484))))
(-5 *2
(-2 (|:| |mainpart| *3)
- (|:| |limitedlogs| (-584 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-497 *6 *3)))))
+ (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-496 *6 *3)))))
(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1091))
- (-4 *5 (-13 (-392) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-2 (|:| -2137 *3) (|:| |coeff| *3))) (-5 *1 (-497 *5 *3))
- (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1776 *1) (|:| -3984 *1) (|:| |associate| *1)))
- (-4 *1 (-496)))))
-(((*1 *1 *1) (-4 *1 (-496))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-496)) (-5 *2 (-85)))))
+ (|partial| -12 (-5 *4 (-1090))
+ (-4 *5 (-13 (-392) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-2 (|:| -2136 *3) (|:| |coeff| *3))) (-5 *1 (-496 *5 *3))
+ (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1775 *1) (|:| -3983 *1) (|:| |associate| *1)))
+ (-4 *1 (-495)))))
+(((*1 *1 *1) (-4 *1 (-495))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-495)) (-5 *2 (-85)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-350 (-485))) (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116)))))
- ((*1 *1 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))))
-(((*1 *2 *1) (-12 (-4 *1 (-494 *2)) (-4 *2 (-13 (-347) (-1116))))))
+ (-12 (-5 *2 (-350 (-484))) (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))))
+(((*1 *2 *1) (-12 (-4 *1 (-493 *2)) (-4 *2 (-13 (-347) (-1115))))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-494 *3)) (-4 *3 (-13 (-347) (-1116))) (-5 *2 (-85)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-493)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-493)))))
+ (-12 (-4 *1 (-493 *3)) (-4 *3 (-13 (-347) (-1115))) (-5 *2 (-85)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-492)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-492)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1156 *5))
- (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-496) (-951 (-485))))
- (-4 *7 (-1156 (-350 *6))) (-5 *1 (-492 *4 *5 *6 *7 *2))
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1155 *5))
+ (-4 *5 (-13 (-27) (-364 *4))) (-4 *4 (-13 (-495) (-950 (-484))))
+ (-4 *7 (-1155 (-350 *6))) (-5 *1 (-491 *4 *5 *6 *7 *2))
(-4 *2 (-291 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7)))
- (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7)))
+ (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1156 *6)) (-4 *6 (-13 (-27) (-364 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)))) (-4 *8 (-1156 (-350 *7)))
- (-5 *2 (-520 *3)) (-5 *1 (-492 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1155 *6)) (-4 *6 (-13 (-27) (-364 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)))) (-4 *8 (-1155 (-350 *7)))
+ (-5 *2 (-519 *3)) (-5 *1 (-491 *5 *6 *7 *8 *3)) (-4 *3 (-291 *6 *7 *8)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-551 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3)))
- (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-496)) (-5 *2 (-520 *3))
- (-5 *1 (-491 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-484)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-484))))
-(((*1 *1 *1 *1) (-4 *1 (-484))))
+ (-12 (-5 *4 (-550 *3)) (-5 *5 (-1 (-1085 *3) (-1085 *3)))
+ (-4 *3 (-13 (-27) (-364 *6))) (-4 *6 (-495)) (-5 *2 (-519 *3))
+ (-5 *1 (-490 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-483)) (-5 *2 (-85)))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-483))))
+(((*1 *1 *1 *1) (-4 *1 (-483))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-485) #1="failed") *5)) (-4 *5 (-962))
- (-5 *2 (-485)) (-5 *1 (-482 *5 *3)) (-4 *3 (-1156 *5))))
+ (|partial| -12 (-5 *4 (-1 (-3 (-484) #1="failed") *5)) (-4 *5 (-961))
+ (-5 *2 (-484)) (-5 *1 (-481 *5 *3)) (-4 *3 (-1155 *5))))
((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
- (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484))
+ (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-485) #1#) *4)) (-4 *4 (-962)) (-5 *2 (-485))
- (-5 *1 (-482 *4 *3)) (-4 *3 (-1156 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1156 *3))))
- ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1156 *3))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-484) #1#) *4)) (-4 *4 (-961)) (-5 *2 (-484))
+ (-5 *1 (-481 *4 *3)) (-4 *3 (-1155 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-395 *3 *2)) (-4 *2 (-1155 *3))))
+ ((*1 *2 *2 *3) (-12 (-4 *3 (-258)) (-5 *1 (-400 *3 *2)) (-4 *2 (-1155 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-695)))
- (-5 *1 (-478 *3 *2 *4 *5)) (-4 *2 (-1156 *3)))))
+ (-12 (-4 *3 (-258)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-694)))
+ (-5 *1 (-477 *3 *2 *4 *5)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6))
- (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6))
+ (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-1156 *4)) (-5 *1 (-478 *4 *2 *5 *6))
- (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-695))))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-1155 *4)) (-5 *1 (-477 *4 *2 *5 *6))
+ (-4 *4 (-258)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-694))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 *6)) (-5 *4 (-584 (-1091))) (-4 *6 (-312))
- (-5 *2 (-584 (-249 (-858 *6)))) (-5 *1 (-477 *5 *6 *7)) (-4 *5 (-392))
- (-4 *7 (-13 (-312) (-756))))))
+ (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1090))) (-4 *6 (-312))
+ (-5 *2 (-583 (-249 (-857 *6)))) (-5 *1 (-476 *5 *6 *7)) (-4 *5 (-392))
+ (-4 *7 (-13 (-312) (-755))))))
(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-584 (-858 *6))) (-5 *4 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-584 (-584 *7))) (-5 *1 (-477 *6 *7 *5)) (-4 *7 (-312))
- (-4 *5 (-13 (-312) (-756))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
- (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-858 *5)) (-4 *5 (-392)) (-5 *2 (-584 *6))
- (-5 *1 (-477 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-474))))
- ((*1 *2 *3) (-12 (-5 *3 (-474)) (-5 *1 (-475 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-5 *2 (-474)) (-5 *1 (-475 *4)) (-4 *4 (-1130)))))
-(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-77))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-474))) (-5 *1 (-474)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-1091))) (-5 *1 (-474)))))
-(((*1 *1 *1) (-5 *1 (-474))))
-(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-474)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 (-474))) (-5 *2 (-1091)) (-5 *1 (-474)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-584 (-474))) (-5 *1 (-474)))))
+ (-12 (-5 *3 (-583 (-857 *6))) (-5 *4 (-583 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-583 (-583 *7))) (-5 *1 (-476 *6 *7 *5)) (-4 *7 (-312))
+ (-4 *5 (-13 (-312) (-755))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6))
+ (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-857 *5)) (-4 *5 (-392)) (-5 *2 (-583 *6))
+ (-5 *1 (-476 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-473))))
+ ((*1 *2 *3) (-12 (-5 *3 (-473)) (-5 *1 (-474 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1090)) (-5 *2 (-473)) (-5 *1 (-474 *4)) (-4 *4 (-1129)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-77))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-473))) (-5 *1 (-473)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1090))) (-5 *1 (-473)))))
+(((*1 *1 *1) (-5 *1 (-473))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-473)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-473))) (-5 *2 (-1090)) (-5 *1 (-473)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-583 (-473))) (-5 *1 (-473)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-631 *6)) (-5 *5 (-1 (-348 (-1086 *6)) (-1086 *6)))
+ (-12 (-5 *3 (-630 *6)) (-5 *5 (-1 (-348 (-1085 *6)) (-1085 *6)))
(-4 *6 (-312))
(-5 *2
- (-584
- (-2 (|:| |outval| *7) (|:| |outmult| (-485))
- (|:| |outvect| (-584 (-631 *7))))))
- (-5 *1 (-471 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-756))))))
+ (-583
+ (-2 (|:| |outval| *7) (|:| |outmult| (-484))
+ (|:| |outvect| (-583 (-630 *7))))))
+ (-5 *1 (-470 *6 *7 *4)) (-4 *7 (-312)) (-4 *4 (-13 (-312) (-755))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *5)) (-4 *5 (-312)) (-5 *2 (-584 *6))
- (-5 *1 (-471 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-756))))))
+ (-12 (-5 *3 (-1085 *5)) (-4 *5 (-312)) (-5 *2 (-583 *6))
+ (-5 *1 (-470 *5 *6 *4)) (-4 *6 (-312)) (-4 *4 (-13 (-312) (-755))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 *4)) (-4 *4 (-312)) (-5 *2 (-1086 *4))
- (-5 *1 (-471 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-756))))))
+ (-12 (-5 *3 (-630 *4)) (-4 *4 (-312)) (-5 *2 (-1085 *4))
+ (-5 *1 (-470 *4 *5 *6)) (-4 *5 (-312)) (-4 *6 (-13 (-312) (-755))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-469 *3)) (-4 *3 (-13 (-664) (-25))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-468)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-468)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-468)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-468 *3)) (-4 *3 (-13 (-663) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-467))))
+ ((*1 *1 *2) (-12 (-5 *2 (-338)) (-5 *1 (-467)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-467)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1033)) (-5 *1 (-467)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-831)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1086 *1))
+ (-12 (-5 *3 (-830)) (-4 *4 (-320)) (-4 *4 (-312)) (-5 *2 (-1085 *1))
(-4 *1 (-280 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1086 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-5 *2 (-1085 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1156 *3))))
+ (-12 (-4 *1 (-322 *3 *2)) (-4 *3 (-146)) (-4 *3 (-312)) (-4 *2 (-1155 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))))
(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312))))
((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1180 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1179 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1180 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-496))
+ (-12 (-5 *2 (-1179 *4)) (-4 *4 (-361 *3)) (-4 *3 (-258)) (-4 *3 (-495))
(-5 *1 (-43 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-4 *4 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *4))))
- ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1180 *1)) (-4 *1 (-280 *3))))
+ (-12 (-5 *3 (-830)) (-4 *4 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *4))))
+ ((*1 *2) (-12 (-4 *3 (-312)) (-5 *2 (-1179 *1)) (-4 *1 (-280 *3))))
((*1 *2)
- (-12 (-4 *3 (-146)) (-4 *4 (-1156 *3)) (-5 *2 (-1180 *1))
+ (-12 (-4 *3 (-146)) (-4 *4 (-1155 *3)) (-5 *2 (-1179 *1))
(-4 *1 (-353 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
- (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))))
+ (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
+ (-5 *1 (-356 *3 *4 *5 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4)))))
((*1 *2 *1)
- (-12 (-4 *3 (-258)) (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-5 *2 (-1180 *6))
+ (-12 (-4 *3 (-258)) (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-5 *2 (-1179 *6))
(-5 *1 (-358 *3 *4 *5 *6 *7)) (-4 *6 (-353 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-361 *3))))
+ ((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-361 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 *4))) (-5 *1 (-467 *4))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 *4))) (-5 *1 (-466 *4))
(-4 *4 (-299)))))
(((*1 *2 *1)
(-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-467 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-831))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-466 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-320)) (-5 *2 (-830))))
((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-831)) (-5 *1 (-467 *4)))))
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-830)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-485)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-484)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1034)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1033)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-467 *4)))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-466 *4)))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1180 *5)) (-5 *3 (-695)) (-5 *4 (-1034)) (-4 *5 (-299))
- (-5 *1 (-467 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)) (-4 *4 (-299)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *4)) (-4 *4 (-299)) (-5 *2 (-1086 *4)) (-5 *1 (-467 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))
- (-4 *4 (-299)) (-5 *2 (-1186)) (-5 *1 (-467 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-101))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-489))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1139))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-486))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1136))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-487))))))
-(((*1 *2 *1) (-12 (-4 *1 (-466)) (-5 *2 (-633 (-1137))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-466)) (-5 *3 (-102)) (-5 *2 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-464)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1131))) (-5 *1 (-463)))))
+ (-12 (-5 *2 (-1179 *5)) (-5 *3 (-694)) (-5 *4 (-1033)) (-4 *5 (-299))
+ (-5 *1 (-466 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-694)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)) (-4 *4 (-299)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 *4)) (-4 *4 (-299)) (-5 *2 (-1085 *4)) (-5 *1 (-466 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))
+ (-4 *4 (-299)) (-5 *2 (-1185)) (-5 *1 (-466 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-101))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-488))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1138))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-485))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1135))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-486))))))
+(((*1 *2 *1) (-12 (-4 *1 (-465)) (-5 *2 (-632 (-1136))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-465)) (-5 *3 (-102)) (-5 *2 (-694)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-463)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1130))) (-5 *1 (-462)))))
(((*1 *2 *2)
(-12 (-4 *3 (-312)) (-4 *4 (-324 *3)) (-4 *5 (-324 *3))
- (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-628 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1050)) (-5 *1 (-459)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-278 *3))))
+ (-5 *1 (-460 *3 *4 *5 *2)) (-4 *2 (-627 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-458)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-278 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-458 *3 *4)) (-14 *4 (-485)))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-457 *3 *4)) (-14 *4 (-484)))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *2 *1)
- (-12 (-5 *2 (-695)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1130))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-278 *3)) (-4 *3 (-1129))))
((*1 *2 *2)
- (-12 (-5 *2 (-85)) (-5 *1 (-458 *3 *4)) (-4 *3 (-1130)) (-14 *4 (-485)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-454 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-457 *3 *4)) (-4 *3 (-1129)) (-14 *4 (-484)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-453 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))))
(((*1 *1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4 *4)) (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-72))
- (-5 *1 (-451 *4 *5)) (-4 *5 (-760)))))
-(((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-72)) (-4 *2 (-760)))))
-(((*1 *1) (-5 *1 (-447))))
+ (-5 *1 (-450 *4 *5)) (-4 *5 (-759)))))
+(((*1 *2 *1) (-12 (-4 *1 (-449 *3 *2)) (-4 *3 (-72)) (-4 *2 (-759)))))
+(((*1 *1) (-5 *1 (-446))))
(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
(-4 *5 (-146))))
((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-695))
+ (-12 (-5 *2 (-484)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-694))
(-4 *5 (-146))))
((*1 *2 *2 *3)
(-12
(-5 *2
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
- (-5 *3 (-584 (-774 *4))) (-14 *4 (-584 (-1091))) (-14 *5 (-695))
- (-5 *1 (-445 *4 *5)))))
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))
+ (-5 *3 (-583 (-773 *4))) (-14 *4 (-583 (-1090))) (-14 *5 (-694))
+ (-5 *1 (-444 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-584 (-1091))) (-14 *5 (-695))
+ (-12 (-14 *4 (-583 (-1090))) (-14 *5 (-694))
(-5 *2
- (-584
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))
- (-5 *1 (-445 *4 *5))
+ (-583
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))))
+ (-5 *1 (-444 *4 *5))
(-5 *3
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485))))))))
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484))))))))
(((*1 *2 *2)
(-12
(-5 *2
- (-444 (-350 (-485)) (-197 *4 (-695)) (-774 *3) (-206 *3 (-350 (-485)))))
- (-14 *3 (-584 (-1091))) (-14 *4 (-695)) (-5 *1 (-445 *3 *4)))))
+ (-443 (-350 (-484)) (-197 *4 (-694)) (-773 *3) (-206 *3 (-350 (-484)))))
+ (-14 *3 (-583 (-1090))) (-14 *4 (-694)) (-5 *1 (-444 *3 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
- (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))
+ (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-444 (-350 (-485)) (-197 *5 (-695)) (-774 *4) (-206 *4 (-350 (-485)))))
- (-14 *4 (-584 (-1091))) (-14 *5 (-695)) (-5 *2 (-85)) (-5 *1 (-445 *4 *5)))))
+ (-443 (-350 (-484)) (-197 *5 (-694)) (-773 *4) (-206 *4 (-350 (-484)))))
+ (-14 *4 (-583 (-1090))) (-14 *5 (-694)) (-5 *2 (-85)) (-5 *1 (-444 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (-12 (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
- (-5 *2 (-85)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
+ (-5 *2 (-85)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2))
+ (-4 *2 (-861 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4)))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
(-5 *2
- (-2 (|:| |mval| (-631 *4)) (|:| |invmval| (-631 *4))
- (|:| |genIdeal| (-444 *4 *5 *6 *7))))
- (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
+ (-2 (|:| |mval| (-630 *4)) (|:| |invmval| (-630 *4))
+ (|:| |genIdeal| (-443 *4 *5 *6 *7))))
+ (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |mval| (-631 *3)) (|:| |invmval| (-631 *3))
- (|:| |genIdeal| (-444 *3 *4 *5 *6))))
- (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6))
- (-4 *6 (-862 *3 *4 *5)))))
+ (-2 (|:| |mval| (-630 *3)) (|:| |invmval| (-630 *3))
+ (|:| |genIdeal| (-443 *3 *4 *5 *6))))
+ (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6))
+ (-4 *6 (-861 *3 *4 *5)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-312)) (-4 *3 (-718)) (-4 *4 (-757)) (-5 *1 (-444 *2 *3 *4 *5))
- (-4 *5 (-862 *2 *3 *4)))))
+ (-12 (-4 *2 (-312)) (-4 *3 (-717)) (-4 *4 (-756)) (-5 *1 (-443 *2 *3 *4 *5))
+ (-4 *5 (-861 *2 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5))
(-5 *2 (-356 *4 (-350 *4) *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 *6)) (-4 *6 (-13 (-353 *4 *5) (-951 *4)))
- (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *3 (-258))
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-13 (-353 *4 *5) (-950 *4)))
+ (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *3 (-258))
(-5 *1 (-356 *3 *4 *5 *6))))
((*1 *1 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-312)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-444 *3 *4 *5 *6)) (-4 *6 (-862 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-443 *3 *4 *5 *6)) (-4 *6 (-861 *3 *4 *5)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-584 *6)) (-4 *6 (-757)) (-4 *4 (-312)) (-4 *5 (-718))
- (-5 *1 (-444 *4 *5 *6 *2)) (-4 *2 (-862 *4 *5 *6))))
+ (-12 (-5 *3 (-583 *6)) (-4 *6 (-756)) (-4 *4 (-312)) (-4 *5 (-717))
+ (-5 *1 (-443 *4 *5 *6 *2)) (-4 *2 (-861 *4 *5 *6))))
((*1 *1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-444 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-443 *3 *4 *5 *2))
+ (-4 *2 (-861 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *6 (-554 (-1091)))
- (-4 *4 (-312)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-1081 (-584 (-858 *4)) (-584 (-249 (-858 *4)))))
- (-5 *1 (-444 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *6 (-553 (-1090)))
+ (-4 *4 (-312)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-5 *2 (-1080 (-583 (-857 *4)) (-583 (-249 (-857 *4)))))
+ (-5 *1 (-443 *4 *5 *6 *7)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1186)) (-5 *1 (-167 *4))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1185)) (-5 *1 (-167 *4))
(-4 *4
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $))
- (-15 -1964 (*2 $)))))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $))
+ (-15 -1963 (*2 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-167 *3))
+ (-12 (-5 *2 (-1185)) (-5 *1 (-167 *3))
(-4 *3
- (-13 (-757)
- (-10 -8 (-15 -3802 ((-1074) $ (-1091))) (-15 -3619 (*2 $))
- (-15 -1964 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-442)))))
+ (-13 (-756)
+ (-10 -8 (-15 -3801 ((-1073) $ (-1090))) (-15 -3618 (*2 $))
+ (-15 -1963 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-441)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *6 (-1156 *5))
- (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-441 *5 *6 *4 *7)) (-4 *4 (-1156 *6)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1155 *5))
+ (-5 *2 (-1085 (-1085 *7))) (-5 *1 (-440 *5 *6 *4 *7)) (-4 *4 (-1155 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-631 (-1086 *8)))
- (-4 *5 (-962)) (-4 *8 (-962)) (-4 *6 (-1156 *5)) (-5 *2 (-631 *6))
- (-5 *1 (-441 *5 *6 *7 *8)) (-4 *7 (-1156 *6)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-630 (-1085 *8)))
+ (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1155 *5)) (-5 *2 (-630 *6))
+ (-5 *1 (-440 *5 *6 *7 *8)) (-4 *7 (-1155 *6)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7))
- (-4 *5 (-962)) (-4 *7 (-962)) (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7))
- (-4 *6 (-1156 *2)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1085 *7))
+ (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7))
+ (-4 *6 (-1155 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-962)) (-4 *7 (-962))
- (-4 *2 (-1156 *5)) (-5 *1 (-441 *5 *2 *6 *7)) (-4 *6 (-1156 *2))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1085 *7)) (-4 *5 (-961)) (-4 *7 (-961))
+ (-4 *2 (-1155 *5)) (-5 *1 (-440 *5 *2 *6 *7)) (-4 *6 (-1155 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-962)) (-4 *7 (-962)) (-4 *4 (-1156 *5))
- (-5 *2 (-1086 *7)) (-5 *1 (-441 *5 *4 *6 *7)) (-4 *6 (-1156 *4)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1155 *5))
+ (-5 *2 (-1085 *7)) (-5 *1 (-440 *5 *4 *6 *7)) (-4 *6 (-1155 *4)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2013 (-631 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-631 *3))))
- (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *4 (-1156 *3))
+ (-2 (|:| -2012 (-630 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-630 *3))))
+ (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *4 (-1155 *3))
(-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
+ (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
+ (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-631 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
+ (-12 (-5 *2 (-630 *3)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-695)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $)))))
- (-4 *4 (-1156 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
+ (-12 (-5 *2 (-694)) (-4 *3 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $)))))
+ (-4 *4 (-1155 *3)) (-5 *1 (-439 *3 *4 *5)) (-4 *5 (-353 *3 *4)))))
(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-631 *2)) (-5 *4 (-485))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2))
+ (-12 (-5 *3 (-630 *2)) (-5 *4 (-484))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1155 *2))
(-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-631 *2)) (-5 *4 (-695))
- (-4 *2 (-13 (-258) (-10 -8 (-15 -3973 ((-348 $) $))))) (-4 *5 (-1156 *2))
+ (-12 (-5 *3 (-630 *2)) (-5 *4 (-694))
+ (-4 *2 (-13 (-258) (-10 -8 (-15 -3972 ((-348 $) $))))) (-4 *5 (-1155 *2))
(-5 *1 (-439 *2 *5 *6)) (-4 *6 (-353 *2 *5)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-299)) (-4 *6 (-1156 *5))
+ (-12 (-5 *4 (-694)) (-4 *5 (-299)) (-4 *6 (-1155 *5))
(-5 *2
- (-584
- (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-631 *6)))))
+ (-583
+ (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-630 *6)))))
(-5 *1 (-438 *5 *6 *7))
(-5 *3
- (-2 (|:| -2013 (-631 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-631 *6))))
- (-4 *7 (-1156 *6)))))
+ (-2 (|:| -2012 (-630 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-630 *6))))
+ (-4 *7 (-1155 *6)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-584
+ (-583
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-485)))))
- (-5 *1 (-348 *3)) (-4 *3 (-496))))
+ (|:| |xpnt| (-484)))))
+ (-5 *1 (-348 *3)) (-4 *3 (-495))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-695)) (-4 *3 (-299)) (-4 *5 (-1156 *3))
- (-5 *2 (-584 (-1086 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1156 *5)))))
+ (-12 (-5 *4 (-694)) (-4 *3 (-299)) (-4 *5 (-1155 *3))
+ (-5 *2 (-583 (-1085 *3))) (-5 *1 (-438 *3 *5 *6)) (-4 *6 (-1155 *5)))))
(((*1 *2 *1 *1) (-12 (-5 *2 (-85)) (-5 *1 (-435)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-431)))))
-(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-427)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-485))) (-5 *2 (-485)) (-5 *1 (-426 *4))
- (-4 *4 (-1156 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1156 (-485))) (-5 *1 (-426 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1156 (-485))))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-424 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-786))) (-5 *1 (-423)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-447))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-786))) (-5 *1 (-423)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-431)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-427)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-484))) (-5 *2 (-484)) (-5 *1 (-426 *4))
+ (-4 *4 (-1155 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1155 (-484))) (-5 *1 (-426 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-426 *2)) (-4 *2 (-1155 (-484))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-424 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-785))) (-5 *1 (-423)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-446))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-785))) (-5 *1 (-423)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-485))) (-5 *1 (-206 *3 *4)) (-14 *3 (-584 (-1091)))
- (-4 *4 (-962))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *1 (-206 *3 *4)) (-14 *3 (-583 (-1090)))
+ (-4 *4 (-961))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-485))) (-14 *3 (-584 (-1091))) (-5 *1 (-394 *3 *4 *5))
- (-4 *4 (-962)) (-4 *5 (-196 (-3959 *3) (-695)))))
+ (-12 (-5 *2 (-583 (-484))) (-14 *3 (-583 (-1090))) (-5 *1 (-394 *3 *4 *5))
+ (-4 *4 (-961)) (-4 *5 (-196 (-3958 *3) (-694)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-485))) (-5 *1 (-421 *3 *4)) (-14 *3 (-584 (-1091)))
- (-4 *4 (-962)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-485)) (-5 *2 (-85)) (-5 *1 (-420)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-420)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-2 (|:| |dpolys| (-584 (-206 *5 *6))) (|:| |coords| (-584 (-485)))))
- (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *1 (-421 *3 *4)) (-14 *3 (-583 (-1090)))
+ (-4 *4 (-961)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-484)) (-5 *2 (-85)) (-5 *1 (-420)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-420)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-2 (|:| |dpolys| (-583 (-206 *5 *6))) (|:| |coords| (-583 (-484)))))
+ (-5 *1 (-411 *5 *6 *7)) (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-584 (-421 *4 *5))) (-5 *3 (-584 (-774 *4)))
- (-14 *4 (-584 (-1091))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6))
+ (|partial| -12 (-5 *2 (-583 (-421 *4 *5))) (-5 *3 (-583 (-773 *4)))
+ (-14 *4 (-583 (-1090))) (-4 *5 (-392)) (-5 *1 (-411 *4 *5 *6))
(-4 *6 (-392)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-774 *5))) (-14 *5 (-584 (-1091))) (-4 *6 (-392))
- (-5 *2 (-584 (-584 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7))
- (-5 *3 (-584 (-206 *5 *6))) (-4 *7 (-392)))))
+ (-12 (-5 *4 (-583 (-773 *5))) (-14 *5 (-583 (-1090))) (-4 *6 (-392))
+ (-5 *2 (-583 (-583 (-206 *5 *6)))) (-5 *1 (-411 *5 *6 *7))
+ (-5 *3 (-583 (-206 *5 *6))) (-4 *7 (-392)))))
(((*1 *1) (-5 *1 (-408))))
(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
- (-5 *4 (-584 (-831))) (-5 *5 (-584 (-221))) (-5 *1 (-408))))
+ (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
+ (-5 *4 (-583 (-830))) (-5 *5 (-583 (-221))) (-5 *1 (-408))))
((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
- (-5 *4 (-584 (-831))) (-5 *1 (-408))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408))))
+ (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
+ (-5 *4 (-583 (-830))) (-5 *1 (-408))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408))))
((*1 *1 *1) (-5 *1 (-408))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *1 (-408)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *1 (-408)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408))))
- ((*1 *2 *1) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-408)))))
+ (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408))))
+ ((*1 *2 *1) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-408)))))
(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-855 (-179))) (-5 *4 (-784)) (-5 *5 (-831)) (-5 *2 (-1186))
+ (-12 (-5 *3 (-854 (-179))) (-5 *4 (-783)) (-5 *5 (-830)) (-5 *2 (-1185))
(-5 *1 (-408))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408))))
((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-784)) (-5 *5 (-831))
- (-5 *2 (-1186)) (-5 *1 (-408)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-855 (-179))) (-5 *2 (-1186)) (-5 *1 (-408)))))
+ (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-783)) (-5 *5 (-830))
+ (-5 *2 (-1185)) (-5 *1 (-408)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-854 (-179))) (-5 *2 (-1185)) (-5 *1 (-408)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 (-584 (-855 (-179))))) (-5 *3 (-584 (-784)))
+ (-12 (-5 *2 (-583 (-583 (-854 (-179))))) (-5 *3 (-583 (-783)))
(-5 *1 (-408)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-584 (-855 (-179))))) (-5 *2 (-584 (-179)))
+ (-12 (-5 *3 (-583 (-583 (-854 (-179))))) (-5 *2 (-583 (-179)))
(-5 *1 (-408)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222))))
((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
@@ -11155,440 +11155,440 @@
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407))))
((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-407)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1180 (-1180 (-485)))) (-5 *1 (-406)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1179 (-1179 (-484)))) (-5 *1 (-406)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1180 (-1180 (-485)))) (-5 *3 (-831)) (-5 *1 (-406)))))
+ (-12 (-5 *2 (-1179 (-1179 (-484)))) (-5 *3 (-830)) (-5 *1 (-406)))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-757)) (-4 *5 (-718)) (-4 *6 (-496))
- (-4 *7 (-862 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2))
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-756)) (-4 *5 (-717)) (-4 *6 (-495))
+ (-4 *7 (-861 *6 *5 *3)) (-5 *1 (-402 *5 *3 *6 *7 *2))
(-4 *2
- (-13 (-951 (-350 (-485))) (-312)
- (-10 -8 (-15 -3948 ($ *7)) (-15 -3000 (*7 $)) (-15 -2999 (*7 $))))))))
+ (-13 (-950 (-350 (-484))) (-312)
+ (-10 -8 (-15 -3947 ($ *7)) (-15 -2999 (*7 $)) (-15 -2998 (*7 $))))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146))
+ (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *2))
- (-2 (|:| -2401 *5) (|:| -2402 *2))))
- (-4 *2 (-196 (-3959 *3) (-695))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-757)) (-4 *7 (-862 *4 *2 (-774 *3))))))
+ (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *2))
+ (-2 (|:| -2400 *5) (|:| -2401 *2))))
+ (-4 *2 (-196 (-3958 *3) (-694))) (-5 *1 (-401 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-756)) (-4 *7 (-861 *4 *2 (-773 *3))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-584 (-1091))) (-4 *4 (-146)) (-4 *5 (-196 (-3959 *3) (-695)))
+ (-12 (-14 *3 (-583 (-1090))) (-4 *4 (-146)) (-4 *5 (-196 (-3958 *3) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *2) (|:| -2402 *5))
- (-2 (|:| -2401 *2) (|:| -2402 *5))))
- (-4 *2 (-757)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-862 *4 *5 (-774 *3))))))
+ (-1 (-85) (-2 (|:| -2400 *2) (|:| -2401 *5))
+ (-2 (|:| -2400 *2) (|:| -2401 *5))))
+ (-4 *2 (-756)) (-5 *1 (-401 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-861 *4 *5 (-773 *3))))))
(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-584 (-1091))) (-4 *2 (-146)) (-4 *4 (-196 (-3959 *5) (-695)))
+ (-12 (-14 *5 (-583 (-1090))) (-4 *2 (-146)) (-4 *4 (-196 (-3958 *5) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *3) (|:| -2402 *4))
- (-2 (|:| -2401 *3) (|:| -2402 *4))))
- (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-757))
- (-4 *7 (-862 *2 *4 (-774 *5))))))
+ (-1 (-85) (-2 (|:| -2400 *3) (|:| -2401 *4))
+ (-2 (|:| -2400 *3) (|:| -2401 *4))))
+ (-5 *1 (-401 *5 *2 *3 *4 *6 *7)) (-4 *3 (-756))
+ (-4 *7 (-861 *2 *4 (-773 *5))))))
(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-584 (-1091))) (-4 *2 (-146)) (-4 *3 (-196 (-3959 *4) (-695)))
+ (-12 (-14 *4 (-583 (-1090))) (-4 *2 (-146)) (-4 *3 (-196 (-3958 *4) (-694)))
(-14 *6
- (-1 (-85) (-2 (|:| -2401 *5) (|:| -2402 *3))
- (-2 (|:| -2401 *5) (|:| -2402 *3))))
- (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-757))
- (-4 *7 (-862 *2 *3 (-774 *4))))))
+ (-1 (-85) (-2 (|:| -2400 *5) (|:| -2401 *3))
+ (-2 (|:| -2400 *5) (|:| -2401 *3))))
+ (-5 *1 (-401 *4 *2 *5 *3 *6 *7)) (-4 *5 (-756))
+ (-4 *7 (-861 *2 *3 (-773 *4))))))
(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-584 *3)) (-5 *5 (-831)) (-4 *3 (-1156 *4)) (-4 *4 (-258))
+ (-12 (-5 *2 (-583 *3)) (-5 *5 (-830)) (-4 *3 (-1155 *4)) (-4 *4 (-258))
(-5 *1 (-400 *4 *3)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-831)) (-4 *5 (-258)) (-4 *3 (-1156 *5))
- (-5 *2 (-2 (|:| |plist| (-584 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3))
- (-5 *4 (-584 *3)))))
+ (-12 (-5 *6 (-830)) (-4 *5 (-258)) (-4 *3 (-1155 *5))
+ (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-400 *5 *3))
+ (-5 *4 (-583 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *5)) (-4 *5 (-1156 *3)) (-4 *3 (-258)) (-5 *2 (-85))
+ (-12 (-5 *4 (-583 *5)) (-4 *5 (-1155 *3)) (-4 *3 (-258)) (-5 *2 (-85))
(-5 *1 (-395 *3 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1180 (-584 *3))) (-4 *4 (-258)) (-5 *2 (-584 *3))
- (-5 *1 (-395 *4 *3)) (-4 *3 (-1156 *4)))))
+ (|partial| -12 (-5 *5 (-1179 (-583 *3))) (-4 *4 (-258)) (-5 *2 (-583 *3))
+ (-5 *1 (-395 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-695)) (-4 *4 (-258)) (-4 *6 (-1156 *4))
- (-5 *2 (-1180 (-584 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-584 *6)))))
+ (|partial| -12 (-5 *3 (-694)) (-4 *4 (-258)) (-4 *6 (-1155 *4))
+ (-5 *2 (-1179 (-583 *6))) (-5 *1 (-395 *4 *6)) (-5 *5 (-583 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-258)) (-5 *2 (-695))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-258)) (-5 *2 (-694))
(-5 *1 (-395 *5 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3))))
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3))))
((*1 *2)
(|partial| -12
(-5 *2
(-2 (|:| |particular| (-393 *3 *4 *5 *6))
- (|:| -2013 (-584 (-393 *3 *4 *5 *6)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
- (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))))
+ (|:| -2012 (-583 (-393 *3 *4 *5 *6)))))
+ (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-496)) (-4 *3 (-146))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2013 (-584 *1)))) (-4 *1 (-316 *3))))
+ (|partial| -12 (-4 *3 (-495)) (-4 *3 (-146))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2012 (-583 *1)))) (-4 *1 (-316 *3))))
((*1 *2)
(|partial| -12
(-5 *2
(-2 (|:| |particular| (-393 *3 *4 *5 *6))
- (|:| -2013 (-584 (-393 *3 *4 *5 *6)))))
- (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-831))
- (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3))))))
+ (|:| -2012 (-583 (-393 *3 *4 *5 *6)))))
+ (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146)) (-14 *4 (-830))
+ (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1180 (-1091))) (-5 *3 (-1180 (-393 *4 *5 *6 *7)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831))
- (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4)))))
+ (-12 (-5 *2 (-1179 (-1090))) (-5 *3 (-1179 (-393 *4 *5 *6 *7)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-5 *3 (-1180 (-393 *4 *5 *6 *7)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-831)) (-14 *6 (-584 *2))
- (-14 *7 (-1180 (-631 *4)))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-1179 (-393 *4 *5 *6 *7)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-146)) (-14 *5 (-830)) (-14 *6 (-583 *2))
+ (-14 *7 (-1179 (-630 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3)))))
+ (-12 (-5 *2 (-1179 (-393 *3 *4 *5 *6))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 (-1091))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-831)) (-14 *5 (-584 (-1091))) (-14 *6 (-1180 (-631 *3)))))
+ (-12 (-5 *2 (-1179 (-1090))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-830)) (-14 *5 (-583 (-1090))) (-14 *6 (-1179 (-630 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1091)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
- (-14 *4 (-831)) (-14 *5 (-584 *2)) (-14 *6 (-1180 (-631 *3)))))
+ (-12 (-5 *2 (-1090)) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-146))
+ (-14 *4 (-830)) (-14 *5 (-583 *2)) (-14 *6 (-1179 (-630 *3)))))
((*1 *1)
- (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-831))
- (-14 *4 (-584 (-1091))) (-14 *5 (-1180 (-631 *2))))))
+ (-12 (-5 *1 (-393 *2 *3 *4 *5)) (-4 *2 (-146)) (-14 *3 (-830))
+ (-14 *4 (-583 (-1090))) (-14 *5 (-1179 (-630 *2))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
((*1 *2)
(-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312))
- (-5 *2 (-1086 (-858 *3)))))
+ (-5 *2 (-1085 (-857 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-1086 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-1085 (-857 *4))) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
((*1 *2)
(-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-4 *3 (-312))
- (-5 *2 (-1086 (-858 *3)))))
+ (-5 *2 (-1085 (-857 *3)))))
((*1 *2)
- (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1086 (-350 (-858 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
- (-4 *3 (-496)) (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-1085 (-350 (-857 *3)))) (-5 *1 (-393 *3 *4 *5 *6))
+ (-4 *3 (-495)) (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2)
- (-12 (-5 *2 (-350 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3))))))
+ (-12 (-5 *2 (-350 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
- (-5 *2 (-584 (-858 *4)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146))
+ (-5 *2 (-583 (-857 *4)))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-584 (-858 *4))) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-583 (-857 *4))) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
- ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-584 (-858 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-583 (-857 *3)))))
((*1 *2)
- (-12 (-5 *2 (-584 (-858 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-496))
- (-4 *3 (-146)) (-14 *4 (-831)) (-14 *5 (-584 (-1091)))
- (-14 *6 (-1180 (-631 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-393 *4 *5 *6 *7))) (-5 *2 (-584 (-858 *4)))
- (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-496)) (-4 *4 (-146)) (-14 *5 (-831))
- (-14 *6 (-584 (-1091))) (-14 *7 (-1180 (-631 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *1)) (-4 *1 (-392))))
+ (-12 (-5 *2 (-583 (-857 *3))) (-5 *1 (-393 *3 *4 *5 *6)) (-4 *3 (-495))
+ (-4 *3 (-146)) (-14 *4 (-830)) (-14 *5 (-583 (-1090)))
+ (-14 *6 (-1179 (-630 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-393 *4 *5 *6 *7))) (-5 *2 (-583 (-857 *4)))
+ (-5 *1 (-393 *4 *5 *6 *7)) (-4 *4 (-495)) (-4 *4 (-146)) (-14 *5 (-830))
+ (-14 *6 (-583 (-1090))) (-14 *7 (-1179 (-630 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-392))))
((*1 *1 *1 *1) (-4 *1 (-392))))
(((*1 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-695))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-694))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-695)) (|:| -2005 *4))) (-5 *5 (-695))
- (-4 *4 (-862 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-718)) (-4 *8 (-757))
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-694)) (|:| -2004 *4))) (-5 *5 (-694))
+ (-4 *4 (-861 *6 *7 *8)) (-4 *6 (-392)) (-4 *7 (-717)) (-4 *8 (-756))
(-5 *2
(-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4)))
(-5 *1 (-390 *6 *7 *8 *4)))))
(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756))
(-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757))
- (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-862 *4 *5 *6)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756))
+ (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)) (-4 *7 (-861 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *7)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *2 (-1186)) (-5 *1 (-390 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-583 *7)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *2 (-1185)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-485))
+ (-12 (-5 *2 (-484))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
+ (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756))
(-5 *1 (-390 *5 *6 *7 *4)))))
(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-485))
+ (-12 (-5 *2 (-484))
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-695)) (|:| |poli| *4)
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-694)) (|:| |poli| *4)
(|:| |polj| *4)))
- (-4 *6 (-718)) (-4 *4 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-757))
+ (-4 *6 (-717)) (-4 *4 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *7 (-756))
(-5 *1 (-390 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-1186))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-1185))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-392)) (-4 *5 (-718)) (-4 *6 (-757)) (-5 *2 (-485))
- (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-862 *4 *5 *6)))))
+ (-12 (-4 *4 (-392)) (-4 *5 (-717)) (-4 *6 (-756)) (-5 *2 (-484))
+ (-5 *1 (-390 *4 *5 *6 *3)) (-4 *3 (-861 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *6)))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *2 *2)
(-12
(-5 *2
- (-584
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
+ (-583
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
+ (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756))
(-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *2)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *2)
(|:| |polj| *2)))
- (-4 *5 (-718)) (-4 *2 (-862 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2))
- (-4 *4 (-392)) (-4 *6 (-757)))))
+ (-4 *5 (-717)) (-4 *2 (-861 *4 *5 *6)) (-5 *1 (-390 *4 *5 *6 *2))
+ (-4 *4 (-392)) (-4 *6 (-756)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-584 (-2 (|:| |totdeg| (-695)) (|:| -2005 *3)))) (-5 *4 (-695))
- (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718)) (-4 *7 (-757))
+ (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-694)) (|:| -2004 *3)))) (-5 *4 (-694))
+ (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717)) (-4 *7 (-756))
(-5 *1 (-390 *5 *6 *7 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-392)) (-4 *4 (-718)) (-4 *5 (-757)) (-5 *1 (-390 *3 *4 *5 *2))
- (-4 *2 (-862 *3 *4 *5)))))
+ (-12 (-4 *3 (-392)) (-4 *4 (-717)) (-4 *5 (-756)) (-5 *1 (-390 *3 *4 *5 *2))
+ (-4 *2 (-861 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-862 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-718))
- (-4 *7 (-757)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-861 *5 *6 *7)) (-4 *5 (-392)) (-4 *6 (-717))
+ (-4 *7 (-756)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
(-5 *1 (-390 *5 *6 *7 *3)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-584
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-695)) (|:| |poli| *6)
+ (-583
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-694)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *3 (-718)) (-4 *6 (-862 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-757))
+ (-4 *3 (-717)) (-4 *6 (-861 *4 *3 *5)) (-4 *4 (-392)) (-4 *5 (-756))
(-5 *1 (-390 *4 *3 *5 *6)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-584
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-695)) (|:| |poli| *6)
+ (-583
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-694)) (|:| |poli| *6)
(|:| |polj| *6))))
- (-4 *4 (-718)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-757))
+ (-4 *4 (-717)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-392)) (-4 *5 (-756))
(-5 *1 (-390 *3 *4 *5 *6)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-584
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *3)
+ (-583
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *3)
(|:| |polj| *3))))
- (-4 *5 (-718)) (-4 *3 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-4 *5 (-717)) (-4 *3 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756))
(-5 *1 (-390 *4 *5 *6 *3)))))
(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
+ (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-392)) (-4 *3 (-718)) (-4 *5 (-757)) (-5 *2 (-85))
- (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-862 *4 *3 *5)))))
+ (-12 (-4 *4 (-392)) (-4 *3 (-717)) (-4 *5 (-756)) (-5 *2 (-85))
+ (-5 *1 (-390 *4 *3 *5 *6)) (-4 *6 (-861 *4 *3 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-695)) (|:| |poli| *7)
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-694)) (|:| |poli| *7)
(|:| |polj| *7)))
- (-4 *5 (-718)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-757))
+ (-4 *5 (-717)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *6 (-756))
(-5 *2 (-85)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-485)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-392))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-484)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-392))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-390 *4 *5 *6 *2)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-392)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *1 (-390 *4 *5 *6 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-583 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-583 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-583 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-583 *8)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-718)) (-4 *6 (-757))
- (-4 *7 (-862 *4 *5 *6)) (-5 *2 (-584 (-584 *7))) (-5 *1 (-389 *4 *5 *6 *7))
- (-5 *3 (-584 *7))))
+ (-12 (-4 *4 (-13 (-258) (-120))) (-4 *5 (-717)) (-4 *6 (-756))
+ (-4 *7 (-861 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-389 *4 *5 *6 *7))
+ (-5 *3 (-583 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-718)) (-4 *7 (-757))
- (-4 *8 (-862 *5 *6 *7)) (-5 *2 (-584 (-584 *8))) (-5 *1 (-389 *5 *6 *7 *8))
- (-5 *3 (-584 *8)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-258) (-120))) (-4 *6 (-717)) (-4 *7 (-756))
+ (-4 *8 (-861 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-389 *5 *6 *7 *8))
+ (-5 *3 (-583 *8)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-584 *6)) (-4 *6 (-862 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-718))
- (-4 *5 (-757)) (-5 *1 (-388 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-583 *6)) (-4 *6 (-861 *3 *4 *5)) (-4 *3 (-258)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-5 *1 (-388 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7))))
((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-584 *7)) (-5 *3 (-1074)) (-4 *7 (-862 *4 *5 *6)) (-4 *4 (-258))
- (-4 *5 (-718)) (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-583 *7)) (-5 *3 (-1073)) (-4 *7 (-861 *4 *5 *6)) (-4 *4 (-258))
+ (-4 *5 (-717)) (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-862 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-718))
- (-4 *6 (-757)) (-5 *1 (-388 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-386)) (-5 *3 (-485)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-861 *4 *5 *6)) (-4 *4 (-258)) (-4 *5 (-717))
+ (-4 *6 (-756)) (-5 *1 (-388 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-386)) (-5 *3 (-484)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962))))
- ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961))))
+ ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-485)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-962)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
-(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
-(((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962))))
- ((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-385 *3)) (-4 *3 (-962)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-385 *3)) (-4 *3 (-347)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-385 *3)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961))))
+ ((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-385 *3)) (-4 *3 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-485)) (-5 *1 (-385 *2)) (-4 *2 (-962)))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-484)) (-5 *1 (-385 *2)) (-4 *2 (-961)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-348 *6)) (-4 *6 (-1156 *5)) (-4 *5 (-962))
- (-5 *2 (-584 *6)) (-5 *1 (-384 *5 *6)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-348 *6)) (-4 *6 (-1155 *5)) (-4 *5 (-961))
+ (-5 *2 (-583 *6)) (-5 *1 (-384 *5 *6)))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-831)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
+ (|partial| -12 (-5 *3 (-830)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-831)) (-5 *4 (-695)) (-5 *1 (-382 *2))
- (-4 *2 (-1156 (-485)))))
+ (|partial| -12 (-5 *3 (-830)) (-5 *4 (-694)) (-5 *1 (-382 *2))
+ (-4 *2 (-1155 (-484)))))
((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *1 (-382 *2))
- (-4 *2 (-1156 (-485)))))
+ (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *1 (-382 *2))
+ (-4 *2 (-1155 (-484)))))
((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
- (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
+ (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
+ (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484)))))
((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-831)) (-5 *4 (-584 (-695))) (-5 *5 (-695))
- (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1156 (-485)))))
+ (|partial| -12 (-5 *3 (-830)) (-5 *4 (-583 (-694))) (-5 *5 (-694))
+ (-5 *6 (-85)) (-5 *1 (-382 *2)) (-4 *2 (-1155 (-484)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-831)) (-5 *4 (-348 *2)) (-4 *2 (-1156 *5)) (-5 *1 (-384 *5 *2))
- (-4 *5 (-962)))))
+ (-12 (-5 *3 (-830)) (-5 *4 (-348 *2)) (-4 *2 (-1155 *5)) (-5 *1 (-384 *5 *2))
+ (-4 *5 (-961)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485)))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-676 (-695))) (-5 *1 (-382 *4))))
+ (-12 (-5 *3 (-583 (-2 (|:| -3733 *4) (|:| -3949 (-484)))))
+ (-4 *4 (-1155 (-484))) (-5 *2 (-675 (-694))) (-5 *1 (-382 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-348 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-962))
- (-5 *2 (-676 (-695))) (-5 *1 (-384 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-962)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1156 *3)))))
+ (-12 (-5 *3 (-348 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-961))
+ (-5 *2 (-675 (-694))) (-5 *1 (-384 *4 *5)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-384 *3 *2)) (-4 *2 (-1155 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-695)) (-4 *5 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *5 *3 *6))
- (-4 *3 (-1156 *5)) (-4 *6 (-13 (-347) (-951 *5) (-312) (-1116) (-239)))))
+ (-12 (-5 *4 (-694)) (-4 *5 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *5 *3 *6))
+ (-4 *3 (-1155 *5)) (-4 *6 (-13 (-347) (-950 *5) (-312) (-1115) (-239)))))
((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))))
+ (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))))
+ (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-13 (-347) (-951 *4) (-312) (-1116) (-239)))
- (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1156 *4))))
+ (-12 (-4 *4 (-961)) (-4 *2 (-13 (-347) (-950 *4) (-312) (-1115) (-239)))
+ (-5 *1 (-383 *4 *3 *2)) (-4 *3 (-1155 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-831)) (-4 *5 (-962))
- (-4 *2 (-13 (-347) (-951 *5) (-312) (-1116) (-239))) (-5 *1 (-383 *5 *3 *2))
- (-4 *3 (-1156 *5)))))
+ (-12 (-5 *4 (-830)) (-4 *5 (-961))
+ (-4 *2 (-13 (-347) (-950 *5) (-312) (-1115) (-239))) (-5 *1 (-383 *5 *3 *2))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-5 *2 (-485)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1156 *4))
- (-4 *5 (-13 (-347) (-951 *4) (-312) (-1116) (-239))))))
+ (-12 (-4 *4 (-961)) (-5 *2 (-484)) (-5 *1 (-383 *4 *3 *5)) (-4 *3 (-1155 *4))
+ (-4 *5 (-13 (-347) (-950 *4) (-312) (-1115) (-239))))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-85)) (-5 *5 (-1010 (-695))) (-5 *6 (-695))
- (-5 *2
- (-2 (|:| |contp| (-485))
- (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
- (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -2580 (-485)) (|:| -1783 (-584 *3)))) (-5 *1 (-382 *3))
- (-4 *3 (-1156 (-485))))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-348 *3)) (-4 *3 (-496))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-584 (-2 (|:| -3734 *4) (|:| -3950 (-485)))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-695)) (-5 *1 (-382 *4)))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-382 *3)) (-4 *3 (-1156 (-485))))))
+ (-12 (-5 *4 (-85)) (-5 *5 (-1009 (-694))) (-5 *6 (-694))
+ (-5 *2
+ (-2 (|:| |contp| (-484))
+ (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
+ (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2579 (-484)) (|:| -1782 (-583 *3)))) (-5 *1 (-382 *3))
+ (-4 *3 (-1155 (-484))))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-348 *3)) (-4 *3 (-495))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-583 (-2 (|:| -3733 *4) (|:| -3949 (-484)))))
+ (-4 *4 (-1155 (-484))) (-5 *2 (-694)) (-5 *1 (-382 *4)))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-382 *3)) (-4 *3 (-1155 (-484))))))
(((*1 *1 *2 *3)
(-12
(-5 *3
- (-584
+ (-583
(-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-485)))))
- (-4 *2 (-496)) (-5 *1 (-348 *2))))
+ (|:| |xpnt| (-484)))))
+ (-4 *2 (-495)) (-5 *1 (-348 *2))))
((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |contp| (-485))
- (|:| -1783 (-584 (-2 (|:| |irr| *4) (|:| -2396 (-485)))))))
- (-4 *4 (-1156 (-485))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
+ (-2 (|:| |contp| (-484))
+ (|:| -1782 (-583 (-2 (|:| |irr| *4) (|:| -2395 (-484)))))))
+ (-4 *4 (-1155 (-484))) (-5 *2 (-348 *4)) (-5 *1 (-382 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3912 "void"))) (-5 *1 (-379)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-858 (-485)))) (-5 *1 (-379)))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-377)) (|:| -3911 "void"))) (-5 *1 (-379)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-857 (-484)))) (-5 *1 (-379)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-379)))))
(((*1 *1) (-5 *1 (-379))))
(((*1 *1) (-5 *1 (-379))))
@@ -11598,327 +11598,327 @@
(((*1 *1) (-5 *1 (-379))))
(((*1 *1) (-5 *1 (-379))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-951 (-48))) (-4 *4 (-13 (-496) (-951 (-485))))
- (-4 *5 (-364 *4)) (-5 *2 (-348 (-1086 (-48)))) (-5 *1 (-378 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (|partial| -12 (-4 *5 (-950 (-48))) (-4 *4 (-13 (-495) (-950 (-484))))
+ (-4 *5 (-364 *4)) (-5 *2 (-348 (-1085 (-48)))) (-5 *1 (-378 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4))
(-5 *2
- (-3 (|:| |overq| (-1086 (-350 (-485)))) (|:| |overan| (-1086 (-48)))
- (|:| -2641 (-85))))
- (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))))
+ (-3 (|:| |overq| (-1085 (-350 (-484)))) (|:| |overan| (-1085 (-48)))
+ (|:| -2640 (-85))))
+ (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4))
- (-5 *2 (-348 (-1086 (-350 (-485))))) (-5 *1 (-378 *4 *5 *3))
- (-4 *3 (-1156 *5)))))
+ (|partial| -12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4))
+ (-5 *2 (-348 (-1085 (-350 (-484))))) (-5 *1 (-378 *4 *5 *3))
+ (-4 *3 (-1155 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3))
- (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1156 *5)))))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-4 *5 (-364 *4)) (-5 *2 (-348 *3))
+ (-5 *1 (-378 *4 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-377)))))
(((*1 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)))) (-5 *2 (-1186)) (-5 *1 (-376 *3 *4))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)))) (-5 *2 (-1185)) (-5 *1 (-376 *3 *4))
(-4 *4 (-364 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-496) (-951 (-485)))) (-5 *2 (-350 (-485)))
+ (-12 (-4 *4 (-13 (-495) (-950 (-484)))) (-5 *2 (-350 (-484)))
(-5 *1 (-376 *4 *3)) (-4 *3 (-364 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-551 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-496) (-951 (-485))))
- (-5 *2 (-1086 (-350 (-485)))) (-5 *1 (-376 *5 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
+ (-12 (-5 *4 (-550 *3)) (-4 *3 (-364 *5)) (-4 *5 (-13 (-495) (-950 (-484))))
+ (-5 *2 (-1085 (-350 (-484)))) (-5 *1 (-376 *5 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-374 *3 *2)) (-4 *2 (-364 *3)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485)))))
- (-4 *2 (-13 (-757) (-21))))))
+ (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484)))))
+ (-4 *2 (-13 (-756) (-21))))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-485)))))
- (-4 *2 (-13 (-757) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-520 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1116) (-29 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1014)) (-5 *2 (-695)))))
-(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1014)) (-4 *2 (-320)))))
-(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1014)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1116) (-364 *3)))
- (-14 *4 (-1091)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *2 (-13 (-27) (-1116) (-364 *3) (-10 -8 (-15 -3948 ($ *4)))))
- (-4 *4 (-756))
+ (-12 (-5 *1 (-372 *3 *2)) (-4 *3 (-13 (-146) (-38 (-350 (-484)))))
+ (-4 *2 (-13 (-756) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-519 *3)) (-5 *1 (-371 *5 *3)) (-4 *3 (-13 (-1115) (-29 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-1013)) (-5 *2 (-694)))))
+(((*1 *1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-1013)) (-4 *2 (-320)))))
+(((*1 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-320)) (-4 *2 (-1013)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-366 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1115) (-364 *3)))
+ (-14 *4 (-1090)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3) (-10 -8 (-15 -3947 ($ *4)))))
+ (-4 *4 (-755))
(-4 *5
- (-13 (-1159 *2 *4) (-312) (-1116)
- (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $)))))
- (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-897 *5)) (-14 *7 (-1091)))))
+ (-13 (-1158 *2 *4) (-312) (-1115)
+ (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))))
+ (-5 *1 (-367 *3 *2 *4 *5 *6 *7)) (-4 *6 (-896 *5)) (-14 *7 (-1090)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7)))))
- (-4 *7 (-756))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3947 ($ *7)))))
+ (-4 *7 (-755))
(-4 *8
- (-13 (-1159 *3 *7) (-312) (-1116)
- (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $)))))
+ (-13 (-1158 *3 *7) (-312) (-1115)
+ (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8))
- (-14 *10 (-1091)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8))
+ (-14 *10 (-1090)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-13 (-27) (-1116) (-364 *6) (-10 -8 (-15 -3948 ($ *7)))))
- (-4 *7 (-756))
+ (-12 (-5 *4 (-85)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-4 *3 (-13 (-27) (-1115) (-364 *6) (-10 -8 (-15 -3947 ($ *7)))))
+ (-4 *7 (-755))
(-4 *8
- (-13 (-1159 *3 *7) (-312) (-1116)
- (-10 -8 (-15 -3760 ($ $)) (-15 -3814 ($ $)))))
+ (-13 (-1158 *3 *7) (-312) (-1115)
+ (-10 -8 (-15 -3759 ($ $)) (-15 -3813 ($ $)))))
(-5 *2
(-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-897 *8))
- (-14 *10 (-1091)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-367 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-896 *8))
+ (-14 *10 (-1090)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484))))
(-5 *2
(-3 (|:| |%expansion| (-264 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
- (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1116) (-364 *5)))
- (-14 *6 (-1091)) (-14 *7 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)) (-5 *2 (-85))))
- ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1014)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-717)) (-4 *2 (-962))))
- ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1014)))))
+ (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
+ (-5 *1 (-366 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1115) (-364 *5)))
+ (-14 *6 (-1090)) (-14 *7 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)) (-5 *2 (-85))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *3)) (-4 *3 (-1013)) (-5 *2 (-85)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *3 (-716)) (-4 *2 (-961))))
+ ((*1 *2 *1) (-12 (-4 *1 (-364 *2)) (-4 *2 (-1013)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1091)) (-5 *3 (-584 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1014))))
+ (-12 (-5 *2 (-1090)) (-5 *3 (-583 *1)) (-4 *1 (-364 *4)) (-4 *4 (-1013))))
((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-364 *3)) (-4 *3 (-1014)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1014))
- (-5 *2 (-2 (|:| -3956 (-485)) (|:| |var| (-551 *1)))) (-4 *1 (-364 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-496)) (-5 *1 (-362 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3))))
+ (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-364 *3)) (-4 *3 (-1013)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1013))
+ (-5 *2 (-2 (|:| -3955 (-484)) (|:| |var| (-550 *1)))) (-4 *1 (-364 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-348 *3)) (-4 *3 (-495)) (-5 *1 (-362 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-312)) (-4 *1 (-280 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135))
- (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3)))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3)))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146)) (-4 *1 (-316 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1180 *4)) (-5 *3 (-1180 *1)) (-4 *4 (-146))
- (-4 *1 (-322 *4 *5)) (-4 *5 (-1156 *4))))
+ (-12 (-5 *2 (-1179 *4)) (-5 *3 (-1179 *1)) (-4 *4 (-146))
+ (-4 *1 (-322 *4 *5)) (-4 *5 (-1155 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
- (-4 *4 (-1156 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-353 *3 *4))
+ (-4 *4 (-1155 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1179 *3)) (-4 *3 (-146)) (-4 *1 (-361 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2))))
((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
+(((*1 *2 *3) (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *2)) (-4 *2 (-146))))
((*1 *2) (-12 (-4 *2 (-146)) (-5 *1 (-360 *3 *2)) (-4 *3 (-361 *2))))
((*1 *2) (-12 (-4 *1 (-361 *2)) (-4 *2 (-146)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
- ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-631 *4)) (-5 *1 (-360 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-630 *4)) (-5 *1 (-360 *3 *4))
(-4 *3 (-361 *4))))
- ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
+ ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-631 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-631 *3)))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-316 *4)) (-4 *4 (-146)) (-5 *2 (-630 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-146)) (-5 *2 (-630 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-951 *4)) (-4 *3 (-258))
- (-4 *4 (-905 *3)) (-4 *5 (-1156 *4)) (-4 *6 (-353 *4 *5))
- (-14 *7 (-1180 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-356 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-258))
+ (-4 *4 (-904 *3)) (-4 *5 (-1155 *4)) (-4 *6 (-353 *4 *5))
+ (-14 *7 (-1179 *6)) (-5 *1 (-358 *3 *4 *5 *6 *7))))
((*1 *1 *2)
- (-12 (-5 *2 (-1180 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-905 *3))
- (-4 *5 (-1156 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7))
+ (-12 (-5 *2 (-1179 *6)) (-4 *6 (-353 *4 *5)) (-4 *4 (-904 *3))
+ (-4 *5 (-1155 *4)) (-4 *3 (-258)) (-5 *1 (-358 *3 *4 *5 *6 *7))
(-14 *7 *2))))
(((*1 *1 *1)
- (-12 (-4 *2 (-258)) (-4 *3 (-905 *2)) (-4 *4 (-1156 *3))
- (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-951 *3))))))
+ (-12 (-4 *2 (-258)) (-4 *3 (-904 *2)) (-4 *4 (-1155 *3))
+ (-5 *1 (-356 *2 *3 *4 *5)) (-4 *5 (-13 (-353 *3 *4) (-950 *3))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-695)) (-5 *4 (-1180 *2)) (-4 *5 (-258)) (-4 *6 (-905 *5))
- (-4 *2 (-13 (-353 *6 *7) (-951 *6))) (-5 *1 (-356 *5 *6 *7 *2))
- (-4 *7 (-1156 *6)))))
+ (-12 (-5 *3 (-694)) (-5 *4 (-1179 *2)) (-4 *5 (-258)) (-4 *6 (-904 *5))
+ (-4 *2 (-13 (-353 *6 *7) (-950 *6))) (-5 *1 (-356 *5 *6 *7 *2))
+ (-4 *7 (-1155 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-630 *4))))
((*1 *2)
- (-12 (-4 *4 (-146)) (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))
+ (-12 (-4 *4 (-146)) (-4 *5 (-1155 *4)) (-5 *2 (-630 *4))
(-5 *1 (-352 *3 *4 *5)) (-4 *3 (-353 *4 *5))))
((*1 *2)
- (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3))
- (-5 *2 (-631 *3)))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-630 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1180 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
- (-4 *5 (-1156 *4)) (-5 *2 (-631 *4))))
+ (-12 (-5 *3 (-1179 *1)) (-4 *1 (-322 *4 *5)) (-4 *4 (-146))
+ (-4 *5 (-1155 *4)) (-5 *2 (-630 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1156 *3))
- (-5 *2 (-631 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+ (-12 (-4 *1 (-353 *3 *4)) (-4 *3 (-146)) (-4 *4 (-1155 *3))
+ (-5 *2 (-630 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-485))))) (-5 *1 (-310 *3))
- (-4 *3 (-1014))))
+ (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 (-484))))) (-5 *1 (-310 *3))
+ (-4 *3 (-1013))))
((*1 *2 *1)
- (-12 (-4 *1 (-336 *3)) (-4 *3 (-1014))
- (-5 *2 (-584 (-2 (|:| |gen| *3) (|:| -3945 (-695)))))))
+ (-12 (-4 *1 (-336 *3)) (-4 *3 (-1013))
+ (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -3944 (-694)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-584 (-2 (|:| -3734 *3) (|:| -2402 (-485))))) (-5 *1 (-348 *3))
- (-4 *3 (-496)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-348 *3)) (-4 *3 (-496)))))
+ (-12 (-5 *2 (-583 (-2 (|:| -3733 *3) (|:| -2401 (-484))))) (-5 *1 (-348 *3))
+ (-4 *3 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-348 *3)) (-4 *3 (-495)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-348 *4)) (-4 *4 (-496)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-348 *2)) (-4 *2 (-496)))))
+ (-12 (-5 *3 (-484)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-348 *4)) (-4 *4 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-484)) (-5 *1 (-348 *2)) (-4 *2 (-495)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-485)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-348 *2)) (-4 *2 (-496)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-330))) (-5 *1 (-221))))
- ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146))))
- ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))))
-(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-496)))))
-(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-485)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *3 (-85)) (-5 *1 (-81))))
- ((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347))))
- ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (|has| *1 (-6 -3988)) (-4 *1 (-347))))
- ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-831)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-485)) (|has| *1 (-6 -3988)) (-4 *1 (-347)) (-5 *2 (-831)))))
-(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-695))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-695)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-695))))
+ (-12 (-5 *3 (-484)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-348 *2)) (-4 *2 (-495)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-330))) (-5 *1 (-221))))
+ ((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146))))
+ ((*1 *2 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))))
+(((*1 *1 *1) (-12 (-5 *1 (-348 *2)) (-4 *2 (-495)))))
+(((*1 *2 *1) (-12 (-4 *1 (-347)) (-5 *2 (-484)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *3 (-85)) (-5 *1 (-81))))
+ ((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (|has| *1 (-6 -3987)) (-4 *1 (-347))))
+ ((*1 *2) (-12 (-4 *1 (-347)) (-5 *2 (-830)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-830)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484)) (|has| *1 (-6 -3987)) (-4 *1 (-347)) (-5 *2 (-830)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-694))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-345)) (-5 *2 (-694)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-694))))
((*1 *1 *1) (-4 *1 (-345))))
(((*1 *1 *2)
- (-12 (-5 *2 (-350 *4)) (-4 *4 (-1156 *3)) (-4 *3 (-13 (-312) (-120)))
+ (-12 (-5 *2 (-350 *4)) (-4 *4 (-1155 *3)) (-4 *3 (-13 (-312) (-120)))
(-5 *1 (-342 *3 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1156 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))))
+ (-12 (-4 *2 (-1155 *3)) (-5 *1 (-342 *3 *2)) (-4 *3 (-13 (-312) (-120))))))
(((*1 *2 *1)
(-12 (-4 *3 (-13 (-312) (-120)))
- (-5 *2 (-584 (-2 (|:| -2402 (-695)) (|:| -3775 *4) (|:| |num| *4))))
- (-5 *1 (-342 *3 *4)) (-4 *4 (-1156 *3)))))
+ (-5 *2 (-583 (-2 (|:| -2401 (-694)) (|:| -3774 *4) (|:| |num| *4))))
+ (-5 *1 (-342 *3 *4)) (-4 *4 (-1155 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
+ (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
(-4 *5 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-773)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-695)) (-14 *4 (-695))
+ (-12 (-5 *2 (-772)) (-5 *1 (-340 *3 *4 *5)) (-14 *3 (-694)) (-14 *4 (-694))
(-4 *5 (-146)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-339)))))
-(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1074)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-339)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-1073)))))
(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
(((*1 *2 *1) (-12 (-4 *1 (-339)) (-5 *2 (-85)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-336 *2)) (-4 *2 (-1013)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1014)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-12 (-4 *3 (-1013)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
(-4 *1 (-336 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-962)) (-4 *4 (-1014))
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1013))
(-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-350 (-858 (-485))))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-756) (-312)))))
+ (-12 (-5 *3 (-583 (-350 (-857 (-484))))) (-5 *4 (-583 (-1090)))
+ (-5 *2 (-583 (-583 *5))) (-5 *1 (-332 *5)) (-4 *5 (-13 (-755) (-312)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 (-485)))) (-5 *2 (-584 *4)) (-5 *1 (-332 *4))
- (-4 *4 (-13 (-756) (-312))))))
+ (-12 (-5 *3 (-350 (-857 (-484)))) (-5 *2 (-583 *4)) (-5 *1 (-332 *4))
+ (-4 *4 (-13 (-755) (-312))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 (-142 (-485))))) (-5 *2 (-584 (-142 *4)))
- (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-756)))))
+ (-12 (-5 *3 (-350 (-857 (-142 (-484))))) (-5 *2 (-583 (-142 *4)))
+ (-5 *1 (-331 *4)) (-4 *4 (-13 (-312) (-755)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485)))))) (-5 *4 (-584 (-1091)))
- (-5 *2 (-584 (-584 (-142 *5)))) (-5 *1 (-331 *5))
- (-4 *5 (-13 (-312) (-756))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-350 (-858 (-142 (-485))))))
- (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-312) (-756)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-249 (-350 (-858 (-142 (-485)))))))
- (-5 *2 (-584 (-584 (-249 (-858 (-142 *4)))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-312) (-756)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 (-858 (-142 (-485)))))
- (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-312) (-756)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-249 (-350 (-858 (-142 (-485))))))
- (-5 *2 (-584 (-249 (-858 (-142 *4))))) (-5 *1 (-331 *4))
- (-4 *4 (-13 (-312) (-756))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-485)) (-5 *1 (-330)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-179))))
- ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-695)) (-5 *2 (-350 (-485))) (-5 *1 (-330)))))
+ (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484)))))) (-5 *4 (-583 (-1090)))
+ (-5 *2 (-583 (-583 (-142 *5)))) (-5 *1 (-331 *5))
+ (-4 *5 (-13 (-312) (-755))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-350 (-857 (-142 (-484))))))
+ (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-755)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-583 (-249 (-350 (-857 (-142 (-484)))))))
+ (-5 *2 (-583 (-583 (-249 (-857 (-142 *4)))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-755)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 (-857 (-142 (-484)))))
+ (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-755)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-249 (-350 (-857 (-142 (-484))))))
+ (-5 *2 (-583 (-249 (-857 (-142 *4))))) (-5 *1 (-331 *4))
+ (-4 *4 (-13 (-312) (-755))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-484)) (-5 *1 (-330)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-179))))
+ ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-694)) (-5 *2 (-350 (-484))) (-5 *1 (-330)))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330)))
((*1 *1) (-5 *1 (-330))))
(((*1 *1 *1) (-5 *1 (-179))) ((*1 *1 *1) (-5 *1 (-330)))
((*1 *1) (-5 *1 (-330))))
(((*1 *1) (-5 *1 (-179))) ((*1 *1) (-5 *1 (-330))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1186)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330))))
+ ((*1 *2) (-12 (-5 *2 (-1185)) (-5 *1 (-330)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1185)) (-5 *1 (-330)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2))
- (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-1035 *4))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2))
- (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-1035 *4))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1130)) (-5 *1 (-327 *4 *2))
- (-4 *2 (-13 (-324 *4) (-10 -7 (-6 -3998)))))))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *4 (-1129)) (-5 *1 (-327 *4 *2))
+ (-4 *2 (-13 (-324 *4) (-1035 *4))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-615 *3)) (-4 *3 (-757)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))))
+ (-12 (-5 *2 (-614 *3)) (-4 *3 (-756)) (-4 *1 (-326 *3 *4)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3)) (-4 *3 (-1130)) (-4 *3 (-757)) (-5 *2 (-85))))
+ (-12 (-4 *1 (-324 *3)) (-4 *3 (-1129)) (-4 *3 (-756)) (-5 *2 (-85))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1130))
+ (-12 (-5 *3 (-1 (-85) *4 *4)) (-4 *1 (-324 *4)) (-4 *4 (-1129))
(-5 *2 (-85)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-484)) (-4 *1 (-1035 *3)) (-4 *1 (-324 *3)) (-4 *3 (-1129)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1036 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1130)) (-4 *2 (-757))))
+ (-12 (-4 *1 (-1035 *2)) (-4 *1 (-324 *2)) (-4 *2 (-1129)) (-4 *2 (-756))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1036 *3)) (-4 *1 (-324 *3))
- (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-1 (-85) *3 *3)) (-4 *1 (-1035 *3)) (-4 *1 (-324 *3))
+ (-4 *3 (-1129)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-85)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-318 *3)) (-4 *3 (-1129)) (-4 *3 (-72)) (-5 *2 (-694))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))))
-(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1180 *1)) (-4 *1 (-316 *3)))))
+ (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1129)) (-5 *2 (-694)))))
+(((*1 *2) (-12 (-4 *3 (-146)) (-5 *2 (-1179 *1)) (-4 *1 (-316 *3)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
(((*1 *2 *1) (-12 (-4 *1 (-316 *2)) (-4 *2 (-146)))))
-(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1086 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-1085 *3)))))
(((*1 *2)
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))
((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
@@ -11963,1175 +11963,1175 @@
(-12 (-4 *4 (-146)) (-5 *2 (-85)) (-5 *1 (-315 *3 *4)) (-4 *3 (-316 *4))))
((*1 *2) (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *4 (-146)) (-5 *2 (-584 (-1180 *4))) (-5 *1 (-315 *3 *4))
+ (-12 (-4 *4 (-146)) (-5 *2 (-583 (-1179 *4))) (-5 *1 (-315 *3 *4))
(-4 *3 (-316 *4))))
((*1 *2)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496))
- (-5 *2 (-584 (-1180 *3))))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495))
+ (-5 *2 (-583 (-1179 *3))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-496)) (-5 *2 (-1086 *3)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-496)) (-4 *2 (-146)))))
+ (-12 (-4 *1 (-316 *3)) (-4 *3 (-146)) (-4 *3 (-495)) (-5 *2 (-1085 *3)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-316 *2)) (-4 *2 (-495)) (-4 *2 (-146)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1074)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1014)) (-4 *4 (-1014))))
- ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ (-12 (-5 *3 (-1073)) (-4 *1 (-314 *2 *4)) (-4 *2 (-1013)) (-4 *4 (-1013))))
+ ((*1 *1 *2) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1074)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)))))
+ (-12 (-5 *2 (-1073)) (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)))))
(((*1 *1 *1) (-4 *1 (-147)))
- ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-1014)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-314 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-1013)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014)) (-5 *2 (-1074)))))
-(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1014)) (-4 *2 (-1014)))))
+ (-12 (-4 *1 (-314 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-314 *3 *2)) (-4 *3 (-1013)) (-4 *2 (-1013)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299))
(-4 *2
(-13 (-345)
- (-10 -7 (-15 -3948 (*2 *4)) (-15 -2011 ((-831) *2))
- (-15 -2013 ((-1180 *2) (-831))) (-15 -3930 (*2 *2)))))
+ (-10 -7 (-15 -3947 (*2 *4)) (-15 -2010 ((-830) *2))
+ (-15 -2012 ((-1179 *2) (-830))) (-15 -3929 (*2 *2)))))
(-5 *1 (-306 *2 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-870 (-1086 *4))) (-5 *1 (-305 *4))
- (-5 *3 (-1086 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-869 (-1085 *4))) (-5 *1 (-305 *4))
+ (-5 *3 (-1085 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
+ (|partial| -12 (-5 *2 (-1085 *3)) (-4 *3 (-299)) (-5 *1 (-305 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831)) (-5 *2 (-1086 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
-(((*1 *2 *2) (-12 (-5 *2 (-831)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+ (-12 (-5 *3 (-830)) (-5 *2 (-1085 *4)) (-5 *1 (-305 *4)) (-4 *4 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
+(((*1 *2 *2) (-12 (-5 *2 (-830)) (-5 *1 (-305 *3)) (-4 *3 (-299)))))
(((*1 *2 *1) (-12 (-4 *1 (-299)) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-305 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 (-818 *3)) (|:| -2401 (-1034))))))
- (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
+ (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 (-817 *3)) (|:| -2400 (-1033))))))
+ (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
((*1 *2)
- (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))
- (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1086 *3) *2))))
+ (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033))))))
+ (-5 *1 (-302 *3 *4)) (-4 *3 (-299)) (-14 *4 (-3 (-1085 *3) *2))))
((*1 *2)
- (-12 (-5 *2 (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034))))))
- (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
+ (-12 (-5 *2 (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033))))))
+ (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
(((*1 *2)
- (-12 (-5 *2 (-631 (-818 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-831))
- (-14 *4 (-831))))
+ (-12 (-5 *2 (-630 (-817 *3))) (-5 *1 (-301 *3 *4)) (-14 *3 (-830))
+ (-14 *4 (-830))))
((*1 *2)
- (-12 (-5 *2 (-631 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
+ (-12 (-5 *2 (-630 *3)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
(-14 *4
- (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))))))
+ (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033)))))))))
((*1 *2)
- (-12 (-5 *2 (-631 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
+ (-12 (-5 *2 (-630 *3)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))
- (-4 *4 (-299)) (-5 *2 (-695)) (-5 *1 (-296 *4))))
+ (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))
+ (-4 *4 (-299)) (-5 *2 (-694)) (-5 *1 (-296 *4))))
((*1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-301 *3 *4)) (-14 *3 (-831)) (-14 *4 (-831))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-301 *3 *4)) (-14 *3 (-830)) (-14 *4 (-830))))
((*1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
+ (-12 (-5 *2 (-694)) (-5 *1 (-302 *3 *4)) (-4 *3 (-299))
(-14 *4
- (-3 (-1086 *3) (-1180 (-584 (-2 (|:| -3404 *3) (|:| -2401 (-1034)))))))))
+ (-3 (-1085 *3) (-1179 (-583 (-2 (|:| -3403 *3) (|:| -2400 (-1033)))))))))
((*1 *2)
- (-12 (-5 *2 (-695)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-831)))))
+ (-12 (-5 *2 (-694)) (-5 *1 (-303 *3 *4)) (-4 *3 (-299)) (-14 *4 (-830)))))
(((*1 *2)
(-12 (-4 *1 (-299))
- (-5 *2 (-584 (-2 (|:| -3734 (-485)) (|:| -2402 (-485))))))))
-(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-485)) (-5 *2 (-1103 (-831) (-695))))))
+ (-5 *2 (-583 (-2 (|:| -3733 (-484)) (|:| -2401 (-484))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-299)) (-5 *3 (-484)) (-5 *2 (-1102 (-830) (-694))))))
(((*1 *1) (-4 *1 (-299))))
(((*1 *2)
(-12 (-4 *1 (-299)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3)
- (-12 (-5 *3 (-831))
+ (-12 (-5 *3 (-830))
(-5 *2
- (-3 (-1086 *4) (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034)))))))
+ (-3 (-1085 *4) (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033)))))))
(-5 *1 (-296 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-831))
- (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))
+ (|partial| -12 (-5 *3 (-830))
+ (-5 *2 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))
(-5 *1 (-296 *4)) (-4 *4 (-299)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))
- (-4 *4 (-299)) (-5 *2 (-631 *4)) (-5 *1 (-296 *4)))))
+ (-12 (-5 *3 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))
+ (-4 *4 (-299)) (-5 *2 (-630 *4)) (-5 *1 (-296 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299))
- (-5 *2 (-1180 (-584 (-2 (|:| -3404 *4) (|:| -2401 (-1034))))))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299))
+ (-5 *2 (-1179 (-583 (-2 (|:| -3403 *4) (|:| -2400 (-1033))))))
(-5 *1 (-296 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-299)) (-5 *2 (-870 (-1034)))
+ (-12 (-5 *3 (-1085 *4)) (-4 *4 (-299)) (-5 *2 (-869 (-1033)))
(-5 *1 (-296 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-293 *3 *4)) (-14 *3 (-831))
- (-14 *4 (-831))))
+ (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-293 *3 *4)) (-14 *3 (-830))
+ (-14 *4 (-830))))
((*1 *2)
- (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299))
- (-14 *4 (-1086 *3))))
+ (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-294 *3 *4)) (-4 *3 (-299))
+ (-14 *4 (-1085 *3))))
((*1 *2)
- (-12 (-5 *2 (-870 (-1034))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299))
- (-14 *4 (-831)))))
+ (-12 (-5 *2 (-869 (-1033))) (-5 *1 (-295 *3 *4)) (-4 *3 (-299))
+ (-14 *4 (-830)))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5)))
- (-5 *2 (-695)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-694)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-694)))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5)))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-85)) (-5 *1 (-290 *3 *4 *5 *6)) (-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1135)) (-4 *5 (-1156 *3)) (-4 *6 (-1156 (-350 *5)))
+ (-12 (-4 *3 (-1134)) (-4 *5 (-1155 *3)) (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-85)) (-5 *1 (-290 *4 *3 *5 *6)) (-4 *4 (-291 *3 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2)
- (-12 (-4 *3 (-1135)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-1134)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-1156 *4))
- (-4 *5 (-1156 (-350 *3))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *4 *3 *5)) (-4 *4 (-1134)) (-4 *3 (-1155 *4))
+ (-4 *5 (-1155 (-350 *3))) (-5 *2 (-85))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85))))
((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-85)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1180 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4))))))
+ (-12 (-5 *2 (-1179 *1)) (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134))
+ (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))))
(((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-5 *2 (-631 (-350 *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-5 *2 (-630 (-350 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-2 (|:| |num| (-1180 *4)) (|:| |den| *4))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-2 (|:| |num| (-1179 *4)) (|:| |den| *4))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1180 *3)) (-4 *3 (-1156 *4)) (-4 *4 (-1135))
- (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1156 (-350 *3))))))
+ (-12 (-5 *2 (-1179 *3)) (-4 *3 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *1 (-291 *4 *3 *5)) (-4 *5 (-1155 (-350 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5)))
- (-5 *2 (-2 (|:| |num| (-631 *5)) (|:| |den| *5))))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-2 (|:| |num| (-630 *5)) (|:| |den| *5))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916)))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915)))))
((*1 *2)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4))
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))))
+ (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134))
+ (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 (-350 *2))) (-4 *2 (-1156 *4))
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 (-350 *2))) (-4 *2 (-1155 *4))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *3 (-291 *4 *2 *5))))
((*1 *2)
- (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1135))
- (-4 *4 (-1156 (-350 *2))) (-4 *2 (-1156 *3)))))
+ (|partial| -12 (-4 *1 (-291 *3 *2 *4)) (-4 *3 (-1134))
+ (-4 *4 (-1155 (-350 *2))) (-4 *2 (-1155 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1156 *4)) (-4 *4 (-1135))
- (-4 *6 (-1156 (-350 *5)))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1155 *4)) (-4 *4 (-1134))
+ (-4 *6 (-1155 (-350 *5)))
(-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5)))
(-4 *1 (-291 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *5 (-1135)) (-4 *6 (-1156 *5))
- (-4 *7 (-1156 (-350 *6))) (-5 *2 (-584 (-858 *5)))
+ (-12 (-5 *3 (-1090)) (-4 *5 (-1134)) (-4 *6 (-1155 *5))
+ (-4 *7 (-1155 (-350 *6))) (-5 *2 (-583 (-857 *5)))
(-5 *1 (-290 *4 *5 *6 *7)) (-4 *4 (-291 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1135))
- (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5))) (-4 *4 (-312))
- (-5 *2 (-584 (-858 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *1 (-291 *4 *5 *6)) (-4 *4 (-1134))
+ (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5))) (-4 *4 (-312))
+ (-5 *2 (-583 (-857 *4))))))
(((*1 *2)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4)) (-4 *6 (-1156 (-350 *5)))
- (-5 *2 (-584 (-584 *4))) (-5 *1 (-290 *3 *4 *5 *6))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4)) (-4 *6 (-1155 (-350 *5)))
+ (-5 *2 (-583 (-583 *4))) (-5 *1 (-290 *3 *4 *5 *6))
(-4 *3 (-291 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-584 (-584 *3))))))
+ (-12 (-4 *1 (-291 *3 *4 *5)) (-4 *3 (-1134)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *3 (-320)) (-5 *2 (-583 (-583 *3))))))
(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-312)) (-4 *3 (-1156 *4)) (-4 *5 (-1156 (-350 *3)))
+ (-12 (-4 *4 (-312)) (-4 *3 (-1155 *4)) (-4 *5 (-1155 (-350 *3)))
(-4 *1 (-286 *4 *3 *5 *2)) (-4 *2 (-291 *4 *3 *5))))
((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *2 (-312)) (-4 *4 (-1156 *2))
- (-4 *5 (-1156 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6))
+ (-12 (-5 *3 (-484)) (-4 *2 (-312)) (-4 *4 (-1155 *2))
+ (-4 *5 (-1155 (-350 *4))) (-4 *1 (-286 *2 *4 *5 *6))
(-4 *6 (-291 *2 *4 *5))))
((*1 *1 *2 *2)
- (-12 (-4 *2 (-312)) (-4 *3 (-1156 *2)) (-4 *4 (-1156 (-350 *3)))
+ (-12 (-4 *2 (-312)) (-4 *3 (-1155 *2)) (-4 *4 (-1155 (-350 *3)))
(-4 *1 (-286 *2 *3 *4 *5)) (-4 *5 (-291 *2 *3 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
(-4 *1 (-286 *3 *4 *5 *2)) (-4 *2 (-291 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312))
+ (-12 (-5 *2 (-356 *4 (-350 *4) *5 *6)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-4 *3 (-312))
(-4 *1 (-286 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1156 *3))
- (-4 *5 (-1156 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-286 *3 *4 *5 *6)) (-4 *3 (-312)) (-4 *4 (-1155 *3))
+ (-4 *5 (-1155 (-350 *4))) (-4 *6 (-291 *3 *4 *5)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-312)) (-4 *4 (-1156 *3)) (-4 *5 (-1156 (-350 *4)))
- (-5 *2 (-1180 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
+ (-12 (-4 *3 (-312)) (-4 *4 (-1155 *3)) (-4 *5 (-1155 (-350 *4)))
+ (-5 *2 (-1179 *6)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *6 (-291 *3 *4 *5)))))
(((*1 *2 *1) (-12 (-5 *2 (-209)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-783 (-1096) (-695)))) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-870 (-695))) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-447)) (-5 *1 (-282)))))
-(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-757)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-782 (-1095) (-694)))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-869 (-694))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-446)) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-281 *3)) (-4 *3 (-756)))))
(((*1 *1) (-12 (-4 *1 (-280 *2)) (-4 *2 (-320)) (-4 *2 (-312)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1086 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))))
+ (-12 (-5 *2 (-1085 *3)) (-4 *3 (-320)) (-4 *1 (-280 *3)) (-4 *3 (-312)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))))
+ (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
(((*1 *2 *1 *1)
(|partial| -12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320))
- (-5 *2 (-1086 *3))))
+ (-5 *2 (-1085 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1086 *3)))))
+ (-12 (-4 *1 (-280 *3)) (-4 *3 (-312)) (-4 *3 (-320)) (-5 *2 (-1085 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-962)) (-4 *3 (-717)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-277 *2 *3)) (-4 *2 (-961)) (-4 *3 (-716)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-695)) (-4 *1 (-277 *3 *4)) (-4 *3 (-962)) (-4 *4 (-717))
+ (-12 (-5 *2 (-694)) (-4 *1 (-277 *3 *4)) (-4 *3 (-961)) (-4 *4 (-716))
(-4 *3 (-146)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-485)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1014)) (-4 *2 (-104)))))
+ (-12 (-5 *3 (-484)) (-4 *1 (-274 *4 *2)) (-4 *4 (-1013)) (-4 *2 (-104)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-104)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-274 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-104)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1014)) (-4 *3 (-104)) (-4 *3 (-717)))))
+ (-12 (-4 *1 (-274 *2 *3)) (-4 *2 (-1013)) (-4 *3 (-104)) (-4 *3 (-716)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-485)) (-4 *4 (-718)) (-4 *5 (-757)) (-4 *2 (-962))
- (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-862 *2 *4 *5)))))
+ (-12 (-5 *3 (-484)) (-4 *4 (-717)) (-4 *5 (-756)) (-4 *2 (-961))
+ (-5 *1 (-272 *4 *5 *2 *6)) (-4 *6 (-861 *2 *4 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 *7)) (-5 *3 (-485)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718))
- (-4 *5 (-757)) (-4 *6 (-962)) (-5 *1 (-272 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1085 *7)) (-5 *3 (-484)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717))
+ (-4 *5 (-756)) (-4 *6 (-961)) (-5 *1 (-272 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *6)) (-4 *6 (-962)) (-4 *4 (-718)) (-4 *5 (-757))
- (-5 *2 (-1086 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-862 *6 *4 *5)))))
+ (-12 (-5 *3 (-1085 *6)) (-4 *6 (-961)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-5 *2 (-1085 *7)) (-5 *1 (-272 *4 *5 *6 *7)) (-4 *7 (-861 *6 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *7)) (-4 *7 (-862 *6 *4 *5)) (-4 *4 (-718)) (-4 *5 (-757))
- (-4 *6 (-962)) (-5 *2 (-1086 *6)) (-5 *1 (-272 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1085 *7)) (-4 *7 (-861 *6 *4 *5)) (-4 *4 (-717)) (-4 *5 (-756))
+ (-4 *6 (-961)) (-5 *2 (-1085 *6)) (-5 *1 (-272 *4 *5 *6 *7)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-584 *7)) (-5 *5 (-584 *8)) (-4 *7 (-757))
- (-4 *8 (-962)) (-4 *9 (-862 *8 *6 *7)) (-4 *6 (-718)) (-5 *2 (-1086 *8))
+ (-12 (-5 *3 (-1085 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-756))
+ (-4 *8 (-961)) (-4 *9 (-861 *8 *6 *7)) (-4 *6 (-717)) (-5 *2 (-1085 *8))
(-5 *1 (-272 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-350 (-485))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
- (-14 *4 (-1091)) (-14 *5 *3))))
+ (-12 (-5 *2 (-350 (-484))) (-5 *1 (-270 *3 *4 *5)) (-4 *3 (-312))
+ (-14 *4 (-1090)) (-14 *5 *3))))
(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
- (-5 *6 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
- (-5 *6 (-485)) (-5 *7 (-1074)) (-5 *2 (-1126 (-839))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-484)) (-5 *7 (-1073)) (-5 *2 (-1125 (-838))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
- (-5 *6 (-179)) (-5 *7 (-485)) (-5 *2 (-1126 (-839))) (-5 *1 (-269))))
+ (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-484)) (-5 *2 (-1125 (-838))) (-5 *1 (-269))))
((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-265 (-485))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1002 (-179)))
- (-5 *6 (-179)) (-5 *7 (-485)) (-5 *8 (-1074)) (-5 *2 (-1126 (-839)))
+ (-12 (-5 *3 (-265 (-484))) (-5 *4 (-1 (-179) (-179))) (-5 *5 (-1001 (-179)))
+ (-5 *6 (-179)) (-5 *7 (-484)) (-5 *8 (-1073)) (-5 *2 (-1125 (-838)))
(-5 *1 (-269)))))
(((*1 *2 *3) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-269)) (-5 *3 (-179)))))
(((*1 *2 *3 *4 *3 *3)
(-12 (-5 *3 (-249 *6)) (-5 *4 (-86)) (-4 *6 (-364 *5))
- (-4 *5 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))
+ (-4 *5 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *5 *6))))
((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-584 *7)) (-4 *7 (-364 *6))
- (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7))))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-86)) (-5 *5 (-583 *7)) (-4 *7 (-364 *6))
+ (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-584 (-249 *7))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7))
- (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-583 (-249 *7))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51))
(-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-584 (-249 *8))) (-5 *4 (-584 (-86))) (-5 *5 (-249 *8))
- (-5 *6 (-584 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-496) (-554 (-474))))
+ (-12 (-5 *3 (-583 (-249 *8))) (-5 *4 (-583 (-86))) (-5 *5 (-249 *8))
+ (-5 *6 (-583 *8)) (-4 *8 (-364 *7)) (-4 *7 (-13 (-495) (-553 (-473))))
(-5 *2 (-51)) (-5 *1 (-268 *7 *8))))
((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-584 *7)) (-5 *4 (-584 (-86))) (-5 *5 (-249 *7))
- (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51))
+ (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-86))) (-5 *5 (-249 *7))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51))
(-5 *1 (-268 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-584 *8)) (-5 *4 (-584 (-86))) (-5 *6 (-584 (-249 *8)))
- (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-496) (-554 (-474))))
+ (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-86))) (-5 *6 (-583 (-249 *8)))
+ (-4 *8 (-364 *7)) (-5 *5 (-249 *8)) (-4 *7 (-13 (-495) (-553 (-473))))
(-5 *2 (-51)) (-5 *1 (-268 *7 *8))))
((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-249 *5)) (-5 *4 (-86)) (-4 *5 (-364 *6))
- (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5))))
+ (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *5))))
((*1 *2 *3 *4 *5 *3)
(-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6))
- (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
+ (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
((*1 *2 *3 *4 *5 *5)
(-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-4 *3 (-364 *6))
- (-4 *6 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
+ (-4 *6 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *6 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-584 *3)) (-4 *3 (-364 *7))
- (-4 *7 (-13 (-496) (-554 (-474)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))))
+ (-12 (-5 *4 (-86)) (-5 *5 (-249 *3)) (-5 *6 (-583 *3)) (-4 *3 (-364 *7))
+ (-4 *7 (-13 (-495) (-553 (-473)))) (-5 *2 (-51)) (-5 *1 (-268 *7 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-485)) (-5 *1 (-265 *3)) (-4 *3 (-496)) (-4 *3 (-1014)))))
+ (-12 (-5 *2 (-484)) (-5 *1 (-265 *3)) (-4 *3 (-495)) (-4 *3 (-1013)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-258)) (-5 *2 (-85)))))
-(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-695)))))
+(((*1 *2 *1) (-12 (-4 *1 (-258)) (-5 *2 (-694)))))
(((*1 *2 *1 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
(-4 *1 (-258))))
((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2410 *1)))
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2409 *1)))
(-4 *1 (-258)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-584 *1)) (-4 *1 (-258)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1130))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-258)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-254)) (-4 *2 (-1129))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-584 (-551 *1))) (-5 *3 (-584 *1)) (-4 *1 (-254))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-584 (-249 *1))) (-4 *1 (-254))))
+ (-12 (-5 *2 (-583 (-550 *1))) (-5 *3 (-583 *1)) (-4 *1 (-254))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-249 *1))) (-4 *1 (-254))))
((*1 *1 *1 *2) (-12 (-5 *2 (-249 *1)) (-4 *1 (-254)))))
(((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-4 *1 (-254))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-551 *1)) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-551 *1))) (-4 *1 (-254)))))
-(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-584 (-86))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1091)) (-5 *2 (-85))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-550 *1)) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-550 *1))) (-4 *1 (-254)))))
+(((*1 *2 *1) (-12 (-4 *1 (-254)) (-5 *2 (-583 (-86))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-254)) (-5 *3 (-1090)) (-5 *2 (-85))))
((*1 *2 *1 *1) (-12 (-4 *1 (-254)) (-5 *2 (-85)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-551 *5)) (-4 *5 (-364 *4)) (-4 *4 (-951 (-485))) (-4 *4 (-496))
- (-5 *2 (-1086 *5)) (-5 *1 (-32 *4 *5))))
+ (-12 (-5 *3 (-550 *5)) (-4 *5 (-364 *4)) (-4 *4 (-950 (-484))) (-4 *4 (-495))
+ (-5 *2 (-1085 *5)) (-5 *1 (-32 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-551 *1)) (-4 *1 (-962)) (-4 *1 (-254)) (-5 *2 (-1086 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-262)) (-5 *1 (-252))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252))))
+ (-12 (-5 *3 (-550 *1)) (-4 *1 (-961)) (-4 *1 (-254)) (-5 *2 (-1085 *1)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-262)) (-5 *1 (-252))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 (-1074))) (-5 *3 (-1074)) (-5 *2 (-262)) (-5 *1 (-252)))))
+ (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-262)) (-5 *1 (-252)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-962)) (-4 *4 (-1156 *3)) (-5 *1 (-137 *3 *4 *2))
- (-4 *2 (-1156 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-664)) (-4 *2 (-1130)))))
+ (-12 (-4 *3 (-961)) (-4 *4 (-1155 *3)) (-5 *1 (-137 *3 *4 *2))
+ (-4 *2 (-1155 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-5 *1 (-249 *2)) (-4 *2 (-21)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-249 *2)) (-4 *2 (-663)) (-4 *2 (-1129)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-496))
- (-4 *3 (-1130)))))
+ (-12 (-5 *2 (-583 (-249 *3))) (-5 *1 (-249 *3)) (-4 *3 (-495))
+ (-4 *3 (-1129)))))
(((*1 *2 *3)
(-12 (-4 *4 (-392))
(-5 *2
- (-584
- (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))
- (|:| |eigmult| (-695)) (|:| |eigvec| (-584 (-631 (-350 (-858 *4))))))))
- (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))))
+ (-583
+ (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4))))
+ (|:| |eigmult| (-694)) (|:| |eigvec| (-583 (-630 (-350 (-857 *4))))))))
+ (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))))
(((*1 *2 *3)
(-12 (-4 *4 (-392))
(-5 *2
- (-584
- (-2 (|:| |eigval| (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4))))
- (|:| |geneigvec| (-584 (-631 (-350 (-858 *4))))))))
- (-5 *1 (-248 *4)) (-5 *3 (-631 (-350 (-858 *4)))))))
+ (-583
+ (-2 (|:| |eigval| (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4))))
+ (|:| |geneigvec| (-583 (-630 (-350 (-857 *4))))))))
+ (-5 *1 (-248 *4)) (-5 *3 (-630 (-350 (-857 *4)))))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-350 (-858 *6)) (-1081 (-1091) (-858 *6)))) (-5 *5 (-695))
- (-4 *6 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *6))))) (-5 *1 (-248 *6))
- (-5 *4 (-631 (-350 (-858 *6))))))
+ (-12 (-5 *3 (-3 (-350 (-857 *6)) (-1080 (-1090) (-857 *6)))) (-5 *5 (-694))
+ (-4 *6 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *6))))) (-5 *1 (-248 *6))
+ (-5 *4 (-630 (-350 (-857 *6))))))
((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5))))
- (|:| |eigmult| (-695)) (|:| |eigvec| (-584 *4))))
- (-4 *5 (-392)) (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5))
- (-5 *4 (-631 (-350 (-858 *5)))))))
+ (-2 (|:| |eigval| (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5))))
+ (|:| |eigmult| (-694)) (|:| |eigvec| (-583 *4))))
+ (-4 *5 (-392)) (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5))
+ (-5 *4 (-630 (-350 (-857 *5)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-350 (-858 *5)) (-1081 (-1091) (-858 *5)))) (-4 *5 (-392))
- (-5 *2 (-584 (-631 (-350 (-858 *5))))) (-5 *1 (-248 *5))
- (-5 *4 (-631 (-350 (-858 *5)))))))
+ (-12 (-5 *3 (-3 (-350 (-857 *5)) (-1080 (-1090) (-857 *5)))) (-4 *5 (-392))
+ (-5 *2 (-583 (-630 (-350 (-857 *5))))) (-5 *1 (-248 *5))
+ (-5 *4 (-630 (-350 (-857 *5)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-631 (-350 (-858 *4)))) (-4 *4 (-392))
- (-5 *2 (-584 (-3 (-350 (-858 *4)) (-1081 (-1091) (-858 *4)))))
+ (-12 (-5 *3 (-630 (-350 (-857 *4)))) (-4 *4 (-392))
+ (-5 *2 (-583 (-3 (-350 (-857 *4)) (-1080 (-1090) (-857 *4)))))
(-5 *1 (-248 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-998))) (-5 *1 (-247)))))
-(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-1016))) (-5 *1 (-247)))))
-(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-1016)) (-5 *1 (-247)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-447)) (-5 *2 (-584 (-877))) (-5 *1 (-247)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-997))) (-5 *1 (-247)))))
+(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-1015))) (-5 *1 (-247)))))
+(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-1015)) (-5 *1 (-247)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-583 (-876))) (-5 *1 (-247)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-247)))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *1) (-5 *1 (-247))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-485)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1130)) (-4 *4 (-324 *2))
+ (-12 (-5 *3 (-484)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1129)) (-4 *4 (-324 *2))
(-4 *5 (-324 *2))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -3998)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1014))
- (-4 *2 (-1130)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-312)) (-5 *2 (-584 (-1070 *4))) (-5 *1 (-240 *4 *5))
- (-5 *3 (-1070 *4)) (-4 *5 (-1173 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1173 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1147 (-485))) (-4 *1 (-237 *3)) (-4 *3 (-1130))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-485)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))))
+ (-12 (|has| *1 (-6 -3997)) (-4 *1 (-243 *3 *2)) (-4 *3 (-1013))
+ (-4 *2 (-1129)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-312)) (-5 *2 (-583 (-1069 *4))) (-5 *1 (-240 *4 *5))
+ (-5 *3 (-1069 *4)) (-4 *5 (-1172 *4)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-312)) (-5 *1 (-240 *3 *2)) (-4 *2 (-1172 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1146 (-484))) (-4 *1 (-237 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-484)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-318 *3)) (-4 *1 (-193 *3))
- (-4 *3 (-1014))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1130)))))
+ (-4 *3 (-1013))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-85) *3)) (-4 *1 (-237 *3)) (-4 *3 (-1129)))))
(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-523)) (-5 *3 (-533)) (-5 *4 (-247)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-523)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-533)) (-5 *1 (-235)))))
+ (-12 (-5 *2 (-522)) (-5 *3 (-532)) (-5 *4 (-247)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-522)) (-5 *1 (-235)))))
+(((*1 *2 *1) (-12 (-5 *2 (-532)) (-5 *1 (-235)))))
(((*1 *2 *1) (-12 (-5 *2 (-247)) (-5 *1 (-235)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-234)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1016)) (-5 *1 (-234)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-234)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1015)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-447)) (-5 *1 (-234)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-446)) (-5 *1 (-234)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-234)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-350 (-485))) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-5 *3 (-350 (-484))) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-551 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4)))
- (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *4 *2)))))
+ (-12 (-5 *3 (-550 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4)))
+ (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *4 *2)))))
(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-584 (-551 *2))) (-5 *4 (-1091))
- (-4 *2 (-13 (-27) (-1116) (-364 *5)))
- (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *5 *2)))))
+ (|partial| -12 (-5 *3 (-583 (-550 *2))) (-5 *4 (-1090))
+ (-4 *2 (-13 (-27) (-1115) (-364 *5)))
+ (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *5 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-496) (-951 (-485)) (-581 (-485)))) (-5 *1 (-231 *3 *2))
- (-4 *2 (-13 (-27) (-1116) (-364 *3)))))
+ (-12 (-4 *3 (-13 (-495) (-950 (-484)) (-580 (-484)))) (-5 *1 (-231 *3 *2))
+ (-4 *2 (-13 (-27) (-1115) (-364 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-496) (-951 (-485)) (-581 (-485))))
- (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1116) (-364 *4))))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-495) (-950 (-484)) (-580 (-484))))
+ (-5 *1 (-231 *4 *2)) (-4 *2 (-13 (-27) (-1115) (-364 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-496) (-951 (-485)) (-581 (-485))))
+ (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-495) (-950 (-484)) (-580 (-484))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-584 (-551 *3))) (|:| |vals| (-584 *3))))
- (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1116) (-364 *5))))))
+ (-2 (|:| |func| *3) (|:| |kers| (-583 (-550 *3))) (|:| |vals| (-583 *3))))
+ (-5 *1 (-231 *5 *3)) (-4 *3 (-13 (-27) (-1115) (-364 *5))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
- (-4 *3 (-13 (-364 *4) (-916))))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-85)) (-5 *1 (-230 *4 *3))
+ (-4 *3 (-13 (-364 *4) (-915))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-584 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
- (-4 *2 (-13 (-364 *4) (-916))) (-4 *4 (-496)) (-5 *1 (-230 *4 *2)))))
+ (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-85)))))
+ (-4 *2 (-13 (-364 *4) (-915))) (-4 *4 (-495)) (-5 *1 (-230 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-916))))))
+ (-12 (-4 *3 (-495)) (-5 *1 (-230 *3 *2)) (-4 *2 (-13 (-364 *3) (-915))))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))))
+ (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-364 *3) (-916))) (-5 *1 (-230 *3 *2)) (-4 *3 (-496)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-485))) (-5 *1 (-229)))))
-(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-229)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-190)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-228 *4))
- (-4 *6 (-718)) (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-962)) (-4 *3 (-757)) (-4 *5 (-228 *3)) (-4 *6 (-718))
- (-5 *2 (-1 *1 (-695))) (-4 *1 (-213 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-695)) (-4 *1 (-228 *2)) (-4 *2 (-757)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
- ((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-86))))
+ (-12 (-4 *2 (-13 (-364 *3) (-915))) (-5 *1 (-230 *3 *2)) (-4 *3 (-495)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-484))) (-5 *1 (-229)))))
+(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-229)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-190)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-228 *4))
+ (-4 *6 (-717)) (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-961)) (-4 *3 (-756)) (-4 *5 (-228 *3)) (-4 *6 (-717))
+ (-5 *2 (-1 *1 (-694))) (-4 *1 (-213 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-694)) (-4 *1 (-228 *2)) (-4 *2 (-756)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-86))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-695))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
+ (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-694))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-695))))
- ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-757)) (-5 *2 (-695)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
+ (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-694))))
+ ((*1 *2 *1) (-12 (-4 *1 (-228 *3)) (-4 *3 (-756)) (-5 *2 (-694)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-51))
+ (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-51))
(-5 *1 (-221))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *1 (-223 *2))
- (-4 *2 (-1130)))))
+ (|partial| -12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *1 (-223 *2))
+ (-4 *2 (-1129)))))
(((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-330)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
(((*1 *1) (-5 *1 (-117)))
- ((*1 *1 *2) (-12 (-5 *2 (-1048 (-179))) (-5 *1 (-221))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-831)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-784)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1047 (-179))) (-5 *1 (-221))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-830)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-783)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
(((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-584 (-221))) (-5 *1 (-222)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *3 (-583 (-221))) (-5 *1 (-222)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-837))
+ (-12 (-5 *3 (-836))
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485)))
+ (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484)))
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-584 (-855 (-179))))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-583 (-854 (-179))))))
((*1 *2 *3)
(-12
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
- (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 (-179)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
+ (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 (-179)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-784)) (-5 *1 (-221))))
+(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-221)))))
(((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179) (-179))) (-5 *1 (-221))))
((*1 *1 *2) (-12 (-5 *2 (-1 (-179) (-179))) (-5 *1 (-221)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-350 (-485))))) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 (-1002 (-330)))) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-350 (-484))))) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 (-1001 (-330)))) (-5 *1 (-221)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-221))) (-5 *4 (-1091)) (-5 *2 (-85)) (-5 *1 (-221)))))
+ (-12 (-5 *3 (-583 (-221))) (-5 *4 (-1090)) (-5 *2 (-85)) (-5 *1 (-221)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1183))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1182))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1182)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-788 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
- (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-787 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221)))
+ (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-788 *5)) (-5 *4 (-1005 (-330)))
- (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1183)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-787 *5)) (-5 *4 (-1004 (-330)))
+ (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1182)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
- (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221)))
+ (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330)))
- (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330)))
+ (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1184))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1183))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1184)) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1183)) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
- (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *6))))
+ (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221)))
+ (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330)))
- (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1184)) (-5 *1 (-215 *5))))
+ (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330)))
+ (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1183)) (-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *5 (-584 (-221)))
- (-5 *2 (-1183)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *5 (-583 (-221)))
+ (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-1 (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1182)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-788 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-787 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1182))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184))
+ (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330))) (-5 *2 (-1184))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330))) (-5 *2 (-1183))
(-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1184)) (-5 *1 (-216))))
+ (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1183)) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-249 *7)) (-5 *4 (-1091)) (-5 *5 (-584 (-221)))
- (-4 *7 (-364 *6)) (-4 *6 (-13 (-496) (-757) (-951 (-485)))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-249 *7)) (-5 *4 (-1090)) (-5 *5 (-583 (-221)))
+ (-4 *7 (-364 *6)) (-4 *6 (-13 (-495) (-756) (-950 (-484)))) (-5 *2 (-1182))
(-5 *1 (-217 *6 *7))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1182)) (-5 *1 (-220))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1182))
(-5 *1 (-220))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *2 (-1183)) (-5 *1 (-220))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *2 (-1182)) (-5 *1 (-220))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-584 (-855 (-179)))) (-5 *4 (-584 (-221))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-583 (-854 (-179)))) (-5 *4 (-583 (-221))) (-5 *2 (-1182))
(-5 *1 (-220))))
- ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-584 (-179))) (-5 *2 (-1184)) (-5 *1 (-220))))
+ ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-179))) (-5 *2 (-1183)) (-5 *1 (-220))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-584 (-179))) (-5 *4 (-584 (-221))) (-5 *2 (-1184))
+ (-12 (-5 *3 (-583 (-179))) (-5 *4 (-583 (-221))) (-5 *2 (-1183))
(-5 *1 (-220)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))))
-(((*1 *2 *2) (-12 (-5 *2 (-485)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
+(((*1 *2 *2) (-12 (-5 *2 (-484)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179)))
- (-5 *2 (-1184)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
+ (-5 *2 (-1183)) (-5 *1 (-218)))))
(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1002 (-179)))
- (-5 *5 (-85)) (-5 *2 (-1184)) (-5 *1 (-218)))))
+ (-12 (-5 *3 (-1 (-142 (-179)) (-142 (-179)))) (-5 *4 (-1001 (-179)))
+ (-5 *5 (-85)) (-5 *2 (-1183)) (-5 *1 (-218)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-855 (-179)) (-179) (-179)))
+ (-12 (-5 *2 (-1 (-854 (-179)) (-179) (-179)))
(-5 *3 (-1 (-179) (-179) (-179) (-179))) (-5 *1 (-216)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-790 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
- (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179)))
+ (-12 (-5 *3 (-789 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221)))
+ (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-790 *5)) (-5 *4 (-1005 (-330)))
- (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179)))
+ (-12 (-5 *3 (-789 *5)) (-5 *4 (-1004 (-330)))
+ (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179)))
- (-5 *1 (-215 *3)) (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179)))
+ (-5 *1 (-215 *3)) (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1005 (-330))) (-5 *2 (-1048 (-179))) (-5 *1 (-215 *3))
- (-4 *3 (-13 (-554 (-474)) (-1014)))))
+ (-12 (-5 *4 (-1004 (-330))) (-5 *2 (-1047 (-179))) (-5 *1 (-215 *3))
+ (-4 *3 (-13 (-553 (-473)) (-1013)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-793 *6)) (-5 *4 (-1005 (-330))) (-5 *5 (-584 (-221)))
- (-4 *6 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179)))
+ (-12 (-5 *3 (-792 *6)) (-5 *4 (-1004 (-330))) (-5 *5 (-583 (-221)))
+ (-4 *6 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-793 *5)) (-5 *4 (-1005 (-330)))
- (-4 *5 (-13 (-554 (-474)) (-1014))) (-5 *2 (-1048 (-179)))
+ (-12 (-5 *3 (-792 *5)) (-5 *4 (-1004 (-330)))
+ (-4 *5 (-13 (-553 (-473)) (-1013))) (-5 *2 (-1047 (-179)))
(-5 *1 (-215 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-790 (-1 (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-789 (-1 (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-179) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-855 (-179)) (-179) (-179))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-1 (-854 (-179)) (-179) (-179))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *5 (-584 (-221))) (-5 *2 (-1048 (-179))) (-5 *1 (-216))))
+ (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *5 (-583 (-221))) (-5 *2 (-1047 (-179))) (-5 *1 (-216))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-793 (-1 (-179) (-179) (-179)))) (-5 *4 (-1002 (-330)))
- (-5 *2 (-1048 (-179))) (-5 *1 (-216)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-176 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-214 *3))))
- ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 *4)))))
+ (-12 (-5 *3 (-792 (-1 (-179) (-179) (-179)))) (-5 *4 (-1001 (-330)))
+ (-5 *2 (-1047 (-179))) (-5 *1 (-216)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-176 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-214 *3))))
+ ((*1 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-214 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
+ (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 *4)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-962)) (-4 *3 (-757))
- (-4 *5 (-228 *3)) (-4 *6 (-718)) (-5 *2 (-584 (-695)))))
+ (-12 (-4 *1 (-213 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-756))
+ (-4 *5 (-228 *3)) (-4 *6 (-717)) (-5 *2 (-583 (-694)))))
((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-584 (-695))))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
+ (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-583 (-694))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-962)) (-4 *4 (-757))
- (-4 *5 (-228 *4)) (-4 *6 (-718)) (-5 *2 (-85)))))
+ (-12 (-4 *1 (-213 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-756))
+ (-4 *5 (-228 *4)) (-4 *6 (-717)) (-5 *2 (-85)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-962)) (-4 *4 (-757)) (-4 *5 (-718))
+ (-12 (-4 *1 (-213 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-756)) (-4 *5 (-717))
(-4 *2 (-228 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
- (-4 *4 (-228 *3)) (-4 *5 (-718)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
+ (-4 *4 (-228 *3)) (-4 *5 (-717)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-962)) (-4 *3 (-757))
- (-4 *4 (-228 *3)) (-4 *5 (-718)))))
+ (-12 (-4 *1 (-213 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-756))
+ (-4 *4 (-228 *3)) (-4 *5 (-717)))))
(((*1 *2 *1) (-12 (-5 *2 (-282)) (-5 *1 (-208)))))
(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))
((*1 *2 *1) (-12 (-5 *1 (-158 *2)) (-4 *2 (-160))))
((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-207)))))
(((*1 *2 *1) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
(((*1 *1 *2) (-12 (-5 *2 (-158 (-208))) (-5 *1 (-207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-207)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-207)))))
(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-695))
- (-4 *3 (-13 (-664) (-320) (-10 -7 (-15 ** (*3 *3 (-485))))))
+ (|partial| -12 (-5 *2 (-694))
+ (-4 *3 (-13 (-663) (-320) (-10 -7 (-15 ** (*3 *3 (-484))))))
(-5 *1 (-204 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-203 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-485)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-485)) (-5 *1 (-199)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1186)) (-5 *1 (-199))))
- ((*1 *2 *3) (-12 (-5 *3 (-584 (-1074))) (-5 *2 (-1186)) (-5 *1 (-199)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-485)) (-5 *1 (-199)))))
-(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-199)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-4 *4 (-1130)) (-4 *1 (-196 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-249 (-858 (-485))))
- (-5 *2
- (-2 (|:| |varOrder| (-584 (-1091)))
- (|:| |inhom| (-3 (-584 (-1180 (-695))) "failed"))
- (|:| |hom| (-584 (-1180 (-695))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-203 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1) (-12 (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-202 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-484)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-484)) (-5 *1 (-199)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1185)) (-5 *1 (-199))))
+ ((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1185)) (-5 *1 (-199)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-484)) (-5 *1 (-199)))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-199)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1179 *4)) (-4 *4 (-1129)) (-4 *1 (-196 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-249 (-857 (-484))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-583 (-1090)))
+ (|:| |inhom| (-3 (-583 (-1179 (-694))) "failed"))
+ (|:| |hom| (-583 (-1179 (-694))))))
(-5 *1 (-194)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-4 *1 (-193 *3))))
- ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1014)))))
-(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))))
-(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1116))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-4 *1 (-193 *3))))
+ ((*1 *1) (-12 (-4 *1 (-193 *2)) (-4 *2 (-1013)))))
+(((*1 *1) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
+(((*1 *1 *2) (-12 (-5 *1 (-181 *2)) (-4 *2 (-13 (-312) (-1115))))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *2) (-12 (-5 *2 (-179)) (-5 *1 (-180))))
((*1 *2 *2) (-12 (-5 *2 (-142 (-179))) (-5 *1 (-180)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-179)))))
(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-858 *6)) (-5 *4 (-1091))
- (-5 *5 (-751 *7)) (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-4 *7 (-13 (-1116) (-29 *6))) (-5 *1 (-178 *6 *7))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-857 *6)) (-5 *4 (-1090))
+ (-5 *5 (-750 *7)) (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-4 *7 (-13 (-1115) (-29 *6))) (-5 *1 (-178 *6 *7))))
((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1086 *6)) (-5 *4 (-751 *6))
- (-4 *6 (-13 (-1116) (-29 *5)))
- (-4 *5 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *5 *6)))))
+ (|partial| -12 (-5 *2 (-85)) (-5 *3 (-1085 *6)) (-5 *4 (-750 *6))
+ (-4 *6 (-13 (-1115) (-29 *5)))
+ (-4 *5 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *5 *6)))))
(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-751 *4)) (-5 *3 (-551 *4)) (-5 *5 (-85))
- (-4 *4 (-13 (-1116) (-29 *6)))
- (-4 *6 (-13 (-392) (-951 (-485)) (-581 (-485)))) (-5 *1 (-178 *6 *4)))))
+ (|partial| -12 (-5 *2 (-750 *4)) (-5 *3 (-550 *4)) (-5 *5 (-85))
+ (-4 *4 (-13 (-1115) (-29 *6)))
+ (-4 *6 (-13 (-392) (-950 (-484)) (-580 (-484)))) (-5 *1 (-178 *6 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-392) (-951 (-485)) (-581 (-485))))
- (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1116) (-29 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-962)) (-14 *3 (-584 (-1091)))))
+ (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-392) (-950 (-484)) (-580 (-484))))
+ (-5 *2 (-85)) (-5 *1 (-178 *4 *5)) (-4 *5 (-13 (-1115) (-29 *4))))))
+(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1090)))))
((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
- (-14 *3 (-584 (-1091))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
+ (-14 *3 (-583 (-1090))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-962))
- (-14 *4 (-584 (-1091)))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-50 *3 *4)) (-4 *3 (-961))
+ (-14 *4 (-583 (-1090)))))
((*1 *2 *1)
- (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-962) (-757)))
- (-14 *4 (-584 (-1091))))))
+ (-12 (-5 *2 (-85)) (-5 *1 (-177 *3 *4)) (-4 *3 (-13 (-961) (-756)))
+ (-14 *4 (-583 (-1090))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-962) (-757))) (-5 *1 (-177 *3 *4))
- (-14 *4 (-584 (-1091))))))
+ (-12 (-5 *2 (-265 *3)) (-4 *3 (-13 (-961) (-756))) (-5 *1 (-177 *3 *4))
+ (-14 *4 (-583 (-1090))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-962) (-757)))
- (-14 *3 (-584 (-1091))))))
+ (-12 (-5 *1 (-177 *2 *3)) (-4 *2 (-13 (-961) (-756)))
+ (-14 *3 (-583 (-1090))))))
(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1091)) (-5 *6 (-85))
- (-4 *7 (-13 (-258) (-120) (-951 (-485)) (-581 (-485))))
- (-4 *3 (-13 (-1116) (-872) (-29 *7)))
+ (-12 (-5 *4 (-1090)) (-5 *6 (-85))
+ (-4 *7 (-13 (-258) (-120) (-950 (-484)) (-580 (-484))))
+ (-4 *3 (-13 (-1115) (-871) (-29 *7)))
(-5 *2
- (-3 (|:| |f1| (-751 *3)) (|:| |f2| (-584 (-751 *3))) (|:| |fail| "failed")
+ (-3 (|:| |f1| (-750 *3)) (|:| |f2| (-583 (-750 *3))) (|:| |fail| "failed")
(|:| |pole| "potentialPole")))
- (-5 *1 (-173 *7 *3)) (-5 *5 (-751 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-350 (-485))) (-5 *1 (-171)))))
+ (-5 *1 (-173 *7 *3)) (-5 *5 (-750 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-350 (-484))) (-5 *1 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-85)) (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-695)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1156 *4)))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-299)) (-5 *1 (-170 *4 *2)) (-4 *2 (-1155 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-299)) (-5 *2 (-584 (-2 (|:| |deg| (-695)) (|:| -2577 *3))))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-1156 *4)))))
+ (-12 (-4 *4 (-299)) (-5 *2 (-583 (-2 (|:| |deg| (-694)) (|:| -2576 *3))))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-1155 *4)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-85)) (-4 *5 (-299))
(-5 *2
(-2 (|:| |cont| *5)
- (|:| -1783 (-584 (-2 (|:| |irr| *3) (|:| -2396 (-485)))))))
- (-5 *1 (-170 *5 *3)) (-4 *3 (-1156 *5)))))
+ (|:| -1782 (-583 (-2 (|:| |irr| *3) (|:| -2395 (-484)))))))
+ (-5 *1 (-170 *5 *3)) (-4 *3 (-1155 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1156 (-350 *2)))
- (-4 *2 (-1156 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-312)) (-4 *6 (-1155 (-350 *2)))
+ (-4 *2 (-1155 *5)) (-5 *1 (-169 *5 *2 *6 *3)) (-4 *3 (-291 *5 *2 *6)))))
(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-695)) (-5 *1 (-166 *4 *2)) (-14 *4 (-831)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *2 (-348 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
-(((*1 *2 *3) (-12 (-5 *2 (-584 (-1086 (-485)))) (-5 *1 (-165)) (-5 *3 (-485)))))
+ (-12 (-5 *3 (-694)) (-5 *1 (-166 *4 *2)) (-14 *4 (-830)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-348 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1085 (-484)))) (-5 *1 (-165)) (-5 *3 (-484)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-584 (-485))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-583 (-484))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 (-831))) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
+ (-12 (-5 *3 (-583 (-830))) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1093 (-350 (-485)))) (-5 *2 (-350 (-485))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-695)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *3) (-12 (-5 *3 (-831)) (-5 *2 (-1093 (-350 (-485)))) (-5 *1 (-164)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1180 (-631 *4))) (-4 *4 (-146))
- (-5 *2 (-1180 (-631 (-858 *4)))) (-5 *1 (-163 *4)))))
+ (-12 (-5 *3 (-1092 (-350 (-484)))) (-5 *2 (-350 (-484))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-694)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1092 (-350 (-484)))) (-5 *1 (-164)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1179 (-630 *4))) (-4 *4 (-146))
+ (-5 *2 (-1179 (-630 (-857 *4)))) (-5 *1 (-163 *4)))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *1) (-5 *1 (-161))))
(((*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-111))))
((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-161)))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-85))))))
-(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-584 (-775))))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-1096))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
-(((*1 *2 *3) (-12 (-5 *3 (-447)) (-5 *2 (-633 (-157))) (-5 *1 (-157)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-85))))))
+(((*1 *2 *1) (-12 (-4 *1 (-160)) (-5 *2 (-583 (-774))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095))) (-5 *1 (-158 *3)) (-4 *3 (-160)))))
+(((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-632 (-157))) (-5 *1 (-157)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1130)) (-5 *2 (-695)) (-5 *1 (-156 *4 *3)) (-4 *3 (-617 *4)))))
+ (-12 (-4 *4 (-1129)) (-5 *2 (-694)) (-5 *1 (-156 *4 *3)) (-4 *3 (-616 *4)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1130)) (-5 *1 (-156 *3 *2)) (-4 *2 (-617 *3)))))
+ (|partial| -12 (-4 *3 (-1129)) (-5 *1 (-156 *3 *2)) (-4 *2 (-616 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-756)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1783 (-348 *3)))) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1156 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-755)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1782 (-348 *3)))) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1156 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-756)))
- (-4 *3 (-1156 *2)))))
+ (-12 (-5 *2 (-142 *4)) (-5 *1 (-155 *4 *3)) (-4 *4 (-13 (-312) (-755)))
+ (-4 *3 (-1155 *2)))))
(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1156 (-142 *2)))))
+ (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2)))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-312) (-756))) (-5 *1 (-155 *2 *3))
- (-4 *3 (-1156 (-142 *2))))))
+ (-12 (-4 *2 (-13 (-312) (-755))) (-5 *1 (-155 *2 *3))
+ (-4 *3 (-1155 (-142 *2))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1156 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1155 (-142 *3))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))
+ (-12 (-5 *5 (-85)) (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1156 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-348 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-312) (-756))) (-5 *1 (-155 *3 *2))
- (-4 *2 (-1156 (-142 *3))))))
+ (-12 (-4 *3 (-13 (-312) (-755))) (-5 *1 (-155 *3 *2))
+ (-4 *2 (-1155 (-142 *3))))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-756)))
- (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *5))))
- (-5 *1 (-155 *5 *3)) (-4 *3 (-1156 (-142 *5)))))
+ (-12 (-5 *4 (-85)) (-4 *5 (-13 (-312) (-755)))
+ (-5 *2 (-583 (-2 (|:| -1782 (-583 *3)) (|:| -1596 *5))))
+ (-5 *1 (-155 *5 *3)) (-4 *3 (-1155 (-142 *5)))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-312) (-756)))
- (-5 *2 (-584 (-2 (|:| -1783 (-584 *3)) (|:| -1597 *4))))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))))
+ (-12 (-4 *4 (-13 (-312) (-755)))
+ (-5 *2 (-583 (-2 (|:| -1782 (-583 *3)) (|:| -1596 *4))))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-584 (-142 *4))) (-5 *1 (-128 *3 *4))
- (-4 *3 (-1156 (-142 (-485)))) (-4 *4 (-13 (-312) (-756)))))
+ (-12 (-5 *2 (-583 (-142 *4))) (-5 *1 (-128 *3 *4))
+ (-4 *3 (-1155 (-142 (-484)))) (-4 *4 (-13 (-312) (-755)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4)))))
+ (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-312) (-756))) (-5 *2 (-584 (-142 *4)))
- (-5 *1 (-155 *4 *3)) (-4 *3 (-1156 (-142 *4))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+ (-12 (-4 *4 (-13 (-312) (-755))) (-5 *2 (-583 (-142 *4)))
+ (-5 *1 (-155 *4 *3)) (-4 *3 (-1155 (-142 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-258)) (-5 *1 (-153 *3)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-855 *3) (-855 *3))) (-5 *1 (-150 *3))
- (-4 *3 (-13 (-312) (-1116) (-916))))))
+ (-12 (-5 *2 (-1 (-854 *3) (-854 *3))) (-5 *1 (-150 *3))
+ (-4 *3 (-13 (-312) (-1115) (-915))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-855 *3)) (-4 *3 (-13 (-312) (-1116) (-916)))
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-13 (-312) (-1115) (-915)))
(-5 *1 (-150 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-78))) (-5 *1 (-149)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-78))) (-5 *1 (-149)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-78)) (-5 *1 (-149)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1070 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-258)) (-5 *1 (-148 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
(((*1 *1 *1) (-12 (-5 *1 (-148 *2)) (-4 *2 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-350 *3))) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-148 *3)) (-4 *3 (-258)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-145)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1050)) (-5 *3 (-247)) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1050)) (-5 *2 (-633 (-235))) (-5 *1 (-141)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-584 (-633 (-235)))) (-5 *1 (-141)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1049)) (-5 *3 (-247)) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-632 (-235))) (-5 *1 (-141)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-583 (-632 (-235)))) (-5 *1 (-141)))))
(((*1 *1) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-139 *2)) (-4 *2 (-146)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-974)) (-4 *3 (-1116))
+ (-12 (-4 *1 (-139 *3)) (-4 *3 (-146)) (-4 *3 (-973)) (-4 *3 (-1115))
(-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *1 *1 *1) (-5 *1 (-134)))
- ((*1 *1 *2) (-12 (-5 *2 (-485)) (-5 *1 (-134)))))
-(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-484)) (-5 *1 (-134)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090))))
((*1 *1 *1) (-4 *1 (-133))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *1 (-131 *4 *2)) (-4 *2 (-364 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1005 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
+ (-12 (-5 *3 (-1004 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495))
(-5 *1 (-131 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1005 *1)) (-4 *1 (-133))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1091)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1004 *1)) (-4 *1 (-133))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-133)) (-5 *2 (-1090)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
(((*1 *1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-484)) (-5 *1 (-132 *2)))))
+ ((*1 *2 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-483)) (-5 *1 (-132 *2)))))
(((*1 *1 *1) (-4 *1 (-116)))
- ((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-484)))))
+ ((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-132 *2)) (-4 *2 (-483)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
- (-4 *4 (-496)))))
-(((*1 *2 *2) (-12 (-4 *3 (-496)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))))
+ (-12 (-5 *3 (-583 *2)) (-4 *2 (-364 *4)) (-5 *1 (-131 *4 *2))
+ (-4 *4 (-495)))))
+(((*1 *2 *2) (-12 (-4 *3 (-495)) (-5 *1 (-131 *3 *2)) (-4 *2 (-364 *3)))))
(((*1 *1) (-5 *1 (-130))))
-(((*1 *2) (-12 (-5 *2 (-831)) (-5 *1 (-130)))))
+(((*1 *2) (-12 (-5 *2 (-830)) (-5 *1 (-130)))))
(((*1 *2 *3 *4 *4 *4 *4)
(-12 (-5 *4 (-179))
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 *4)))) (|:| |xValues| (-1002 *4))
- (|:| |yValues| (-1002 *4))))
- (-5 *1 (-126)) (-5 *3 (-584 (-584 (-855 *4)))))))
+ (-2 (|:| |brans| (-583 (-583 (-854 *4)))) (|:| |xValues| (-1001 *4))
+ (|:| |yValues| (-1001 *4))))
+ (-5 *1 (-126)) (-5 *3 (-583 (-583 (-854 *4)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-837))
+ (-12 (-5 *3 (-836))
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-837)) (-5 *4 (-350 (-485)))
+ (-12 (-5 *3 (-836)) (-5 *4 (-350 (-484)))
(-5 *2
- (-2 (|:| |brans| (-584 (-584 (-855 (-179)))))
- (|:| |xValues| (-1002 (-179))) (|:| |yValues| (-1002 (-179)))))
+ (-2 (|:| |brans| (-583 (-583 (-854 (-179)))))
+ (|:| |xValues| (-1001 (-179))) (|:| |yValues| (-1001 (-179)))))
(-5 *1 (-126)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-831)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312))
- (-14 *5 (-907 *3 *4)))))
+ (-12 (-5 *2 (-830)) (-5 *1 (-125 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-312))
+ (-14 *5 (-906 *3 *4)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)))))
+ (|partial| -12 (-5 *3 (-1 (-85) *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1130)) (-4 *2 (-72)))))
+ (-12 (-4 *1 (-318 *2)) (-4 *1 (-124 *2)) (-4 *2 (-1129)) (-4 *2 (-72)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
(-5 *2
(-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-350 *5))
- (|:| |c2| (-350 *5)) (|:| |deg| (-695))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))))
+ (|:| |c2| (-350 *5)) (|:| |deg| (-694))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1156 *2)) (-4 *2 (-1135)) (-5 *1 (-121 *2 *4 *3))
- (-4 *3 (-1156 (-350 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-350 *6)) (-4 *5 (-1135)) (-4 *6 (-1156 *5))
- (-5 *2 (-2 (|:| -2402 (-695)) (|:| -3956 *3) (|:| |radicand| *6)))
- (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-695)) (-4 *7 (-1156 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-695))))
- (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1156 (-350 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1135)) (-4 *5 (-1156 *4))
- (-5 *2 (-2 (|:| -3956 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
- (-4 *3 (-1156 (-350 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-117))))
- ((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-117)))))
+ (-12 (-4 *4 (-1155 *2)) (-4 *2 (-1134)) (-5 *1 (-121 *2 *4 *3))
+ (-4 *3 (-1155 (-350 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-350 *6)) (-4 *5 (-1134)) (-4 *6 (-1155 *5))
+ (-5 *2 (-2 (|:| -2401 (-694)) (|:| -3955 *3) (|:| |radicand| *6)))
+ (-5 *1 (-121 *5 *6 *7)) (-5 *4 (-694)) (-4 *7 (-1155 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| |radicand| (-350 *5)) (|:| |deg| (-694))))
+ (-5 *1 (-121 *4 *5 *3)) (-4 *3 (-1155 (-350 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1134)) (-4 *5 (-1155 *4))
+ (-5 *2 (-2 (|:| -3955 (-350 *5)) (|:| |poly| *3))) (-5 *1 (-121 *4 *5 *3))
+ (-4 *3 (-1155 (-350 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-117))))
+ ((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-117)))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
(((*1 *1) (-5 *1 (-117))))
@@ -13147,998 +13147,998 @@
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-117)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 (-117))) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-117))) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-114)))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
(((*1 *1) (-5 *1 (-114))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-750))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-749))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-158 (-112)))) (-5 *1 (-113)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-584 (-485))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
- (-14 *4 (-695)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-583 (-484))) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-694)) (-4 *5 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
(((*1 *1)
- (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-485)) (-14 *3 (-695)) (-4 *4 (-146)))))
+ (-12 (-5 *1 (-108 *2 *3 *4)) (-14 *2 (-484)) (-14 *3 (-694)) (-4 *4 (-146)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-584 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
- (-14 *4 (-695)) (-4 *5 (-146)))))
+ (-12 (-5 *2 (-583 *5)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-694)) (-4 *5 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-584 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-485))
- (-14 *4 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-107)))))
+ (-12 (-5 *2 (-583 *5)) (-4 *5 (-146)) (-5 *1 (-108 *3 *4 *5)) (-14 *3 (-484))
+ (-14 *4 (-694)))))
+(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-107)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
(((*1 *2 *2) (-12 (-5 *2 (-85)) (-5 *1 (-107)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-695)) (-5 *2 (-1186)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-105)) (-5 *3 (-694)) (-5 *2 (-1185)))))
(((*1 *1 *1 *1) (|partial| -4 *1 (-104))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
(((*1 *1) (-5 *1 (-103))))
-(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-102)))))
-(((*1 *1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-101)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014))))
- ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1014)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-99 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-101)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *1 (-100 *2)) (-4 *2 (-1013)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-99 *3)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-98 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
(((*1 *1 *1 *1) (-5 *1 (-85))) ((*1 *1 *1 *1) (-4 *1 (-96))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-757)) (-5 *1 (-94 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-757)))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *2) (-12 (-5 *2 (-695)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485)))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1156 (-485))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1036 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-312) (-951 (-350 *2)))) (-5 *2 (-485)) (-5 *1 (-88 *4 *3))
- (-4 *3 (-1156 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1014)))))
-(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1014)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-756)) (-5 *1 (-94 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-94 *2)) (-4 *2 (-756)))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-694)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484)))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-85)) (-5 *1 (-93 *3)) (-4 *3 (-1155 (-484))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *1 (-92 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-312) (-950 (-350 *2)))) (-5 *2 (-484)) (-5 *1 (-88 *4 *3))
+ (-4 *3 (-1155 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-86)) (-5 *1 (-87 *2)) (-4 *2 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-86)) (-5 *1 (-87 *3)) (-4 *3 (-1013)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-584 (-1 *4 (-584 *4)))) (-4 *4 (-1014))
+ (-12 (-5 *2 (-86)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1013))
(-5 *1 (-87 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1014)) (-5 *1 (-87 *4))))
+ (-12 (-5 *2 (-86)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1013)) (-5 *1 (-87 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-86)) (-5 *2 (-584 (-1 *4 (-584 *4))))
- (-5 *1 (-87 *4)) (-4 *4 (-1014)))))
-(((*1 *2 *1) (-12 (-5 *2 (-584 (-877))) (-5 *1 (-78))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))))
+ (|partial| -12 (-5 *3 (-86)) (-5 *2 (-583 (-1 *4 (-583 *4))))
+ (-5 *1 (-87 *4)) (-4 *4 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-876))) (-5 *1 (-78))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *2 *1) (-12 (-5 *2 (-85)) (-5 *1 (-86)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-85) (-86) (-86))) (-5 *1 (-86)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-447)) (-5 *2 (-85)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-447)) (-5 *1 (-86))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-697)) (-5 *1 (-86))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-697)) (-5 *1 (-86)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1074) (-697))) (-5 *1 (-86)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1130)) (-5 *1 (-79 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-447)) (-5 *3 (-584 (-877))) (-5 *1 (-78)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-4 *1 (-76 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1130)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-3999 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
- (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2))
- (-4 *4 (-628 *2 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-446)) (-5 *2 (-85)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-86))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-696)) (-5 *1 (-86))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-696)) (-5 *1 (-86)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1073) (-696))) (-5 *1 (-86)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *3 (-1129)) (-5 *1 (-79 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-446)) (-5 *3 (-583 (-876))) (-5 *1 (-78)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-4 *1 (-76 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-76 *2)) (-4 *2 (-1129)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
+ (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-627 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-3999 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
- (-4 *2 (-962)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1156 *2))
- (-4 *4 (-628 *2 *5 *6)))))
+ (-12 (|has| *2 (-6 (-3998 "*"))) (-4 *5 (-324 *2)) (-4 *6 (-324 *2))
+ (-4 *2 (-961)) (-5 *1 (-74 *2 *3 *4 *5 *6)) (-4 *3 (-1155 *2))
+ (-4 *4 (-627 *2 *5 *6)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
+ (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-962)) (-4 *2 (-628 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
- (-4 *3 (-1156 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-73 *3)) (-4 *3 (-1014)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3)))))
+ (-12 (-4 *4 (-961)) (-4 *2 (-627 *4 *5 *6)) (-5 *1 (-74 *4 *3 *2 *5 *6))
+ (-4 *3 (-1155 *4)) (-4 *5 (-324 *4)) (-4 *6 (-324 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-73 *3)) (-4 *3 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1014)) (-5 *1 (-73 *3))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1014)))))
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1013)) (-5 *1 (-73 *3))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-73 *2)) (-4 *2 (-1013)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-584 *2) *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2))))
+ (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1014)) (-5 *1 (-73 *2)))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1013)) (-5 *1 (-73 *2)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-72)) (-5 *2 (-85)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-13 (-392) (-120))) (-5 *2 (-348 *3)) (-5 *1 (-70 *4 *3))
- (-4 *3 (-1156 *4))))
+ (-4 *3 (-1155 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-584 *3)) (-4 *3 (-1156 *5)) (-4 *5 (-13 (-392) (-120)))
+ (-12 (-5 *4 (-583 *3)) (-4 *3 (-1155 *5)) (-4 *5 (-13 (-392) (-120)))
(-5 *2 (-348 *3)) (-5 *1 (-70 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-485))) (-4 *3 (-962)) (-5 *1 (-69 *3))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-962)) (-5 *1 (-69 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1014)) (-5 *1 (-62 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-484))) (-4 *3 (-961)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-69 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1013)) (-5 *1 (-62 *3)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-312)) (-4 *5 (-496))
+ (-12 (-4 *5 (-312)) (-4 *5 (-495))
(-5 *2
- (-2 (|:| |minor| (-584 (-831))) (|:| -3268 *3)
- (|:| |minors| (-584 (-584 (-831)))) (|:| |ops| (-584 *3))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
+ (-2 (|:| |minor| (-583 (-830))) (|:| -3267 *3)
+ (|:| |minors| (-583 (-583 (-830)))) (|:| |ops| (-583 *3))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-1180 (-631 *4))) (-5 *1 (-61 *4 *5))
- (-5 *3 (-631 *4)) (-4 *5 (-601 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-1179 (-630 *4))) (-5 *1 (-61 *4 *5))
+ (-5 *3 (-630 *4)) (-4 *5 (-600 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-496))
- (-5 *2 (-2 (|:| |mat| (-631 *5)) (|:| |vec| (-1180 (-584 (-831))))))
- (-5 *1 (-61 *5 *3)) (-5 *4 (-831)) (-4 *3 (-601 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-695)) (-5 *1 (-58 *3)) (-4 *3 (-1130))))
- ((*1 *1 *2) (-12 (-5 *2 (-584 *3)) (-4 *3 (-1130)) (-5 *1 (-58 *3)))))
+ (-12 (-4 *5 (-495))
+ (-5 *2 (-2 (|:| |mat| (-630 *5)) (|:| |vec| (-1179 (-583 (-830))))))
+ (-5 *1 (-61 *5 *3)) (-5 *4 (-830)) (-4 *3 (-600 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-694)) (-5 *1 (-58 *3)) (-4 *3 (-1129))))
+ ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1129)) (-5 *1 (-58 *3)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-324 *4))
+ (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1129)) (-4 *3 (-324 *4))
(-4 *5 (-324 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-485)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1130)) (-4 *5 (-324 *4))
+ (-12 (-5 *2 (-484)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1129)) (-4 *5 (-324 *4))
(-4 *3 (-324 *4)))))
(((*1 *1) (-5 *1 (-55))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-1091))) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))))))
+ (-12 (-5 *3 (-583 (-1090))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-584 (-988 *4 *5 *2))) (-4 *4 (-1014))
- (-4 *5 (-13 (-962) (-797 *4) (-554 (-801 *4))))
- (-4 *2 (-13 (-364 *5) (-797 *4) (-554 (-801 *4)))) (-5 *1 (-54 *4 *5 *2))))
+ (-12 (-5 *3 (-583 (-987 *4 *5 *2))) (-4 *4 (-1013))
+ (-4 *5 (-13 (-961) (-796 *4) (-553 (-800 *4))))
+ (-4 *2 (-13 (-364 *5) (-796 *4) (-553 (-800 *4)))) (-5 *1 (-54 *4 *5 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-584 (-988 *5 *6 *2))) (-5 *4 (-831)) (-4 *5 (-1014))
- (-4 *6 (-13 (-962) (-797 *5) (-554 (-801 *5))))
- (-4 *2 (-13 (-364 *6) (-797 *5) (-554 (-801 *5)))) (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1016)) (-5 *3 (-697)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1016)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-697)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-583 (-987 *5 *6 *2))) (-5 *4 (-830)) (-4 *5 (-1013))
+ (-4 *6 (-13 (-961) (-796 *5) (-553 (-800 *5))))
+ (-4 *2 (-13 (-364 *6) (-796 *5) (-553 (-800 *5)))) (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1015)) (-5 *3 (-696)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-696)) (-5 *1 (-51)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 (-631 *3))) (-5 *1 (-43 *3 *4))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 (-630 *3))) (-5 *1 (-43 *3 *4))
(-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-584 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-583 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-496)) (-5 *2 (-584 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
+ (-12 (-4 *3 (-495)) (-5 *2 (-583 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-361 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-695)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
+ (-12 (-4 *4 (-495)) (-5 *2 (-694)) (-5 *1 (-43 *4 *3)) (-4 *3 (-361 *4)))))
(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-86)) (-5 *4 (-695)) (-4 *5 (-13 (-392) (-951 (-485))))
- (-4 *5 (-496)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5))
+ (-12 (-5 *3 (-86)) (-5 *4 (-694)) (-4 *5 (-13 (-392) (-950 (-484))))
+ (-4 *5 (-495)) (-5 *1 (-41 *5 *2)) (-4 *2 (-364 *5))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *5 (-551 $)) $))
- (-15 -2999 ((-1040 *5 (-551 $)) $))
- (-15 -3948 ($ (-1040 *5 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *5 (-550 $)) $))
+ (-15 -2998 ((-1039 *5 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *5 (-550 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-392) (-951 (-485)))) (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-13 (-392) (-950 (-484)))) (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2 (-364 *3))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $))))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-496)) (-5 *2 (-1086 *3)) (-5 *1 (-41 *4 *3))
+ (-12 (-4 *4 (-495)) (-5 *2 (-1085 *3)) (-5 *1 (-41 *4 *3))
(-4 *3
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $))
- (-15 -2999 ((-1040 *4 (-551 $)) $))
- (-15 -3948 ($ (-1040 *4 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $))
+ (-15 -2998 ((-1039 *4 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *4 (-550 $))))))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $)))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $)))))))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $)))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $)))))))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 *2))
+ (-12 (-5 *3 (-583 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $))
- (-15 -2999 ((-1040 *4 (-551 $)) $))
- (-15 -3948 ($ (-1040 *4 (-551 $)))))))
- (-4 *4 (-496)) (-5 *1 (-41 *4 *2))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $))
+ (-15 -2998 ((-1039 *4 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *4 (-550 $)))))))
+ (-4 *4 (-495)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-584 (-551 *2)))
+ (-12 (-5 *3 (-583 (-550 *2)))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *4 (-551 $)) $))
- (-15 -2999 ((-1040 *4 (-551 $)) $))
- (-15 -3948 ($ (-1040 *4 (-551 $)))))))
- (-4 *4 (-496)) (-5 *1 (-41 *4 *2)))))
+ (-10 -8 (-15 -2999 ((-1039 *4 (-550 $)) $))
+ (-15 -2998 ((-1039 *4 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *4 (-550 $)))))))
+ (-4 *4 (-495)) (-5 *1 (-41 *4 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-496)) (-5 *1 (-41 *3 *2))
+ (-12 (-4 *3 (-495)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-312) (-254)
- (-10 -8 (-15 -3000 ((-1040 *3 (-551 $)) $))
- (-15 -2999 ((-1040 *3 (-551 $)) $))
- (-15 -3948 ($ (-1040 *3 (-551 $))))))))))
+ (-10 -8 (-15 -2999 ((-1039 *3 (-550 $)) $))
+ (-15 -2998 ((-1039 *3 (-550 $)) $))
+ (-15 -3947 ($ (-1039 *3 (-550 $))))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-695)) (-4 *4 (-312)) (-4 *5 (-1156 *4)) (-5 *2 (-1186))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1156 (-350 *5))) (-14 *7 *6))))
-(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1156 (-48))))))
+ (-12 (-5 *3 (-694)) (-4 *4 (-312)) (-4 *5 (-1155 *4)) (-5 *2 (-1185))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1155 (-350 *5))) (-14 *7 *6))))
+(((*1 *2 *3) (-12 (-5 *2 (-85)) (-5 *1 (-39 *3)) (-4 *3 (-1155 (-48))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1014)) (-4 *4 (-1014))
- (-5 *2 (-633 (-2 (|:| -3862 *3) (|:| |entry| *4)))))))
+ (-12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1013)) (-4 *4 (-1013))
+ (-5 *2 (-632 (-2 (|:| -3861 *3) (|:| |entry| *4)))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-85)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-485)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-951 *4))
- (-4 *3 (-496)))))
+ (-12 (-5 *4 (-484)) (-4 *2 (-364 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-950 *4))
+ (-4 *3 (-495)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-584 *5)) (-4 *5 (-364 *4)) (-4 *4 (-496)) (-5 *2 (-773))
+ (-12 (-5 *3 (-583 *5)) (-4 *5 (-364 *4)) (-4 *4 (-495)) (-5 *2 (-772))
(-5 *1 (-32 *4 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-364 *4)) (-4 *4 (-496))
+ (-12 (-5 *3 (-1085 *2)) (-4 *2 (-364 *4)) (-4 *4 (-495))
(-5 *1 (-32 *4 *2)))))
(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-858 (-485))) (-5 *3 (-1091)) (-5 *4 (-1002 (-350 (-485))))
+ (-12 (-5 *2 (-857 (-484))) (-5 *3 (-1090)) (-5 *4 (-1001 (-350 (-484))))
(-5 *1 (-30)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1091)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-858 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-496))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-496)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-858 *1)) (-4 *1 (-27)) (-5 *2 (-584 *1))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1085 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-857 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-495))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-495)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-857 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1091)) (-4 *4 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-496)) (-5 *2 (-584 *1)) (-4 *1 (-29 *3)))))
+ (-12 (-5 *3 (-1090)) (-4 *4 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-495)) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-23)) (-5 *2 (-85)))))
-((-1215 . 630355) (-1216 . 629959) (-1217 . 629657) (-1218 . 629261)
- (-1219 . 629140) (-1220 . 629038) (-1221 . 628925) (-1222 . 628809)
- (-1223 . 628756) (-1224 . 628622) (-1225 . 628547) (-1226 . 628391)
- (-1227 . 628163) (-1228 . 627199) (-1229 . 626952) (-1230 . 626668)
- (-1231 . 626384) (-1232 . 626100) (-1233 . 625781) (-1234 . 625689)
- (-1235 . 625597) (-1236 . 625505) (-1237 . 625413) (-1238 . 625321)
- (-1239 . 625229) (-1240 . 625134) (-1241 . 625039) (-1242 . 624947)
- (-1243 . 624855) (-1244 . 624763) (-1245 . 624671) (-1246 . 624579)
- (-1247 . 624477) (-1248 . 624375) (-1249 . 624273) (-1250 . 624181)
- (-1251 . 624130) (-1252 . 624078) (-1253 . 624008) (-1254 . 623588)
- (-1255 . 623394) (-1256 . 623367) (-1257 . 623244) (-1258 . 623121)
- (-1259 . 622977) (-1260 . 622807) (-1261 . 622683) (-1262 . 622444)
- (-1263 . 622371) (-1264 . 622146) (-1265 . 621900) (-1266 . 621847)
- (-1267 . 621669) (-1268 . 621500) (-1269 . 621424) (-1270 . 621351)
- (-1271 . 621198) (-1272 . 621045) (-1273 . 620861) (-1274 . 620680)
- (-1275 . 620625) (-1276 . 620570) (-1277 . 620497) (-1278 . 620421)
- (-1279 . 620344) (-1280 . 620276) (-1281 . 620133) (-1282 . 620026)
- (-1283 . 619958) (-1284 . 619888) (-1285 . 619818) (-1286 . 619768)
- (-1287 . 619718) (-1288 . 619668) (-1289 . 619547) (-1290 . 619231)
- (-1291 . 619162) (-1292 . 619083) (-1293 . 618964) (-1294 . 618887)
- (-1295 . 618810) (-1296 . 618657) (-1297 . 618508) (-1298 . 618432)
- (-1299 . 618375) (-1300 . 618303) (-1301 . 618240) (-1302 . 618177)
- (-1303 . 618116) (-1304 . 618044) (-1305 . 617928) (-1306 . 617876)
- (-1307 . 617821) (-1308 . 617769) (-1309 . 617717) (-1310 . 617689)
- (-1311 . 617661) (-1312 . 617633) (-1313 . 617589) (-1314 . 617518)
- (-1315 . 617467) (-1316 . 617419) (-1317 . 617368) (-1318 . 617316)
- (-1319 . 617200) (-1320 . 617084) (-1321 . 616992) (-1322 . 616900)
- (-1323 . 616777) (-1324 . 616711) (-1325 . 616645) (-1326 . 616586)
- (-1327 . 616558) (-1328 . 616530) (-1329 . 616502) (-1330 . 616474)
- (-1331 . 616364) (-1332 . 616313) (-1333 . 616262) (-1334 . 616211)
- (-1335 . 616160) (-1336 . 616109) (-1337 . 616058) (-1338 . 616030)
- (-1339 . 616002) (-1340 . 615974) (-1341 . 615946) (-1342 . 615918)
- (-1343 . 615890) (-1344 . 615862) (-1345 . 615834) (-1346 . 615806)
- (-1347 . 615703) (-1348 . 615651) (-1349 . 615485) (-1350 . 615301)
- (-1351 . 615090) (-1352 . 614975) (-1353 . 614742) (-1354 . 614652)
- (-1355 . 614559) (-1356 . 614444) (-1357 . 614046) (-1358 . 613828)
- (-1359 . 613779) (-1360 . 613751) (-1361 . 613675) (-1362 . 613576)
- (-1363 . 613477) (-1364 . 613378) (-1365 . 613279) (-1366 . 613180)
- (-1367 . 613081) (-1368 . 612923) (-1369 . 612847) (-1370 . 612680)
- (-1371 . 612622) (-1372 . 612564) (-1373 . 612255) (-1374 . 612001)
- (-1375 . 611917) (-1376 . 611785) (-1377 . 611727) (-1378 . 611675)
- (-1379 . 611593) (-1380 . 611518) (-1381 . 611447) (-1382 . 611393)
- (-1383 . 611342) (-1384 . 611268) (-1385 . 611194) (-1386 . 611113)
- (-1387 . 611032) (-1388 . 610977) (-1389 . 610903) (-1390 . 610829)
- (-1391 . 610755) (-1392 . 610678) (-1393 . 610624) (-1394 . 610566)
- (-1395 . 610467) (-1396 . 610368) (-1397 . 610269) (-1398 . 610170)
- (-1399 . 610071) (-1400 . 609972) (-1401 . 609873) (-1402 . 609759)
- (-1403 . 609645) (-1404 . 609531) (-1405 . 609417) (-1406 . 609303)
- (-1407 . 609189) (-1408 . 609072) (-1409 . 608996) (-1410 . 608920)
- (-1411 . 608533) (-1412 . 608188) (-1413 . 608086) (-1414 . 607825)
- (-1415 . 607723) (-1416 . 607518) (-1417 . 607405) (-1418 . 607303)
- (-1419 . 607146) (-1420 . 607057) (-1421 . 606963) (-1422 . 606883)
- (-1423 . 606809) (-1424 . 606731) (-1425 . 606672) (-1426 . 606614)
- (-1427 . 606512) (-7 . 606484) (-8 . 606456) (-9 . 606428) (-1431 . 606309)
- (-1432 . 606227) (-1433 . 606145) (-1434 . 606063) (-1435 . 605981)
- (-1436 . 605899) (-1437 . 605805) (-1438 . 605735) (-1439 . 605665)
- (-1440 . 605574) (-1441 . 605480) (-1442 . 605398) (-1443 . 605316)
- (-1444 . 605218) (-1445 . 605058) (-1446 . 604860) (-1447 . 604724)
- (-1448 . 604624) (-1449 . 604524) (-1450 . 604431) (-1451 . 604372)
- (-1452 . 604039) (-1453 . 603939) (-1454 . 603821) (-1455 . 603609)
- (-1456 . 603430) (-1457 . 603272) (-1458 . 603069) (-1459 . 602651)
- (-1460 . 602600) (-1461 . 602491) (-1462 . 602376) (-1463 . 602307)
- (-1464 . 602238) (-1465 . 602169) (-1466 . 602103) (-1467 . 601978)
- (-1468 . 601761) (-1469 . 601683) (-1470 . 601633) (-1471 . 601562)
- (-1472 . 601419) (-1473 . 601278) (-1474 . 601200) (-1475 . 601122)
- (-1476 . 601066) (-1477 . 601010) (-1478 . 600937) (-1479 . 600797)
- (-1480 . 600744) (-1481 . 600685) (-1482 . 600626) (-1483 . 600471)
- (-1484 . 600419) (-1485 . 600302) (-1486 . 600185) (-1487 . 600068)
- (-1488 . 599937) (-1489 . 599658) (-1490 . 599523) (-1491 . 599467)
- (-1492 . 599411) (-1493 . 599352) (-1494 . 599293) (-1495 . 599237)
- (-1496 . 599181) (-1497 . 598984) (-1498 . 596642) (-1499 . 596515)
- (-1500 . 596370) (-1501 . 596242) (-1502 . 596190) (-1503 . 596138)
- (-1504 . 596086) (-1505 . 592048) (-1506 . 591954) (-1507 . 591815)
- (-1508 . 591606) (-1509 . 591504) (-1510 . 591402) (-1511 . 590487)
- (-1512 . 590411) (-1513 . 590282) (-1514 . 590157) (-1515 . 590080)
- (-1516 . 590003) (-1517 . 589876) (-1518 . 589749) (-1519 . 589583)
- (-1520 . 589456) (-1521 . 589329) (-1522 . 589112) (-1523 . 588678)
- (-1524 . 588314) (-1525 . 588262) (-1526 . 588203) (-1527 . 588115)
- (-1528 . 588027) (-1529 . 587936) (-1530 . 587845) (-1531 . 587754)
- (-1532 . 587663) (-1533 . 587572) (-1534 . 587481) (-1535 . 587390)
- (-1536 . 587299) (-1537 . 587208) (-1538 . 587117) (-1539 . 587026)
- (-1540 . 586935) (-1541 . 586844) (-1542 . 586753) (-1543 . 586662)
- (-1544 . 586571) (-1545 . 586480) (-1546 . 586389) (-1547 . 586298)
- (-1548 . 586207) (-1549 . 586116) (-1550 . 586025) (-1551 . 585934)
- (-1552 . 585843) (-1553 . 585752) (-1554 . 585661) (-1555 . 585499)
- (-1556 . 585391) (-1557 . 585148) (-1558 . 584861) (-1559 . 584666)
- (-1560 . 584510) (-1561 . 584350) (-1562 . 584299) (-1563 . 584237)
- (-1564 . 584186) (-1565 . 584123) (-1566 . 584070) (-1567 . 584018)
- (-1568 . 583966) (-1569 . 583914) (-1570 . 583824) (-1571 . 583641)
- (-1572 . 583487) (-1573 . 583407) (-1574 . 583327) (-1575 . 583247)
- (-1576 . 583117) (-1577 . 582885) (-1578 . 582857) (-1579 . 582829)
- (-1580 . 582801) (-1581 . 582721) (-1582 . 582644) (-1583 . 582567)
- (-1584 . 582486) (-1585 . 582427) (-1586 . 582269) (-1587 . 582076)
- (-1588 . 581591) (-1589 . 581349) (-1590 . 581087) (-1591 . 580986)
- (-1592 . 580905) (-1593 . 580824) (-1594 . 580754) (-1595 . 580684)
- (-1596 . 580526) (-1597 . 580222) (-1598 . 579994) (-1599 . 579872)
- (-1600 . 579814) (-1601 . 579752) (-1602 . 579690) (-1603 . 579625)
- (-1604 . 579563) (-1605 . 579284) (-1606 . 579216) (-1607 . 579006)
- (-1608 . 578954) (-1609 . 578900) (-1610 . 578809) (-1611 . 578722)
- (-1612 . 576975) (-1613 . 576896) (-1614 . 576151) (-1615 . 576034)
- (-1616 . 575828) (-1617 . 575667) (-1618 . 575506) (-1619 . 575346)
- (-1620 . 575208) (-1621 . 575114) (-1622 . 575016) (-1623 . 574922)
- (-1624 . 574808) (-1625 . 574726) (-1626 . 574629) (-1627 . 574433)
- (-1628 . 574342) (-1629 . 574248) (-1630 . 574181) (-1631 . 574112)
- (-1632 . 574060) (-1633 . 574001) (-1634 . 573927) (-1635 . 573875)
- (-1636 . 573718) (-1637 . 573561) (-1638 . 573409) (-1639 . 572651)
- (-1640 . 572340) (-1641 . 571988) (-1642 . 571771) (-1643 . 571508)
- (-1644 . 571133) (-1645 . 570949) (-1646 . 570815) (-1647 . 570649)
- (-1648 . 570483) (-1649 . 570349) (-1650 . 570215) (-1651 . 570081)
- (-1652 . 569947) (-1653 . 569816) (-1654 . 569685) (-1655 . 569554)
- (-1656 . 569174) (-1657 . 569048) (-1658 . 568920) (-1659 . 568670)
- (-1660 . 568547) (-1661 . 568297) (-1662 . 568174) (-1663 . 567924)
- (-1664 . 567801) (-1665 . 567518) (-1666 . 567247) (-1667 . 566974)
- (-1668 . 566676) (-1669 . 566574) (-1670 . 566429) (-1671 . 566288)
- (-1672 . 566137) (-1673 . 565976) (-1674 . 565888) (-1675 . 565860)
- (-1676 . 565778) (-1677 . 565681) (-1678 . 565213) (-1679 . 564862)
- (-1680 . 564429) (-1681 . 564290) (-1682 . 564220) (-1683 . 564150)
- (-1684 . 564080) (-1685 . 563989) (-1686 . 563898) (-1687 . 563807)
- (-1688 . 563716) (-1689 . 563625) (-1690 . 563539) (-1691 . 563453)
- (-1692 . 563367) (-1693 . 563281) (-1694 . 563195) (-1695 . 563121)
- (-1696 . 563016) (-1697 . 562790) (-1698 . 562712) (-1699 . 562637)
- (-1700 . 562544) (-1701 . 562440) (-1702 . 562344) (-1703 . 562175)
- (-1704 . 562098) (-1705 . 562021) (-1706 . 561930) (-1707 . 561839)
- (-1708 . 561639) (-1709 . 561486) (-1710 . 561333) (-1711 . 561180)
- (-1712 . 561027) (-1713 . 560874) (-1714 . 560721) (-1715 . 560655)
- (-1716 . 560502) (-1717 . 560349) (-1718 . 560196) (-1719 . 560043)
- (-1720 . 559890) (-1721 . 559737) (-1722 . 559584) (-1723 . 559431)
- (-1724 . 559357) (-1725 . 559283) (-1726 . 559228) (-1727 . 559173)
- (-1728 . 559118) (-1729 . 559063) (-1730 . 558992) (-1731 . 558806)
- (-1732 . 558709) (-1733 . 558612) (-1734 . 558414) (-1735 . 558316)
- (-1736 . 558128) (-1737 . 558035) (-1738 . 557899) (-1739 . 557763)
- (-1740 . 557627) (-1741 . 557559) (-1742 . 557443) (-1743 . 557327)
- (-1744 . 557211) (-1745 . 557158) (-1746 . 557073) (-1747 . 556988)
- (-1748 . 556680) (-1749 . 556625) (-1750 . 555973) (-1751 . 555658)
- (-1752 . 555374) (-1753 . 555256) (-1754 . 555137) (-1755 . 555078)
- (-1756 . 555019) (-1757 . 554968) (-1758 . 554917) (-1759 . 554866)
- (-1760 . 554813) (-1761 . 554760) (-1762 . 554701) (-1763 . 554588)
- (-1764 . 554475) (-1765 . 554308) (-1766 . 554216) (-1767 . 554103)
- (-1768 . 554019) (-1769 . 553904) (-1770 . 553813) (-1771 . 553722)
- (-1772 . 553601) (-1773 . 553414) (-1774 . 553362) (-1775 . 553307)
- (-1776 . 553120) (-1777 . 552997) (-1778 . 552924) (-1779 . 552851)
- (-1780 . 552731) (-1781 . 552658) (-1782 . 552585) (-1783 . 552245)
- (-1784 . 552172) (-1785 . 551952) (-1786 . 551619) (-1787 . 551436)
- (-1788 . 551293) (-1789 . 550933) (-1790 . 550765) (-1791 . 550597)
- (-1792 . 550341) (-1793 . 550085) (-1794 . 549890) (-1795 . 549695)
- (-1796 . 549101) (-1797 . 549025) (-1798 . 548886) (-1799 . 548479)
- (-1800 . 548352) (-1801 . 548195) (-1802 . 547878) (-1803 . 547398)
- (-1804 . 546918) (-1805 . 546416) (-1806 . 546348) (-1807 . 546277)
- (-1808 . 546206) (-1809 . 546034) (-1810 . 545915) (-1811 . 545796)
- (-1812 . 545720) (-1813 . 545644) (-1814 . 545371) (-1815 . 545257)
- (-1816 . 545206) (-1817 . 545155) (-1818 . 545104) (-1819 . 545053)
- (-1820 . 545002) (-1821 . 544861) (-1822 . 544688) (-1823 . 544457)
- (-1824 . 544271) (-1825 . 544243) (-1826 . 544215) (-1827 . 544187)
- (-1828 . 544159) (-1829 . 544131) (-1830 . 544103) (-1831 . 544075)
- (-1832 . 544024) (-1833 . 543958) (-1834 . 543868) (-1835 . 543497)
- (-1836 . 543346) (-1837 . 543195) (-1838 . 542990) (-1839 . 542868)
- (-1840 . 542794) (-1841 . 542717) (-1842 . 542643) (-1843 . 542566)
- (-1844 . 542489) (-1845 . 542415) (-1846 . 542338) (-1847 . 542105)
- (-1848 . 541952) (-1849 . 541657) (-1850 . 541504) (-1851 . 541182)
- (-1852 . 541044) (-1853 . 540906) (-1854 . 540826) (-1855 . 540746)
- (-1856 . 540482) (-1857 . 539751) (-1858 . 539615) (-1859 . 539525)
- (-1860 . 539390) (-1861 . 539323) (-1862 . 539255) (-1863 . 539168)
- (-1864 . 539081) (-1865 . 538914) (-1866 . 538840) (-1867 . 538696)
- (-1868 . 538236) (-1869 . 537857) (-1870 . 537095) (-1871 . 536951)
- (-1872 . 536807) (-1873 . 536645) (-1874 . 536408) (-1875 . 536268)
- (-1876 . 536122) (-1877 . 535883) (-1878 . 535647) (-1879 . 535408)
- (-1880 . 535216) (-1881 . 535093) (-1882 . 534889) (-1883 . 534666)
- (-1884 . 534427) (-1885 . 534286) (-1886 . 534148) (-1887 . 534009)
- (-1888 . 533756) (-1889 . 533500) (-1890 . 533343) (-1891 . 533189)
- (-1892 . 532949) (-1893 . 532664) (-1894 . 532526) (-1895 . 532439)
- (-1896 . 531773) (-1897 . 531597) (-1898 . 531415) (-1899 . 531239)
- (-1900 . 531057) (-1901 . 530878) (-1902 . 530699) (-1903 . 530512)
- (-1904 . 530130) (-1905 . 529951) (-1906 . 529772) (-1907 . 529585)
- (-1908 . 529203) (-1909 . 528210) (-1910 . 527826) (-1911 . 527442)
- (-1912 . 527324) (-1913 . 527167) (-1914 . 527025) (-1915 . 526908)
- (-1916 . 526726) (-1917 . 526602) (-1918 . 526313) (-1919 . 526024)
- (-1920 . 525741) (-1921 . 525458) (-1922 . 525180) (-1923 . 525092)
- (-1924 . 525007) (-1925 . 524910) (-1926 . 524813) (-1927 . 524593)
- (-1928 . 524493) (-1929 . 524390) (-1930 . 524312) (-1931 . 523987)
- (-1932 . 523695) (-1933 . 523622) (-1934 . 523237) (-1935 . 523209)
- (-1936 . 523010) (-1937 . 522836) (-1938 . 522595) (-1939 . 522540)
- (-1940 . 522465) (-1941 . 522097) (-1942 . 521982) (-1943 . 521905)
- (-1944 . 521832) (-1945 . 521751) (-1946 . 521670) (-1947 . 521589)
- (-1948 . 521488) (-1949 . 521429) (-1950 . 521376) (-1951 . 521322)
- (-1952 . 520990) (-1953 . 520666) (-1954 . 520478) (-1955 . 520287)
- (-1956 . 520123) (-1957 . 519788) (-1958 . 519621) (-1959 . 519380)
- (-1960 . 519056) (-1961 . 518866) (-1962 . 518651) (-1963 . 518480)
- (-1964 . 518058) (-1965 . 517831) (-1966 . 517560) (-1967 . 517423)
- (-1968 . 517282) (-1969 . 516805) (-1970 . 516682) (-1971 . 516446)
- (-1972 . 516192) (-1973 . 515942) (-1974 . 515649) (-1975 . 515509)
- (-1976 . 515369) (-1977 . 515229) (-1978 . 515040) (-1979 . 514851)
- (-1980 . 514676) (-1981 . 514402) (-1982 . 513967) (-1983 . 513939)
- (-1984 . 513867) (-1985 . 513734) (-1986 . 513659) (-1987 . 513500)
- (-1988 . 513337) (-1989 . 513176) (-1990 . 513009) (-1991 . 512956)
- (-1992 . 512903) (-1993 . 512774) (-1994 . 512714) (-1995 . 512661)
- (-1996 . 512591) (-1997 . 512531) (-1998 . 512472) (-1999 . 512412)
- (-2000 . 512353) (-2001 . 512293) (-2002 . 512234) (-2003 . 512175)
- (-2004 . 512033) (-2005 . 511938) (-2006 . 511847) (-2007 . 511731)
- (-2008 . 511637) (-2009 . 511539) (-2010 . 511445) (-2011 . 511304)
- (-2012 . 511042) (-2013 . 510186) (-2014 . 510030) (-2015 . 509661)
- (-2016 . 509605) (-2017 . 509554) (-2018 . 509451) (-2019 . 509366)
- (-2020 . 509278) (-2021 . 509132) (-2022 . 508983) (-2023 . 508693)
- (-2024 . 508615) (-2025 . 508540) (-2026 . 508487) (-2027 . 508434)
- (-2028 . 508403) (-2029 . 508340) (-2030 . 508222) (-2031 . 508133)
- (-2032 . 508013) (-2033 . 507718) (-2034 . 507524) (-2035 . 507336)
- (-2036 . 507191) (-2037 . 507046) (-2038 . 506760) (-2039 . 506318)
- (-2040 . 506284) (-2041 . 506247) (-2042 . 506210) (-2043 . 506173)
- (-2044 . 506136) (-2045 . 506105) (-2046 . 506074) (-2047 . 506043)
- (-2048 . 506009) (-2049 . 505975) (-2050 . 505921) (-2051 . 505745)
- (-2052 . 505511) (-2053 . 505277) (-2054 . 505048) (-2055 . 504996)
- (-2056 . 504941) (-2057 . 504872) (-2058 . 504784) (-2059 . 504715)
- (-2060 . 504643) (-2061 . 504413) (-2062 . 504362) (-2063 . 504308)
- (-2064 . 504277) (-2065 . 504171) (-2066 . 503946) (-2067 . 503636)
- (-2068 . 503462) (-2069 . 503280) (-2070 . 503009) (-2071 . 502936)
- (-2072 . 502871) (-2073 . 502395) (-2074 . 501833) (-2075 . 501107)
- (-2076 . 500546) (-2077 . 499918) (-2078 . 499339) (-2079 . 499265)
- (-2080 . 499213) (-2081 . 499161) (-2082 . 499087) (-2083 . 499032)
- (-2084 . 498980) (-2085 . 498928) (-2086 . 498876) (-2087 . 498806)
- (-2088 . 498358) (-2089 . 498152) (-2090 . 497903) (-2091 . 497569)
- (-2092 . 497315) (-2093 . 497013) (-2094 . 496810) (-2095 . 496521)
- (-2096 . 495973) (-2097 . 495836) (-2098 . 495634) (-2099 . 495354)
- (-2100 . 495269) (-2101 . 494936) (-2102 . 494795) (-2103 . 494504)
- (-2104 . 494284) (-2105 . 494158) (-2106 . 494033) (-2107 . 493886)
- (-2108 . 493742) (-2109 . 493626) (-2110 . 493495) (-2111 . 493123)
- (-2112 . 492863) (-2113 . 492593) (-2114 . 492353) (-2115 . 492023)
- (-2116 . 491683) (-2117 . 491275) (-2118 . 490857) (-2119 . 490660)
- (-2120 . 490385) (-2121 . 490217) (-2122 . 490021) (-2123 . 489799)
- (-2124 . 489644) (-2125 . 489459) (-2126 . 489356) (-2127 . 489328)
- (-2128 . 489300) (-2129 . 489126) (-2130 . 489052) (-2131 . 488991)
- (-2132 . 488938) (-2133 . 488869) (-2134 . 488800) (-2135 . 488681)
- (-2136 . 488503) (-2137 . 488448) (-2138 . 488202) (-2139 . 488129)
- (-2140 . 488059) (-2141 . 487989) (-2142 . 487900) (-2143 . 487710)
- (-2144 . 487637) (-2145 . 487568) (-2146 . 487503) (-2147 . 487448)
- (-2148 . 487357) (-2149 . 487066) (-2150 . 486740) (-2151 . 486666)
- (-2152 . 486344) (-2153 . 486139) (-2154 . 486054) (-2155 . 485969)
- (-2156 . 485884) (-2157 . 485799) (-2158 . 485714) (-2159 . 485629)
- (-2160 . 485544) (-2161 . 485459) (-2162 . 485374) (-2163 . 485289)
- (-2164 . 485204) (-2165 . 485119) (-2166 . 485034) (-2167 . 484949)
- (-2168 . 484864) (-2169 . 484779) (-2170 . 484694) (-2171 . 484609)
- (-2172 . 484524) (-2173 . 484439) (-2174 . 484354) (-2175 . 484269)
- (-2176 . 484184) (-2177 . 484099) (-2178 . 484014) (-2179 . 483929)
- (-2180 . 483827) (-2181 . 483739) (-2182 . 483531) (-2183 . 483473)
- (-2184 . 483418) (-2185 . 483331) (-2186 . 483220) (-2187 . 483134)
- (-2188 . 482988) (-2189 . 482926) (-2190 . 482898) (-2191 . 482870)
- (-2192 . 482842) (-2193 . 482814) (-2194 . 482645) (-2195 . 482494)
- (-2196 . 482343) (-2197 . 482171) (-2198 . 481963) (-2199 . 481839)
- (-2200 . 481631) (-2201 . 481539) (-2202 . 481447) (-2203 . 481318)
- (-2204 . 481223) (-2205 . 481129) (-2206 . 481034) (-2207 . 480910)
- (-2208 . 480882) (-2209 . 480854) (-2210 . 480826) (-2211 . 480798)
- (-2212 . 480770) (-2213 . 480742) (-2214 . 480714) (-2215 . 480686)
- (-2216 . 480658) (-2217 . 480630) (-2218 . 480602) (-2219 . 480574)
- (-2220 . 480546) (-2221 . 480518) (-2222 . 480490) (-2223 . 480462)
- (-2224 . 480409) (-2225 . 480381) (-2226 . 480353) (-2227 . 480275)
- (-2228 . 480222) (-2229 . 480169) (-2230 . 480116) (-2231 . 480038)
- (-2232 . 479948) (-2233 . 479853) (-2234 . 479759) (-2235 . 479677)
- (-2236 . 479371) (-2237 . 479175) (-2238 . 479080) (-2239 . 478972)
- (-2240 . 478561) (-2241 . 478533) (-2242 . 478369) (-2243 . 478292)
- (-2244 . 478105) (-2245 . 477926) (-2246 . 477502) (-2247 . 477350)
- (-2248 . 477170) (-2249 . 476997) (-2250 . 476737) (-2251 . 476485)
- (-2252 . 475674) (-2253 . 475507) (-2254 . 475289) (-2255 . 474465)
- (-2256 . 474334) (-2257 . 474203) (-2258 . 474072) (-2259 . 473941)
- (-2260 . 473810) (-2261 . 473679) (-2262 . 473484) (-2263 . 473290)
- (-2264 . 473147) (-2265 . 472832) (-2266 . 472717) (-2267 . 472377)
- (-2268 . 472217) (-2269 . 472078) (-2270 . 471939) (-2271 . 471810)
- (-2272 . 471725) (-2273 . 471673) (-2274 . 471193) (-2275 . 469931)
- (-2276 . 469804) (-2277 . 469662) (-2278 . 469326) (-2279 . 469221)
- (-2280 . 468972) (-2281 . 468740) (-2282 . 468635) (-2283 . 468560)
- (-2284 . 468485) (-2285 . 468410) (-2286 . 468351) (-2287 . 468281)
- (-2288 . 468228) (-2289 . 468166) (-2290 . 468096) (-2291 . 467733)
- (-2292 . 467446) (-2293 . 467336) (-2294 . 467149) (-2295 . 467056)
- (-2296 . 466963) (-2297 . 466876) (-2298 . 466659) (-2299 . 466440)
- (-2300 . 466022) (-2301 . 465750) (-2302 . 465607) (-2303 . 465514)
- (-2304 . 465371) (-2305 . 465219) (-2306 . 465065) (-2307 . 464995)
- (-2308 . 464788) (-2309 . 464611) (-2310 . 464402) (-2311 . 464225)
- (-2312 . 464191) (-2313 . 464157) (-2314 . 464126) (-2315 . 464008)
- (-2316 . 463695) (-2317 . 463417) (-2318 . 463296) (-2319 . 463169)
- (-2320 . 463084) (-2321 . 463011) (-2322 . 462922) (-2323 . 462851)
- (-2324 . 462795) (-2325 . 462739) (-2326 . 462683) (-2327 . 462613)
- (-2328 . 462543) (-2329 . 462473) (-2330 . 462375) (-2331 . 462297)
- (-2332 . 462219) (-2333 . 462076) (-2334 . 461997) (-2335 . 461925)
- (-2336 . 461722) (-2337 . 461666) (-2338 . 461478) (-2339 . 461379)
- (-2340 . 461261) (-2341 . 461140) (-2342 . 460997) (-2343 . 460854)
- (-2344 . 460714) (-2345 . 460574) (-2346 . 460431) (-2347 . 460305)
- (-2348 . 460176) (-2349 . 460053) (-2350 . 459930) (-2351 . 459825)
- (-2352 . 459720) (-2353 . 459618) (-2354 . 459468) (-2355 . 459315)
- (-2356 . 459162) (-2357 . 459018) (-2358 . 458864) (-2359 . 458788)
- (-2360 . 458709) (-2361 . 458556) (-2362 . 458477) (-2363 . 458398)
- (-2364 . 458319) (-2365 . 458217) (-2366 . 458158) (-2367 . 458096)
- (-2368 . 457979) (-2369 . 457855) (-2370 . 457778) (-2371 . 457646)
- (-2372 . 457340) (-2373 . 457157) (-2374 . 456612) (-2375 . 456392)
- (-2376 . 456218) (-2377 . 456048) (-2378 . 455975) (-2379 . 455899)
- (-2380 . 455820) (-2381 . 455523) (-2382 . 455361) (-2383 . 455127)
- (-2384 . 454685) (-2385 . 454555) (-2386 . 454415) (-2387 . 454106)
- (-2388 . 453804) (-2389 . 453488) (-2390 . 453082) (-2391 . 453014)
- (-2392 . 452946) (-2393 . 452878) (-2394 . 452784) (-2395 . 452677)
- (-2396 . 452570) (-2397 . 452469) (-2398 . 452368) (-2399 . 452267)
- (-2400 . 452190) (-2401 . 451797) (-2402 . 451380) (-2403 . 450753)
- (-2404 . 450689) (-2405 . 450570) (-2406 . 450451) (-2407 . 450343)
- (-2408 . 450235) (-2409 . 450079) (-2410 . 449479) (-2411 . 449196)
- (-2412 . 449117) (-2413 . 449063) (-2414 . 448895) (-2415 . 448773)
- (-2416 . 448377) (-2417 . 448141) (-2418 . 447940) (-2419 . 447732)
- (-2420 . 447539) (-2421 . 447272) (-2422 . 447198) (-2423 . 447019)
- (-2424 . 446950) (-2425 . 446874) (-2426 . 446733) (-2427 . 446530)
- (-2428 . 446386) (-2429 . 446136) (-2430 . 445828) (-2431 . 445472)
- (-2432 . 445313) (-2433 . 445107) (-2434 . 444947) (-2435 . 444874)
- (-2436 . 444840) (-2437 . 444775) (-2438 . 444738) (-2439 . 444601)
- (-2440 . 444363) (-2441 . 444293) (-2442 . 444107) (-2443 . 443858)
- (-2444 . 443702) (-2445 . 443179) (-2446 . 442982) (-2447 . 442770)
- (-2448 . 442608) (-2449 . 442209) (-2450 . 442042) (-2451 . 440967)
- (-2452 . 440844) (-2453 . 440627) (-2454 . 440497) (-2455 . 440367)
- (-2456 . 440210) (-2457 . 440107) (-2458 . 440049) (-2459 . 439991)
- (-2460 . 439885) (-2461 . 439779) (-2462 . 438863) (-2463 . 436736)
- (-2464 . 435922) (-2465 . 434119) (-2466 . 434051) (-2467 . 433983)
- (-2468 . 433915) (-2469 . 433847) (-2470 . 433779) (-2471 . 433701)
- (-2472 . 433345) (-2473 . 433163) (-2474 . 432624) (-2475 . 432448)
- (-2476 . 432227) (-2477 . 432006) (-2478 . 431785) (-2479 . 431567)
- (-2480 . 431349) (-2481 . 431131) (-2482 . 430913) (-2483 . 430695)
- (-2484 . 430477) (-2485 . 430376) (-2486 . 429643) (-2487 . 429588)
- (-2488 . 429533) (-2489 . 429478) (-2490 . 429423) (-2491 . 429273)
- (-2492 . 429025) (-2493 . 428864) (-2494 . 428684) (-2495 . 428397)
- (-2496 . 428011) (-2497 . 427139) (-2498 . 426799) (-2499 . 426631)
- (-2500 . 426409) (-2501 . 426159) (-2502 . 425811) (-2503 . 424801)
- (-2504 . 424490) (-2505 . 424278) (-2506 . 423714) (-2507 . 423201)
- (-2508 . 421445) (-2509 . 420973) (-2510 . 420374) (-2511 . 420124)
- (-2512 . 419990) (-2513 . 419778) (-2514 . 419702) (-2515 . 419626)
- (-2516 . 419519) (-2517 . 419337) (-2518 . 419172) (-2519 . 418994)
- (-2520 . 418413) (-2521 . 418252) (-2522 . 417679) (-2523 . 417609)
- (-2524 . 417534) (-2525 . 417462) (-2526 . 417324) (-2527 . 417137)
- (-2528 . 417030) (-2529 . 416923) (-2530 . 416808) (-2531 . 416693)
- (-2532 . 416578) (-2533 . 416300) (-2534 . 416150) (-2535 . 416007)
- (-2536 . 415934) (-2537 . 415849) (-2538 . 415776) (-2539 . 415703)
- (-2540 . 415630) (-2541 . 415487) (-2542 . 415337) (-2543 . 415163)
- (-2544 . 415013) (-2545 . 414863) (-2546 . 414737) (-2547 . 414351)
- (-2548 . 414067) (-2549 . 413783) (-2550 . 413374) (-2551 . 413090)
- (-2552 . 413017) (-2553 . 412870) (-2554 . 412764) (-2555 . 412690)
- (-2556 . 412620) (-2557 . 412541) (-2558 . 412464) (-2559 . 412387)
- (-2560 . 412238) (-2561 . 412135) (-2562 . 412077) (-2563 . 412013)
- (-2564 . 411949) (-2565 . 411852) (-2566 . 411755) (-2567 . 411595)
- (-2568 . 411509) (-2569 . 411423) (-2570 . 411338) (-2571 . 411279)
- (-2572 . 411220) (-2573 . 411161) (-2574 . 411102) (-2575 . 410932)
- (-2576 . 410844) (-2577 . 410747) (-2578 . 410713) (-2579 . 410682)
- (-2580 . 410598) (-2581 . 410542) (-2582 . 410480) (-2583 . 410446)
- (-2584 . 410412) (-2585 . 410378) (-2586 . 410344) (-2587 . 410310)
- (-2588 . 410276) (-2589 . 410242) (-2590 . 410208) (-2591 . 410174)
- (-2592 . 410062) (-2593 . 410028) (-2594 . 409977) (-2595 . 409943)
- (-2596 . 409846) (-2597 . 409784) (-2598 . 409693) (-2599 . 409602)
- (-2600 . 409547) (-2601 . 409495) (-2602 . 409443) (-2603 . 409391)
- (-2604 . 409339) (-2605 . 408916) (-2606 . 408750) (-2607 . 408697)
- (-2608 . 408628) (-2609 . 408575) (-2610 . 408444) (-2611 . 408288)
- (-2612 . 407767) (-2613 . 407626) (-2614 . 407592) (-2615 . 407537)
- (-2616 . 406827) (-2617 . 406512) (-2618 . 406008) (-2619 . 405930)
- (-2620 . 405878) (-2621 . 405826) (-2622 . 405642) (-2623 . 405590)
- (-2624 . 405538) (-2625 . 405462) (-2626 . 405400) (-2627 . 405182)
- (-2628 . 405115) (-2629 . 405021) (-2630 . 404927) (-2631 . 404744)
- (-2632 . 404662) (-2633 . 404540) (-2634 . 404394) (-2635 . 403743)
- (-2636 . 403041) (-2637 . 402937) (-2638 . 402836) (-2639 . 402735)
- (-2640 . 402624) (-2641 . 402456) (-2642 . 402252) (-2643 . 402159)
- (-2644 . 402082) (-2645 . 402026) (-2646 . 401956) (-2647 . 401836)
- (-2648 . 401735) (-2649 . 401638) (-2650 . 401558) (-2651 . 401478)
- (-2652 . 401401) (-2653 . 401331) (-2654 . 401261) (-2655 . 401191)
- (-2656 . 401121) (-2657 . 401051) (-2658 . 400981) (-2659 . 400888)
- (-2660 . 400760) (-2661 . 400518) (-2662 . 400348) (-2663 . 399979)
- (-2664 . 399810) (-2665 . 399694) (-2666 . 399198) (-2667 . 398817)
- (-2668 . 398571) (-2669 . 398479) (-2670 . 398382) (-2671 . 397720)
- (-2672 . 397607) (-2673 . 397533) (-2674 . 397441) (-2675 . 397251)
- (-2676 . 397061) (-2677 . 396990) (-2678 . 396919) (-2679 . 396838)
- (-2680 . 396757) (-2681 . 396632) (-2682 . 396499) (-2683 . 396418)
- (-2684 . 396344) (-2685 . 396179) (-2686 . 396022) (-2687 . 395794)
- (-2688 . 395646) (-2689 . 395542) (-2690 . 395438) (-2691 . 395353)
- (-2692 . 394985) (-2693 . 394904) (-2694 . 394817) (-2695 . 394736)
- (-2696 . 394540) (-2697 . 394320) (-2698 . 394133) (-2699 . 393811)
- (-2700 . 393518) (-2701 . 393225) (-2702 . 392915) (-2703 . 392598)
- (-2704 . 392446) (-2705 . 392258) (-2706 . 391785) (-2707 . 391703)
- (-2708 . 391487) (-2709 . 391271) (-2710 . 391012) (-2711 . 390591)
- (-2712 . 390078) (-2713 . 389948) (-2714 . 389674) (-2715 . 389495)
- (-2716 . 389380) (-2717 . 389276) (-2718 . 389221) (-2719 . 389144)
- (-2720 . 389074) (-2721 . 389001) (-2722 . 388946) (-2723 . 388873)
- (-2724 . 388818) (-2725 . 388463) (-2726 . 388055) (-2727 . 387902)
- (-2728 . 387749) (-2729 . 387668) (-2730 . 387515) (-2731 . 387362)
- (-2732 . 387227) (-2733 . 387092) (-2734 . 386957) (-2735 . 386822)
- (-2736 . 386687) (-2737 . 386552) (-2738 . 386496) (-2739 . 386343)
- (-2740 . 386232) (-2741 . 386121) (-2742 . 386036) (-2743 . 385926)
- (-2744 . 385823) (-2745 . 381672) (-2746 . 381224) (-2747 . 380797)
- (-2748 . 380180) (-2749 . 379579) (-2750 . 379361) (-2751 . 379183)
- (-2752 . 378924) (-2753 . 378513) (-2754 . 378219) (-2755 . 377776)
- (-2756 . 377598) (-2757 . 377205) (-2758 . 376812) (-2759 . 376627)
- (-2760 . 376420) (-2761 . 376200) (-2762 . 375894) (-2763 . 375695)
- (-2764 . 375066) (-2765 . 374909) (-2766 . 374520) (-2767 . 374469)
- (-2768 . 374420) (-2769 . 374369) (-2770 . 374321) (-2771 . 374269)
- (-2772 . 374123) (-2773 . 374071) (-2774 . 373925) (-2775 . 373873)
- (-2776 . 373727) (-2777 . 373676) (-2778 . 373301) (-2779 . 373250)
- (-2780 . 373201) (-2781 . 373150) (-2782 . 373102) (-2783 . 373050)
- (-2784 . 373001) (-2785 . 372949) (-2786 . 372900) (-2787 . 372848)
- (-2788 . 372799) (-2789 . 372733) (-2790 . 372615) (-2791 . 371453)
- (-2792 . 371036) (-2793 . 370928) (-2794 . 370686) (-2795 . 370536)
- (-2796 . 370386) (-2797 . 370225) (-2798 . 368018) (-2799 . 367757)
- (-2800 . 367603) (-2801 . 367457) (-2802 . 367311) (-2803 . 367092)
- (-2804 . 366960) (-2805 . 366885) (-2806 . 366810) (-2807 . 366675)
- (-2808 . 366546) (-2809 . 366417) (-2810 . 366291) (-2811 . 366165)
- (-2812 . 366039) (-2813 . 365913) (-2814 . 365810) (-2815 . 365710)
- (-2816 . 365616) (-2817 . 365486) (-2818 . 365335) (-2819 . 364959)
- (-2820 . 364845) (-2821 . 364604) (-2822 . 364146) (-2823 . 363836)
- (-2824 . 363269) (-2825 . 362700) (-2826 . 361690) (-2827 . 361148)
- (-2828 . 360835) (-2829 . 360497) (-2830 . 360166) (-2831 . 359846)
- (-2832 . 359793) (-2833 . 359666) (-2834 . 359164) (-2835 . 358021)
- (-2836 . 357966) (-2837 . 357911) (-2838 . 357835) (-2839 . 357716)
- (-2840 . 357641) (-2841 . 357566) (-2842 . 357488) (-2843 . 357265)
- (-2844 . 357206) (-2845 . 357147) (-2846 . 357044) (-2847 . 356941)
- (-2848 . 356838) (-2849 . 356735) (-2850 . 356654) (-2851 . 356580)
- (-2852 . 356365) (-2853 . 356131) (-2854 . 356097) (-2855 . 356063)
- (-2856 . 356035) (-2857 . 356007) (-2858 . 355790) (-2859 . 355512)
- (-2860 . 355362) (-2861 . 355232) (-2862 . 355102) (-2863 . 355002)
- (-2864 . 354825) (-2865 . 354665) (-2866 . 354565) (-2867 . 354388)
- (-2868 . 354228) (-2869 . 354069) (-2870 . 353930) (-2871 . 353780)
- (-2872 . 353650) (-2873 . 353520) (-2874 . 353373) (-2875 . 353246)
- (-2876 . 353143) (-2877 . 353036) (-2878 . 352939) (-2879 . 352774)
- (-2880 . 352626) (-2881 . 352211) (-2882 . 352111) (-2883 . 352008)
- (-2884 . 351920) (-2885 . 351840) (-2886 . 351690) (-2887 . 351560)
- (-2888 . 351508) (-2889 . 351435) (-2890 . 351360) (-2891 . 351301)
- (-2892 . 351189) (-2893 . 350877) (-2894 . 350700) (-2895 . 349102)
- (-2896 . 348474) (-2897 . 348414) (-2898 . 348296) (-2899 . 348178)
- (-2900 . 348034) (-2901 . 347882) (-2902 . 347723) (-2903 . 347564)
- (-2904 . 347358) (-2905 . 347171) (-2906 . 347019) (-2907 . 346864)
- (-2908 . 346709) (-2909 . 346557) (-2910 . 346420) (-2911 . 345997)
- (-2912 . 345871) (-2913 . 345745) (-2914 . 345619) (-2915 . 345479)
- (-2916 . 345338) (-2917 . 345197) (-2918 . 345053) (-2919 . 344305)
- (-2920 . 344147) (-2921 . 343961) (-2922 . 343806) (-2923 . 343568)
- (-2924 . 343323) (-2925 . 343078) (-2926 . 342868) (-2927 . 342731)
- (-2928 . 342521) (-2929 . 342384) (-2930 . 342174) (-2931 . 342037)
- (-2932 . 341827) (-2933 . 341524) (-2934 . 341380) (-2935 . 341239)
- (-2936 . 341016) (-2937 . 340875) (-2938 . 340653) (-2939 . 340456)
- (-2940 . 340300) (-2941 . 339973) (-2942 . 339814) (-2943 . 339655)
- (-2944 . 339496) (-2945 . 339325) (-2946 . 339154) (-2947 . 338980)
- (-2948 . 338628) (-2949 . 338505) (-2950 . 338343) (-2951 . 338270)
- (-2952 . 338197) (-2953 . 338124) (-2954 . 338051) (-2955 . 337978)
- (-2956 . 337905) (-2957 . 337782) (-2958 . 337609) (-2959 . 337486)
- (-2960 . 337400) (-2961 . 337334) (-2962 . 337268) (-2963 . 337202)
- (-2964 . 337136) (-2965 . 337070) (-2966 . 337004) (-2967 . 336938)
- (-2968 . 336872) (-2969 . 336806) (-2970 . 336740) (-2971 . 336674)
- (-2972 . 336608) (-2973 . 336542) (-2974 . 336476) (-2975 . 336410)
- (-2976 . 336344) (-2977 . 336278) (-2978 . 336212) (-2979 . 336146)
- (-2980 . 336080) (-2981 . 336014) (-2982 . 335948) (-2983 . 335882)
- (-2984 . 335816) (-2985 . 335750) (-2986 . 335684) (-2987 . 335037)
- (-2988 . 334390) (-2989 . 334262) (-2990 . 334139) (-2991 . 334016)
- (-2992 . 333875) (-2993 . 333721) (-2994 . 333577) (-2995 . 333402)
- (-2996 . 332792) (-2997 . 332668) (-2998 . 332544) (-2999 . 331866)
- (-3000 . 331169) (-3001 . 331068) (-3002 . 331012) (-3003 . 330956)
- (-3004 . 330900) (-3005 . 330844) (-3006 . 330785) (-3007 . 330721)
- (-3008 . 330613) (-3009 . 330505) (-3010 . 330397) (-3011 . 330118)
- (-3012 . 330044) (-3013 . 329818) (-3014 . 329737) (-3015 . 329659)
- (-3016 . 329581) (-3017 . 329503) (-3018 . 329424) (-3019 . 329346)
- (-3020 . 329253) (-3021 . 329154) (-3022 . 329086) (-3023 . 329037)
- (-3024 . 328346) (-3025 . 327706) (-3026 . 326915) (-3027 . 326837)
- (-3028 . 326739) (-3029 . 326650) (-3030 . 326561) (-3031 . 326487)
- (-3032 . 326413) (-3033 . 326339) (-3034 . 326284) (-3035 . 326229)
- (-3036 . 326163) (-3037 . 326097) (-3038 . 326035) (-3039 . 325760)
- (-3040 . 325268) (-3041 . 324810) (-3042 . 324557) (-3043 . 324369)
- (-3044 . 324028) (-3045 . 323732) (-3046 . 323564) (-3047 . 323433)
- (-3048 . 323293) (-3049 . 323138) (-3050 . 322969) (-3051 . 321583)
- (-3052 . 321450) (-3053 . 321309) (-3054 . 321080) (-3055 . 321021)
- (-3056 . 320965) (-3057 . 320909) (-3058 . 320644) (-3059 . 320432)
- (-3060 . 320293) (-3061 . 320186) (-3062 . 320069) (-3063 . 320003)
- (-3064 . 319930) (-3065 . 319816) (-3066 . 319563) (-3067 . 319463)
- (-3068 . 319269) (-3069 . 318961) (-3070 . 318495) (-3071 . 318390)
- (-3072 . 318284) (-3073 . 318135) (-3074 . 317995) (-3075 . 317583)
- (-3076 . 317339) (-3077 . 316681) (-3078 . 316528) (-3079 . 316414)
- (-3080 . 316304) (-3081 . 315484) (-3082 . 315290) (-3083 . 314264)
- (-3084 . 313816) (-3085 . 312427) (-3086 . 311576) (-3087 . 311527)
- (-3088 . 311478) (-3089 . 311429) (-3090 . 311362) (-3091 . 311287)
- (-3092 . 311097) (-3093 . 311025) (-3094 . 310950) (-3095 . 310878)
- (-3096 . 310761) (-3097 . 310710) (-3098 . 310631) (-3099 . 310552)
- (-3100 . 310473) (-3101 . 310422) (-3102 . 310178) (-3103 . 309876)
- (-3104 . 309794) (-3105 . 309712) (-3106 . 309651) (-3107 . 309262)
- (-3108 . 308396) (-3109 . 307823) (-3110 . 306588) (-3111 . 305781)
- (-3112 . 305531) (-3113 . 305281) (-3114 . 304856) (-3115 . 304612)
- (-3116 . 304368) (-3117 . 304124) (-3118 . 303880) (-3119 . 303636)
- (-3120 . 303392) (-3121 . 303150) (-3122 . 302908) (-3123 . 302666)
- (-3124 . 302424) (-3125 . 301846) (-3126 . 301730) (-3127 . 301676)
- (-3128 . 300834) (-3129 . 300803) (-3130 . 300458) (-3131 . 300232)
- (-3132 . 300133) (-3133 . 300034) (-3134 . 298268) (-3135 . 298156)
- (-3136 . 297106) (-3137 . 297014) (-3138 . 296092) (-3139 . 295759)
- (-3140 . 295426) (-3141 . 295323) (-3142 . 295212) (-3143 . 295101)
- (-3144 . 294990) (-3145 . 294879) (-3146 . 293792) (-3147 . 293672)
- (-3148 . 293537) (-3149 . 293405) (-3150 . 293273) (-3151 . 292979)
- (-3152 . 292685) (-3153 . 292340) (-3154 . 292114) (-3155 . 291888)
- (-3156 . 291777) (-3157 . 291666) (-3158 . 290204) (-3159 . 288500)
- (-3160 . 288191) (-3161 . 288039) (-3162 . 287516) (-3163 . 287187)
- (-3164 . 286994) (-3165 . 286801) (-3166 . 286608) (-3167 . 286415)
- (-3168 . 286302) (-3169 . 286179) (-3170 . 286065) (-3171 . 285951)
- (-3172 . 285858) (-3173 . 285765) (-3174 . 285655) (-3175 . 285454)
- (-3176 . 284310) (-3177 . 284217) (-3178 . 284103) (-3179 . 284010)
- (-3180 . 283763) (-3181 . 283652) (-3182 . 283438) (-3183 . 283320)
- (-3184 . 283023) (-3185 . 282295) (-3186 . 281719) (-3187 . 281241)
- (-3188 . 280997) (-3189 . 280753) (-3190 . 280410) (-3191 . 279804)
- (-3192 . 279361) (-3193 . 279206) (-3194 . 279062) (-3195 . 278742)
- (-3196 . 278587) (-3197 . 278447) (-3198 . 278307) (-3199 . 278167)
- (-3200 . 277892) (-3201 . 277673) (-3202 . 277154) (-3203 . 276942)
- (-3204 . 276730) (-3205 . 276350) (-3206 . 276176) (-3207 . 275967)
- (-3208 . 275659) (-3209 . 275467) (-3210 . 275294) (-3211 . 274158)
- (-3212 . 273793) (-3213 . 273593) (-3214 . 273393) (-3215 . 272557)
- (-3216 . 272529) (-3217 . 272461) (-3218 . 272391) (-3219 . 272227)
- (-3220 . 272199) (-3221 . 272171) (-3222 . 272117) (-3223 . 271967)
- (-3224 . 271908) (-3225 . 271215) (-3226 . 269830) (-3227 . 269769)
- (-3228 . 269445) (-3229 . 269373) (-3230 . 269316) (-3231 . 269259)
- (-3232 . 269202) (-3233 . 269145) (-3234 . 269070) (-3235 . 268480)
- (-3236 . 268120) (-3237 . 268046) (-3238 . 267986) (-3239 . 267868)
- (-3240 . 266925) (-3241 . 266798) (-3242 . 266585) (-3243 . 266511)
- (-3244 . 266457) (-3245 . 266403) (-3246 . 266294) (-3247 . 266011)
- (-3248 . 265903) (-3249 . 265800) (-3250 . 265639) (-3251 . 265538)
- (-3252 . 265440) (-3253 . 265302) (-3254 . 265164) (-3255 . 265026)
- (-3256 . 264764) (-3257 . 264555) (-3258 . 264417) (-3259 . 264126)
- (-3260 . 263974) (-3261 . 263699) (-3262 . 263479) (-3263 . 263327)
- (-3264 . 263175) (-3265 . 263023) (-3266 . 262871) (-3267 . 262719)
- (-3268 . 262512) (-3269 . 262125) (-3270 . 261794) (-3271 . 261455)
- (-3272 . 261108) (-3273 . 260769) (-3274 . 260430) (-3275 . 260049)
- (-3276 . 259668) (-3277 . 259287) (-3278 . 258922) (-3279 . 258204)
- (-3280 . 257857) (-3281 . 257412) (-3282 . 256987) (-3283 . 256376)
- (-3284 . 255784) (-3285 . 255397) (-3286 . 255066) (-3287 . 254679)
- (-3288 . 254348) (-3289 . 254128) (-3290 . 253607) (-3291 . 253394)
- (-3292 . 253181) (-3293 . 252968) (-3294 . 252790) (-3295 . 252577)
- (-3296 . 252399) (-3297 . 252017) (-3298 . 251839) (-3299 . 251629)
- (-3300 . 251539) (-3301 . 251449) (-3302 . 251358) (-3303 . 251246)
- (-3304 . 251156) (-3305 . 251049) (-3306 . 250860) (-3307 . 250804)
- (-3308 . 250723) (-3309 . 250642) (-3310 . 250561) (-3311 . 250484)
- (-3312 . 250349) (-3313 . 250214) (-3314 . 250090) (-3315 . 249969)
- (-3316 . 249851) (-3317 . 249715) (-3318 . 249582) (-3319 . 249463)
- (-3320 . 249205) (-3321 . 248920) (-3322 . 248848) (-3323 . 248752)
- (-3324 . 248611) (-3325 . 248554) (-3326 . 248497) (-3327 . 248437)
- (-3328 . 248133) (-3329 . 247738) (-3330 . 247216) (-3331 . 246939)
- (-3332 . 246519) (-3333 . 246407) (-3334 . 245969) (-3335 . 245739)
- (-3336 . 245536) (-3337 . 245354) (-3338 . 245224) (-3339 . 245018)
- (-3340 . 244811) (-3341 . 244621) (-3342 . 244056) (-3343 . 243800)
- (-3344 . 243509) (-3345 . 243215) (-3346 . 242918) (-3347 . 242618)
- (-3348 . 242488) (-3349 . 242355) (-3350 . 242219) (-3351 . 242080)
- (-3352 . 240863) (-3353 . 240555) (-3354 . 240191) (-3355 . 240094)
- (-3356 . 239854) (-3357 . 239579) (-3358 . 239304) (-3359 . 239045)
- (-3360 . 238871) (-3361 . 238793) (-3362 . 238706) (-3363 . 238606)
- (-3364 . 238512) (-3365 . 238431) (-3366 . 238361) (-3367 . 237570)
- (-3368 . 237500) (-3369 . 237172) (-3370 . 237102) (-3371 . 236774)
- (-3372 . 236704) (-3373 . 236259) (-3374 . 236189) (-3375 . 236085)
- (-3376 . 236011) (-3377 . 235937) (-3378 . 235866) (-3379 . 235524)
- (-3380 . 235396) (-3381 . 235319) (-3382 . 235088) (-3383 . 234945)
- (-3384 . 234802) (-3385 . 234463) (-3386 . 234133) (-3387 . 233920)
- (-3388 . 233665) (-3389 . 233315) (-3390 . 233090) (-3391 . 232865)
- (-3392 . 232640) (-3393 . 232415) (-3394 . 232202) (-3395 . 231989)
- (-3396 . 231839) (-3397 . 231658) (-3398 . 231553) (-3399 . 231431)
- (-3400 . 231323) (-3401 . 231215) (-3402 . 230890) (-3403 . 230626)
- (-3404 . 230315) (-3405 . 230013) (-3406 . 229704) (-3407 . 228985)
- (-3408 . 228409) (-3409 . 228234) (-3410 . 228090) (-3411 . 227935)
- (-3412 . 227812) (-3413 . 227707) (-3414 . 227592) (-3415 . 227497)
- (-3416 . 227016) (-3417 . 226906) (-3418 . 226796) (-3419 . 226686)
- (-3420 . 225614) (-3421 . 225107) (-3422 . 225040) (-3423 . 224967)
- (-3424 . 224094) (-3425 . 224021) (-3426 . 223966) (-3427 . 223911)
- (-3428 . 223879) (-3429 . 223793) (-3430 . 223761) (-3431 . 223675)
- (-3432 . 223255) (-3433 . 222835) (-3434 . 222283) (-3435 . 221179)
- (-3436 . 219469) (-3437 . 217919) (-3438 . 217127) (-3439 . 216627)
- (-3440 . 216141) (-3441 . 215739) (-3442 . 215089) (-3443 . 215014)
- (-3444 . 214923) (-3445 . 214852) (-3446 . 214781) (-3447 . 214725)
- (-3448 . 214605) (-3449 . 214551) (-3450 . 214490) (-3451 . 214436)
- (-3452 . 214333) (-3453 . 213893) (-3454 . 213453) (-3455 . 213013)
- (-3456 . 212491) (-3457 . 212330) (-3458 . 212169) (-3459 . 211858)
- (-3460 . 211772) (-3461 . 211682) (-3462 . 211324) (-3463 . 211207)
- (-3464 . 211126) (-3465 . 210968) (-3466 . 210855) (-3467 . 210780)
- (-3468 . 209934) (-3469 . 208752) (-3470 . 208653) (-3471 . 208554)
- (-3472 . 208225) (-3473 . 208147) (-3474 . 208072) (-3475 . 207966)
- (-3476 . 207810) (-3477 . 207703) (-3478 . 207568) (-3479 . 207433)
- (-3480 . 207311) (-3481 . 207216) (-3482 . 207068) (-3483 . 206973)
- (-3484 . 206818) (-3485 . 206663) (-3486 . 206111) (-3487 . 205559)
- (-3488 . 204944) (-3489 . 204392) (-3490 . 203840) (-3491 . 203288)
- (-3492 . 202735) (-3493 . 202182) (-3494 . 201629) (-3495 . 201076)
- (-3496 . 200523) (-3497 . 199970) (-3498 . 199418) (-3499 . 198866)
- (-3500 . 198314) (-3501 . 197762) (-3502 . 197210) (-3503 . 196658)
- (-3504 . 196554) (-3505 . 195969) (-3506 . 195864) (-3507 . 195789)
- (-3508 . 195647) (-3509 . 195555) (-3510 . 195464) (-3511 . 195372)
- (-3512 . 195277) (-3513 . 195172) (-3514 . 195049) (-3515 . 194927)
- (-3516 . 194563) (-3517 . 194441) (-3518 . 194343) (-3519 . 193982)
- (-3520 . 193453) (-3521 . 193378) (-3522 . 193303) (-3523 . 193211)
- (-3524 . 193030) (-3525 . 192935) (-3526 . 192860) (-3527 . 192769)
- (-3528 . 192678) (-3529 . 192519) (-3530 . 191970) (-3531 . 191421)
- (-3532 . 188714) (-3533 . 188542) (-3534 . 187132) (-3535 . 186572)
- (-3536 . 186457) (-3537 . 186085) (-3538 . 186022) (-3539 . 185959)
- (-3540 . 185896) (-3541 . 185618) (-3542 . 185351) (-3543 . 185299)
- (-3544 . 184658) (-3545 . 184607) (-3546 . 184419) (-3547 . 184346)
- (-3548 . 184266) (-3549 . 184153) (-3550 . 183963) (-3551 . 183599)
- (-3552 . 183327) (-3553 . 183276) (-3554 . 183225) (-3555 . 183155)
- (-3556 . 183036) (-3557 . 183007) (-3558 . 182903) (-3559 . 182781)
- (-3560 . 182727) (-3561 . 182550) (-3562 . 182489) (-3563 . 182308)
- (-3564 . 182247) (-3565 . 182175) (-3566 . 181700) (-3567 . 181326)
- (-3568 . 177794) (-3569 . 177742) (-3570 . 177614) (-3571 . 177464)
- (-3572 . 177412) (-3573 . 177271) (-3574 . 175213) (-3575 . 167570)
- (-3576 . 167419) (-3577 . 167349) (-3578 . 167298) (-3579 . 167248)
- (-3580 . 167197) (-3581 . 167146) (-3582 . 166950) (-3583 . 166808)
- (-3584 . 166694) (-3585 . 166573) (-3586 . 166455) (-3587 . 166343)
- (-3588 . 166225) (-3589 . 166120) (-3590 . 166039) (-3591 . 165935)
- (-3592 . 165001) (-3593 . 164781) (-3594 . 164544) (-3595 . 164462)
- (-3596 . 164118) (-3597 . 162979) (-3598 . 162905) (-3599 . 162810)
- (-3600 . 162736) (-3601 . 162532) (-3602 . 162441) (-3603 . 162325)
- (-3604 . 162212) (-3605 . 162121) (-3606 . 162030) (-3607 . 161941)
- (-3608 . 161852) (-3609 . 161763) (-3610 . 161675) (-3611 . 161187)
- (-3612 . 161123) (-3613 . 161059) (-3614 . 160995) (-3615 . 160934)
- (-3616 . 160194) (-3617 . 160133) (-3618 . 160072) (-3619 . 159446)
- (-3620 . 159394) (-3621 . 159266) (-3622 . 159202) (-3623 . 159148)
- (-3624 . 159039) (-3625 . 157742) (-3626 . 157661) (-3627 . 157572)
- (-3628 . 157514) (-3629 . 157374) (-3630 . 157289) (-3631 . 157215)
- (-3632 . 157130) (-3633 . 157073) (-3634 . 156857) (-3635 . 156718)
- (-3636 . 156111) (-3637 . 155557) (-3638 . 155003) (-3639 . 154449)
- (-3640 . 153842) (-3641 . 153288) (-3642 . 152728) (-3643 . 152168)
- (-3644 . 151906) (-3645 . 151467) (-3646 . 151134) (-3647 . 150795)
- (-3648 . 150490) (-3649 . 150357) (-3650 . 150224) (-3651 . 149836)
- (-3652 . 149743) (-3653 . 149650) (-3654 . 149557) (-3655 . 149464)
- (-3656 . 149371) (-3657 . 149278) (-3658 . 149185) (-3659 . 149092)
- (-3660 . 148999) (-3661 . 148906) (-3662 . 148813) (-3663 . 148720)
- (-3664 . 148627) (-3665 . 148534) (-3666 . 148441) (-3667 . 148348)
- (-3668 . 148255) (-3669 . 148162) (-3670 . 148069) (-3671 . 147976)
- (-3672 . 147883) (-3673 . 147790) (-3674 . 147697) (-3675 . 147604)
- (-3676 . 147511) (-3677 . 147326) (-3678 . 147016) (-3679 . 145388)
- (-3680 . 145234) (-3681 . 145097) (-3682 . 144955) (-3683 . 144753)
- (-3684 . 142826) (-3685 . 142699) (-3686 . 142575) (-3687 . 142448)
- (-3688 . 142227) (-3689 . 142006) (-3690 . 141879) (-3691 . 141678)
- (-3692 . 141502) (-3693 . 140985) (-3694 . 140468) (-3695 . 140191)
- (-3696 . 139782) (-3697 . 139265) (-3698 . 139081) (-3699 . 138939)
- (-3700 . 138444) (-3701 . 137813) (-3702 . 137757) (-3703 . 137663)
- (-3704 . 137544) (-3705 . 137474) (-3706 . 137401) (-3707 . 137171)
- (-3708 . 136552) (-3709 . 136122) (-3710 . 136040) (-3711 . 135898)
- (-3712 . 135428) (-3713 . 135306) (-3714 . 135184) (-3715 . 135044)
- (-3716 . 134857) (-3717 . 134741) (-3718 . 134461) (-3719 . 134393)
- (-3720 . 134195) (-3721 . 134015) (-3722 . 133860) (-3723 . 133753)
- (-3724 . 133702) (-3725 . 133325) (-3726 . 132797) (-3727 . 132575)
- (-3728 . 132353) (-3729 . 132114) (-3730 . 132024) (-3731 . 130282)
- (-3732 . 129700) (-3733 . 129622) (-3734 . 124162) (-3735 . 123372)
- (-3736 . 122995) (-3737 . 122924) (-3738 . 122659) (-3739 . 122484)
- (-3740 . 121999) (-3741 . 121577) (-3742 . 121137) (-3743 . 120274)
- (-3744 . 120150) (-3745 . 120023) (-3746 . 119914) (-3747 . 119762)
- (-3748 . 119648) (-3749 . 119509) (-3750 . 119428) (-3751 . 119347)
- (-3752 . 119243) (-3753 . 118825) (-3754 . 118404) (-3755 . 118330)
- (-3756 . 118067) (-3757 . 117803) (-3758 . 117424) (-3759 . 116725)
- (-3760 . 115682) (-3761 . 115623) (-3762 . 115549) (-3763 . 115475)
- (-3764 . 115353) (-3765 . 115103) (-3766 . 115017) (-3767 . 114942)
- (-3768 . 114867) (-3769 . 114772) (-3770 . 110997) (-3771 . 109827)
- (-3772 . 109167) (-3773 . 108983) (-3774 . 106778) (-3775 . 106453)
- (-3776 . 105971) (-3777 . 105530) (-3778 . 105295) (-3779 . 105050)
- (-3780 . 104960) (-3781 . 103525) (-3782 . 103447) (-3783 . 103342)
- (-3784 . 101866) (-3785 . 101461) (-3786 . 101060) (-3787 . 100964)
- (-3788 . 100885) (-3789 . 100730) (-3790 . 99606) (-3791 . 99527)
- (-3792 . 99451) (-3793 . 99105) (-3794 . 99048) (-3795 . 98976)
- (-3796 . 98919) (-3797 . 98862) (-3798 . 98732) (-3799 . 98530)
- (-3800 . 98162) (-3801 . 97741) (-3802 . 93931) (-3803 . 93329)
- (-3804 . 92862) (-3805 . 92649) (-3806 . 92436) (-3807 . 92270)
- (-3808 . 92057) (-3809 . 91891) (-3810 . 91725) (-3811 . 91559)
- (-3812 . 91393) (-3813 . 91123) (-3814 . 85709) (** . 82756) (-3816 . 82340)
- (-3817 . 82099) (-3818 . 82043) (-3819 . 81551) (-3820 . 78743)
- (-3821 . 78593) (-3822 . 78429) (-3823 . 78265) (-3824 . 78169)
- (-3825 . 78051) (-3826 . 77927) (-3827 . 77784) (-3828 . 77613)
- (-3829 . 77487) (-3830 . 77343) (-3831 . 77191) (-3832 . 77032)
- (-3833 . 76519) (-3834 . 76430) (-3835 . 75765) (-3836 . 75573)
- (-3837 . 75478) (-3838 . 75170) (-3839 . 73998) (-3840 . 73792)
- (-3841 . 72617) (-3842 . 72542) (-3843 . 71361) (-3844 . 67859)
- (-3845 . 67495) (-3846 . 67218) (-3847 . 67126) (-3848 . 67033)
- (-3849 . 66756) (-3850 . 66663) (-3851 . 66570) (-3852 . 66477)
- (-3853 . 66093) (-3854 . 66022) (-3855 . 65930) (-3856 . 65772)
- (-3857 . 65418) (-3858 . 65260) (-3859 . 65152) (-3860 . 65123)
- (-3861 . 65056) (-3862 . 64902) (-3863 . 64744) (-3864 . 64350)
- (-3865 . 64275) (-3866 . 64169) (-3867 . 64097) (-3868 . 64019)
- (-3869 . 63946) (-3870 . 63873) (-3871 . 63800) (-3872 . 63728)
- (-3873 . 63656) (-3874 . 63583) (-3875 . 63342) (-3876 . 63002)
- (-3877 . 62854) (-3878 . 62781) (-3879 . 62708) (-3880 . 62635)
- (-3881 . 62381) (-3882 . 62237) (-3883 . 60901) (-3884 . 60707)
- (-3885 . 60436) (-3886 . 60288) (-3887 . 60140) (-3888 . 59900)
- (-3889 . 59706) (-3890 . 59438) (-3891 . 59242) (-3892 . 59213)
- (-3893 . 59112) (-3894 . 59011) (-3895 . 58910) (-3896 . 58809)
- (-3897 . 58708) (-3898 . 58607) (-3899 . 58506) (-3900 . 58405)
- (-3901 . 58304) (-3902 . 58203) (-3903 . 58088) (-3904 . 57973)
- (-3905 . 57922) (-3906 . 57805) (-3907 . 57747) (-3908 . 57646)
- (-3909 . 57545) (-3910 . 57444) (-3911 . 57328) (-3912 . 57299)
- (-3913 . 56568) (-3914 . 56443) (-3915 . 56318) (-3916 . 56178)
- (-3917 . 56060) (-3918 . 55935) (-3919 . 55780) (-3920 . 54797)
- (-3921 . 53938) (-3922 . 53884) (-3923 . 53830) (-3924 . 53622)
- (-3925 . 53250) (-3926 . 52839) (-3927 . 52481) (-3928 . 52123)
- (-3929 . 51971) (-3930 . 51669) (-3931 . 51513) (-3932 . 51187)
- (-3933 . 51117) (-3934 . 51047) (-3935 . 50838) (-3936 . 50229)
- (-3937 . 50025) (-3938 . 49652) (-3939 . 49143) (-3940 . 48878)
- (-3941 . 48397) (-3942 . 47916) (-3943 . 47791) (-3944 . 46691)
- (-3945 . 45615) (-3946 . 45042) (-3947 . 44824) (-3948 . 36498)
- (-3949 . 36313) (-3950 . 34230) (-3951 . 32062) (-3952 . 31916)
- (-3953 . 31738) (-3954 . 31331) (-3955 . 31036) (-3956 . 30688)
- (-3957 . 30522) (-3958 . 30356) (-3959 . 29945) (-3960 . 16071)
- (-3961 . 14964) (* . 10917) (-3963 . 10663) (-3964 . 10479) (-3965 . 9522)
- (-3966 . 9469) (-3967 . 9409) (-3968 . 9140) (-3969 . 8513) (-3970 . 7240)
- (-3971 . 5996) (-3972 . 5127) (-3973 . 3864) (-3974 . 420) (-3975 . 306)
- (-3976 . 173) (-3977 . 30)) \ No newline at end of file
+((-1214 . 630229) (-1215 . 629833) (-1216 . 629531) (-1217 . 629135)
+ (-1218 . 629014) (-1219 . 628912) (-1220 . 628799) (-1221 . 628683)
+ (-1222 . 628630) (-1223 . 628496) (-1224 . 628421) (-1225 . 628265)
+ (-1226 . 628037) (-1227 . 627073) (-1228 . 626826) (-1229 . 626542)
+ (-1230 . 626258) (-1231 . 625974) (-1232 . 625655) (-1233 . 625563)
+ (-1234 . 625471) (-1235 . 625379) (-1236 . 625287) (-1237 . 625195)
+ (-1238 . 625103) (-1239 . 625008) (-1240 . 624913) (-1241 . 624821)
+ (-1242 . 624729) (-1243 . 624637) (-1244 . 624545) (-1245 . 624453)
+ (-1246 . 624351) (-1247 . 624249) (-1248 . 624147) (-1249 . 624055)
+ (-1250 . 624004) (-1251 . 623952) (-1252 . 623882) (-1253 . 623462)
+ (-1254 . 623268) (-1255 . 623241) (-1256 . 623118) (-1257 . 622995)
+ (-1258 . 622851) (-1259 . 622681) (-1260 . 622557) (-1261 . 622318)
+ (-1262 . 622245) (-1263 . 622020) (-1264 . 621774) (-1265 . 621721)
+ (-1266 . 621543) (-1267 . 621374) (-1268 . 621298) (-1269 . 621225)
+ (-1270 . 621072) (-1271 . 620919) (-1272 . 620735) (-1273 . 620554)
+ (-1274 . 620499) (-1275 . 620444) (-1276 . 620371) (-1277 . 620295)
+ (-1278 . 620218) (-1279 . 620150) (-1280 . 620007) (-1281 . 619900)
+ (-1282 . 619832) (-1283 . 619762) (-1284 . 619692) (-1285 . 619642)
+ (-1286 . 619592) (-1287 . 619542) (-1288 . 619421) (-1289 . 619105)
+ (-1290 . 619036) (-1291 . 618957) (-1292 . 618838) (-1293 . 618761)
+ (-1294 . 618684) (-1295 . 618531) (-1296 . 618382) (-1297 . 618306)
+ (-1298 . 618249) (-1299 . 618177) (-1300 . 618114) (-1301 . 618051)
+ (-1302 . 617990) (-1303 . 617918) (-1304 . 617802) (-1305 . 617750)
+ (-1306 . 617695) (-1307 . 617643) (-1308 . 617591) (-1309 . 617563)
+ (-1310 . 617535) (-1311 . 617507) (-1312 . 617463) (-1313 . 617392)
+ (-1314 . 617341) (-1315 . 617293) (-1316 . 617242) (-1317 . 617190)
+ (-1318 . 617074) (-1319 . 616958) (-1320 . 616866) (-1321 . 616774)
+ (-1322 . 616651) (-1323 . 616585) (-1324 . 616519) (-1325 . 616460)
+ (-1326 . 616432) (-1327 . 616404) (-1328 . 616376) (-1329 . 616348)
+ (-1330 . 616238) (-1331 . 616187) (-1332 . 616136) (-1333 . 616085)
+ (-1334 . 616034) (-1335 . 615983) (-1336 . 615932) (-1337 . 615904)
+ (-1338 . 615876) (-1339 . 615848) (-1340 . 615820) (-1341 . 615792)
+ (-1342 . 615764) (-1343 . 615736) (-1344 . 615708) (-1345 . 615680)
+ (-1346 . 615577) (-1347 . 615525) (-1348 . 615359) (-1349 . 615175)
+ (-1350 . 614964) (-1351 . 614849) (-1352 . 614616) (-1353 . 614526)
+ (-1354 . 614433) (-1355 . 614318) (-1356 . 613920) (-1357 . 613702)
+ (-1358 . 613653) (-1359 . 613625) (-1360 . 613549) (-1361 . 613450)
+ (-1362 . 613351) (-1363 . 613252) (-1364 . 613153) (-1365 . 613054)
+ (-1366 . 612955) (-1367 . 612797) (-1368 . 612721) (-1369 . 612554)
+ (-1370 . 612496) (-1371 . 612438) (-1372 . 612129) (-1373 . 611875)
+ (-1374 . 611791) (-1375 . 611659) (-1376 . 611601) (-1377 . 611549)
+ (-1378 . 611467) (-1379 . 611392) (-1380 . 611321) (-1381 . 611267)
+ (-1382 . 611216) (-1383 . 611142) (-1384 . 611068) (-1385 . 610987)
+ (-1386 . 610906) (-1387 . 610851) (-1388 . 610777) (-1389 . 610703)
+ (-1390 . 610629) (-1391 . 610552) (-1392 . 610498) (-1393 . 610440)
+ (-1394 . 610341) (-1395 . 610242) (-1396 . 610143) (-1397 . 610044)
+ (-1398 . 609945) (-1399 . 609846) (-1400 . 609747) (-1401 . 609633)
+ (-1402 . 609519) (-1403 . 609405) (-1404 . 609291) (-1405 . 609177)
+ (-1406 . 609063) (-1407 . 608946) (-1408 . 608870) (-1409 . 608794)
+ (-1410 . 608407) (-1411 . 608062) (-1412 . 607960) (-1413 . 607699)
+ (-1414 . 607597) (-1415 . 607392) (-1416 . 607279) (-1417 . 607177)
+ (-1418 . 607020) (-1419 . 606931) (-1420 . 606837) (-1421 . 606757)
+ (-1422 . 606683) (-1423 . 606605) (-1424 . 606546) (-1425 . 606488)
+ (-1426 . 606386) (-7 . 606358) (-8 . 606330) (-9 . 606302) (-1430 . 606183)
+ (-1431 . 606101) (-1432 . 606019) (-1433 . 605937) (-1434 . 605855)
+ (-1435 . 605773) (-1436 . 605679) (-1437 . 605609) (-1438 . 605539)
+ (-1439 . 605448) (-1440 . 605354) (-1441 . 605272) (-1442 . 605190)
+ (-1443 . 605092) (-1444 . 604932) (-1445 . 604734) (-1446 . 604598)
+ (-1447 . 604498) (-1448 . 604398) (-1449 . 604305) (-1450 . 604246)
+ (-1451 . 603913) (-1452 . 603813) (-1453 . 603695) (-1454 . 603483)
+ (-1455 . 603304) (-1456 . 603146) (-1457 . 602943) (-1458 . 602525)
+ (-1459 . 602474) (-1460 . 602365) (-1461 . 602250) (-1462 . 602181)
+ (-1463 . 602112) (-1464 . 602043) (-1465 . 601977) (-1466 . 601852)
+ (-1467 . 601635) (-1468 . 601557) (-1469 . 601507) (-1470 . 601436)
+ (-1471 . 601293) (-1472 . 601152) (-1473 . 601074) (-1474 . 600996)
+ (-1475 . 600940) (-1476 . 600884) (-1477 . 600811) (-1478 . 600671)
+ (-1479 . 600618) (-1480 . 600559) (-1481 . 600500) (-1482 . 600345)
+ (-1483 . 600293) (-1484 . 600176) (-1485 . 600059) (-1486 . 599942)
+ (-1487 . 599811) (-1488 . 599532) (-1489 . 599397) (-1490 . 599341)
+ (-1491 . 599285) (-1492 . 599226) (-1493 . 599167) (-1494 . 599111)
+ (-1495 . 599055) (-1496 . 598858) (-1497 . 596516) (-1498 . 596389)
+ (-1499 . 596244) (-1500 . 596116) (-1501 . 596064) (-1502 . 596012)
+ (-1503 . 595960) (-1504 . 591922) (-1505 . 591828) (-1506 . 591689)
+ (-1507 . 591480) (-1508 . 591378) (-1509 . 591276) (-1510 . 590361)
+ (-1511 . 590285) (-1512 . 590156) (-1513 . 590031) (-1514 . 589954)
+ (-1515 . 589877) (-1516 . 589750) (-1517 . 589623) (-1518 . 589457)
+ (-1519 . 589330) (-1520 . 589203) (-1521 . 588986) (-1522 . 588552)
+ (-1523 . 588188) (-1524 . 588136) (-1525 . 588077) (-1526 . 587989)
+ (-1527 . 587901) (-1528 . 587810) (-1529 . 587719) (-1530 . 587628)
+ (-1531 . 587537) (-1532 . 587446) (-1533 . 587355) (-1534 . 587264)
+ (-1535 . 587173) (-1536 . 587082) (-1537 . 586991) (-1538 . 586900)
+ (-1539 . 586809) (-1540 . 586718) (-1541 . 586627) (-1542 . 586536)
+ (-1543 . 586445) (-1544 . 586354) (-1545 . 586263) (-1546 . 586172)
+ (-1547 . 586081) (-1548 . 585990) (-1549 . 585899) (-1550 . 585808)
+ (-1551 . 585717) (-1552 . 585626) (-1553 . 585535) (-1554 . 585373)
+ (-1555 . 585265) (-1556 . 585022) (-1557 . 584735) (-1558 . 584540)
+ (-1559 . 584384) (-1560 . 584224) (-1561 . 584173) (-1562 . 584111)
+ (-1563 . 584060) (-1564 . 583997) (-1565 . 583944) (-1566 . 583892)
+ (-1567 . 583840) (-1568 . 583788) (-1569 . 583698) (-1570 . 583515)
+ (-1571 . 583361) (-1572 . 583281) (-1573 . 583201) (-1574 . 583121)
+ (-1575 . 582991) (-1576 . 582759) (-1577 . 582731) (-1578 . 582703)
+ (-1579 . 582675) (-1580 . 582595) (-1581 . 582518) (-1582 . 582441)
+ (-1583 . 582360) (-1584 . 582301) (-1585 . 582143) (-1586 . 581950)
+ (-1587 . 581465) (-1588 . 581223) (-1589 . 580961) (-1590 . 580860)
+ (-1591 . 580779) (-1592 . 580698) (-1593 . 580628) (-1594 . 580558)
+ (-1595 . 580400) (-1596 . 580096) (-1597 . 579868) (-1598 . 579746)
+ (-1599 . 579688) (-1600 . 579626) (-1601 . 579564) (-1602 . 579499)
+ (-1603 . 579437) (-1604 . 579158) (-1605 . 579090) (-1606 . 578880)
+ (-1607 . 578828) (-1608 . 578774) (-1609 . 578683) (-1610 . 578596)
+ (-1611 . 576849) (-1612 . 576770) (-1613 . 576025) (-1614 . 575908)
+ (-1615 . 575702) (-1616 . 575541) (-1617 . 575380) (-1618 . 575220)
+ (-1619 . 575082) (-1620 . 574988) (-1621 . 574890) (-1622 . 574796)
+ (-1623 . 574682) (-1624 . 574600) (-1625 . 574503) (-1626 . 574307)
+ (-1627 . 574216) (-1628 . 574122) (-1629 . 574055) (-1630 . 573986)
+ (-1631 . 573934) (-1632 . 573875) (-1633 . 573801) (-1634 . 573749)
+ (-1635 . 573592) (-1636 . 573435) (-1637 . 573283) (-1638 . 572525)
+ (-1639 . 572214) (-1640 . 571862) (-1641 . 571645) (-1642 . 571382)
+ (-1643 . 571007) (-1644 . 570823) (-1645 . 570689) (-1646 . 570523)
+ (-1647 . 570357) (-1648 . 570223) (-1649 . 570089) (-1650 . 569955)
+ (-1651 . 569821) (-1652 . 569690) (-1653 . 569559) (-1654 . 569428)
+ (-1655 . 569048) (-1656 . 568922) (-1657 . 568794) (-1658 . 568544)
+ (-1659 . 568421) (-1660 . 568171) (-1661 . 568048) (-1662 . 567798)
+ (-1663 . 567675) (-1664 . 567392) (-1665 . 567121) (-1666 . 566848)
+ (-1667 . 566550) (-1668 . 566448) (-1669 . 566303) (-1670 . 566162)
+ (-1671 . 566011) (-1672 . 565850) (-1673 . 565762) (-1674 . 565734)
+ (-1675 . 565652) (-1676 . 565555) (-1677 . 565087) (-1678 . 564736)
+ (-1679 . 564303) (-1680 . 564164) (-1681 . 564094) (-1682 . 564024)
+ (-1683 . 563954) (-1684 . 563863) (-1685 . 563772) (-1686 . 563681)
+ (-1687 . 563590) (-1688 . 563499) (-1689 . 563413) (-1690 . 563327)
+ (-1691 . 563241) (-1692 . 563155) (-1693 . 563069) (-1694 . 562995)
+ (-1695 . 562890) (-1696 . 562664) (-1697 . 562586) (-1698 . 562511)
+ (-1699 . 562418) (-1700 . 562314) (-1701 . 562218) (-1702 . 562049)
+ (-1703 . 561972) (-1704 . 561895) (-1705 . 561804) (-1706 . 561713)
+ (-1707 . 561513) (-1708 . 561360) (-1709 . 561207) (-1710 . 561054)
+ (-1711 . 560901) (-1712 . 560748) (-1713 . 560595) (-1714 . 560529)
+ (-1715 . 560376) (-1716 . 560223) (-1717 . 560070) (-1718 . 559917)
+ (-1719 . 559764) (-1720 . 559611) (-1721 . 559458) (-1722 . 559305)
+ (-1723 . 559231) (-1724 . 559157) (-1725 . 559102) (-1726 . 559047)
+ (-1727 . 558992) (-1728 . 558937) (-1729 . 558866) (-1730 . 558680)
+ (-1731 . 558583) (-1732 . 558486) (-1733 . 558288) (-1734 . 558190)
+ (-1735 . 558002) (-1736 . 557909) (-1737 . 557782) (-1738 . 557655)
+ (-1739 . 557528) (-1740 . 557460) (-1741 . 557344) (-1742 . 557228)
+ (-1743 . 557112) (-1744 . 557059) (-1745 . 556974) (-1746 . 556889)
+ (-1747 . 556581) (-1748 . 556526) (-1749 . 555874) (-1750 . 555559)
+ (-1751 . 555275) (-1752 . 555157) (-1753 . 555038) (-1754 . 554979)
+ (-1755 . 554920) (-1756 . 554869) (-1757 . 554818) (-1758 . 554767)
+ (-1759 . 554714) (-1760 . 554661) (-1761 . 554602) (-1762 . 554489)
+ (-1763 . 554376) (-1764 . 554209) (-1765 . 554117) (-1766 . 554004)
+ (-1767 . 553920) (-1768 . 553805) (-1769 . 553714) (-1770 . 553623)
+ (-1771 . 553502) (-1772 . 553315) (-1773 . 553263) (-1774 . 553208)
+ (-1775 . 553021) (-1776 . 552898) (-1777 . 552825) (-1778 . 552752)
+ (-1779 . 552632) (-1780 . 552559) (-1781 . 552486) (-1782 . 552146)
+ (-1783 . 552073) (-1784 . 551853) (-1785 . 551520) (-1786 . 551337)
+ (-1787 . 551194) (-1788 . 550834) (-1789 . 550666) (-1790 . 550498)
+ (-1791 . 550242) (-1792 . 549986) (-1793 . 549791) (-1794 . 549596)
+ (-1795 . 549002) (-1796 . 548926) (-1797 . 548787) (-1798 . 548380)
+ (-1799 . 548253) (-1800 . 548096) (-1801 . 547779) (-1802 . 547299)
+ (-1803 . 546819) (-1804 . 546317) (-1805 . 546249) (-1806 . 546178)
+ (-1807 . 546107) (-1808 . 545935) (-1809 . 545816) (-1810 . 545697)
+ (-1811 . 545621) (-1812 . 545545) (-1813 . 545272) (-1814 . 545158)
+ (-1815 . 545107) (-1816 . 545056) (-1817 . 545005) (-1818 . 544954)
+ (-1819 . 544903) (-1820 . 544762) (-1821 . 544589) (-1822 . 544358)
+ (-1823 . 544172) (-1824 . 544144) (-1825 . 544116) (-1826 . 544088)
+ (-1827 . 544060) (-1828 . 544032) (-1829 . 544004) (-1830 . 543976)
+ (-1831 . 543925) (-1832 . 543859) (-1833 . 543769) (-1834 . 543398)
+ (-1835 . 543247) (-1836 . 543096) (-1837 . 542891) (-1838 . 542769)
+ (-1839 . 542695) (-1840 . 542618) (-1841 . 542544) (-1842 . 542467)
+ (-1843 . 542390) (-1844 . 542316) (-1845 . 542239) (-1846 . 542006)
+ (-1847 . 541853) (-1848 . 541558) (-1849 . 541405) (-1850 . 541083)
+ (-1851 . 540945) (-1852 . 540807) (-1853 . 540727) (-1854 . 540647)
+ (-1855 . 540383) (-1856 . 539652) (-1857 . 539516) (-1858 . 539426)
+ (-1859 . 539291) (-1860 . 539224) (-1861 . 539156) (-1862 . 539069)
+ (-1863 . 538982) (-1864 . 538815) (-1865 . 538741) (-1866 . 538597)
+ (-1867 . 538137) (-1868 . 537758) (-1869 . 536996) (-1870 . 536852)
+ (-1871 . 536708) (-1872 . 536546) (-1873 . 536309) (-1874 . 536169)
+ (-1875 . 536023) (-1876 . 535784) (-1877 . 535548) (-1878 . 535309)
+ (-1879 . 535117) (-1880 . 534994) (-1881 . 534790) (-1882 . 534567)
+ (-1883 . 534328) (-1884 . 534187) (-1885 . 534049) (-1886 . 533910)
+ (-1887 . 533657) (-1888 . 533401) (-1889 . 533244) (-1890 . 533090)
+ (-1891 . 532850) (-1892 . 532565) (-1893 . 532427) (-1894 . 532340)
+ (-1895 . 531674) (-1896 . 531498) (-1897 . 531316) (-1898 . 531140)
+ (-1899 . 530958) (-1900 . 530779) (-1901 . 530600) (-1902 . 530413)
+ (-1903 . 530031) (-1904 . 529852) (-1905 . 529673) (-1906 . 529486)
+ (-1907 . 529104) (-1908 . 528111) (-1909 . 527727) (-1910 . 527343)
+ (-1911 . 527225) (-1912 . 527068) (-1913 . 526926) (-1914 . 526809)
+ (-1915 . 526627) (-1916 . 526503) (-1917 . 526214) (-1918 . 525925)
+ (-1919 . 525642) (-1920 . 525359) (-1921 . 525081) (-1922 . 524993)
+ (-1923 . 524908) (-1924 . 524811) (-1925 . 524714) (-1926 . 524494)
+ (-1927 . 524394) (-1928 . 524291) (-1929 . 524213) (-1930 . 523888)
+ (-1931 . 523596) (-1932 . 523523) (-1933 . 523138) (-1934 . 523110)
+ (-1935 . 522911) (-1936 . 522737) (-1937 . 522496) (-1938 . 522441)
+ (-1939 . 522366) (-1940 . 521998) (-1941 . 521883) (-1942 . 521806)
+ (-1943 . 521733) (-1944 . 521652) (-1945 . 521571) (-1946 . 521490)
+ (-1947 . 521389) (-1948 . 521330) (-1949 . 521277) (-1950 . 521223)
+ (-1951 . 520891) (-1952 . 520567) (-1953 . 520379) (-1954 . 520188)
+ (-1955 . 520024) (-1956 . 519689) (-1957 . 519522) (-1958 . 519281)
+ (-1959 . 518957) (-1960 . 518767) (-1961 . 518552) (-1962 . 518381)
+ (-1963 . 517959) (-1964 . 517732) (-1965 . 517461) (-1966 . 517324)
+ (-1967 . 517183) (-1968 . 516706) (-1969 . 516583) (-1970 . 516347)
+ (-1971 . 516093) (-1972 . 515843) (-1973 . 515550) (-1974 . 515410)
+ (-1975 . 515270) (-1976 . 515130) (-1977 . 514941) (-1978 . 514752)
+ (-1979 . 514577) (-1980 . 514303) (-1981 . 513868) (-1982 . 513840)
+ (-1983 . 513768) (-1984 . 513635) (-1985 . 513560) (-1986 . 513401)
+ (-1987 . 513238) (-1988 . 513077) (-1989 . 512910) (-1990 . 512857)
+ (-1991 . 512804) (-1992 . 512675) (-1993 . 512615) (-1994 . 512562)
+ (-1995 . 512492) (-1996 . 512432) (-1997 . 512373) (-1998 . 512313)
+ (-1999 . 512254) (-2000 . 512194) (-2001 . 512135) (-2002 . 512076)
+ (-2003 . 511934) (-2004 . 511839) (-2005 . 511748) (-2006 . 511632)
+ (-2007 . 511538) (-2008 . 511440) (-2009 . 511346) (-2010 . 511205)
+ (-2011 . 510943) (-2012 . 510087) (-2013 . 509931) (-2014 . 509562)
+ (-2015 . 509506) (-2016 . 509455) (-2017 . 509352) (-2018 . 509267)
+ (-2019 . 509179) (-2020 . 509033) (-2021 . 508884) (-2022 . 508594)
+ (-2023 . 508516) (-2024 . 508441) (-2025 . 508388) (-2026 . 508335)
+ (-2027 . 508304) (-2028 . 508241) (-2029 . 508123) (-2030 . 508034)
+ (-2031 . 507914) (-2032 . 507619) (-2033 . 507425) (-2034 . 507237)
+ (-2035 . 507092) (-2036 . 506947) (-2037 . 506661) (-2038 . 506219)
+ (-2039 . 506185) (-2040 . 506148) (-2041 . 506111) (-2042 . 506074)
+ (-2043 . 506037) (-2044 . 506006) (-2045 . 505975) (-2046 . 505944)
+ (-2047 . 505910) (-2048 . 505876) (-2049 . 505822) (-2050 . 505646)
+ (-2051 . 505412) (-2052 . 505178) (-2053 . 504949) (-2054 . 504897)
+ (-2055 . 504842) (-2056 . 504773) (-2057 . 504685) (-2058 . 504616)
+ (-2059 . 504544) (-2060 . 504314) (-2061 . 504263) (-2062 . 504209)
+ (-2063 . 504178) (-2064 . 504072) (-2065 . 503847) (-2066 . 503537)
+ (-2067 . 503363) (-2068 . 503181) (-2069 . 502910) (-2070 . 502837)
+ (-2071 . 502772) (-2072 . 502296) (-2073 . 501734) (-2074 . 501008)
+ (-2075 . 500447) (-2076 . 499819) (-2077 . 499240) (-2078 . 499166)
+ (-2079 . 499114) (-2080 . 499062) (-2081 . 498988) (-2082 . 498933)
+ (-2083 . 498881) (-2084 . 498829) (-2085 . 498777) (-2086 . 498707)
+ (-2087 . 498259) (-2088 . 498053) (-2089 . 497804) (-2090 . 497470)
+ (-2091 . 497216) (-2092 . 496914) (-2093 . 496711) (-2094 . 496422)
+ (-2095 . 495874) (-2096 . 495737) (-2097 . 495535) (-2098 . 495255)
+ (-2099 . 495170) (-2100 . 494837) (-2101 . 494696) (-2102 . 494405)
+ (-2103 . 494185) (-2104 . 494059) (-2105 . 493934) (-2106 . 493787)
+ (-2107 . 493643) (-2108 . 493527) (-2109 . 493396) (-2110 . 493024)
+ (-2111 . 492764) (-2112 . 492494) (-2113 . 492254) (-2114 . 491924)
+ (-2115 . 491584) (-2116 . 491176) (-2117 . 490758) (-2118 . 490561)
+ (-2119 . 490286) (-2120 . 490118) (-2121 . 489922) (-2122 . 489700)
+ (-2123 . 489545) (-2124 . 489360) (-2125 . 489257) (-2126 . 489229)
+ (-2127 . 489201) (-2128 . 489027) (-2129 . 488953) (-2130 . 488892)
+ (-2131 . 488839) (-2132 . 488770) (-2133 . 488701) (-2134 . 488582)
+ (-2135 . 488404) (-2136 . 488349) (-2137 . 488103) (-2138 . 488030)
+ (-2139 . 487960) (-2140 . 487890) (-2141 . 487801) (-2142 . 487611)
+ (-2143 . 487538) (-2144 . 487469) (-2145 . 487404) (-2146 . 487349)
+ (-2147 . 487258) (-2148 . 486967) (-2149 . 486641) (-2150 . 486567)
+ (-2151 . 486245) (-2152 . 486040) (-2153 . 485955) (-2154 . 485870)
+ (-2155 . 485785) (-2156 . 485700) (-2157 . 485615) (-2158 . 485530)
+ (-2159 . 485445) (-2160 . 485360) (-2161 . 485275) (-2162 . 485190)
+ (-2163 . 485105) (-2164 . 485020) (-2165 . 484935) (-2166 . 484850)
+ (-2167 . 484765) (-2168 . 484680) (-2169 . 484595) (-2170 . 484510)
+ (-2171 . 484425) (-2172 . 484340) (-2173 . 484255) (-2174 . 484170)
+ (-2175 . 484085) (-2176 . 484000) (-2177 . 483915) (-2178 . 483830)
+ (-2179 . 483728) (-2180 . 483640) (-2181 . 483432) (-2182 . 483374)
+ (-2183 . 483319) (-2184 . 483232) (-2185 . 483121) (-2186 . 483035)
+ (-2187 . 482889) (-2188 . 482827) (-2189 . 482799) (-2190 . 482771)
+ (-2191 . 482743) (-2192 . 482715) (-2193 . 482546) (-2194 . 482395)
+ (-2195 . 482244) (-2196 . 482072) (-2197 . 481864) (-2198 . 481743)
+ (-2199 . 481538) (-2200 . 481446) (-2201 . 481354) (-2202 . 481225)
+ (-2203 . 481130) (-2204 . 481036) (-2205 . 480941) (-2206 . 480817)
+ (-2207 . 480789) (-2208 . 480761) (-2209 . 480733) (-2210 . 480705)
+ (-2211 . 480677) (-2212 . 480649) (-2213 . 480621) (-2214 . 480593)
+ (-2215 . 480565) (-2216 . 480537) (-2217 . 480509) (-2218 . 480481)
+ (-2219 . 480453) (-2220 . 480425) (-2221 . 480397) (-2222 . 480369)
+ (-2223 . 480316) (-2224 . 480288) (-2225 . 480260) (-2226 . 480182)
+ (-2227 . 480129) (-2228 . 480076) (-2229 . 480023) (-2230 . 479945)
+ (-2231 . 479855) (-2232 . 479760) (-2233 . 479666) (-2234 . 479584)
+ (-2235 . 479278) (-2236 . 479082) (-2237 . 478987) (-2238 . 478879)
+ (-2239 . 478468) (-2240 . 478440) (-2241 . 478276) (-2242 . 478199)
+ (-2243 . 478012) (-2244 . 477833) (-2245 . 477409) (-2246 . 477257)
+ (-2247 . 477077) (-2248 . 476904) (-2249 . 476644) (-2250 . 476392)
+ (-2251 . 475581) (-2252 . 475414) (-2253 . 475196) (-2254 . 474372)
+ (-2255 . 474241) (-2256 . 474110) (-2257 . 473979) (-2258 . 473848)
+ (-2259 . 473717) (-2260 . 473586) (-2261 . 473391) (-2262 . 473197)
+ (-2263 . 473054) (-2264 . 472739) (-2265 . 472624) (-2266 . 472284)
+ (-2267 . 472124) (-2268 . 471985) (-2269 . 471846) (-2270 . 471717)
+ (-2271 . 471632) (-2272 . 471580) (-2273 . 471100) (-2274 . 469838)
+ (-2275 . 469711) (-2276 . 469569) (-2277 . 469233) (-2278 . 469128)
+ (-2279 . 468879) (-2280 . 468647) (-2281 . 468542) (-2282 . 468467)
+ (-2283 . 468392) (-2284 . 468317) (-2285 . 468258) (-2286 . 468188)
+ (-2287 . 468135) (-2288 . 468073) (-2289 . 468003) (-2290 . 467640)
+ (-2291 . 467353) (-2292 . 467243) (-2293 . 467056) (-2294 . 466963)
+ (-2295 . 466870) (-2296 . 466783) (-2297 . 466566) (-2298 . 466347)
+ (-2299 . 465929) (-2300 . 465657) (-2301 . 465514) (-2302 . 465421)
+ (-2303 . 465278) (-2304 . 465126) (-2305 . 464972) (-2306 . 464902)
+ (-2307 . 464695) (-2308 . 464518) (-2309 . 464309) (-2310 . 464132)
+ (-2311 . 464098) (-2312 . 464064) (-2313 . 464033) (-2314 . 463915)
+ (-2315 . 463620) (-2316 . 463342) (-2317 . 463221) (-2318 . 463094)
+ (-2319 . 463009) (-2320 . 462936) (-2321 . 462847) (-2322 . 462776)
+ (-2323 . 462720) (-2324 . 462664) (-2325 . 462608) (-2326 . 462538)
+ (-2327 . 462468) (-2328 . 462398) (-2329 . 462300) (-2330 . 462222)
+ (-2331 . 462144) (-2332 . 462001) (-2333 . 461922) (-2334 . 461850)
+ (-2335 . 461647) (-2336 . 461591) (-2337 . 461403) (-2338 . 461304)
+ (-2339 . 461186) (-2340 . 461065) (-2341 . 460922) (-2342 . 460779)
+ (-2343 . 460639) (-2344 . 460499) (-2345 . 460356) (-2346 . 460230)
+ (-2347 . 460101) (-2348 . 459978) (-2349 . 459855) (-2350 . 459750)
+ (-2351 . 459645) (-2352 . 459543) (-2353 . 459393) (-2354 . 459240)
+ (-2355 . 459087) (-2356 . 458943) (-2357 . 458789) (-2358 . 458713)
+ (-2359 . 458634) (-2360 . 458481) (-2361 . 458402) (-2362 . 458323)
+ (-2363 . 458244) (-2364 . 458142) (-2365 . 458083) (-2366 . 458021)
+ (-2367 . 457904) (-2368 . 457780) (-2369 . 457703) (-2370 . 457571)
+ (-2371 . 457265) (-2372 . 457082) (-2373 . 456537) (-2374 . 456317)
+ (-2375 . 456143) (-2376 . 455973) (-2377 . 455900) (-2378 . 455824)
+ (-2379 . 455745) (-2380 . 455448) (-2381 . 455286) (-2382 . 455052)
+ (-2383 . 454610) (-2384 . 454480) (-2385 . 454340) (-2386 . 454031)
+ (-2387 . 453729) (-2388 . 453413) (-2389 . 453007) (-2390 . 452939)
+ (-2391 . 452871) (-2392 . 452803) (-2393 . 452709) (-2394 . 452602)
+ (-2395 . 452495) (-2396 . 452394) (-2397 . 452293) (-2398 . 452192)
+ (-2399 . 452115) (-2400 . 451722) (-2401 . 451305) (-2402 . 450678)
+ (-2403 . 450614) (-2404 . 450495) (-2405 . 450376) (-2406 . 450268)
+ (-2407 . 450160) (-2408 . 450004) (-2409 . 449404) (-2410 . 449121)
+ (-2411 . 449042) (-2412 . 448988) (-2413 . 448820) (-2414 . 448698)
+ (-2415 . 448302) (-2416 . 448066) (-2417 . 447865) (-2418 . 447657)
+ (-2419 . 447464) (-2420 . 447197) (-2421 . 447123) (-2422 . 446944)
+ (-2423 . 446875) (-2424 . 446799) (-2425 . 446658) (-2426 . 446455)
+ (-2427 . 446311) (-2428 . 446061) (-2429 . 445753) (-2430 . 445397)
+ (-2431 . 445238) (-2432 . 445032) (-2433 . 444872) (-2434 . 444799)
+ (-2435 . 444765) (-2436 . 444700) (-2437 . 444663) (-2438 . 444526)
+ (-2439 . 444288) (-2440 . 444218) (-2441 . 444032) (-2442 . 443783)
+ (-2443 . 443627) (-2444 . 443104) (-2445 . 442907) (-2446 . 442695)
+ (-2447 . 442533) (-2448 . 442134) (-2449 . 441967) (-2450 . 440892)
+ (-2451 . 440769) (-2452 . 440552) (-2453 . 440422) (-2454 . 440292)
+ (-2455 . 440135) (-2456 . 440032) (-2457 . 439974) (-2458 . 439916)
+ (-2459 . 439810) (-2460 . 439704) (-2461 . 438788) (-2462 . 436661)
+ (-2463 . 435847) (-2464 . 434044) (-2465 . 433976) (-2466 . 433908)
+ (-2467 . 433840) (-2468 . 433772) (-2469 . 433704) (-2470 . 433626)
+ (-2471 . 433270) (-2472 . 433088) (-2473 . 432549) (-2474 . 432373)
+ (-2475 . 432152) (-2476 . 431931) (-2477 . 431710) (-2478 . 431492)
+ (-2479 . 431274) (-2480 . 431056) (-2481 . 430838) (-2482 . 430620)
+ (-2483 . 430402) (-2484 . 430301) (-2485 . 429568) (-2486 . 429513)
+ (-2487 . 429458) (-2488 . 429403) (-2489 . 429348) (-2490 . 429198)
+ (-2491 . 428950) (-2492 . 428789) (-2493 . 428609) (-2494 . 428322)
+ (-2495 . 427936) (-2496 . 427064) (-2497 . 426724) (-2498 . 426556)
+ (-2499 . 426334) (-2500 . 426084) (-2501 . 425736) (-2502 . 424726)
+ (-2503 . 424415) (-2504 . 424203) (-2505 . 423639) (-2506 . 423126)
+ (-2507 . 421370) (-2508 . 420898) (-2509 . 420299) (-2510 . 420049)
+ (-2511 . 419915) (-2512 . 419703) (-2513 . 419627) (-2514 . 419551)
+ (-2515 . 419444) (-2516 . 419262) (-2517 . 419097) (-2518 . 418919)
+ (-2519 . 418338) (-2520 . 418177) (-2521 . 417604) (-2522 . 417534)
+ (-2523 . 417459) (-2524 . 417387) (-2525 . 417249) (-2526 . 417062)
+ (-2527 . 416955) (-2528 . 416848) (-2529 . 416733) (-2530 . 416618)
+ (-2531 . 416503) (-2532 . 416225) (-2533 . 416075) (-2534 . 415932)
+ (-2535 . 415859) (-2536 . 415774) (-2537 . 415701) (-2538 . 415628)
+ (-2539 . 415555) (-2540 . 415412) (-2541 . 415262) (-2542 . 415088)
+ (-2543 . 414938) (-2544 . 414788) (-2545 . 414662) (-2546 . 414276)
+ (-2547 . 413992) (-2548 . 413708) (-2549 . 413299) (-2550 . 413015)
+ (-2551 . 412942) (-2552 . 412795) (-2553 . 412689) (-2554 . 412615)
+ (-2555 . 412545) (-2556 . 412466) (-2557 . 412389) (-2558 . 412312)
+ (-2559 . 412163) (-2560 . 412060) (-2561 . 412002) (-2562 . 411938)
+ (-2563 . 411874) (-2564 . 411777) (-2565 . 411680) (-2566 . 411520)
+ (-2567 . 411434) (-2568 . 411348) (-2569 . 411263) (-2570 . 411204)
+ (-2571 . 411145) (-2572 . 411086) (-2573 . 411027) (-2574 . 410857)
+ (-2575 . 410769) (-2576 . 410672) (-2577 . 410638) (-2578 . 410607)
+ (-2579 . 410523) (-2580 . 410467) (-2581 . 410405) (-2582 . 410371)
+ (-2583 . 410337) (-2584 . 410303) (-2585 . 410269) (-2586 . 410235)
+ (-2587 . 410201) (-2588 . 410167) (-2589 . 410133) (-2590 . 410099)
+ (-2591 . 409987) (-2592 . 409953) (-2593 . 409902) (-2594 . 409868)
+ (-2595 . 409771) (-2596 . 409709) (-2597 . 409618) (-2598 . 409527)
+ (-2599 . 409472) (-2600 . 409420) (-2601 . 409368) (-2602 . 409316)
+ (-2603 . 409264) (-2604 . 408841) (-2605 . 408675) (-2606 . 408622)
+ (-2607 . 408553) (-2608 . 408500) (-2609 . 408369) (-2610 . 408213)
+ (-2611 . 407692) (-2612 . 407551) (-2613 . 407517) (-2614 . 407462)
+ (-2615 . 406752) (-2616 . 406437) (-2617 . 405933) (-2618 . 405855)
+ (-2619 . 405803) (-2620 . 405751) (-2621 . 405567) (-2622 . 405515)
+ (-2623 . 405463) (-2624 . 405387) (-2625 . 405325) (-2626 . 405107)
+ (-2627 . 405040) (-2628 . 404946) (-2629 . 404852) (-2630 . 404669)
+ (-2631 . 404587) (-2632 . 404465) (-2633 . 404319) (-2634 . 403668)
+ (-2635 . 402966) (-2636 . 402862) (-2637 . 402761) (-2638 . 402660)
+ (-2639 . 402549) (-2640 . 402381) (-2641 . 402177) (-2642 . 402084)
+ (-2643 . 402007) (-2644 . 401951) (-2645 . 401881) (-2646 . 401761)
+ (-2647 . 401660) (-2648 . 401563) (-2649 . 401483) (-2650 . 401403)
+ (-2651 . 401326) (-2652 . 401256) (-2653 . 401186) (-2654 . 401116)
+ (-2655 . 401046) (-2656 . 400976) (-2657 . 400906) (-2658 . 400813)
+ (-2659 . 400685) (-2660 . 400443) (-2661 . 400273) (-2662 . 399904)
+ (-2663 . 399735) (-2664 . 399619) (-2665 . 399123) (-2666 . 398742)
+ (-2667 . 398496) (-2668 . 398404) (-2669 . 398307) (-2670 . 397645)
+ (-2671 . 397532) (-2672 . 397458) (-2673 . 397366) (-2674 . 397176)
+ (-2675 . 396986) (-2676 . 396915) (-2677 . 396844) (-2678 . 396763)
+ (-2679 . 396682) (-2680 . 396557) (-2681 . 396424) (-2682 . 396343)
+ (-2683 . 396269) (-2684 . 396104) (-2685 . 395947) (-2686 . 395719)
+ (-2687 . 395571) (-2688 . 395467) (-2689 . 395363) (-2690 . 395278)
+ (-2691 . 394910) (-2692 . 394829) (-2693 . 394742) (-2694 . 394661)
+ (-2695 . 394465) (-2696 . 394245) (-2697 . 394058) (-2698 . 393736)
+ (-2699 . 393443) (-2700 . 393150) (-2701 . 392840) (-2702 . 392523)
+ (-2703 . 392371) (-2704 . 392183) (-2705 . 391710) (-2706 . 391628)
+ (-2707 . 391412) (-2708 . 391196) (-2709 . 390937) (-2710 . 390516)
+ (-2711 . 390003) (-2712 . 389873) (-2713 . 389599) (-2714 . 389420)
+ (-2715 . 389305) (-2716 . 389201) (-2717 . 389146) (-2718 . 389069)
+ (-2719 . 388999) (-2720 . 388926) (-2721 . 388871) (-2722 . 388798)
+ (-2723 . 388743) (-2724 . 388388) (-2725 . 387980) (-2726 . 387827)
+ (-2727 . 387674) (-2728 . 387593) (-2729 . 387440) (-2730 . 387287)
+ (-2731 . 387152) (-2732 . 387017) (-2733 . 386882) (-2734 . 386747)
+ (-2735 . 386612) (-2736 . 386477) (-2737 . 386421) (-2738 . 386268)
+ (-2739 . 386157) (-2740 . 386046) (-2741 . 385961) (-2742 . 385851)
+ (-2743 . 385748) (-2744 . 381597) (-2745 . 381149) (-2746 . 380722)
+ (-2747 . 380105) (-2748 . 379504) (-2749 . 379286) (-2750 . 379108)
+ (-2751 . 378849) (-2752 . 378438) (-2753 . 378144) (-2754 . 377701)
+ (-2755 . 377523) (-2756 . 377130) (-2757 . 376737) (-2758 . 376552)
+ (-2759 . 376345) (-2760 . 376125) (-2761 . 375819) (-2762 . 375620)
+ (-2763 . 374991) (-2764 . 374834) (-2765 . 374445) (-2766 . 374394)
+ (-2767 . 374345) (-2768 . 374294) (-2769 . 374246) (-2770 . 374194)
+ (-2771 . 374048) (-2772 . 373996) (-2773 . 373850) (-2774 . 373798)
+ (-2775 . 373652) (-2776 . 373601) (-2777 . 373226) (-2778 . 373175)
+ (-2779 . 373126) (-2780 . 373075) (-2781 . 373027) (-2782 . 372975)
+ (-2783 . 372926) (-2784 . 372874) (-2785 . 372825) (-2786 . 372773)
+ (-2787 . 372724) (-2788 . 372658) (-2789 . 372540) (-2790 . 371378)
+ (-2791 . 370961) (-2792 . 370853) (-2793 . 370611) (-2794 . 370461)
+ (-2795 . 370311) (-2796 . 370150) (-2797 . 367943) (-2798 . 367682)
+ (-2799 . 367528) (-2800 . 367382) (-2801 . 367236) (-2802 . 367017)
+ (-2803 . 366885) (-2804 . 366810) (-2805 . 366735) (-2806 . 366600)
+ (-2807 . 366471) (-2808 . 366342) (-2809 . 366216) (-2810 . 366090)
+ (-2811 . 365964) (-2812 . 365838) (-2813 . 365735) (-2814 . 365635)
+ (-2815 . 365541) (-2816 . 365411) (-2817 . 365260) (-2818 . 364884)
+ (-2819 . 364770) (-2820 . 364529) (-2821 . 364071) (-2822 . 363761)
+ (-2823 . 363194) (-2824 . 362625) (-2825 . 361615) (-2826 . 361073)
+ (-2827 . 360760) (-2828 . 360422) (-2829 . 360091) (-2830 . 359771)
+ (-2831 . 359718) (-2832 . 359591) (-2833 . 359089) (-2834 . 357946)
+ (-2835 . 357891) (-2836 . 357836) (-2837 . 357760) (-2838 . 357641)
+ (-2839 . 357566) (-2840 . 357491) (-2841 . 357413) (-2842 . 357190)
+ (-2843 . 357131) (-2844 . 357072) (-2845 . 356969) (-2846 . 356866)
+ (-2847 . 356763) (-2848 . 356660) (-2849 . 356579) (-2850 . 356505)
+ (-2851 . 356290) (-2852 . 356056) (-2853 . 356022) (-2854 . 355988)
+ (-2855 . 355960) (-2856 . 355932) (-2857 . 355715) (-2858 . 355437)
+ (-2859 . 355287) (-2860 . 355157) (-2861 . 355027) (-2862 . 354927)
+ (-2863 . 354750) (-2864 . 354590) (-2865 . 354490) (-2866 . 354313)
+ (-2867 . 354153) (-2868 . 353994) (-2869 . 353855) (-2870 . 353705)
+ (-2871 . 353575) (-2872 . 353445) (-2873 . 353298) (-2874 . 353171)
+ (-2875 . 353068) (-2876 . 352961) (-2877 . 352864) (-2878 . 352699)
+ (-2879 . 352551) (-2880 . 352136) (-2881 . 352036) (-2882 . 351933)
+ (-2883 . 351845) (-2884 . 351765) (-2885 . 351615) (-2886 . 351485)
+ (-2887 . 351433) (-2888 . 351360) (-2889 . 351285) (-2890 . 351226)
+ (-2891 . 351114) (-2892 . 350802) (-2893 . 350625) (-2894 . 349027)
+ (-2895 . 348399) (-2896 . 348339) (-2897 . 348221) (-2898 . 348103)
+ (-2899 . 347959) (-2900 . 347807) (-2901 . 347648) (-2902 . 347489)
+ (-2903 . 347283) (-2904 . 347096) (-2905 . 346944) (-2906 . 346789)
+ (-2907 . 346634) (-2908 . 346482) (-2909 . 346345) (-2910 . 345922)
+ (-2911 . 345796) (-2912 . 345670) (-2913 . 345544) (-2914 . 345404)
+ (-2915 . 345263) (-2916 . 345122) (-2917 . 344978) (-2918 . 344230)
+ (-2919 . 344072) (-2920 . 343886) (-2921 . 343731) (-2922 . 343493)
+ (-2923 . 343248) (-2924 . 343003) (-2925 . 342793) (-2926 . 342656)
+ (-2927 . 342446) (-2928 . 342309) (-2929 . 342099) (-2930 . 341962)
+ (-2931 . 341752) (-2932 . 341449) (-2933 . 341305) (-2934 . 341164)
+ (-2935 . 340941) (-2936 . 340800) (-2937 . 340578) (-2938 . 340381)
+ (-2939 . 340225) (-2940 . 339898) (-2941 . 339739) (-2942 . 339580)
+ (-2943 . 339421) (-2944 . 339250) (-2945 . 339079) (-2946 . 338905)
+ (-2947 . 338553) (-2948 . 338430) (-2949 . 338268) (-2950 . 338195)
+ (-2951 . 338122) (-2952 . 338049) (-2953 . 337976) (-2954 . 337903)
+ (-2955 . 337830) (-2956 . 337707) (-2957 . 337534) (-2958 . 337411)
+ (-2959 . 337325) (-2960 . 337259) (-2961 . 337193) (-2962 . 337127)
+ (-2963 . 337061) (-2964 . 336995) (-2965 . 336929) (-2966 . 336863)
+ (-2967 . 336797) (-2968 . 336731) (-2969 . 336665) (-2970 . 336599)
+ (-2971 . 336533) (-2972 . 336467) (-2973 . 336401) (-2974 . 336335)
+ (-2975 . 336269) (-2976 . 336203) (-2977 . 336137) (-2978 . 336071)
+ (-2979 . 336005) (-2980 . 335939) (-2981 . 335873) (-2982 . 335807)
+ (-2983 . 335741) (-2984 . 335675) (-2985 . 335609) (-2986 . 334962)
+ (-2987 . 334315) (-2988 . 334187) (-2989 . 334064) (-2990 . 333941)
+ (-2991 . 333800) (-2992 . 333646) (-2993 . 333502) (-2994 . 333327)
+ (-2995 . 332717) (-2996 . 332593) (-2997 . 332469) (-2998 . 331791)
+ (-2999 . 331094) (-3000 . 330993) (-3001 . 330937) (-3002 . 330881)
+ (-3003 . 330825) (-3004 . 330769) (-3005 . 330710) (-3006 . 330646)
+ (-3007 . 330538) (-3008 . 330430) (-3009 . 330322) (-3010 . 330043)
+ (-3011 . 329969) (-3012 . 329743) (-3013 . 329662) (-3014 . 329584)
+ (-3015 . 329506) (-3016 . 329428) (-3017 . 329349) (-3018 . 329271)
+ (-3019 . 329178) (-3020 . 329079) (-3021 . 329011) (-3022 . 328962)
+ (-3023 . 328271) (-3024 . 327631) (-3025 . 326840) (-3026 . 326762)
+ (-3027 . 326664) (-3028 . 326575) (-3029 . 326486) (-3030 . 326412)
+ (-3031 . 326338) (-3032 . 326264) (-3033 . 326209) (-3034 . 326154)
+ (-3035 . 326088) (-3036 . 326022) (-3037 . 325960) (-3038 . 325685)
+ (-3039 . 325193) (-3040 . 324735) (-3041 . 324482) (-3042 . 324294)
+ (-3043 . 323953) (-3044 . 323657) (-3045 . 323489) (-3046 . 323358)
+ (-3047 . 323218) (-3048 . 323063) (-3049 . 322894) (-3050 . 321508)
+ (-3051 . 321375) (-3052 . 321234) (-3053 . 321005) (-3054 . 320946)
+ (-3055 . 320890) (-3056 . 320834) (-3057 . 320569) (-3058 . 320357)
+ (-3059 . 320218) (-3060 . 320111) (-3061 . 319994) (-3062 . 319928)
+ (-3063 . 319855) (-3064 . 319741) (-3065 . 319488) (-3066 . 319388)
+ (-3067 . 319194) (-3068 . 318886) (-3069 . 318420) (-3070 . 318315)
+ (-3071 . 318209) (-3072 . 318060) (-3073 . 317920) (-3074 . 317508)
+ (-3075 . 317264) (-3076 . 316606) (-3077 . 316453) (-3078 . 316339)
+ (-3079 . 316229) (-3080 . 315409) (-3081 . 315215) (-3082 . 314189)
+ (-3083 . 313741) (-3084 . 312352) (-3085 . 311501) (-3086 . 311452)
+ (-3087 . 311403) (-3088 . 311354) (-3089 . 311287) (-3090 . 311212)
+ (-3091 . 311022) (-3092 . 310950) (-3093 . 310875) (-3094 . 310803)
+ (-3095 . 310686) (-3096 . 310635) (-3097 . 310556) (-3098 . 310477)
+ (-3099 . 310398) (-3100 . 310347) (-3101 . 310103) (-3102 . 309801)
+ (-3103 . 309719) (-3104 . 309637) (-3105 . 309576) (-3106 . 309187)
+ (-3107 . 308321) (-3108 . 307748) (-3109 . 306531) (-3110 . 305724)
+ (-3111 . 305474) (-3112 . 305224) (-3113 . 304799) (-3114 . 304555)
+ (-3115 . 304311) (-3116 . 304067) (-3117 . 303823) (-3118 . 303579)
+ (-3119 . 303335) (-3120 . 303093) (-3121 . 302851) (-3122 . 302609)
+ (-3123 . 302367) (-3124 . 301789) (-3125 . 301673) (-3126 . 301619)
+ (-3127 . 300777) (-3128 . 300746) (-3129 . 300401) (-3130 . 300175)
+ (-3131 . 300076) (-3132 . 299977) (-3133 . 298211) (-3134 . 298099)
+ (-3135 . 297049) (-3136 . 296957) (-3137 . 296035) (-3138 . 295702)
+ (-3139 . 295369) (-3140 . 295266) (-3141 . 295155) (-3142 . 295044)
+ (-3143 . 294933) (-3144 . 294822) (-3145 . 293735) (-3146 . 293615)
+ (-3147 . 293480) (-3148 . 293348) (-3149 . 293216) (-3150 . 292922)
+ (-3151 . 292628) (-3152 . 292283) (-3153 . 292057) (-3154 . 291831)
+ (-3155 . 291720) (-3156 . 291609) (-3157 . 290147) (-3158 . 288443)
+ (-3159 . 288134) (-3160 . 287982) (-3161 . 287459) (-3162 . 287130)
+ (-3163 . 286937) (-3164 . 286744) (-3165 . 286551) (-3166 . 286358)
+ (-3167 . 286245) (-3168 . 286122) (-3169 . 286008) (-3170 . 285894)
+ (-3171 . 285801) (-3172 . 285708) (-3173 . 285598) (-3174 . 285397)
+ (-3175 . 284253) (-3176 . 284160) (-3177 . 284046) (-3178 . 283953)
+ (-3179 . 283706) (-3180 . 283595) (-3181 . 283381) (-3182 . 283263)
+ (-3183 . 282966) (-3184 . 282238) (-3185 . 281662) (-3186 . 281184)
+ (-3187 . 280940) (-3188 . 280696) (-3189 . 280353) (-3190 . 279747)
+ (-3191 . 279304) (-3192 . 279149) (-3193 . 279005) (-3194 . 278685)
+ (-3195 . 278530) (-3196 . 278390) (-3197 . 278250) (-3198 . 278110)
+ (-3199 . 277835) (-3200 . 277616) (-3201 . 277097) (-3202 . 276885)
+ (-3203 . 276673) (-3204 . 276293) (-3205 . 276119) (-3206 . 275910)
+ (-3207 . 275602) (-3208 . 275410) (-3209 . 275237) (-3210 . 274101)
+ (-3211 . 273736) (-3212 . 273536) (-3213 . 273336) (-3214 . 272500)
+ (-3215 . 272472) (-3216 . 272404) (-3217 . 272334) (-3218 . 272170)
+ (-3219 . 272142) (-3220 . 272114) (-3221 . 272060) (-3222 . 271910)
+ (-3223 . 271851) (-3224 . 271158) (-3225 . 269773) (-3226 . 269712)
+ (-3227 . 269388) (-3228 . 269316) (-3229 . 269259) (-3230 . 269202)
+ (-3231 . 269145) (-3232 . 269088) (-3233 . 269013) (-3234 . 268423)
+ (-3235 . 268063) (-3236 . 267989) (-3237 . 267929) (-3238 . 267811)
+ (-3239 . 266868) (-3240 . 266741) (-3241 . 266528) (-3242 . 266454)
+ (-3243 . 266400) (-3244 . 266346) (-3245 . 266237) (-3246 . 265954)
+ (-3247 . 265846) (-3248 . 265743) (-3249 . 265582) (-3250 . 265481)
+ (-3251 . 265383) (-3252 . 265245) (-3253 . 265107) (-3254 . 264969)
+ (-3255 . 264707) (-3256 . 264498) (-3257 . 264360) (-3258 . 264069)
+ (-3259 . 263917) (-3260 . 263642) (-3261 . 263422) (-3262 . 263270)
+ (-3263 . 263118) (-3264 . 262966) (-3265 . 262814) (-3266 . 262662)
+ (-3267 . 262455) (-3268 . 262068) (-3269 . 261737) (-3270 . 261398)
+ (-3271 . 261051) (-3272 . 260712) (-3273 . 260373) (-3274 . 259992)
+ (-3275 . 259611) (-3276 . 259230) (-3277 . 258865) (-3278 . 258147)
+ (-3279 . 257800) (-3280 . 257355) (-3281 . 256930) (-3282 . 256319)
+ (-3283 . 255727) (-3284 . 255340) (-3285 . 255009) (-3286 . 254622)
+ (-3287 . 254291) (-3288 . 254071) (-3289 . 253550) (-3290 . 253337)
+ (-3291 . 253124) (-3292 . 252911) (-3293 . 252733) (-3294 . 252520)
+ (-3295 . 252342) (-3296 . 251960) (-3297 . 251782) (-3298 . 251572)
+ (-3299 . 251482) (-3300 . 251392) (-3301 . 251301) (-3302 . 251189)
+ (-3303 . 251099) (-3304 . 250992) (-3305 . 250803) (-3306 . 250747)
+ (-3307 . 250666) (-3308 . 250585) (-3309 . 250504) (-3310 . 250427)
+ (-3311 . 250292) (-3312 . 250157) (-3313 . 250033) (-3314 . 249912)
+ (-3315 . 249794) (-3316 . 249658) (-3317 . 249525) (-3318 . 249406)
+ (-3319 . 249148) (-3320 . 248863) (-3321 . 248791) (-3322 . 248695)
+ (-3323 . 248554) (-3324 . 248497) (-3325 . 248440) (-3326 . 248380)
+ (-3327 . 248076) (-3328 . 247681) (-3329 . 247159) (-3330 . 246882)
+ (-3331 . 246462) (-3332 . 246350) (-3333 . 245912) (-3334 . 245682)
+ (-3335 . 245479) (-3336 . 245297) (-3337 . 245167) (-3338 . 244961)
+ (-3339 . 244754) (-3340 . 244564) (-3341 . 244017) (-3342 . 243761)
+ (-3343 . 243470) (-3344 . 243176) (-3345 . 242879) (-3346 . 242579)
+ (-3347 . 242449) (-3348 . 242316) (-3349 . 242180) (-3350 . 242041)
+ (-3351 . 240824) (-3352 . 240516) (-3353 . 240152) (-3354 . 240055)
+ (-3355 . 239815) (-3356 . 239540) (-3357 . 239265) (-3358 . 239006)
+ (-3359 . 238832) (-3360 . 238754) (-3361 . 238667) (-3362 . 238567)
+ (-3363 . 238473) (-3364 . 238392) (-3365 . 238322) (-3366 . 237531)
+ (-3367 . 237461) (-3368 . 237133) (-3369 . 237063) (-3370 . 236735)
+ (-3371 . 236665) (-3372 . 236220) (-3373 . 236150) (-3374 . 236046)
+ (-3375 . 235972) (-3376 . 235898) (-3377 . 235827) (-3378 . 235485)
+ (-3379 . 235357) (-3380 . 235280) (-3381 . 235049) (-3382 . 234906)
+ (-3383 . 234763) (-3384 . 234424) (-3385 . 234094) (-3386 . 233881)
+ (-3387 . 233626) (-3388 . 233276) (-3389 . 233051) (-3390 . 232826)
+ (-3391 . 232601) (-3392 . 232376) (-3393 . 232163) (-3394 . 231950)
+ (-3395 . 231800) (-3396 . 231619) (-3397 . 231514) (-3398 . 231392)
+ (-3399 . 231284) (-3400 . 231176) (-3401 . 230851) (-3402 . 230587)
+ (-3403 . 230276) (-3404 . 229974) (-3405 . 229665) (-3406 . 228946)
+ (-3407 . 228370) (-3408 . 228195) (-3409 . 228051) (-3410 . 227896)
+ (-3411 . 227773) (-3412 . 227668) (-3413 . 227553) (-3414 . 227458)
+ (-3415 . 226977) (-3416 . 226867) (-3417 . 226757) (-3418 . 226647)
+ (-3419 . 225575) (-3420 . 225068) (-3421 . 225001) (-3422 . 224928)
+ (-3423 . 224055) (-3424 . 223982) (-3425 . 223927) (-3426 . 223872)
+ (-3427 . 223840) (-3428 . 223754) (-3429 . 223722) (-3430 . 223636)
+ (-3431 . 223216) (-3432 . 222796) (-3433 . 222244) (-3434 . 221140)
+ (-3435 . 219430) (-3436 . 217880) (-3437 . 217088) (-3438 . 216588)
+ (-3439 . 216102) (-3440 . 215700) (-3441 . 215050) (-3442 . 214975)
+ (-3443 . 214884) (-3444 . 214813) (-3445 . 214742) (-3446 . 214686)
+ (-3447 . 214566) (-3448 . 214512) (-3449 . 214451) (-3450 . 214397)
+ (-3451 . 214294) (-3452 . 213854) (-3453 . 213414) (-3454 . 212974)
+ (-3455 . 212452) (-3456 . 212291) (-3457 . 212130) (-3458 . 211819)
+ (-3459 . 211733) (-3460 . 211643) (-3461 . 211285) (-3462 . 211168)
+ (-3463 . 211087) (-3464 . 210929) (-3465 . 210816) (-3466 . 210741)
+ (-3467 . 209895) (-3468 . 208713) (-3469 . 208614) (-3470 . 208515)
+ (-3471 . 208186) (-3472 . 208108) (-3473 . 208033) (-3474 . 207927)
+ (-3475 . 207771) (-3476 . 207664) (-3477 . 207529) (-3478 . 207394)
+ (-3479 . 207272) (-3480 . 207177) (-3481 . 207029) (-3482 . 206934)
+ (-3483 . 206779) (-3484 . 206624) (-3485 . 206072) (-3486 . 205520)
+ (-3487 . 204905) (-3488 . 204353) (-3489 . 203801) (-3490 . 203249)
+ (-3491 . 202696) (-3492 . 202143) (-3493 . 201590) (-3494 . 201037)
+ (-3495 . 200484) (-3496 . 199931) (-3497 . 199379) (-3498 . 198827)
+ (-3499 . 198275) (-3500 . 197723) (-3501 . 197171) (-3502 . 196619)
+ (-3503 . 196515) (-3504 . 195930) (-3505 . 195825) (-3506 . 195750)
+ (-3507 . 195608) (-3508 . 195516) (-3509 . 195425) (-3510 . 195333)
+ (-3511 . 195238) (-3512 . 195133) (-3513 . 195010) (-3514 . 194888)
+ (-3515 . 194524) (-3516 . 194402) (-3517 . 194304) (-3518 . 193943)
+ (-3519 . 193414) (-3520 . 193339) (-3521 . 193264) (-3522 . 193172)
+ (-3523 . 192991) (-3524 . 192896) (-3525 . 192821) (-3526 . 192730)
+ (-3527 . 192639) (-3528 . 192480) (-3529 . 191931) (-3530 . 191382)
+ (-3531 . 188675) (-3532 . 188503) (-3533 . 187093) (-3534 . 186533)
+ (-3535 . 186418) (-3536 . 186046) (-3537 . 185983) (-3538 . 185920)
+ (-3539 . 185857) (-3540 . 185579) (-3541 . 185312) (-3542 . 185260)
+ (-3543 . 184619) (-3544 . 184568) (-3545 . 184380) (-3546 . 184307)
+ (-3547 . 184227) (-3548 . 184114) (-3549 . 183924) (-3550 . 183560)
+ (-3551 . 183288) (-3552 . 183237) (-3553 . 183186) (-3554 . 183116)
+ (-3555 . 182997) (-3556 . 182968) (-3557 . 182864) (-3558 . 182742)
+ (-3559 . 182688) (-3560 . 182511) (-3561 . 182450) (-3562 . 182269)
+ (-3563 . 182208) (-3564 . 182136) (-3565 . 181661) (-3566 . 181287)
+ (-3567 . 177755) (-3568 . 177703) (-3569 . 177575) (-3570 . 177425)
+ (-3571 . 177373) (-3572 . 177232) (-3573 . 175174) (-3574 . 167567)
+ (-3575 . 167416) (-3576 . 167346) (-3577 . 167295) (-3578 . 167245)
+ (-3579 . 167194) (-3580 . 167143) (-3581 . 166947) (-3582 . 166805)
+ (-3583 . 166691) (-3584 . 166570) (-3585 . 166452) (-3586 . 166340)
+ (-3587 . 166222) (-3588 . 166117) (-3589 . 166036) (-3590 . 165932)
+ (-3591 . 164998) (-3592 . 164778) (-3593 . 164541) (-3594 . 164459)
+ (-3595 . 164115) (-3596 . 162976) (-3597 . 162902) (-3598 . 162807)
+ (-3599 . 162733) (-3600 . 162529) (-3601 . 162438) (-3602 . 162322)
+ (-3603 . 162209) (-3604 . 162118) (-3605 . 162027) (-3606 . 161938)
+ (-3607 . 161849) (-3608 . 161760) (-3609 . 161672) (-3610 . 161184)
+ (-3611 . 161120) (-3612 . 161056) (-3613 . 160992) (-3614 . 160931)
+ (-3615 . 160191) (-3616 . 160130) (-3617 . 160069) (-3618 . 159443)
+ (-3619 . 159391) (-3620 . 159263) (-3621 . 159199) (-3622 . 159145)
+ (-3623 . 159036) (-3624 . 157739) (-3625 . 157658) (-3626 . 157569)
+ (-3627 . 157511) (-3628 . 157371) (-3629 . 157286) (-3630 . 157212)
+ (-3631 . 157127) (-3632 . 157070) (-3633 . 156854) (-3634 . 156715)
+ (-3635 . 156108) (-3636 . 155554) (-3637 . 155000) (-3638 . 154446)
+ (-3639 . 153839) (-3640 . 153285) (-3641 . 152725) (-3642 . 152165)
+ (-3643 . 151903) (-3644 . 151464) (-3645 . 151131) (-3646 . 150792)
+ (-3647 . 150487) (-3648 . 150354) (-3649 . 150221) (-3650 . 149833)
+ (-3651 . 149740) (-3652 . 149647) (-3653 . 149554) (-3654 . 149461)
+ (-3655 . 149368) (-3656 . 149275) (-3657 . 149182) (-3658 . 149089)
+ (-3659 . 148996) (-3660 . 148903) (-3661 . 148810) (-3662 . 148717)
+ (-3663 . 148624) (-3664 . 148531) (-3665 . 148438) (-3666 . 148345)
+ (-3667 . 148252) (-3668 . 148159) (-3669 . 148066) (-3670 . 147973)
+ (-3671 . 147880) (-3672 . 147787) (-3673 . 147694) (-3674 . 147601)
+ (-3675 . 147508) (-3676 . 147323) (-3677 . 147013) (-3678 . 145385)
+ (-3679 . 145231) (-3680 . 145094) (-3681 . 144952) (-3682 . 144750)
+ (-3683 . 142823) (-3684 . 142696) (-3685 . 142572) (-3686 . 142445)
+ (-3687 . 142224) (-3688 . 142003) (-3689 . 141876) (-3690 . 141675)
+ (-3691 . 141499) (-3692 . 140982) (-3693 . 140465) (-3694 . 140188)
+ (-3695 . 139779) (-3696 . 139262) (-3697 . 139078) (-3698 . 138936)
+ (-3699 . 138441) (-3700 . 137810) (-3701 . 137754) (-3702 . 137660)
+ (-3703 . 137541) (-3704 . 137471) (-3705 . 137398) (-3706 . 137168)
+ (-3707 . 136549) (-3708 . 136119) (-3709 . 136037) (-3710 . 135895)
+ (-3711 . 135425) (-3712 . 135303) (-3713 . 135181) (-3714 . 135041)
+ (-3715 . 134854) (-3716 . 134738) (-3717 . 134458) (-3718 . 134390)
+ (-3719 . 134192) (-3720 . 134012) (-3721 . 133857) (-3722 . 133750)
+ (-3723 . 133699) (-3724 . 133322) (-3725 . 132794) (-3726 . 132572)
+ (-3727 . 132350) (-3728 . 132111) (-3729 . 132021) (-3730 . 130279)
+ (-3731 . 129697) (-3732 . 129619) (-3733 . 124159) (-3734 . 123369)
+ (-3735 . 122992) (-3736 . 122921) (-3737 . 122656) (-3738 . 122481)
+ (-3739 . 121996) (-3740 . 121574) (-3741 . 121134) (-3742 . 120271)
+ (-3743 . 120147) (-3744 . 120020) (-3745 . 119911) (-3746 . 119759)
+ (-3747 . 119645) (-3748 . 119506) (-3749 . 119425) (-3750 . 119344)
+ (-3751 . 119240) (-3752 . 118822) (-3753 . 118401) (-3754 . 118327)
+ (-3755 . 118064) (-3756 . 117800) (-3757 . 117421) (-3758 . 116722)
+ (-3759 . 115679) (-3760 . 115620) (-3761 . 115546) (-3762 . 115472)
+ (-3763 . 115350) (-3764 . 115100) (-3765 . 115014) (-3766 . 114939)
+ (-3767 . 114864) (-3768 . 114769) (-3769 . 110994) (-3770 . 109824)
+ (-3771 . 109164) (-3772 . 108980) (-3773 . 106775) (-3774 . 106450)
+ (-3775 . 105968) (-3776 . 105527) (-3777 . 105292) (-3778 . 105047)
+ (-3779 . 104957) (-3780 . 103522) (-3781 . 103444) (-3782 . 103339)
+ (-3783 . 101863) (-3784 . 101458) (-3785 . 101057) (-3786 . 100961)
+ (-3787 . 100882) (-3788 . 100727) (-3789 . 99606) (-3790 . 99527)
+ (-3791 . 99451) (-3792 . 99105) (-3793 . 99048) (-3794 . 98976)
+ (-3795 . 98919) (-3796 . 98862) (-3797 . 98732) (-3798 . 98530)
+ (-3799 . 98162) (-3800 . 97741) (-3801 . 93931) (-3802 . 93329)
+ (-3803 . 92862) (-3804 . 92649) (-3805 . 92436) (-3806 . 92270)
+ (-3807 . 92057) (-3808 . 91891) (-3809 . 91725) (-3810 . 91559)
+ (-3811 . 91393) (-3812 . 91123) (-3813 . 85709) (** . 82756) (-3815 . 82340)
+ (-3816 . 82099) (-3817 . 82043) (-3818 . 81551) (-3819 . 78743)
+ (-3820 . 78593) (-3821 . 78429) (-3822 . 78265) (-3823 . 78169)
+ (-3824 . 78051) (-3825 . 77927) (-3826 . 77784) (-3827 . 77613)
+ (-3828 . 77487) (-3829 . 77343) (-3830 . 77191) (-3831 . 77032)
+ (-3832 . 76519) (-3833 . 76430) (-3834 . 75765) (-3835 . 75573)
+ (-3836 . 75478) (-3837 . 75170) (-3838 . 73998) (-3839 . 73792)
+ (-3840 . 72617) (-3841 . 72542) (-3842 . 71361) (-3843 . 67859)
+ (-3844 . 67495) (-3845 . 67218) (-3846 . 67126) (-3847 . 67033)
+ (-3848 . 66756) (-3849 . 66663) (-3850 . 66570) (-3851 . 66477)
+ (-3852 . 66093) (-3853 . 66022) (-3854 . 65930) (-3855 . 65772)
+ (-3856 . 65418) (-3857 . 65260) (-3858 . 65152) (-3859 . 65123)
+ (-3860 . 65056) (-3861 . 64902) (-3862 . 64744) (-3863 . 64350)
+ (-3864 . 64275) (-3865 . 64169) (-3866 . 64097) (-3867 . 64019)
+ (-3868 . 63946) (-3869 . 63873) (-3870 . 63800) (-3871 . 63728)
+ (-3872 . 63656) (-3873 . 63583) (-3874 . 63342) (-3875 . 63002)
+ (-3876 . 62854) (-3877 . 62781) (-3878 . 62708) (-3879 . 62635)
+ (-3880 . 62381) (-3881 . 62237) (-3882 . 60901) (-3883 . 60707)
+ (-3884 . 60436) (-3885 . 60288) (-3886 . 60140) (-3887 . 59900)
+ (-3888 . 59706) (-3889 . 59438) (-3890 . 59242) (-3891 . 59213)
+ (-3892 . 59112) (-3893 . 59011) (-3894 . 58910) (-3895 . 58809)
+ (-3896 . 58708) (-3897 . 58607) (-3898 . 58506) (-3899 . 58405)
+ (-3900 . 58304) (-3901 . 58203) (-3902 . 58088) (-3903 . 57973)
+ (-3904 . 57922) (-3905 . 57805) (-3906 . 57747) (-3907 . 57646)
+ (-3908 . 57545) (-3909 . 57444) (-3910 . 57328) (-3911 . 57299)
+ (-3912 . 56568) (-3913 . 56443) (-3914 . 56318) (-3915 . 56178)
+ (-3916 . 56060) (-3917 . 55935) (-3918 . 55780) (-3919 . 54797)
+ (-3920 . 53938) (-3921 . 53884) (-3922 . 53830) (-3923 . 53622)
+ (-3924 . 53250) (-3925 . 52839) (-3926 . 52481) (-3927 . 52123)
+ (-3928 . 51971) (-3929 . 51669) (-3930 . 51513) (-3931 . 51187)
+ (-3932 . 51117) (-3933 . 51047) (-3934 . 50838) (-3935 . 50229)
+ (-3936 . 50025) (-3937 . 49652) (-3938 . 49143) (-3939 . 48878)
+ (-3940 . 48397) (-3941 . 47916) (-3942 . 47791) (-3943 . 46691)
+ (-3944 . 45615) (-3945 . 45042) (-3946 . 44824) (-3947 . 36498)
+ (-3948 . 36313) (-3949 . 34230) (-3950 . 32062) (-3951 . 31916)
+ (-3952 . 31738) (-3953 . 31331) (-3954 . 31036) (-3955 . 30688)
+ (-3956 . 30522) (-3957 . 30356) (-3958 . 29945) (-3959 . 16071)
+ (-3960 . 14964) (* . 10917) (-3962 . 10663) (-3963 . 10479) (-3964 . 9522)
+ (-3965 . 9469) (-3966 . 9409) (-3967 . 9140) (-3968 . 8513) (-3969 . 7240)
+ (-3970 . 5996) (-3971 . 5127) (-3972 . 3864) (-3973 . 420) (-3974 . 306)
+ (-3975 . 173) (-3976 . 30)) \ No newline at end of file